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ABSTRACT
NOVELTY DETECTION IN TOPIC TRACKING

Cem Aksoy
M.S. in Computer Engineering
Supervisors
Prof. Dr. Fazlh Can
Asst. Prof. Dr. Seyit Kogberber
July, 2010

News portals provide many services to the news consumers such as information
retrieval, personalized information filtering, summarization and news clustering.
Additionally, many news portals using multiple sources enable their users to eval-
uate developments from different perspectives by richening the content. However,
increasing number of sources and incoming news makes it difficult for news con-
sumers to find news of their interest in news portals. Different types of organiza-
tional operations are applied to ease browsing over the news for this reason. New
event detection and tracking (NEDT) is one of these operations which aims to
organize news with respect to the events that they report. NEDT may not also be
enough by itself to satisfy the news consumers’ needs because of the repetitions
of information that may occur in the tracking news of a topic due to usage of
multiple sources. In this thesis, we investigate usage of novelty detection (ND) in
tracking news of a topic. For this aim, we built a Turkish ND experimental col-
lection, BilNov, consisting of 59 topics with an average of 51 tracking news. We
propose usage of three methods; cosine similarity-based ND method, language
model-based ND method and cover coefficient-based ND method. Additionally,
we experiment on category-based threshold learning which has not been worked
on previously in ND literature. We also provide some experimental pointers for
ND in Turkish such as restriction of document vector lengths and smoothing
methods. Finally, we experiment on TREC Novelty Track 2004 dataset. Exper-
iments conducted by using BilNov show that language model-based ND method
outperforms other two methods significantly and category-based threshold learn-

ing has promising results when compared to general threshold learning.

Keywords: Novelty Detection, Topic Tracking.
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OZET
KONU IZLEMEDE YENILIK BULMA

Cem Aksoy
Bilgisayar Miithendisligi, Yiiksek Lisans
Tez Yoneticileri
Prof. Dr. Fazli Can
Asst. Prof. Dr. Seyit Kogberber
Temmuz, 2010

Haber portallar1 okuyuculara bilgi erigimi, kisisellestirilmig bilgi filtreleme, 0zet
¢ikarma ve haber kiimeleme gibi bir ¢cok hizmet sunmaktadir. Bunlara ek olarak,
pek cok haber portal ¢ok sayida kaynaktan beslenerek kullanicilarinin gelismeleri
degisik acilardan degerlendirebilmelerini saglamaktadir.  Fakat artan haber
kaynagi ve haber sayisi, haber okuyucularinin kendi ilgi alanlarinda olan haberleri
bulabilmelerini zorlagtirmaktadir. Haberlerin kolay bir sekilde taranabilmesi icin
degisik diizenlemelerde bulunulmaktadir. Bu diizenlemelerden biri olan yeni olay
bulma ve izleme (YOBi) haberler bahsettikleri olaylara gore organize etmekte-
dir. Cok sayida kaynak kullanilmasindan kaynaklanan bilgi tekrarlanmasindan
dolay1 YOBI uygulamas: da bazen kendi bagina yeterli olamamaktadir. Bu tezde,
bir konuyu takip eden haberler tizerinde yenilik bulma (YB) uygulanmasi ince-
lenmektedir. Bu amacla ortalama 51 izleyen haber iceren 59 konudan olusan
bir Tiirkce YB deney derlemi, BilNov, tarafimizdan hazirlanmigtir. YB i¢in g
metot Onermekteyiz; kosiniis benzerligine dayali YB yontemi, dil modellemeye
dayali YB yontemi ve kapsama katsayisina dayali YB yontemi. Ayrica, literatiirde
ilk defa kategori temelli sinir degeri 6grenme iizerine de deneyler yapilmaktadir.
Ek olarak Tiirkge tizerinde YB yontemleri i¢in dokiiman vektor uzunluklar: ve
diizgiinlestirme benzeri bazi deneysel parametrelerle ilgili gozlemler sunulmak-
tadir. Son olarak TREC Yenilik Bulma 2004 deney derlemiyle de deneyler
yaptiyoruz. BilNov kullanilarak yapilan deneylerin sonuclarina gore dil mod-
ellemeye dayali YB yontemi diger iki yontemi belirgin bir gekilde gegmektedir
ve ayrica kategoriye dayali sinir degeri 6grenme yaklagimi da genel sinir degeri
ogrenmeyle karsilagtirildiginda umut verici sonuclar vermektedir.

Anahtar sozcikler: Yenilik Bulma, Konu Izleme.
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Chapter 1

Introduction

With development of new technologies, amount of digitized information has in-
creased dramatically. In [43], it is claimed that over 90% of information currently
produced are generated in a digital format. These contain all types of data such
as text, video, audio etc. World Wide Web (WWW) is frequently used for making

them accessible.

One of the most commonly shared type of information through WWW is
news. Most of the newspapers and news agencies provide news from their web
pages. Other than these news providers, news portals also share news by col-
lecting them from the original sources. These news portals gather the news from
multiple sources via RSS (Really Simple Syndication) and/or directly crawling.
Multi-source news portals provide various advantages such as richness in news
content and opportunity to evaluate news from different angles. Additionally, it
is practical to follow different news sources from a single web page. Google News
(http://news.google.com) can be given as a commercial news portal example. It
offers many services such as information retrieval, personalized information fil-
tering, and news clustering. Other research oriented examples are NewsBlaster
28] and NewsInEssence [34] each of which provides clustering and summarization

services over the news.

Increasing number of sources and incoming news makes it difficult for news
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consumers to find news of their interest in news portals. Different organizational
techniques have been introduced in the literature to enable easy browsing in news
portals. New event detection and tracking (NEDT), one of these techniques, aims
to organize news with respect to the events that they report. An event is defined
as a happening that occurs at a specific time and place initiated by the first story
reporting the event. As an example, Haiti earthquake is an event. Additionally,
a topic is a seminal event. So, a topic is about the developments of a specific
earthquake, not all earthquakes. NEDT labels every incoming news to the system
as either tracking news of a previous event or the first story of a previously un-
detected event. Five different problems about NEDT were attacked during Topic
Detection and Tracking (TDT) research initiative which was organized between
1997 and 2004 [2], New Event Detection, Topic Tracking, Topic Detection, Story
Segmentation and Story Link Detection. Different document similarity calcula-
tions were applied by researchers to decide whether a news document is related
with any of the previous events or it is the initiator of a new event. Another
organizational approach for news portals is Information Filtering (IF). Most of
the news portals enable their users to have profiles in which they can save some
keywords or documents that reflect their interest area. Some of the algorithms
proposed for IF also considers user feedback as input to the system to improve
filtering accuracy. IF algorithms basically try to deliver news that are relevant

to the users’ profiles [8].

1.1 Motivations

Organizational operations enable the news consumers to find news in their interest
area easily. However, cluster, event, category or relevance information may not
be enough. For example, usage of multiple news sources may cause repetition of
the same information within the tracking news of a topic or the delivered news of
an IF profile. Sometimes, even a single source may publish several copies of the
same news article with small changes. For example, in Google News most of the
events have thousands of relevant news from the same or different sources. If all of

these news would be served to the news consumers directly, it would be very hard
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to follow the developments due to high number of documents on the same topic.
All of the provided news may not be interesting for the user because an article
may contain no novel information when compared to the previously delivered
documents. Documents with novel information should be detected and only they
should be served to the user. Allan et al. show novelty detection as a necessary
complement to real-world filtering systems because growth of information size
raises redundancy as a problem [1]. In Figure 1.1 an example integration of a
novelty detection module into a NEDT system is given. After NEDT system
gives its tracking decision about the document, d;, ND system checks whether
the document is novel with respect to the previous documents in the topic it is

assigned to or not.

l

NEDT

track

novel

Is d novel within Toplcz?

ND

Figure 1.1: Novelty detection module incorporated into a NEDT system .

Novelty detection (ND) may be defined as finding data which contain novel

characteristics with respect to some other data. It has been studied in many
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domains at different scales with slightly differing problem definitions. In signal
processing domain, the task is to identify new or unknown data which has not
been encountered during training process [27]. It is also named as outlier detection
[17]. In text processing area, ND has been studied in different scales, at event or

sentence level.

1. Event level: ND studies at the event level arise from TDT. One of the
five tasks of TDT workshop, New Event Detection also called First Story
Detection (FSD), was defined as finding the first story that reports an event
[2]. In F'SD novel information provided in the documents that follow in the
timestream is not considered as novelty if they just report developments

about the same event. This is why FSD is called event-level ND [26].

2. Sentence level: TREC Novelty Track contains a large body of the work
conducted on ND at the sentence level. The workshops were organized
between 2002 and 2004. At these workshops, given a set of ranked sentences
about a query, the main task was to find relevant and novel sentences.
Participants were asked to initially find the set of relevant sentences and
then find the set of novel sentences from the set of relevant ones [39]. A
sentence is defined as novel if it contains information that was not reported
previously in a topic. There were also different tasks which specialize only
on relevant sentence retrieval or novel sentence retrieval with differing sizes
of training data. There are also other sentence-level ND studies which work
on documents such as [48]. In [48], authors define novelty similar to TREC
Novelty Tracks. This work is similar to TREC Novelty Tracks except they
use documents as the retrieval component and they only work on ND, not

relevancy detection.

In this work, we use the novelty definition as in TREC Novelty Tracks. Given
the tracking news of a topic, we try to identify documents which contain novel
information that was not covered in any of the previous documents. Novelty
decision is given for documents. However, systems may make this decision by an-

alyzing the sentences. In Figure 1.2 an illustration of ND problem at this context
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is given. Let A, B, C and D represent different information contained by the doc-
uments. Red rectangles show the piece of information which causes the document
to be regarded as novel. First story is novel by default. Document-1 is novel be-
cause it reports information-B which was not reported before. Document-2 is not
novel because it contains no novel information. Document-3 report information-C
and is novel. Document-4 is not novel and and Document-5 is novel. Document-4
proves another important characteristics of ND problem that it is different than
near-duplicate detection [41]. Although both ND and near-duplicate detection
aims redundancy elimination, we can see that in the example, Document-4 is
neither a near-duplicate of any of the previous documents nor novel. This shows
that ND should be handled different than near-duplicate elimination.

B PEEE

First Story  Doc-1

Doc-2 Doc-3 Doc-4 Doc-5
Novel Not Novel Not Novel
Novel Novel
AY
i 7
Time flow

Figure 1.2: Illustration of ND in context of topic tracking.

Dealing with relevancy and novelty at the same time bears a conflicting schema
which requires sentences/documents to be similar to the previous ones for rele-
vancy, but also dissimilar for novelty. Since these two tasks are conflicting they
should be evaluated separately [48]. In this work we will be working on tracking
documents of a topic, so all of the documents are assumed to be relevant to the
topic. Even though we work on topic tracking documents, the methods stud-
ied in this work can be applied in many other domains such as IF, intelligence

applications, patient reports, etc.

