
FPGA BASED IMPLEMENTATION OF IEEE 802.11a

PHYSICAL LAYER

a thesis

submitted to the department of electrical and

electronics engineering

and the institute of engineering and sciences

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

MUSTAFA İNCE

December 2010

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Abdullah ATALAR(Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Yalçın TANIK

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Defne AKTAŞ

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Levent Onural
Director of Institute of Engineering and Sciences

ii

ABSTRACT

FPGA BASED IMPLEMENTATION OF IEEE 802.11a

PHYSICAL LAYER

MUSTAFA İNCE

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Abdullah ATALAR

December 2010

Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier transmis-

sion technique, in which a single bitstream is transmitted over a large number of

closely-spaced orthogonal subcarriers. It has been adopted for several technolo-

gies, such as Wireless Local Area Networks (WLAN), Digital Audio and Ter-

restrial Television Broadcasting and Worldwide Interoperability for Microwave

Access (WiMAX) systems.

In this work, IEEE802.11a WLAN standard was implemented on Field Pro-

grammable Gate Array (FPGA) for being familiar with the implementation prob-

lems of OFDM systems. The algorithms that are used in the implementation

were firstly built up in MATLAB environment and the performance of system

was observed with a simulator developed for this purpose. The transmitter and

receiver FPGA implementations, which support the transmission rates from 6

to 54 Mbps, were designed in Xilinx System Generator Toolbox for MATLAB

Simulink environment. The modulation technique and the Forward Error Cod-

ing (FEC) rate used at the transmitter are automatically adjusted by the desired

bitrate as BPSK, QPSK, 16QAM or 64QAM and 1/2, 2/3 or 3/4, respectively.

iii

The transceiver utilizes 5986 slices, 45 block RAMs and 73 multipliers of a Xil-

inx Virtex-4 sx35 chip corresponding to % 39 of the resources. In addition, the

FPGA implementation of the transceiver was also tested by constructing a wire-

less link between two Lyrtech Software Defined Radio Development Kits and

the bit error rate of the designed system was measured by performing a digital

loop-back test under an Additive White Gaussian Noise (AWGN) channel.

Keywords: OFDM, IEEE802.11a, FPGA, FFT, Viterbi Decoder

iv

ÖZET

IEEE 802.11A FİZİKSEL KATMANININ FPGA TABANLI

GERÇEKLENMESİ

MUSTAFA İNCE

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Abdullah ATALAR

Aralık 2010

Dikgen Frekans Bölmeli Çoǧullama, yüksek hızlı bir veriyi birbirine yakın

aralıktaki çok sayıda dikgen alt taşıyıcılar üzerinden ileten çok taşıyıcılı bir

modülasyon tekniǧidir. Bu teknik başta Kablosuz Yerel Alan Aǧları (WLAN)

olmak üzere Sayısal Ses ve Televizyon Yayıncılıǧı ve Dünya Çapında Mikrodalga

Erişimi için Birarada Çalışabilirlik (WiMAX) gibi birçok standart tarafından

benimsenmiştir.

Bu çalışmada, IEEE802.11a WLAN standardı, OFDM sistemlerinin uygu-

lama sorunlarını kavramak amacıyla Alanda Programlanabilir Kapı Dizileri

(FPGA) üzerinde gerçeklenmiştir. Gerçeklemede kullanılan algoritmalar ilk

olarak MATLAB ortamında geliştirilmiş ve sistemin performansı yine bu ortamda

tasarlanan bir simülatör aracılıǧıyla gözlemlenmiştir. Saniyede 6 Mb’den 54 Mb’e

kadar veri iletişim hızlarını destekleyen alıcı ve vericinin FPGA gerçeklemeleri

MATLAB Simulink ortamında Xilinx firmasının “System Generator” arayüzü

ile tasarlanmıştır. Verici ünitesinde kullanılan modülasyon tekniǧi ve İleri Hata

Düzeltme (FEC) oranı, istenen bit hızına göre sırasıyla BPSK, QPSK, 16QAM

v

veya 64QAM ve 1/2, 2/3 veya 3/4 olacak şekilde otomatik olarak ayarlanmak-

tadır. Tasarlanan alıcı-verici donanımının kaynak kullanımı ise 5986 slice, 45 blok

RAM ve 73 çarpıcıdan ibaret olup, Xilinx Virtex-4 sx35 yongasının % 39’unu

kaplamaktadır. Ayrıca, alıcı-verici birimlerinin FPGA gerçeklemesi, iki adet

Lyrtech Yazılım Tanımlı Radyo (SDR) Geliştirme Donanımı arasında kablosuz

baǧlantı kurularak test edilmiş ve tasarlanan sistemin bit hata oranı, Toplan-

abilir Beyaz Gaussian Gürültülü (AWGN) kanal üzerinden sayısal döngü testi

yapılarak ölçülmüştür.

Anahtar Kelimeler: Dikgen Frekans Bölmeli Çoǧullama (OFDM), IEEE802.11a,

FPGA, Hızlı Fourier Dönüşümü (FFT), Viterbi Kodçözücü

vi

ACKNOWLEDGMENTS

I would like to thank my advisor Prof. Dr. Abdullah ATALAR for his

guidance and suggestions throughout my graduate education and my research.

I would also like to thank the members of the thesis committee for reviewing

the thesis.

I would like to express my appreciation to my beloved wife, Ferda, for her

support and patience during my study.

Finally, I would also like to thank The Scientific and Technological Research

Council of Turkey (TÜBİTAK) for the financial support during my study.

vii

Contents

1 INTRODUCTION 1

1.1 Background on OFDM . 1

1.2 Thesis Objective and Outline . 5

2 THE IEEE 802.11a STANDARD 6

2.1 General Structure . 6

2.2 The Frame Format of IEEE 802.11a 7

2.3 IEEE802.11a Transmitter Blocks 9

2.3.1 Data Scrambler . 10

2.3.2 Convolutional Encoder . 10

2.3.3 Data Interleaving . 10

2.3.4 Sub-carrier Modulation . 11

3 IEEE 802.11a RECEIVER DESIGN 12

3.1 Receiver Architecture . 12

viii

3.1.1 Frame Detection . 14

3.1.2 Coarse Frequency Synchronization 15

3.1.3 Timing Synchronization 17

3.1.4 Fine Frequency Synchronization 19

3.1.5 Channel Estimation . 19

3.1.6 Channel Equalization . 21

3.2 IEEE 802.11a MATLAB Simulator 22

4 FPGA IMPLEMENTATION 25

4.1 Transmitter Implementation . 26

4.1.1 Subsystem 1: ProcessControl 27

4.1.2 Subsystem 2: FecAndInterleaver 28

4.1.3 Subsystem 3: CarrierModulation 28

4.1.4 Subsystem 4: CyclicIFFT 30

4.1.5 Subsystem 5: Interpolation 34

4.2 Receiver Implementation . 35

4.2.1 Down Conversion to Baseband 37

4.2.2 Preamble Decoding . 38

4.2.3 Channel Estimation . 41

4.2.4 Channel Equalizer . 42

ix

4.2.5 Subcarrier Demodulation 44

4.2.6 Viterbi Decoder . 45

4.3 Performance Measurements . 48

5 CONCLUSION AND FUTURE WORK 52

APPENDIX 54

A Lyrtech SFF SDR Development Platform 54

x

List of Figures

1.1 Block diagram of multi-carrier transmitter 2

1.2 Spectrum of (a) a single sub-carrier and (b) OFDM signal 3

1.3 Cyclic extension of the OFDM symbol 4

2.1 Frame format of the IEEE 802.11a Standard 8

2.2 Block diagram of the IEEE 802.11a transmitter 10

2.3 The frequency allocation of IEEE 802.11a sub-carriers 11

3.1 Block diagram of IEEE 802.11a receiver architecture 13

3.2 Decision variables, (a) Power method, (b) Schmidl and Cox method 14

3.3 Schmidl and Cox delay and correlate algorithm 15

3.4 (a) Autocorrelation metric, (b) Cross correlation metric 17

3.5 Performance of the timing synchronization algorithm 18

3.6 Runtime snapshot of the IEEE802.11a Matlab Simulator 23

4.1 System Generator model of the transmitter 26

xi

4.2 Timing diagram of the transmitter pipeline structure 27

4.3 Implementation of the FecAndInterleaver subsystem 28

4.4 Carrier Modulation subsystem . 30

4.5 Radix-22 SDF butterfly structure for 16 point IFFT 31

4.6 Fpga implementation of the Butterfly 1 in Stage 1 32

4.7 Complex multiplier implementation with cascaded DSP48 slices . 33

4.8 Illustration of the OFDM symbol windowing 33

4.9 Block diagram for the interpolation by 3/2 34

4.10 Interpolation filter implementation 35

4.11 System Generator model of the receiver 36

4.12 Down conversion schema of the received signal 38

4.13 Implementation of the delay and correlation algorithm 39

4.14 Implementation of the correlation filter, h1[n] 40

4.15 Block schema of the chanEstimation subsystem 41

4.16 Channel Equalization subsystem 42

4.17 (a)Trellis diagram of the Viterbi decoder, (b) butterfly structure . 46

4.18 System Generator block diagram of the Viterbi decoder 46

4.19 Block diagram of butterfly Add-Compare-Select unit 47

4.20 Timing diagram of the trace back memory access 48

4.21 Snapshot of the User Interface Program 48

xii

4.22 Runtime snapshot of (a)BPSK and (b)QPSK constellations 49

4.23 Runtime snapshot of (a)16-QAM and (b)64-QAM constellations . 49

4.24 Runtime snapshot of bit error rate measurement 50

4.25 BER performance of QPSK modulation 50

4.26 BER performance of 16-QAM modulation 51

4.27 BER performance of 64-QAM modulation 51

A.1 Lyrtech SFF SDR Development Platform 54

A.2 Block diagram of the Data Conversion module 55

A.3 Direct Quadrature RF Transmitter 56

A.4 Super Heterodyne RF Receiver 56

xiii

List of Tables

2.1 Rate dependent parameters in IEEE 802.11a standard 9

4.1 BPSK and QPSK modulation IQ mapping 29

4.2 16 QAM modulation IQ mapping 29

4.3 64 QAM modulation IQ mapping 29

4.4 Resource comparison of the IFFT cores 34

4.5 One period of the short preamble sequence 39

xiv

Dedicated to Ferda İNCE

LIST OF ABBREVIATIONS

ADC Analog to Digital Converter

ADSL Asymmetric Digital Subscriber Line

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CP Cyclic Prefix

DAC Digital to Analog Converter

FEC Forward Error Correction

FFT Fast Fourier Transformation

FPGA Field Programmable Gate Array

GUI Graphical User Interface

ICI Inter-carrier Interference

IFFT Inverse Fast Fourier Transformation

ISI Inter-symbol Interference

LFSR Linear Feedback Shift Register

LSB Least Significant Bit

MAC Medium Access Control

PLCP Physical Layer Convergence Procedure

PSDU Physical Layer Service Data Unit

OFDM Orthogonal Frequency Division Multiplexing

RF Radio Frequency

SDR Software Defined Radio

SNR Signal to Noise Ratio

SFF Small Form Factor

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

xvi

Chapter 1

INTRODUCTION

1.1 Background on OFDM

The Orthogonal Frequency Division Multiplexing (OFDM), which is a multi-

carrier modulation technique, has gained a great deal of interest during the last

few decades. It has been adopted for several broadband communication systems;

such as digital video broadcasting, Asymmetric Digital Subscriber Line (ADSL)

services, Wireless Local Area Networks (IEEE 802.11a/g/n), and Worldwide

Interoperability for Microwave Access (WiMAX) systems (IEEE 802.16e) and

third generation cellular systems [1]. In this modulation technique, a high bit-

rate data stream with a bandwidth of B is split into N parallel lower bit-rate

sub-streams and each of these sub-streams which have a bandwidth of B/N is

transmitted over an orthogonal sub-carrier, as shown in Fig. 1.1.

