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ABSTRACT
RISK ESTIMATION BY MAXIMIZING AREA UNDER
RECEIVER OPERATING CHARACTERISTICS CURVE
WITH APPLICATION TO CARDIOVASCULAR
SURGERY

Murat Kurtcephe
M.S. in Computer Engineering
Supervisor Prof. Dr. H. Altay Givenir

June 2010

Risks exist in many different domains; medicalgtiases, financial markets,
fraud detection and insurance policies are somemples. Various risk
measures and risk estimation systems have hitheém proposed and this
thesis suggests a new risk estimation method. &ssiknation by maximizing
the area under a Receiver Operating Characteri@®CxC) curve (REMARC)
defines risk estimation as a ranking problem. Simeearea under ROC curve
(AUC) is related to measuring the quality of ramkiREMARC aims to
maximize the AUC value on a single feature basislitain the best ranking
possible on each feature. For a given categoré&astufe, we prove a sufficient
condition that any function must satisfy to achiethee maximum AUC.
Continuous features are also discretized by a ndetiest uses AUC as a metric.
Then, a heuristic is used to extend this maximizato all features of a dataset.
REMARC can handle missing data, binary classescantinuous and nominal
feature values. The REMARC method does not oniynasé a single risk value,
but also analyzes each feature and provides vaualidrmation to domain
experts for decision making. The performance of PRZ is evaluated with
many datasets in the UCI repository by using daffier state-of-the-art

algorithms such as Support Vector Machines, naiageB, decision trees and



boosting methods. Evaluations of the AUC metricve REMARC achieves
predictive performance significantly better complareith other machine
learning classification methods and is also fatan most of them.

In order to develop new risk estimation framewbykusing the REMARC
method cardiovascular surgery domain is selectad. TurkoSCORE project is
used to collect data for training phase of the RHEMA algorithm. The
predictive performance of REMARC is compared witle @f the most popular
cardiovascular surgical risk evaluation method, ledal EuroSCORE.
EuroSCORE is evaluated on Turkish patients ansl shown that EuroSCORE
model is insufficient for Turkish population. Thehge predictive performances
of EuroSCORE and TurkoSCORE that uses REMARC fadiotion are
compared. Empirical evaluations show that REMARGI&es better prediction
than EuroSCORE on Turkish patient population.

Keywords: Risk Estimation, AUC Maximization, AUC, Ranking,

Cardiovascular Operation Risk Evaluation



OZET
RECEIVER OPERATING CHARACTERTICS GRISI
ALTINDAK I ALANI MAKS IMIZE EDEREK HSK
TAHMINI VE KARDIYOVASKULER CERRAH
UYGULAMASI

Murat Kurtcephe
Bilgisayar Muhendisfii Bolumu Yuksek Lisans
Tez Yoneticisi: Prof. Dr. H. Altay Guvenir
Temmuz 2010

Risk birgcok farkli alanda mevcuttur; tibbi tanijndnsal piyasalar,
dolandiricilik tespiti ve sigorta poligeleri bunfar birkacidir. Ceitli risk
Olcutleri ve risk tahmin sistemleri bugine kadaerdidi ve bu tez yeni bir risk
tahmini yontemi sunmaktadir. Receiver Operatingr@ttaristics (ROC) gisi
altindaki alani maksimize ederek risk tahmin yont(REMARC), risk tahmini
bir siralama sorunu olarak tanimlar. ROgri& altindaki alan (AUC) deeri
siralama kalitesini 6lgcme ile ilgili oldiwndan, REMARC tek bir 6znitelik
Uzerinde en yuksek AUC'yi elde ederek her 6znitelikerinde mimkin
olabilecek en iyi siralamay! gamay! hedeflemetedir. Verilen bir kategorik
Oznitelik i¢in, herhangi bir risk yordaminin en ywék AUC’yi elde etmek icin
sglamasi gerekerartin ne oldgunu ispatladik. Sayisal 6znitelikler de 6lcut
olarak AUC'yi kullanan bir yontemle ayrikdariimistir. Sonra, sezgisel bir
yaklasimla AUC’nin maksimize eldilmesi tim veriseti Uzezi gengletilmistir.
REMARC eksik verileri, ikili siniflari, strekli vekategorik Oznitelikleri
isleyebilir. REMARC yontemi sadece risk gixi tahmin etmekle kalmaz ayni
zamanda her bir 6znitelik Gzerinde analiz yapakaer verme esnasinda alan
uzmanlarina deerli bilgiler sglar. REMARC’In performansi, UCI veriseti
deposundan elde edilen birgok veri seti ile supgector machine naive Bayes,
decision trees (karargaclari) ve boosting (arttirma) yontemleri gibi mode



algoritmalar  kullanilarak  deerlendirilmiti.  AUC  Olcittyle  yapilan
degerlendirmeler gostermektedir ki REMARCgdr bircok makina grenmesi
yonteminden dnemli derecede daha iyi tahmin perdmsma sahiptir ve ger
yontemden ¢gundan daha hizli caiaktadir.

Kardiyovaskiler cerrahi alani, REMARC yontemi #§eni risk tahmini
cercevesi olgturmak amaciyla secilgtir. TurkoSCORE projesi, REMARC
algoritmasinin §renme agamasi i¢in veri toplamak amaciyla kullanildi.
REMARC’In tahmin performansi, en populer kardiydsger cerrahi riski
degserlendirme yodntemlerinden biri olan EuroSCORE ilarskastirildi.
EuroSCORE Tirk hastalar tzerindegddendirildi ve EuroSCORE modelinin
Tark ndfust icin yeterli olmagi gosterildi. Sonra, EuroSCORE ve tahmin igin
REMARC kullanan TurkoSCORE’'un tahmin performansi rskastirldi.
Deneysel dgerlendirmeler gostermektedir ki REMARC Turk hasta
populasyonunda EuroSCORE’'a godre daha iyi tahmin fopeansi
gOstermektedir.

Anahtar Kelimeler: Risk Tahmini, AUC azamiktirme, AUC, Siralama,

Kardiyovaskuiler operasyon risk gglendirmesi
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Chapter 1

| ntroduction

Accurate prediction of risk is essential for lifevoiding or being aware of risks
in domains such as finance or medicine can saveeynand lives, respectively.
The main motivation behind the research on riskdigt®n systems is to
improve system performance to avoid unwanted eveots negative

consequences.

This thesis proposes a new risk measure and awssgxe machine learning
algorithm to estimate the values of this measuhe dlgorithm, learning from
training instances, develops a mode of the domased) on receiver operating
characteristics (ROC) analysis, so that the areeruROC curves (AUC) of
ordering the instances will be maximized [1]; hertbe algorithm is called Risk
Estimation by Maximizing the Area under ROC CurREMARC).

Specific risk estimation methods have been deweelofor finance [2]
medicine [3, 4] and insurance [5] to name some @kasn Some methods are
dependent on statistical models while some aredbase machine learning

algorithms. The machine learning algorithms are allgu classification



algorithms that can associate a certainty factah wheir classification. The
certainty factor for a predicted unwanted casekemn as the value of risk.

The word “risk” is generally taken to mean “an wamted situation” [6].
Although these unwanted cases may be severe,litedihood of occurrence is
usually rare. Therefore, datasets for such domasouslly are unbalanced and
the costs of misclassification are not symmetrias€ification algorithms that
aim to maximize accuracy are not suitable for swabalanced datasets [7, 8, 9].
Instead, an alternative metric called AUC, propoded Bradley, is the
evaluation metric to maximize [10]. AUC has impaitadeatures such as
insensitivity to class distribution and cost distitions [10, 11, 9], which make it

suitable for risk domains.

In risk domains, representing the risk score asahvalue between 0 and 1
may not be sufficient, and even misleading; re&yivordering instances in
terms of risk values may be much more informati@. example, instances can
be located on a single dimension, where the saéssts are on one side and the
riskiest cases are on the other side. Since itbeasn shown by Hanley and
McNeil that AUC is able to qualify ranking instas¢cemaximizing AUC also
leads to the best ranking [1]. Recent research aximizing AUC by Tohet al.

[12] and Rakotomamonjy also shows the importanaaumiing instances [13].

The REMARC method is not able to handle continualasa without
preprocessing. All continuous features should Iserdtized first. In this thesis
in addition to the REMARC method, a discretizatiorthod called Maximum
Area under ROC curve based Discretization (MAD)rsposed.

The main contributions of the REMARC algorithm cagé shown in three
different ways. First, we show the conditions & r&oring function must
possess in order to achieve maximum AUC for a eirighture dataset case.
Second, the maximization of AUC is extended overwhole dataset by using a



simple heuristic, which also depends on AUC’s rmettiastly, the human
readable model formed by REMARC helps domain espleytindicating what
features and how their particular values affectrisies.

Cardiovascular surgery domain is selected astadtawain for REMARC.
There are important reasons behind this choicest fef all, risk evaluation
methods are being used in order to inform cardegepts properly about the
mortality risk of surgery by taking into considecoat risk factor of patients. The
predictions obtained by using these methods acevalsiable for monitoring the
surgical care and checking the surgical qualityhwviite accepted norms. Since
the patients risk factors are taken into consid@naoperative mortality can be
used as a measure of surgical quality. Therefoifeereint machine learning
approaches have been proposed to predict montelky of patients undergoing
cardiovascular surgeries [14, 15, 16, 17].

EuroSCORE risk model is learned by using nearlyh@@isand patients from
128 hospitals in eight European countries [14].08@ORE method has been
used in Turkish cardiovascular surgery departmentsder to assess mortality
risk of patients. Validation of EuroSCORE has beeralyzed in countries
outside of Europe [18, 19]. According to these aeslees, there exist crucial
differences between the patient populations acfossations. As a result, the
EuroSCORE risk prediction model is not validatedame patient populations.
Therefore, in this thesis the evaluation of Euro®EOmodel on Turkish
patients is analyzed. After analyzing EuroSCORE ehot Turkish population,
the predictive performance of REMARC used in TuR@IRE system is
compared with EuroSCORE. Since REMARC performs epetthan
EuroSCORE, the REMARC algorithm is proposed as @& nardiovascular
surgery risk estimation system.