1.2 Contributions

In this thesis we:
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Give the details about construction of the first ND test collection in Turkish,

BilNov and present some statistics about it;

Propose usage of three different ND methods; cosine similarity-based ND
method, language model-based ND method and cover coefficient-based ND
method [11] where first two are adapted from ND literature [5];

Evaluate performances of the novelty measures using the test collection we
constructed and show that language model-based ND methods outperforms

the other two methods significantly in terms of statistical tests;

Experiment on TREC Novelty Tracks’ test collections and discuss the dif-

ferences between the results in Turkish and English;

Examine the effects of different configurations of a ND system in Turkish
such as smoothing methods in language models [20, 46] and document vector

lengths in cosine similarity-based method [9];

Propose usage of category-based threshold learning for ND and compare its

results with general threshold learning;

1.3 Overview of the Thesis

The thesis is organized as follows:

Chapter 2 summarizes the studies on ND by categorizing them as event

level, sentence level and other applications.
Chapter 3 explains ND methods utilized in this study.
Chapter 4 examines the experimental setup of our study.

Chapter 5 explains the evaluation measures for ND and presents the results

of the proposed ND methods.

Chapter 6 concludes the discussions and provides some future pointers.



Chapter 2

Related Work

ND studies can be categorized into three classes, event level, sentence level and
other applications [26]. In the following sections ND studies at event level, sen-

tence level and in other applications will be summarized respectively.

2.1 ND at Event Level

New event detection problem is introduced in TDT research initiative which was
organized between 1997 and 2004 [2]. The problem within the context of a news
stream is to find events which were not reported before. There were different
tasks introduced in TDT; FSD among these tasks deals with new event detection

and is the most similar task to ND at the sentence level.

Different techniques were utilized to attack FSD problem. Clustering was
widely used to cluster news which report the same event into the same cluster.
This is similar to single pass clustering [42]. An incoming story’s similarities to
the previous clusters are calculated and if the story is dissimilar to all of the
previous clusters to an extent, it starts a new cluster and is labeled as a new
event. This method may be inefficient as the number of clusters increase. Yang

et al. proposed sliding-time window concept in which an incoming story is only
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compared to the members of a time period [44] which decreases the number of
comparisons. They also utilize a time-decay function to lessen the effect of older

documents.

Effects of usage of named-entities in TDT systems are also examined. Yang
et al. introduce a two-level scheme in which they first classify incoming stories
to broader topics like “airplane accidents,” “bombings” etc. before performing
new event detection [45]. After this classification, stories are compared to the
local history of the broader topic instead of all documents processed by the sys-
tem. This increases the efficiency with respect to the normal FSD systems which
compare incoming stories with all of the document history. Additionally, named-
entities are given weights specific to the topics. This is one of the rare studies
in which usage of named-entities was significantly better performing. This may
be due to the two-level scheme. In [22], although some performance increase is
gained by utilizing named-entities, a deeper investigation is suggested. Can et al.
report no significant improvement by using named-entities and the authors state
that this may be result of the test collection not being conducive to the usage of

named-entities [9].

2.2 ND at Sentence Level

Main aims of information retrieval are representation, storage, organization of in-
formation and providing easy access to these information. Information retrieval
systems, using their underlying organization structure, try to retrieve informa-
tion that are relevant to a user query [6]. Typically, using a retrieval model, these
systems rank the documents in the collection in terms of relevance to the query
and provide this ranked list to the user. Increase in the number of documents
in the collections brings redundant information problem into consideration. For
example, Google’s search engine groups very similar pages from a web page and
shows only one instance of the page. It provides the users the option to show all

of the similar webpages. However, when pages from different sources have the
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same information these cannot be detected as similar pages. This redundant in-
formation bears the need for a search system which not only detects the relevancy

but also novelty.

NIST organized TREC Novelty Tracks between 2002 and 2004 [16, 37, 38].
In these tracks, given a list of documents (split into sentences) that are relevant

to a query, there were two defined problems:

e Relevant Sentence Retrieval: This problem aims to find sentences which
are relevant to the query. Sentence retrieval is considered as different from
document retrieval because sentences contain limited amount of text than
documents [39]. Since they contain less text, it may be expected that
the systems that work on sentences are not reliable. Despite this possible
problem, taking sentences as the unit of retrieval enables adjusting sentence-
level decisions to different levels of texts such as the aim of these tracks
which is a system that helps information retrieval system users to skim

through result set of a query by only seeing relevant and novel sentences.

e Novel Sentence Retrieval: This problem aims to identify relevant sen-
tences which contain new information with respect to the previous sentences
both in the same document and the ones in the previous documents. This
definition constrains novel sentence detection algorithms to run in an incre-
mental way in which every sentence adds some knowledge which should be
examined while giving decision for the next sentence. Another important
point of novel sentence detection is that, it should be done over relevant sen-
tences. Because new information contained by irrelevant sentences should
not be provided to the users. Especially in news this may be encountered
very frequently such as sentences which explain some developments related
to the event but not directly relevant to the topic or some narrator com-

ments.

Test collections used in TREC Novelty Tracks were consisting of 50 topics each
of which contains a query and 25 relevant documents. In TREC 2004, to make the

tasks more challenging, some irrelevant documents were also put in the topics. In
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Novelty 2002 track, the documents were given in relevance order where in 2003
and 2004 the documents were processed in chronological order which is more
appropriate for the nature of ND. Documents were split into sentences by NIST
and the annotators were asked to select the set of relevant sentences and within
the set of relevant sentences then they selected novel sentences. Performance
evaluations were conducted over these ground truth data. As the evaluation

measure F-measure was used.

There were 4 different tasks with varying quantities of training data:

1. Task 1: Given the set of all documents and the query, find all relevant and

novel sentences.
2. Task 2: Given the set of relevant sentences, find all novel sentences.

3. Task 3: Given the relevant and novel sentences for the first 5 documents,

find relevant and novel sentences in the remaining 20 documents.

4. Task 4: Given all relevant sentences and novel sentences for the first 5

documents, find novel sentences in the remaining 20 documents.

In the following sections relevant and novel sentence retrieval methods from
studies conducted using TREC Novelty Track’s test collections will be explained

respectively.

2.2.1 Relevant Sentence Retrieval

In TREC Novelty Tracks a variety of relevance measures were utilized for de-
tecting relevant sentences. In most of these methods sentences’ similarity to the
topic query is used to quantify its relevance. Query expansion methods are also
used to make more reliable similarity calculations. In [5, 7] authors expanded the
query with the TREC topic definitions and also a proximity-based thesaurus is

used for further expansion in the latter one.
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Different retrieval models are used for similarity calculations. Vector space
model [36] is one of most frequently used models. In this model, texts are repre-
sented as N-dimensional vectors where N is the number of unique terms. Value
of the dimensions in the vector space model are found by a term weighting func-
tion such as TF — IDF [42]. After converting the texts to be compared into
vector space model, different similarity measures may be applied. One of these
measures, cosine similarity [42] is frequently used in Novelty Tracks [5, 15, 47].
After calculation of similarity, binary relevance decision is given by comparing
the similarity with a learned threshold value. For learning the threshold value
training data given in different tasks can be used where appropriate, additionally
some groups used TREC 2002 and 2003 data for training in 2004 track [5].

In addition, probabilistic models are utilized in relevant sentence retrieval.
Language models (LM) are successfully used in information retrieval studies [33].
In this type of retrieval, term statistics of each document are used to estimate
a probabilistic unigram model for that document which can be used to find the
probability that a word may be generated from the document’s model. Maxi-
mum likelihood estimator (MLE) for language model proposed by [33] is given
in Equation 2.1. In the formula, d stands for the document, 6, is the model of
the document d, t represents the term, ¢f function gives the frequency of term
t in the document, d and |d| represents the length of the document which is the
number of tokens in it. As it can be seen in the formula, this estimator gives
0 probability to the terms which are not included in the document. Smoothing
methods address this problem by trying to approximate the probability of a term
which does not occur in the document. Different smoothing techniques were pro-
posed in the literature [5, 48]. Given LM of two texts, distance of two texts can
be calculated via Kullback-Leibler (KL) divergence. This measure is used as a

relevance score by negating [5].

tf(t,0q)

P(tl0s) = =5

(2.1)

Hidden Markov model (HMM), a machine learning approach, is also utilized

for relevance detection [14]. An important aspect of this method is that it assumes
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fewer independence between documents’ relevance. Using the state structure
of HMM, relevance of sentence-i may be taken as dependent to sentence-(i-1).
HMM requires training for determining state transition, initial state and output
probabilities. In tasks where training data was not available, TREC 2003 data
was used for training. OKAPI [35] is also utilized to estimate similarity between

the query and sentences [47].

2.2.2 Novel Sentence Retrieval

In TREC novelty tracks, a very simple but intuitive method, New Word Count
(NWC) [24], was one of the most successful methods. In this method sentences
were given a novelty score based on the number of new words that they include. A
new word in this context is a word that was not encountered in any of the previous
sentences. Like many other methods, this method also needs a threshold value

for giving novelty decision.

Similarity measures are also utilized for novelty. The basic idea is to compare
a sentence with all of the previous sentences and if the similarity to all of the
previous sentences are below a threshold, the sentence is labeled as novel. This
idea is adapted from First Story Detection (FSD) in TDT [32]. In [40], cosine
similarity is used for similarity calculation. In [15] current sentence is compared
with a knowledge repository consisting of all previous sentences instead of all
previous sentences one by one. Zhang et al. proposes that since novelty is an
asymmetric property, symmetric similarity/distance values should not work well
in ND [48]. However, in their study and in most of the studies in the literature
cosine similarity which is symmetric was utilized in most of the successful ND

methods.

LM are also utilized for novel sentence detection. KL-divergence (see Equa-
tion 3.8) is used for measuring the dissimilarity of two LM. Two different ways are
followed in [5] which are an aggregate and a non-aggregate method. In aggregate
method for giving novelty decision about a sentence KL-divergence between its

LM and a LM constructed from all of the previously presumed relevant sentences



CHAPTER 2. RELATED WORK 13

is calculated. An aggregate model seems more accurate since a LM constructed
from a larger amount of text is more reliable. However, the possible problem
about an aggregate model is that redundancy of a sentence may be hidden in an
aggregate model. For example a sentence may be regarded as almost a dupli-
cate when compared to a sentence very similar to it, however when compared to
a larger set of text which contains the similar sentence, the redundancy of the
latter sentence may be hidden. In the non-aggregate method, KL-divergence be-
tween models that are built from sentences are calculated. Novelty of a sentence
is taken as the minimum KL-divergence value between its LM and the models
constructed from the previous sentences. As stated above, the possible prob-
lem about non-aggregate method is that sentences may contain very few text
and it may be unreliable to construct LM from sentences. Accurate smoothing
techniques should be employed to overcome this problem. Different smoothing
techniques are used for LM such as Jelinek-Mercer and Dirichlet smoothing. In
addition to aggregate and non-aggregate methods, a mixture-model is proposed.
Being first introduced by [48], mixture-model tries to model every sentence as a
set of words generated by three different models, a general English model, a topic

model and a sentence model.

Li and Croft address the ND problem in a similar context to question an-
swering [26]. They define novelty as new answers to a possible information re-
quest made by the user’s query. Queries are converted into information requests.
Named entity patterns such as person (“who”), date (“when”) are used as ques-
tion patterns. Then, sentences that have answers to these questions are extracted
as novel ones. Problem arises about the opinion topics whose queries do not in-
clude such patterns. Different patterns such as “states that” are proposed for
opinion topics. Additionally, a detailed information pattern analysis of sentences

in TREC novelty data is given in the paper.
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2.3 Other applications

ND techniques may be applied in many areas such as intelligence applications,

summarization and tracking of developments in blogs, patient reports.