One of the main reasons of using the OFDM scheme is its ability to adapt

to severe channel conditions without using a complex equalizer. If the number

of sub-carriers, N, is selected large enough, the bandwidth of each sub-carrier

becomes smaller than the coherence bandwidth of the channel. In this case,

the channel characteristic of each sub-carrier exhibits approximately flat fading

1

Figure 1.1: Block diagram of multi-carrier transmitter

and therefore the distortions on the channel can be compensated by a one-tap

equalizer. Besides, the OFDM scheme is also robust against fading caused by

the multi-path propagation. Whereas a deep fade may cause a failure in a single

carrier system, only a small part of the sub-carriers in an OFDM system is

destroyed by the fading and lost information on the destroyed sub-carriers can

be recovered by using forward error correction (FEC) codes [2].

In a conventional multi-carrier system, the frequency band is divided into

non-overlapping adjacent sub-bands where adjacent sub-carriers are separated

by more than the two sided bandwidth of each. This technique eliminates the

inter-carrier interference (ICI) by avoiding the spectral overlaps, but it causes

inefficiency in the use of available frequency band. The OFDM scheme over-

comes this inefficiency by selecting the sub-carrier frequencies as mathematically

orthogonal to each other. The word “orthogonal” means that the frequency of

each sub-carrier is an integer multiple of 1/T, where T is the symbol duration [3].

By this way, as shown in Fig. 1.2b, the frequency band is used 50% more effi-

ciently than a conventional system without causing an ICI.

After selecting the frequencies, fk, in Fig. 1.1 as k/T , the equation of the

transmitted signal in multi-carrier systems can be written as in Eq. (1.1). This

equation can be transformed into discrete time by replacing the continuous time

variable, t, by nT/N , where T/N is equal to sampling period. It can be shown

2

(a) (b)

Figure 1.2: Spectrum of (a) a single sub-carrier and (b) OFDM signal

that the transmitted signal in Eq. (1.2) is the Inverse Discrete Fourier Transfor-

mation (IDFT) of N sequential serial symbols. If the number of the sub-carriers,

N , is selected as the power of 2, the OFDM transmitter and receiver can be eas-

ily implemented by using IFFT (Inverse Fast Fourier Transformation) and FFT,

respectively.

x (t) =
1√
T

N−1∑
k=0

XkΠ

(
t

T
− 1

2

)
exp

(
j2π

k

T
t

)
(1.1)

x [n] =
1√
N

N−1∑
k=0

Xk · exp

(
j2π

kn

N

)
(1.2)

The OFDM scheme also eliminates the inter-symbol interference by inserting

a cyclic prefix (CP), as illustrated in Fig. 1.3, between the adjacent symbols

in the transmitter, and removing it at the receiver. Despite the fact that the

cyclic prefix introduces a power loss at the transmitter, it is a simple technique

to preserve the orthogonality of the sub-carriers through a multi-path channel.

Unless the maximum delay spread of the channel exceeds the length of the cyclic

prefix, an FFT based OFDM receiver can gather the delayed echoes of each

transmitted sub-carrier in the corresponding frequency bin. Furthermore, the

cyclic prefix can suppress the timing offsets smaller than itself by decreasing the

maximum allowable multi-path delay, and so the OFDM systems become less

3

sensitive to symbol timing offsets than a single carrier system through the use of

cyclic prefix.

Figure 1.3: Cyclic extension of the OFDM symbol

Despite these advantages, the OFDM technique has also some disadvantages

compared with a single carrier modulation. The most important problem of

the OFDM systems is that the transmitted signal has a relatively large peak-to-

average-power ratio (PAPR) due to the summation of many narrowband signals

which have independent phases. To cope with this problem, the OFDM systems

require a linear transmitter circuitry, which suffers from poor power efficiency,

and high resolution digital-to-analog (DAC) and analog-to-digital (ADC) con-

verters.

In addition to PAPR problem, the OFDM systems are also more sensitive to

carrier frequency offset between the transmitter and receiver. As the frequency

spacing between the adjacent sub-carriers is very small, accurate frequency syn-

chronization is needed for OFDM systems. If there exists a residual frequency

offset, ∆f , that has not been corrected by the receiver, it introduces ICI on the

system and creates a time-variant phase rotation on the symbol constellation. As

illustrated in Fig. 1.2b, a small ∆f causes ICI by corrupting the orthogonality

of the sub-carriers.

4

1.2 Thesis Objective and Outline

The IEEE802.11a standard for the Wireless Local Area Networks (WLAN) is

the first IEEE standard which utilizes the OFDM modulation technology. In

this thesis, the aim is to implement the physical layer of IEEE802.11a standard

on Field Programmable Gate Array (FPGA) for being familiar with the imple-

mentation problems of the OFDM systems. The advantages and disadvantages

of the OFDM technology over the conventional multicarrier and single carrier

systems are discussed in this chapter. The rest of the thesis is organized in

four chapters as follows. Chapter 2 briefly summarizes the specifications of the

IEEE802.11a standard. Chapter 3 describes the receiver model designed in MAT-

LAB environment by focusing on the synchronization algorithms and presents

the MATLAB simulator developed for observing the performance of the overall

system. Chapter 4 explains the implementation of the transmitter and receiver

FPGA cores in detail and gives the measured bit error rate (BER) performance

of the designed system. Finally, Chapter 5 contains a brief conclusion about the

thesis and presents the possible future work.

5

Chapter 2

THE IEEE 802.11a STANDARD

The IEEE 802.11a, which is published by the IEEE LAN/MAN Standards Com-

mittee (IEEE 802.11) in 1999, is a wireless local area network computer commu-

nication standard in the 5 GHz frequency band [4]. It defines the requirements

for the physical layer (PHY) and the medium access control (MAC) layer. The

physical layer defines how the raw bits in a packet are transmitted over a commu-

nication link and specifies the encoding and signaling functions that transform

the raw bits into the radio waves. The MAC layer defines the interface between

the physical layer and the interface bus of the machine. In this chapter, the

physical layer of IEEE 802.11a standard will be explained briefly.

2.1 General Structure

The IEEE802.11a is the first standard of IEEE 802.11 committee which uses

the Orthogonal Frequency Division Multiplexing (OFDM) as the modulation

technique. It transmits an analog waveform, converted from a digital signal,

over the Unlicensed-National Information Infrastructure (U-NII) bands, 5.15-

5.25 GHz, 5.25-5.35 GHz and 5.725-5.825 GHz. Each band contains 4 channels

6

with a bandwidth of 20 MHz and the output power limits of these bands are

40 mW, 200 mW and 800 mW, respectively [4].

The IEEE802.11a standard divides the 20 MHz channel into 64 sub-carriers

with a frequency spacing of 312.5 KHz and uses 48 of them as data sub-carriers,

4 of them as pilot sub-carriers and the others as guard sub-carriers to avoid the

adjacent channel interference. Whereas the pilot sub-carriers transmit a prede-

termined symbol sequence for channel tracking, the data sub-carriers convey the

information stream modulated by using Phase Shift Keying (PSK) or Quadrature

Amplitude Modulation (QAM) techniques.

The OFDM scheme enables the IEEE802.11a to transfer the raw data at a

maximum rate of 54 Mbps. The standard also supports the data rates 6, 9, 12,

18, 24, 36 and 48 Mbps by changing the modulation type and the Forward Error

Correction (FEC) coding rate of the data sub-carriers. The symbol duration is

specified as 4 microseconds in the standard and 800 ns of it is used for cyclic

prefix to ensure an ISI-free reception of the transmitted symbols over a channel

with a delay spread up to 250 ns [5].

2.2 The Frame Format of IEEE 802.11a

Each frame in the physical layer of IEEE 802.11a includes Physical Layer Conver-

gence Procedure (PLCP) Preambles, PLCP header, and Physical Layer Service

Data Unit (PSDU), tail and pad bits, as shown in Fig. 2.1. The PLCP Pream-

ble consists of 10 short preambles and two long preambles. The short preambles

are used for frame detection, automatic gain control and timing synchronization.

The frequency offset and channel response is also estimated through the long

preambles that are sent immediately after the short preamble.

7

Figure 2.1: Frame format of the IEEE 802.11a Standard

The length of the short preambles is 0.8 µsec which equals to one fifth of a

regular symbol period. They are generated by taking the IFFT of the following

sequence, S−26:26, which produces a periodic signal with a period of 16 samples.

By repeating the produced signal two times after adding the cyclic prefix, ten

identical short preamble symbols are generated.

S−26:26 =
√

13/6(0, 0, 1 + j, 0, 0, 0,−1− j, 0, 0, 0, 1 + j, 0, 0, 0,−1− j, 0, 0, 0,

−1− j, 0, 0, 0, 1 + j, 0, 0, 0, 0, 0, 0, 0,−1− j, 0, 0, 0,−1− j, 0, 0, 0, 1 + j,

0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0) (2.1)

The long preamble sequence is composed of a cyclic prefix and two identical

long preamble symbols. Unlike the other OFDM symbols, the length of the cyclic

prefix for this sequence is equal to 32 samples. The reason of this is the use of the

long preambles for fine frequency offset estimation by avoiding the discontinuity

between the consecutive symbols. All the 52 sub-carriers are used during the

generation of the long preambles and they are modulated by the elements of the

following sequence.