In the next chapter, literature summary aboutrisies, risk domains, ROC,
AUC, AUC maximization, discretization are given. &ker 3 covers the



theoretical background of the REMARC method, immatation details and
empirical evaluation of REMARC. In Chapter 4, REMBRis applied to
cardiovascular surgery domain and compared by EL@RE model. Finally,

Chapter 5 concludes with some directions for futmoek.



Chapter 2

Background

In this chapter, the background information neetdeainderstand the concepts in
the following chapters is provided. The risk subjeanvestigated in detail. The
ROC and AUC subjects are given since they are gabam REMARC. AUC
maximization subject is discussed in this chapsmnvell. Discretization subject
is also investigated in order to provide backgrourfdrmation for the MAD

method.

2.1 Risks

Risk has always been a normal occurrence. Risks asia complication from
surgery, a fraudulent financial transaction, a figming into financial distress
and an e-mail being spam are all part of today'sldvésiddens claims that the
ideas of risk and responsibility are closely linkeda risk society, and suggests
that legal theorists and practitioners should asocern themselves with the
idea and reality of risk [6]. The word “risk” is mononly used in daily life,

because of its popularity in the media, howevdoraal definition is needed.



2.1.1 Definitions of Risk

Hansson gives five definitions of risk commonly disa different disciplines
[20]. Hansson'’s third definition is the most suleabor defining the risk used in
this thesis: “The probability that an unwanted éveny or may not occur”. For

example, the risk of a credit card transaction dpdiaudulent is 17%.

2.1.2 Risk Domains

Risk implies an unwanted situation. In medicine,rtaidy and morbidity are

two unwanted situations. In finance, money loss lawkruptcy are examples.
Since the consequences of these situations arélgruncorder to avoid them

extensive research continues on this subject. Asxample, it is possible to find
books written on specific domains such as processagement systems risk
estimation [21].

According to Shishkin and Savkov some of the npogtular commercial risk
analysis tools for financial domains are “Risk W#t¢www.riskwatch.com,
USA) and “Commercial Risk Analysis and ManagementtiMdology-
CRAMM” (www.cramm.com) [22]. Other than the commatdools, concepts
such as Value-At-Risk (VAR) and other models carfcaend in literature [2],
[23]. Stoyanet al. provide a survey on stochastic models for risknesgions
[24]. Recently, Ferrari and Paterlini proposed & nisk estimation method that

claims a better performance than VAR [25].

In medicine, a risk scoring system based on lagisegression for
cardiovascular surgery is proposed by Romtes. [26]. Other scoring systems
for the same domain also exist [3, 27]. A recendgtby D'Agostinoet al.
shows that some of these scoring systems [4] use r€gression methods,

which is proposed by Cox [28].



2.1.3 Risk Estimation in Machine Learning

Risk estimation is not yet a major subarea of meEHhearning literature.
Classification algorithms, which are able to outih& confidence or probability
of classification results, can be used to approtemiak estimation.

In a risk estimation system, a risk function tassigns higher values to risky
instances than safer instances is crucial. In ausystem, risk will be computed
as a real value between 0 and 1, where 1 indidheeslefinite risk while 0
represents the safest situation. However, the atesehlue of this risk score is
also very important for the user. Assumek() is a function that returns a real
number between 0 and 1 as the estimation of tlke Asother risk function,

risk’(), defined as,/risk() , also returns a value between 0 and 1. Both afethe

functions will rank the instances in the same ardéhough their absolute risk

values are different.

On any dataset gathered from a risk domain, twassels should be
determined in order to distinguish a risky situativom a safe one. In this
thesis, we will define these class labelspagositive, unwanted class) amd
(negative, safe class). For example, in a loansgatéhe class labplindicates a
default, while labeh indicates that the loan amount has been paid back.

Machine learning techniques have been appliedffereint domains in order
to predict risk. In medicine, Colombet al. evaluated three different machine
learning algorithms in order to predict cardiovdacsurgery risk [29]. Biagioli
et al. used Bayesian models to predict risks in coronamery surgery
operations [30] and Gamberget al. evaluated machine learning results on a
heart database [31]. Financial domains have alkentadvantage of machine
learning algorithms. Galindo and Tamayo evaluateachime learning and
statistical methods in order to predict credit $i$82]. Kim proposed a financial
time series prediction system by using a suppartovenachine (SVM) [33] and



Min and Lee tried to predict bankruptcy risk byngsioptimal kernel functions
for SVM [34]. However, to the best of our knowledgerisk estimation system
that aims to maximize the AUC metric has never bpsposed. The ROC
curves and AUC metric will be examined in detailfdoe explaining the
REMARC method. The next section elaborates on #aufes of ROC and
AUC and their appropriateness for this thesis.

2.2 ROC, AUC and AUC maximization

Since their application to machine learning, RO@ptns and the AUC metric
have become popular; AUC is used in evaluating maclearning algorithms
and as a learning criterion. We explain the praperthat make AUC a better

metric than accuracy and discuss the existing resem AUC maximization.

2.2.1 Receiver Operating Characteristics (ROC)

The first application of ROC graphs dates back torld/War II, where they
were used to analyze radar signals [35]. Since, tiiety have been used in areas
such as signal detection and medicine [36, 37, 38 first application to
machine learning is done by Spackman [39]. AccardmFawcett’s definition,
the ROC graph is a tool that can be used to visgalbbrganize and select
classifiers based on their performance [9]. It basome a popular performance
measure in the machine learning community aftelnais been realized that
accuracy is often a poor metric to evaluate clesgiferformance [40, 41, 11].

The ROC literature is more established to ded Wihary classification (two
classes) problems than multi-class ones. At theodritie classification phase,
some classifiers simply map each instance to & dlsel (discrete output).
Some classifiers are able to estimate the prolabifian instance belonging to
a specific class such as naive Bayes or neuralomk$w(continuous valued
output, also called score). Classifiers produceasaréte output represented by
only one point in the ROC space, since only oneusion matrix is produced



from their classification output. Continuous-oufjpubducing classifiers can
have more than one confusion matrix by applyinfedént thresholds to predict
class membership. In this thesis, all instances witscore greater than the
threshold are predicted to peclass and all others are predicted tonbelass.
Therefore, for each threshold value, a separatismm matrix is obtained. The
number of confusion matrices is equal to the nunathé&@OC points on an ROC
graph. With the method proposed by Domingos, passible to obtain ROC
curves even for algorithms that are unable to ptedicores [42].

ROC space is two dimensional space with a rand®.6f 1.1) on both axes.
In ROC space the y-axis represents the true pesitate TPR of a
classification output and the x-axis representdalee positive rateHPR).

To calculateTPR and FPR values, the definitions of the elements in the
confusion matrix must be given. The structure obafusion matrix is shown in
Figure 2.1. True positivedP) and false positived=) are the most important
elements of the confusion matrix for ROC graphs. éach threshold valugpP
is equal to the number of positive instances (thihs¢ have been classified
correctly) andFP is equal to the number of negative instances élibat have
been misclassified).

Actual Class
p n
p TP FP
Predicted
Class
n FN TN
Column Totals: P N

Figure 2.1 ROC curves of the REMARC method withkbBSCORE risk factors



TPRandFPR values are calculated by using Eq. 2.1. In thisa&iqnN is the
number of total negative instances aRdis the number of total positive

instances.
TPR=TP/P Eqg. 2.1

FPR=FP/F

As mentioned above, the classifiers producing inapus output can form a
curve since they are represented by more than ome ip the ROC graph. To
draw the ROC graph, different threshold values setected and different

confusion matrices are formed.

By varying the threshold betweem and +co, an infinite number of ROC
points can be produced for a given classificatiotpat. However, this operation
is computationally costly and it is possible tonfothe ROC curve more
efficiently with other approaches.

As proposed by Fawcett, in order to calculate R@C curve efficiently,
classification scores are sorted in an increasmgrdirst [9]. Starting fromeo,
each distinct score element is taken as a thresAi®d® and FPR values are

calculated using Eq. 2.1.

As an example, assume that the score values $brirtstances and actual
class labels for a toy dataset are given in Taldle Phe ROC curve for this toy
dataset is shown in Figure 2.2. In this figure,heROC point is given with the
threshold value used to calculate it. In a datestt S distinct classifier scores,
there areStl1thresholds includingee and the same number of ROC points.
Since there are eight distinct score values inttysdataset, there are nine ROC
points. With this simple method it is possible @colate the ROC curve in

linear time.
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ClassLabel| n| n| n p p n p p [0

Score -7 -3004'131) 11

Table 2.1 A Toy dataset given with hypotheticalreso
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Figure 2.2ROC graph of the given toy dataset in Table 1 itidg they=x line in order to show
random performance

It is possible to divide the ROC space into thregions: the region above
y=x line, the area below=x line and the points on the=x line. The points on
y=x line represent random performance. As an exanaptdassifier that has a
point on (0.6,0.6) guesses the positive class 60fectly, however it also has a
60% false positive rate. The points aboveyteline are those belonging to the
classifiers that have an acceptable trade-off betwtbe positive and negative
classes; similarly, the points below tyxex line correspond to an unacceptable
classification performance. A classifier's ROC pgdielow the diagonal line can
be negated by simply inverting the decision critesf the classifier, replacing
all p class labels witlm class labels and vice versa. According to Flaach\&fu
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classifiers below the diagonal have valuable infation, but they are not able to
use it [43].

2.2.2 Area under the ROC Curve (AUC)

ROC graphs are useful to visualize the performanica classifier but a scalar
value to compare classifiers is needed. In thealitee, Bradley proposes the
area under the ROC curve as a performance meas0feAccording to the
AUC measure, the classifier with a higher AUC valperforms better in
general. A classifier can be outperformed by anotfessifier in some regions
of ROC space, for some specific threshold valugendhough the classifier,
which has larger AUC, is better than the other.

The ROC graph space is a one-unit square. Thessigiossible AUC value
is 1.0, which represents the perfect classificationROC graphs a 0.5 AUC
value means random guessing has occurred and vaklesy 0.5 are not
realistic as they can be negated by changing tbisida criteria of the classifier.

