
SIMULATION OF STEADY-STATE RESPONSE OF
TIP-SAMPLE INTERACTION FOR A TORSIONAL

CANTILEVER IN TAPPING MODE ATOMIC FORCE
MICROSCOPY FOR MATERIAL

CHARACTERIZATION IN NANOSCALE

a thesis

submitted to the department of electrical and

electronics engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By
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ABSTRACT

SIMULATION OF STEADY-STATE RESPONSE OF
TIP-SAMPLE INTERACTION FOR A TORSIONAL

CANTILEVER IN TAPPING MODE ATOMIC FORCE
MICROSCOPY FOR MATERIAL

CHARACTERIZATION IN NANOSCALE

Şeref Burak Selvi

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Abdullah Atalar

August 31, 2010

Dynamic atomic force microscopy (AFM) techniques involving multifrequency

excitation or detection schemes offer improved compositional sensitivity and

quantitative material property imaging. A correct interpretation of cantilever

vibrations in multifrequency excitation and detection schemes demands an im-

proved understanding of the effects of enhanced high frequency vibrations on

the steady-state dynamics of the cantilever and in particular, on the tip-sample

interaction force.

In this thesis, a simulation background is developed with proper modelling of

tip-sample ensemble for accurate simulation of tip-sample interaction when mul-

tifrequency excitation and detection schemes are utilized. The simulation results

are analyzed and used for material characterization. The tip-sample ensemble is

modelled as a multiple degree of freedom system that includes torsional mode and

higher order flexural modes of the cantilever. The nonlinear behavior of sample

surface is also included in the model. This mechanical model is transformed into

an electrical circuit and an electrical circuit simulator is used to find steady-state

of the circuit. Thereby, a simulation of steady-state dynamics of multifrequency

imaging schemes is achieved.

Using the developed simulation tool, the effect of torsional vibrations and

higher order flexural vibrations on steady-state of tip-sample interaction is in-

vestigated. The tip trajectory and tip-sample interaction force are calculated for

torsional harmonic cantilevers. The potential of torsional harmonic cantilevers in

reconstruction of tip-sample interaction force for the quantitative estimation of
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material properties is verified. Change in amplitude of torsional harmonics with

respect to elastic modulus (sensitivity) is investigated. It is shown that sensitiv-

ity of a particular torsional harmonic changes with sample stiffness and higher

harmonics are more sensitive to change in stiffness. Additionally, a noise analysis

of torsional harmonic cantilevers is made and included in the simulations. The

tip-sample interaction force is recovered from the simulated torsional vibration

signal and the effective elastic modulus of the sample is estimated. It is observed

that accuracy of the estimation is affected by number of torsional harmonics used

in the recovery of interaction force.

Keywords: Atomic force microscope, torsional harmonic cantilever, harmonic

imaging, multifrequency imaging, tip-sample interaction, material characteriza-

tion.



ÖZET

NANO ÖLÇEKTE MATERYAL KARAKTERİZASYONU
İÇİN VURMA MODU ATOMİK KUVVET

MİKROSKOBİSİNDE TORSİYONEL KALDIRAÇ
KULLANILDIĞINDA UÇ-YÜZEY ETKİLEŞİMİNİN

DENGE DURUMU DAVRANIŞININ SİMÜLASYONU

Şeref Burak Selvi

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Abdullah Atalar

31 Ağustos 2010

Çoklu frekansta eksitasyon ve deteksiyon yöntemlerini kullanan dinamik

atomik kuvvet mikroskopi teknikleri normalden daha iyi madde kompozisyonu du-

yarlılığı sağlamakta ve materyal özelliklerinin kuantitatif olarak görüntülenmesini

olanaklı kılmaktadır. Çoklu frekans eksitasyon ve deteksiyon yöntemleri kul-

lanıldığında elde edilen kaldıraç titreşimlerinin doğru anlamlandırılabilmesi için

güçlendirilmiş yüksek frekanslı titreşimlerin kaldıraç ve uç-yüzey kuvvetine etk-

isinin iyice anlaşılması gerekmektedir.

Bu tezde, çoklu eksitasyon ve deteksiyon yöntemleri kullanıldığı zaman uç-

yüzey sisteminin davranışının aslına uygun hesaplanabilmesi için bir simülasyon

altyapısı oluşturuldu. Simülasyon sonuçları yüzeydeki maddelerin karakterizasy-

onu için kullanıldı. Uç-yüzey birlikteliği, kaldıracın torsiyonel modu ile yüksek

fleksiyonel modlarının da hesaba katıldığı bir çoklu serbestlik derecesi sistemi

olarak modellendi. Yüzeyin doğrusal olmayan (nonlineer) davranışına da mod-

elde yer verildi. Mekaniksel bu model bir elektrik devresine transform edildi ve

devrenin kararlı durumu devre simülatörü kullanılarak çözüldü. Bu sayede çoklu

frekans görüntülemenin kararlı durumunun simülasyonu yapılmış oldu.

Geliştirilen simülasyon aracı kullanılarak torsiyonel titreşimlerin ve yüksek

seviye fleksiyonel titreşimlerin uç-yüzey etkileşimine olan etkisi araştırıldı.