L−26:26 = (1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1,

1, 1, 1, 0, 1,−1,−1, 1, 1,−1, 1,−1, 1,−1,−1,−1,−1,−1, 1, 1,−1,−1, 1,

−1, 1,−1, 1, 1, 1, 1) (2.2)

The first symbol after the long training symbols is named as Signal Field,

which is transmitted by using BPSK and coding rate at 1/2, and it contains

8

the Rate and Length parameters. The information about the modulation type

and FEC rate that is used in the rest of the frame is conveyed through 4 bits

Rate parameter, Table 2.1, and the Length parameter indicates the number of

information bytes in the PSDU [4].

Rate Data rate Modulation Coding
Rate(R)

Coded bits
per symbol

Data bits
per symbol

1101 6 Mbps BPSK 1/2 48 24
1111 9 Mbps BPSK 3/4 48 36
0101 12 Mbps QPSK 1/2 96 48
0111 18 Mbps QPSK 3/4 96 72
1001 24 Mbps 16QAM 1/2 192 96
1011 36 Mbps 16QAM 3/4 192 144
0001 48 Mbps 64QAM 2/3 288 192
0011 54 Mbps 64QAM 3/4 288 216

Table 2.1: Rate dependent parameters in IEEE 802.11a standard

The service field, transmitted after the signal field, contains of 16 bits and is

used for synchronizing the data descrambler in the receiver. Then, the OFDM

frame conveys the PSDU payload which is sent by the MAC layer. The six zero

tail bits follow the PSDU to force the Viterbi decoder in the receiver to zero

state. Finally, the end of the frame is filled with the pad bits so that the number

of bits in the data symbols becomes a multiple of the coded bits in an OFDM

symbol.

2.3 IEEE802.11a Transmitter Blocks

The IEEE802.11a standard specifies only the transmission part of the physical

layer and gives the performance requirements for the receiver. This allows dif-

ferent manufacturers to develop their own receiver solutions that are compatible

with each other. The specified transmission chain by the standard is illustrated

in Fig. 2.2. The transmitter blocks in this chain are briefly explained in the

following subsections.

9

Figure 2.2: Block diagram of the IEEE 802.11a transmitter

2.3.1 Data Scrambler

The IEEE 802.11a transmitter uses a data scrambler using a pseudo random

binary sequence (PRBS) to randomize the all information bits, except the signal

field, in order not to transmit a long streams of ones or zeros. The scrambler

uses the polynomial S(x) = x7 + x4 + 1 which generates a cyclic sequence of

length 127 and the initial state of the scrambler is set randomly at the beginning

of the transmission. The receiver estimates the initial state of the scrambler by

observing the first seven bits of the Service field.

2.3.2 Convolutional Encoder

In order to achieve a reliable data transfer, all the information bits in the frame,

including the Signal field, are coded with a convolutional encoder. The IEEE

802.11a standard uses the industry standard generator polynomials, g0 = 1338

and g1 = 1718 to produce two bits of output for each input bit, and supports the

1/2, 2/3 and 3/4 coding rates by puncturing the data prior to transmission [4].

2.3.3 Data Interleaving

Block interleaving technique is used in the IEEE 802.11a standard for improving

the performance of forward error correcting codes. All the bits at the output of

the convolutional encoder are interleaved by a block interleaver and the size of

the interleaver block is determined by the number of the coded bits per OFDM

symbol, NCBPS. The interleaver consist of two permutation steps and at the

10

first permutation step, the adjacent coded bits are assigned to non-adjacent sub-

carriers. By the second permutation step, the bit index of the consecutive coded

bits onto the constellation is changed continuously in order to avoid the long

runs of LSB bits [4].

2.3.4 Sub-carrier Modulation

In the IEEE 802.11a transmitter, a 64 point IFFT multiplexes the orthogonal

sub-carriers and the sub-carriers are renumbered as in Fig. 2.3 before performing

the Fourier transformation. Only 48 of them are used for data transmission

and they are modulated by using BPSK, QPSK, 16-QAM or 64-QAM according

to the Rate parameter. The sub-carriers P−21, P−7, P7 and P21 are dedicated

to comb-type pilot signals which are used to track the phase variations due to

the time varying channel or a frequency offset error. The pilot sub-carriers are

modulated by using BPSK and to prevent the generation of spectral lines, they

transmit a pseudo random binary sequence generated by the same polynomial

used in the scrambler.

Figure 2.3: The frequency allocation of IEEE 802.11a sub-carriers

11

Chapter 3

IEEE 802.11a RECEIVER

DESIGN

As mentioned in Chapter 2, the IEEE 802.11a standard does not specify the

structure of the receiver. For this reason, before implementing the IEEE 802.11a

transceiver onto the FPGA, we firstly designed the receiver in MATLAB envi-

ronment. In addition, we also developed a simulator to observe the performance

of the receiver and to ensure that our receiver solution is compatible with the

transmitter specified in the standard. In this chapter, the algorithms that are

used in the receiver and the MATLAB simulator will be explained in detail.

3.1 Receiver Architecture

The Fig. 3.1 shows the base-band receiver architecture for the IEEE 802.11a

standard. The receiver obtains the base-band incoming signal from an analog-

to-digital converter (ADC) with a sampling rate of 20 MHz. Then, it basically

performs the operations of the transmitter, shown in Fig. 2.2, in a reverse order

to reconstruct the transmitted sequence. Unlike the transmitter, the receiver

12

also includes some synchronization blocks in order to demodulate the received

signal correctly.

Figure 3.1: Block diagram of IEEE 802.11a receiver architecture

As a first step in the receiver chain, an incoming frame is detected by searching

the short preambles in the received signal. Then, the receiver roughly estimates

the carrier frequency offset and finds the OFDM symbol boundary through the

use of the short preambles. Next, the frequency offset error is corrected in a

more precise manner by the help of the long preambles and the received samples

are windowed for removing the cyclic prefix. In addition, the channel impulse

response coefficients are estimated by using the long preamble symbols. After

taking the FFT of the windowed received samples and the channel impulse re-

sponse, a frequency domain channel equalization is performed to implement a

coherent demodulation. Then, the received complex symbols on the constellation

are transformed into bit symbols and the sequence of these symbols is rearranged

by the block deinterleaver, which is the inverse operation of the interleaving at

the transmitter. Finally, the error correction codes are decoded by using hard or

soft decision Viterbi decoding algorithm and the descrambler block recovers the

original bit-stream.

In the following subsections, the synchronization, channel estimation and

equalization algorithms used in the receiver will be explained in detail. The

other blocks in Fig. 3.1, such as Viterbi decoding, constellation demapping and

deinterleaver blocks, will be discussed in Section 4.2 which gives the implemen-

tation details of the receiver.

13

3.1.1 Frame Detection

The frame detection is the task of deciding whether or not there is an incoming

frame and giving an approximate estimate for the start time of the frame. This

task can be described as a hypothesis testing problem by comparing a decision

variable µ with a predefined threshold, Thr. If the decision variable exceeds the

threshold, it indicates the presence of the frame.

The most well-known algorithm for finding the start boundary of the incoming

frame is to measure the power of the received signal. This algorithm forms a

decision variable µ by taking the ratio of the received signal power inside the

two consecutive windows, as expressed in Eq. (3.1). When a transmitted frame

is not present, the received signal samples, r[n], consists of only noise and the

received power is equal to the noise power. However, during the transmission

of a frame, the input power at the receiver is equal to the sum of the noise and

signal power. So, as shown in Fig. 3.2a, the decision variable µ creates a peak at

the start boundary of the frame.

µ(n) =

∑D−1
i=0 |r[n− i]|

2∑D−1
i=0 |r[n− i−D]|2

(3.1)

where D is equal to the length of a short preamble symbol.

(a) (b)

Figure 3.2: Decision variables, (a) Power method, (b) Schmidl and Cox method

The power method is an efficient algorithm if the receiver does not have

a priori knowledge of the preambles in the received frame. However, the IEEE

802.11a standard uses a predetermined sequence as a short preamble and repeats

14

this sequence 10 times at the start of each frame. For taking the advantage of

the periodicity of the preambles, we used the “delay and correlate” algorithm

proposed by Schmidl and Cox [6]. Likewise the power method, the Schmidl and

Cox’s algorithm also uses two sliding windows to generate the decision variable.

The first window, P in the Fig. 3.3, measures the correlation between the received

signal and its delayed version. In order to obtain a decision variable indepen-

dently from the signal level, the second window calculates the received signal

power inside the correlation window and normalizes the decision variable. As

shown in Fig. 3.2b, this method creates a plateau through the duration of the

short preambles, so the start of frame can be robustly detected by comparing

the decision variable, µsc, with a predefined threshold.

Figure 3.3: Schmidl and Cox delay and correlate algorithm

3.1.2 Coarse Frequency Synchronization

Before performing the timing synchronization which uses the cross-correlation

between the received signal and the original transmitted signal, the carrier fre-

quency offset between the transmitter and the receiver must be roughly corrected.

We used the algorithm proposed by Moose [7] to perform the frequency synchro-

nization. According to this algorithm, the frequency offset, denoted by δf , can

be estimated by finding the phase of the correlation between two consecutive

training symbols.

If a frequency offset is present, the received samples can be written in terms

of the transmitted signal, t[n], and noise, n[n] as in Eq. (3.2).

r[n] = t[n]ej2πδfn/fs + n[n] (3.2)

15

Then, the complex correlation, CS[n], between two consecutive short pream-

bles is written as in Eq. (3.3), where NS is equal to 16 which is the length of the

short preamble.

CS[n] =

NS−1∑
k=0

r[n− k]× r∗[n− k −NS]

=

NS−1∑
k=0

t[n− k]ej2πδf(n−k)/fs × t∗[n− k −NS]ej2πδf(k+NS−n)/fs + noise

= ej2πδfNS/fs
NS−1∑
k=0

t[n− k]× t∗[n− k −NS] + noise term (3.3)

Due to the periodicity in the short preambles, the transmitted signal, t[n− k], is

equal to the t[n−k−NS] through the correlation window. And so, the Eq. (3.3)

can be simplified as

CS[n] = ej2πδfNS/fs
NS−1∑
k=0

|t[n− k]|2 + noise term (3.4)

then, the carrier frequency offset can be easily estimated from the phase of CS[n].