In Zhang et al. an adaptive filtering system is extended for redundancy elim-
ination [48]. Documents to be delivered for a filtering profile is processed by
redundancy elimination tool and documents which are redundant given the pre-
viously delivered documents are eliminated. Experiments on different measures
are conducted in this study. Authors claim that since novelty is an asymmetric
measure (when documents are reordered, a novel document may be not novel),
symmetric measures should not be performing well. However, one of the best
performing methods were a cosine similarity-based method adapted from FSD

and the other one was a mixture of LM.

ND at sentence level has many similarities with summarization studies. In
both only the necessary sentences should be delivered to the user. In summa-
rization there is also a necessity to compress the given text which is not valid
for ND studies in TREC. This may be explained as follows, if a newer sentence
contains the information provided in a previous sentence but also provides some
new information, both of the sentences are labeled as novel in ND. However, in
summarization, because of compression concerns, only the latter sentence may
be contained in the summary. A subtopic of summarization area, temporal sum-
marization, aims to generate summary of a news stream timely, considering the
previous summaries and providing only the updates from the previously delivered
summary. Allan et al. define usefulness (which may be understood as similar to
relevancy) and novelty of sentences and tries to extract novel and useful sentences
[3]. Language modeling is used with a very simple smoothing technique. Addi-
tionally, update summarization is a similar problem which was piloted in Docu-
ment Understanding Conference 2007 and continued in Text Analysis Conference
2008 and 2009. The aim in update summarization was to generate a summary
of a set of documents under the assumption that another set of documents are

already read by the user.
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Temporal text mining deals with analyzing temporal patterns in text. In [29],
evolutionary theme patterns are discovered. As an example, in a text stream
related to Asian tsunami disaster, the aimed themes are “immediate reports of the
event,” “statistics of death,” “aids from the world” etc. Also, a theme evolution
graph is extracted in which transitions between themes are shown. LM are also
utilized in this study. Parameters of the probabilistic models are estimated by

Expectation Maximization algorithm [30].



Chapter 3

ND Methods

In this section our proposed ND methods are explained. Prior to application
of these methods, some pre-processing methods are applied on the texts which
are explained in Section 3.1. Following the Pre-processing section, we explain
category-based threshold learning approach in Section 3.2. In Section 3.3, random
baseline, cosine similarity-based ND method, language model-based ND method

and cover coefficient-based ND methods are explained respectively.

3.1 Pre-processing

Natural language products cannot generally be used by computer applications
directly, some pre-processing should be applied to the text. There are generally

three steps of preprocessing:

e Tokenization
e Stopword Elimination

e Stemming

16
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Tokenization, in this context, is the identification of the word boundaries. In
most languages, including Turkish, tokenization is straightforward by tokenizing

with respect to spaces and punctuation marks.

3.1.1 Stopword Elimination

In information retrieval studies words are generally given some importance with
respect to their frequency in the text. Stopwords may affect performance of these
studies since they generally occur very frequently in texts. Stopword elimination
is applied to texts before processing in order to overcome this effect. Since these
words do not distinguish sentences/documents from each other, elimination of

them is expected to increase system performance.

In Turkish information retrieval effects of stopword elimination is examined
[10].  Authors utilize three stopword lists and report no significant difference
between effectiveness of different configurations. As a more similar study to
ND, Can et al. also show that using a stopword list significantly increases the
effectiveness in new event detection [9]. However, there is no significant difference
between effectiveness of the system with longest stopword list and the system with

a shorter list.

In this work we utilize the longest stopword list which contains 217 words

taken from [21]. This is a manually extended version of a shorter stopword list

[9]-

3.1.2 Stemming

In natural languages, prefixes and suffixes are used to either derive words with
different meanings or inflect the existing words. Different stemming algorithms
are used to find the stems of the words so that word comparisons may be more
reliable. In this work we utilize a stemming heuristic called Fixed Prefix Stem-

ming.
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Turkish is an agglutinative language in which suffixes are used to obtain dif-
ferent words (a more detailed characteristics of Turkish is given in [25]). In fixed
prefix stemming, words’ first N characters are used as the word stem. For ex-
ample, for word ekmek¢i (bread seller), first-five(F5) stem of the word is ekmek
(bread). Turkish’s agglutinative property makes fixed prefix stemming an ap-
propriate approach. Can et al. [10] showed that F5 stemming gives the best
performance in Turkish information retrieval. Additionally, in new event detec-
tion it is shown that systems using F6 is one of the best performing ones [9]. In

this study we will utilize F6 stemming with the help of observations done in [9].

3.2 Category-based Threshold Learning

We utilize cross validation for reporting our system performance since all of our
methods have some parameters and these should be learned. In this study, moti-
vated from [45] we also try category-based threshold learning and compare results
of general threshold learning with category-based threshold learning. In [45], the
authors study running FSD on a local history based on a category instead of all
of the previous documents. Our motivation here is that each topic has a differ-
ent type like sports news, accident news etc. and each of these categories have
different novelty structures. For example, intuitively, one would expect to see
more rapid but small developments in an accident topic where in a topic related
to politics it may take days for the topic to become mature. So, we hypothesize
that while learning a threshold for a topic, if we use only topics from the same
category with the topic, we can increase the system performance. In our test
collection there are 13 different categories such as accidents, financial etc. We
experiment with category-based threshold learning using these categories. We

report the results of category-based threshold learning Section in 5.2.1.5.
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3.3 ND Methods

3.3.1 Baseline - Random ND

Systems which give their decisions randomly are widely used as a baseline in
many problem areas [18]. With comparison with this baseline, a method can be
proven to work better than a random baseline and its decisions are justified as

different than just random decisions.

In ND context, the random baseline method is straightforward, without ex-
amining the contents of a document, it gives novel/not novel decisions with a
probability of 0.5. In order to evaluate random baseline, expected performance of
the system should be found. This can be done by considering all novel /not novel
assignment configurations, calculating performance of the specific case, multiply-
ing the performance of the case by the probability of occurrence of the case and
summing up this for all cases. We generalize this calculation with the help of the

example given in Figure 3.1.

Documents in Topic K 2 3 5 .. m
. . 1 1 1 1 1 1
Probability of Being Labeled as Novel —_— —_= = = — —
2 2 2 2 2 2
o 1 1 a
Contribution to Recall (T *1)+0 + 0+ (T *1)+0+..... + 0 = -

Figure 3.1: Calculation of expected performance of random baseline.

Let K be a topic with m documents as in Figure 3.1 and a be the number
of novel documents in these m documents. First row of the figure shows the
documents, documents surrounded with a red square are novel documents. The
second row shows the probabilities of each document being labeled as novel. As
we stated, this probability is 0.5 for all document in random baseline. Third

row shows the contribution of each document to recall if they would be in the
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set of documents returned by the system. Not novel documents obviously do
not make any contribution to both precision and recall. Novel documents will
have 1 contribution to the measures and they can be involved in the set with 0.5
probability, so in the expected case sum will be §. So, we can derive recall as R =
% = % However, for precision the contribution of a document is not only to the
numerator part of the formula, also the denominator part of precision formula
increases (recall calculation can be done easily as we did since denominator part
of recall is constant, A). So, we give a general formula for precision calculation in
Equation 3.1 for a topic with m documents and a novel documents where a > 1.
In the equation, the term (‘Z)(mj_“) stands for the number of cases where i novel
documents can be chosen correctly from A novel documents and j documents can
be chosen from m-a not novel documents. Precision at this case is ﬁ which is
the ratio of novel documents in the set of returned documents. The denominator
2™ is the number of total cases (it might also be taken as 2™ — 1 since the case

where no documents are returned, precision is not defined but we neglect this).

S (M)

2m

Precision = (3.1)

Results of random baseline will be given in Section 5.2.1.1.

3.3.2 Cosine Similarity-based ND

In many text-based studies problem is usually reduced to accurately calculating
the similarities between some pieces of texts and giving a decision based on these
similarity values generally with the help of a threshold value. Cosine similarity is
one of the most frequently used similarity measures in information retrieval. Its
geometrical interpretation is that it is equal to the cosine of the angle between two
vectors. In text similarity calculation texts to be compared are initially converted
into vector-space model [36]. In this model, every unique term is represented by a
dimension in the vectors and the value of these dimensions are obtained by a term
weighting function. TF-IDF function is very widely used as a term weighting

function in which TF stands for term frequency and IDF stands for inverse
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document frequency. Calculation of TF-IDF value of a term in a document
is given in Equation 3.2. In the equation tf(t,d) is the frequency of term ¢ in
document d. Second part of the multiplication is I DF part in which m represents
the number of the documents in the collection and m,, is the number of documents
which contain term t. The function basically tries to give higher importance to
the terms that occur frequently in a specific document but not in all documents.
In this study we use raw TF values for term weighting because of the initial
results obtained with T'F' — I DF function. Cosine similarity tends to give good
results even just with raw term frequencies. Similar observations were reported
in [4].

m
TF —IDF(t,d) = (tf(t,d).log(—)) (3.2)

Formula of cosine similarity is given in 3.3. In the numerator dot product

of the vectors, w; and w; are calculated by summing the multiplication of cor-
responding dimensions. denominator is a normalization factor which consists of
multiplication of lengths of both of the vectors. N is the number of dimensions

in both of the vectors.

ZN Wik - Wik
CosSim(dl,d2) = = k=l ]\? (3.3)
\/Zk:l Wi Y pey wjz'k

Our cosine similarity-based method is adapted from FSD. In this algorithm
we identify a novel document as a document which is dissimilar to all of the
previous documents to an extent. Comparisons should be made with all of the
previous documents because high similarity to even a single document may make
a document not novel. The algorithm can be seen in Algorithm 3.1. Document
arriving at time t, d; is compared to all of the previous documents and if its
similarity to any of the previous documents is greater than threshold, 6, the

document is labeled as not novel. Otherwise, the document is labeled as novel.
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Algorithm 3.1 Cosine Similarity-based ND Algorithm
1: d; is the document arriving at time ¢
2: 6 is the novelty threshold

3: for FEvery previous document d do
4:  if CosSim(d;,d) > 0 then

5: d; 1s not novel
6
7
8
9

RETURN
end if
: end for
. d; is novel

3.3.2.1 Reduction of Document Vector Length

Document vector length of a document is the number of unique terms that the
document contains. In other words it is the number of non-zero valued dimen-
sions in the document vector. In cosine similarity normally all terms of texts
(dimensions of vector) are used for the calculation. Using all dimensions does
not necessarily make similarity calculations more reliable since some terms with
smaller frequency may not make contribution to the similarity between docu-
ments. For example, even after stopwords are eliminated, some topic specific
stopwords may exist in the documents and these may cause the documents to be
assumed as more similar to each other than they actually are. Even though Allan
et al. state that cosine similarity tends to perform better at full dimensionality
[4], document vector length is an important feature which should be examined.
Effects of document vector length were studied in new event and detection [9].
We evaluate effects of using different document vector lengths (highest valued

dimensions) in cosine similarity calculation in ND in Section 5.2.1.2.