The AUC value of a classifier is equal to the doibty that the classifier
will rank a randomly chosen positive instance higtien a randomly chosen
negative instance. Hanley and McNeil show that ihisqual to the Wilcoxon

test of ranks [1].

2.2.3 Why AUC is More Proper than Accuracy

There are several reasons why we chose AUC agrairlg criterion in this
thesis. The first reason is the independence ofi¢wgsion threshold of the AUC
metric. Since the risk estimation methods are ratied classifiers, unless a
threshold is fixed it is not possible to calculateaccuracy value. As mentioned
in Section 2.1.3, the first task of a risk estimatmethod is ranking instances
correctly. Since AUC has the ability to measure dility of ranking, it is
better than accuracy metric on this basis.
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Another reason regards the discrimination powethefaccuracy and AUC
metrics. Bradley was the first author to questiba applicability of accuracy
metrics in classifier algorithms and to recommemal ise of AUC instead [10].
Provost et al. also questioned the applicability of accuracy rstrin
classification algorithms and suggested ROC armlgsi a powerful alternate
tool [41]. Rosset claimed that even if the goatosmaximize accuracy, AUC
may be better than empirical error for discrimingtbetween models [44]. The
formal proof of the superiority that AUC has overcaracy is later given by
Huang and Ling [11]. In their work, the authors wkd that AUC is a
statistically consistent and more discriminatingtmoethan accuracy. These
works clearly show the discriminatory power of &kidC metric.

Skewed (unbalanced) datasets is another reasprefer AUC as a metric.
This situation occurs when the difference betwekasscpriors is high. Risk
areas such as medicine [45, 8] and fraud detefd®hare examples of skewed
datasets. For example, a classifier that preditt;mistances as negative even
though a few of the instances achieve very highiiames is misleading [13]. In
addition, class distribution can change over tifg: example, if in a financial
crisis a large number of banks claim bankruptcyis tban change class
distribution drastically. In order to solve suchoblems, AUC, which is
insensitive to class distributions, is preferred.

Lastly, misclassification costs cannot be deteeadhifor most risk domains.
As noted above, skewed datasets are common inlifealn a domain with
unbalanced class distribution, when the true msstii@ation cost is higher than
implied by the distribution of training set exanmglehis situation becomes
problematic [47]. Since AUC is also insensitivenhisclassification cost, it is
preferred in this thesis [48].
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2.2.4 AUC Maximization

Most classification algorithms are designed to mmaze accuracy (or error rate).
Since accuracy is a classification performanceeoh, algorithms that
maximize it give better predictive performance. Heoer, because of the
aforementioned drawbacks to the accuracy metricdone domains, AUC has
become more popular. It has been shown that maixigiaccuracy does not
lead to maximizing AUC [49, 50]. As a result, nelgaithms maximizing AUC

have been proposed.

Some approximation methods to maximize the glétw#C value have been
proposed by researchers [51, 50, 52]. Fetrral. proposed a method to locally
optimize AUC in decision tree learning [53], andrtés and Mohri proposed
boosted decision stumps [49]. To maximize AUC ile dearning, several new
algorithms have been proposed [54, 55, 56]. A naapatric linear classifier
based on the local maximization of AUC was propdsgdlarroccoet al. [57].

A ROC-based genetic learning algorithm has beepqsed by Sebaet al. [7].
Marroccoet al. used linear combinations of dichotomizers for shene purpose
[58]. Freundet al. gave a boosting algorithm combining multiple rangd [59].
Cortes and Mohri showed that this approach alss aormaximize AUC [49].
A method by Taxet al. that weighs features linearly by optimizing AUCsha
been proposed and applied to the detection of stitiet lung disease [8].
Atamanet al. advocate an AUC-maximizing algorithm with lineaogramming
[60]. Rakotomamonjy suggested rank optimizing kkrf@er SVMs to maximize
AUC [13]. Ling and Zhang compare AUC-based Treeagted Naive Bayes
(TAN) and error-based TAN algorithms; the AUC-basdglorithms are shown
to produce more accurate rankings [61]. More rdge@alders and Jaroszewicz
proposed a polynomial approximation of AUC to optenit efficiently [62].
Linear combinations of classifiers are used to méze AUC in biometric
scores fusion in Tokt al. [12]. Han and Zhao propose a linear classifieetas

on active learning, which maximizes AUC [63].
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2.3 Discretization

Discretization methods aim to find the cut-poirttattform the intervals in the
process of discretization. A continuous attribigethen treated as a discrete

attribute whose number of intervals is known ondbetinuous space.

Liu et al. categorized discretization algorithms four axes [64]. These
categories includsupervised vs. unsupervised, splitting vs. mergghahal vs.

local, and dynamic vs. static

Simple methods such as equal-width or equal-fregudinning algorithms
do not use class labels for instances during tbereliization process [65]. These
methods are callednsupervised discretization method® improve the quality
of the discretization, methods that use class $ala@e proposed; they are
referred to as upervised discretization methodSplitting methods take the
given continuous space and try to divide it intcanmtervals by finding proper
cut-points, whereas merging methods handle eactinaispoint on the
continuous space as an individual candidate fartgoint and merges them into
larger intervals. Some discretization methods peclecalized parts of the
instance space during discretization. As an exanip&eC4.5 algorithm handles
numerical values by using a discretization (biretian) method that is applied
to localized parts of the instance space [66, Bi§se methods are callemtal
methods Methods that use the whole instance space ofattrébute to be
discretized are calledlobal methodsDynamic discretization methods use the
whole attribute space during discretization andfgoer better on data with
interrelations between attributes. Conversely, icstaliscretization methods
discretize attributes one by one and assume tleak thre no interrelations
between attributes. According to the categoriesnddf above, MAD is a

supervised, merging, global, and static discretpatethod.
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Splitting discretization methods usually aim tatimjize measures such as
entropy [68, 69, 70, 71, 72], which aims to obtpure intervals, dependency
[73] or accuracy [74] of values placed into thesbi®n the other hand, the
merging algorithms proposed so far use the chitgmpiatistic [75, 76, 77]. As
far as we know, the ROC Curve has never been emglaythe discretization

domain.
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Chapter 3
REMARC

This chapter presents detailed information abo&tREMARC method. First of
all, a brief introduction to REMARC is given. Thethge risk function designed
for categorical features to maximize AUC and th&aile of the MAD method
and its application to REMARC is given. The REMAR®@ethod and its
implementation are detailed. Finally, in the engatievaluations REMARC
method is compared with other machine learningea life datasets and results

are discussed.

3.1 REMARC Introduction

REMARC is a risk estimation method designed to maze the AUC metric.
The REMARC algorithm reduces the problem of findangisk function for the
whole set of features into finding a risk functimm a single categorical feature,
and then combines these functions to form one fisiction covering all
features. We will show here that it is possibledegermine risk functions that
achieve the maximum AUC for a single categoricahatiee. REMARC

discretizes the numerical features by an algoritatled MAD, proposed by
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Kurtcephe and Guvenir [78]. The MAD method dis@esi a continuous feature
in a way that results in a categorical feature laximizing the AUC.

For a given query, REMARC outputs a real valua the range of [0,1] as
the estimated risk of being the unwanted states Thvalue is roughly the
probability that the query instance will be in theclass. It is only a rough
estimate of probability, since it is very likelyathno other instance with exactly
the same feature values has been observed inaiminty set. The REMARC
algorithm determines this estimated probability diymputing the weighted
average of probabilities computed on single featurée weight of a feature is a
linear function of its AUC value calculated by thisk estimates for each
instance in the training set. A higher value of AWC a feature is an indication

of its higher relevance in determining the clagela

3.2 Single Categorical Feature Case

A categorical feature has a finite set of choide=.V = {vi, », ..., } be a
categorical feature ang be a categorical value that feat\wecan take. The
dataseD is a set of instances represented by a vectowvafues and class label
as «v,c>, wherevl]V andcU {p,n}

Given a datasdD with a single categorical feature whose valueis&t = {vy,
Vi,..., Vn}, @ risk functionr: V - [0,1] can be defined to rank the valuesvin
According to this risk function, a valug comes after a valug if and only if
r(vi) >r(vj); hence r defines a partial ordering on the\sei pair of consecutive
valuesv; andvi,; defines a ROC point;®n the ROC space. The coordinates of
the point Rare FPR, TPR).

Theorem 1. Let D be a dataset with a single categorical featureseh@lue set

isV ={vo, v1, ..., Vn}. Let r: V - [0,1] be the risk function that orders the values

of V, asvi;1 comes aftew; if r(vis1) > r(v), for all values of 8i<n. If the values

18



of the risk function for two consecutive valugsandvi;; are swapped, then the
only change in the ROC curve is that the ROC peoantesponding to the and
Vi1 values moves to a new location so that the slagethe line segments

adjacent to that ROC point are swapped.

Proof: The slope of the line segment between two consecBOC points R
and Ry is

= TPR=TPRs  SinceTPR =17 and FPR =1 |
FPR - FPR,, P N
_NTR-TR,
7P FP-FP,,

i+1
Further replacing’R = P +TR,;andFP, = N, + NP, , whereP; is the number

of p-labeled instances with valug andN; is the number om-labeled instances

with valuev.
cNR
PN,

Similarly, the slope of the line segment connegtine ROC points between

Ri+1 and Rz is
N P

S+ :Fﬁ -

When the ranking of valueg and vi.1 are changed, only the following
changes take place:
Pla=R, Pi=R,,
N',,=N., N'=N..,
[J] P;=PandN'/=N;,.
j#i i+

With this change, only the ROC point & FPR, TPR) is replaced with a
new ROC point R’at FPR’, TPR}). The slopes of the new line segments
adjoining Rjare

P NP,

J N i J
si=——-ands|,; =
PN’ PN’

i
i i+1
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Replacing the new count values with the old ones,

S, =s,, ands,,, = s are obtained. ]

For example, consider the dataset given below:

D={(a,n), (b,p), (b,n), (b,n), (b,n), (c,p), (c.i%n), (c,n), (d,p), (d,p), (d,n)},
whereV = {a, b, c, d}. If a risk functiom orders the values &f as r(a) < r(b) <
r(c) < r(d), the ROC curve shown in Figure 3.1al Wwé obtained. On the other
hand, if the rankings of values b and ¢ are swapged ROC curve shown in
Figure 3.1b will be obtained. A similar techniquasmsed earlier by Flach and

Wu to create better prediction models for classf[d3].