δ̂fc =
fs∠CS[n]

2πNS

(3.5)

A coarse estimate of the frequency offset is sufficient for the timing syn-

chronization process. So we performed the quantization operation, defined in

Eq. (3.6), on the δ̂fc. This quantization also provides simplicity in the imple-

mentation by considering only a few frequencies instead of the whole frequency

range. ⌊
δ̂fc

⌋
= sign

(
δ̂fS

)
·

128 ·
∣∣∣δ̂fS∣∣∣
fs

+ 0.5

 · fs
128

(3.6)

where bxc operator denotes the largest integer not greater than x.

After estimating the δ̂fS coarsely, the estimated frequency offset is easily

eliminated from the received signal by multiplying it with a complex exponential

signal whose frequency is equal to the negative of the estimated frequency.

16

3.1.3 Timing Synchronization

After performing the coarse frequency synchronization process, the next task of

the receiver is the timing synchronization which finds the start point of OFDM

symbols. This task is one of the most critical issues in the receiver design be-

cause a timing synchronization error may cause significant ISI which degrades

the receiver performance directly.

In order to find the symbol start point accurately, we made the timing syn-

chronization in two steps. In the first step, the autocorrelation metric, M [n] in

Eq. (3.7), is calculated by using the delay and correlate algorithm. The length

of the correlation and delay block is selected as half of the total duration of the

short preambles so that the M [n] metric creates a peak at the end of the last

short preamble, Fig. 3.4a. Hence, a coarse estimation of the time offset can be

easily obtained by using the Eq. (3.8).

M [n] =

∣∣∣∣∣
79∑
k=0

r[n− k]r∗[n− k − 80]

∣∣∣∣∣
2

(3.7)

n̂ = arg max
n

M [n] (3.8)

(a) (b)

Figure 3.4: (a) Autocorrelation metric, (b) Cross correlation metric

The coarse estimate, n̂, can be slightly earlier or later than the exact time

due to the existence of noise in the received signal. Therefore, we performed

the second step to improve the estimation accuracy. In this step, a cross cor-

relation metric, C[n], is calculated by correlating the received signal with the

17

original short preamble, SP , and then the residual starting time offset of the

short preambles is estimated by using the Eq. (3.10).

C[n] =

∣∣∣∣∣
15∑
k=0

r[n− k]SP ∗[15− k]

∣∣∣∣∣
2

(3.9)

m̂ = arg max
0≤m≤15

7∑
k=0

C[m+ 16k] (3.10)

Finally, the exact timing offset is calculated with the help of n̂ and m̂ by

performing the decision rule defined in the Eq. (3.11).

noff =

(n̂/16)× 16 + m̂, if |(n̂ mod 16)− m̂| <= 8

(n̂/16 + 1)× 16 + m̂, if ((n̂ mod 16)− m̂) > 8

(n̂/16− 1)× 16 + m̂, if ((n̂ mod 16)− m̂) < −8

(3.11)

where / operator is used for integer divisions.

The performance of the timing synchronization algorithm is also simulated

in MATLAB under the additive white Gaussian noise and the probability of

synchronization failure versus SNR is illustrated in Fig. 3.5

Figure 3.5: Performance of the timing synchronization algorithm

18

3.1.4 Fine Frequency Synchronization

As mentioned in Chapter 1, the carrier frequency offset due to the local oscil-

lator mismatch or a Doppler shift must be finely corrected by the receiver for

eliminating the ICI. Therefore, we used the long preambles in a same manner as

described in 3.1.2 to obtain a more accurate estimation of the frequency offset.

If the complex correlation function, defined in Eq. (3.3) is calculated for the

long preambles whose length is 64, it gives four times accurate result than the

short ones. Then, the frequency offset is finely estimated from the phase of the

correlation result, CL[n], as follows

δ̂fL =
fs∠CL[n]

2π64
(3.12)

As a result, the frequency offset can be eliminated from the received signal by

multiplying it with exp(−j2πδ̂fLn/fs) and the final estimation can be written

by combining the coarse and fine estimations as the following:

δ̂f =
⌊
δ̂fc

⌋
+ δ̂fL (3.13)

Eq. (3.12) shows that the maximum estimated frequency offset is limited by

the unambiguous region of the CL[n] phase. This means that this algorithm can

compensate a maximum frequency offset of |δfmax|L = fs/128 = 156.25 KHz if

the only long preambles are used. Since the use of the short preambles for coarse

estimation, this limit is extended up to |δfmax| = fs/2NS = 625 KHz.

3.1.5 Channel Estimation

In a wireless communication channel, the transmitted signal reaches the receiver

antenna via multiple paths with different delays and gains. Thus, the receiver

must estimate the channel response in order to coherently demodulate the re-

ceived symbols. The IEEE 802.11a standard assumes that the wireless channel

19

does not change during the transmission period of a packet. It transmits two

long preamble symbols at the beginning of each frame so that the receiver can

obtain the channel impulse response coefficients [4].

h[n] =
L−1∑
i=0

hi · δ[n− i] =
L−1∑
i=0

ai exp(jθi)δ[n− i] (3.14)

For analyzing the multi-path channel effect on the received samples, let us

consider a simple multi-path channel model with L taps as in Eq. (3.14). The

resulting received signal can be written as follows

y[n] = x[n] ? h[n] + w[n] =
L−1∑
i=0

hi · x[n− i] + w[n] (3.15)

where the x[n] is the transmitted signal in Eq. (1.2) and w[n] is a complex

baseband white Gaussian noise. Using the periodicity of the transmitted signal

during the long preambles, the time domain convolution in Eq. (3.15) can be

expressed by a matrix multiplication for the preamble symbols as the following

[8].

y0

y1
...

y62

y63

︸ ︷︷ ︸

=

x0 x63 · · · x63−L+2

x1 x0 · · · x63−L+3

...
...

. . .
...

x62 x61 · · · x63−L

x63 x62 · · · x63−L+1

︸ ︷︷ ︸

·

h0

h1
...

hL−2

hL−1

︸ ︷︷ ︸

+

w0

w1

...

w62

w63

︸ ︷︷ ︸

Y = X · H + W

(3.16)

From this point of view, the channel impulse response vector, H, can be

estimated by using the least square (LS) estimation technique as follows

Ĥ = XH ·
(
X ·XH

)−1 · Y = X+ · Y (3.17)

where X+ denotes the Moore-Penrose generalized inverse of X.

The maximum delay spread of the wireless channel must be less than the

length of the CP interval for an ISI-free reception, so the length of the channel

20

impulse response vector in Eq. (3.16) is selected as being equal to the length of

the CP interval, 16. In addition, the received samples of the first and second

long preamble symbols can be averaged in order to reduce the noise variance

on the estimated channel coefficients and the Eq. (3.17) can be rewritten as the

following.

Ĥ =
1

2
X+ · (Y1 + Y2) (3.18)

3.1.6 Channel Equalization

After estimating the channel impulse response, the receiver must remove the

effects of the channel from the received signal. This is the task of the equalization

block which normalizes all the sub-carriers with their estimated channel transfer

function. In order to analyze the multi-path channel effect on each sub-carrier,

let us write the FFT of the received signal in Eq. (3.15).

Y [k] =
N−1∑
n=0

y[n] exp

(
−j2πkn

N

)

=

p−1∑
i=0

ai ejθi
N−1∑
n=0

x[n− i] exp

(
−j2πkn

N

)
+W [k]

=

p−1∑
i=0

ai ejθi
N−1∑
n=0

N−1∑
k=0

X[k − i] exp

(
j2π

k(n− i)
N

)
exp

(
−j2πkn

N

)
+W [k]

= X[k]

p−1∑
i=0

ai exp

(
j

(
θi − 2π

ki

N

))
+W [k]

= X[k] ·H[k] +W [k] (3.19)

As a result of the Eq. (3.19), the effects of the channel on each sub-carrier can

be compensated if the receiver has a knowledge of the channel transfer function

for all sub-carrier indexes. This knowledge can be easily obtained by taking the

FFT of the channel impulse response coefficients found in Eq. (3.18). Then,

the channel equalization can be performed using a one-tap frequency domain

21

equalizer as follows

X̂[k] =
Y [k]

Ĥ[k]
(3.20)

where Ĥ[k] is the estimated channel transfer function at the k’th sub-carrier.

In addition to the equalization of each sub-carrier, the receiver must also track

the carrier phase while receiving the data symbols in a packet. Because of the

fact that the frequency synchronization procedure is not a perfect process, there

will be a small residual frequency error in the equalized signal. This frequency

error causes a phase rotation on the received constellation and degrades the

system performance significantly. As described in [8], the phase rotation due to

the residual frequency error is the same for all sub-carriers and the amount of

the phase rotation at the n’th OFDM data symbol can be estimated by utilizing

the four pilot sub-carriers as follows

Φ̂n = ∠

[∑
k=−21,−7,7,21

Rn,k

Pn,k

]
(3.21)

where Rn,k is the received equalized pilot sub-carrier and Pn,k is the transmitted

pilot sub-carrier of the n’th OFDM data symbol.

After estimating the accumulated phase value, the equalized constellation

points of each OFDM data symbols are derotated by multiplying them with

exp(−jΦ̂n).

3.2 IEEE 802.11a MATLAB Simulator

In order to observe the performance of the receiver algorithms, we firstly modelled

the IEEE802.11a transmitter in MATLAB. The IEEE 802.11a standard gives an

example of encoding a frame for the physical layer. We applied the transmitted

message defined in this example to the input of our transmitter model and con-

firmed the validity of our model by comparing its output with the time domain

waveform obtained in the standard for this example.

22

After modelling the transmitter, we designed the simulator shown in Fig. 3.6

to test our receiver solution under a multipath channel with additive white Gaus-

sian noise and Rayleigh fading statistics. Through this simulator, the perfor-

mance of the receiver can be observed under various channel conditions and for

different transmitter and receiver parameters.

Figure 3.6: Runtime snapshot of the IEEE802.11a Matlab Simulator

The first parameter on the graphical user interface (GUI) is labelled as “1.

Channel Type” and the channel model between the transmitter and receiver can

be adjusted as AWGN or dispersive fading channel at runtime via the pop-up

menu just besides this label. If the dispersive fading channel model is selected,

the number of multipath delay taps is determined by the second parameter and

the instantaneous channel impulse response can be observed on Fig. 3.6.d. In

addition, the signal to noise ratio (SNR) at the receiver input can be set using the

23

slider bar labelled as “3. Input SNR:” and the simulator reports the estimated

SNR of the equalized received signal on Fig. 3.6.h.

