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ABSTRACT

IMPROVING THE RESOLUTION OF DIFFRACTION

PATTERNS FROM MANY LOW RESOLUTION

RECORDINGS

Veysel Yücesoy

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Levent Onural

September 2010

Holography attempts to record and reconstruct wave fields. The resolution lim-

itation of the recording equipments causes some problems in the reconstruction

process. An automatic method for the registration and stitching of low resolu-

tion diffraction patterns to form a higher resolution one is proposed. There is no

prior knowledge about the 3D position of the object in the recordings and it is as-

sumed that there is only one particle in the object field. The method uses Wigner

transform, Canny edge detection and Hough transform to register the patterns,

and some additional iterative methods depending on the local variance of the

reconstructed patterns to stitch them. The performance of the overall system

is evaluated against object radius, noise in the original pattern, recording noise

and presence of multiple particles in the object field by computer simulations.

Keywords: Digital Holography, Registration, Stitching, Diffraction Patterns, Su-

perresolution
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ÖZET

BİRC. OK DÜS. ÜK C. ÖZÜNÜRLÜKLÜ KAYIT KULLANARAK

KIRINIM DESENLERİNİN C. ÖZÜNÜRLÜĞÜNÜN

ARTTIRILMASI

Veysel Yücesoy

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Levent Onural

Eylül 2010

Holografi dalga alanlarını kaydetmeye ve geri çalmaya çalışır. Kaydedici

aygıtların çözünürlük sınırları nedeniyle ışık dağılımını geri çalma aşamasında

bazı problemler ortaya çıkmaktadır. Düşük çözünürlükteki kırınım desenlerinin

otomatik olarak yerlerinin belirlenmesini ve birleştirilerek yüksek çözünürlüklü

bir kırınım deseni elde edilmesini amaçlayan bir teknik geliştirilmiştir.

Kayıtlardaki nesnelerin üç boyutlu yerleri hakkında hiçbir ön bilgi bulunma-

makta ve nesnenin tek parçacıktan oluştuğu varsayılmaktadır. Sunulan teknik,

cismin değişik kayıtlardaki yerini bulmak için Wigner dönüşümünü, Canny kenar

bulma yöntemini ve Hough dönüşümünü kullanmakta ve dokuları birleştirmek

için de yerel değişirliği baz alan bazı yinelemeli metotlar içermektedir. Önerilen

tekniğin değişen nesne büyüklüğü, orjinal desende oluşan gürültü, kayıt ederken

oluşan gürültü ve nesne alanında birden fazla parçacık bulunması durumlarına

karşı başarımı bilgisayar benzetimleri ile değerlendirilmiştir.

Anahtar Kelimeler: Sayısal Holografi, Kırınım Desenleri, Süper Çözünürlük

iv



ACKNOWLEDGMENTS

First, I would like to thank to my supervisor Prof.Dr.Levent Onural for his

precious guidance and important suggestions during my graduate study.

I also thank to other graduate students who work on the same subject due

to their contributions as Dr.Gökhan Bora Esmer being the leading one.

I do not know how to thank to my family especially to my mother, father

and uncles who had been encouraging and supporting me from my birth, I owe

and love you all a lot, thanks. You are a gift from my fate.

And of course my dearest friends, whom I really love. I am grateful to Doruk
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Chapter 1

Introduction

Image (video) capturing and displaying is a progressive research area and it is on

the verge of making a transition from 2D to 3D. Nowadays, most of the movie

theaters view 3D movies besides 2D movies and 3D televisions and cameras be-

came commercially available in the last decade. As this transition progresses

(1) consumers will be able to shop from internet while looking at the 3D im-

age of an object from different views, (2) doctors will benefit from 3D views of

magnetic resonance images (MRI) and tomography, (3) teleoperation, especially

telesurgery, will become more efficient by supplying a 3D view of the scene, (4)

artists will make 3D paintings which will open a vast area for modern art and

its up to human imagination to extend this list.

One approach for capturing the 3D view of a scene is stereoscopic imaging

which basically records two 2D images of a scene using two cameras parallel to

each other and separated by the average distance between a human’s eyes. Then

these images are displayed on a screen and filtered by a special pair of glasses

so that each eye of a human will only see the corresponding image. There are

various types of viewing and filtering these images. Some of these systems are:
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1. Traditional approaches view right and left images with a different color and

filter the images accordingly. This approach annoys the human brain and

is not efficient in terms of capturing the color.

2. IMAX Technology reflects the right and left images on the screen by using

two different light sources with perpendicular polarization and filters this

image with a pair of properly polarized glasses.

3. LED TV’s display right and left images one after each other and filters

this image by using a pair of active LCD glasses. Each side of this pair

of glasses can be opaque or transparent according to the synchronization

between the TV and the glasses.

Note that, stereoscopic imaging creates a 3D feeling in a human’s mind by show-

ing the appropriate 2D images to his/her eyes. As a result, it is user dependent

(i.e. it can not be used on a bird without changing the display and filtering

technology) and it does not really capture the 3D data (i.e. you can not see an

object from a different angle if a stereoscopic image is not obtained from that

angle).

An alternative to stereoscopic imaging for 3D capture and display problem

is holography which aims to capture the 3D data of a scene by recording both

the amplitude and the phase properties of the light distribution in the scene at

the aperture. The diffraction pattern caused by the object under a coherent

reference beam (i.e. a laser light source) is stored on a photographic film or on

a digital sensor in order to capture this 3D data. Although the resulting data is

stored in a 2D array, with proper signal processing and equipment the same light

distribution of the scene can be reconstructed as if emenating from the aperture

using which the hologram were recorded.

Holography is different than stereoscopic imaging in many aspects:
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1. It requires special techniques and equipments for capturing a 3D image

instead of two 2D cameras.

2. It reconstructs the real 3D view by reconstructing the physical light distri-

bution instead of deceiving the brain with two 2D images.

3. It does not require any glasses for filtering.

As a result, holography provides a continuous change in the view as a human

changes his/her point of view of the scene, a viewer can focus to different points,

and its performance does not depend on the properties of the visual capturing

system of a viewer. On the other hand, stereoscopic imaging can only provide

discrete changes in the view as a human changes his/her point of view of the scene

(motion parallax problem) if there is not eye tracking and continuous rendering

for a single viewer in the system, a viewer is restricted to the focus point of

the cameras (accommodation problem) and it is highly dependent on the visual

capturing system of the viewer (binocular disparity problem).

An important aspect in the capturing process of holography is the resolution

of the recording equipment. If the resolution of the equipment is low, then image

taken from a single position will not capture all frequency components of the

light distribution. If low frequencies are omitted then most of the information

about the scene is lost and if high frequencies are omitted then sharpness of the

reconstructed 3D image and the range for the angle of effective view is degraded.

If this range is too small then reconstruction of the 3D image is impractical

since it becomes difficult for a viewer to place both of his eyes in the effective

viewing region where small head movements will take him outside this region.

Techniques and equipments which can capture the 3D data in high resolution

should be developed in order to overcome aforementioned problems. Note that

this is a capturing problem which degrades the performance of the display pro-

cess. Reader is directed to [1], [2], [3], [4], [5] and [6] for a detailed review of

display techniques and problems in holography.
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The resolution problem is present in photography, as well, where it is solved by

applying super-resolution techniques. These techniques enhance the resolution

of a photograph by processing and combining totally or partially overlapped

photographs of the same scene with sub-pixel accuracy. A similar method is

available in holography [7], [8], [9], [10], [11] where the constraint of overlapping

the images is not necessary if the light distribution does not change with respect

to time while different 3D images are captured.

In this thesis, our aim is to develop a method for enhancing the resolution of a

hologram by processing and combining different holograms of the same scene. In

order to ease our problem, we assume that the hologram patterns are captured

from the same diffraction field, they are parallel to each other (i.e. recording

equipment is not tilted between recordings) and there is only one object in the

scene. We do not make any assumptions nor have any prior knowledge about

the 3D positions of the recording equipment. Wigner transform, Canny edge

detection and Hough transform are used in registration process. Local variance

is used as the sharpness parameter during the stitching process. Stitching is

the part in which the preregistered recordings are combined to form a higher

resolution pattern. The aim of the stitching is to involve all possible information

coming from different low resolution recordings into a higher resolution grid.

Sampling and interpolation problems are solved within the requirements of this

thesis and these are explained in the relevant sections. The proposed method

is evaluated by simulations under different conditions such as noisy recordings,

different sized objects and with scenes involving multiple objects (although we

assumed that there is a single object).

Rest of the thesis is organized as follows: Chapter 2 is about superresolution

techniques in general and how it is applicable to digital holography. Chapter 3

reveals the preliminaries about the optical properties of the diffraction patterns

and their mathematical representations. Chapter 4 restates the basic definitions
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and properties of the Wigner transform and explaines how it is applicable to

diffraction patterns. This chapter also gives basic information about edge detec-

tion and Hough transform. In Chapter 5, all the steps of the registration and

stitching processes are explained and all the relevant information about their

mechanism is stated. Chapter 6 contains the simulation results of the proposed

method under various scenarios. Finally, Chapter 7 concludes the thesis and

gives some brief ideas about possible future work.
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Chapter 2

Superresolution - Synthetic

Aperture Techniques in Digital

Holography

Synthetic aperture refers to a collection of techniques which aim to combine a

number of signals in an appropriate way to form a high resolution signal. It

was first proposed by Sir Martin Ryle and co-workers from the Radio Astronomy

Group at Cambridge University [12] in order to use in radio astronomy. Sir Mar-

tin Ryle and Tony Hewish jointly received a Nobel Prize for their contributions

to radio interferometry [13]. This technique formed a basis to other fields such as

synthetic aperture radar (SAR) [14], synthetic aperture sonar [15] and synthetic

aperture magnetometry [16].

The general idea behind the superresolution is to smartly combine the infor-

mation from a number of low resolution recordings to have a final high resolution

recording. It may also be possible to make this upsampling only with one low

resolution recording. This is called interpolation. Interpolation is the smart way
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of estimating the mid values from the recorded points. It produces artificial val-

ues depending on the known values of the function. However, superresolution

tries to make this upsampling by making use of the real data coming from other

low resolution recordings. Superresolution is used to enhance the resolution of

the imaging sensor when it does not have the desired resolution.

Superresolution is applicable to both videos and still images. It is generally

used with a motion detection algorithm to register the low resolution recordings.

The registration process is important in superresolution because the sharpness of

the final high resolution recording basically depends on the position estimation

accuracy of the features in the low resolution recordings. In the stitching process,

the registered low resolution recordings are combined with a suitable merging

algorithm. The merging algorithm can both be in frequency or time(space)

domain depending on the purpose of the whole algorithm and the features that

are extracted from low resolution recordings. Also some iterative techniques

may be used in stitching process in order to correct any possible errors caused

by registration. The sharpness of the final high resolution image is the basic

property of interest which is desired to be maximised at the end of the entire

process.

In daily life photography or video recording, overlapping recordings are re-

quired for superresolution. The low resolution recordings can be nearly totally

overlapped if the aim of superresolution is to enhance only the resolution of the

low resolution recording. In this case, subpixel shifts of the same data give nec-

essary information to enhance the resolution. The low resolution recordings can

be partially overlapped if the aim is also to enlarge the recorded object field in

the final high resolution image. In this case, motion detection is crucial to find

the same features in different recordings in order to be able to register the low

resolution recordings.
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It is also possible to use this technique in digital holography in order to im-

prove the resolution and the viewing angle in reconstruction process. The idea

is a bit different than it is in daily life photography. There is no need for over-

lapped recordings in order to register them. Since in digital holography, the wave

field generated by the diffraction of the light from the object field is recorded,

it has to be consistant with all of the recordings unless the wavefield is changed

during recording period. So it is possible to register and stitch non-overlapping

recordings in digital holography in order to enhance the final resolution (In this

pharagraph overlapping is used to express two different recordings of the same

scene having some parts in common. This definition is used from a photography

point of view. From holography point of view, any recorded patterns of the same

light distribution can be assumed to overlap since they carry consistant infor-

mation about the object field). This enhancement also yields an enhancement

in the viewing angle in the reconstruction process. There has been some major

contributions to this field in digital holography. The following subsections will

give basic information about these techniques from two basic categories: (i) the

capture is done by a single camera where the object wave field is moved across the

camera, (ii) the capture is done by a number of cameras simultaneously where

the object wave field is stable.

2.1 Single Camera Approaches

Massig has proposed a simple technique in 2002 [7]. In his method, a camera

is moved along a plane and several captures are taken. The plane in which the

camera is moved is a perpendicular plane to the optical axis of the system formed

by object and the camera in his technique. Massig has enlarged the camera to

have a larger angle of the object beam. This will yield an increased perspective in

the reconstruction. His method is for off-axis lensless Fourier digital holography

with a spherical referance beam [7]. The advantage of this setup is that object
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does not have to be necessarily moved while the camera is moved to capture

different patterns.

A successful way for synthetic aperture was proposed by Binet et al. in 2002

[8]. He used a static camera placed at the far field [8]. The object is rotated by

small angles while the camera remains still and captures the patterns. The angles

should be small in order not to lose the correlation between speckle patterns. If

the correlation is lost then the registration and stitching may become impossible

between successive captures. The major disadvantage of this method is this

correlation issue since a large number of patterns with a small angle difference

is required to increase the aperture.

A modification to Binet’s method was proposed in 2007 by Hennelly [9].

Hennelly placed a mirror in the path of the object beam in order to direct different

parts of the object beam to the camera to get rid of the decorrelation of the

speckle patterns. Since in Hennelly’s method the mirror rotates instead of the

object itself, it is possible to overcome the speckle by decorrelation. Due to

additional mirror the stitching is required to be done both in the spatial frequency

domain and in the space domain.

Di et al. proposed a different method to build a 2D hologram from a linear

CCD [10]. They used a precision translational stage to move the linear CCD

in y direction. They did not use any type of a post analysis to register the

captured patterns. They used a computer to control the precision translational

stage and captured 5000 different patterns with the linear CCD. At the end of

capture process which lasts for 51s, they orderly take all the captured patterns

together to form a 5000 × 5000 pixel digital hologram [10]. They used a lensless

Fourier transform recording method. The disadvantage of this method is the

total capture time which only allows the capture of static fields.
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2.2 Multiple Camera Approaches

A new method related to multiple camera approaches was proposed by Kreis and

Schlüter [11] in 2007. They use a spherial reference beam and Fourier holography.

They have showed that the PSF of two camera system is equivalent to the PSF

of a single camera system multiplied by a cosine whose frequency is dependent on

the seperation of the cameras [11]. Authors have proposed two different methods

to reconstruct the object field [11]. In both methods it is very important to know

relative positions of the CCDs. The position is determined by recording a circular

fringe pattern on both CCDs and making a least squares fit on these patterns to

find the relative positions as explained in [11].
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Chapter 3

Preliminaries About Diffraction

Patterns

3.1 Optics Basics

Fourier optics is an approach in which the light is assumed to be a composition

of harmonic functions. Such an approach is especially useful when the optical

system is linear and shift invariant. This approach is simply the same as it is in

classical signal processing. In classical signal processing, to be able to calculate

the response of a linear and shift invariant system to an arbitrary input f(t),

the input function is characterized as a weighted sum (integral) of harmonic

functions (called as Fourier transform of the input signal F (ω)) and the linear

and shift invariant system is characterized by its transfer function H(ω). The

simple relation between the input signal f(t) and the output signal g(t) after

passing the linear system H(ω) is governed by

F (ω) =

∫ ∞

−∞

f(t) exp(−jωt)dt = F{f(t)} (3.1)
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H(ω) =

∫ ∞

−∞

h(t) exp(−jωt)dt = F{h(t)} (3.2)

G(ω) =

∫ ∞

−∞

g(t) exp(−jωt)dt = F{g(t)} (3.3)

g(t) = f(t) ∗ h(t) (3.4)

G(ω) = F (ω)H(ω) (3.5)

As it is seen from Equations 3.4 and 3.5, the convolution relation between the

input and output functions of time becomes a simple relation of multiplication

in the Fourier domain. This simple relationship holds for any higher dimensional

case, as well.

In wave optics, propagating light waves are four dimensional signals which

have to be a solution to the wave equation

∇2u− 1

c2
∂2u

∂t2
= 0 (3.6)

where u is the propagating wave, c is the speed of light in vacuum and ∇2 is the

Laplacian operator given as

∇2 = (∂2/∂x2) + (∂2/∂y2) + (∂2/∂z2). (3.7)

.