Unswapped Ordering (a) Swapped Ordering (b)
1 T T T -> 1 T T T T
@ o 5 ‘
_‘E_U, 0.8 2 = -Ej. 0.8 b ...... ..................... -
& ; ! & ;
2 o6 : Pl ‘ S B s B D e = -
3 ’ i @ ;
e o4t : : : 1 1 & o04rf ] : ]
@ i i i i ® s i
= | 1 i = | 1
= 02 : ; ? ; & = 02F : : ' 7
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
False Positive Rate False Positive Rate

Figure 3.1 Effect of swapping the risk values ob fiwature values

Theorem 1 shows how concavities in a ROC curvebearemoved, resulting
in a larger AUC. The next question is how to fotm tonvex ROC curve. The
following theorem sets the necessary and suffice@midition for risk functions

to satisfy so that their ROC curves are convex.

Theorem 2: Let D be a dataset with a single categorical featuretéthas values
from the seV = {vo, v1, ..., Vi}. Let r: V - [0,1] be the risk function that orders
the values oV, asvi;1 comes aftew; if r(vic1) > r(v) for all values of 8i<n. In
order for the ROC curve of the ordering byto be convex, the following

condition must be satisfied:
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. B, _P
1+ Z_I,
Lo zy

Eqg. 3.1

i+1

whereP; is the number gb-labeled instances with valwg andN; is the number
of n-labeled instances with valwe

Proof: In order for the ROC curve to be convex, the stopkall line segments
connecting consecutive ROC points starting fromRI@&C point (1,1) must be
non-decreasing.

R=(FPR. TPR)) _....—e (1. 1)

Rin=(FPR;~,, TPR;‘H)

Riuo=(FPR;i2, TPR;+2)

©.0) ¢
®

Figure 3.2 Relation between the slopes of two cantgee line segments in a convex ROC curve

Therefore, the condition for a convex ROC curve is

O<i<n

05i<ln FPR+1_FPR+2 - FPR_FPR+1
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By definition, TPR= ?P' :

Further, due to the ordering of valud®=P +TR,, .

Hence, TPR-TPR,, :@ —Ljﬂ = %(Pi +TP,-TR,)=

vl|lo

Similarly,

FPR-FPR,, =% , TPR,=TPR., =% andFPR,,~FPR,, = N&Iﬂ .

Therefore, the inequality in Eq. 3.1 can be reenitas
O RalP L RIP
os<n Niy/N - N.J/N

Finally, [Jj = 2%. -

0<i<n Ni+]_

Therefore, according to Theorem 2, any risk fuorcti that assigns a higher

P P . :
value tovi;; than tov; when —=+ ZWI’ for all values ofV, will result in a
i+1 i
. . . P .
convex ROC curve. For example, a risk function mkdfi asr(v,) :W'wnl

result in a convex ROC curve.
Theorem 3. Let D be a dataset with a single categorical featureseivalue set
isV = {Vo, V1, ..., Vn}. Ignoring the ineffective ROC points that lie @nline,

there exists exactly one convex ROC curve.

Proof: Since there exists only one possible orderingaddes ofV that satisfies

the condition given in Theorem 1, there exists amlg convex ROC curve. =

The general assumptions for risk estimation problame given in Eq. 3.3:
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Oi R=0 . [i N=0 Eq.33
0<i<n 0<i<n

-1 n-1
P=>PR>0 , N=> N >0
0

i
0

Although the dataset is guaranteed to have at @@s instance with class
labelp and one instance with labe] it is possible that for some valuesipRN;
may be 0. In such cases the risk function defineava will have undefined
values. In order to avoid such problems, the r&kloe defined as

f(v)= P Eq. 34
R+N,
Lemmal. [ R > i iff it 2E
O<i<n R+1+Ni+l R+Ni Ni+1 Ni
Proof :if [j ———>—"_ then[Jj Ru(R+N)>R(R.+N,),
0O<i<n I:?Jrl + Ni+1 R + Ni 0<i<n
and [ ] i) 23.
0<i<n Ni+1 Ni
The same arithmetic operations can be appliechenréverse direction to
show that
if [ = 23, then n R m
O<i<n N|+l Ni it Ni+1 R + NI

Since, if bothP; andN; are 0 for some, the corresponding valug can be

completely removed from the datasetj P + N, >0, and this risk function is

0<i<n

defined for all values af
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The risk function r(vi):(L has another added benefit in that it is

R+N;)
simply the probability of thep label among all instances of valuge which is

easily interpretable.

Corollary: For a datasdD with a single categorical feature whose valueiset

V = {Vo, V1, ..., W}, the risk function defined as(vi):(P%iN) gives the

maximum possible AUC.

Therefore, the REMARC algorithm usegv, )= i ) as the risk function

(P +N,

for categorical features.

3.2.1 The Effect of the Class Label Choice on a Fea ture’s AUC

In order to calculate the andN values one of the classes should be labeled
asp and the other class as but one can question the effect this choice s o
the AUC value. It is possible to show that the AlHIue of a categorical feature
is independent from the choice of class labels bygithe value from the
Wilcoxon-Mann-Whitney statistics.

In Eq. 3.5, the AUC formula based on the WilcoXdann-Whitney statistics
is given. P is the number of instances that have theclass label andN
represents the number w{class-labeled instances. The Bgtrepresents thp-
labeled instances an®, represents then-labeled instances. An element
belonging toD, set, which isDy;, is the ranking of thé™ instance, which is
labeledp. Inversely, an element belonging Ba set, such ab,; is the ranking
of thei™ instance, which is labeled
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> > f(D,.Dy) Eq.35
PN

AUC =
Dpi > Dni :1
f:1D, <D, =0
D, =D, =05

The dividend part of the AUC formula in Eq. 3.5uats the number gb-
labeled instances for each element of Eheset whose ranking is higher than
any element of th®, set. Then, AUC is calculated by dividing this surtiora
by the multiplication of th@-labeled anah-labeled elements.

The effect of the class label choice on the AUC wdaton should be
investigated. First of all, it is straightforwardathithe divisor part of the AUC
formula is independent of class choice. Then, assuhat the risk score

r = 5 +RN is used on th® dataset an®, andD, sets are formed. L&t be the

number ofn-labeled instances whose ranking is lower thari'tteement of the

Dy set and let; be the score assigned to this element. When teses are
swapped, the new risk valugis equal to 1+;. With this property all instance
scores are negated. However, negating scores doeshaage the relative
ranking but inverses it. So, the AUC formula in Bdp, which calculates AUC
depending on the ranking of the instances, is ieddpnt of the class-label

decision when the proper risk scoring is used.

3.2.2 An Example Toy Dataset

Assume that a toy training dataset with a singlegmateal feature is given in
Table 3.1. In order to calculate the AUC value a$ tharticular feature, risk

values are needed. The risk values are calculgtedebproposed risk function.
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The sorted version of the dataset according toiskeestimates is given in Table
3.2. The AUC value of this feature is calculated byng Eq. 3.1. Th® value is

7 and theN value is 6. The AUC valueJF;'si"—z = 082. In order to calculate this

AUC value, for eachp-labeled instance alh-labeled instances whose risk
(ranking) is smaller or equal should be counted.eWhhe class labels are
swapped the risks are also swapped. The sorted neo$ithe swapped toy
dataset is given in Table 3.3. Since the relatar&king of the instances does not

change the new AUC value is a%ié’% = 082.

Class n n n n n n

Label p p p p p p p

Feature

value a a a a b b b c c c d d d
Table 3.1 Toy training dataset with one categorfieature

Risk 0.25| 0.29 0.2% 0.2p 0.33 0.B3 0/33 0.66 0.666601.00{ 1.00 1.00

Class n n n n n n

Label p p p p p P A

Feature

value a a a a b b b c C (o d d 0]

Table 3.2 Training datasets risk values are caiedland instances are sorted in ascending order

Risk 0.0| 0.0| 0.0/ 0.33 0.33 0.33 0.p6 0J66 Q.66 0.0%5| 0.75/ 0.75
Class n n n n n n n

Label p p p p p p
Feature d d d c c c b b b a a a a
Value

Table 3.3 Negated version of the training datades.risk values are calculated again and
instances are sorted in ascending order

3.3 Handling Continuous Features

Having found the necessary and sufficient conditimnghe risk function for a
categorical feature to result in the maximum pdesfiJC, the next problem is
to determine a mechanism for handling the contisdeatures. An obvious and

trivial risk function maps any real value seen he training set with the class
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valuep to 1 and any real value with the class vatu® 0. This risk function
will result in the maximum possible value for AU@hich is 1.0. However,
such a risk function will over fit the training @atand will be undefined for
unseen values of the feature, which are very likelybe seen in the query
instance. So, our first requirement for a risk tust for a continuous feature is
that it must be defined for all possible valuestldt continuous feature. A
straightforward solution to this requirement is tmcdetize the continuous
feature by grouping all consecutive values withshee class value to a single
categorical value; the cut off points can be seth® middle point between
feature values of differing class labels. The fiskction, then, can be defined
using the risk function given in Eq. 3.4 for cataegal features. Although this
would result in a risk function that is defined falt values of a continuous
function, it would still suffer from the over fitig problem. In order to overcome

this problem, the REMARC algorithm makes the follogvassumption:

Assumption 1: The risk values are either non-increasing or decreasing for

the increasing values of a continuous feature.

Although there exist some features in real-world dms that do not satisfy
this assumption, in the datasets we examined tlgangstion is satisfied in

general.

This assumption is also consistent with the imegiions of the values of
continuous features in many real-world applicatidfe:. example, in a medical
domain, a high value of fasting blood glucose isratication for a high risk of
diabetes. On the other hand, low fasting blood gleds an indication of a risk
for another heath problem, called hypoglycemia.