3.3.3 Language Model-based ND

Probabilistic models have been incorporated in information retrieval for over four
decades [46]. These models try to estimate the probability that a document is
relevant to the user query [33]. Ponte and Croft [33] introduced a new and simple

probabilistic approach based on language modeling. This new model unlike its
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predecessors does not have any prior assumptions on documents such as coming
from a parametric model. Maximum likelihood estimate (MLE) of probability
of term ¢ being generated from the distribution of document d as introduced by
Ponte and Croft [33] is given in Equation 3.4. In the formula, ¢f(¢, d) is the term
frequency function which gives the number of occurrences of ¢ in document d and
|d| is the length of document which is the number of tokens in D. MLE formula
basically gives probabilities to the terms which are proportional to their frequency
in the document. If a term does not occur in the document, its probability is
estimated as 0 with MLE. This is a very strict decision and generally does not

reflect the true probability of the term.

tf(t,d)
|d|

Pryre(t)ly) = (3.4)

Smoothing methods aim to empower MLE of the probabilities so that un-
seen terms in the documents are not assigned 0 probability. Especially, when
estimating a model with limited amount of text, smoothing has a significant con-
tribution in model’s accuracy [46]. Allan et al. apply smoothing in a simple way
by adding 0.01 to numerator of Py;p and multiplying denominator by 1.01 [3].
This approach helps to overcome problems caused by unseen terms, however it
does not offer a good estimate of the probability. Zhai and Lafferty [46] examine
different smoothing methods for information retrieval. In this study, we will ex-
periment with two different smoothing methods which are Bayesian Smoothing
Using Dirichlet Priors and Shrinkage Smoothing [5, 46].

3.3.3.1 Smoothing Methods

1. Bayesian Smoothing Using Dirichlet Priors: This smoothing method
which is also called Dirichlet Smoothing is similar to Jelinek-Mercer smooth-
ing [20] because it also uses a linear interpolation of MLE model with an-
other model. Model obtained by Dirichlet smoothing is given in Equation
3.5. In the equation, tf(t,d) is the count of occurrences of ¢ in document

d, Pyre(t|0c) is a MLE model constructed from a collection of documents
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C to smooth the probability of the document model and p is interpolation
weight and |d| is the length of document d. In our experiments, we will use
the set of documents which arrive before document d as set C. So, basically
a term’s probability of generation from the document model will depend on
its probability of occurrence in the previous documents. Dirichlet smooth-
ing takes language models as multinomial distributions whose conjugate
prior is a Dirichlet distribution [46] and parameters of Dirichlet distribu-
tion are taken as up(t1]0), up(t2]0), up(tsl0), up(t4]@), ..., up(t,]0). Another
property of this smoothing as can be seen by the weights of the components
of interpolation, it tends to smooth shorter documents more than the longer

documents [5]. In this smoothing model, p is obtained with training.

d
P(t]6q) = |d‘|7_'|_MPMLE(t|9d) + M%MPMLE(HGC) (3.5)

2. Shrinkage Smoothing: This method assumes that each document is gen-
erated by contribution of three language models, a document model, a topic
model and a background model, in our case a Turkish model. Equation 3.6
illustrates the shrinkage smoothing. In this equation, Pypg(t|6r) is the
MLE model generated for the topic of document d and Py g (t|07y) is the
MLE model generated for Turkish. Interpolation weights for the corre-
sponding LM are shown as Ag, A\r, Ay where A\p + Ay + Ary = 1. In our
experiments, Pyg(t|0r) is generated by the topic description which is ex-
panded by the first story of the topic. Allan et al. also used TREC topic
descriptions for topic models [3]. Turkish model, Py r(t|07y), is gener-
ated by using a reference collection, Milliyet Collection [10], which contains
about 325,000 documents which are news from the Milliyet newspaper be-
tween the years 2001 and 2004. This corpus was utilized in other studies
for IR experiments [10] and again as a reference corpus for calculation of
IDF statistics [9].

P(t164) = \aPrre(t|bs) + ArPyure(t|0r) + Aro Pure(t|6ro) (3.6)



CHAPTER 3. ND METHODS 25

3.3.3.2 Adaptation of Language Models to ND

Language models have been used as novelty measures previously in different stud-
ies. In [3], occurrence of words in sentences are assumed independent and prob-
ability of a sentence s being generated by a model 6 is calculated as in Equation
3.7 where t represents terms and s represents sentences. Later these values are di-
rectly used as novelty scores. This method seems to depend heavily on quality of
smoothing since one unrealistic (small) probability can make the result unreliable

because of the multiplications.

P(s]0) = I,e, P(t]6)* (3.7)

Kullback-Leibler (KL) divergence is another measure used for utilizing lan-
guage models in ND. KL divergence is used to find distance between two proba-
bilistic distributions. Calculation of KL divergence between two language models,
01 and 60y are given in Equation 3.8. As the formula suggests, KL divergence is
an asymmetric measure where K L(0y,6,) and K L(6,,0;) do not necessarily have

the same values. This property makes it a more appropriate measure for ND.

D(t]0,)
P(t]0)

KL(61,65) = Y P(t[61).log (3.8)

In this study, we also utilize KL divergence as the novelty measure for lan-
guage model-based ND. In previous ND studies two different ways were followed
which are aggregate and non-aggregate methods [5, 48]. In aggregate method,
while giving novelty decision of a sentence, all of the presumed relevant sentences
were used to form an aggregate model and KL divergence between model of the
sentence and this aggregate model is calculated as the sentence’s novelty score.
While this model seems more accurate because of the larger amount of text, a
possible problem is that redundancy of a sentence may be hidden in an aggregate
model. For example, a sentence may be regarded as almost a duplicate when

compared to a sentence very similar to it, however when compared to a larger
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set of text which contains the similar sentence, the redundancy of the latter sen-
tence may be hidden. This problem is also valid for our case, so we utilize the
non-aggregate method. In the non-aggregate method, we calculate KL divergence
between models of every document separately. Novelty of a document is taken as
its minimum KL divergence value with the previous documents. Details of the
algorithm are given in Algorithm 3.2. For an incoming document, d;, we calcu-
late KL divergence between every previous document, if KL divergence between
d; and any of the previous documents is less than the threshold, O, d; is labeled
as not novel. This comparison has similar intuitions as cosine similarity-based

method except KL divergence is a distance measure.

Algorithm 3.2 Language Model-based ND Algorithm
: d; is the document arriving at time ¢
: © is the novelty threshold
. for Fvery previous document d do
if KL(0y,,04) <O then
d; 1s not novel
RETURN
end if
end for
. d; is novel

© X ey

3.3.4 Cover Coefficient-based ND

Cover coefficient (CC) is a concept to quantize the extent to which a document

is covered by another document [11]. CC is calculated as in Equation 3.9.

cij = Sop_iloudal [Be.die] where o; =[S0 da]™ Be=[Cdu]” (39)

In the formula, n and m, respectively, represent the number of terms and
documents in the document-term matrix, D, of a set of documents. Values d

represent DD matrix entries, i.e. d; is the number of occurrences of term-k in
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document-i where 1 < i < m and 1 < k < n. Reciprocals of i-th row sum and

k-th column sum of D matrix are represented as «; and [ respectively.

Coverage of document-i by document-j, ¢;;(1 < i,j < m), is the probability
of selecting any term of document-i from document-j. Calculation is done as a
two-stage probability experiment. An illustration of construction of C' matrix
is given in Figure 3.2 which is adapted from [9]. The leftmost part shows an
example document-term matrix which consists of 5 documents (d1, ds, ds3, dy, ds)
and 4 terms (ty,ts,t3,14). As stated in [11], all documents should at least have
one non-zero entry in D matrix meaning that they should contain at least one
term and each term should at least be contained by one document. D matrix
contains binary values in this example but it may also have the frequencies of the
terms in the corresponding documents instead of binary values. In the middle
part of Figure 3.2, an example of double stage probability experiment is given.
In the first stage, a term is chosen randomly from d;, since the document has two
terms, selection probability of both terms are 0.5 (obtained by «;). This stage is
handled by the first part of the formula. In the second stage, the selected term
is randomly chosen from a document. For example, if ¢4 is considered it may be
selected from four documents with 0.25 probabilities (obtained by [34). This stage
is handled by the second part of the formula. The last part of the figure shows

the constructed C' matrix, a mam matrix, from the D matrix which contains the

c;j values.

o5 A G _
9%8% sty 38.38.00.12.1
D= C=|.25.42.00.25.0
0010 < e 00.00 .50 .00 .5
0011 053¢ 0534 12 .38.00.38 .1
o 12 .12 .25 .12 .3

dy [

o3

Figure 3.2: Example transformation from D matrix to C' matrix with illustration
of the term selection probabilities.




CHAPTER 3. ND METHODS 28

3.3.4.1 Motivation for Usage of CC as a Novelty Measure

CC values are probabilities and show the characteristics of probabilistic observa-
tions. All ¢;; values may have values between 0 and 1. If two documents contain
no common terms, coverage of one by the other one is 0. Likewise, if only two doc-
uments are considered and they are duplicates, their coverage values are 1. Also
again if only two documents are considered, and one is a subset of the other one,
its coverage by the superset is also 1. Row sum of C' matrix is equal to 1 which
shows that sum of probabilities of a document covered by the other documents
are equal to 1. A document’s coverage of itself is called decoupling coefficient
and showed by ¢; value for 1 < i < m. If a document contains terms which only
exists in itself, decoupling coefficient of the document is 1 and coverage value by

all other documents are 0.

CC value is an asymmetric measure which can easily be shown by an example
of two documents in which one of the documents contain the other one. Coverage
of the smaller document by the superset is 1 where coverage of superset by the
subset is a number smaller than 1. This asymmetric property makes CC concept
useful as a novelty measure because same situation exists in ND also. Consider
two documents d; and dy as in Figure 3.3 which may be regarded as tracking
documents in a topic. Information contained by the documents are shown as A
and B where d; contains information A and d, contains information A and B. In
the first case, d; arrives at t; and contains information-A which was not delivered
before. So, d; is novel. At time t,, dy arrives and it contains information A and B.
Information-B was not reported before ¢, so this document is also labeled as novel.
To observe the asymmetry property, we swap the order of arrival of documents.
In the swapped case, dy arrives at ¢; and is labeled as novel since it contains A
and B which were not given before. However, d; which arrives at t, contains no
novel information since A was already given in dy before. This property may not
be handled well by symmetric similarity measures such as cosine similarity since
similarity between d; and ds is calculated regardless of their arrival times. In CC,
coverage of d; by dy will be expected to be larger than the coverage of dy by dy
in this specific case which satisfies the ND property.
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Figure 3.3: Example case of asymmetry in ND.

3.3.4.2 Adaptation of CC to ND

CC may be regarded as an asymmetric similarity measure as explained in Section
3.3.4.1. Since for a document to be novel, we will look for the condition that
its similarity to all of the previous documents is below a threshold value. Here,
comparisons with all previous documents is important because a document may
be dissimilar to almost all of the documents but if it is very similar to even
one document, it cannot be labeled as novel. Basic algorithm can be seen in
Algorithm 3.3. As it can be seen in lines 3,4 and 5, if d; is covered by any of the
previous documents, d, to an extent, it is considered directly as not novel and
similarity calculations are stopped. If all of these comparisons are successful in

terms of comparison to the threshold 6, d; is labeled as novel.