The fifth parameter on the GUI creates a deviation between the transmitter

and receiver local oscillators and the performance of the frequency estimation

algorithm is displayed on Fig. 3.6.k. The decision type of the Viterbi decoding

algorithm can also be adjusted as hard or soft decision via the pop-op menu

associated with the label “Viterbi Decision Type”. Apart from these, the user

can also observe the effects of the power amplifier distortion on the IEEE802.11a

link. The simulator enables the user to select power amplifier model as linear,

clipping or non-linear Saleh Model [9] and to adjust the input back-off factor

of the amplifier. Besides, the simulator also displays the power spectrum of the

transmitted signal on Fig. 3.6.e to demonstrate the distortions on the spectrum

caused by the non-linear power amplifier. In order to suppress the out of band

radiations, the windowing technique proposed in the standard [4] can be applied

on the transmitted signal by smoothing the transitions between the OFDM sym-

bols. The last parameters on the GUI select the windowing function and adjust

the smoothing duration.

24

Chapter 4

FPGA IMPLEMENTATION

We implemented the IEEE 802.11a transceiver on the Lyrtech Small Form Factor

(SFF) Software Defined Radio (SDR) Development Platform which is described

in Appendix A. The receive path of the Lyrtech RF module down-converts the

received signal to an intermediate frequency at 30 MHz. This means that the

received IEEE802.11a signal at the input of ADC has a maximum frequency of

40 MHz and so the minimum sampling rate should be 80 MHz in accordance with

the Shannon-Nyquist criteria. If the received signal is sampled at 80 MHz, a very

sharp low-pass filter is required at the base-band conversion stage to suppress

the mirror images of the digital signal. For this reason, the sampling rate of the

ADC and the system clock rate of the FPGA were selected as 120 MHz.

We used the System Generator tool of Xilinx to develop the FPGA imple-

mentation of the transceiver. This tool facilitates the FPGA hardware design for

Digital Signal Processing (DSP) and extends the MATLAB Simulink to provide

a high level development environment for Xilinx FPGAs [10]. We firstly designed

the system models of the transmitter and receiver in the Simulink environment

using the Xilinx library which includes the bit-accurate models for the circuit

25

blocks in the FPGA. Then, we obtained the HDL codes for our models which

are automatically created by the System Generator.

In this chapter, the system generator implementation of the IEEE802.11a

transmitter and receiver architectures will be explained in detail. In addition,

the measured bit error rate (BER) performance of the receiver under an Additive

White Gaussian Noise (AWGN) channel will be submitted at the end of the

chapter.

4.1 Transmitter Implementation

Figure 4.1: System Generator model of the transmitter

The system generator implementation of the transmitter is divided into five

subsystems as shown in the Fig. 4.1. The first subsystem which is named as

processControl is designed for controlling the signal flow from the MAC layer to

the DAC. The second subsystem is used to implement the bit based operations,

such as convolutional encoding and interleaving. Then, the CarrierModulation

subsystem converts the interleaved bits into the complex constellation symbols

and the CyclicIFFT subsystem takes the inverse Fourier transforms of these

symbols to generate the time domain base-band signal. Finally, the Interpolation

block synchronizes the IFFT output with the DAC operating at 120 MHz. In the

26

following subsections, the implementation of each subsystem will be explained in

detail.

4.1.1 Subsystem 1: ProcessControl

The interface of the physical layer with the MAC layer is provided by the Pro-

cessControl subsystem. The MAC layer adjusts the data rate and the number

of the bytes in the frame, which will be transmitted, though the “mode” and

“nOfBytes” inputs, respectively. After that, it starts the transmission by driving

the “txStr” input to logic high and writes the bytes for the current frame into

the input buffer of the transmitter.

Figure 4.2: Timing diagram of the transmitter pipeline structure

After triggering from the “txStr” input, the ProcessControl subsystem calcu-

lates the number of OFDM symbols required for the current frame and generates

the symbol start, “sStr”, and symbol type signals, “sType”, to control the signal

flow through all the subsystems in the transmitter. In addition, this block also

produces the signal field and scrambled OFDM data bits by reading the bytes

in the input buffer. As illustrated in Fig. 4.2, the ProcessControl block pro-

duces the raw bits for only one OFDM symbol per 480 clock cycles and the other

subsystems processes these bits in a pipelined manner to produce the baseband

in-phase and quadrature signals.

27

4.1.2 Subsystem 2: FecAndInterleaver

Fig. 4.3 shows the implementation architecture of the FecAndInterleaver subsys-

tem. Firstly, the incoming bits from the ProcessControl subsystem are encoded

by the ConvEncoder block which produces two bits output for every one bit in-

put. Then, the produced bits are stored in a dual port block memory. At the

next pipeline interval, the stored bits of the previous OFDM symbol are read

in an order which is determined by the interleaver permutations and puncturing

codes defined in the IEEE802.11a standard. However, a different read order must

be generated for each modulation type and FEC rate combination. In order to

simplify the implementation, the read addresses of the interleaved and punctured

bits are kept in a ROM. In this way, the subsystem only generates the sequential

address pointers for the read address ROM. Then, the output of this ROM is

used for reading the desired bits from the block memory.

Figure 4.3: Implementation of the FecAndInterleaver subsystem

4.1.3 Subsystem 3: CarrierModulation

The CarrierModulation subsystem captures the serial bits produced by the Fe-

cAndInterleaver block and divides them into groups of 1, 2, 4 or 6 bits according

to the modulation type: BPSK, QPSK, 16-QAM or 64-QAM, respectively. Then,

28

it converts the produced groups into the complex signals representing the con-

stellation points as shown in Table 4.1 to 4.3. Considering all the modulation

type, there are 16 different in-phase and 15 different quadrature components of

the constellations. As a consequence of that, the CarrierModulation subsystem

keeps all the constellation points in two look up tables (LUT), one for in-phase

and one for quadrature component, and addresses the LUTs by using the pro-

duced bit groups and the modulation type input to generate the constellation

symbols.

BPSK Modulation QPSK Modulation

Bit:b0 In-Phase Quadrature Bit:b0 In-Phase Bit:b1 Quadrature

0 -1 0 0 −1/
√

2 0 −1/
√

2

1 +1 0 1 +1/
√

2 1 +1/
√

2

Table 4.1: BPSK and QPSK modulation IQ mapping

Bits (b0:b1) In-Phase Bits (b2:b3) Quadrature

00 −3/
√

10 00 −3/
√

10

01 −1/
√

10 01 −1/
√

10

11 +1/
√

10 11 +1/
√

10

10 +3/
√

10 10 +3/
√

10

Table 4.2: 16 QAM modulation IQ mapping

Bits (b0:b1:b2) In-Phase Bits (b3:b4:b5) Quadrature

000 −7/
√

42 000 −7/
√

42

001 −5/
√

42 001 −5/
√

42

011 −3/
√

42 011 −3/
√

42

010 −1/
√

42 010 −1/
√

42

110 +1/
√

42 110 +1/
√

42

111 +3/
√

42 111 +3/
√

42

101 +5/
√

42 101 +5/
√

42

100 +7/
√

42 100 +7/
√

42

Table 4.3: 64 QAM modulation IQ mapping

As shown in Fig. 4.4, the CarrierModulation subsystem stores the generated

constellation symbols in a buffer. At the next process interval, the stored symbols

are read in a shifted order, as described in Section 2.3.4, and the pilot sub-carriers

29

are inserted at appropriate positions. In order to interpolate the transmitted sig-

nal, the CarrierModulation block also extends the Fourier transformation input

sequence to 256 points by zero padding. Besides, at the beginning of each frame,

this subsystem sends the preamble sequences stored in a ROM to the IFFT block

by multiplexing the output.

Figure 4.4: Carrier Modulation subsystem

4.1.4 Subsystem 4: CyclicIFFT

The cyclicIFFT subsystem takes the IFFT of the frequency domain sub-carrier

symbols for generating the time domain baseband signal. The IFFT size is

selected as 256 to interpolate the output signal with four times. For the FPGA

implementation of the 256 point IFFT in a pipelined manner, we used the Radix-

22 Single Delay Feedback (SDF) algorithm proposed by He and Torkelson. The

complexity of this algorithm in terms of the number of complex multiplication is

the same as the Radix-4 IFFT algorithm but it preserves the butterfly structure

of the radix-2 algorithm in order to reduce the number of additions. For a N-point

IFFT operation, the Radix-22 SDF algorithm uses log4N −1 complex multiplier,

4 log4N complex addition and N − 1 complex data memory [11].

x[n] =
N−1∑
k=0

X[k] ·W kn
N 0 ≤ n < N (4.1)

30

The Radix-22 SDF algorithm decimates the output samples of N-point IFFT,

defined as in Eq. (4.1), by a factor of four. Then, it combines the common twiddle

factors and simplifies the equation as the following.

x[4n+ 2n2 + n1] =

N/4−1∑
k=0

1∑
k1=0

1∑
k2=0

X[k + k1
N

2
+ k2

N

4
] ·W (4n+2n2+n1)(k+k1

N
2
+k2

N
4
)

N

=

N/4−1∑
k=0

1∑
k2=0

B[k + k2N/4, n1] ·W (k+k2N/4)n1

N ·W (n2+2n)(k+k2N/4)
N/2

=

N/4−1∑
k=0

(
B[k, n1] + j2n2+n1B[k +N/4, n1]

)
·W k(2n2+n1)

N ·W kn
N/4 (4.2)

where, B[k, n1] = X[k] + (−1)n1 +X[k +N/2] and n1 = {0,1}, n2 = {0,1}.

According to the Eq. (4.2), a N-point IFFT of a sequence can be easily cal-

culated by using a N/4 point IFFT after performing the butterfly and complex

multiplication operations as illustrated in Fig. 4.5. From this point of view, a

256 point IFFT can be taken in four stages, where each stage involves two but-

terfly structures and one complex multiplication. The multiplication at the last

stage is trivial, so it can be eliminated and only three complex multiplications

are needed for performing the inverse Fourier transformation.

Figure 4.5: Radix-22 SDF butterfly structure for 16 point IFFT

31

Fig. 4.6 shows the system generator implementation of the first butterfly

in the first stage. The butterfly architecture needs the first 128 samples to

calculate the outputs, so a block ram is used to provide a delay of 128 samples.