3.3.1 The MAD Method

The REMARC algorithm requires all features to beegarical. Therefore, the

continuous features in a dataset need to be catedorThe aim of a
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discretization method is to find the proper cutAp®iin order to categorize a
given continuous feature. After the discretizatioogess a continuous feature is
treated as a discrete feature whose number of aiters known on the

continuous.

The MAD method is designed to maximize the AUC vadlyechecking the
ranking quality of values of a continuous featuree MAD algorithm given in
Kurtcephe and Guvenir is defined for multi-classadats [78]. A special version
of the MAD method, called MAD2C and defined for twasd problems, is used
in REMARC.

In order to measure the ranking quality of a cordus feature, the instances
are sorted in ascending order. Sorting is essefotiall discretization methods
in order to produce unambiguous intervals. After sbeting operation, feature
values are used as hypothetical score values @B@C graph of the feature is
drawn. The AUC of the ROC curve shows the overall raplquality of the
continuous feature. In order to obtain the maximnAldC value, only the points
on the convex hull must be selected. The minimumber of points that form
the convex hull is found by eliminating the poitiigt cause concavities on the
graph. In each pass, the MAD method compares tipeslo the order of the
creation of the hypothetical lines, finds the jumict points (cut-points) that
cause concavities and eliminates them. This prasespeated until there is no
concavity on the graph. The points left on the grape the cut-points, which
will be used to discretize the feature.

It has been proven that the MAD method finds thepaints and the AUC
value of the feature independently from the cldssae. It is shown that the cut-
points found by MAD never separate two consecuth&ances of the same
class. This is an important property, as it shovwet #h discretization method
works properly. The implementation details, formabqfs and empirical
evaluation of MAD can be found in Kurtcephe and Guvgf8].
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3.3.2 A Toy Dataset Discretization Example

It is possible to visualize the discretization geg by using the MAD method.
A toy dataset for the discretization is given inblea3.4. After the sorting
operation, the ROC points are formed. This ROC gigamiven in Figure 3.3.
Since the risk values are either non-increasingnon-decreasing for the
increasing values of a continuous feature, two RCdphg are formed. As can
be seen in Figure 3.3 one of these graphs is bdiewdiagonal line since the

risk is increasing with increasing values of thatawous feature.

Class nin nin n I
Value p P m A Pl P P
FLO[1)2) 34588678 H 10 41t

Table 3.4 A toy dataset for visualizing MAD in twtass problems. The name of the attribute to
be discretized is F1
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Figure 3.3 Visualization of the ROC points in a telass discretization.
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The first pass of the MAD method is shown in FigB All points below or
on the diagonal are ignored since they have notipeseffect on the
maximization of AUC. Then the points causing corttey are eliminated.
MAD converged to the convex hull in one pass fos giiample. The points left
on the graphs are the discretization cut-points.

2.5 -co

High values als p —8—

5.5

0.8

0.6

True Positive Rate

o4 i | | :

skl | | 1 |
0 0.2 0.4 0.6 0.8 1
False Positive Rate

Figure 3.4 Final cut-points after the first passafivex hull algorithm

3.4 REMARC Algorithm

The training phase of the REMARC algorithm is givienFigure 3.5. In the
training phase all continuous features are diswdti In order to discretize
continuous features, MAD2C, which is shown on thinfiine of Figure 3.5, is
used. Risk values are calculated for each valua given categorical feature
(discretized continuous features are included)this step, the risk function
defined in Eqg. 3.4 is used in order to obtain tp&mal ranking for categorical
features. Then, training instances are sorted docgprto the risk values
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calculated in the previous step. Since the riskction used by REMARC
always results in a convex ROC curve, the AUC is gdnvequal to or greater
than 0.5. Therefore, the REMARC algorithm learmgegght w for a featurd; as

w=(AUC, —05) * 2 Eq. 3.6

The ROC curve of an irrelevant feature is simptlisagonal line from (0,0) to
(1,1), with AUC=05. The weight function in Eq. 3.6 assigns 0 to such
irrelevant features in order to eliminate them. Tisk values and weights of the

features are stored for the testing phase.

1 :REMARCTrain (trainSet[M[N) // Includes Mfeatures and N train
i nst ances

2 Begi n

3: for i=0 to M1

4 i f(isContinuous(trainSet[i]));

5 : cut Poi nt s=MAD2C(trainSet[i][0..N-1]);

6 : nuner i cal Val uesToCat Val (cut Points, trainSet[i]);

7 : ri sks[i] <-conputeCategorical R sk(trainSet[i][0..N1]);
8 : sortlnstancesByRi sk(trainSet[i][0..N1]);

9 : aucVal ues[i] <-conmputeAUC(trainSet[i][0..N1]);

10: feat ureWei ghts[i]=(aucVal ues[i]-0.5)*2;

11: end

12: end

Figure 3.5 Algorithm of the REMARC method's traigiphase.

The testing phase of the REMARC method is strégiveard, as for each
feature, the risk value corresponding to the vadfighe feature in the test
instance is used. Then the risk of this featurgamghted by its weight, which is
calculated in the training phase. The computatith@risk for a query instance
g is in Eq. 3.7. The maximization of AUC for whole dseét is a challenging
problem. Cohen et al. showed that the problem dfirisp the ordering that
agrees best with a learned preference function isChiplete [79]. This
weighting mechanism is used as a simple heuristiorgter to extend this

maximization over the whole feature set.
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> w, OP(plq;) Eq. 3.7
risk (q) = —
2w,

f

{Z(AUCf -05) qs is known
Wf =

0 gs is missing

where P(p|qg; )s the probability ofg beingp-labeled, given that the value of
featuref in q is g, and w; is the weight of the featurfe calculated by using Eq.

3.6
Finally, in order to obtain the weighted averagjerisk and weight values are

summed and final risk is calculated by dividing thenulative.

: REMARCTest (testlnstance[M][1])
Begi n
for i=0 to M1
oneFeatureR sk= risks[i][testlnstace[i][0]];
total Ri sk+= oneFeatureR sk * featureWights[i];
t ot al Wi ght += feat ureWei ghts[i];
end
return total Ri sk/total Wi ght;
end

OCoO~NOU~WNE

Figure 3.6 Testing phase algorithm of the REMARGhue

The time complexity of the MAD algorithm is givais O, wheren is the
number of training instances. After discretizing tiumerical features the time
complexity of the REMARC algorithm is @fvigv+n), wherem is the number
of features and/ is the average number of values per feature. Assalt,
REMARC is bounded by the MAD algorithm’s time coty.

3.5 Interpretation of the REMARC Predictive
M odel

As mentioned above, the REMARC method does not qrlyvide risk

estimation as a single real value, but the predicthodel used in order to
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estimate risk can provide useful information to damexperts. A high weight
value indicates that the corresponding featurehgyhly effective risk factor in
the given domain. Domain experts may choose torgrieatures with low

weights, potentially reducing the cost of recordikag.

Some of the categorical features are formed bygrelizing continuous
features. For example, age can be discretizeccimtd, youth, adult and elderly.
Assume that the impression of the feature agevisstigated on a risky domain,
such as medicine. The intervals should be choseziutly since they can affect
a system’s predictive performance. The domain dgpean provide this
information. However, there can be experimental @iosywhere this knowledge
is not applicable. The MAD method used in REMARGries the proper
intervals in order to maximize AUC during the tiag phase. These intervals
also report the risks associated with each interFal example, consider a
dataset that contains an age feature and a cbeistlat indicates the presence
of a new disease. The MAD method will find the itist age groups in terms of
this disease and the REMARC method will determine tisk for each age

group.

The choice of class label during risk estimati@s mo effect on the feature
weights. However, the risk function used by REMAR€Epends on this choice
directly, as shown in Section 4.1, so in ordernterpret risk scores correctly
one must pay attention to the class label thatesgmts the unwanted situation.
Otherwise, risk scores can be misleading.

3.6 Empirical Evaluations

In order to maximize AUC the theoretical backgrowidhe REMARC method
is given. In order to support the theoretical baokgd with empirical results
two different experiments are conducted. First, R is compared with 26
different machine learning algorithms on an AUCi&aEhen, since there can be
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domains where the predictive models have to traofegh, running times of the

algorithms are also measured.

The real-life datasets are provided by the UCI mree learning repository
(Frank and Asuncion 2010) and are two-class probl80]. Ten datasets are
selected from risk domains such as medicine arahfie. The properties of the

datasets are given in Table 3.5.

# Continuous| #Categorical | # Dataset
Dataset Name # InstancgsAttributes Attributes Abbreviations
Australian 690 6 8 A
Bupa 345 6 0 B
Crx 653 9 6 C
Heart (Statlog) 270 7 6 H1
Hypothyroid 3164 7 18 H2
Mammaographic Masses$ 961 1 5 M
Pima-Diabetes 768 8 0 P
Sick-Euthyroid 3163 7 18 S1
SPECTF 267 44 0 S2
Wisconsin-Breast 569 30 0 W

Table 3.5 Properties of the datasets used in thpérieal evaluations of the REMARC algorithm

In order to perform the comparisons, 26 differdassification algorithms are
selected from the WEKA software package [81]. Cthiy algorithms that able
to produce continuous output (confidence on thesctiecision) are selected. As
mentioned above, the ROC graphs of algorithms prieducontinuous output
are meaningful. Since REMARC is a non-parametricho@, none of the
classifiers is optimized for each dataset. All sifisrs are used with default
settings of WEKA for the sake of fairness. The SiéMaken from the LIBSVM
package provided in WEKA [82].

3.6.1 Predictive performance

Researchers reported that some of the algorithatsaim to maximize AUC do

not obtain significantly better AUC values than thees designed to maximize
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accuracy [49, 63]. Therefore, it is important toowhthat REMARC can

outperform accuracy-maximizing algorithms stataitic significantly.

