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ABSTRACT

UNCERTAIN LINEAR EQUATIONS

Mert Pilancı

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Orhan Arıkan

July 2010

In this thesis, new theoretical and practical results on linear equations with var-

ious types of uncertainties and their applications are presented. In the first part,

the case in which there are more equations than unknowns (overdetermined case)

is considered. A novel approach is proposed to provide robust and accurate esti-

mates of the solution of the linear equations when both the measurement vector

and the coefficient matrix are subject to uncertainty. A new analytic formulation

is developed in terms of the gradient flow to analyze and provide estimates to

the solution. The presented analysis enables us to study and compare existing

methods in literature. We derive theoretical bounds for the performance of our

estimator and show that if the signal-to-noise ratio is low than a treshold, a signif-

icant improvement is made compared to the conventional estimator. Numerical

results in applications such as blind identification, multiple frequency estimation

and deconvolution show that the proposed technique outperforms alternative

methods in mean-squared error for a significant range of signal-to-noise ratio

values. The second type of uncertainty analyzed in the overdetermined case is

where uncertainty is sparse in some basis. We show that this type of uncertainty

on the coefficient matrix can be recovered exactly for a large class of structures,

if we have sufficiently many equations. We propose and solve an optimization
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criterion and its convex relaxation to recover the uncertainty and the solution to

the linear system. We derive sufficiency conditions for exact and stable recov-

ery. Then we demonstrate with numerical examples that the proposed method is

able to recover unknowns exactly with high probability. The performance of the

proposed technique is compared in estimation and tracking of sparse multipath

wireless channels. The second part of the thesis deals with the case where there

are more unknowns than equations (underdetermined case). We extend the the-

ory of polarization of Arikan for random variables with continuous distributions.

We show that the Hadamard Transform and the Discrete Fourier Transform, po-

larizes the information content of independent identically distributed copies of

compressible random variables, where compressibility is measured by Shannon’s

differential entropy. Using these results we show that, the solution of the linear

system can be recovered even if there are more unknowns than equations if the

number of equations is sufficient to capture the entropy of the uncertainty. This

approach is applied to sampling compressible signals below the Nyquist rate and

coined ”Polar Sampling”. This result generalizes and unifies the sparse recovery

theory of Compressed Sensing by extending it to general low entropy signals with

an information theoretical analysis. We demonstrate the effectiveness of Polar

Sampling approach on a numerical sub-Nyquist sampling example.

Keywords: Statistical Signal Processing, Linear Algebra, Least Squares Estima-

tion, Errors in Variables Model, Sparse Signal Processing, Compressed Sensing,

Information Theory, Polar Codes, Source Polarization
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ÖZET

BELİRSİZ DENKLEM SİSTEMLERİ

Mert Pilancı

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Orhan Arıkan

Temmuz 2010

Bu tezde, çeşitli belirsizlikler içeren denklem sistemleri için kuramsal sonuçlar

ve uygulamaları sunulmaktadır. İlk kısımda, denklem sayısının bilinmeyen

sayısından fazla olduğu durum (artık belirtilmiş) ele alınmaktadır. Katsayı ma-

trisi ve ölçüm vektöründe birlikte belirsizlik bulunan denklem sistemleri için

gürbüz ve isabetli yeni bir yöntem önerilmektedir. Çözüme ulaşmak ve başarımı

analiz etmek için gradyan alanına dayalı yeni bir analitik yaklaşım sunulmak-

tadır. Sunulan kuramsal sonuçlar literatürde bilinen diğer yöntemlerin de in-

celenmesi için kullanılmıştır. Önerilen yöntem için başarım sınırları türetilmiş

ve sinyal gürültü oranının belirli bir miktardan düşük olduğu durumda önerilen

yöntemin diğer yöntemlere kıyasla daha başarılı olduğu ispatlanmıştır. Sayısal

sonuçlar kısmında sistem tanımlama, çoklu frekans kestirimi ve ters evrişim

problemlerindeki başarım oranı diğer yöntemlerle karşılaştırılmış ve düşük sinyal

gürültü oranları için daha az toplam hata kare elde edilmiştir. Bu bölümde

incelenen diğer bir belirsizlik modeli de seyrek belirsizliktir. Bu tür belir-

sizliklerin eğer yeteri kadar denklem varsa bazı koşullar altında kesin olarak

çözülebileceği gösterilmiştir. Çözüm için bir optimizasyon kriteri ve konveks

relaksiyonu önerilmektedir. Kesin ve kararlı çözüm için yeterli koşullar bu-

lunmuştur. Nümerik örnekler önerilen yöntemin kesin çözüm olasılığının yüksek
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olduğunu göstermektedir. Yöntem kablosuz çokyollu kanal kestirim ve tak-

ibine uygulanmış ve yüksek başarım sağlanmıştır. Tezin ikinci kısmında bil-

inmeyen sayısı denklem sayısından fazla olduğu (eksik belirtilmiş) durum ele

alınmıştır. Arıkan’ın kutuplaşma kuramı sürekli dağılımlı rastgele değişkenlere

genişletilerek, Hadamard ve Ayrık Fourier Dönüşümü’nün bağımsız eş dağılımlı

sıkıştırılabilir değişkenlerdeki bilgi içeriğini kutuplaştırdığı gösterilmiştir. Elde

edilen bu sonuçlarla, eğer gözlem entropisi yeterliyse doğrusal denklem sistemin

çözümünün belirlenebileceği gösterilmiştir. Bu yaklaşım sıkıştırılabilir sinyalleri