While receiving the last half of the input sequence, the implementation adds the

incoming sample with the delayed one and sends the result to the output. In the

same time, it also subtracts the input samples from the delayed one and writes

the result to the delay buffer. At the next processing interval, the subtraction

results are read from the buffer and directed to the output while buffering the

first half of the next sequence. The pipeline process is carried out in this manner.

Figure 4.6: Fpga implementation of the Butterfly 1 in Stage 1

The implementation of the second butterfly is similar to the first one, except

the trivial multiplication by j. The output of the second butterfly is multiplied

with the twiddle factors in a ROM by a complex multiplier. As shown in Fig. 4.7,

the complex multiplier is implemented by cascading four DSP48 slices to perform

four real multiplications and two additions without using any external resources.

32

Figure 4.7: Complex multiplier implementation with cascaded DSP48 slices

The time domain samples are obtained in a bit reverse order from the output

of the last IFFT stage, so the output samples of the IFFT block are buffered in

a RAM for reordering. After completing the Fourier transformation, the calcu-

lated samples are read from the buffer in a cyclic manner and multiplied with a

windowing function, illustrated in Fig. 4.8, in order to suppress the out of band

radiations. The windowing function is stored in a block memory and can be

updated by the MAC layer to change the smoothing duration, TW .

Figure 4.8: Illustration of the OFDM symbol windowing

In addition to these, the designed IFFT core was also compared with the

available Xilinx IFFT core in terms of the FPGA resource utilization. As shown

in Table 4.4, our implementation uses the FPGA slices 29% more efficiently than

the Xilinx core.

33

Resources Xilinx IFFT Core Our IFFT Core

Slice 1897 1343
Flip-Flop 2847 1716

Look Up Table 2797 2306
Block RAM 3 3

DSP48 Multiplier 12 12

Table 4.4: Resource comparison of the IFFT cores

4.1.5 Subsystem 5: Interpolation

The output rate of the CyclicIFFT subsystem is equal to 80 Msps, whereas the

operating clock frequency of DAC is 120 MHz. For this reason, the Interpolation

subsystem is designed to interpolate the received samples from the CyclicIFFT

block by a factor of 3/2. In order to perform the interpolation by 3/2, the input

signal is firstly upsampled by inserting two zeros between the input samples.

Then, the produced signal is filtered by a low pass filter and downsampled by a

factor of two as shown in Fig. 4.9. However, there is no need to implement all the

interpolation steps, only the calculation of the used samples by the downsampler

can be considered.

Figure 4.9: Block diagram for the interpolation by 3/2

If it is assumed that the down-sampling block selects the even samples of the

input signal, the output of the interpolation, y[n], can be expressed as

y[n] = s[2n] = v[2n] ? h[2n] =
L−1∑
k=0

h[k] · v[2n− k] (4.3)

34

The Eq. (4.3) can also be simplified as the following by considering only the

non-zero samples of v[n].

y[3n+ l] =

∑L/3−1
k=0 h[3k] · x[2n− k] when l = 0∑L/3−1
k=0 h[3k + 2] · x[2n− k], when l = 1∑L/3−1
k=0 h[3k + 1] · x[2n+ 1− k], otherwise

(4.4)

As a result of the Eq. (4.4), the designed interpolation FIR filter with 18

coefficients is implemented by using a sixth order FIR filter. The filter coefficients

are switched in accordance with the interpolation time index and the filter output

is calculated by cascading six DSP48 slices as illustrated in Fig. 4.10.

Figure 4.10: Interpolation filter implementation

4.2 Receiver Implementation

The system generator implementation of the receiver is divided into nine subsys-

tems as shown in Fig. 4.11. The first subsystem, named as “DownConverter”,

converts the IF signal received from the ADC into base-band I and Q components

by a quadrature detector and decimates the output by a factor of six to produce

a 20 MHz output sample rate. Then, the frame detection, timing and frequency

35

Figure 4.11: System Generator model of the receiver

36

synchronization processes are performed by the “preambleDecode” subsystem

as described in Section 3.1. Next, the “chanEstimation” subsystem estimates

the channel impulse response coefficients in time domain and removes the cyclic

prefix from the received samples. The 64 point FFT of the remaining samples

and channel impulse response coefficients are taken by the “FFT64” subsystem,

which is implemented in a similar way as explained in Subsection 4.1.4. After

obtaining the frequency domain subcarrier symbols, the “channelEqualizer” sub-

system performs the channel equalization and carrier phase tracking algorithms

described in Subsection 3.1.6. Then, the “subCarrierDemod” subsystem com-

putes the log likelihood ratios (LLR) of the received bits by demodulating the

equalized constellation symbols. In addition, it also rearranges the order of the

LLRs by a reverse operation of the interleaving at the transmitter and sends

them to the “viterbiDecoder” subsystem to decode the bitstream that has been

convolutionally encoded. Finally, the decoded bits, except for the signal field,

are fed to the “deScrambler” subsystem to reconstruct the transmitted message.

The decoded bits of the Signal Field are also sent to the “signalParsing” block to

extract the frame parameters such as modulation type, number of transmitted

bytes and the number of OFDM symbols in the frame.

In the following subsections, the implementation of the receiver subsystems

that are dissimilar to the transmitter counterparts will be explained in detail.

4.2.1 Down Conversion to Baseband

The down conversion of the IF signal received from the ADC into the baseband

I&Q components is illustrated in Fig. 4.12. The carrier frequency of the received

signal is 30 MHz and the system clock frequency is equal to 120 MHz, so the

cosine and sine components of the local oscillator can be easily generated by

repeating the {1,0,-1,0} sequence.

37

Figure 4.12: Down conversion schema of the received signal

The FIR low pass filter with 36 taps is used to avoid aliasing caused by the

down sampling process and it is designed using the Filter Design and Analysis

Tool (FDATool) of MATLAB. Whereas the filtering operation of an arbitrary

complex signal with 36-taps FIR filter requires 72 multipliers, this cost is reduced

to half by considering only the non-zero samples of input signal. Besides, the

proposed architecture for the decimation filters in [12] is used to reduce the

multiplication cost to one-sixth. Only six DSP48 slices is used to implement the

filters for both I and Q branches.

4.2.2 Preamble Decoding

The frame detection, time and frequency synchronization tasks of the receiver are

performed by the “preambleDecode” subsystem. As mentioned in Section 3.1,

all the synchronization tasks commonly use the delay and correlate algorithm to

calculate the decision variables. The summation of the correlation term for this

algorithm can be rewritten in a recursive manner as follows

M [n] =
L−1∑
k=0

x[n− k] · x∗[n− k − L] =
L−1∑
k=0

Rx[L, n− k]

= M [n− 1] +Rx[L, n]−Rx[L, n− L] (4.5)

As a consequence of the Eq. (4.5), the delay and correlate architecture is imple-

mented by using only two complex additions and one complex multiplication. As

illustrated in Fig. 4.13, the incoming complex signal is delayed through a shift

38

register and the correlation term is calculated by a DSP48 based complex multi-

plier. Then, the difference between the output of the multiplier with the delayed

version of it is obtained using a subtraction block and the result is accumulated

to form the decision variable.

Figure 4.13: Implementation of the delay and correlation algorithm

Apart from the delay and correlate method, the timing synchronization al-

gorithm also uses the cross-correlation between the received signal and the orig-

inal short preamble symbol. The calculation of the cross-correlation function

in Eq. (3.9) requires 16 complex multiplications. However, as shown in Table

4.5, the imaginary part of the short preamble symbol is a circularly shifted ver-

sion of its real part and this property can be used to reduce the implementation

complexity.

k Real(SP[k]) Imag(SP[k]) k Real(SP[k]) Imag(SP[k])

0 0.1250 0.1250 8 0.1250 0.1250
1 -0.3599 0.0064 9 0.0064 -0.3599
2 -0.0366 -0.2134 10 -0.2134 -0.0366
3 0.3879 -0.0344 11 -0.0344 0.3879
4 0.2500 0.0 12 0.0 0.2500
5 0.3879 -0.0344 13 -0.0344 0.3879
6 -0.0366 -0.2134 14 -0.2134 -0.0366
7 -0.3599 0.0064 15 0.0064 -0.3599

Table 4.5: One period of the short preamble sequence

If the summation in Eq. (3.9) is divided into two parts, the cross-correlation

operation can be performed by using two FIR filters with real-valued coefficients

39

as the following:

Rrs[n] =
15∑
k=0

r[n− k]SP ∗[15− k]

=
7∑

k=0

r[n− k]SP ∗[15− k] +
7∑

k=0

r[n− k − 8]SP ∗[7− k]

=
7∑

k=0

r[n− k] · (h2[k]− jh1[k]) +
7∑

k=0

r[n− k − 8] · (h1[k]− jh2[k])

= (r[n]− jr[n− 8]) ? h2[n] + (r[n− 8]− jr[n]) ? h1[n] (4.6)

Moreover, we adapted the symmetric systolic FIR filter architecture proposed

in [12] to implement the h1[n] and h2[n] filters. As illustrated in Fig. 4.14, the

required number of multipliers for h1[n] is halved by adding the input samples

before being multiplied by the same coefficient. The single multiplications by

0.25 and 0.125 are accomplished by simply shifting the binary decimal point

to the right and the remaining fractional multiplications are implemented using

embedded multipliers.

Figure 4.14: Implementation of the correlation filter, h1[n]

In the implementation of the frequency synchronization algorithm, Xilinx

Coordinate Rotational Digital Computer (CORDIC) core ([13]) is used to find

the phase of the correlation result in Eq. (3.12). After estimating the frequency

offset from the phase value, the desired complex sinusoid is generated by using a

Direct Digital Synthesizer (DDS) core of Xilinx [14]. Then, the frequency offset is

eliminated by multiplying the input signal with the generated complex sinusoid.

40

4.2.3 Channel Estimation

The “chanEstimation” subsystem in Fig. 4.11 estimates the channel impulse

response coefficients as described in Subsection 3.1.5. The FPGA implementation

block schema of the “chanEstimation” subsystem is illustrated in Fig. 4.15. This

subsystem firstly calculates the average of the frequency corrected long preamble

symbols and stores the result samples into a block RAM based buffer. After

receiving all the samples of the long preamble symbols, the subsystem reads the

preamble samples from this buffer and the generalized inverse of X in Eq. (3.18)

from a ROM and performs the complex matrix multiplication operation.

Figure 4.15: Block schema of the chanEstimation subsystem

The complex multiply and accumulate unit in Fig. 4.15 includes two paral-

lel complex multiplier and completes the matrix operation in 512 clock cycles.