Algorithms/Datasets A B C H1 H2 M P S1 S2 W | Average
REMARC 0.923 | 0.659 | 0.931*|0.904*| 0.986 | 0.901*| 0.827 | 0.942 | 0.857*| 0.986 | 0.892
AdaBoostM1+ 0.922 | 0.737 | 0.926 | 0.888 | 0.990*| 0.895 | 0.804 | 0.966 | 0.801 | 0.985 | 0.891
Class.ViaRegr.+ 0.918 | 0.727 | 0.918 | 0.882 | 0.990*| 0.896 | 0.827 | 0.986* | 0.763 | 0.989*| 0.890
Bagging+ 0.918 | 0.755*| 0.910 | 0.872 | 0.980 | 0.888 | 0.822 | 0.972 | 0.795 | 0.977 | 0.889
ADTree+ 0.917 | 0.705 | 0.925 | 0.880 | 0.988 | 0.887 | 0.802 | 0.979 | 0.803 | 0.984 | 0.887
Logistic+ 0.912 | 0.714 ] 0.915 | 0.900 | 0.970 | 0.893 | 0.831*| 0.956 | 0.801 | 0.972 | 0.886
MultiC.Classifier+ 0.912 | 0.714 ] 0.915 | 0.900 | 0.970 | 0.893 | 0.831*| 0.956 | 0.801 | 0.972 | 0.886
AODE+ 0.928*| 0.540 | 0.930 | 0.904*| 0.989 | 0.900 | 0.823 | 0.963 | 0.820 | 0.988 | 0.879
NaiveBayes++ 0.895 | 0.641 | 0.900 | 0.897 | 0.977 | 0.895 | 0.816 | 0.920 | 0.850 | 0.980 | 0.877
BayesNet+ 0.920 | 0.540 | 0.928 | 0.901 | 0.989 | 0.899 | 0.818 | 0.959 | 0.825 | 0.986 | 0.876
ThresholdSelector+ | 0.904 | 0.699 | 0.916 | 0.898 | 0.969 | 0.892 | 0.826 | 0.956 | 0.686 | 0.969 | 0.871
MultiBoostAB+ 0.908 | 0.673 | 0.908 | 0.865 | 0.988 | 0.886 | 0.790 | 0.955 | 0.709 | 0.981 | 0.866
DecisionTable+ 0.917 | 0.574 | 0.910 | 0.883 | 0.989 | 0.876 | 0.801 | 0.971 | 0.678 | 0.972 | 0.857
FT++ 0.898 | 0.721 | 0.853 | 0.824 | 0.943 | 0.874 | 0.751 | 0.907 | 0.752 | 0.984 | 0.851
LWL++ 0.911 | 0.643 | 0.909 | 0.839 | 0.955 | 0.886 | 0.775 | 0.942 | 0.674 | 0.948 | 0.848
FilteredClassifier++ | 0.899 | 0.540 | 0.893 | 0.836 | 0.958 | 0.863 | 0.794 | 0.949 | 0.683 | 0.939 | 0.835
REPTree++ 0.879 | 0.666 | 0.871 | 0.824 | 0.963 | 0.846 | 0.768 | 0.957 | 0.631 | 0.924 | 0.833
PART++ 0.867 | 0.645 | 0.853 | 0.785 | 0.966 | 0.882 | 0.778 | 0.954 | 0.652 | 0.937 | 0.832
Att.Sel.Classifier++ | 0.869 | 0.584 | 0.875 | 0.801 | 0.952 | 0.867 | 0.786 | 0.914 | 0.624 | 0.938 | 0.821
END++ 0.865 | 0.648 | 0.877 | 0.777 | 0.940 | 0.868 | 0.758 | 0.939 | 0.593 | 0.939 | 0.821
OrdinalC.Classifier++| 0.865 | 0.648 | 0.877 | 0.777 | 0.940 | 0.868 | 0.758 | 0.939 | 0.593 | 0.939 | 0.821
J48 (C4.5) ++ 0.865 | 0.648 | 0.877 | 0.777 | 0.940 | 0.868 | 0.758 | 0.939 | 0.593 | 0.939 | 0.821
VEI++ 0.913 | 0.562 | 0.910 | 0.871 | 0.782 | 0.836 | 0.550 | 0.755 | 0.853 | 0.946 | 0.798
DecisionStump++ 0.833 | 0.572 | 0.848 | 0.688 | 0.951 | 0.788 | 0.696 | 0.936 | 0.623 | 0.886 | 0.782
IBk++ 0.801 | 0.634 | 0.798 | 0.743 | 0.766 | 0.799 | 0.648 | 0.752 | 0.592 | 0.947 | 0.748
RBFNetwork++ 0.732 ] 0.509 | 0.787 | 0.835 | 0.581 | 0.786 | 0.642 | 0.676 | 0.641 | 0.755 | 0.694
SVM-RBF++ 0.628 | 0.609 | 0.602 | 0.509 | 0.952 | 0.872 | 0.518 | 0.735 | 0.466 | 0.760 | 0.655

Table 3.6 The comparison of the predictive perfarceaof REMARC algorithm with other
algorithms on AUC metric. 10 datasets are useddwevaluation. Algorithms marked with ++
are outperformed by REMARC method with a statidiijcsignificant difference Algorithms
marked with + are outperformed by REMARC on avenaile no significant difference. AUC
values marked with * are the best AUC values fat thataset (Higher results better)

A stratified ten-fold cross validation is employedcalculate AUC values for
each datasets. As shown in Table 3.6, the REMAR@@deoutperformed all

algorithms on the average AUC. A paired t-testgeduto decide whether the
differences on averages are significant. Accordmthe paired t-test on a 95%

confidence level (the same level will be used foheo t-tests) REMARC
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statistically significantly outperforms 15 of thé Znachine learning algorithms
on the average AUC. These algorithms include nBasges, decision trees (part,
C4.5) and SVM with a RBF kernel. REMARC outperfodnthe other 11
algorithms, as well, but the differences betweer #wverages for these
algorithms are not statistically significant.

One important point should be mentioned aboutS¥i®ds. As seen in Table
3.6, SVM has the worst predictive performance amahlghe classification
algorithms because of the absence of parameterguriowever, as mentioned
before none of the algorithms is tuned for bestlioteve results.

The classification algorithms such as logistic ifmomial logistic regression
model) and classification via regression achievghhiAUC values. As
mentioned above, these models are highly usedeiddimain of medicine, and
in this work their predictive performance is vatield

The second classifier with the highest AUC wasAldaboost method. Since
it is an ensembling algorithm, it uses a base tlas¢default DecisionStump in
WEKA). We believe that the performance of REMARQ ¢ further improved
by using an ensembling algorithm, as then, a sty significant difference

can be obtained.

3.6.2 Running Time

The REMARC method is designed to be simple, effecéind fast. It handles
categorical features close to the linear time. MAdquires more time since it
uses sorting. Theoretically, REMARC seems fast, dupirical experiments

must be conducted to support this claim.
The overall running times of the training phas@5fdifferent algorithms are

calculated. The running times of all algorithms areasured using java virtual
machines’ CPU time and hundreds of results areageer (to be objective). The
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SVM algorithm is not included in the running timssction since WEKA uses
an outside library for this algorithm. However,titkes seconds for SVM to
complete the training phase, so it is much slolwantREMARC. The results of

the overall running time for the other algorithnne ahown in Table 3.7.

Algorithms/Datasets A B C H1 H2 M P S1 S2 W | Average
VFI-- 16* 5* 17+ o | 104* | 12* | 14* | 111* | 23* | 31* 34
DecisionStump-- 24 9 23 11 | 113 17 30 | 116 | 43 | 105 49
NaiveBayes-- 30 11 29 18 | 164 30 37 | 154 | 61 | 102 64
AODE-- 53 16 52 27 | 352 40 56 | 350 | 113 | 280 134
BayesNet-- 49 17 52 28 | 425 54 60 | 393 | 81 | 244 140
REPTree- 77 33 80 33 | 395 | 105 | 136 | 569 | 124 | 185 174
FilteredClassifier- 119 | 16 107 | 48 | 462 86 | 116 | 858 | 155 | 265 223
J48 (C4.5)- 160 | 75 153 | 81 | 635 | 147 | 181 | 1283 | 256 | 378 335
Att.Sel.Classifier- 173 | 31 159 | 99 | 761 | 201 | 162 | 867 | 419 | 496 337
REMARC 106 | 37 94 49 | 1131 | 128 | 164 | 1117 | 191 | 470 349
OrdinalC.Classifier+ | 162 | 79 150 | 83 | 681 177 | 197 | 1380 | 255 | 378 354
END+ 236 | 119 | 218 | 126 | 880 | 219 | 254 | 1563 | 333 | 460 441
RBFNetwork++ 404 | 136 | 348 | 148 | 1057 | 367 | 280 | 1149 | 712 | 620 522
PART++ 416 | 102 | 511 | 193 | 865 | 230 | 248 | 2023 | 684 | 473 574
AdaBoostM1++ 302 | 132 | 296 | 156 | 1584 | 302 | 394 | 1579 | 475 | 1135 635
MultiBoostAB++ 318 | 133 | 297 | 164 | 1614 | 317 | 388 | 1622 | 477 | 1140 647
MultiC.Classifier++ 991 | 79 1175 | 125 | 3698 | 239 | 226 | 3656 | 473 | 963 1163
Logistic++ 1014| 74 | 1215 | 124 | 3720 | 261 | 257 | 3667 | 472 | 935 1174
ADTree++ 689 | 276 | 645 | 469 | 3149 | 579 | 973 | 3536 | 1562 | 2717 | 1459
Ibk+ 172 | 33 169 | 35 | 7365 | 233 | 153 | 7465 | 124 | 222 1597
Bagging++ 740 | 295 | 727 | 295 | 4484 | 636 | 961 | 6904 |1070| 1718 | 1783
ThresholdSelector++ [ 1695 | 137 | 2032 | 227 | 6442 | 429 | 387 | 6346 |1118| 2028 | 2084
DecisionTable++ 1582| 156 | 1699 | 434 |10824| 411 | 635 |11498|1183| 2526 | 3095
Class.ViaRegr. ++ 5340| 1355 | 5573 | 1143| 9943 | 3912 [ 359315598 |2218| 2662 | 5134
FT++ 4705| 847 | 4879 | 927 | 14834 | 2856 |2230|30959|1796| 2324 | 6636
LWL+ 2094 | 376 | 1940 | 412 |52652| 2360 |2652|52887|1414| 6919 | 12370