3.1.1 Plane Wave

The plane wave is one of the elementary waves and has the complex amplitude

U(r) = A exp(jkT r) (3.8)

where A is the complex constant called the complex envelope and k = (kx, ky, kz)

is called the wavevector where the units of kx, ky, kz is radians/meter. The wave-

fronts (i.e. equiphase lines) of this wave obeys an equation describing parallel
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planes perpendicular to the wavevector k. These planes are seperated by a dis-

tance λ = 2π/k hence

λ =
c

ν
(3.9)

is called the wavelength. The plane wave has a constant intensity everywhere

in space so it carries infinite power. This wave is an idealization since it exists

everywhere and for every time instant. However, as it is in 1D case, this ideal

harmonic wave family forms a basis for all other waves which means it is possible

to write any wave function as a weighted sum of different plane waves (Fourier

transform).

3.1.2 Complex Wavefunction and Monochromatic Waves

A valid complex monochromatic field is represented by Equation 3.10 which is

consist of propagating waves.

U(r) =

∫

k2x+k2y≤k

A(k) exp(jkT r)dk (3.10)

where

k = [kx, ky, kz]
T

kz =
√

k2 − k2x − k2y
(3.11)

Hence, it is also possible to write complex monochromatic wave function as

described in Equation 3.12 since it is convenient to show real functions in terms

of complex functions.

U(r, t) =

∫

A(k) exp[j(kT r+ 2πνt)]dk (3.12)

By using Equation 3.10 it is possible to rewrite Equation 3.12 as

U(r, t) = U(r) exp(j2πνt) (3.13)
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Since U(r) is a position dependent complex field it is convenient to write it in

the following form

U(r) = a(r) exp[jφ(r)] (3.14)

Hence, complex monochromatic wavefunction is U(r, t) = a(r) exp[jφ(r)] exp[j2πνt].

So it is also possible to write a valid monochromatic wave function as

u(r, t) = Re{U(r, t)} = a(r) cos[φ(r) + j2πνt] (3.15)

where

a(r) = amplitude

φ(r) = phase

ν = frequency (cycles/s or Hz)

ω = 2πν = angularfrequency (radians/s)

(3.16)

and U(r) satisfies the Equation 3.10.

The amplitude and the phase may be position dependent, however, the wave-

function is a harmonic function of time with frequency ν everywhere.

3.1.3 Transfer Function of Free Space

In order to be able to calculate the diffraction pattern at a distance d from the

object plane, we need to have an equation governing the propagation of light

in free space. Let us assume two hypothetical parallel planes with d distance

between them. Furthermore, let us assume that one of the planes is at z = 0

position and the other is at z = d position. We need to examine the propagation

of a monochromatic light (optical wave) of wavelength λ and complex amplitude

U(x, y, z) in free space. Let us call the plane at z = 0 the input plane and

the plane at z = d the output plane of the total system. From classical signal

processing point of view, there should be a relation between the output and input

of this system which is called as the transfer function of the free space. To

be able to calculate it, we first need to define the input and output of the system.
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Let us call f(x, y) = U(x, y, 0) the input and g(x, y) = U(x, y, d) the output of

the system.

Again referring to classical signal processing, if the system is linear and shift

invariant, then its input-output relationship can be expressed by its impulse re-

sponse. Since the complex amplitude has to obey the linear wave equation given

by Equation 3.6 at every position and time, the system is then immediately a

linear system. Shift invariency is also satisfied by the system because since it

is freespace it is by nature invarience to the displacement of coordinate system.

Hence, it is enough to find the impulse response of the system h(x, y) to charac-

terize the input-output relation of free space or equivalently its Fourier transform

which is also called as the transfer function of the system, H(νx, νy).

As explained for one dimensional case, in Equations 3.4 and 3.5 the transfer

function of the system is the factor by which a harmonic input function should

be multiplied to yield the output harmonic function of the same frequncy. So it

is possible to write this relation also in 2D case as

G(νx, νy) = H(νx, νy)F (νx, νy) (3.17)

So, the transfer function H(νx, νy) is simply the ratio of the input and output

functions in the frequency domain.

Let us consider a harmonic function input of f(x, y) = A exp[j2π(νxx+νyy)].

This input function corresponds to a plane wave of complex amplitude

U(x, y, z) = A exp[j(kxx+ kyy + kzz)] (3.18)

everywhere in space where kx = 2πνx and ky = 2πνy. Hence we can write input

and output functions as

f(x, y) = U(x, y, 0) = A exp[j(kxx+ kyy)] (3.19)
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Figure 3.1: The diagram explains the linear system formed by the free space

g(x, y) = U(x, y, d) = A exp[j(kxx+ kyy + kzd)] (3.20)

and the ratio of input-output as

g(x, y)

f(x, y)
=
U(x, y, d)

U(x, y, 0)
= A exp[jkzd] (3.21)

From equation 3.18

kz = (k2 − k2x − k2y)1/2 = 2π

(

1

λ2
− ν2x − ν2y

)1/2

(3.22)

Now, we can rewrite the ratio given in equation 3.21 as

H(νx, νy) = exp

[

j2π

(

1

λ2
− ν2x − ν2y

)1/2

d

]

(3.23)

The Equation 3.23 is called the transfer function of the free space. This

transfer function governs all the propagation of monochromatic light waves in

free space.

3.1.4 Fresnel Approximation of the Transfer Function

If we have a bandlimited input function f(x, y) as it only contains spatial fre-

quencies that are smaller then the cutoff frequncy 1/λ so that ν2x + ν2y << 1/λ2,
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it may be possible to simplify the equation 3.23 further. Then the propagat-

ing wave is a paraxial wave which makes small angles with the optical axis.

These angles are defined as sin(θx) = λνx and sin(θy) = λνy. Since the wave is

a paraxial wave and it makes small angles with the optical axis, the assumption

sin(x) = x is valid for all these angles. So it is possible to rewrite the equations

above with the given assumption.

sin(θx) → θx = λνx

sin(θy) → θy = λνy

(3.24)

Then the phase factor in Equation 3.23 can be rewritten by a Taylor series

expansion as

2π
(

1
λ2 − ν2x − ν2y

)1/2
d = 2π d

λ
(1− θ2)1/2

= 2π d
λ

(

1− θ2

2
+Higher Order Terms

) (3.25)

where θ2 = λ2(ν2x + ν2y).

Neglecting the third and all other higher order terms, the equation 3.23 sim-

plifies to

H(νx, νy) = H0 exp[−jπλd(ν2x + ν2y)] (3.26)

where H0 = exp
(

j 2πd
λ

)

.

Equation 3.26 shows the Fresnel approximated transfer function of the free

space. A generally accepted validity condition for this approximation is that the

third term in Equation 3.25 should stay small.

At this point, it is defined that the output wave of the free space propagation

is calculated as the inverse Fourier transform of the multiplication of Fourier

transform of the input wave and the Fresnel transfer function of the free space

given by Equation 3.23 under the validity condition.
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3.2 Diffraction of Light

When an optical wave is transmitted through a mask, the intensity of the wave

after passing this mask is called the diffraction pattern. This mask can be simply

an aperture function (i.e. a little slit on an opaque screen) or any kind of complex

function (i.e. a mask which alters both the amplitude and the phase of the passing

wave). For the sake of simplicity, we will concantrate on the aperture functions.

If the ray optics postulates were enough to characterize the behaviour of the

light, then the diffraction pattern should be a perfect shadow of the aperture.

However, due to wave nature of the light, the diffraction pattern is a function

of aperture function, wavelength of the light and distance to the aperture. The

simplest idea to calculate the diffraction pattern after an aperture states that the

light distribution just after the aperture is completely masked by the aperture

shape. More mathematically if we have an aperture function of the type

p(x, y) =







1 , inside the aperture

0 , outside the aperture







(3.27)

and if we assume that the U(x, y) and f(x, y) are the complex amplitude of the

wave just to the left and right of the opaque screen then according to this simple

idea

f(x, y) = U(x, y)p(x, y) (3.28)

as shown in the Figure 3.2. If we call g(x, y) as the output complex amplitude of

the system, it is possible to calculate it as described by Equation 3.26 under the

validity condition. Hence, g(x, y) is known as the Fresnel diffraction pattern, as

free space propagation is held by Fresnel approximation.

If we make use of the inverse Fourier relation between input and output

functions and the relation between the aperture function and input function given

by the Equation 3.28 we can write g(x, y) at a distance d when the incident wave
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Figure 3.2: Aperture function (i.e. object function). The generation details of
this figure is given in Appendix C. The vertical axis is y-axis going from 1 to
1024 from top to down and horizontal axis is x-axis going from 1 to 1024 from
left to right as shown in Appendix A. The dynamic range of the pattern is scaled
to interval [0 255], 255 being the brightest pixel in the figure. Black lines are
used to differentiate the figure from the rest of the white sheet, they are not a
part of original figure.
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is a plane wave, as

g(x, y) =
1

jλd

∫ ∫ ∞

−∞

p(x′, y′) exp

[

−jπ (x− x
′)2 + (y − y′)2
λd

]

dx′dy′ (3.29)

It makes the interpretation of the equation easier to normalise all distances with

(λd)1/2 as a unit of distance so applying X = x/(λd)1/2 and X ′ = x′/(λd)1/2 the

above equation simplifies to

g(X, Y ) = −j
∫ ∫ ∞

−∞

p(X ′, Y ′) exp{−jπ[(X−X ′)2+(Y −Y ′)2]}dX ′dY ′ (3.30)

This integral is simply a convolution of p(X, Y ) and exp[−jπ(X2 + Y 2)] and

this equation governs all the relations of the diffraction patterns and the object

functions throughout this thesis statement. Figure 3.3 shows a diffraction pattern

calculated by the discrete methods explained in Appendix D. The object function

(aperture function) is generated by the methods explained in Appendix C with

the parameters N = M = 1024, Xc = Yc = 512 and r = 4.5. Then the methods

in Appendix D are used with parameters λ = 600nm, X = 10λ, N = 1024 and

Z = NX2/λ. The real part of the resulting matrix is shown in Figure 3.3.
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Figure 3.3: An example of a diffraction pattern; real part is plotted. This figure
is (1024×1024) in size. The vertical axis is n-axis going from 1 to 1024 from top
to down and horizontal axis is m-axis going from 1 to 1024 from left to right as
shown in Appendix A. The dynamic range of the pattern is scaled to interval [0
255], 255 being the brightest pixel in the figure.
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Chapter 4

Wigner Transform

Wigner transform is a time-frequency method in signal processing. It gives infor-

mation about the time variation of the frequency components of a signal. It was

first proposed by Eugene Wigner as quantum corrections to classical statistical

mechanics in 1932 by the name Wigner quasi-probability distribution (also

called the Wigner function or the Wigner-Ville distribution) [17]. It is

then understood that it is also a good analysis tool in time-frequency problems.

When compared to short time Fourier transform, Wigner transform can yield

better sharpness in some cases and it has the most of the properties that the

other time-frequency techniques have.

Since discrete Wigner transform is used throughout this thesis, it may be

better to concentrate on the basic properties of the discrete transform.

A diffraction pattern is a 2D space signal within which frequency information

is stored. Hence a joint space-frequency analysis of such a signal is more likely

to have more information then a single global frequency analysis. This relation

is the same in time varying signals which carry frequency content because by the

help of a joint time-frequency analysis it is possible to gain information about

the time varying frequency content. Hence, a Wigner transform of a diffraction
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pattern is a good candidate to gain information about the space varying frequency

content of the signal which is closely related with the position parameters of the

pattern itself as it will be explained in following subsections. [18]

4.1 Properties of the Discrete Wigner Distribu-

tion

Detailed information about the Wigner transform can be found in the literature

[18], [19], [20], [21] and [22]. However, the basic definitions and properties of

the discrete transform is restated here to ease the understanding of the following

sections.

Basic Definitions:

1. The general continuous formulation of the Wigner transform of two time

signals f(t) and g(t)

Wf,g(t, ω) =

∫ ∞

−∞

f(t+
τ

2
) g∗(t− τ

2
) exp(−jωτ) dτ (4.1)

where t, ω and τ are continuous. Auto Wigner transform of a continuous

signal f(t) is the same when g∗(t) is replaced by f ∗(t).

2. The general discrete formulation of the cross Wigner transform of two time

signals f(n) and g(n)

Wf,g(n, θ) = 2
∞
∑

k=−∞

exp(−j2kθ) f(n+ k) g∗(n− k) (4.2)

where n and k are discrete and θ is continuous. Auto Wigner transform of

a discrete signal f(n) is the same when g∗(n) is replaced by f ∗(n).
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Basic Properties (of the discrete auto wigner distribution) :

1. The function is periodic with respect to θ with a period of π.

Wf (n, θ) = Wf (n, θ + π), ∀θ (4.3)

2. The auto Wigner transform Wf (n, θ) is real for any signal f(n).

3. If the signal f(n) is shifted in space by n0,

i.e.

g(n) = f(n− n0) (4.4)

then the corresponding discrete-space Wigner distribution is also shifted in

space by n0.

Wg(n, θ) = Wf (n− n0, θ) (4.5)

4. The following sum formula holds:

Wf+g(n, θ) = Wf (n, θ) +Wg(n, θ) + 2Re{Wf,g(n, θ)} (4.6)

5. If f(n) is a finite-duration signal, i.e.,

f(n) = 0, n < na or n > nb (4.7)

then

Wf (n, θ) = 0, n < na or n > nb (4.8)

6. Since the discrete space Wigner transform is periodic with respect to fre-

quency variable with a period π, frequency components beyond π interval

causes aliasing when this space-frequency transform is applied. If the sig-

nal has zero energy outside π interval in frequency domain then aliasing is

avoided. [18]
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4.2 Wigner Analysis of Diffraction Patterns

4.2.1 1D Diffraction Patterns

For a 2D diffraction pattern the relation between the diffraction pattern and

the object plane is governed by Equation 3.30. To start with a simpler case,

the relation between the diffraction pattern and the object plane for 1D case is

governed by Equation 4.9.

ψz(x) = [1− a(x)] ∗ hz(x) (4.9)

where

hz(x) =
1

(jλz)
exp

[

j
( π

λz
x2 − π

4

)]

(4.10)

If we assume that the object function a(x) is real valued (true for all cases

throughout this thesis) and take the intensity by eliminating negligable cross

term the equation simplifies to

Iz(x) = 1− a(x) ∗ g(x) (4.11)

where

g(x) = 2Re{hz(x)} =
2

(λz)1/2
cos(

π

λz
x2 − π

4
) (4.12)

[18]

TheWigner transform of a function gives information about the instantaneous

frequency curve on a space-frequency domain with some possible artifacts due

to nonlinear nature of Wigner transform. As a simple example let us consider a

chirp function

f(t) = exp (jαt2/2) (4.13)

and its Wigner transform is given by

Wf (t, w) = 2πδ(w − αt) (4.14)
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This shows that the Wigner transform of a chirp function is a line impulse.

Since the above kernel g(x) is also a chirp function (furthermore it is a real

valued chirp), it is possible to write this kernel in form of complex exponentials

and then apply the summation property of the Wigner transform to write the

Wigner transform of the kernel g(x) as follows:

Wg(x, w) =
2π

λz
δ

(

w − 2π

λz
x

)

+
2π

λz
δ

(

w +
2π

λz
x

)

+
2
√
2

(λz)1/2
cos

(

2π

λz
x2 − λz

2π
w2 − π

4

)

(4.15)

It is important to notice that the first two terms in Equation 4.15 are the

desired line impulses over the lines

w = [(2π)/(λz)]x (4.16)

w = −[(2π)/(λz)]x (4.17)

and the third term is called as the cross term which occurs due to the nonlinear

nature of the Wigner transform. This term is negligible due to its low amplitude

when compared to first two terms.

Now let us assume the simplest possible object plane configuration as a(x) =

δ(x−x0) and also use a simpler version of the intensity function shown in Equa-

tion 4.11 as

J(x) = 1− Iz(x) (4.18)

Hence it is now easy to calculate the Wigner transform of this diffraction function

by simply making use of convolution property of the Wigner transform,

Wj(x, w) =

∫ ∞

−∞

Wa(α,w)Wg(x− α,w)dα (4.19)

Since Wa(x, w) = 2δ(x − x0) due to simple assumption of the object plane

function and Wg(x, w) is given by Equation 4.15 then
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Wj(x, w) = 2Wg(x− x0, w) (4.20)

Equation 4.20 shows that the Wigner transform of a simple point object is a

shifted copy of the Wigner transform of the chirp kernel function given by Equa-

tion 4.15. As explained before, if the cross term (third term in Equation 4.15

which has smaller amplitude then other two terms) is neglected, the graphical

shape of the remaining terms given by Equations 4.16, 4.17 is two intersecting

lines which intersect each other at the original x location of the object particle.