Uç yörüngesi ve uç-yüzey etkileşim kuvveti torsiyonel kaldıraçlar için hesap-

landı. Kuantitatif materyal karakterizasyonuna torsiyonel kaldıraçların mukte-

dir olduğu sonuçlarla desteklendi. Yüzey sertliğine göre torsiyonel harmoniklerin
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büyüklüklerindeki değişim araştırıldı. Torsiyonel harmonikler yüzey sertliğine du-

yarlı olduğu ve bu duyarlılığın yüksek torsiyonel harmoniklere gidildikçe daha da

arttığı görüldü. Bunlara ek olarak torsiyonel kaldıraçlar için gürültü analizi de

yapıldı ve modele eklendi. Simülasyon sonucunda çıkan torsiyonel titreşim sinyali

kullanılarak uç-yüzey etkileşim kuvveti hesaplandı ve bu hesaplanan sinyalden

yüzey sertliği parametresi kestirildi. Kestirimin doğruluğunun etkileşim kuvvetini

geri hesaplamada kullanılan torsiyonel harmonik sayısı ile doğru orantılı olduğu

görüldü.

Anahtar sözcükler : Atomik kuvvet mikroskobu, torsiyonel harmonik kaldıraç,

harmonik görüntüleme, çok frekanslı görüntüleme, uç-yüzey etkileşimi, materyal

karakterizasyonu.
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Chapter 1

INTRODUCTION

Atomic force microscope [1] (AFM) is one of the most commonly used imag-

ing tools in nanotechnology. Among the imaging modes of AFM, tapping mode

(TM) [2] is widely used especially on soft samples, because the gentle interac-

tion forces can be achieved (peak forces as low as 600pN) [3], it enables a high

spatial resolution and results in less lateral interaction compared to the other

imaging modes [4]. In this mode, AFM cantilever is excited at or near its funda-

mental resonance frequency and the tip experiences a nonlinear interaction force

periodically. This periodic nonlinear force gives rise to the vibrations on the

cantilever that are at the integer multiples (higher harmonics) of the excitation

frequency [5].

The topography of the sample surface and the phase of the first flexural har-

monic are measured in a typical TM-AFM imaging. The topography and the

phase are not sufficient alone to extract the material properties of a given sam-

ple, because the measured parameters (the amplitude and the phase of the first

harmonic of the cantilever motion) provide only a time averaged value of the

tip-sample interaction force (Fts) [5, 6]. However, it is the higher harmonics of

the vibrations on the cantilever that contain the information about the material

properties [7, 8, 9, 10, 11]. Therefore, the higher harmonics imaging is crucial for

the extraction of the material properties such as elasticity and surface energy.

1



CHAPTER 1. INTRODUCTION 2

Difficulty related to the higher harmonics is that they are small in magnitude

compared to the first harmonic [11], because of the filtering effect of the trans-

fer function of the high-Q cantilever on the off-resonance harmonics. Therefore,

the harmonics that are far from the resonance frequency of the closest vibra-

tional mode is attenuated and can not be accessed without a lock-in amplifier.

To enhance the higher harmonics, multifrequency imaging techniques have been

proposed. These techniques can be listed as designing cantilevers with special

geometries [12, 13, 14, 15], using wide bandwidth ultrasonic force sensing probes

instead of cantilever [16, 17], excitation and detection of multiple modes of the

cantilever simultaneously [18, 19, 20, 21, 22, 23] and driving cantilever with two

frequencies that are close to first resonance frequency to generate intermodulation

products [24].

In order to interpret the effect of the enhanced higher harmonics on the steady-

state of the tip-sample interaction accurately, the modelling of the tip-sample

ensemble evolves from the single degree of freedom (SDOF) system to the multiple

degree of freedom (MDOF) system [7]. Prior studies modelled the tip-sample

ensemble as a single harmonic oscillator with a nonlinear load where system is

described by only one resonant mode (first flexural mode) and solved in one

harmonic (the first harmonic of the flexural vibrations). Hence, SDOF models

discard the higher harmonics. In MDOF modelling [7], the tip-sample ensemble

is described by one or more coupled harmonic oscillators and solved in more than

one harmonic. MDOF modelling of the tip-sample ensemble is inevitable to be

able to simulate the steady-state of TM-AFM when multifrequency excitation or

detection schemes are used.

In this work, we model the tip-sample ensemble as a MDOF system and use

a transient time domain analysis to solve the steady-state dynamics of the model

including flexural and torsional harmonics and modes in the calculations. We

focus on the steady-state responses of the torsional harmonic cantilevers [13]. We

modify the equivalent electrical circuit model of the tip-sample ensemble purposed

in [10, 25] in order to (i) take the torsional vibrations into account, (ii) model the

sample with the nonlinear components instead of the linear ones and (iii) take

the noise into account. Hence, the steady-state response of a torsional harmonic
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cantilever can be simulated in accordance with the experiments.

Organization of the thesis is as follows: Chapter 2 gives the detailed infor-

mation about the simulation setup, the noise analysis and the implementation

of the whole system as an electrical circuit. Chapter 3 presents the simulation

results about the steady-state behavior of the torsional harmonic cantilever and

the sample surface. Chapter 4 gives the conclusions.