Algorithm 3.3 Cover coefficient-based ND algorithm.
1: d; is the document arriving at time ¢
2: 6 is the novelty threshold

3: for Every previous document d do
4 if Cd, d > 6 then

5: d; 1s not novel
6
7
8
9

RETURN
end if
: end for
. d; is novel

Threshold 6 is learned by cross validation in our experiments. Details of

training process are explained in Section 4.3.
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Experimental Environment

In this section we will explain our experimental setup. Details about construction
of Turkish ND test collection will be explained in Section 4.1. Later, we will
explain TREC Novelty Track 2003-2004 test collections. Finally, we will give

some information about our training approach in Section 4.3.

4.1 BilNov - Turkish ND test collection

There are no previous ND studies in Turkish and this poses the problem that
there is no standard test collection for objective performance comparison be-
tween the methods that will be developed for Turkish. In this section, we report
the construction details of the first Turkish ND test collection, BilNov. To the
best of our knowledge, this test collection is one of the first ND test collections

constructed on tracking news of topics.

BilNov is based on a TDT collection, BilCol2005 [9]. In TDT context a topic
is about a development which is triggered with a first story and is followed by
the trackers of the first story which are other news related to the topic. A list of
example topics are given in Figure 4.1. First row contains a topic about Turkey’s

first septuplets. First story of the topic has 17.02.2005 as timestamp and 56 news

30
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Table 4.1: Topic examples.

Title Category Time Span | # of Trackings
Turkey’s First Septuplets Celebll;iz! eIrSI;Jman 1471(1)33882 o6
New Turkish Criminal Code New Laws (1)(1)(1)22882 o3
Trial of Saddam Hussein Legalégsr;;mnal ;gﬁ;ggg 80

documents related with this topic track it. Last of these tracking documents has
the timestamp 14.12.2005. Judgments of first stories and the tracking documents
are made by human annotators and the details of annotation process are given
in [9].

4.1.1 Selection of Topics Used in the Collection

BilCol2005 collection consists of 80 topics with an average of 72 tracking news.
Although, average number of trackings is 72, there are both topics with few track-
ings and with a lot of trackings such as 245 documents. Our initial experience on
annotation process showed that topics with large number of tracking documents
are very hard to annotate because with each document, size of information that
the annotator should remember increases and also as the amount of time spent
during annotation increases, possibility of making mistakes also increases. Other
than very long topics, small topics would not be appropriate for ND task because
they are not challenging enough to be used in performance evaluation. Because
of these reasons, we chose 59 topics from BilCol2005 which contains more than or
equal to 15 tracking documents. We only use the first 80 documents of the topics
which contain more than 80 documents for the topic length considerations. Fig-
ure 4.1 illustrates the distribution of topic lengths in BilNov. As the figure shows,
there are plenty of topics from varying lengths which may help the researchers

during evaluation of their methods in terms of topic lenghts.
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Figure 4.1: Histogram illustrating the distribution of topic lengths.

4.1.2 Annotation Process

Documents are annotated by human annotators within the time sequence (each
document has a timestamp). An annotator starts reading from the first story
of a topic and then reads all of the documents in the topic in time sequence.
After reading each document (except the first story), annotator gives the decision
whether the document is novel or not with respect to the previous documents. As
the annotation software, we built a component for a previous annotation system,
E-Tracker [31]. A screenshot of annotation interface can be seen in Figure 4.2. We
worked with 38 different annotators each of which are assigned different number
of topics but we tried to keep the total number of documents annotated by an

annotator same.

We also asked the annotators to enter the time they spent per topic. Average
time spent per a topic is 59 minutes which shows the hardness of the job when

performed by a human. Statistics about the test collection is given in Table A.1.
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Figure 4.2: Screenshot showing the annotation screen.

4.1.3 Construction of Ground Truth Data

In the literature, generally more than one annotators are used on the same subject
to see the effect of having different people assessing the same subject. Although
these different judgments may be used separately to observe two different point
of views, generally a single ground truth data is generated by using judgments of

different annotators.

In our study, each topic is annotated by two annotators. Majority voting
would not work obviously in this case since no majority can be obtained when
there is a disagreement with two decisions. In some studies, different annotators
are asked to work together to decide on one of the decisions. This process is also
very time demanding. In their work, Zhang et al. [48] instructs the annotators
to give novelty decisions at three level; absolutely novel, somewhat novel and not
novel. Later, they conduct experiments with these data by taking somewhat novel
ones as novel in one configuration and as not novel in the other configuration. This
setup enables them to evaluate their systems in terms of sensitivity to strictness
of novelty decision. We follow a similar approach to Zhang et al. by combining
decision of the annotators. If we neglect annotator mistakes, the disagreement
between the decisions is probably caused by different interpretations of novelty.

So, if we combine decisions of annotators in two different setups, we would be
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able interpret novelty in different dimensions. These two configurations are as

follows:

e Optimistic ground truth: In this ground truth data, when two annota-
tors are in disagreement, we choose decision which is more optimistic about
novelty of the document. In other terms, if one of the decisions is “novel”,
the optimistic ground truth label is also novel. This is similar to logic func-
tion, OR, if we consider novelty as 1, if any of the decisions is a 1, the

optimistic ground truth is also 1.

e Pessimistic ground truth: In this ground truth data, contrary to the
previous one, ground truth label is novel if and only if both of the annotator
judgments are novel. This is similar to logic function, AN D, causing the

ground truth label to be 0 if one of the decisions is 0 (not novel).

4.1.4 Quality Control of Experimental Collection

Construction of experimental collections requires dealing with lots of data and it
is very hard do examine these one by one to evaluate their appropriateness for the
task that the collection is built for. During and after the construction, generally
some quality control techniques are applied to both the data and the judgments.
With the help of these techniques an error about the collection may be corrected

or some topics, document which have undesired properties may be eliminated.

In the following three sections, we will explain some analysis of data we per-

formed for quality check.

4.1.4.1 Analysis of Topic Lengths

Lengths of topics are important for a ND collection. A test collection built from
very short topics could not effectively be used in performance measure since even
a random method can perform well because of the few number of documents.

Additionally, choosing topics at same length (all long or all short) could hide
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some performance degradation of methods towards some kind of topics. We gave
the distribution of lengths of topics included in BilNov in Figure 4.1. As it can
be seen, there are topics of different lengths and also there are not any very short

topics.

4.1.4.2 Analysis of Novelty Ratios

Novelty ratio is defined as the ratio of the labeled documents which are novel. As
a quality feature, it gives us information about the structure of the test collection.
A test collection with a higher novelty ratio can be considered as a less challenging
test collection since after some ratio it may be more meaningful to label all
documents as novel (equivalent to not performing ND). While calculating novelty
ratios, since there are two judgments, we took average of them. Distribution of

novelty ratios is given in Figure 4.3.
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Figure 4.3: Distribution of novelty ratios.
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4.1.4.3 Inter-Annotator Agreement

Reliability of the ground truth data constructed from the decisions of different
annotators depends on the agreement between the annotators. Kappa coefficient
is widely used for measuring inter-annotator agreement [12]. Kappa’s superiority
to different measures is that it also checks for agreement by chance. Agreement
of the annotators is corrected by the expected value of agreement between an-
notators which is again calculated by using the probabilities of cases obtained
from annotator decisions. Formula of Kappa is given in Equation 4.1. In the
formula Agr stands for the observed agreement between the annotators. E(Agr)
is the expected agreement which calculated by the individual probabilities of the
annotators. In the denominator E(Agr) is subtracted from 1 because 1 is the
maximum value that an agreement can take so this takes role as a normalization

factor.

_ Agr — E(Agr)
1= E(Agr)

(4.1)

An example case is given in Table 4.2. Rows represent the decisions of an-
notator A and columns represent annotator B. Expected agreement between the
annotator is calculated by 0.75 * 0.4 + 0.25 * 0.60 = 0.45. This is simply the sum
of probabilities of cases where both annotators label the document as novel or not
novel. The probabilities are obtained by their assessments. Agreement between
A and B, Agr is the sum of diagonal values which are the documents both labeled
as novel or not novel. So Kappa value is, Wio.w. Kappa coefficient
takes values less than or equal to 0 for cases where there is not a agreement more

than the expected case. In case of perfect agreement, it takes the value 1.

In our judgments, the average Kappa coefficient is 0.63. This value stands
for a substantial agreement according to intervals given by Landis and Koch [23].
Additionally, we performed the statistical test proposed by Conrad and Schriber
[13]. In this test, we showed that our Kappa value is significantly different than
0 with p = 0.002. This shows that our agreements are significantly larger than

the expected cases.
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Table 4.2: Example case for Kappa calculation between annotators A and B.

Annotators’ B
Judgments | Novel | Not Novel | Total
Novel 35 5 40
A | Not Novel 40 20 60
Total 75 25 100

4.2 TREC Novelty Track 2003-2004 Test Col-

lections

In order to evaluate Cover Coefficient-based ND method in other languages, we

utilize TREC 2003 and 2004 test collections.

A brief introduction to TREC

Novelty Tracks were given in Chapter 2. NIST organized Novelty Tracks between

2002 and 2004 years. The aim of these tracks were to go beyond classical relevance

based search engines and making search engines able to both determine relevant

and novel information. There were four task defined on a ranked list of documents

with respect to a query:

1. Task 1: Given the set of all documents and the query, find all relevant and

novel sentences

2. Task 2: Given the set of relevant sentences, find all novel sentences.

3. Task 3: Given the relevant and novel sentences for the first 5 documents,

find relevant and novel sentences in the remaining 20 documents.

4. Task 4: Given all relevant sentences and novel sentences for the first 5

documents, find novel sentences in the remaining 20 documents.

Since relevancy detection is out of scope of this study, we focus on Task 2

which gives the set of relevant sentences and asks to find all novel sentences. We
utilize 2003 data for training and 2004 data for testing. We did not use 2002

data since it was a little problematic. During 2002 track, very few sentences were
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chosen relevant and as a result of this, almost all of the relevant sentences were
chosen as novel by the annotators. Additionally, since it was the pilot year, the
definition of the problem was not clear enough, i.e. the documents were processed

in relevance score order, not chronologically.

More detailed information on TREC Novelty Tracks can be found in [16, 26,
37, 38].

4.3 'Training

All of our methods has some parameters and these should be picked properly
to evaluate systems’ performance. In Turkish ND experiments, we follow two

different ways:

1. 30-fold cross validation: In our general threshold learning experiments
we report our results as the average of fold performances with 30 folds. In
this approach our test collection is split into 30 parts and each of these
parts is used once as for testing where the rest are used for learning the

threshold values.

2. Leave-one-out cross validation: In our category-based threshold learn-
ing experiments, since categories may contain few topics, we apply leave-

one-out cross validation.



Chapter 5

Evaluation Measures & Results

In this chapter we first explain the evaluation measures used in this study in
Section 5.1. In Section 5.2 we report the evaluation results of our methods and

discuss them.

5.1 Evaluation Measures

In TREC Novelty Tracks F-measure was used as the evaluation criterion
[16, 37, 38]. Soboroff and Harman discussed the possible problems which may
be encountered if precision and recall are directly used for evaluation [39]. To
overcome these problems, F-measure was used. If we want to give equal weights
to precision and recall, F-measure can be calculated like the following where P

stands for precision and R stands for recall.

2.P.R
P+R

F —measure =

Precision is defined as the ratio of number of correct novel documents iden-
tified by the system to the number of all documents identified by the system as
novel. Recall is the ratio of correctly labeled novel documents by the system to

the total novel documents.