Furthermore, the slopes of these lines gives a brief information about the distance

between the object plane and the hologram plane. If the wavelength λ is known

then the distance can be calculated as

z =
2π

λm
(4.21)

where m is the slope of the intersecting lines in Wigner transform domain.

4.2.2 2D Diffraction Patterns

It is important to notice that Wigner transform of a 1D function yields a 2D

function in (x, ω) domain. Hence, it is easy to conclude that Wigner transform

of a 2D function yields a 4D function which is hard to visualize and interpret. In

order to handle these difficulties it is possible to apply Wigner transform on two

different 1D slices of a 2D function (i.e. a vertical and a horizontal line segment

from 2D diffraction pattern). The Wigner transform of the column (i.e. vertical

line) function will give information about both depth and y-position of the object

function whereas the Wigner transform of the row (i.e. horizontal line) function

will give information about both depth and x-position of the object function.

Let us assume that object function is a(x, y) and Wigner transform of a(x0, y) is

Wax(y, ω) and Wigner transform of a(x, y0) is Way(x, ω).
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Now, if we assume an impulsive object function i.e. a(x, y) = δ(x−xa, y−ya)

for any xa and ya then the 2D intensity function can be written as

Iz(x, y) = 1− a(x, y) ∗ g(x, y) (4.22)

as it is written in Equation 4.11 where g(x, y) is the 2D kernel function as ex-

plained in Equation 4.12. It was explained that the kernel function is a real

valued chirp function and the Wigner transform of a 1D chirp is two interect-

ing lines on (x, w) domain where x is the space variable and ω is the frequency

variable.

Let us call J(x, y) the constant term adjusted intensity function as it is written

in Equation 4.18.

So, the Wigner transform of J(xa, y) is

WJx(y, w) = Wg(y − ya, w) (4.23)

and the Wigner transform of J(x, ya) is

WJy(x, w) = Wg(x− xa, w) (4.24)

where Wg(x, w) is given by Equation 4.15.

Hence the analysis of these Wigner transforms will give enough information

about the (x, y, z) locations of the impulsive object function in each diffraction

pattern.

4.2.3 Analysis of Wigner Transforms

Up to this point, a theoretical understanding of the Wigner transform is explained

by the help of works done in literature. It is clear from the literature that

Wigner transform is a good candidate to extract 3D position of a 2D diffraction
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pattern by analyzing 1D slices of the diffraction pattern. After understanding

this feature of the Wigner transforn it is also important to develop some image

processing tools to be able to extract this 3D position information from any

diffraction pattern. The following sections explain an image processing method

to analyze Wigner transforms of the diffraction patterns. Figure 4.1 shows a

Wigner transform, as explained in Appendix E, of a 1D slice of a 2D diffraction

pattern generated from an impulsive object function defined in Appendix C with

the parameters N = M = 1024, Xc = Yc = 512 and r = 4.5 as it is explained

in Appendix D with the parameters λ = 600nm, X = 10λ, N = 1024 and

Z = NX2/λ. The middle row (i.e. n = 512 and ∀m,m ∈ [1, 1024] from Figure

3.3) of the 2D diffraction pattern is used to generate Wigner transform.

The intersecting lines are clearly visible in Figure 4.1. The intersection point

of the lines gives the estimate x or y position of the impulsive object function and

the slope of the lines are related with the estimate z position of the diffraction

pattern as indicated by Equations 4.16 or 4.17.

In order to get this information from Wigner transforms, it is required to

computationally analyze these Wigner transform patterns to extract intersection

point location and slopes of the lines seen in Figure 4.1. To emphasize the lines in

the Wigner transform and to get rid of the cross term problem in the transform

domain, edge detection as explained in details in Appendix F is implemented

on the Wigner transform patterns. After that the resulting binary pattern is

analyzed by the Hough transform given in Appendix G to calculate the slopes of

the lines and the intersection point.

Edge Detection for Line Detection

To be able to automatically register the diffraction patterns, an automated

Wigner transform analyzer is required. The first problem with the Wigner
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Figure 4.1: Wigner transform a chirp function. The horizantal axis is the fre-
quency variable θ = πp/N where integer p ∈ [−511, 512]. The vertical axis is
m-axis going from 1 to 1024 from top to down and horizontal axis is p-axis going
from -511 to 512 from left to right as shown in Appendix A. The dynamic range
of the pattern is scaled to interval [0 255], 255 being the brightest pixel in the
figure.
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transform is the cross term problem. For some object function and under noisy

environments it is possible to have strong cross terms which can become indis-

tinguishable with the desired Wigner lines when compared simply according to

their gray-level pixel values. So a method which can perform in a more robust

manner under strong cross term interferences should be implemented. When the

nature of the white lines seen in Figure 4.1 is compared to the cross term effect,

it is clear that the white lines form edges with the remaining pattern due to

high contrast ratio. Also we know that Hough transform is a good candidate

to analyze these lines in a given pattern to find their slopes. Hough transform

is also more suitable to binary patterns. Hence, it is better to use a method

to distinguish these lines from the rest of the pattern (especially from the cross

term effect); this will yield a binary output in which the lines are emphasized

and are analyzed by Hough transform in an easier way due to binary nature.

An edge detection algorithm is used to extract these lines from the rest of

the pattern. The binary output of this edge detector is shown in Figure 4.2.

Some different edge detection methods are tried and finally Canny edge detection

algorithm as explained in Appendix F is used to extract the line information from

Wigner transform functions. The input of this detector is the pattern shown in

Figure 4.1. The reason to select Canny edge detector is the ability of this detector

to detect weak edges which are connected to strong edges. The thresholds for

Canny edge detection was selected as [0.1 0.5] and details about these thresholds

are given in Appendix F. By the help of this ability of this detector, it became

possible to detect these Wigner lines under some stronger cross term conditions

and noisy environments. Hence, as it was aimed, a binary pattern with the lines

having the highest contrast according to the rest of the pattern is generated as

seen in Figure 4.2.
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Figure 4.2: The resulting binary image when Canny edge detection is applied to
the Figure 4.1
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Hough Transform to Detect Lines

Hough transform is a 2D-to-2D mapping in which the lines in the beginning

pattern having the same slope are mapped to the same point in the resulting

pattern to make that point brighter than the neighboring points in a grayscale

transform environment (further details are given in Appendix G). Since it is

clear that in a Wigner transform of the diffraction pattern generated from an

impulsive object function as explained in Appendices C and D and Subsection

4.2.3 there will be two strong lines having negative slopes as given by Equations

4.16 and 4.17 as shown in Figure 4.2, it is legitimate to search for two peaks

of the Hough transform of the Wigner transform function. By the help of such

information, it is possible to detect some parts of the Wigner lines in the original

Wigner transform patterns. This result is shown in Figure 4.3.

As seen in Figure 4.3, the strong edges which are formed between the Wigner

lines and the rest of the pattern and which are detected by Canny edge detector

as shown in Figure 4.2 are easily recognized by the Hough transform. The slope

information given in Equations 4.16 and 4.17 is the same as the slope of the

lines detected by the Hough transform because the lines detected by Hough

transform are the edges of the real Wigner lines. So depth information which is

closely related to slope of these Wigner lines as given by Equation 4.21 remains

almost the same. However, intersection point of the Wigner lines which is closely

related to the (x, y) position of the object function, may change within a small

neighborhood. To get rid of this error, an iterative method is used as explained

in registering process in Chapter 5.
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Figure 4.3: The detected lines by edge detection and Hough transform are shown
on the initial Wigner transform pattern.

34



Chapter 5

Registration and Stitching

We have already explained the basics of optical diffraction in Chapter 3 and some

basic properties of the time-frequency analysis in Chapter 4. This chapter will be

about how to make use of these facts to be able to extract the relevant position

information from a diffraction pattern by the help of Wigner transform, how to

make these estimates more accurate by some iterative methods and finally how

to merge a number of these diffraction patterns with a suitable interpolation

method in order to have one higher resolution diffraction pattern.

5.1 Registration of Digital Holograms

The aim of this study is to merge some number of low resolution diffraction

patterns in order to form a higher resolution diffraction pattern. The classical

method in holography is to record a single hologram and then to try to recon-

struct it. There is a number of new methods which states that if it is possible

to form a high resolution diffraction pattern from some low resolution patterns

which are recorded from different 3D positions with respect to object field, it
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Figure 5.1: The way by which the low resolution diffraction patterns are recorded
(or calculated for simulation purposes)

may be possible to have larger viewing angles in the reconstruction process. The

idea of low resolution pattern recording is shown in Figure 5.1.

To simplify the problem of registration, we simply dealt with the diffraction

patterns which are recorded on planes which are parallel to the object field plane

as shown in Figure 5.1. Both (x, y) locations and depth of each recording is

different and unknown. The patterns shown in Figure 5.2 are some examples

of low resolution diffraction patterns recorded (or calculated for simulation pur-

poses) on a parallel plane to the object field plane when the aperture function

was simply a circular slit such that

p(x, y) =







0 , (x− xc)2 + (y − yc)2 ≤ r2

1 , otherwise







(5.1)

where (xc, yc) is the center of the circular aperture on the object field plane, r is

the radius of the aperture and x, y are integers satisfying x ∈ [1, N ], y ∈ [1,M ]
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Figure 5.2: These are some different diffraction patterns generated by computer
for different 3D positions with respect to the same object field shown in Figure
3.2. The vertical axis for all patterns is n-axis going from 1 to 512 from top
to down and horizontal axis is m-axis going from 1 to 512 from left to right as
shown in Appendix A. The dynamic range of the pattern is scaled to interval [0
255], 255 being the brightest pixel in the figure. The generation details of these
patterns are given in Appendix D. The parameters are λ = 600nm, X = 10λ
and Z = kNX2/λ where k = [1.0, 0.9, 0.8] respectively. The input pattern is
generated by using Appendix C with size 2048× 2048 object being in the center
with radius r = 4.5 and a different 512× 512 section of each diffraction pattern
is grabbed and shown in this figure. The details of this low resolution pattern
grabbing from a higher resolution one are explained in text where necessary.
These figures are only for example purpose, no further operation is conducted on
these.

for a (N × M) initial object matrix. An example of the aperture function is

shown in Figure 3.2.

How to calculate the wave distribution just after the aperture plane if the

aperture is illuminated with a plane wave propagating in the z-direction is already

explained in Chapter 3. Patterns in Figure 5.2 are computed using details in

Appendix D with an object pattern given by Equation 5.1 and discrete methods

described in Appendix C. The wavelength of the propagating plane wave, λ, is

600nm and the distance, d, between the recording plane and the object plane

is d = NX2/λ where N = 2048 is the size of the object pattern and X = 10λ

is the sampling period of the recording sensor. The center of the object is at

(Yc, Xc) = (1024, 1024) and the radius of the object is r = 4.5 pixels. The

registration process is composed of the estimation of the position parameters

(x, y, z)est from a given diffraction pattern without any prior knowledge about

the position of the sensor which have recorded the pattern (or without any prior
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knowledge about the real parameter which are used to calculate it in a computer

environment). The registration process may also include some iterative methods

to be able to make (x, y, z)est more accurate and call them (x, y, z)finer to make

errors as small as possible during the stitching process.

5.1.1 Wigner Analysis

In Chapter 4, the meaning of the Wigner transform of a 1D diffraction pattern

is explained in detail. It is also stated that it is possible to get the same kind

of information from the Wigner transform of 1D slices from a 2D diffraction

pattern. If these 1D slices are chosen in a legitimate way, it is possible to get

(x, y, z)est just by applying the Wigner transform to two perpendicular slices of

the 2D pattern, i.e. a row and a column slice. To begin with, there is only a

2D diffraction pattern in hand as shown in Figure 5.3. So the first step to start

analysis is to apply a Wigner transform to 1D slices of this pattern. To suppress

the effect of the cross term, it is useful to get slices which pass through the center

of the aperture if possible. So for this specific example, it is legitimate to get the

slices shown by the black lines in Figure 5.4.

In Figures 5.7 and 5.6, the result of the Wigner transform of the slices given

in Figure 5.4 are shown. Arms of the Wigner transform as explained in Chapter

4 is clearly visible in this figure. One point to note is that the slope of the arms

should be the same in both figures since the slope is the depth related parameter

and the depth remains the same within the same diffraction pattern since tilts

are avoided. However, intersection point of the white Wigner arms varies since

the Wigner transform of the horizontal slice carries information about the x

location of the pattern whereas the Wigner transform of the vertical slice carries

information about the y location of the pattern.
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Figure 5.3: This is an example diffraction pattern. This figure obeys the details
explained in Appendix A. Its size is (512×512). The vertical axis is n-axis going
from 1 to 512 from top to down and horizontal axis is m-axis going from 1 to 512
from left to right as shown in Appendix A. The dynamic range of the pattern is
scaled to interval [0 255], 255 being the brightest pixel in the figure.
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Figure 5.4: The horizontal and vertical slices of the pattern which are used to
form Wigner transforms in the following parts. This figure obeys the details
explained in Appendix A. Its size is (512×512). The vertical axis is n-axis going
from 1 to 512 from top to down and horizontal axis is m-axis going from 1 to 512
from left to right as shown in Appendix A. The dynamic range of the pattern is
scaled to interval [0 255], 255 being the brightest pixel in the figure.
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Figure 5.5: The plots of the slices of the pattern shown in Figure 5.4. (a) is the
plot of row slice and (b) is the plot of column slice. Horizontal axis is the space
variable in the interval [1 512] and the vertical variable is the pixel value between
[0 255], 255 being the brightest pixel in the pattern.

After this point, these Wigner transforms are analysed by the methods given

in Chapter 4, i.e. edge detection and Hough transform, to get the initial estimate

(x, y, z)est. The Figure 5.8 shows the output of the edge detector of the two

patterns. Canny edge detector and Hough transform are well defined in literature

[23], [24]. The Figure 5.9 shows the results of the detection over the original

Wigner transform. As it is clear from the figure, detection is successful especially

in terms of slope (i.e. in terms of depth parameter z) but not as expected in

terms of intersection point (i.e. in terms of x, y location) because the edges that

are formed between the Wigner lines and the rest of the pattern are detected

instead of the centers of the lines. For all the parameters some iterative methods

are required to be applied. For the z parameter, it is easier to solve the problem

in registration process since it is related to sharpness of the single reconstructed

pattern (i.e. it is the focusing parameter of the pattern). However, x, y position

of the pattern is the relative information within different diffraction patterns so it

is logical to solve this problem in stitching process. Hence, x, y location problem

is left for the stitching part and z parameter problem is solved in this process. As

a last remark on Wigner transform, the reconstructed pattern is shown in Figure
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Figure 5.6: Wigner transform of the column function shown in Figure 5.5 a,
calculated as explained in Appendix E. The horizontal axis is the frequency
variable θ = πp/N where integer p ∈ [−255, 256]. The vertical axis is n-axis
going from 1 to 512 from top to down and horizontal axis is p-axis going from
-255 to 256 from left to right as shown in Appendix A. The dynamic range of the
pattern is scaled to interval [0 255], 255 being the brightest pixel in the figure.

42



Frequency

S
pa

ce

Figure 5.7: Wigner transform of the row function shown in Figure 5.5 b, calcu-
lated as explained in Appendix E. The horizontal axis is the frequency variable
θ = πp/N where integer p ∈ [−255, 256]. The vertical axis is m-axis going from
1 to 512 from top to down and horizontal axis is p-axis going from -255 to 256
from left to right as shown in Appendix A. The dynamic range of the pattern is
scaled to interval [0 255], 255 being the brightest pixel in the figure.
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Figure 5.8: The result of edge detection on column and row functions. All the
figure properties are the same as Figures 5.6 and 5.7, respectively.

Figure 5.9: The lines detected by edge detection and Hough transform shown on
Wigner transform output for column and row functions. All the figure properties
are the same as Figures 5.6 and 5.7, respectiely.

5.10 with the parameters (x, y, z)est estimated only by analysis of the Wigner

transform.

5.1.2 Iterative Methods for Depth Estimation

Having estimated all the position parameters by Wigner transform as explained

in Section 5.1.1, we now need to correct the depth parameter by reducing the

error. As seen in Figure 5.10, when we reconstruct the pattern with the depth
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Figure 5.10: This is the reconstructed pattern only with the parameters gained
by the Wigner transform. Due to incorrect depth estimation (approximately 5%
error in depth) the fringe effect is still visible in this reconstruction. The size of
the figure is (512× 512). The vertical axis is n-axis going from 1 to 512 from top
to down and horizontal axis is m-axis going from 1 to 512 from left to right as
shown in Appendix A. The dynamic range of the pattern is scaled to interval [0
255], 255 being the brightest pixel in the figure.
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parameter estimated by the Wigner transform, some fringes remain. This is due

to the difference between the actual depth parameter and the estimated one.