Chapter 2

SIMULATION BACKGROUND

The chapter starts with the overview of the overall system, continues with the

introduction of the mechanical modelling of a typical torsional harmonic can-

tilever (THC) and its electrical equivalent, then continues with the modelling of

the interaction between the cantilever tip and the sample surface. The chapter

ends with the noise analysis and the implementation of the whole system as an

electrical circuit.

2.1 Overview of the Overall System

In order to simulate a tapping mode atomic force microscopy (TM-AFM) exper-

iment accurately, each element of the overall system (Fig. (2.1)) should be well

modelled. These elements are the (i) cantilever with a sharp tip on the free end,

(ii) sample surface, (iii) interaction force between the tip and the sample surface,

(iv) components of the optical lever detection scheme which is composed of a

laser and a photo detector, (v) feedback control electronics.

A typical cantilever is a rectangular beam whose one end is clamped and glued

to a piezoelectric actuator that drives the clamped end with a sinusoidal excita-

tion. This sinusoidal excitation makes the free end of the cantilever where the

4
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Figure 2.1: Typical tapping mode atomic force microscopy. The elements of the
system are given in the figure.
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sharp tip is located oscillate in the driving frequency with a certain amplitude.

In the each cycle of the oscillation, the tip approaches to and retracts from the

sample surface periodically. Due to the several interaction mechanisms (Chap-

ter 2.3), there is a nonlinear interaction force between the tip and the sample

surface. This interaction force can be attractive or repulsive according to the rel-

ative position of the tip with respect to the sample surface. The tip experiences

attractive forces when it is far from the sample surface, and it experiences a net

repulsive force when it indents the sample surface. If the net force is attractive,

the sample surface gets pulled up.

In a TM-AFM experiment, the oscillation amplitude of the cantilever is fixed

to a set point amplitude during scanning. In order to achieve this, an optical lever

detection scheme is used. A laser spot is reflected from the top surface of the

cantilever into a photodetector matrix in the scheme. The deflection signal on the

photodetector is utilized by the feedback controller electronics and the position

of the sample surface relative to the cantilever base is arranged by actuating the

piezo under the sample accordingly.

2.2 Torsional Harmonic Cantilever

Torsional harmonic cantilever was designed in 2007 by Sahin et. al. [13] (Fig.2.2) .

This cantilever is T-shaped and has a tip that is placed offset to the longitudional

axis of the cantilever that creates torque on the cantilever in each tap. This torque

excites the torsional modes of the cantilever. Advantage of the torsional harmonic

cantilever is the ability to detect the harmonics of the tip-sample interaction force

thanks to the higher resonance frequency of the first torsional mode compared to

the first flexural modes. Flexural and torsional vibrations of a torsional harmonic

cantilever is given in Fig.2.2 for illustration purposes.
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Figure 2.2: Vibration modes of a torsional harmonic cantilever. (a) No excitation,
(b) first flexural mode is excited, (c) first torsional mode is excited, (d) first
flexural and first torsional modes are both excited.

2.3 The Model

The tip-sample ensemble can be represented by a linear system with a sinusoidal

excitation and a nonlinear feedback [26]. The linear system consists of multi-

ple coupled harmonic oscillators each representing one vibrational mode (either

flexural or torsional) of the cantilever. The nonlinear feedback is the tip-sample

interaction force.

Equations of motion of each harmonic oscillator including damping are given

in Eqs. (2.1) and (2.2) for ith flexural and jth torsional mode, respectively. The

variables with tilde over them represent the torsional quantities. The overall

deflection of the tip (z) is defined with respect to the rest position of the surface

(Fig. (2.3)). z can be calculated by the summation of the individual deflection

of the each mode and the cantilever-sample distance (Xo) as given in Eq. (2.3)

by assuming that the angle of the torsional deflection (bending) is small. mi,
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zf = flexural deflection

zt = torsional deflection

Xo = cantilever  sample distance

reference direction
+ z = overall deflection zs = surface displacement

Figure 2.3: Coordinate system for the overall tip deflection of the torsional har-
monic cantilever. The total deflection of the cantilever (z) on the tip side is
assumed as the summation of the flexural (zf ) and torsional (zt) deflections of
the cantilever. The surface displacement (zs) is included in the model. Note
that zf =

∑
i zi and zt =

∑
j z̃j. Positive direction for the vectors of force and

deflection is depicted in the figure.

Qi, ki, fi, Fd and fd stand for the equivalent point-mass, quality factor, spring

constant, resonance frequency of ith mode of the cantilever, drive amplitude and

drive frequency, respectively. Eq. (2.4) governs the displacement of the sample

surface where γs and ks represent the internal damping coefficient and spring

constant of the sample, respectively.

mi
d2zi

dt2
+

2πmifi

Qi

dzi

dt
+ kizi = Fts(z − zs) + Fd cos(2πfdt) i = 1, 2, · · · (2.1)

m̃j
d2z̃j

dt2
+

2πm̃j f̃j

Q̃j

dz̃j

dt
+ k̃j z̃j = Fts(z − zs) j = 1, 2, · · · (2.2)
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z = Xo +
∑

i

zi +
∑

j

z̃j (2.3)

γs
dzs

dt
+ kszs = −Fts(z − zs) (2.4)

The excitation term, Fd cos(2πfdt), is dropped in Eq. (2.2), because the ex-

citation of the torsional modes due to the drive force is negligible. Fts(z − zs)

is the single valued, displacement dependent tip-sample interaction force where

zs is the displacement of the sample surface with respect to the rest position

(Fig. (2.3)). In the model, we ignore the excitation of the torsional mode due to

the asymmetric mass distribution caused by the offset positioned tip.