39
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Table 5.1: Average results of random baseline.
Ground Truth | Precision | Recall | F-Measure

Pessimistic 0.498 0.500 0.491
Optimistic 0.678 0.500 0.573

Zhang et al. [48] in their redundancy elimination study both used standard
IR measures, precision and recall and also used mistake as a measure which is

generally used classification problems.

In this study we will also use F-measure as in TREC Novelty Tracks. All
results we report throughout this study are macro-averaged, they are calculated

for each topic and then averaged over all topics.

5.2 Evaluation Results

5.2.1 Turkish ND Results

5.2.1.1 Random Baseline Results

In this section, we present the results of the random baseline system. Results can
be seen in Table 5.1. F-measure values are not directly calculated from average
of the precision and recall values instead they are calculated for each topic and
then averaged. We can see that the random baseline performs as expected. As we
stated before, in a challenging test collection random systems should not be able
to perform well. In pessimistic test collection, performance of random degrades
since disagreement values are taken as not novel, there appears to be less novel
documents. In the following sections, we will compare results of the proposed

methods with the random baseline to see how well they perform.
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5.2.1.2 Cosine Similarity-based ND Results

In our cosine similarity method, we experimented with different document vector
lengths. Results of these experiments for optimistic and pessimistic test collec-
tions are in Table 5.2 and Table 5.3 respectively. For both test collections, docu-
ment vector lengths do not have a significant effect on performance of the system.
This may be due to insensitivity of the method to the parameters. Even a small
number of terms is enough to compete with full length document vectors. For
NEDT, Can et al. [9] found that using all terms in cosine similarity calculation
gives better results. With all vector length configurations, cosine similarity-based
ND method outperforms baseline significantly in terms of statistical tests ( p <
0.001).

In this method again results for optimistic test collection are higher. This is
because of the appropriateness of the method for a less strict novelty definition.
Zhang et al. [48] also has similar observations that their methods model a less
strict redundancy definition better. Since there is not a significant difference
between any of the vector lengths, we will be using “ALL” configuration in the
following experiments to make them more reliable. However, less number of terms
can also be used for efficiency. Of course, as we stated these results may be result
of the method’s insensitivity to the parameters. Using very small number of terms

for calculation would not be expected to be reliable.

5.2.1.3 Language Model-based ND Results

We experimented with two different smoothing algorithms in language model-
based ND. Results of these are given in Table 5.4. Both of the algorithms give
similar performances. Shrinkage smoothing has more smoothing power and ide-
ally has the ability to approximate probabilities more accurately, so we would
expect Shrinkage to outperform Dirichlet smoothing in both test collections but
the results are consistent with both [5, 48]. In both of these studies, Shrinkage and
Dirichlet smoothing methods have similar performance values. Language model-

based ND method also outperforms baseline significantly in terms of statistical



CHAPTER 5. EVALUATION MEASURES & RESULTS

42

Table 5.2: Average results of cosine similarity-based ND method with optimistic
test collection with varying document vector lengths.

Training Test
Precision | Recall | F-Measure | Precision | Recall | F-Measure
Doc. ¥ C.
Pength
10 0.780 0.938 0.848 0.782 0.938 0.848
20 0.770 0.954 0.848 0.770 0.949 0.845
30 0.770 0.961 0.851 0.773 0.961 0.853
40 0.775 0.959 0.854 0.771 0.954 0.848
50 0.777 0.962 0.856 0.776 0.960 0.854
60 0.778 0.961 0.856 0.774 0.957 0.852
70 0.805 0.929 0.858 0.803 0.931 0.858
80 0.800 0.935 0.858 0.800 0.933 0.856
90 0.803 0.936 0.860 0.802 0.937 0.860
100 0.801 0.935 0.858 0.802 0.936 0.859
110 0.798 0.937 0.857 0.797 0.937 0.857
120 0.782 0.961 0.858 0.777 0.949 0.850
130 0.786 0.956 0.858 0.783 0.946 0.852
140 0.776 0.971 0.858 0.775 0.971 0.858
150 0.777 0.967 0.858 0.774 0.963 0.854
160 0.777 0.969 0.858 0.778 0.965 0.857
170 0.782 0.960 0.858 0.773 0.954 0.850
180 0.777 0.966 0.857 0.775 0.959 0.853
190 0.775 0.968 0.857 0.776 0.965 0.856
200 0.780 0.961 0.857 0.775 0.953 0.851
ALL 0.778 0.963 0.857 0.776 0.954 0.852
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Table 5.3: Average results of cosine similarity-based ND method with pessimistic
test collection with varying document vector lengths.

Training Test
Precision | Recall | F-Measure | Precision | Recall | F-Measure
Doc. ¥ C.
Pength
10 0.587 0.958 0.717 0.583 0.957 0.713
20 0.713 0.713 0.713 0.713 0.713 0.713
30 0.635 0.896 0.730 0.634 0.897 0.730
40 0.638 0.908 0.737 0.634 0.910 0.734
50 0.635 0.909 0.735 0.637 0.902 0.733
60 0.666 0.863 0.739 0.664 0.861 0.737
70 0.668 0.870 0.743 0.670 0.868 0.743
80 0.665 0.868 0.739 0.662 0.866 0.737
90 0.638 0.916 0.740 0.632 0.906 0.733
100 0.657 0.885 0.741 0.648 0.882 0.734
110 0.646 0.905 0.741 0.633 0.899 0.731
120 0.656 0.886 0.741 0.654 0.888 0.740
130 0.653 0.888 0.740 0.653 0.885 0.739
140 0.656 0.884 0.741 0.649 0.885 0.735
150 0.631 0.939 0.743 0.628 0.940 0.741
160 0.634 0.935 0.743 0.631 0.924 0.738
170 0.641 0.919 0.742 0.629 0.903 0.729
180 0.639 0.922 0.742 0.627 0.909 0.729
190 0.636 0.927 0.742 0.632 0.917 0.736
200 0.639 0.920 0.742 0.635 0.911 0.736
ALL 0.630 0.935 0.741 0.631 0.923 0.738
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Table 5.4: Results of language model-based ND method.

Training Test
Method | Ground Truth | Prec. | Rec. | F-Mea. | Pre. | Rec. | F-Mea.
Dirichlot Pes. 0.747 | 0.904 | 0.806 | 0.741 | 0.900 | 0.801
Opt. 0.859 [ 0.929 | 0.890 | 0.859|0.930 | 0.889
Shrinkage Pes. 0.750 | 0.892 | 0.802 | 0.744 | 0.887 | 0.796
Opt. 0.841 | 0.942 | 0.885 | 0.838 | 0.933 | 0.880

tests ( p < 0.001).

5.2.1.4 Cover Coeflicient-based ND Results

In this section, we provide the results of the cover-coefficient based ND method
and compare it with best configurations of the previously presented results. Ta-
ble 5.5 shows the results. Best performing method amongst all of the methods
is language model-based ND with Dirichlet smoothing which outperforms the
other proposed methods significantly (p < 0.002). This observation is generally
consistent with ND studies conducted in English. As we also stated before, KL di-
vergence is an appropriate measure for novelty because of its asymmetry. Biggest
issue in language models is the smoothing and it seems that Dirichlet smoothing
may satisfy the needs. It is easy to calculate and does not require any reference

collection for smoothing.

Second best performing system, Cosine similarity-based ND is also one of
the best performers in ND studies in English. Using different vector lengths,
we also showed that in some applications this method may not be sensitive to
parameters. Additionally, it is not necessary to use complex term weighting
functions because cosine similarity also works well with raw term frequencies.
Even these frequencies are not required to be normalized because cosine similarity
has its own normalization mechanism [4]. As we stated before, a shorter document
vector length may be chosen if efficiency is a real issue in the task, however if a

stopword list is utilized in the study, it is not generally necessary to shorten the
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Table 5.5: Results of all methods’ best configurations.

Training Test
Method Ground Truth Pre. | Rec. | F-Mea. | Prec. | Rec. | F-Mea.
e Pes. 0.550 | 0.928 | 0.681 | 0.542 | 0.923 | 0.672
Opt. 0.689 | 0.980 | 0.806 | 0.686 | 0.973 | 0.801
.. Pes. 0.747 1 0.904 | 0.806 | 0.741 | 0.900 | 0.801
LM-Dirichlet Opt. 0.859 | 0.929 | 0.890 | 0.859 | 0.930 | 0.889
CosineAll Pes. 0.630 | 0.935| 0.741 | 0.631 ] 0.923 | 0.738
Opt. 0.778 1 0.963 | 0.857 | 0.776 | 0.954 | 0.852
Pes. . 0.498 | 0.500 | 0.491
Random Opt. No training result 0673 | 0500 | 0573

document vector length.

Cover coefficient as the least effective proposed method outperforms random
baseline significantly in terms of statistical tests (p < 0.001) in both of the
ground truth types. When compared to language model method, superiority of

cover coefficient based-ND method is that it only has one parameter.

5.2.1.5 Effects of Category-based Threshold Learning

In this section we report and compare the results of category-based threshold
learning with general threshold learning. As it can be seen in Table 5.6, there
is no significant difference between the performances obtained by category-based
threshold learning and general learning. Although there is no significant differ-
ence, these results are promising that if there would be enough topics from every
category, better results may be obtained by category-based learning. In this
setup, since there are 59 topics and 13 categories, some categories may have very
few topics such as 3. Even if we apply leave-one-out cross validation, the data
size may still not be enough to learn a threshold value accurately. Category (or
broader topics) were studied in topic detection content also in TREC event and
opinion type topics were studied differently by some researchers but this type of

category information was not utilized before. These results show that category
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Table 5.6: Results of best performances of each system with general and category-
based threshold learning.

Method | Ground Truth | General | Category
Cover Pessimistic 0.671 0.676
Optimistic 0.802 0.800
Cosine Pessimistic 0.737 0.734
Optimistic 0.853 0.851
Language Pess‘im.ist'ic 0.800 0.796
Optimistic 0.889 0.883

information usage should be examined further.

5.2.1.6 Comparison of the Proposed Methods on An Example

In this section, we compare our proposed methods on a toy collection of docu-
ments taken from topic 1 in Table A.1 which is about a traffic accident in Kars,
Turkey. We used the first story and the following six documents for the com-
parisons. Documents are given in Appendix B. Documents are in chronological
order from document 1 to document 7 where document 1 is the first story. Table
5.7 shows the novelty values obtained by the methods between each document.
For cosine similarity-based and CC-based methods, novelty measure is a similar-
ity value where for LM-based method it is a distance measure (KL divergence).
Values in the table are obtained by using the optimal parameters obtained from
training. First two columns show the document numbers which are being com-
pared. Following three columns give the novelty values for cosine, CC and LM
based ND methods respectively. The last column indicates the novelty decision
for the document, 0 stands for not novel and 1 stands for novel (same decisions

are given by both of the annotators).

As we described in Section 3, our methods calculate some novelty measure
between an incoming document and all of the previous documents. Then, if all of
these values do not fail comparison condition with the threshold value, document

is labeled as novel, otherwise it is labeled as not novel. For cosine similarity-based
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Table 5.7: Novelty measure values obtained for each proposed method between
the documents in the toy collection.