Since the reconstruction is done with the estimated parameter, and it is different

then the actual depth, a focused reconstruction is not possible. In other words,

since the diffraction pattern is not propagated up until the real depth on which

the object plane should lie due to the error on estimated depth, the resultant

reconstruction is also a diffraction pattern of the original object field at a close

distance. Hence, the fringe pattern is still visible in this reconstruction as a result

of defocusing.

It is commonly known that in daily life photography, if the recorded scene

is not in focus, then the recorded image will not be sharp, i.e. there will be

a blur in the recorded image. The blurring effect is most disturbing at the

edges. Nowadays, many digital cameras with suitable mechanical lenses offer

some autofocusing feature. In theory, this autofocusing issue is achieved by

examining the scene with different focal lengths with a moving local variance

filter. The maximum of the variance is recorded for different focal lengths and at

the end the focal length having the maximum local variance value is selected as

the autofocusing focal length. Since the effect of defocusing is a blur, the local

variance filter selects the focal length in which the sharpest edges are formed in

order to get rid of the blurring effect.

Diffraction pattern recording is different from daily life photography because

diffraction patterns are generated by monochromatic coherent light sources.

Hence, the effect of defocusing is observed as fringe patterns, not as a simple

blur. Indeed, any diffraction pattern is a defocused photograph of the original

object field under coherent imaging.

In coherent imaging all the equations governing the propagation of light are

well known, so reconstruction from the out-of-focus recording is possible when
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some of the parameters (like wavelength of the light source, physical dimensions

of the recording CCD, etc.) are known.

To sum up, a diffraction pattern yields the sharpest pattern if it is recon-

structed with correct depth value provided that the other parameters are known.

The result zest from the Wigner transform is not the correct depth as seen in

Figure 5.10 because there are still some fringes in the reconstructed pattern.

However, it is clear that it is quite close to the correct value. Hence, iteration is

logical in this case to search for the correct parameter. It is also known that, be-

cause of the equation governing the propagation of light in free space, the fringes

are visible before and after the real depth, so it is not possible to discriminate

in which direction to iterate at the beginning of the iteration. To be able to

make the iterations faster, a stepped iteration method is used. At the first stage,

a large step is used to understand the behaviour of the fringe pattern, i.e. try

to find which direction to go in order to be able to get rid of fringe pattern.

The second and possibly a third stage use finer steps to locate the correct depth

parameter. The constraint function is a moving local variance filter over the

reconstructed pattern which is a parameter to tell the sharpness of the pattern.

The local variance filter is a moving window on the reconstructed pattern and

has the formula given by Equation 5.3.

mean =
1

N ×M

N
∑

a=1

M
∑

b=1

P (a, b) (5.2)

vl(i, j) =
1

SOF 2

i+hs
∑

a=i−hs

j+hs
∑

b=j−hs

[P (a, b)−mean]2 (5.3)
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where

P = reconstructed pattern

N = vertical resolution of P

M = horizontal resolution of P

vl = local varience

m = local mean

SOF = size of the filter (i.e. SOF − by − SOF moving window)

hs = half size of the filter (i.e. (SOF − 1)/2)

i, j = position on P

(5.4)

It is important to note that i, j should be selected accordingly not to exceed

matrix dimensions.

In the iteration process, for each reconstructed pattern, this moving local

variance filter is applied and the maximum vl for each pattern is recorded. Then

the pattern which has the biggest vl is selected as the nearest depth to the actual

depth since it is the most focused pattern due to variance filter analysis. The

next step of the iteration (if it exists) starts from this updated depth estimation.

The algorithm of this iteration process is given below.

Step 1. A reconstruction of the diffraction pattern is generated using the depth

estimated by the Wigner analysis (i.e. zest), as explained in Appendix D

with pre-known wavelength of the coherent light source (λ = 600nm) used

in recording phase and with preknown sampling period of the recording

equipment (X = 10λ).

Step 2. 21 different reconstructions are calculated with the parameters given

above (N,X and λ) and for depth range of d = zest + k0.01zest for

k ∈ [−10,−9, . . . ,−1, 0, 1, . . . , 9, 10].
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Step 3. The moving local variance filter given by Equation 5.3 is applied to each

pattern and the maximum variance is recorded for each pattern (i.e. v(d)→

max
(i,j)

[vl(i, j)]RPd
).

Step 4. The pattern which has the maximum variance (i.e. max
d

[v(d)]) is selected

as the best focused image. In other words the depth variable d which was

used to reconstruct that pattern is the closest depth to the actual depth

within above iteration interval; so zest is updated to this value. (i.e. zest is

set to arg(max
d

[v(d)]).)

Step 5. 21 different reconstructions are calculated with the parameters given

above (N,X and λ) and for depth range of d = zest + k0.001zest for

k ∈ [−10,−9, . . . ,−1, 0, 1, . . . , 9, 10].

Step 6. The moving local variance filter given by Equation 5.3 is applied to each

pattern and the maximum variance is recorded for each pattern (i.e. v(d)→

max
(i,j)

[vl(i, j)]RPd
).

Step 7. The pattern which has the maximum variance (i.e. max
d

[v(d)]) is selected

as the best focused image. In other words the depth variable d which was

used to reconstruct that pattern is the closest depth to the actual depth

within above iteration interval; so zest is updated to this value. (i.e. zest is

set to arg(max
d

[v(d)]).)

Step 8. 21 different reconstructions are calculated with the parameters given above

(N,X and λ) and for depth range of d = zest + k0.0001zest for k ∈

[−10,−9, . . . ,−1, 0, 1, . . . , 9, 10].

Step 9. The moving local variance filter given by Equation 5.3 is applied to each

pattern and the maximum variance is recorded for each pattern (i.e. v(d)→

max
(i,j)

[vl(i, j)]RPd
).

Step 10. The pattern which has the maximum variance (i.e. max
d

[v(d)]) is selected as

the best focused image. In other words the depth variable d which was used
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Figure 5.11: This is the result of the varience filter in the first part of the iteration
process. The best estimate corresponds to maximum variance. The vertical axis
represents the maximum local varience in each iteration. Horizontal axis is the
iteration number called s which satisfies k = s− 11 for iteration step 2.

to reconstruct that pattern is the closest depth to the actual depth within

above iteration interval; so since this is final iteration zfiner is selected as

this value. (i.e. zfiner is set to arg(max
d

[v(d)]).)

The starting pattern is shown in Figure 5.10. The Figures 5.11, 5.12, 5.13

show the intermediate steps of the iterative method with the constraint function

plots. Figure 5.14 shows the reconstructed pattern with the zfiner parameter after

iterations. It is clear that the fringe pattern has disappeared in this resultant

reconstruction.

5.2 Stitching of Digital Holograms

After a successful registration process, we have (x, y)est and zfiner for the diffrac-

tion pattern given in Figure 5.3. Let us call these parameters (x, y)est1 and

zfiner1 by assuming that this pattern was the first pattern to be registered.

Hence, if we have n diffraction patterns, after the registration process we
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Figure 5.12: This is the result of the varience filter in the second part of the
iteration process. The best estimate corresponds to maximum variance. The
vertical axis represents the maximum local varience in each iteration. Horizontal
axis is the iteration number called s which satisfies k = s− 11 for iteration step
5.
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Figure 5.13: This is the result of the varience filter in the third part of the
iteration process. The best estimate corresponds to maximum variance. The
vertical axis represents the maximum local varience in each iteration. Horizontal
axis is the iteration number called s which satisfies k = s− 11 for iteration step
8.
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Figure 5.14: The final reconstruction after the depth iteration process. The size
of the pattern is (512×512). The vertical axis is n-axis going from 1 to 512 from
top to down and horizontal axis is m-axis going from 1 to 512 from left to right
as shown in Appendix A. The dynamic range of the pattern is scaled to interval
[0 255], 255 being the brightest pixel in the figure.
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will have a vector for each parameter such that Xinitial = [xest1xest2 . . . xestn ],

Yinitial = [yest1yest2 . . . yestn ] and Zfinal = [zfiner1zfiner2 . . . zfinern ].

In the stitching process, we need to merge the low resolution diffraction pat-

terns in order to be able to get the final high resolution diffraction pattern. As it

is explained in the previous pharagraph, after the registration process, we have

some good estimates of the depth parameter (i.e. z position of the recording

sensors) and some rough estimates of the x, y positions of the sensors as depicted

in Figure 5.15. Another important point about these diffraction patterns is that

any of these patterns is a snapshot of the same light distribution at an unknown

position in space, as shown in Figure 5.15 with the estimate parameters. Hence,

it is clear that if we know the actual object function (at z = 0 in Figure 5.15) and

we propagate that function to the depths given in figure, we will end up having

the same low resolution diffraction patterns at the same z locations due to con-

sistency. So, it is legitimate to see the stitching problem as an inverse problem

of the above situation. We do not have the object function, indeed we are trying

to recover the object function from a number of low resolution snaphots of it.

We have a number of low resolution patterns as depicted by LRPi in Figure 5.15

and some estimates about their positions in space given by xesti , yesti , zfineri for

i = 1, 2, 3 as generated in the registration process. As explained before, any of

these LRP ’s contains some information about the object function but none of

these contains the entire information. They may contain the same information

content (i.e. there may be redundant parts) but we know that they are consistent

since all of them were recorded from the same object function.

As a consequence, the stitching process can be summarized as a constraint

implementation process. We start from one of the given low resolution diffraction

patterns, for example, LRP1 in Figure 5.15. Since we know the depth parameters

of all the patterns as fine as possible from the registration process, by making

use of the methods in Appendix D we propagate the starting diffraction pattern
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LRP1 to the depth of another diffraction pattern in hand (LRP2 for example)

and apply the second pattern LRP2 as a constraint to the field generated by

the starting pattern LRP1. This constraint application process is nothing but

the insertion of the newly added diffraction pattern (LRP2) onto the pattern

generated by the propagation of first pattern (LRP1) to the depth of the second

pattern. Suitable interpolation (i.e. zeroth order interpolator) is used during

this insertion. All the data in the second pattern is copied to the corresponding

location in the propagated pattern. The details of this method is given below:

• Let us assume that LRP1 is size N ×N . Generate a blank pattern of size

4N × 4N and call it HRP , the high resolution pattern. All the entries of

HRP are initially equal to the mean graylevel of the LRP1 i.e. the mean

value of all the pixels in LRP1. It may be necessary to adjust this mean

graylevel when an additional low resolution pattern is included in HRP in

order to get rid of edge effects in propagation, however, the mean graylevels

of the low resolution patterns used in this thesis are equal, so after this step

no adjustment for mean graylevel is required. With (Yest1, Xest1) known,

place LRP1 in the corresponding location on HRP as given in the equation

below:

HRP [2N−round(Yest1)−1+n, 2N−round(Xest1)−1+m] = LRP1[n,m]

(5.5)

where n,m ∈ [1, 2, 3, . . . , N ].

• Propagate HRP to the depth of LRP2 by using Z = −Zfiner1 + Zfiner2,

predetermined wavelength and sampling period of the recording equipment

(λ = 600nm and X = 10λ for this thesis) and the methods given in Ap-

pendix D size being 4N × 4N .
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• Copy the information in LRP2 to the correct position in HRP as explained

below:

HRP [2N−round(Yest2)−1+n, 2N−round(Xest2)−1+m] = LRP2[n,m]

(5.6)

where n,m ∈ [1, 2, 3, . . . , N ]. Be careful not to change the entries of HRP

that do not coincide with the location of LRP2 on HRP .

• Propagate HRP to the depth of LRP3 by using Z = −Zfiner2 + Zfiner3,

predetermined wavelength and sampling period of the recording equipment

(λ = 600nm and X = 10λ for this thesis) and the methods given in Ap-

pendix D size being 4N × 4N .

• Copy the information in LRP3 to the correct position in HRP as explained

below:

HRP [2N−round(Yest3)−1+n, 2N−round(Xest3)−1+m] = LRP3[n,m]

(5.7)

where n,m ∈ [1, 2, 3, . . . , N ]. Be careful not to change the entries of HRP

that do not coincide with the location of LRP3 on HRP .

• Propagate HRP to the depth of object field by using Z = −Zfiner3, pre-

determined wavelength and sampling period of the recording equipment

(λ = 600nm and X = 10λ for this thesis) and the methods given in Ap-

pendix D size being 4N × 4N . This is the reconstruction of the object

pattern resulting from the stitching of three low resolution diffraction pat-

terns.

When we apply this approach to all the patterns LRP1, LRP2, LRP3 con-

secutively, we will have a diffraction pattern which will carry all the information

in the low resolution patterns, hence it is the resultant high resolution diffraction

pattern. There are two basic problems to handle in this approach: First one is

55



Figure 5.15: Parallel plane stitching back and forth

the interpolation issue. All the recorded patterns are discretizations of a contin-

uous wave at a fixed location. Interpolation may be required while merging these

low resolution recordings due to subpixel inaccuracy of these discretizations. The

second problem is the relative x, y position problem between different diffraction

patterns. Since it is not easy to get a fine estimate of x, y locations in registra-

tion process, these iterations are left to the stitching process. The relative x, y

position is a critical parameter for stitching process because relative positions of

different recordings play an important role while merging the patterns.

Interpolation problem occurs due to the discretization of the problem in the

sensors. The recording cameras have some fixed resolution and fixed pixel posi-

tions. Due to this discretization, it is natural to have subpixel inaccuracy between

low resolution recordings. While applying one of the patterns as a constraint to

the field generated by another pattern, an interpolation may be required. How-

ever, due to the nature of the diffraction patterns, any rough interpolator may be

good enough to address this problem. In this study a zeroth order interpolator is

used when it is required in stitching process. A zeroth order interpolator places

the value of the nearest pixel to the desired location in the final grid. An example

of a zeroth order interpolator is shown in Figure 5.16.

Second problem is the error in the x, y estimates in registration process. The

result of a large error is shown in Figure 5.17. As it is clear from the figure,
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Figure 5.16: Zeroth order interpolator. All the relevant distances are calculated
in a low resolution pattern and the nearest neighbor is directly used in high
resolution pattern. In the figure, circular pixels are from the high resolution
resultant pattern and the triangular and diamond shaped ones are from different
low resolution patterns.

a mismatch in relative x, y locations results in a virtual object near the real

object. As it is clear in the Figure 5.17, this virtual object degrades the sharpness

of the real object as it was in the wrong depth estimation case explained in

Section 5.1.2. So, moving local variance filter is a good candidate to solve this

problem since it has already helped in inaccurate depth estimation problem. We

will iterate the position of the object from the second pattern (i.e. LRP2 in

Figure 5.15) in a small neighborhood and try to maximize the sharpness of the

reconstructed pattern (i.e. the entire object function generated by both LRP1

and LRP2 in the Figure 5.15) with the moving local variance filter given by

Equation 5.3. The result of the variance filter is shown in Figure 5.18 and the

resultant reconstruction when the variance is maximum is shown in Figure 5.19.

5.3 Overall System

This section explains the overall system formed by registration and stitching pro-

cesses. Figure 5.20 shows a block diagram representation of the overall system.
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Figure 5.17: The pattern generated when there is a mismatch in x,y positions
of the diffraction patterns.The size of the original pattern is 512 × 512. This is
a zoomed version of the original pattern. The vertical axis is n-axis going from
206 to 306 from top to down and horizontal axis is m-axis going from 206 to 306
from left to right as shown in Appendix A. The dynamic range of the original
pattern is scaled to interval [0 255], 255 being the brightest pixel.
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Figure 5.18: The varience filter result of the mismatch problem. The vertical
axis represents the maximum local varience in each iteration. Horizontal axis is
the iteration number called s which satisfies k = 6− s where k is the error in the
position of the object in pixel units.
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Figure 5.19: The final reconstruction of the iteration process. The size of the
original pattern is 512 × 512. This is a zoomed version of the original pattern.
The vertical axis is n-axis going from 206 to 306 from top to down and horizontal
axis is m-axis going from 206 to 306 from left to right as shown in Appendix A.
The dynamic range of the original pattern is scaled to interval [0 255], 255 being
the brightest pixel.
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Figure 5.20: The block diagram of the overall system.

The input of the overall system is a low resolution diffraction pattern (de-

picted as ”Initial low resolution pattern” in the figure). Since Wigner transform

of a 2D function yields a 4D result, we prefer to apply Wigner transform on 1D

slices of the original 2D function to get 2D results (easier to visualise and inter-

pret). This property of Wigner transform is also explained in Chapter 4. For a

Wigner transfrom of a 1D function, the slope of the Wigner lines is related to the

distance between the object and the recording equipment and the intersection

point of the Wigner lines gives the 1D position of the object in the recording.