The MDOF mechanical model of the tip-sample ensemble given above can be

represented as an electrical circuit [10] as given in Fig. (2.4). By replacing the

mass with an inductor, the spring with a capacitor, the damper with a resistor,

displacement becomes charge and force becomes voltage. Eqs. (2.1), (2.2), (2.3)

and (2.4) turn into Eqs. (2.5), (2.6), (2.7) and (2.8). Eqs. (2.5) and (2.6) cor-

respond to governing equation of an RLC circuits and Eq. (2.8) corresponds to

governing equation of an RC circuit. Qo is the corresponding charge for Xo.

Li
d2qi

dt2
+ Ri

dqi

dt
+

qi

Ci
= Fts(q − qs) + A cos(2πfdt) (2.5)

L̃j
d2q̃j

dt2
+ R̃j

dq̃j

dt
+

q̃j

C̃j

= Fts(q − qs) (2.6)

q = Qo +
∑

i

qi +
∑

j

q̃j (2.7)

Rs
dqs

dt
+

qs

Cs
= −Fts(q − qs) (2.8)

In the electrical equivalent circuit, Fts(q − qs) is a nonlinear charge controlled

voltage source representing the nonlinear contact mechanics. Rs and Cs are the
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Figure 2.4: Electrical equivalent circuit of the multiple degree of freedom model
of the tip-sample ensemble. The variables with tilde over them represents the
torsional variables. Each of the vibrational modes is represented by a series RLC
circuit where the sample surface is represented by a RC circuit.

nonlinear components that represent the loss and the stiffness of the sample,

respectively. We solve Eqs. (2.5), (2.6), (2.7) and (2.8) numerically using tran-

sient time domain analysis toolbox of a commercial circuit simulator1 to find the

steady-state response of the tip-sample interaction.

2.4 Tip-Sample Interaction

There are various mechanisms that constitute the tip-sample interaction such as

long range interfacial forces, short range repulsive forces, adhesion, viscosity and

capillary forces [27]. However, it is not a trivial task to include all the mechanisms

in one simulation because of the increased numerical complexity due to lack of

1ADS by Agilent Technologies
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analytic expressions that relate the amount of the indentation with the force in

the each mechanism of the interaction.

For the non-contact part of the oscillation cycle, we implement the long range

interfacial forces which has 1/(z − zs)2 dependence. At the onset of the contact

(when z − zs = ao where ao is the interatomic distance [28]), we equate the long

range interfacial force to adhesion force predicted by DMT contact model [29] in

order to maintain the continuity of the force [17].

For the contact part of the oscillation cycle, we implement a single valued,

(z− zs) dependent divergent force (Fdiv) given in Eq. (2.10) that is similar to one

used in [25] to assure that z−zs ≈ ao during the indentation (Fig. 2.5). Although

the force function is single valued, because of the dissipation mechanisms included

in the model, there is a hysteresis in force.

The resulting tip-sample interaction force is given in Eq. (2.9). γ, R, c stand

for the surface adhesion energy, the tip radius and the unit conversion constant,

respectively.

Fts(z, zs) =





−4πγRa2

o/(z − zs)2 z − zs > ao

−4πγR + Fdiv z − zs <= ao

(2.9)

Fdiv = c
4

3
E∗

√
R(ao − z)1.15 (2.10)

The sample is modelled by a series RC circuit with a nonlinear resistance (Rs)

and a nonlinear capacitance (Cs) as given in Eq. (2.8). We use DMT contact

model to formalize the spring constant (ks) of the sample which equals to the

inverse of the capacitance (Cs) given in Eq. (2.11). E∗ stands for the effective

elastic modulus of the tip-sample ensemble. By writing Eq. (2.11), we assume

that the sample has the same stiffness both in loading and unloading periods [25].

Interatomic distance (ao) is used again to maintain a finite value for Cs when

surface is at its rest position (zs = 0).
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Figure 2.5: Fts vs. (z − zs). After the contact is established in the oscillation
cycle, as tip indents the surface, (z − zs) stars to shrink from ao to zero and
Fts quickly reaches the value that needed to push the surface inwards and keeps
z − zs ≈ ao.

Cs =
1

ks
=

1
4
3E

∗
√

R(|zs| + ao)
(2.11)

The main sources of the energy dissipation (loss) in the tip-sample interac-

tion are capillary forces, hysteresis in interfacial interactions, hysteresis in surface

adhesion energy and viscoelasticity [27]. The viscous force is dependent to the de-

formation and the time course of deformation (Eq. (2.12)) when Hertzian contact

mechanics are considered. η is the viscosity of the surface. Other loss mech-

anisms are modelled by a constant offset resistance (Ro) as in [25]. Thereby,

corresponding loss component defined in Eq. (2.4) and (2.8) takes the form given



CHAPTER 2. SIMULATION BACKGROUND 13

in Eq. (2.13) in our model.