Then, the calculated channel coefficients are send to the FFT block to obtain

the channel transfer function for all sub-carriers. In addition to the estimation of

channel coefficients, this subsystems removes the cyclic prefix interval from the

received samples and sends the remaining samples of the OFDM data symbols

to the FFT block by multiplexing the output. Due to the execution latency of

the matrix operation, the received samples must be delayed before sending to

the FFT block.

41

4.2.4 Channel Equalizer

Fig. 4.16 shows the system generator implementation of the “channelEqualizer”

subsystem which performs the channel equalization process by evaluating the

complex division operation in Eq. (3.20). This division operation is made in two

steps, first the inverse (under multiplication) of the channel frequency response

coefficients is calculated as follows,

1

Ĥ[k]
=

Ĥ[k]∗

Ĥ[k] · Ĥ[k]∗
(4.7)

then the calculated values are multiplied with the incoming sub-carrier symbols

from the FFT subsystem.

Figure 4.16: Channel Equalization subsystem

The “inverseCalculation” block is designed for implementing the division op-

eration in Eq. (4.7). This block firstly calculates the absolute square of the

42

channel frequency response coefficients by multiplying them with complex con-

jugate versions and the absolute square result is expressed by 32 bits. In order

to simplify the inverse calculation of this result, it is truncated by taking the

most meaningful 12 bits. For this purpose, the block finds the position of first

non-zero bit of the result from the most significant side and takes the consecutive

12 bits from this position to the least significant side. Then, these bits are used

to address a block RAM based look-up table which holds the inverse (under mul-

tiplication) values. Finally, the obtained values are multiplied by the conjugate

of the frequency response coefficients to get the inverse under multiplication of

these coefficients. However, due to the scaling during the truncation operation,

the outputs of this block are transfered to the next blocks with a scale factor.

The channel frequency response coefficients are obtained from the “FFT64”

subsystem and captured by the “channelEstBuffer” block. This block sends the

captured coefficients to the “inverseCalculation” block to perform the division

operation and stores the division results with the scale factors in a block RAM.

While processing the OFDM symbols followed by the preambles, the inverse of

the channel frequency response estimates and the incoming symbols are trans-

mitted to the “longPreambleEqualizer” block. In this block, the preamble based

channel equalization procedure is completed by performing the complex multi-

plication of the input samples and compensating the effect of the scale factor.

In addition to the equalization of each sub-carrier, the “channelEqualizer”

subsystem also estimates the accumulated carrier phase value of each OFDM

data symbols as given in Eq. (3.21) and de-rotates the equalized constellation

symbols according to this value. The estimation of the carrier phase values is

made by the “phaseEstimation” block which adds the symbols at the pilot sub-

carriers after correcting the polarities of them. Then, the phase of this summation

must be found and an exponential signal whose phase is the negative of the es-

timated value must be generated to perform the de-rotation. Instead of using

43

a CORDIC and a Sin-Cosine Generator cores to implement these operations in

hardware, the exponential de-rotation signal can be obtained by normalizing the

amplitude of the pilot summation and conjugating the result. For this purpose,

the “phaseEstimation” block sends the summation result to the “inverseCalcu-

lation” block. In this case, the inverse of the input signal is calculated by this

block as follows

P̂ [n]∗√
P̂ [n]∗ · P̂ [n]

= exp
(
−j · ∠P̂ [n]

)
(4.8)

where P̂ [n] is the summation of the pilot subcarriers for the n’th OFDM symbol.

After generating the exponential de-rotation signal, the “pilotPhaseTracking”

block performs the de-rotation by multiplying the equalized constellation symbols

with this exponential.

4.2.5 Subcarrier Demodulation

The “subCarrierDemod” subsystem demodulates the equalized constellation

symbols and obtains the log likelihood ratios of the received bits which will

be used by the soft decision Viterbi decoder. For BPSK and QPSK modulation

types, the LLR of each bit can be easily calculated by evaluating only the in-phase

or quadrature components of the constellation symbols. However, the calcula-

tion of LLR is more difficult for the 16-QAM and 64-QAM modulation types (see

Tables 4.2 and 4.3), because each component of the constellation carries two and

three bits of information, respectively.

We used the simplified log likelihood ratio method proposed by Tosato and

Bisaglia [15] to obtain the soft decision information. The calculation of LLRs

associated with the bits carried over the in-phase component is given in the

following equations. These equations, except for the BPSK, are also used to cal-

culate the ratios of the bits on the imaginary axis by substituting the quadrature

44

component of the constellation symbol into the equations.

BPSK : LLR(b0) = [yI [n]× 32] (4.9)

QPSK : LLR(b0) =
[
yI [n]×

√
2× 32

]
(4.10)

16QAM :LLR(b0) =
[
yI [n]×

√
10÷ 3× 40

]
LLR(b1) =

[(
2−

∣∣∣yI [n]×
√

10
∣∣∣)÷ 3× 40

]
(4.11)

64QAM :LLR(b0) =
[
yI [n]×

√
42÷ 7× 48

]
LLR(b1) =

[(
4−

∣∣∣yI [n]×
√

42
∣∣∣)÷ 7× 48

]
LLR(b2) =

[(
2−

∣∣∣4− ∣∣∣yI [n]×
√

42
∣∣∣∣∣∣)÷ 7× 48

]
(4.12)

where [·] operator denotes the rounding to the closest integer.

In order to perform the reverse operations of the interleaving and punctur-

ing at the transmitter, the “subCarrierDemod” subsystem stores the LLRs of

the currently decoded OFDM symbol in a block RAM. At the next symbol de-

coding interval, this subsystem reads the stored LLRs from the memory in a

de-interleaved and de-punctured order and sends them to the Viterbi algorithm

processor.

4.2.6 Viterbi Decoder

The IEEE802.11a receiver uses the Viterbi algorithm to decode the convolu-

tionally encoded forward error correction codes. The Viterbi algorithm is com-

monly represented by a trellis diagram, which shows the state transitions in a

time indexed manner. A simple trellis diagram with four states is illustrated

in Fig. 4.17a. There are two outgoing branches for each state at a given time

instant, one corresponds to the encoder input bit of zero and the other corre-

sponds to an input bit of one. The algorithm first calculates the probabilities

of each outgoing branches, named as branch metric, and accumulates them onto

the path (state) metrics of the previous time instant. Due to the existence of

45

two incoming paths for each state, the algorithm selects the one with a bigger

metric and records the selected one as a survivor path. Finally, after processing

all the input data in a frame, the decoded output sequence is obtained by tracing

backward the most probable path [16].

(a) (b)

Figure 4.17: (a)Trellis diagram of the Viterbi decoder, (b) butterfly structure

The system generator implementation of the Viterbi decoder consists of three

units as shown in Fig. 4.18. The Branch Metric Unit (BMU) calculates the

metrics for only “11” and “10” branches by adding and subtracting the incoming

LLRs, respectively. There is no need to calculate the other metrics because they

are equal to the negative of the calculated ones.

Figure 4.18: System Generator block diagram of the Viterbi decoder

The convolutional encoder used in the IEEE802.11a standard has a delay line

with six registers, so the number of states in the trellis diagram is equal to 26.

To provide a simplicity in the implementation, these states are rearranged in 32

46

butterfly structures as illustrated in Fig. 4.17b for four states. The Path Metric

Unit (PMU) of the Viterbi decoder uses one Add-Compare-Select (ACS) unit,

shown in Fig. 4.19, for each butterfly to calculate the new values of path metrics

and determine the survivor paths.

Figure 4.19: Block diagram of butterfly Add-Compare-Select unit

In the implementation of the ACS unit with finite precision arithmetic, we

used the modulo normalization technique proposed in [17] in order to avoid over-

flow problems of the recursively calculated path metrics. According to this tech-

nique, the range of the path metric register must be greater than two times the

maximum possible difference between the path metrics. In our receiver design,

the differences between the metrics are less than 1024 for the LLRs expressed

with seven bits. Therefore, the width of the path metric registers was adjusted

as 11 bits.

The last block in the Viterbi decoder is the Trace Back Unit which is im-

plemented as proposed in [18]. This unit stores the incoming 64 survivor paths

generated by the PMU in one of four block RAMs as illustrated in Fig. 4.20.

While storing the survivors of the n’th block, the previously stored block (n-1)

is traced back in order to determine the starting state of the block n-2. At the

same time, the output bits for the block n-3 are collected by tracing backward the

associated block and stored in a shift register. At next block processing interval,

the decoded bits are read from the shift register in a reverse order and directed

to the output. The pipelined decoding process is continued in this manner.

47

Figure 4.20: Timing diagram of the trace back memory access

4.3 Performance Measurements

In order to test our IEEE802.11a physical layer prototype on the Lyrtech SFF

SDR Development Platform, we also developed a simple MAC layer running on

the platform and an user interface program on the PC. This structure enables

the user to observe the performance of the transceiver under a wireless link con-

structed between two Lyrtech platforms or under an AWGN channel which is

modelled in baseband. As shown in Fig. 4.21, all the modem operating parame-

ters and the RF/IF settings of the platform can be adjusted by the user interface

program which connects to the platform through the Ethernet. Because of fact

that the RF modules on the platform can operate in a frequency range from

262 MHz to 876 MHz (Appendix A), we tested our prototype in this frequency

range instead of in true scenario at 5 GHz.

Figure 4.21: Snapshot of the User Interface Program

48

In the Constellation Test tab of the user program, the constellation of the

received signal is monitored at runtime as illustrated in Fig. 4.22 and 4.23. In this

mode, the MAC layer collects the equalized or unequalized constellation samples

from the receiver and sends them to the PC through an Ethernet packet.

(a) (b)

Figure 4.22: Runtime snapshot of (a)BPSK and (b)QPSK constellations

(a) (b)

Figure 4.23: Runtime snapshot of (a)16-QAM and (b)64-QAM constellations

In addition to constellation monitoring, the MAC layer also measures the bit

error rate (BER) performance of the receiver. It generates a pseudo random

binary sequence using a linear feedback shift register (LFSR) for the transmitter

and sends the generated baseband signal to the RF transmitter or performs a

49

digital loopback test under the AWGN channel model. Then, it produces the

BER statistic by comparing the received bits with a synchronized sequence to the

transmitted ones and reports the statistic results to the user interface program

as shown in Fig. 4.24.