Hence, an easy choice for possible 1D slices from the initial low resolution diffrac-

tion pattern is to select a row and a column of the pattern (easy since there is

no need for interpolation, all the samples are equidistance). In this case, inter-

section point in the Wigner transform of the row function will give information

about the x-position of the object in the overall recording and intersection point

in the Wigner transform of the column function will give information about the

y-position of the object in the overall recording. The slopes of all the lines in

both Wigner transform domains (both for row and column functions) will carry
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information about the distance between the object and the recording equipment.

To sum up, we need to compute two Wigner transforms (i.e. one for a row func-

tion and one for a column function) in parallel in order to be able to extract 3D

object position in a recording. Indeed, we need to compute two parallel sets of

Wigner transform, Canny edge detection and Hough transform for 1D functions

grabbed from the initial recording to determine first rough estimates for object

position as shown in the upper part of the Figure 5.20. A sample result for each

step is shown above the related block for illustrative purposes. The output of

the Wigner transform is a real valued matrix. Throughout this thesis, these pat-

terns are scaled to be between [0 255] for printing purposes. The line impulses

of the Wigner transform are depicted as white and the contrast between these

lines and the rest of the pattern is used to extract these lines by edge detection

as explained in Chapter 4. The input of the Canny edge detector is the direct

output of the Wigner transform and the output of this detector is a binary pat-

tern in which the Wigner lines are emphasized as white on a black background.

Since the input of the Hough transform should be a binary pattern, the output

of the Canny edge detector is directly fed to Hough transform. The output of the

Hough transform is the accumulator matrix and the Wigner lines are extracted

by the analysis of the peaks in this accumulator matrix as explained in Appendix

G. The detected lines superposed onto the original Wigner transform patterns

are shown as the output of the Hough transform during this thesis. At the end

of the application of these methods onto a row and a column function, we have

the rough estimates for 3D position of the object in the low resolution recording

as shown by (Xest, Yest, Zest) is the Figure 5.20. It is possible to call the blocks

from the beginning of the algorithm up to this point as the registration part of

the algorithm. In this part, rough estimates of the object position is gained with

no prior knowledge about the position of the recording equipment and using only
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the methods explained above. After registration, an extra step takes place be-

fore stitching in which it is possible to make distance estimate finer with iterative

methods.

All the blocks after registration use iterative methods (i.e. variance filter

explained by Equation 5.3). These iterative methods are guaranteed to success

if a limited amount of error is not exceeded in registration process. This amount

is determined as if 10 pixels in x, y locations and no more error than 5% in z

locations for this thesis. All the iterative methods after registration are designed

to handle errors up to these maximum levels in this thesis.

For depth fining, three different depth ranges are defined as explained in

Subsection 5.1.2 according to this maximum error level of 5%. A reconstruction

for each distance is calculated and the distance which yields the sharpest recon-

struction (i.e. reconstruction with the maximum local variance) is selected as

the finest distance estimate for that range. The details of this algorithm are also

explained in Subsection 5.1.2.

After this block, the stitching process starts. Indeed, it is more convenient

to name this process as the stitching and x, y registration fining process. As

explained before in this thesis, it is not possible to make x, y estimates finer by

making use of only one low resolution pattern. We do not have enough infor-

mation to set up an iterative method to make x, y estimates finer for a single

recording. The solution to this problem is the relative fining of the 2D object

position is two or more low resolution recordings. This process is merged into

the stitching process since the difference between the result of a finely registered

pair and a bad registered pair is easily spottable after stitching. The result of a

bad registered pair is a virtual object as explained before and this kind of a result

degrades the sharpness of the overall reconstruction. To handle this problem, we

assume to have a correct x, y estimate for one of the low resolution recordings.
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Then we move the second recording within a neighbourhood defined by the pre-

determined maximum error to find the x, y location which yields the maximum

local variance after stitching. This x, y position is recorded as the finest x, y es-

timates for the second low resolution recording. Applying this process to all the

low resolution recordings concludes the stitching and x, y registration processes

together with the overall system. It is possible to form a higher resolution re-

construction after this point. Since the stitching performs successfully with the

given error limits, simulations are conducted up to this point and the estimates

which stay within these limits are accepted to be successful.
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Chapter 6

Simulation Results

6.1 A Complete Registration and Stitching

In this chapter, simulation results of the algorithms described in previous chap-

ters are presented. The simulation starts with five different diffraction patterns

with no prior information about their 3D positions in space. We only know that

all the diffraction patterns were recorded from the same light distribution. These

five low resolution diffraction patterns are shown in Figures 6.1, 6.4, 6.7, 6.10

and 6.13. These patterns are obtained as follows: A high resolution pattern is

calculated with the given techniques in Chapter 3 in Section 3.2. The object

pattern is generated as it is explained in Appendix C with radius r = 4.5 pixels

and the object being at the center of the pattern (i.e. (Yc, Xc) = (1024, 1024)).

The size of this high resolution pattern is 2048 × 2048. In our simulations, the

low resolution initial patterns which are shown in the figures were actually ex-

tracted from a high resolution diffraction pattern. This is done to have a ground

truth reference to check the simulation results. Their sizes are all 512 × 512.

High resolution input pattern is propagated to five different depth positions as

it is explained in Appendix D and different 512 × 512 parts of this pattern are
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recorded as low resolution diffraction patterns. The wavelength of the beam, λ,

is taken as 600 nanometers. The pixel size of the recording sensor array is as-

sumed to be ten times the wavelength of the beam (X = 10λ). The intermediate

results of the registration process which is held by applying Wigner transform as

explained by Appendix E, edge detection as explained in Appendix F and Hough

transform as explained in Appendix G, as it is explained in Chapters 4 and 5

to each low resolution pattern, are shown in Figures 6.2, 6.5, 6.8, 6.11 and 6.14.

The input of the Wigner transform is any row or column of the low resolution

diffraction pattern. The output of Wigner transform is fed into edge detection

algorithm to emphesize the edges. Canny edge detection algorithm is used to

detect edges in the Wigner transform pattern as the details of the algorithm are

given in Appendix F. The low threshold of the Canny edge detector is selected

as 0.1 where the high threshold is selected to be 0.5. The output binary pattern

generated by Canny edge detection as mentioned in Appendix F is the input

pattern for Hough transform. The aim of Hough transform is to find lines in the

binary pattern generated by the edge detector. Hough transform is applied as

given in Appendix G with a ρ resolution of 0.5 and θ resolution of 0.1. In the

Hough transform domain, maximum 8 peaks are tried to be detected which are

greater then the 0.8 times the global maximum of the accumulator matrix. The

(5×5) neighbourhood of any possible peak is cleared not to select the same peak

by numerical errors. The space between two line segments is filled if they are

on the same line. The reconstructions generated by the parameters estimated

in registration process are shown in Figures 6.3, 6.6, 6.9, 6.12 and 6.15. As a

final step, all the results gained from the stitching process as it is explained in

Chapter 5 in Section 5.2 are shown in Figure 6.16.
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Figure 6.1: Low resolution pattern no.1. Its size is (512 × 512). The vertical
axis is n-axis going from 1 to 512 from top to down and horizontal axis is m-axis
going from 1 to 512 from left to right as shown in Appendix A. The dynamic
range of the original pattern is scaled to interval [0 255], 255 being the brightest
pixel in the figure.
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Figure 6.2: Edge detection and Hough transform results of the low resolution
pattern no.1. Only the results from the Wigner transform of the column function
are given. a) The binary output pattern of the Canny edge detector applied onto
the Wigner transform of a 1D slice of the given diffraction pattern no.1. b) Lines
detected by the Hough transform from the pattern shown in a superposed onto
Wigner transform pattern. Both figures are given as an example, this is done for
both row and column slices. c) The result for the first step of the variance filter
d) The result for the second step of the variance filter e) The result for the third
step of the variance filter. (The details of this filter is explained in Section 5.1.2)
Axis properties: For (a) and (b); the horizantal axis is the frequency variable
θ = πp/N where integer p ∈ [−255, 256]. The vertical axis is n-axis going from 1
to 512 from top to down and horizontal axis is p-axis going from -255 to 256 from
left to right as shown in Appendix A. The dynamic range of the pattern is scaled
to interval [0 255], 255 being the brightest pixel in the figure. For (c),(d),(e); the
vertical axis represents the maximum local varience in each iteration. Horizontal
axis is the iteration number called s which satisfies d = zest + (s − 11)∆z as
explained in Subsection 5.1.2.
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Figure 6.3: Reconstruction of low resolution pattern no.1 with the parameters
estimated after the iterative process. Its size is (512× 512). The vertical axis is
n-axis going from 1 to 512 from top to down and horizontal axis is m-axis going
from 1 to 512 from left to right as shown in Appendix A. The dynamic range of
the original pattern is scaled to interval [0 255], 255 being the brightest pixel in
the figure.
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Figure 6.4: Low resolution pattern no.2. Its size is (512 × 512). The vertical
axis is n-axis going from 1 to 512 from top to down and horizontal axis is m-axis
going from 1 to 512 from left to right as shown in Appendix A. The dynamic
range of the original pattern is scaled to interval [0 255], 255 being the brightest
pixel in the figure.

70



a b

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 5 10 15 20 25
0.045

0.05

0.055

0.06

0.065

0.07

0.075

c d

0 5 10 15 20 25
0.07

0.0702

0.0704

0.0706

0.0708

0.071

0.0712

0.0714

e

Figure 6.5: Edge detection and Hough transform results of the low resolution
pattern no.2. Only the results from the Wigner transform of the column function
are given. a) The binary output pattern of the Canny edge detector applied onto
the Wigner transform of a 1D slice of the given diffraction pattern no.2. b) Lines
detected by the Hough transform from the pattern shown in a superposed onto
Wigner transform pattern. Both figures are given as an example, this is done for
both row and column slices. c) The result for the first step of the variance filter
d) The result for the second step of the variance filter e) The result for the third
step of the variance filter. (The details of this filter is explained in Section 5.1.2)
Axis properties: For (a) and (b); the horizantal axis is the frequency variable
θ = πp/N where integer p ∈ [−255, 256]. The vertical axis is n-axis going from 1
to 512 from top to down and horizontal axis is p-axis going from -255 to 256 from
left to right as shown in Appendix A. The dynamic range of the pattern is scaled
to interval [0 255], 255 being the brightest pixel in the figure. For (c),(d),(e); the
vertical axis represents the maximum local varience in each iteration. Horizontal
axis is the iteration number called s which satisfies d = zest + (s − 11)∆z as
explained in Subsection 5.1.2.
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Figure 6.6: Reconstruction of low resolution pattern no.2 with the parameters
estimated after the iterative process. Its size is (512× 512). The vertical axis is
n-axis going from 1 to 512 from top to down and horizontal axis is m-axis going
from 1 to 512 from left to right as shown in Appendix A. The dynamic range of
the original pattern is scaled to interval [0 255], 255 being the brightest pixel in
the figure.
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Figure 6.7: Low resolution pattern no.3. Its size is (512 × 512). The vertical
axis is n-axis going from 1 to 512 from top to down and horizontal axis is m-axis
going from 1 to 512 from left to right as shown in Appendix A. The dynamic
range of the original pattern is scaled to interval [0 255], 255 being the brightest
pixel in the figure.
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Figure 6.8: Edge detection and Hough transform results of the low resolution
pattern no.3. Only the results from the Wigner transform of the column function
are given. a) The binary output pattern of the Canny edge detector applied onto
the Wigner transform of a 1D slice of the given diffraction pattern no.3. b) Lines
detected by the Hough transform from the pattern shown in a superposed onto
Wigner transform pattern. Both figures are given as an example, this is done for
both row and column slices. c) The result for the first step of the variance filter
d) The result for the second step of the variance filter e) The result for the third
step of the variance filter. (The details of this filter is explained in Section 5.1.2)
Axis properties: For (a) and (b); the horizantal axis is the frequency variable
θ = πp/N where integer p ∈ [−255, 256]. The vertical axis is n-axis going from 1
to 512 from top to down and horizontal axis is p-axis going from -255 to 256 from
left to right as shown in Appendix A. The dynamic range of the pattern is scaled
to interval [0 255], 255 being the brightest pixel in the figure. For (c),(d),(e); the
vertical axis represents the maximum local varience in each iteration. Horizontal
axis is the iteration number called s which satisfies d = zest + (s − 11)∆z as
explained in Subsection 5.1.2.
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Figure 6.9: Reconstruction of low resolution pattern no.3 with the parameters
estimated after the iterative process. Its size is (512× 512). The vertical axis is
n-axis going from 1 to 512 from top to down and horizontal axis is m-axis going
from 1 to 512 from left to right as shown in Appendix A. The dynamic range of
the original pattern is scaled to interval [0 255], 255 being the brightest pixel in
the figure.
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Figure 6.10: Low resolution pattern no.4. Its size is (512 × 512). The vertical
axis is n-axis going from 1 to 512 from top to down and horizontal axis is m-axis
going from 1 to 512 from left to right as shown in Appendix A. The dynamic
range of the original pattern is scaled to interval [0 255], 255 being the brightest
pixel in the figure.
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Figure 6.11: Edge detection and Hough transform results of the low resolution
pattern no.4. Only the results from the Wigner transform of the column function
are given. a) The binary output pattern of the Canny edge detector applied onto
the Wigner transform of a 1D slice of the given diffraction pattern no.4. b) Lines
detected by the Hough transform from the pattern shown in a superposed onto
Wigner transform pattern. Both figures are given as an example, this is done for
both row and column slices. c) The result for the first step of the variance filter
d) The result for the second step of the variance filter e) The result for the third
step of the variance filter. (The details of this filter is explained in Section 5.1.2)
Axis properties: For (a) and (b); the horizantal axis is the frequency variable
θ = πp/N where integer p ∈ [−255, 256]. The vertical axis is n-axis going from 1
to 512 from top to down and horizontal axis is p-axis going from -255 to 256 from
left to right as shown in Appendix A. The dynamic range of the pattern is scaled
to interval [0 255], 255 being the brightest pixel in the figure. For (c),(d),(e); the
vertical axis represents the maximum local varience in each iteration. Horizontal
axis is the iteration number called s which satisfies d = zest + (s − 11)∆z as
explained in Subsection 5.1.2.

77



Figure 6.12: Reconstruction of low resolution pattern no.4 with the parameters
estimated after the iterative process. Its size is (512× 512). The vertical axis is
n-axis going from 1 to 512 from top to down and horizontal axis is m-axis going
from 1 to 512 from left to right as shown in Appendix A. The dynamic range of
the original pattern is scaled to interval [0 255], 255 being the brightest pixel in
the figure.
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Figure 6.13: Low resolution pattern no.5. Its size is (512 × 512). The vertical
axis is n-axis going from 1 to 512 from top to down and horizontal axis is m-axis
going from 1 to 512 from left to right as shown in Appendix A. The dynamic
range of the original pattern is scaled to interval [0 255], 255 being the brightest
pixel in the figure.
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Figure 6.14: Edge detection and Hough transform results of the low resolution
pattern no.5. Only the results from the Wigner transform of the column function
are given. a) The binary output pattern of the Canny edge detector applied onto
the Wigner transform of a 1D slice of the given diffraction pattern no.5. b) Lines
detected by the Hough transform from the pattern shown in a superposed onto
Wigner transform pattern. Both figures are given as an example, this is done for
both row and column slices. c) The result for the first step of the variance filter
d) The result for the second step of the variance filter e) The result for the third
step of the variance filter. (The details of this filter is explained in Section 5.1.2)
Axis properties: For (a) and (b); the horizantal axis is the frequency variable
θ = πp/N where integer p ∈ [−255, 256]. The vertical axis is n-axis going from 1
to 512 from top to down and horizontal axis is p-axis going from -255 to 256 from
left to right as shown in Appendix A. The dynamic range of the pattern is scaled
to interval [0 255], 255 being the brightest pixel in the figure. For (c),(d),(e); the
vertical axis represents the maximum local varience in each iteration. Horizontal
axis is the iteration number called s which satisfies d = zest + (s − 11)∆z as
explained in Subsection 5.1.2.
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Figure 6.15: Reconstruction of low resolution pattern no.5 with the parameters
estimated after the iterative process.Its size is (512 × 512). The vertical axis is
n-axis going from 1 to 512 from top to down and horizontal axis is m-axis going
from 1 to 512 from left to right as shown in Appendix A. The dynamic range of
the original pattern is scaled to interval [0 255], 255 being the brightest pixel in
the figure.
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Figure 6.16: The results from the stitching process (they are zoomed to make
details clear). All the figures obey the figure properties described in A, their sizes
are (100 × 100) a) The reconstruction of the single diffraction pattern given in
6.1. The resultant pattern is a low pass pattern with blurring effect due to non-
existant high frequency components of the fringe pattern in Figure 6.1 because
of the resolution of the sensor array. b) The reconstruction of a higher resolution
pattern formed by patterns shown in Figures 6.1 and 6.4. There is less blurring
effect due to enhancement in resolution and higher frequency components coming
from the pattern shown in Figure 6.4. c)d)e) The reconstruction of the patterns
formed by stitching of 3,4 and 5 low resolution patterns showns in Figures 6.1,
6.4, 6.7, 6.10, 6.13. As the number of the merged patterns increases the sharp-
ness of the reconstructed object also increases due to increasing resolution and
information content. Axis properties: The original patterns are 512 × 512 in
size. These are the zoomed versions of the original patterns. The vertical axis
is n-axis going from 206 to 306 from top to down and horizontal axis is m-axis
going from 206 to 306 from left to right as shown in Appendix A. The dynamic
range of the original pattern is scaled to interval [0 255], 255 being the brightest
pixel.
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6.2 Other Simulation Results

In Section 6.1, an example of a complete registration and stitching processes is

illustrated. It is possible to divide this complete simulation into two parts as the

registration part and the stitching part. It is observed that if the registration

part gives results in a predetermined error range, it is possible to adjust stitching

process according to these error ranges to get a good high resolution result. This

result is due to the nature of stitching process which is a complete set of iterative

methods. As an example, if we are guaranteed that the registration process will

yield no more error then 10 pixels in x, y locations and no more error than

5% in z locations, it is possible to design the stitching process to handle these

maximum errors by appropriately choosing the steps of the iterative methods. So,

the performance of the overall process will simply depend on the performance

of the registration process, i.e. the performance of the proposed method will

simply depend on how precisely the registration process (Wigner transform, edge

detection and Hough transform) can register the low resolution recordings. Some

further simulations are held by registration process to be able to understand the

performance of the proposed method under different situations.