Fvis = η
√

R|zs|
dzs

dt
(2.12)

γs = Rs = Ro + η
√

R|zs| (2.13)

2.5 Noise Analysis

There are several noise sources in the optical lever detection scheme. These are

the shot noise of the photodetector, thermal mechanical noise of the cantilever,

laser noise, electronic noise of the detection circuitry and mechanical vibrations

of the whole system [30]. Since optical lever detection scheme is used in imaging

with THC as well, all the noise sources stated above are valid for THC.

The laser noise is composed of the intensity noise, phase noise, 1/f noise and

pointing noise. First three components of the laser noise are all zero in the

optical lever detection [30]. The pointing noise of the laser will be neglected in

the simulations. Therefore, there will be no laser dependent noise source in the

model. The noise originated from the overall mechanical vibrations of the system

is also neglected since the resonance frequency of the system is low compared to

the cantilever.

Electronic noise is composed of the noise of the transimpedance amplifier and

the Johnson noise of the feedback resistor. Resulting electrical equivalent noise

circuit and the amplitude of noise sources are given in Fig. 2.6 and Table 3.3,

respectively.

is is the output signal of the photodetector which is the difference of split

photodetector currents and given by

is =
3πaIl

2λl
ξ, Il = R1R2P (2.14)
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Figure 2.6: Equivalent noise circuit of the system consists of the photodetector,
the cantilever and the transimpedance amplifier. is, ish, im, en, in, eR represent
the sources corresponding to the output signal of the photodetector, shot noise
of the photodetector, thermomechanical noise of the cantilever, input noise volt-
age of the transimpedance amplifier, input noise current of the transimpedance
amplifier and Johnson noise voltage of the transimpedance amplifier, respectively.
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where ξ stands for the deflection of the tip. The total mean square shot noise

current of the photodetector is given by

< i2sh >= 2qBIl (2.15)

where q, B are the elementary electronic charge and the detection bandwidth,

respectively. Mean square deflection of the thermally excited cantilever and the

corresponding mean square current on photodetector for each mode is given in

Eq. (2.16).

< ξ2
n >=

4KTB

Qikiwi
, < i2m >=

3πaIl

2λl
< ξ2

n > (2.16)

The mean square input noise voltage and current of the transimpedance am-

plifier are < e2
n >, < i2n > and these depend on the amplifier characteristics. The

mean square voltage of Johnson noise is given by

< e2
R >= 4KTBR (2.17)

where R is the resistance of the resistor. In Table 3.3, the parameters of the first

three flexural modes and the first torsional mode of the cantilever are given. The

dimensions of the cantilever are also given in Table 3.3 (subscript ’t’ stands for

torsional).

The torsional vibrations are below the noise level of the photodetector with

the given noise sources in Table 3.3. Therefore, the detection bandwidth should

be decreased somehow to measure the torsional harmonics. Lock-in amplifiers

can be used, however one can receive only one harmonic with one lock-in am-

plifier which is impractical. In order to decrease the detection bandwidth, time-

averaging is preferred in experimental studies assuming the vibration signal is

quasi-periodic [13]. We model the effect of the time-averaging by downscaling

the rms values of the noise sources by
√

N , where N is the number of the oscil-

lation cycles used in averaging.
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2.6 Implementation of the Overall System as an

Electrical Circuit

The overall system is modelled as an electrical circuit that is composed of the drive

circuit, equivalent circuit of the first three flexural modes, equivalent circuit of

the first torsional mode, equivalent circuit of the sample surface, feedback circuit

and the photodetection circuit. The input/output relation of these circuits are

given in Fig. 2.7.
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Figure 2.7: Block diagram of the overall circuit.



CHAPTER 2. SIMULATION BACKGROUND 18

2.6.1 Drive Circuit

The drive circuit is used to generate a simple sinusoidal excitation in the resonance

frequency of the first flexural mode of the cantilever. The related parameters are

the amplitude of the excitation (Fd), drive frequency (f1) and a scaling factor (sf ).

The typical order of the force and deflections are in nN and nm, respectively,

which are quite small orders for a simulation engine to deal with. Therefore,

a scaling factor (sf ) is used to relax the simulation engine. The values of the

parameters of the cantilever are also scaled by sF accordingly in order not to

alter the results. Ability to use a scaling factor like sf is a result of the linear

transfer function of the cantilever in each mode.

Figure 2.8: Circuit that is used to drive the cantilever in its first flexural resonant
mode.
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2.6.2 Equivalent Circuit of the First Three Flexural

Modes of the Cantilever

The total force is the summation of the tip-sample interaction force and the drive

force in time. Each mode is driven by the total force. The deflection of the each

mode is the charge on the corresponding capacitor. The overall flexural deflection

is the summation of the deflection of the each mode in time.

Figure 2.9: Equivalent circuit of the first three flexural modes of the cantilever.
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2.6.3 Equivalent Circuit of the First Torsional Mode of

the Cantilever

The torsional mode is driven by the tip-sample interaction force only. The tor-

sional deflection is read from the charge on the capacitor.

Figure 2.10: Equivalent circuit of the first torsional mode of the cantilever.
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2.6.4 Equivalent Circuit of the Sample Surface

The sample surface is subjected to the minus of the tip-sample interaction force.