Table 3.7The comparison of the average running time perfacaaf REMARC algorithm with
other algorithms (in ms) . 10 datasets are usedglevaluation. Algorithms marked with ++
symbol are outperformed by REMARC method on runmimg basis with a statistically
significant difference. Algorithms marked with ynsbol outperformed REMARC method on
running time basis with a statistically significatifference. + marked algorithms are
outperformed by REMARC on average and — markedriggas outperform REMARC on
average with no significant difference. AUC valuesrked with * are the best AUC values for
that dataset (Lower results better)

REMARC outperforms 12 different algorithms sigeoéfntly according to a

paired t-test on a running-time basis. These ofgpaed methods are shown by
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the ++ symbol on Table 3.7. Five algorithms outpered REMARC
statistically significantly. These algorithms atgown with a -- symbol. The
differences between the other seven methods otabie and REMARC are not
significant.
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Chapter 4

TurkoSCORE: Turkish System for
Cardiac Operative Risk Evaluation

In this chapter, the REMARC method is applied te tdardiovascular surgery
domain. The data is gathered from the TurkoSCORBEteay Detailed
information about TurkoSCORE project is given inisthchapter. The
EuroSCORE project, which is one of the most poptie evaluation systems
in cardiac surgery, is evaluated on TurkoSCOREs@stidnat contains data about
the cardiovascular operations performed in somepitads in Turkey. The
properness of EuroSCORE risk model on Turkish patipopulation is
investigated. In empirical evaluation section, BCORE and REMARC are
compared by using a dataset that consist of Euré&f@atures on AUC basis.
In order to propose a new risk estimation framewsplecially designed for
Turkish patients, most likely risk factors (highdyscriminative) are identified
and filtered by consultant surgeons. Then, the opeidnce of REMARC

algorithm is investigated on this dataset.
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4.1 The TurkoSCORE Project

One of the major aims of the TurkoSCORE projecttasconstruct a risk
estimation system in order to predict the early tadiby in patients undergoing
cardiovascular surgeries in Turkey on the bas@bgdctive risk factors [83].

The TurkoSCORE project includes a database sysfem storing
cardiovascular surgical patient’'s data in Turkey. vAriety of parameters
including personal, preoperative, postoperativdipio up and mortality have
been recorded in this project. The aim of the mtoje not only finding risk
factors of the patient and estimating mortalitk ri$ patients but also collecting
shared information about the Turkish cardiac pé&tienationwide. A web
application is designed in this project allowingcttos enter their patient data
online. The same web application is also used lptade in order to monitor,
search, and print the health profile of their patse

The TurkoSCORE project also aims to lead the oaedicular research by
supplying a wide range of data collected from défe institutions. Currently,
Cardiovascular Surgery Department of Ankara UnitgrdAcibadem Hospital
and Ankara Atatirk Hospital are supplying data furkoSCORE. More
detailed information about the structure of the KBBCORE database can be
found in Tunca [83].

4.2 EuroSCORE

In Europe, a model called the European System fandi@c Operative Risk
Evaluation (EuroSCORE) has been developed and cogrased by European
cardiovascular surgeons. This system predicts igle af operative mortality

during surgery or 30-days after the surgery. Thisdigtion is based on the
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values of some parameters measured before operatidhe development of
EuroSCORE, North American and European risk modeidiss were
investigated [14]. Initially, as candidate risk taws, 68 preoperative and 29
operative parameters were selected. The risk factohich are most likely
useful, are identified and selected by consultargeons. However the selected
risk factors were very similar to those in other éioan studies. The definitions
of these factors were simplified in EuroSCORE. fidew to learn the model used
in EuroSCORE, nearly 20 thousand patients wereegathfrom 128 hospitals in
eight European counties (Germany, France, UK, [t8pain, Finland, Sweden
and Switzerland)

The potential risk factors are analyzed and thé&ct on risk estimation is
investigated. Some of these risk factors were ebt@d in order to obtain a
better predictive model. As a result, seventedafastors were found useful for
calculating the early mortality risk of a cardiogakr surgery. The details of
these risk factors can be found in [14].

The first scoring system proposed in EuroSCOREcadied Additive
(Standard) scoring. Additive scoring is designedubing the coefficients as
weights for each risk factor. During the calculatmf Additive EuroSCORE, the
weights are summed together according to the existef a risk factor for a
patient. However, after some validation studiesAdflitive EuroSCORE on
other cardiac datasets outside of Europe, the idefig of Additive scoring is
noted. Since the Additive EuroSCORE can sometinmelerestimate the risk in
very high risk patients, logistic regression basedring system, called Logistic
EuroSCORE is proposed. The logistft coefficients and the formula of this

scoring system can be found in [26].
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4.3 EuroSCORE Validation on Turkish Patients

In this section, firstly, prevalence of risk facdn Turkish patient population
and EuroSCORE patient population is compared. Sme&uroSCORE scoring
system is trained by using European patient populaany difference between
populations can affect the performance of EuroSCOREurkish population.

Definitions of some risk factors were not identicaith EuroSCORE
definition. Therefore, some approximations were enadorder to complete the
analysis. These approximations are listed in tlab|e'A.1, Appendix A.

Statistical analysis of risk factor prevalenceasformed by using chi-square
test for categorical values and unpaired t-testctamtinuous values? values
less that 0.05 is considered as significant

Currently, there are 9451 patients in TurkoSCORiElohse. In this thesis
8018 patients are used. These patients are seldécsad the ones whose
EuroSCORE values and EuroSCORE parameters are etmflhis selection
was necessary since most of the analysis is basdeunnSCORE parameters

and values.

4.3.1 Demographic results

There were significant differences between Turkestd European cardiac
patient populations. The prevalence of risk factorsboth populations is given
in Table 4.1. When patient related factors are stigated, it is seen that the
Turkish cardiac patient population is younger orerage. There exist
significantly more patients in Turkish populatiomege age is less than 60 and
fewer patients in any other age interval. Turkislignts have higher incidence
of chronic pulmonary disease and active endocardigwer patients in Turkish
population have extracardiac arteriopathy and presscardiac surgery. Critical

preoperative state is more likely to be presefiturkish patients than European

42



patients. In cardiac related factors, Turkish pasieare more likely to have
unstable angina LV function, moderate dysfunctiom aecent myocardial

infraction.
Risk factor Turkish EuroSCORE P-value
prevalence (%) | prevalence (%)
(n=8018) (n=19030)
Patient Related Factors
Age
Mean 59.49 years 62.5 years <0.001
Standard deviation 12.02 years 10.7 years
<60 years 46.9 33.2 <0.001
60—64 years 17.3 17.8 0.325
65—69 years 16.6 20.7 <0.001
70—74 years 13.1 17.9 <0.001
75+ years 6.1 9.6 <0.001
Female 28.6 27.8 0.325
Chronic pulmonary disease 134 3.9 <0.001
Extracardiac arteriopathy 8.6 11.3 <0.001
Neurological disease 1.3 1.4 0.181
Previous cardiac surgery 4.1 7.3 <0.001
Serum creatinine >200 mmol/| 1.9 1.8 0.515
Active endocarditis 3.2 1.1 <0.001
Critical preoperative state 9.0 4.1 <0.001
Cardiac Related Factors
Unstable angina LV function 9.8 8.0 <0.001
Moderate dysfunction 29.9 25.6 <0.001
Severe dysfunction 5.3 5.8 0.103
Recent myocardial infarction 23.5 9.7 <0.001
Pulmonary hypertension 1.9 2.0 0.565
Operation Related Factors
Emergency 4.3 4.9 0.035
(<0.05)
Other than isolated CABG 23.0 36.4 <0.001
Surgery on thoracic aorta 3.7 2.4 <0.001
Postinfarct septal rupture 0.1 0.2 0.069

Table 4.1 Prevelances of risk factors in Turkisd BuaroSCORE population. The risk factors
that have significant difference are shown in dalte. EuroSCORE prevelance values are taken
from Roques et al. [84]

Operation related factors such as emergency or ttha isolated coroner artery
bypass grafting (CABG) have less prevalence in iBarkpopulation than
European. Also Turkish patients are more likelyhtve surgery on thoracic
aorta than European patients. All these differeraresstatistically significant.
There are no significant differences in the prenedeof the risk factors sex, age
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interval between 60 and 64, neurological diseasajns creatinine, pulmonary

hyper tension, severe dysfunction and postinfaptad rupture.

4.3.2 Model Calibration and Discrimination

The EuroSCORE values of 8018 patients are usedhisnsection. Predicted
mortality is both calculated using Additive and lisigg EuroSCORE. Then,
observed and predicted mortality of the patientamgared with 95% confidence
intervals. These analysis are done for both wholeod and isolated CABG
cohort. Chi-square statistics is employed for maaguhe difference between

the observed and predicted mortality over riskisast

For entire cohort, 157 deaths are observed in §@t#nts, 1.96% overall
mortality rate is calculated. The Additive EuroS®Rpredicted 2.98%
mortality rate P < 0.001 vs. observed) and 3.17% mortality r&te<(0.001 vs.
observed) is predicted by Logistic EuroSCORE. Aswah in Table 4.2, both
scoring systems overestimated mortality at eack testile. The predictive
performances of both models are fair with 0.76 Aldliie. The ROC curves are

given in Figure 4.1.