6.2.1 Radius of the Object

In this simulation set, all the parameters apart from the radius of the object are

kept constant. It is placed at the center of a 1024×1024 pattern and a diffraction

pattern of this object at a fixed depth is generated. Then, 100 random low

resolution (256×256) diffraction patterns are generated from this high resolution

initial pattern and all the automated registration methods (Wigner transform,

edge detection and Hough transform) are applied to find the 3D position of the

object in the recordings. The way to generate these low resolution patterns is

to select two random numbers in the interval [0 768] at each iteration step and
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R (pixel) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Success Rate (%) 100 100 100 97 100 95 98 91 92 89

R (pixel) 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
Success Rate (%) 89 87 79 76 62 63 47 42 38 38

Table 6.1: The results of the object radius simulations

treat these numbers as the apsis and ordinate of the left top point of the low

resolution pattern on the initial high resoluiton pattern. Table 6.1 shows the

results of the registration simulation of this set. The corresponding success rate

for each radius is the ratio of the number of successfully registered patterns due

to a prior success criteria and the total number of patterns tried to be registered.

It is observed that the registration process is sensitive to the radius of the

object. The weak part of the registration about object radius is the Wigner

transform. The result of the Wigner transform is assumed to have two sharp

white lines indicating the 3D position of the recording. Due to the sharpness of

these white lines, an edge detection is applied. These sharp white lines are clearly

seen in Figures 5.6 and 5.7. However, when the radius of the object increases,

the diffraction pattern tends to be a nearer field pattern. And thus, these white

lines loses their sharpness and becomes as it is shown in Figure 6.17. Also the

cross effect coming from Wigner transform becomes sharper and degrades the

performance of the edge detector. So it is possible to conclude that it is best

to use this proposed method with the objects smaller then 6 pixels in radius if

fully automated registration is desired. It is also possible to achieve larger object

radius registration by the help of a human supervisor since the white lines indeed

are still visible. It is experimented that by the help of human interaction it is

possible to stitch objects having radius up to 35-40 pixels.
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Figure 6.17: The effect of the object radius on Wigner transform

6.2.2 Noise Simulations

Noise in the Wave Field

Noisy recordings are common in digital holography due to reflections and nature

of both the laser and recording sensors. In each iteration of this simulation set,

all the parameters are kept as constant and a noise pattern having a different

standard deviation is added to the initial light wave distribution. The initial

field is complex valued with a size of 1024 × 1024 . The position of the object

is set as (Yc, Xc) = (512, 512) and object radius is r = 0.5. Input function

is generated as mentioned in Appendix C and propagated to Z = NX2/λ as

explained in Appendix D where N = 1024, λ = 600nm and X = 10λ. Two

independent noise patterns are generated and added to both real and imaginary

parts of the wave distribution. Then the intensity of this distribution is taken as

the initial high resolution recording. Two different examples of the intensity of

such noisy fields are given in Figure 6.18. After that 100 random low resolution

patterns are grabbed from initial noisy pattern and an automated registration is

applied to each of them. The way to generate these low resolution patterns is

to select two random numbers in the interval [0 768] at each iteration and treat
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these numbers as the apsis and ordinate of the left top point of the low resolution

pattern on the initial noisy high resoluiton pattern. The success rate in each table

is the ratio of the number of the low resolution patterns that are successfully

and automatically registered (having a maximum error defined in Section 6.2

to the number of total patterns in that iteration. The dynamic range of the

initial high resolution patterns is [0.9975 1.0025]. Two different noise models are

used in this simulation. Table 6.2 is the result of the additive Gaussian noise

simulations. Noise patterns are composed of independent identically distributed

pixels generated from a Gaussian noise generator with mean 0 and variance

1. They are multiplied with a noise weight in each iteration from the range

V = 0.0001k where k = 1, 2, . . . , 15 and added directly to the real and imaginary

parts of the generated high resolution initial wave field. Table 6.3 shows the

effect of the additive uniformly distributed noise to the performance. Noise

patterns are generated by independent identically distributed uniform noise in

the interval [0 1]. They are multiplied by a noise weight in each iteration from

the range V = 0.0002k where k = 1, 2, . . . , 15 and added directly to the real

and imaginary parts of the generated high resolution initial wave field. For the

tables, the PSNR values in dB are used to represent the relation between the

original pattern and the added noise. The PSNR is calculated as

PSNR = 10log10

(

MAX2
I

NoisePower

)

(6.1)

where MAXI is the peak value of the DC adjusted original pattern (i.e. having

a dynamic range of [-0.0025 0.0025] hence MAXI = 0.005) and NoisePower is

used as the analytically calculated power of the related noise. That is, power

of the noise for Gaussian case when it is added to wave field is 2σ2
gV

2 where

σ2
g = 1 and it is σ2

gV
2 when it is added to the intensity function, power of the

noise for uniformly distributed case when it is added to wave field is 2σ2
uV

2 where

σ2
u = 1/12 and it is σ2

uV
2 when it is added to the intensity function.
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a b

Figure 6.18: Examples of the intensity of initial noisy fields. These fields are
1024× 1024 is size and are generated as explained in Section 6.2.2. The vertical
axis is n-axis going from 1 to 512 from top to down and horizontal axis is m-axis
going from 1 to 512 from left to right as shown in Appendix A. The dynamic
range of the original pattern is scaled to interval [0 255], 255 being the brightest
pixel in the figure. (a) has a PSNR value of 12.62 dB and (b) has a PSNR value
of 6.59 dB. Both patterns are generated using a Gaussianly distributed noise.

PSNR (dB) 26.60 20.58 17.06 14.55 12.60
Success Rate (%) 100 100 100 100 100

PSNR (dB) 11.03 9.69 8.52 7.51 6.59
Success Rate (%) 100 99 86 66 26

PSNR (dB) 5.77 5.01 4.31 3.67 3.08
Success Rate (%) 7 0 0 0 0

Table 6.2: The results of Gaussian noise in high resolution wave field simulations.
The dynamic range of the initial pattern is [0.9975 1.0025] when its intensity
is considered. At each step two Gaussian random patterns with mean 0 and
variance 1 are generated and added to the real and imaginary parts of the initial
wave field with a prior multiplication with the noise weight. Then the intesity of
this field is calculated and the difference between this intensity and the intensity
of the original field is taken as noise pattern. PSNR values in the table are
calculated from this noise pattern.
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PSNR (dB) 25.35 19.32 15.79 13.31 11.36
Success Rate (%) 100 100 100 100 100

PSNR (dB) 9.78 8.43 7.27 6.25 5.33
Success Rate (%) 100 100 98 77 59

PSNR (dB) 4.51 3.75 3.06 2.40 1.80
Success Rate (%) 40 24 15 9 3

Table 6.3: The results of the uniformly distributed noise in high resolution wave
field simulations. The dynamic range of the initial pattern is [0.9975 1.0025]
when its intensity is considered. At each step two uniformly distributed random
patterns in the interval [0 1] are generated and added to the real and imaginary
parts of the initial wave field with a prior multiplication with the noise weight.
Then the intesity of this field is calculated and the difference between this inten-
sity and the intensity of the original field is taken as noise pattern. PSNR values
in the table are calculated from this noise pattern.

Recording Noise

In the simulations above, only the noise in the original wave field was examined.

However, recording sensor is another important source of noise. The noise caused

by the recording sensors is an addition to the noise in the original pattern and

it is independent in each recording sensor. To simulate the additional effect of

the recording noise, we selected a constant original field noise weight from the

Tables 6.2 and 6.3 (we chose a weight in which registration is 100% successful

for both noise types in order to ease comparison of the results. Any other weight

could also be selected). The initial noisy high resolution patterns (1024× 1024)

are generated with paremeters N = 1024, M = 1024, Y c = 512, Xc = 512,

r = 0.5, λ = 600nm, X = 10λ and Z = NX2/λ as explained in Appendices

C and D by an addition of two noise patterns to the real and imaginary parts

of the field with a prior multiplication with the selected noise weight for each

noise type (V = 0.0005 for both types). Then the intensity of this field is

recorded as the initial high resolution pattern with field noise in it. After that,

100 random low resolution patterns (256 × 256) are grabbed from this noisy

high resolution pattern as it is done in earlier simulations. However, apart from
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PSNR (dB) 12.44 11.96 11.28 10.47 9.60
Success Rate (%) 100 100 100 100 98

PSNR (dB) 8.74 7.89 7.10 6.33 5.63
Success Rate (%) 92 74 44 16 2

Table 6.4: The results of the Gaussian recording noise simulations. The initial
high resolution noisy pattern (1024 × 1024, with the initial dynamic range for
intensity [0.9975 1.0025]) was generated with addition of Gaussian noise to both
real and imaginary parts of the original field. These initial noise patterns (1024×
1024)) were generated by Gaussian noise generator with mean 0 and variance
1. They were added to the real and imaginary parts of the original field after
multiplication with the selected initial noise weight (0.0005 for this simulation).
The intensity of this noisy field in recorded. Then, an independent Gaussian
noise pattern (256 × 256)) was also generated with mean 0 and variance 1. It
was added to the low resolution pattern, which is grabbed randomly from the
intensity of the noisy initial high resolution pattern as it is described in text,
with a prior multiplication with the noise weight from the range V = 0.0002k
where k = 1, 2, . . . , 15 at each simulation iteration. The PSNR values given in
the table are calculated with the total noise power.

earlier simulations, this time an additional independent noise pattern of the size

256× 256 is generated and added to the low resolution pattern at each iteration

with a prior multiplication with the noise weight from the range V = 0.0002k

where k = 1, 2, . . . , 15. Tables 6.4 and 6.5 show the results of the recording noise

simulations.

From these simulations, it is observed that the registration process performs

well up to a limit of noise. For the additive Gaussian noise case in the wave field,

the initial noise patterns are always generated by a Gaussian noise generator with

mean 0 and variance 1. The dynamic range of the intensity of the original pattern

is [0.9975 1.0025]. The noise patterns are added to the real and imaginary parts

of the initial field after a multiplication by the noise weight. The registration

process of the intensity of this field is successful up to a PSNR value of 8 dB.

For the additive uniformly distributed noise case in the wave field, the dynamic

range of the intensity of the initial pattern is same. The noise patterns are

generated by a uniformly distributed noise generator in the interval [0 1]. The
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PSNR (dB) 16.12 14.93 13.85 12.85 11.94
Success Rate (%) 100 100 100 100 100

PSNR (dB) 11.11 10.34 9.64 8.97 8.36
Success Rate (%) 99 98 78 44 9

Table 6.5: The results of the uniformly distributed recording noise simulations.
The initial high resolution noisy pattern (1024× 1024, with the initial dynamic
range for intensity [0.9975 1.0025]) was generated with addition of uniformly
distributed noise to both real and imaginary parts of the original field. These
initial noise patterns (1024 × 1024)) were generated by a uniformly distributed
noise generator in the interval [0 1]. They were added to the real and imaginary
parts of the original field after multiplication with the selected initial noise weight
(0.0005 for this simulation). The intensity of this noisy field in recorded. Then, an
independent uniformly distributed noise pattern (256× 256)) was also generated
in the interval [0 1]. It was added to the low resolution pattern, which is grabbed
randomly from the intensity of the noisy initial high resolution pattern as it is
described in text, with a prior multiplication with the noise weight from the
range V = 0.0002k where k = 1, 2, . . . , 15 at each simulation iteration. The
PSNR values given in the table are calculated with the total noise power.

noise patterns are again added to the real and imaginary parts of the initial

field after a multiplication with the related noise weight. Registration of the

intensity of this field is successful up a PSNR value of 7 dB. Results show us that

registration performs well up to limited PSNR value. In the case of a recording

noise, the results are similar. For those simulations given in Tables 6.4 and 6.5,

a constant initial field noise is assumed to exist with a noise weight V = 0.0005

since under this noise weight registration can still be 100% succesful as seen

from Tables 6.2 and 6.3. An additional noise is added to low resolution parts

grabbed from the intensity of these noisy fields as a recording noise. Registration

is successful up to a PSNR value of approximately 8 dB in both cases. It cannot

perform well under a noise which degrades the sharpness of the fringe patterns.

As a result, the Wigner transform of such a noisy fringe pattern does not result

with sharp enough Wigner lines. Hence, edge detection can not detect them and

the diffraction pattern can not be registered.
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6.2.3 Presence of Multiple Particles

In this simulation setup, performance of the proposed method under multiple

particle scenerios is evaluated. In the problem definiton of this thesis, the object

field was assumed to be consist of only one particle. Just like as it is in noisy

recording case, it is more practical to have more than one particle in real scene-

rios. Although the algorithm is not designed to detect more than one particle,

the Table 6.6 gives the performance of the method under multiple particle case.

The input pattern for these simulations is calculated as explained in Appendix

C with N = 1024, r = 0.5, (Xc, Yc) = (512, 512). The diffraction pattern due to

this input pattern is calculated by the methods in Appendix D with λ = 600nm,

X = 10λ and z = NX2λ. The contribution of the extra particle is calculated

with randomly determined Xc, Yc, Z parameters at each iteration and superposed

onto the pattern calculated for original input pattern. λ,X and r are the same

for the extra particles.

The simulation results in Table 6.6 are evaluated when there is one extra

particle in the object field different than the reference particle. The radius of

the extra particle is the same as the reference particle and 3D position of the

extra particle is randomly determined in each step. During this simulation the

extra particle is constraint to be between the reference object and the recording

equipment.