The surface is modelled by a resistor with nonlinear resistance (Rs) and a capac-

itor with nonlinear capacitance (Cs) in series. The capacitor is implemented in

the fifth port of the SDD6P1 box. In order to relax the simulation engine some

interval variables are used.

Figure 2.11: Equivalent circuit of the sample surface.
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2.6.5 Feedback Circuit

In order to achieve a given set point amplitude (As), we used a proportional-

integral (PI) controller. Thereby, the value of Xo (Fig. 2.3) that is required to

achieve the desired As is found from an arbitrary initial value of Xo. Magnitude

of the first flexural harmonic is compared with the set point amplitude As. The

error is integrated, multiplied by a gain factor and the difference signal is added

to the initial value of Xo.

Figure 2.12: Feedback circuit part of the overall circuit.
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2.6.6 Photodetector Circuit

The noisy deflection signal is first amplified by the internal conversion gain of the

photodetector, then amplified by the transimpedance amplifier. The equivalent

noise sources are also added to the circuit.

Figure 2.13: Photodetector circuit.



Chapter 3

SIMULATION RESULTS

This chapter begins with the presentation of the effect of the enhanced higher

order vibrations on the steady-state dynamics of the tapping mode atomic force

microscopy (TM-AFM) where noise is not included. After that, the chapter

continues with the presentation of the material characterization with the torsional

harmonic cantilevers in the presence of noise.

3.1 Effect of the Enhanced Higher Order Vibra-

tions on Steady-State Dynamics

The imaging conditions and the parameters of the torsional harmonic cantilever

used in the simulations are the same with those used in [3] and given in Table 3.1.

The sample parameters and the steady state values of some simulation outputs

for two different samples are given in Table 3.2. The sample parameters are

chosen similar to those used in [6, 27, 31]. We assume that the surface adhesion

energy (γ) and the remaining loss mechanisms other than viscosity are same for

both samples which concludes that the offset loss component (Ro) is same for

both samples (Eq. 2.13). The calculated tip trajectory, surface displacement,

24
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Table 3.1: Cantilever parameters and imaging conditions

Parameter Symbol Unit Value
resonance frequency f1 kHz 55

f2 344
f3 965
ft 905

spring constant k1 N/m 2.6
k2 102
k3 800
kt 500

quality factor Q1 100
Q2 250
Q3 450
Qt 800

tip radius R nm 7
drive frequency fd kHz 55
free-air amplitude Ao nm 38
set-point amplitude As 31

Table 3.2: Sample parameters and values of some parameters at steady state

Compliant Sample Stiff Sample
Parameter Symbol Unit Value Value
effective elastic modulus E∗ GPa 0.1 1
surface adhesion energy γ mJ/m2 30 30
viscosity η Pa· s 30 800
offset loss coefficient Ro nΩ 50 50
maximum deformation δ nm 2.8 0.66
cantilever-sample distance Xo nm 28.3 30.4
maximum torsional deflection Ã pm 11.7 22.9
peak repulsive force Fts,peak nN 3.3 6.9
energy dissipation per cycle Edis eV 28.8 2.3
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torsional vibrations, torsional harmonics up to torsional resonance and the tip-

sample interaction during indentation process are given in Figs. 3.1, 3.2, 3.3 and

3.4, respectively, for two different samples. One sample is compliant (100 MPa)

where the other is stiff (1 GPa).

Well known characteristics of the TM-AFM are also observed and verified in

the simulations. The tip trajectory is almost sinusoidal since the vibration am-

plitude of the higher order flexural modes and the fundamental torsional mode

is three orders of magnitude smaller than that of the first flexural mode which

means torsional vibrations do not disturb the tapping mode operation [32]. The

hysteresis in the surface elongation between loading and unloading periods (de-

picted by star in Fig. 3.1) is observed since there is a certain amount of energy

coupled to the surface in each cycle. This is more pronounced in the compliant

sample case. It is observed that the contact time and the maximum deforma-

tion decrease with the sample stiffness where the maximum repulsive interaction

force increases. Although these observations are common facts of TM-AFM, the

agreement of theory with our model is important for the validity of the new

implications of the simulation results.

The torsional vibrations, which is the main scope of this work, are a little

bit complicated in shape and depends on the tip-sample interaction force which

depends on the sample parameters indeed (Fig. 3.2). There is a slowly decaying

torsional oscillation remaining from the preceding tap before contact due to the

high quality factor of the torsional mode. With the impact of the tip to the sam-

ple, oscillations get complex in shape due to the excitation of the torsional mode

by the nonlinear tip-sample interaction force. There is a certain DC torsional

deflection on the cantilever during indentation period because the tip acts like

a pivot point for the cantilever to bend. There is a hysteresis in the amplitude

of torsional vibrations between loading and unloading time instants because of

the hysteresis in the tip-sample interaction force. This effect is more pronounced

in the compliant sample case. After the contact, the cantilever oscillates in the