Document 1 | Document 2 | Cosine | CC | LM | Novelty
1 0 0.43 | 0.56 | 7.32 0
2 0 0.46 | 0.55 | 5.42 0
2 1 0.60 | 0.12 | 4.77 0
3 0 0.46 | 0.46 | 6.50 1
3 1 0.51 ] 0.08 | 6.39 1
3 2 0.45 | 0.08 | 6.25 1
4 0 0.41 | 0.44 | 6.59 1
4 1 0.33 ]0.05|7.30 1
4 2 0.46 | 0.06 | 6.69 1
4 3 0.35 | 0.08 | 6.95 1
5 0 0.45 ] 0.36 | 4.95 0
5 1 0.64 | 0.08 | 4.45 0
5 2 0.62 | 0.06 | 4.32 0
5 3 0.59 | 0.10 | 4.49 0
5 4 0.56 | 0.10 | 3.33 0
6 0 0.44 | 0.36 | 6.69 0
6 1 0.59 | 0.06 | 6.56 0
6 2 0.50 | 0.04 | 6.64 0
6 3 0.45 ] 0.06 | 7.12 0
6 4 0.41 ] 0.06 | 6.25 0
6 5 0.63 | 0.11 | 5.78 0

method, if we use 0.52 threshold, all novel documents will be detected where there

will also be a false positive, document 1. In CC-based method, when threshold is
taken as 0.47 there will be two false positives. Also, LM-based method will have

one false positive when threshold is taken as 5.77. These values show that with

a static threshold value, even if we pick the threshold value by hand, there will

be mistakes.

5.2.2 TREC Novelty Track 2004 Results

In order to evaluate effectiveness of our methods in different languages and test

collections, we experimented with TREC 2004 test collection. As we mentioned
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Table 5.8: Test results for of cover coefficient-based ND method and 5 participants
of TREC 2004.

Participant (Run Name) Precision | Recall | F-Measure
Dublin City U. (CDVPnterf1) 0.4904 | 0.9038 | 0.6217
Meiji U. (MeijiHIL2WRS) 0.4790 0.9310 0.6188

U. of Mass. Ambherst (CIIRT2R2) 0.4712 0.9544 0.6176
omitted results

C. for Computer Science (ccsmmrdt2) | 0.4326 0.9938 0.5880
Cover Coefficient 0.4334 1.0000 0.5867

Meiji U. (MeijiHIL2CS) 0.4246 0.9952 0.5797

in 4.2, TREC Novelty 2003 data is also used for training. We only run cover
coefficient-based ND method on TREC 2004 data since both cosine similarity

and language models were used in the track by other participants.

The results can be seen in table 5.8. Since there were many participants we
only included results of five runs from Task 2. First three rows show the best per-
forming three systems of Task 2. The important result here is CIIRT2R2 because
they use cosine similarity for ND. This finding is similar to our findings in Bil-
Nov that cosine similarity-based ND method outperforms cover coefficient-based
method [19]. Additionally, in their previous study Allan et al. [5] shows that
language model-based ND methods outperform cosine similarity-based method
in TREC 2003 data. When all of these results are examined, we can assert that

results are consistent with the results in Turkish.

Cover coefficient-based ND outperforms the baseline in Task 2 and ranks 35.
within 55 participants. This may be counted as a promising result since some
further adaptations may boost performance of the method such as a normaliza-
tion factor to prevent possible anomalies caused by the differences in lengths of

sentences. Additionally, a complex threshold mechanism can be employed.
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Conclusion & Future Work

In this study we presented our findings on ND in Turkish. ND problem was not
previously studied in Turkish and so we built a Turkish ND test collection which
contains 59 topics with an average of 51 tracking documents. We presented
statistics about this test collection. We proposed usage of three ND methods,
a cosine similarity-based method, a language model-based method and a cover
coefficient-based method where first two are motivated from the previous studies
on ND. We showed that usage of different document vector lengths for cosine sim-
ilarity calculation does not have a significant effect on the system performances.
Additionally, for language model-based ND method, we showed that a simpler
smoothing method, Dirichlet smoothing, can have similar performance with a
more complex smoothing method, Shrinkage smoothing. In addition to these two
methods, we proposed cover coefficient-based ND method. We also proposed a
random baseline for ND which was not used before. Also, first time in the ND
context, we experimented on category-based threshold learning which uses topics
from the same category when learning a threshold. This was motivated by the
differences between characteristics of news from different categories. Although,
the results of category-based and general threshold learning do not report any
significant difference, it is promising to see even with a small set of topics from
the same category, learning process can be conducted without decreasing the per-

formance. Finally, we provided results of cover coefficient-based ND method in

49
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TREC 2004 Novelty test collection. Cover coefficient-based ND method ranks
35 in 55 participants. The results are promising but there should be done some

adaptations on the method.

Although ND was studied in information retrieval for three years in TREC
Novelty Tracks, there are still a lot to do in both information retrieval and other
domains. This study was one of the first studies to apply ND on tracking doc-
uments of a topic. Most of the ND methods are domain independent and can
work with any set of documents. ND in patient reports, intelligence applications,
blog and web mining and information filtering are some other possible application

areas.

Some future pointers for ND studies are :

1. We need to utilize category information in a more complex way and evaluate
this with an appropriate test collection which contains plenty of topics per

category.

2. When working on documents, instead of considering documents as a whole,
sentences may be processed separately. Additionally, some of the sentences
in a document can be irrelevant and may contain novel information. These
type of sentences may be eliminated before application of ND. For an eval-
uation of sentence level relevance detection, TREC Novelty Track test col-

lection may used or a new test collection may be created as well.
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Appendix A

Turkish ND Test Collection Topics

Table A.1: BilNov statistics.

Num. : Topic (BilCo0l2005 Num) # of Docs. Avg. Nov. Ratio Avg. Time
20 57.5 30
1 : Kars'ta trafik
kazasi (1)
80 61.25 105

2 : Onur Air’in
Avrupa’da yasaklanmasi (2)

Continued on Next Page. ..



Table A.1 — Continued

Num. : Topic (BilCo0l2005 Num) # of Docs. Avg. Nov. Ratio Avg. Time

3 : Nema kargihg: kredi (4) 31 72.59 35
4 : Londra metrosunda patlama (6) 80 43.13 50
5 : Cocuk tacizi skandal (7) 80 67.5 72.5
6 : Formula G (8) 20 70 20
7 : Semdinli olaylar1 (11) 79 66.25
8 : Tiirkiye’de kug gribi (12) 80 53.75 162.5
9 : Fenerbahgenin sampiyon olmasi (13) 80 65.63 87.5
10 : Mortgage Tiirkiye'de (14) 80 63.13 107.5
11 : 2005 Avrupa Basketbol Sampiyonasi (15) 78 53.85 67.5

g - 80 60 155
Brof D Yiicel Aakann futlanmacs (16)
13 : Kral Fahdin hastaneye kaldirilmas: (17) 51 66.67 60
14 : Memurlarmin bir iist dereceye gikmasi (18) 52 50 57.5
15 : Bill Gates’in Tiirkiye’ye gelmesi (19) 17 73.53 25
16 : Misir'da {ist iiste patlamalar (20) 80 50.63 120
17 : Atilla IThan’m vefat etmesi (21) 40 66.25 45
18 : Ata Tirk’iin 6ldiiriilmesi (22) 43 56.98 87.5

Continued on Next Page. ..
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Table A.1 — Continued

Num. : Topic (BilCo0l2005 Num) # of Docs. Avg. Nov. Ratio Avg. Time

19 : DT Genel Miidiiriiniin gérevden alinmasi (23) 63 75.4 52.5
20 : Universiade 2005 (24) 80 85 62.5
21 : Yahya Murat Demirel’in Bulgaristan’da yakalanmasi1 (25) 80 55.63 67.5
22 : R 29 50 30
_ Bagdat El Ayma Kopriisti | . )
fizerinds zdihamda ¢ok sayida insanin 6lmesi (26)

: 41 62.2 50

Prof. Dr. Sadettin Giiner ve oglunun

Trabzon’da oldiriilmesi
24 : Nermin Erbakan’in tedavi altina alinmasi (29) 45 57.78 67.5
25 : 15. Akdeniz Oyunlar (31) 80 73.13 95
26 : Kemal Dervig'in UNDP Bagkam segilmesi (32) 80 45 72.5
27 : Caferi'nin tarihi Tahran ziyareti (33) 22 72.73 27.5
28 : Gediz’'de grizu patlamas: (34) 39 58.97 42.5
29 : Sanigiil'iin kendini savunmasi (35) 80 55 80
30 : Paris’te gostericilerin polisle gatigmasi (36) 80 57.5 75
31 : . 19 50 20
2005 Nobel Tip Odiilii gastrit ve
tilserin bakterilerden kaynaklanmasi (39)
32 : Kayseri Erciyes Universitesi bebek olitmleri (40) 39 58.98 35

Continued on Next Page. ..
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Table A.1 — Continued

Num. : Topic (BilCo0l2005 Num) # of Docs. Avg. Nov. Ratio Avg. Time
33 : Marburg viriistinden 6lenler (41) 25 64 15
34 ] - 43 66.28 37.5
Gamze Ozcgelik’in goriintiilerinin
internette yaymlanmast (42
35 : Tirkiye'nin ilk yediz bebekleri (43) 56 65.18 90
36 : Yeni Tiirk Ceza Kanunu’'nun yiiriirliige girmesi (44) 53 64.15 105
37 : Saddam Hiiseyin’in yargilanmaya baglanmasi (45) 80 55 77.5
38 : Beylikdiizii'nde ¢opte patlama (46) 17 52.94 20
39 : Endonezya'nin Bali Adasi’'nda egzamanh patlamalar (47) 15 46.67 22.5
40 : Sahte raki (48) 80 50.63 82.5
41 : Hindistan’da meydana gelen patlamalar (49) 21 78.57 27.5
42 : Biilent Ersoy ve Deniz Baykal polemigi (50) 52 51.93 42.5
43 : Sochi seferini yapan Ufuk-1 gemisinin yanmasi (52) 20 57.5 20
44 - ]  (54) 80 54.38 87.5
_ Istanbul’da Diinya Kadinlar Giinii i¢in
gosteri yapanlari Copf]ayan 3 polisin agiga alinmasi
45 : Kugadasi'nda minibiisde patlama (55) 50 41 115
46 : Esenboga Havalimam I¢ Hatlar Terminali’nin yanmasi (56) 18 55.56 20
A7 : Zeytinburnu'nda bir evde patlama (57) 28 44.65 27.5

Continued on Next Page. ..
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Table A.1 — Continued

Num. : Topic (BilCo0l2005 Num) # of Docs. Avg. Nov. Ratio Avg. Time

48 : Malatya Cocuk Yuvasi'nda igkence (58) 80 68.75 97.5
49 : Prof Dr. Kalayci’ya Silahlh Saldir1 (60) 44 48.87 47.5
50 : 15 Yeni Universite Kuruluyor (62) 59 46.61 45
51 : Gaziantep’te Tanker Patlamas: (63) 33 56.07 27.5
52 : Kzzm Koyuncunun Oliimii (66) 30 70 40
53 : Melih Kibar i Oliimii (67) 16 68.75 22.5
54 : Japonya Osaka’da Tren Kazas1 (71) 29 60.35 32.5
55 : Yunanistan’da Tirk Bayragina Cirkin Saldir1 (74) 55 40 77.5
56 : Maslak’ta Patlama (75) 30 56.67 37.5
57 : Rum Yolcu Ugagimin Diigmesi (77) 80 56.25 90
58 : Zeytinburnu'nda Geminin Batmas: (79) 38 44.74 52.5
59 : Bin Yillik Yolculuk Sergisi (80) 22 50 37.5
Average 50.9 59.36 60.17
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Appendix B