In each simulation step in Table 6.6, a diffraction pattern of the two particle

system is generated with random 3D position of the extra particle (which is

constrainted to be between reference object and recording equipment) and 100

different random low resolution parts of this pattern is tried to be registered by

automatic methods. Success rate is again the percentage of the low resolution

patterns which are registered within the predetermined error rates. The total

success of the proposed method is 79% (i.e. 3939 successful registrations in 5000
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SIM No SIM1 SIM2 SIM3 SIM4 SIM5
Success Rate (%) 87 99 87 79 71

SIM No SIM6 SIM7 SIM8 SIM9 SIM10
Success Rate (%) 52 90 47 72 92

SIM No SIM11 SIM12 SIM13 SIM14 SIM15
Success Rate (%) 80 100 99 78 88

SIM No SIM16 SIM17 SIM18 SIM19 SIM20
Success Rate (%) 100 64 71 53 82

SIM No SIM21 SIM22 SIM23 SIM24 SIM25
Success Rate (%) 96 83 99 75 95

SIM No SIM26 SIM27 SIM28 SIM29 SIM30
Success Rate (%) 44 13 85 73 88

SIM No SIM31 SIM32 SIM33 SIM34 SIM35
Success Rate (%) 89 89 75 70 89

SIM No SIM36 SIM37 SIM38 SIM39 SIM40
Success Rate (%) 100 42 78 100 26

SIM No SIM41 SIM42 SIM43 SIM44 SIM45
Success Rate (%) 95 76 97 90 100

SIM No SIM46 SIM47 SIM48 SIM49 SIM50
Success Rate (%) 97 91 55 40 98

Table 6.6: The results of the multiple particle simulations with one extra particle
between object and recording equipment
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Figure 6.19: Initial pattern of the simulation 27 from Table 6.6

trials). However, Table 6.6 tells more then this. The minimum success rate

occured at simulation 27 as 13%. The Figure 6.19 shows the initial diffraction

pattern which is used in simulation 27. As it is seen clearly, the extra particle is

very close to reference particle hence the proposed method could not differentiate

between these particles. The proposed method tries to identify the strongest

edges after Wigner transform and then the longest lines in the edge detected

pattern by Hough transform. So it achieves still good success rate if the extra

particle is far enough from the reference particle as it is shown in Figure 6.20

which is the initial diffraction pattern in simulation 13 (with 99% success rate).
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Figure 6.20: Initial pattern of the simulation 13 from Table 6.6
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SIM No SIM1 SIM2 SIM3 SIM4 SIM5
Success Rate (%) 83 85 85 92 95

SIM No SIM6 SIM7 SIM8 SIM9 SIM10
Success Rate (%) 95 92 94 20 38

SIM No SIM11 SIM12 SIM13 SIM14 SIM15
Success Rate (%) 94 95 88 94 93

SIM No SIM16 SIM17 SIM18 SIM19 SIM20
Success Rate (%) 96 100 84 93 96

SIM No SIM21 SIM22 SIM23 SIM24 SIM25
Success Rate (%) 33 59 96 96 98

SIM No SIM26 SIM27 SIM28 SIM29 SIM30
Success Rate (%) 91 98 93 73 77

SIM No SIM31 SIM32 SIM33 SIM34 SIM35
Success Rate (%) 71 98 96 92 93

SIM No SIM36 SIM37 SIM38 SIM39 SIM40
Success Rate (%) 84 97 75 89 55

SIM No SIM41 SIM42 SIM43 SIM44 SIM45
Success Rate (%) 83 98 99 92 93

SIM No SIM46 SIM47 SIM48 SIM49 SIM50
Success Rate (%) 83 93 88 78 88

Table 6.7: The results of the multiple particle simulations with one extra particle
behind object with respect to recording equipment

The simulation procedure of the Table 6.7 is same as the simulation procedure

for Table 6.6 except that this time extra particle is constrainted to be behind the

reference object with respect to recording equipment.

All the formulation is the same as it is explained for Table 6.6. The total

success rate for this simulation is 85% (4271 successful registrations in 5000

trials). All the comments are also same for this simulation as it is seen in Figure

6.21 and 6.22. If the extra particle is near to the reference particle the proposed

automatic method is not well suitable to differentiate between these particles. If

they are seperated well enough as it is in Figure 6.22, the proposed method still

works.
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Figure 6.21: Initial pattern of the simulation 9 from Table 6.7
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Figure 6.22: Initial pattern of the simulation 32 from Table 6.7
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SIM No SIM1 SIM2 SIM3 SIM4 SIM5
Success Rate (%) 50 57 81 17 49

SIM No SIM6 SIM7 SIM8 SIM9 SIM10
Success Rate (%) 75 47 94 45 33

SIM No SIM11 SIM12 SIM13 SIM14 SIM15
Success Rate (%) 10 89 47 53 80

SIM No SIM16 SIM17 SIM18 SIM19 SIM20
Success Rate (%) 57 28 69 55 37

SIM No SIM21 SIM22 SIM23 SIM24 SIM25
Success Rate (%) 88 89 87 46 85

SIM No SIM26 SIM27 SIM28 SIM29 SIM30
Success Rate (%) 58 97 64 55 33

SIM No SIM31 SIM32 SIM33 SIM34 SIM35
Success Rate (%) 58 86 65 31 8

SIM No SIM36 SIM37 SIM38 SIM39 SIM40
Success Rate (%) 96 22 57 53 89

SIM No SIM41 SIM42 SIM43 SIM44 SIM45
Success Rate (%) 36 36 87 32 41

SIM No SIM46 SIM47 SIM48 SIM49 SIM50
Success Rate (%) 48 63 19 48 69

Table 6.8: The results of the multiple particle simulations with two extra parti-
cles, one is strictly behind object with respect to recording equipment and the
other is randomly placed in depth

The last simulation procedure is the three particles case. One of the extra

particles is guarenteed to be behind the reference particle with respect to record-

ing equipment and the other one is randomly placed in depth, either behind the

reference or in front of it. Table 6.8 gives the simulation results of this setup.

Again in each simulation step a three particle diffraction pattern is generated

and 100 low resolution parts of this pattern are tried to be registered by the

automatic registration method proposed in this thesis.

The total success rate for three particle system is 56% i.e. 2819 successful

registrations in 5000 trials. It is clear that as the number of particles increase the

performance of the proposed method decreases seriously since it is more likely to

have an extra particle near the reference object as the number of extra particle
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Figure 6.23: Initial pattern of the simulation 35 from Table 6.8

increases. The extreme case is shown in simulation 35 from Table 6.8 with a

success rate of 8%. The corresponding initial diffraction pattern is shown in

Figure 6.23.

It is clear from the Figure 6.23 one of the extra particles is so much close to

reference particle both in depth and x, y plane. The other extra particle is a bit

far in x, y plane but it is also close to reference object in depth. This formation

yields the worst results within these simulations because the sharpness of the

Wigner lines of all three particles are nearly the same due to close depth relation
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and the length of these lines are also close due to x, y plane arrangement of these

particles.

6.2.4 Radius of the Object and Noisy Recording

In this simulation setup, two parameters are changed at each step to examine the

cross effect of these parameters to the registration. In each step, an object of the

given radius is placed at the center of the initial pattern and a diffraction pattern

is generated at a predetermined depth. Then the additive uniform noise is added

to this pattern multiplied by the given noise weight to gain noisy recording.

Finally, 25 random patterns are grabbed from this noisy pattern and automated

registration is applied. Each cell in Table 6.9 shows the nuber of successful

registration at that step. As it is observed from the Table 6.9, the success of the

registration decreases as the noise level increases or as the object radius increases.

All these results are expected after the simulation steps above.
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30.79 24.76 21.24 18.74 16.81 15.22 13.89 12.72

0.5 25 25 25 25 25 25 22 16
1 25 25 25 25 24 25 25 23
1.5 25 22 25 22 24 21 24 22
2 25 25 25 21 22 21 21 21
2.5 25 25 25 24 25 25 25 25
3 24 24 25 25 24 25 25 24
3.5 24 25 25 25 25 24 25 23
4 23 23 24 25 23 24 24 25
4.5 24 24 23 23 24 22 25 23
5 24 24 22 25 24 24 24 24
5.5 25 23 25 18 24 24 24 21
6 22 24 24 24 20 22 24 20
6.5 20 18 22 21 23 20 19 19
7 20 22 16 22 21 20 20 19
7.5 14 20 19 12 18 14 16 16
8 16 15 17 16 15 17 18 17
8.5 16 13 14 14 18 12 13 15
9 10 12 14 14 14 13 15 11
9.5 12 18 13 12 14 11 15 9
10 7 15 12 14 8 10 8 10

Table 6.9: The results of the simulations with respect to both radius and noise
changes (Horizontal variable is PSNR in dB and vertical variable is object radius
in pixels). The dynamic range of the initial pattern is [0.9975 1.0025]. At each
step, an initial high resolution diffraction pattern is generated for the given object
radius. Then, a uniformly distributed random pattern is generated in the interval
[0 1] and is multiplied by the given noise weight in the related column. Then
25 random low resolution patterns are grabbed from this high resolution noisy
initial pattern as it is described earlier in text and registration method is applied.
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Chapter 7

Conclusion

In this thesis, we have presented a set of techniques that can be used to regis-

ter and stitch some low resolution diffraction patterns with no prior knowledge

about the positions of the recording sensors, in order to form a higher resolution

diffraction pattern. As explained in the introduction chapter, a higher resolu-

tion diffraction pattern has some visual advantages when it is reconstructed (i.e.

larger viewing angle). To deal with a simpler problem, we stuck ourselves to a

situation in which the recorded diffraction patterns (or computed ones for sim-

ulation purposes) are parallel to the object field (i.e. no tilted recordings or

reconstructions). In this case, the problem reduces to the extraction of the 3D

position of the recorded object from each low resolution diffraction pattern itself.

Wigner transform is well explained in the literature as a good candidate to

extract position information from the diffraction patterns. All the mathematics

beyond this transform is well stated in literature [18]. In this thesis, an edge

detection (i.e. Canny edge detection is applied and it is well known in literature

[23]) and Hough transform (it is also well known in the literature [24]) is applied

to Wigner transform output in order to be able to automatically extract the

position information just from the diffraction patterns themselves. Simulations
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show that these estimates of the position parameters are not fine enough to stitch

these diffraction patterns in order to form a high resolution diffraction pattern.

Some iterative methods are used to make these rough estimates finer.

The criterion in all the iterative methods used during this thesis is the local

variance of the reconstructed patterns. A moving local variance filter is used

to generate the variance parameter to use as a constraint and the patterns hav-

ing the maximum local variance are used all over the thesis. The effect of a

wrong depth parameter is blurring (i.e. defocusing). Since diffraction pattern

generation is a kind of coherant imaging, this blurring effect takes place as fringe

patterns and seriously degrades the local sharpness of the pattern. The effect of

bad (x, y) parameter estimation is the generation of a virtual object which also

seriously degrades the local sharpness of the pattern. Hence, as it is seen from

the relevant figures, local variance is a good constraint to converge to the actual

3D position parameters. It is also used in stitching process to be able to make

(x, y) estimates finer and to get rid of virtual object problem.

In the stitching process a zeroth order interpolator is used to merge low

resolution diffraction patterns. As seen from the results of the stitching process,

this interpolator is good enough to serve our stitching purposes. As it is clear

from the stitching results, the entire system works well together to form a high

resolution diffraction pattern.

The enhancement in the sharpness of the reconstructed object is clearly ob-

servable in Figure 6.16 through items a to e. This enhancement is due to in-

creasing information content in the high resolution resultant pattern and due to

included higher frequency content of the fringe patterns as the number of low

resolution patterns increase in the process. It is also observable from Figure 6.16

and is provable by local variance filter that the contribution of the second pattern

(i.e. the difference between first and the second patterns in Figure 6.16) enhance

the sharpness more than the contribution of the fifth pattern (i.e. the difference
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between fourth and the fifth patterns in Figure 6.16). To simply explain this

difference, let us assume that all the low resolution patterns are independent

(i.e. they carry no redundant information, a non overlapping scenario can be

assumed). In this case, the contribution of one pattern to another pattern af-

ter a successful registration and stitching can be thought as doubling the total

information in the initial pattern (a successful registration and stitching can be

accepted as merging all the information content in different patterns), however,

the contribution of one pattern to other four patterns which have been success-

fully registered and stitched increases the information content just by 1.25 times

the initially stitched pattern from first four patterns. Hence, even if all the pat-

terns are independent, the marginal contribution of a single pattern reduces as

the number of total patterns included increases.

Optimization of the simulation is conducted in the programming to reduce

the required time to finish the simulations. These are very basic programming

tricks (i.e. using vector notations in MATLAB) and some simple assumptions

about the iterations (i.e. local variance filter is applied to non-overlapping sec-

tions of the patterns instead of applying to all possible sections on a pattern

to reduce time and iterations are done in a small neighborhood assuming that

the Wigner parameters are well enough to fit on these neighborhood which are

explained in Section 5.3). However, it may be possible to further reduce the time

of simulations if faster result responses are required.

The simulations are conducted only for the registration process under the

proposed method using various scenarios. Some error limits were predetermined

for the registration process under which the stitching process is guaranteed to

converge to a solution (i.e. error less than 10 pixels in (x, y) plane and error

less than 5% of the actual depth in z direction). The patterns which could be

registered with an error smaller than these predetermined limits were accepted

to be successfully registered.
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After these simulations, it is understood that the proposed method is quite

sensitive to object radius. As the object radius increases the success rate of the

method decreases appreciably. That is because of the sensitivity of the Wigner

transform to the information content. The effect of an object to the diffraction

pattern with a bigger radius is the same as the effect of an object with a smaller

radius but which is nearer to the recording equipment in depth. So, it is better

to use this method with small objects (i.e. objects having radius smaller then 6-7

pixels). However, it may be still possible to use this method with larger objects

(i.e. objects nearly having radius of 40 pixels) if human interaction is allowed

because Wigner lines may still be visible when they can not be detected by edge

detection.

Noise is an other important parameter. It is not possible to record a holo-

gram without noise in real life. The performance of the proposed method is

evaluated under various noise scenarios; i.e. additive Gaussian noise in record-

ing on top of additive Gaussian noise in original pattern and additive uniformly

distributed noise in recording on top of additive uniformly distributed noise in

original pattern. The method is successful up a PSNR value of 8 dB for all cases.

A final realistic error source was the presence of the multiple particles in the

system. The problem for this thesis was formed to have only one particle (i.e.

the reference particle) in the object field. However, it is much more realistic

to have more than one particle in the object field. The simulation of this case

showed that proposed method still works well if the extra particles are far enough

from the reference particle. Since the method does not have an extra algorithm

to differentiate between different particles, it does not work well with multiple

particles. As a future work, this case can be investigated to handle different

particles since the Wigner trasform of the different particles results in different

line pairs having different slopes and positions in Wigner domain according to

their 3D position.
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Another important contributon to this study is to include the tilted plane

recordings and reconstructions. Since in real life, it is very hard to have perfect

parallelism, a tilted plane analysis is a far more realistic scenario than a parallel

one. In addition to 3D position parameter estimation, some angle estimations

should be included in the study in registration process and a parallelling algo-

rithm should be provided within the automated registration process. In such

case, the same stitching algortihm is then applicable to solve the superresolution

problem.
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APPENDIX A

General Information About

Patterns

The axix properties of all the figures within this thesis is given in Figure A.1

unless otherwise is mentioned for a spesific figure. Size of the figures and axis

Figure A.1: Axis properties of the figures within thesis

labels are written in the caption part if necessary. For all the pattern figures, the

pixel values are between [0 255] 255 being the brightest pixel in the pattern.
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APPENDIX B

Discrete Fourier Transform

During this thesis, discrete Fourier transform is used to transform space signals

to frequency domain. 1D and 2D, forward and inverse transform equations are

given below.

• 1D forward discrete Fourier transform of f [n] of length N (i.e. n ∈

[1, 2, . . . , N ]):

F [k] =
N
∑

n=1

f [n] exp

(

−j2π (n− 1)(k − 1)

N

)

(B.1)

where k ∈ [1, 2, . . . , N ].

• 1D inverse discrete Fourier transform of F [k] of length N (i.e. k ∈

[1, 2, . . . , N ]):

f [n] =
1

N

N
∑

k=1

F [k] exp

(

j2π
(n− 1)(k − 1)

N

)

(B.2)

where n ∈ [1, 2, . . . , N ]

• 2D forward discrete Fourier transform of f [n,m] of size N ×M (i.e. n ∈

[1, 2, . . . , N ] and m ∈ [1, 2, . . . ,M ])

DFT2(f) △
=F [k, l] =

N
∑

n=1

M
∑

m=1

f [n,m] exp

(

−j2π (n− 1)(k − 1)

N

(m− 1)(l − 1)

M

)

(B.3)
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where k ∈ [1, 2, . . . , N ] and l ∈ [1, 2, . . . ,M ]

• 2D inverse discrete Fourier transform of F [k, l] of size N ×M (i.e. k ∈

[1, 2, . . . , N ] and l ∈ [1, 2, . . . ,M ])

IDFT2(F ) △
=f [n,m] =

1

NM

N
∑

k=1

M
∑

l=1

F [k, l] exp

(

j2π
(n− 1)(k − 1)

N

(m− 1)(l − 1)

M

)

(B.4)

where n ∈ [1, 2, . . . , N ] and m ∈ [1, 2, . . . ,M ]
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APPENDIX C

Input File Generation

The object function used in this thesis is a circular opaque object in front of a

transparent background which is given by the following equation for size (N×M).

f [y, x] =







0 , if (y − Yc)2 + (x−Xc)
2 ≤ r2

1 , otherwise







(C.1)

where y ∈ [1, 2, . . . , N ], x ∈ [1, 2, . . . ,M ], (Yc, Xc) is the center coordinate of the

circular object and r is the radius of the object.
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APPENDIX D

Propagation of Diffraction

Patterns

The propagation method used in this thesis is explained by 3.30 in continuous

domain. This chapter is about how to calculate these patterns in discrete domain.