torsional resonance with a slow decay until the next tap.
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Figure 3.1: Tip displacement and surface motion in the case of (a) compliant and
(b) stiff sample after three Q1 cycles. Note that z−zs is always greater than zero.
There is a hysteresis in the surface elongation (depicted by star on the figure)
because of energy dissipation.
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Figure 3.2: Torsional vibrations on the torsional harmonic cantilever in the case
of (a) compliant and (b) stiff sample after three Q1 cycles.
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Figure 3.3: Harmonics of the torsional vibrations up to the resonance of the
torsional mode in the case of (a) compliant and (b) stiff sample after three Q1
cycles. Axis limit of y-coordinate is not preserved because of illustration purposes.
Star is used to depict the first zero crossing of the magnitude of the harmonics.
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Figure 3.4: Actual tip-sample interaction force and recovered one from first 16
torsional harmonics in the case of (a) compliant and (b) stiff sample after three
Q1 cycles.
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The peak amplitude of the torsional deflection and the amplitude of non-

contact oscillation is higher for the stiff sample. It is observed that the contact

time can be deduced from the torsional vibrations and it exhibits a stiffness

contrast between materials just as in the case of tip-sample interaction force.

The difference between amplitude of before and after contact oscillations is small

in stiff sample case where it is large in compliant sample case. The amplitude

difference is just the result of decay of the high-Q torsional mode in stiff sample

case. However, in the compliant sample case, besides simple mode decay, the tip-

sample interaction enhances the oscillation close to the torsional resonance at one

tap and then reduces it in the next tap as a result of the phase difference between

the oscillation on the cantilever and the harmonic of tip-sample interaction force

close to the torsional resonance.

The frequency spectrum of the torsional vibrations changes with sample stiff-

ness (Figure 3.3)). In the case of the stiff sample, the spectrum of the torsional

vibrations is more flat up to the torsional resonance. This can be explained by

remembering two facts (i) the spectrum of the torsional vibrations is simply the

product of the spectrum of the tip-sample interaction force and the transfer func-

tion of the torsional mode, (ii) the spectrum of the tip-sample interaction force

flattens (the first zero crossing of the magnitude of the harmonics (depicted by

the star in Fig. 3.3)) moves to the higher frequencies) as sample gets stiffer under

the same imaging conditions [12]. The peak around 900 kHz in the magnitude

spectrum is due to the peak amplification of the torsional mode, that is, due to

torsional resonance.

There are 16 torsional harmonics up to the torsional resonance. These har-

monics are the scaled version of the harmonics of the tip-sample interaction by

1/kt where kt is the spring constant of the torsional mode. The harmonics of the

tip-sample interaction force placed after the torsional resonance are subjected to

the high attenuation of the torsional mode. The magnitude of these torsional

harmonics are near the noise level. Using first 16 torsional harmonics, one can

recover the tip-sample interaction force in time [13, 33] and estimate the material

properties [3].
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Figure 3.5: Change in magnitude of various harmonics of the torsional vibrations
with respect to the effective elastic modulus

The recovered tip-sample interaction force curve using first 16 torsional har-

monics overlaps with the actual tip-sample interaction force in the compliant

sample case where it slightly deviates in the stiff sample case (Fig. 3.4). We used

the algorithm proposed in [13] in order to estimate the effective elastic modulus

using the recovered tip-sample interaction force curve. The estimated effective

elastic modulus (E∗) values are 107 MPa and 1.4 GPa for the compliant and the

stiff sample, respectively. Although noise is not included in the model, there is

an error in the estimation. This error is a result of the (i) reconstruction of the

tip-sample interaction force with a finite number of harmonics and (ii) ignoring

the interactions in contact other that the ones proposed by DMT model in the

estimation algorithm.
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We plotted the magnitude of the torsional harmonics while scanning the sam-

ple stiffness values between the compliant and the stiff one (Figure 3.5) where the

surface energy and the imaging parameters are kept constant (γ = 30mJ/m2).

The monotonically increasing part of the curve is the range where a particular

harmonic is sensitive to the change in elastic modulus. For example, one can use

8th torsional harmonic to get material contrast between the samples with elastic

modulus starting from 0.1 GPa. Moreover, 24th harmonic is more sensitive com-

pared to the lower harmonics for the samples with elastic modulus greater than

300 MPa. In short, the higher harmonics are more sensitive to the elasticity than

the lower harmonics and the range where a harmonic is sensitive corresponds a

stiffer range when the harmonic number increases. Thereby, it is convenient to

use the lower harmonics for compliant samples and the higher harmonics for stiff

samples.

These results confirm that the torsional harmonic cantilever is capable of re-

ceiving sufficient number of higher harmonics of the tip-sample interaction with

a tolerable attenuation to estimate material properties in a certain range of ma-

terials without disturbing the tapping mode operation.