Toy Test Collection

Document 1 28.05.2005 08:50:00. Otobiis Aras Nehri'ne uctu: 7 o6li, 7 kayip,
38 yarali.. Cem Bakirci, Onur Sagsoz, Menderes Uray, Mukadder Yardimciel
Sarikamg (Kars ),(DHA ) Istanbul’dan Igdir’a giden ve icinde 49 kisinin bu-
lundugu otobiis, Kars'in Sarikamig ilgesi yakinlarinda stirtictiniin yola diigen
kayaya carpmamak icin direksiyon kirmasi sonucu Aras Nehri'ne ucgtu. Yol-
cularmin ¢ogunu Nahcivan’a giden Azerilerin olugturdugu otobiistekilerden 7’si
oldii, 38’1 de yaral kurtarildi. Otobiisteki 7 kigiden heniiz haber alinamazken
bazilarinin nehir sularinda kayboldugu saniliyor. Igdirhh tur girketine ait 34
YJ 9924 plakali otobiisiin siirticiisii 50 yasindaki Musa Telek, bu sabah saat
06:45 siralarinda Sarikamig'in Karakurt bucagi yakinlarina geldiginde, heyelan
nedeniyle yola diigen kayaya carpmamak igin direksiyon kirdi. Stabilize yolda
agir1 hiz nedeniyle siirticiniin kontroliinden ¢ikan otobiis, yol kenarinda bulunan
Aras Nehri'ne uctu. Horasan’a 44, Karakut’a 4 kilometre uzaklikta meydana
gelen kazada, otobiis nehirin ortasina yan yatarken, 46 yolcu ve 3 personel ol-
mak {izere otobiisteki 49 kisi kendilerini nehir sularinda buldu. Cogu uykuda
olan yolcular, can pazarinda bogulmaktan kurtulmak icin ¢irpinmaya bagladi.
Kazanin sokundan kurtulan yolcular kendilerini kiyiya atarken, imdat ¢igliklar:
atan diger yolcular1 kurtarmak igin yeniden nehre girdiler. Bu arada bazi yol-
cular kiyiya cikamayarak nehrin azgin sulariyla siiriiklenip kayboldu. Yoldan

gecen araclardan inenler, sudaki yolcularin ¢ikarilmasina yardim etti. Kurtarma

62
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ekipleri olay yerinde kazanin duyulmasi iizerine bolgeye jandarma birlikleri, acil
servis gorevlileri ve ambulanslarla, erzurum sivil savunma birlik miidiirliigii'nden
5’1 dalgic 14 personel sevkedildi. Sudan ¢ikarilan ve yolda beklegen yaralilar, am-
bulanslarla sarikamig, kars, horasan ve erzurum’daki hastanelere nakledildi. Aras
Nehri'nde arama caligmasi baglatan ekipler, otobiiste sikigan Fatma Tuna’y1 kur-
tardi ve kimlikleri saptanamayan 3 kiginin cesedini ¢ikardi. Erzurum Numune
Hastanesi'nde 13’1 Azeri 17, Erzurum Aziziye Aragtirma Hastanesi'nde 4’1 Azeri
7, Sarikamig Devlet Hastanesi'nde 8’i Azeri 10, Kars Devlet Hastanesi’'nde ise 4
Azeri olmak tizere toplam 29'u Azeri 38 yolcu tedavi altina alindi. Numune Has-
tanesi'nde tedavi altina alinan 54 yagindaki Azerbaycanh Giilsen Abdulleyev’in
bir ara kalbi durdu. Doktorlar kalp masaji yaparak Giilsen Abdulleyev’i hayata
dondiirmeyi bagardi. Erzurum kriz merkezi otobiis siirticisit Musa Telek ile bir-
likte 7 kisiden hentiz haber alinamadigini bildirdi. Kaza yerine gelen ve kurtarma
caligmalarini izleyen Kars valisi Nevzat Turhan, heniiz kesin olmamakla birlikte
otobiiste 49 kiginin bulundugunu acikladi. Otobiis firmalariin siirticii se¢iminde
gerekli hassasiyeti gostermediklerini soyleyen vali Turhan, karayollarinda kontrol
yapilmayan bolgelerde hiz simirmin asildigini curguladi. Sofor ve personel kacti
mi1? Vali Turhan, haber alinamayan 7 kigiden bazilarimin Aras Nehri'nin bulanik
sularinda kayboldugunun sanildigini bildirdi. Otobiis siiriiciisit Musa Telek, ikinci
sofor ve muavinin kazadan yara almadan kurtulduklar: ve olay yerinden kagtiklar:
one siiriildii. Sofor Musa Telek’in 1983 yilinda ehliyet aldig1 ve trafik kayitlarina
gore 11 kez hiz sinirini agtigi igin ceza kesildigi belirlendi. Yarali anlatiyor kazadan
hafif yarali kurtulan Azeri Hiiseyin Mehmetov, Horasan’da mola verdik ve yola
giktik. Sabahin erken saatleriydi. Otobiis vadide hizla gidiyordu. Aniden yol
ortasindaki kayay1 goren gofor, direksiyon kirdi ama kontrolii kaybetti. Yoldan
nehire diistiik. Bu sirada uyuyan yolcular uyandi. Ortalik ana baba giintine
dondil. Yolculardan bazlar takla attigi sirada cevreye savruldular. Iki cocuk

vardi otobiiste, birini kurtardilar ama digerini goremedim dedi.

Document 2 28.05.2005 08:52:00. Otobiis, Aras Nehri'ne ugtu :21 yarali.
Otobiis, Aras Nehri'ne uctu :21 yarali. Bir yolcu otobiisiintin Aras Nehri'ne
uc¢mast sonucu ilk belirlemelere gére 21 kisi yaralandi. Istanbul’dan Igdir'a git-
mekte olan Musa Pelek’in kullandig1 34 YJ 9924 plakali yolcu otobiisii, Karakurt
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mevkiinde Aras Nehri'ne ugtu. Olayda, ilk belirlemelere gore 21 kisi yaralandi.

Otobiiste bulunan yolcularin kurtarilmasina cahsiliyor.

Document 3 28.05.2005 09:06:00. Yolcu otobiisii Aras Nehri'ne uctu. Sabah
saat 06:00 siralarinda meydana gelen kazada, Istanbul’dan [gdir’a gitmekte olan
Musa Pelek’in kullandigr 34 YJ 9924 plakali yolcu otobiisii, Karakurt mevkiinde
Aras Nehri'ne uctu. Yarali yolcular Horasan ve Sarikamig Devlet Hastaneleri'ne
kaldirildi. Olay yerine gelen vincin otobiisii ¢ikartmasi bekleniyor. Kazada olen

olup olmadig1 konusunda heniiz bir bilgi gecilmedi.

Document 4 28.05.2005 09:30:00. Aras Nehri'ne ugan otobiisten yaral kur-
tarilan kadin 6ldii. Aras Nehri'ne ugan otobiisten yarali kurtarilan kadin oldi
Aras Nehri’ne ucan yolcu otobiisiinden yaral kurtarilan bir kadin, hayatini kay-
betti. Istanbul’dan Igdir’a gitmekte olan ve Karakurt mevkiinde Aras Nehri'ne
ucan yolcu otobiisiinden yarali kurtarilan kadin, Sarikamig Devlet Hastanesi'ne
kaldirilirken 6ldi. Arama ve kurtarma caligmalarina katilmak iizere, Erzurum
Sivil Savunma Miudiirligii'nden 5’i dalgic 14 personelden olusan bir ekip, olay
yerine gitti. Otobiiste bulunanlarin sayisi heniiz tespit edilemedi. Arama ve

kurtarma c¢aligmalari i¢in sivil savunma ekibi bekleniyor.

Document 5 28.05.2005 10:38:00. Otobiis kazasinda 6lii sayist 6 oldu. Erzu-
rum’dan giden ve 5 dalgicin yer aldig sivil savunma ekibi arama caligmalarini
siirdiiriirken, kazada yaralananlarin Kars, Sarikamig ve Horasan devlet has-
tanelerinde tedavileri stiriiyor. Sabah saatlerinde meydana gelen kazada, Musa
Pelek’in kullandig1 bildirilen 34 YJ 9924 plakali yolcu otobiisii, Karakurt mevki-
inde Aras Nehri'ne u¢gmustu. Edinilen bilgiye gore, olay yerinde 3 kisinin hayatini
kaybettigi kazada, Erzurum’a sevkedilen yaralilardan Nahile Askerova da hayatin
kaybetti. Kaza sonrasi nehirde akintiya kapildig: belirtilen 3 kigiden 2’sinin cesedi
yapilan g¢aligma sonrasi bulunurken, diger kayip yolcunun aranmasina devam

ediliyor.

Document 6 28.05.2005 10:38:00. Yolcu otobiisii Aras Nehri'ne ugtu :2 oli.
Yolcu otobiisii Aras Nehri’ne ucgtu :2 6lii Aras Nehri’ne ucan yolcu otobiisiinden,
bir kadin yolcunun cesedi c¢ikarldi. Istanbul’dan Igdir’a gitmekte olan ve

Karakurt mevkiinde Aras Nehri'ne ugan yolcu otobiisiinden, dalgiclar, bir kadin
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yolcunun cesedini c¢ikardilar. Erzurum’dan giden ve 5 dalgicin yer aldigi sivil
savunma, ekibi arama caligmalarim siirdiirtirken, kazada yaralananlarin Kars,
Sarikamig ve Horasan devlet hastanelerinde tedavileri siiriiyor. Sabah saatlerinde
meydana gelen kazada, Musa Pelek’in kullandigi bildirilen 34 YJ 9924 plakal
yolcu otobiisti, Karakurt mevkiinde Aras Nehri’ne ugmus, ilk belirlemelere gore 1
kadin, hastaneye gotiiriiliirken yagamini yitirmis, 20 kisi yaralanmisti. Cikarilan

kadin yolcuyla birlikte, 6lenlerin sayis1 2’ye yiikseldi.

Document 7 28.05.2005 11:04:00. Yolcu otobiisii Aras Nehri'ne ugtu :2 6li,
37 yarali. Yolcu otobiisii Aras Nehri'ne uctu :2 6lii, 37 yarali Kars'in Sarikamig
Tlcesi Kaymakami Bayram Gale, Aras Nehri'ne ucan otobiiste belirlemelere gore
iki kiginin oldigii, 37 kisinin yaralandigini bildirdi. Gale, bir yolcu otobiistiniin
sabah saatlerinde Aras Nehri'ne ugtugunu belirterek, “Su ana kadar yaptigimiz
belirlemelere gore kazada 2 kisi yagamim yitirdi” diye konustu. Kazada yaralanan
37 kisiden 4'ntin Kars, 10'nun Sarikamig Devlet Hastaneleri'nde tedavi altina

alindigi, diger yaralilarin ise Erzurum ve Horasan’a sevk edildigi kaydedildi.