Required parameters:

λ = the wavelength of the used coherent light source

X = sampling period of the recording equipiment

N = size of onr side of (N ×N)

Z = relative depth with respect to object field at which the diffraction

pattern will be calculated

Using these parameters the following ones are calculated:

β = NX/λ (D.1)

P = Z/X (D.2)

After that, using these parameters the transfer function associated with prop-

agation is generated.
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K[n,m] = exp

(

j
2π

N

√

β2 − α2 − γ2P
)

(D.3)

where K is the matrix that represents propagation and n,m ∈ [1, 2, . . . , N ] and

α,γ are defined as follows:

α =







n− 1 for n ∈ [1, N/2]

n−N − 1 for n ∈ [N/2 + 1, N ]







(D.4)

γ =







m− 1 for m ∈ [1, N/2]

m−N − 1 for m ∈ [N/2 + 1, N ]







(D.5)

DFT2(x) means the discrete Fourier transform of the 2D array x as it is

explained in Appendix B Equation B.3.

IDFT2(X) means the inverse discrete Fourier transform of the 2D array X

as it is explained in Appendix B Equation B.4.

I is the size N ×N input matrix to be propagated.

G is the size N ×N result of the propagation.

Operator ’.’ is used to mention element by element multiplication of matrices.

G = IDFT2(DFT2(I) . K) (D.6)

The output matrix G is a complex valued matrix. Absolute value of this

matrix is used as the diffraction pattern intensity where necessary. An element

of matrix G is shown as G(n,m) where n,m ∈ [1, 2, . . . , N ] and n being the

variable to represent rows, m being variable to represent columns.
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APPENDIX E

Discrete Wigner Transform

The method to calculate discrete Wigner transform of a 1D function is taken

from [18]. Some basic steps are restated here to provide completeness.

The expression for discrete Wigner transform is given by Equation 4.2. J [n] is

the constant term adjusted version of the hologram function as given by Equation

4.18 of length N i.e. n ∈ [1, 2, . . . , N ]. Let Wj(n, θ) be the Wigner transform of

the function J [n]. From the properties of Wigner transform explained in Chapter

4, we can conclude that Wj(n, θ) will be nonzero only for n ∈ [1, 2, . . . , N ]. It

is also stated that Wj(n, θ) is a periodic function with respect to variable θ

with a period of π. Hence, we need to calculate Wj(n, θ) only for the intervals

n ∈ [1, 2, . . . , N ] and θ ∈ (−π/2, π/2].

Let us also assume that Wj(n, θ) is periodically sampled version such that

θ = πp/N where p ∈ [−(N/2) + 1, (N/2)] is an integer. Then the discrete

transform becomes as follows:

Wj

(

n,
π

N
p
)

= 2

N/2−1
∑

k=−N/2+1

yn(k) exp

(

−j 2π
N
kp

)

(E.1)

[18] where yn(k) = J(n+ k)J(n− k) for integer k ∈ [−N/2 + 1, N/2− 1].
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Then we can define a new sequence zn(k) such that [18]

zn(k) =



















2yn(k) 0 ≤ k ≤ N/2− 1

0 k = N/2

2yn(k −N) N/2 + 1 ≤ k ≤ N − 1



















(E.2)

then the Equation E.1 becomes [18]

Wj

(

n,
π

N
p
)

= 2
N−1
∑

k=0

zn(k) exp

(

−j 2π
N
kp

)

(E.3)

where p ∈ [−N/2 + 1, . . . ,−1, 0, 1, . . . , N/2].

Since we know the definiton of 1D discrete Fourier transform from Equation

B.1 for p ∈ [1, 2, . . . , N ], if we call W (p) = DFT (zn(k)) then it is possible write

the relation below:

Wj

(

n,
π

N
p
)

=







W (p+ 1) 0 ≤ p ≤ N/2

W (p+ 1 +N) −N/2 + 1 ≤ p ≤ −1







(E.4)
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APPENDIX F

Canny Edge Detection

Edges in an image can be defined as the places with high intensity contrast.

They are generally boundaries of the objects on a regular image. They may be

used to extract object or feature information from the image. An edge detection

algorithm tries to find these edges on a given image. These algorithms reduce

the information content on the images, however, they highlight the desired edge

information on the image under process.

Canny edge detection algorithm has four major steps[23].

F.1 Smoothing and enhancement

This step is conducted with a Gaussian filter to reduce the effect of noise in

edge detection. The image of concern is convolved with a 2D Gaussian filter in

order to supress noise and enhance the quality of edges in the image. The discrete

domain details of the 2D convolution are given in Algorithm 2. Let us call I(x, y)

the image of concern and S(x, y) the noise suppressed smoothed image then the

relation

S(x, y) = I(x, y) ∗ ∗G(x, y) (F.1)
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holds where

G(x, y) = σ2 exp

(

−x
2 + y2

2σ2

)

(F.2)

for x, y ∈ [1, 2, . . . , N ] and σ being a parameter for edge detection algorithm.

Details of the smoothing and enhancement method is given in Algorithm 1 where

σ = 1 is used in this thesis and convolution method is given in Algorithm 2. The

variable width is a dependent variable of σ which shows the number of elements

in the Gaussian filter, for the last element to be less than 0.0001. Since σ = 1

for this thesis then width = 4 is also constant through this thesis.

Algorithm 1 Smooth(I, σ, width)

Require: A 2D image I
Ensure: All values of I ∈ [0 255], σ > 0, width > 0

1: {Apply 2D Gaussian filter to smooth the image}
2:

3: T ← [−width (−width+ 1) . . . (width− 1) width]
4: GAU ← zero vector of size 2 ∗ width+ 1
5: for i = 1→ (2 ∗ width+ 1) do

6: GAU(i)← exp
(

−T (i)2

2σ2

)

/(2πσ2) {1D Gaussian Filter}
7: end for

8:

9: {Since Gaussian Filter is seperable we can convolve with 1D Gaussian in each
direction to get the result of a 2D Gaussian}

10: IS ← Conv(I,GAU) {Run the filter on rows}
11: IS ← Conv(IS, GAU

T ) {Run the filter on columns}
12: return IS
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Algorithm 2 Conv(I, C)

Require: Matrices I and C
Ensure: # of dimensions of I ≥ # of dimensions of C

1: IS ← a zero matrix with size equal to the size of I
2: W ← a zero matrix with size equal to the size of C
3: RC ← (# rows of C - 1) / 2
4: CC ← (# columns of C - 1) / 2
5:

6: {For all elements of I}
7: for i = 1→ # rows of I do

8: for j = 1→ # columns of I do

9: {Select the appropriate elements for convolution, for elements that are
outside the boundaries choose the closest boundary element}

10: for k = 0→ RC do

11: if (i− k) > 0 then

12: KS ← (i− k)
13: else

14: KS ← 1
15: end if

16: if (i+ k) ≤ # rows of I then

17: KL ← (i+ k)
18: else

19: KL ← # rows of I
20: end if

21: for l = 0→ CC do

22: if (j − l) > 0 then

23: JS ← (j − l)
24: else

25: JS ← 1
26: end if

27: if (j + l) ≤ # columns of I then

28: JL ← (j + l)
29: else

30: JL ← # columns of I
31: end if

32: W (RC − k, CC − l)← I(KS, JS)
33: W (RC − k, CC + l)← I(KS, JL)
34: W (RC + k, CC − l)← I(KL, JS)
35: W (RC + k, CC + l)← I(KL, JL)
36: end for

37: end for

38: IS(i, j)← C ·W {Apply Convolution}
39: end for

40: end for

41: return IS
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F.2 Detection

The gradient is calculated in this step of edge detection algorithm. Gradient is a

unit vector pointing at the direction of maximum change. Hence, it is legitimate

to use gradient to detect edges since edges are defined to be the places with

high contrast in an image. First, gradient in X and Y directions are calculated

from the output of the previous step by using a 2D Gaussian filter as explained

in detail in Algorithm 3, then the magnitude and the phase of the gradient is

calculated as in Equations F.3 and F.4. Details of the gradient calculation is

given in Algorithm 3 where σ = 1 and width = 4 is used as explained before in

this thesis.

||∇S(x, y)|| =

√

(DX(x, y))
2 + (DY (x, y))

2 (F.3)

θ(x, y) = tan−1

(

DY (x, y)

DX(x, y)

)

(F.4)

for x, y ∈ [1, 2, . . . , N ].

Algorithm 3 Gradient(I, σ, width)

Require: A 2D image I
Ensure: I is smoothed using Smooth(I, σ, width), σ > 0, width > 0

1: {Apply the derivative of a 2D Gaussian filter to detect edges}
2: MID ← width+ 1
3: DGAUX ← zero matrix of size (2 ∗ width+ 1) by (2 ∗ width+ 1)
4: for i = 1→ (2 ∗ width+ 1) do
5: for j = 1→ (2 ∗ width+ 1) do
6: x← (i−MID)
7: y ← (j −MID)

8: DGAUX(i, j)← −x exp
(

−x2+y2

2σ2

)

/(πσ2)

9: end for

10: end for

11:

12: {2D Gaussian filter in Y direction is the transpose of the filter in X direction}
13: DX ← Conv(I,DGAUX) {Run the filter on rows}
14: DY ← Conv(I,DGAUXT ) {Run the filter on columns}
15: return DX and DY
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F.3 Edge thinning

This step is designed to reduce the ridges on the edges to detect edges as thin

as possible (i.e. one pixel edges). The algorithm compares the gradient at each

point with the edge normal and decides to erase that pixel if it forms a ridge on

that edge. A pixel is assumed to form a ridge if its magnitude is smaller than

one of the two pixels in the perpendicular direction to the gradient as explained

in Algorithm 4.

Algorithm 4 Thin(M,A)

Require: A 2D gradient magnitude matrix M and a gradient angle matrix A
Ensure: M and A are calculated using Gradient function and equations F.3

and F.4.

1: MS ← zero matrix of size equal to the size of I
2: for i = 1→ # rows of M do

3: for j = 1→ # columns of M do

4: {Rounding after bounding to [0 180)}
5: Θ← |A(i, j)| rounded to the nearest multiple of 45
6:

7: if θ == 0 then

8: ii← 1, jj ← 0
9: else if θ == 45 then

10: ii← 1, jj ← 1
11: else if θ == 90 then

12: ii← 0, jj ← 1
13: else if θ == 135 then

14: ii← 1, jj ← −1
15: end if

16:

17: V1 ←M(i+ ii, j + jj), V2 ←M(i− ii, j − jj)
18: if M(i, j) > V1 Λ M(i, j) > V2 then

19: MS(i, j)←M(i, j)
20: else

21: MS(i, j)← 0
22: end if

23: end for

24: end for

25: return MS
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F.4 Thresholding

The aim of this step is to remove the false edges within the detected ones. It is

not easy nor sometimes possible to find a single threshold to detect all the desired

edges in a pattern. Thus, Canny edge detection algorithm uses hysteresis thresh-

olding with two thresholds. Let us call high threshold as tH and low threshold

as tL. The algorithm begins with applying the high threshold tH and marking

the strong edges. Due to the high treshold, it is possible to lose some weak real

edges in the original pattern that are connected to the edges. To remedy, strong

edges are traced along the direction of the gradient and encountered edges are

added to the edge list if their magnitude is greater than tL. Details of this step

is given in Algorithm 5.
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Algorithm 5 Threshold(M,A, tL, tH)

Require: A 2D gradient magnitude matrix M and a gradient angle matrix A
Ensure: M,A are outputs of the Thin function, tL > 0, tH > tL

1: EDG← zero matrix of size equal to M {All edges}
2: SEDG← zero matrix of size equal to M {Strong edges}
3:

4: {First apply the high threshold}
5: for i = 1→ # of rows of M do

6: for j = 1→ # of columns of M do

7: if M(i, j) > tH then

8: EDG(i, j)← 1
9: SEDG(i, j)← 1

10: end if

11: end for

12: end for

13:

14: {Then add weak edges to the list if they are connected to strong edges}
15: for i = 1→ # of rows of M do

16: for j = 1→ # of columns of M do

17: if SEDG(i, j) == 1 then

18: (ic, jc)← indices according to (i, j) and the direction given by A(i, j)
19:

20: {Continue until magnitude is below low tL or a strong edge is hit}
21: while M(ic, jc) > tL Λ SEDG(ic, jc) == 0 do

22: EDG(ic, jc)← 1
23: (ic, jc)← indices considering (ic, jc) and A(ic, jc)
24: end while

25: end if

26: end for

27: end for

28:

29: {No need to differentiate between strong and weak edges now, return all
edges}

30: return EDG
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APPENDIX G

Hough Transform

Hough transform is a 2D-to-2D mapping of binary patterns that aims to detect

lines in the input pattern [24]. It maps a non-background point from the in-

put binary pattern to a line in the output pattern by using the parametric line

equation (Equation G.1).

ρ = x cos θ + y sin θ (G.1)

The input pattern is assumed to be in (x, y) coordinates and the output is

generated in (θ, ρ) coordinates. ρ is the magnitude of the vector perpendicular

to the line and originating from the origin as shown in Figure G.1. θ is the angle

of this vector in degrees clockwise from the positive x-axis.

The output of the Hough transform is a 2D accumulator matrix (HT ) whose

rows correspond to ρ values and columns correspond to θ values. Initially all

the values in HT are zero. For every non-background pixel in input pattern ρ

is calculated for each θ in the desired interval with the Equation G.1. Then ρ

is rounded to select a suitable row from HT and then the corresponding cell in

HT is incremented. At the end of this method, any value from the acculamator

matrix N = HT (t, r) means that there are N pixels in the original pattern lying
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Figure G.1: This figure explains the relation between (x, y) coordinates and (θ, ρ)
coordinates in Hough transform.

on the line specified by θ(t) and ρ(r). Hence, the maximum values in the HT

represents the possible lines in the original pattern.

It is possible to define a desired θ range in the algorithm. It is also possible to

conduct this algorithm for any desired θ and ρ resolutions, however, it is impor-

tant to note that higher resolutions will yield larger accumulation matrices which

can become difficult to process. It is legitimate to search for a predetermined

number of peaks in the accumulator matrix if the potential number of lines to be

detected in the original pattern is known. It is also legitimate to suppress a close

neighborhood of a peak in the accumulator matrix due to numerical errors. As

a last remark on Hough transform, it is also practical to search for peaks which

are larger than a given threshold in order to suppress false line detections.

Required inputs to generate discrete Hough transform:

• I = input binary pattern of size N ×N
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• ρ resolution = the step to increment ρ values. Assumed to be 0.5 during

this thesis.

• θ resolution = the step to increment θ values. Assumed to be 0.1 degrees

during this thesis.

• NH = tells the neighbourhood of a peak to be suppressed after detection.

Assumed to be 5 pixels during this thesis.

• NOL = tells how many peaks to search in the accumulator matrix (i.e.

how many different lines to detect). Assumed to be 8 during this thesis.

• PH = the threshold for which a peak is accepted if it is greater than this

threshold. Assumed to be 0.8 times the maximum value in HT.

Parameters:

• ρ ∈ [0, 0.5, 1, . . . , N − 1, N − 0.5, N ] length = 2N-1

• θ ∈ [−90, − 89.9, − 89.8, . . . , − 0.1, 0, 0.1, . . . , 88.8, 88.9, 89] length

= 1800

• HT = (2N − 1× 1800) matirx of all entries are initially zero.

The algorithm of discrete Hough transform:

• For each pixel in I satisfying I(y, x) = 1, calculate ρ for each possible θ by

Equation G.1.

– round ρ to fit an integer in [1,2N-1].

– increment the cell in HT by 1 with row number equal to rounded ρ

and corresponding column number for related θ.

• Find the position and value of the global maximum of HT (i.e. m =

max(HT (ρ, θ)))
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• Record corresponding θ and ρ values for this maxima

• Define PH = 0.8m

• Delete the data in HT in the neighbourhood of this maxima (i.e. a NH ×

NH matrix segment maxima being in the middle)

• Go ahead to find new global maximum of HT , record the corresponding θ

and ρ values if this maxima is greater than PH, delete the neighbourhood.

Repeat this step until finding NOL peaks or until the newly found peak is

not greater than PH.

• Recorded θ and ρ values represent the detected lines by Hough transform.
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