3.2 Material Characterization with the Tor-

sional Harmonic Cantilevers in the Presence

of Noise

For the imaging conditions (fd, Ao, As) given in Table 3.3, the simulated torsional

signal is given in Fig 3.6a. The torsional signal is Fourier transformed, multiplied

by the inverse of the transfer function of the torsional mode of the cantilever and

the harmonics other than the first M are filtered. Resulting spectrum is inverse

Fourier transformed. Recovered tip-sample interaction force (TSIF) with M=15

and actual TSIF is given in Fig 3.6b. E∗ is estimated as 98.5 MPa by curve

fitting to repulsive part of TSIF between peak force and %20 of it, where actual

E∗ is 100 MPa.
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Table 3.3: Simulation Parameters

Cantilever
resonance frequency f1 kHz 55

f2 344.3
f3 965.3
ft 905

spring constant k1 N/m 2.6
k2 101.8
k3 800.8
kt 500

quality factor Q1 —- 100
Q2 250
Q3 450
Qt 800

length l µm 300
width of base − 30
width of free end − 55
thickness − 4.5
tip offset − 25
tip radius $ nm 7

Noise Sources
shot noise current < ish > pA/

√
Hz 12.65

input noise current < in > 2
input noise voltage < en > nV/

√
Hz 20

Johnson noise voltage (R=1M ) < eR > 17.89

PD Current
Laser spot size a µm 30
Laser wavelength λ nm 670
Responsivity of photodetector R1 —- 0.5
Reflectivity of cantilever R2 —- 1
Power of laser P mW 1

Imaging Conditions
Drive frequency fd kHz 55
Free-air amplitude Ao nm 38
Set point amplitude As 31
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The same analysis is done for a wide range of materials from 10 MPa to 10 GPa

and the estimated values of E∗ are given in Fig. 3.7. The stiff samples are under-

estimated whereas the compliant samples are overestimated for M=15 (circles in

Fig. 3.7). This result is in perfect agreement with experimental results [32].

The harmonics after the first zero crossing of the spectrum of TSIF (Fig. 3.6c)

do not include much information about the slope of the repulsive part of TSIF

and increase the effect of the noise if they are used in recovery. Therefore, we

propose to use the harmonics up to the first zero crossing in the recovery instead

of the first M. Thereby the accuracy of estimation is improved (stars in Fig. 3.7).

The portion of the repulsive part of TSIF that is used in the curve fitting

affects the estimation. Since a finite number of torsional harmonics can be de-

tectable and used in the recovery of TSIF, the slope of the repulsive part of TSIF

can have different values for different portions. Since an accurate estimation over

a wide range of materials is desired, there is not an optimum portion of TSIF

that curve fitting will be done.
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Figure 3.6: Simulation outcomes for a sample with E∗=100MPa a) noisy pho-
todetector signal (N=50) b) recovered TSIF (M=15), estimated E∗ is 98.495MPa
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Figure 3.7: Estimations over a wide range of materials in the presence of noise.
Estimations with M=15 are depicted by circles. Estimations that the harmonics
up to the first zero crossing of the spectrum of TSIF is used are depicted by dots.
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CONCLUSIONS

The multiple degree of freedom model of the tip-sample ensemble including

the fundamental torsional mode and the first three flexural modes is realized.

Thereby, the steady-state response of the torsional harmonic cantilever is sim-

ulated. General characteristics and material dependency of the torsional vibra-

tions on a torsional harmonic cantilever is investigated. It is observed that the

torsional vibrations on a torsional harmonic cantilever are three orders of mag-

nitude smaller than the overall flexural vibrations which means they do not alter

tapping mode operation.

Since the torsional mode is excited by the tip-sample interaction force only,

the spectrum of the torsional vibrations is just the scaled version of the spectrum

of the tip-sample interaction with the transfer function of the torsional mode.

Therefore, there is a one-to-one correspondence between the tip-sample inter-

action force and the torsional vibrations. It is demonstrated that the torsional

harmonics up to the torsional resonance are sufficient to estimate the elasticity

of a sample with tolerable error for a certain range of elasticity. Thereby, it is

verified that the torsional harmonic cantilever is capable of material property

mapping.

The variation of the torsional harmonics on a torsional harmonic cantilever

with sample stiffness is simulated. It is shown that the sensitivity of a particular

38
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torsional harmonic changes with sample stiffness. As the sample gets stiffer, the

sensitivity of a particular torsional harmonic decreases. Moreover, for a given

range of stiffness values, the higher harmonics of the torsional vibrations are

more sensitive to change in stiffness rather than the lower harmonics.

A nonlinear model of the sample surface is realized. The stiffness of a sample

is modelled with a nonlinear spring and damping of the surface is modelled with

a nonlinear damper. A nonlinear modelling of the surface is required to obtain

more realistic results for the tip-sample interaction and the energy dissipation.

We believe that this work will motivate others who want to utilize more realistic

surface models.

A noise analysis of the overall system is performed and the noise sources are

added to the model. The noisy torsional vibration signal on photodetector is

simulated. The tip-sample interaction force is recovered from the harmonics of

the torsional signal and the estimation of effective elastic modulus (E∗) of the

sample is achieved. The same analysis is done for a wide range of materials.

It is demonstrated that the torsional harmonic cantilevers are capable of es-

timating material properties over a wide range of materials. The number of the

torsional harmonics used in the recovery of the tip-sample interaction force and

the portion of the repulsive part of the tip-sample interaction force that is used in

the curve fitting affect the estimation accuracy. It is observed that with a fixed

number of harmonics used in the recovery of TSIF and with the curve fitting

algorithm, stiff side of the material spectrum is underestimated where compliant

side is overestimated. It is also observed that the harmonics higher than the

first zero crossing frequency of the spectrum of TSIF does not affect the slope of

the tip-sample interaction force much. Therefore, it is beneficial to use the first

harmonics up to the first zero crossing in the estimation of E∗ in order to get rid

of the additional noise coming from higher harmonics.
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