Figure 4.24: Runtime snapshot of bit error rate measurement

By using the user interface program, we measured the BER performance of

our prototype for the QPSK, 16-QAM and 64-QAM modulation types. The

obtained BER curves are depicted in Figs. 4.25 to 4.27 for these modulation

types with the associated coding rates.

Figure 4.25: BER performance of QPSK modulation

50

We also measured the performance of the transceiver by disabling the error

correction codes and compared the obtained BER curve with the theoretical

upper bound for the corresponding modulation type.

Figure 4.26: BER performance of 16-QAM modulation

Figure 4.27: BER performance of 64-QAM modulation

51

Chapter 5

CONCLUSION AND FUTURE

WORK

The Orthogonal Frequency Division Multiplexing (OFDM) is one of the most

promising transmission technique from among the existing technologies due to

its unique features. This thesis begins with a brief overview on the advantages

and disadvantages of the OFDM systems and aims to implement the physical

layer of the IEEE802.11a Wireless LAN standard, which is one of the OFDM

based IEEE standard, on the Field Programmable Gate Arrays. Before starting

the implementation, the overall IEEE802.11a system has been modelled and

simulated in MATLAB environment. According to the simulations, the receiver

has been developed in such a way that it is more reliable and easily implemented.

The timing and frequency synchronization problems of the OFDM technique have

been exclusively considered to yield a good performance. In order to overcome

the PAPR problem of the system, the amplifier at the transmitter is operated in

its linear region and the digital signal sent to the DAC is clipped if the power of

the signal exceeds the maximum permitted limit.

52

This thesis presents an optimized FPGA implementation of the IEEE802.11a

physical layer on the Xilinx Virtex-4 sx35 chip. The high precision implemen-

tation of the transceiver utilizes 5986 slices, 45 block RAMs and 73 multipliers

of the FPGA logic resources corresponding to % 39 of sx35 chip. The trans-

mitter and receiver FPGA cores, which support all the data rates defined in

the standard, have been designed using the Xilinx “System Generator” Toolbox

for Simulink. This implementation environment enables development of high

performance DSP systems and provides automatic HDL code generation.

In addition to the low resource utilization, the bit error rate (BER) perfor-

mances of the designed FPGA implementation are quite close to the theoretical

upper limits of the modulation types QPSK, 16-QAM and 64-QAM. The differ-

ence between the measured and theoretical BER curves of the QPSK modulation

is approximately 0.4 dB. The reason of this degradation is the imperfectness of

the frequency synchronization, channel estimation and the channel equalization

tasks of the receiver. Besides, the degradation of the QAM modulations is a

little more than the QPSK because the QAM modulation type is more sensitive

to the phase error on the constellation.

As a future work, the error correction coding of the system can be improved by

using an advanced coding technique, such as Low Density Parity Check (LDPC)

or Turbo coding, but this improvement will be out of the standard. In addi-

tion, the accuracy of channel estimation can be improved using a more complex

estimation technique to make the system more resistant to fading and Doppler

effects. For this purpose, the number of pilot sub-carriers and their arrangements

can also be modified to obtain a relative good system performance. Apart from

these, the proposed PAPR reduction algorithms in [19] can be applied to the

transmitter core in order to use the power amplifier more efficiently.

53

APPENDIX A

Lyrtech SFF SDR Development

Platform

The Lyrtech Small Form Factor(SFF) Software Defined Radio (SDR) Develop-

ment Platform is a self contained platform to develop the applications in the

field of software defined radio. As shown in Figure A.1, the SFF SDR Platform

consists of there modules: the Digital Processing Module, the Data Conversion

Module and the RF Module [20].

Figure A.1: Lyrtech SFF SDR Development Platform

54

The digital processing module is equipped with one Texas Instruments

TMS320DM6446 Digital Media Processor (DMP) System on Chip (SoC) and

one Virtex-4 XC4SX35 FPGA from Xilinx. The DMP SoC is a dual-core device

with a C64+ DSP and an ARM9 General Purpose Processor (GPP). All the

peripherals on the module, such as DDR2 SDRAM, USB ports, audio codec and

Ethernet Interface, are controlled by the DMP SoC. It also uses the FPGA as

a co-processor for digital signal processing tasks. This module is connected to

the Data Conversion Module through the expansion connector accessed by the

FPGA.

Figure A.2: Block diagram of the Data Conversion module

The Data Conversion Module provides the interface between the digital pro-

cessing module and the analog RF module of the platform. As shown in Fig-

ure A.2, this module is equipped with two 14-bit 125MSPS ADCs and one dual-

channel 16-bit 500 MSPS interpolating DAC to support large data-intensive ap-

plications. The module also includes a PLL for generating the sampling clock

signal and a Virtex-4 FPGA for preprocessing the incoming data and controlling

the interface with the digital processing module.

The wireless interface of the Lyrtech development platform is provided by the

RF Module which covers various frequency ranges for transmission and reception.

55

Figure A.3: Direct Quadrature RF Transmitter

The transmitting section of the RF module takes the in-phase and quadrature

signal components from the conversion module. Then, it mixes them with a

local oscillator whose frequency range from 262 MHz to 876 MHz as illustrated

in Figure A.3. The receive section of the RF module is realized with a three-stage

super heterodyne receiver. As in Figure A.4, this receiver architecture takes the

RF signal from the antenna and down converts it to an intermediate frequency

(IF) at 30 MHz.

Figure A.4: Super Heterodyne RF Receiver

56

Bibliography

[1] J. G. Andrews, A. Grosh and R. Muhamed, Fundamentals of WiMAX: Un-

derstanding Broadband Wireless Networking. Prentice Hall, 2007.

[2] R. Prasad, OFDM for Wireless Communications Systems. Boston: Artech

House, 2004.

[3] C. L. Henrik Schulze, Theory and Applications of OFDM and CDMA. John

Wiley & Sons Ltd, 2005.

[4] IEEE, “Supplement to Standard 802 Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications,” 1999.

[5] M. Engels, Wireless OFDM Systems: How to Make Them Work? Springer,

2002.

[6] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchoroniza-

tion for OFDM,” IEEE Transactions on Communications, vol. 45, no. 12,

1997.

[7] P. H. Moose, “A Technique for Orthogonal Frequency Division Multiplex-

ing Frequency Offset Correction,” IEEE Transactions on Communications,

vol. 42, no. 10, 1994.

[8] J. Heiskala and J. Terry, OFDM Wireless LANs: A Theoretical and Practical

Guide. Sams Publishing, 2002.

57

[9] S. Meza, M. O’Droma, Y. Lei, and A. Goacher, “Some New Memory-

less Behavioural Models of Wireless Transmitter Solid State Power Ampli-

fiers,” IEEE International Conference on Automation, Quality and Testing,

Robotics, May 2008.

[10] Xilinx Inc., “System Generator for DSP User Guide.” http:

//www.xilinx.com/support/documentation/sw_manuals/xilinx12_

1/sysgen_user.pdf, April 2010.

[11] S. He and M. Torkelson, “A New Approach to Pipeline FFT Processor,”

10th International Parallel Processing Symposium, pp. 766–770, 1996.

[12] Xilinx Inc., “XtremeDSP for Virtex-4 FPGAs User Guide.” http:

//www.xilinx.com/support/documentation/user_guides/ug073.pdf,

May 2008.

[13] Xilinx Inc., “Logicore IP Cordic v4.0 Product Specification.”

http://www.xilinx.com/support/documentation/ip_documentation/

cordic_ds249.pdf, April 2009.

[14] Xilinx Inc., “Logicore IP DDS Complier v4.0 Product Specification.”

http://www.xilinx.com/support/documentation/ip_documentation/

dds_ds558.pdf, April 2010.

[15] F. Tosato and P. Bisaglia, “Simplified Soft-Output Demapper for Binary In-

terleaved COFDM with Application to HIPERLAN/2,” IEEE International

Conference on Communications, vol. 2, pp. 664–668, 2002.

[16] W. C. Huffman and V. Pless, Fundamentals of Error Correction Codes.

Cambridge University Press, 2003.

[17] G. U. C. B. Shung, P. H. Siegel and H. K. Thapar, “VLSI Architectures for

Metric Normalization in the Viterbi Algorithm,” International Conference

on Communications, April 1990.

58

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/sysgen_user.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/sysgen_user.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/sysgen_user.pdf
http://www.xilinx.com/support/documentation/user_guides/ug073.pdf
http://www.xilinx.com/support/documentation/user_guides/ug073.pdf
http://www.xilinx.com/support/documentation/ip_documentation/cordic_ds249.pdf
http://www.xilinx.com/support/documentation/ip_documentation/cordic_ds249.pdf
http://www.xilinx.com/support/documentation/ip_documentation/dds_ds558.pdf
http://www.xilinx.com/support/documentation/ip_documentation/dds_ds558.pdf

[18] E. Paaske and J. D. Andersen, “High Speed Viterbi Decoder Architecture,”

First ESA Workshop on Tracking, Telemetry and Command Systems, June

1998.

[19] S. H. Han and J. H. Lee, “An Overview of Peak-to-Average Power Ratio

Reduction Techniques for Multicarrier Transmission,” Wireless Communi-

cations, IEEE, pp. 56 – 65, April 2005.

[20] Lyrtech Inc., “Small Form Factor SDR Evaluation Module/Development

Platform User’s Guide,” tech. rep., October 2008.

59

	INTRODUCTION
	Background on OFDM
	Thesis Objective and Outline

	THE IEEE 802.11a STANDARD
	General Structure
	The Frame Format of IEEE 802.11a
	IEEE802.11a Transmitter Blocks
	Data Scrambler
	Convolutional Encoder
	Data Interleaving
	Sub-carrier Modulation

	IEEE 802.11a RECEIVER DESIGN
	Receiver Architecture
	Frame Detection
	Coarse Frequency Synchronization
	Timing Synchronization
	Fine Frequency Synchronization
	Channel Estimation
	Channel Equalization

	IEEE 802.11a MATLAB Simulator

	FPGA IMPLEMENTATION
	Transmitter Implementation
	Subsystem 1: ProcessControl
	Subsystem 2: FecAndInterleaver
	Subsystem 3: CarrierModulation
	Subsystem 4: CyclicIFFT
	Subsystem 5: Interpolation

	Receiver Implementation
	Down Conversion to Baseband
	Preamble Decoding
	Channel Estimation
	Channel Equalizer
	Subcarrier Demodulation
	Viterbi Decoder

	Performance Measurements

	CONCLUSION AND FUTURE WORK
	APPENDIX
	Lyrtech SFF SDR Development Platform