Observed Predicted
mortality mortality
Patients (deaths) rate (%95 CI) rate (%95 CI)
EuroSCORE additive
0-3 (Low risk) 5164 (39) 0.76% (0.52-0.99) | 1.52% (1.49-1.55)
4-6 (Medium risk) 2186 (65) 2.97% (2.26-3.69) | 4.78% (4.75-4.82)
7+ (High risk) 668 (53) 7.93% (5.88-9.98) | 8.33% (8.20-8.47)
Total 8018 (157) 1.96% (1.65-2.26) | 2.98% (2.93-3.03)
EuroSCORE logistic
Low Risk 2673 (16) 0.60% (0.31-0.89) | 1.07% (1.06-1.08)
Medium Risk 2673 (26) 0.97% (0.60-1.34) | 1.99% (1.76-2.22)
High Risk 2672 (115) 4.30% (3.53-5.07) | 6.45% (6.22-6.68)
Total 8018 (157) 1.96% (1.65-2.26) | 3.17% (3.08-3.26)

Table 4.2 Predicted and observed mortality by EGORE risk level for whole cohort. In
logistic EuroSCORE analysis, patients are divided three approximately equal risk quintiles
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Figure 4.1 ROC curves for both Logistic and StaddauroSCORE for whole cohort. In logistic
EuroSCORE analysis, patients are divided into tammoximately equal risk quintiles

Observed Predicted
mortality mortality
Patients (deaths) rate (%95 Cl) rate (%95 CI)
EuroScore additive
0-3 (Low risk) 4042 (18) 0.45% (0.24-0.65) | 1.54% (1.50-1.57)
4-6 (Medium risk) 1681 (31) 1.84% (1.20-2.49) | 4.77% (4.73-4.81)
7+ (High risk) 448 (30) 6.70% (4.38-9.01) | 8.12% (7.98-8.25)
Total 6171 (79) 1.28% (1.00-1.56) | 2.89% (2.84-2.95)
EuroScore logistic
Low Risk 2057 (11) 0.53% (0.22-0.85) | 1.06% (1.05-1.07)
Medium Risk 2057 (8) 0.39% (0.12-0.66) | 1.95% (1.74-2.16)
High Risk 2057 (60) 2.92% (2.19-3.64) | 5.77% (5.56-5.99)
Total 6171 (79) 1.28% (1.00-1.56) | 2.93% (2.84-3.02)

Table 4.3 Predicted and observed mortality by EGORE risk level for isolated CABG cohort

Of 6171 patients undergoing isolated CABG, 79 kikeatre observed, 1.28%
overall mortality is calculated The Additive EuroSRE predicted 2.89%
mortality rate P < 0.001 vs. observed) and 2.93% mortality r&te<(0.001 vs.
observed) is predicted by Logistic EuroSCORE. Aswah in Table 4.3, both
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scoring systems overestimated mortality at eadhtadile except the additive
model in highest risk decile. The predictive pemfiances of both models are
fair with 0.77 AUC value for Additive and 0.76 faogistic EuroSCORE. The

ROC curves for both scoring systems are givenguiféi 4.2

Logistic EuroSCI)ORE —a— ! ? ?
Standard EuroSCORE ---4---

0.8

0.6

True Positive Rate

.
0 0.2 0.4 0.6 0.8 1

False Positive Rate

Figure 4.2 ROC curves for both Logistic and StaddauroSCORE for isolated CAGB cohort

4.4 Comparison of REMARC and EuroSCORE

In the previous section, it is shown that the pat@opulation, which is used in
the training phase of EuroSCORE, is consideralffgr@int than Turkish cardiac
patients. Since REMARC is proposed as a new scaysgem for Turkish
cardiac patients, it is essential to show that RER@Acan predict early mortality
risk better than EuroSCORE by using only EuroSC@BEmMeters.

In this section only the predictive performance BOroSCORE and
REMARC will be compared on AUC basis. The calitvatof REMARC model
is not available since the Turkish patient datésebt large enough to create a
validation set. As mentioned above some of thend&fs of risk factors in
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EuroSCORE are not identical with TurkoSCORE dataSdterefore, the
approximations given in Table A.1 are used in #aistion, as well.

There exist 9451 patients in the TurkoSCORE daelwarrently. However,
the number of patients whose EuroSCORE values amgplete is 8018. The
ROC curves for Additive and Logistic EuroSCORE eadculated over whole
dataset, since EuroSCORE has a trained model. HowREMARC must be
trained and test on the same dataset. Therefonefolte cross-validation is

employed in order to obtain the ROC curve.

Logistic Euroscore —a—
Standart EuroSCORE ---a---
REMARC ---e---

True Positive Rate

0.4 0.6 0.8 1
False Positive Rate

Figure 4.3 ROC curves for both Logistic EuroSCOR&ndard EuroSCORE and REMARC
with EuroSCORE risk factors

Then, the AUC values are calculated using onlyEbheoSCORE risk factors.
The AUC value for REMARC is 0.79 and 0.76 for bdttiditive and Logistic
EuroSCOREs. The ROC curves for REMARC and EuroSCO&H be found
in Figure 4.3. Since the higher AUC represent bgttedictive performance,
REMARC risk estimation method outperforms both EBE®ORE scoring
systems over Turkish population.
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45 REMARC Based Cardiovascular Risk
Estimation System

According to the analysis done in the Section REMARC performs better
prediction than EuroSCORE by using only the risitdes used in EuroSCORE
model. These risk factors are specially selectedHe European surgeons by
analyzing European patient population. Since REMAR@bles domain experts
to investigate discriminative ability of each feawy providing AUC values,
EuroSCORE parameters are analyzed in this thesiswell. Table B.1,
Appendix B shows the AUC values of each EuroSCOREmeter. According
to the AUC values of features, most of the featwanes predicting well except

other than isolated CABG and postinfarct septalutgfeatures.

There exist 190 preoperative and 16 operative idatel risk factors in
TurkoSCORE database [83]. In order to find the rihsination ability of each
feature REMARC is used. The whole dataset (945ema) is used since the
training phase of the REMARC ignores missing valugs a result, the AUC
values for each feature (weights) are calculatedstMikely risk factors to be
useful are identified by consultant cardiac surgemnCardiovascular Surgery
Department, Ankara University by considering thessghts. The risk factors
whose AUC values are too close to 0.5 (irrelevask factors) and the risk
factors that has few number of instances (more &9 is missing) are
eliminated. The risk factors left after these etations are shown in Table B.2,
Appendix B.

After selecting the most important features, a mataset with 28 features
and 9451 instances is formed. The testing phasBEWMARC is robust to
missing values, as well. However, there exist sarstances in the dataset most
features are missing. In order to investigate tfeceof missing values on AUC
a simple experiment is conducted. 26 different siteaare formed. The first

dataset, called datasetO, included only the insgm¢hich has no (0) missing
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features (a complete dataset). The last dataditd cataset25, is formed from
the instance which can have 25 missing featuresn(et) of 28. Table 4.4 is
formed by using these 26 datasets in REMARC progianing this analysis

ten-fold cross validation is employed.

Dataset REMARC | Additive | Logistic
Names #Instances| #P # N AUC AUC AUC
Dataset O 3584 59 3525 0,80 0,74 0,74
Dataset 1 5620 102 5518 0,83 0,76 0,77
Dataset 2 6871 127 6744 0,83 0,77 0,77
Dataset 3 7916 153 7763 0,80 0,76 0,76
Dataset 4 8179 166 8013 0,81 0,76 0,76
Dataset 5 8263 166 8097 0,81 0,76 0,76
Dataset 6 8315 167 8148 0,81 0,76 0,76
Dataset 7 8353 168 8185 0,81 0,76 0,76
Dataset 8 8394 170 8224 0,80 0,76 0,76
Dataset 9 8433 171 8262 0,80 0,76 0,76
Dataset 10 8476 174 8302 0,80 0,76 0,76
Dataset 11 8745 180 8565 0,80 0,76 0,76
Dataset 12 8773 181 8592 0,80 0,76 0,76
Dataset 13 8787 182 8605 0,80 0,76 0,76
Dataset 14 8816 182 8634 0,80 0,76 0,76
Dataset 15 8988 185 8803 0,80 0,76 0,76
Dataset 16 9055 186 8869 0,80 0,76 0,76
Dataset 17 9086 187 8899 0,80 0,76 0,76
Dataset 18 9201 190 9011 0,80 0,76 0,76
Dataset 19 9225 191 9034 0,80 0,76 0,76
Dataset 20 9236 191 9045 0,80 0,76 0,76
Dataset 21 9244 191 9053 0,79 0,76 0,76
Dataset 22 9311 191 9120 0,79 0,76 0,76
Dataset 23 9322 191 9131 0,79 0,76 0,76
Dataset 24 9334 191 9143 0,79 0,76 0,76
Dataset 25 9336 191 9145 0,79 0,76 0,76

Table 4.4 26 Different datasets are formed by elating the instances with missing values.
Datasdtcontains at mostmany missing features from 28 features Number sifimcesp, n
values and AUC values are given. AUC values oRE®MARC algorithm are calculated by ten-
fold cross validation

According to the Table 4.4, the number of missfagtures is increases,
naturally the number of instances increases, ak We¢ relationship between
number of missing features and number of instansggven in Figure 4.4.

According to this figure, the complete dataset §det0) has relatively low
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number of instances compared to other datasetsgriphic get stabilized after
dataset3.
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Figure 4.4 Number of missing values over differdaiasets, which contains different number of
missing features

Another important aspect of this experiment islymag the AUC values
over missing features. As mentioned above, the mossing features allowed,
the more instances can be used in the trainingepaag it is expected that the
model learned from more instances will perform dretirediction. However,
when instances with highly missing features arelusetest phase, this noise
will cause decrement in the predictive performarideerefore, it is essential to
choose the dataset which gives highest AUC valubk reiatively high number
of instances. As shown in Figure 4.5, datasetldatdset2 has the same AUC
value, 0.83. According to Table 4.4, dataset2 hghen number of instances
(6871) than datasetl (5620). As a result, in otdébuild the final predictive

model dataset2 will be used in this section.
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Figure 4.5 The distribution of AUC values obtairisdten-fold cross validation over 26
different datasets

As seen in Figure 4.5, the predictive performanéeREMARC varies
between 0.79 and 0.83. Therefore, it is possibkatothat REMARC is a robust

algorithm even with highly missing data.

After the performance optimizing experiment is €pr6871 (dataset2)
patients of 9451 are selected. The EuroSCORE AUGesaare recalculated
again for these 6871 patients (0.77 for additivé lagistic). The ROC curves of
the REMARC and EuroSCORE Additive and Logistic gineen in Figure 4.6.
The AUC value of the REMARC method with TurkoSCOp&tameters is 0.83.
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