örneklemeye uygulanmış ve ”Kutupsal Örnekleme” adı verilmiştir. Bu sonuç

Sıkıştırmalı Örnekleme (Compressive Sampling) kuramının seyrek sinyallerden

sıkıştırılabilir sinyallere bilgi kuramı yardımıyla genellenmesini sağlamıştır. Ku-

tupsal Örnekleme yöntemi sayısal olarak dalgacıklar yardımıyla sıkıştırılabilir bir

sinyali Nyquist hızı altında örneklemede denenmiş ve sonuçlar sunulmuştur.

Anahtar Kelimeler: İstatistiksel Sinyal İşleme, Doğrusal Cebir, En Az Kareler,

Toplam En Az Kareler, Seyrek Sinyal İşleme, Sıkıştırmalı Örnekleme, Bilgi Ku-

ramı, Kutuplaşma Kodları, Kaynak Kutuplaşması.
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Chapter 1

INTRODUCTION

The subject of this thesis is the recovery of uncertainty in linear equations. The

work can be divided basically into two parts: The Overdetermined Case, where

the number of equations exceeds the number of unknowns and The Underdeter-

mined Case, which is the exact opposite. In the first part we develop theoretical

notions to analyze various forms of matrix uncertainty for overdetermined linear

equations. Then we propose new estimators to cope with the uncertainty and

derive bounds for their performance. The main result of the first part is that,

since we have more equations than unknowns, the uncertainty (and consequently

the unknowns of the linear equation) can be recovered statistically or exactly

depending on the structure of the uncertainty. The second part deals with the

underdetermined case. Following the work of Arikan, we develop the theory of

information polarization for random variables with continuos distributions. Then

we prove that using a specially structured matrix, it is possible to recover the

unknowns using few equations.
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1.2 Overdetermined Linear Equations

In various signal processing applications including deconvolution, signal mod-

eling, frequency estimation, blind channel identification and equalization, it is

important to produce robust estimates for an unknown vector x from a set of

measurements y. Typically, a linear model is used to relate the unknowns to the

available measurements: y = Ax + w, where the matrix A ∈ Rm×n describes

the linear relationship and w is additive measurement noise. Over the years, a

multitude of techniques have been developed to obtain better estimates for x.

For instance, if x is a random vector with known first and second order statistics,

the Wiener estimator, which minimizes the mean-squared error (MSE) over all

linear estimators, can be used with proven success [1]. In the absence of such a

statistical information on x, the Least Squares (LS) criterion is commonly used

when the number of equations exceeds the number of unknowns. The well known

LS method for solving the overdetermined linear equations Ax = y for m > n,

yields the Maximum Likelihood (ML) estimate of the deterministic unknown x

when the observations are subject to independent identically distributed (i.i.d.)

Gaussian noise and has the minimum MSE over all unbiased estimators [2]. In

practice, the observation y is noisy and the elements of matrix A are also sub-

ject to errors since they may be results of some other measurements or obtained

under some modeling assumptions. When the errors in A and y are zero mean

i.i.d. Gaussian random variables, the ML estimate can be obtained by the To-

tal Least Squares (TLS) technique, which ”corrects” the system with minimum

perturbation so that it becomes consistent [3,4]. However in many applications,

the linear system of equations has a structure, e.g., Toeplitz, Hankel, Vander-

monde, hence the i.i.d. assumption on the errors is not valid. For that reason,

the Structured Total Least Squares (STLS) techniques and its regularized ver-

sions (RSTLS) have been developed to obtain an accurate estimate by employing
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minimal norm structured perturbations on the original system until consistency

is reached [5–7].

In two alternative Min-Max optimal approaches, the estimator that mini-

mizes the worst case MSE: E[‖x− x0‖], [8, 9] or residual: ‖Ax− y‖, [10] is

sought respectively. Min-Max approaches reduce to convex optimization prob-

lems. However, the worst case residual approach which is known as Structured

Robust Least Squares (SRLS), can also be applied to any linear structured un-

certainty. Furthermore, the SRLS problem can be efficiently solved using second

order cone programming [11]. The solution can be interpreted as a Tikhonov

regularization in the unstructured case [12, 13]. When A is ill-conditioned, the

Min-Max solution produces a biased x̂ to avoid the residual norm becoming un-

acceptably large. As a result the Min-Max approach may be overly conservative

and its average performance is usually undesirable in many applications. Fur-

thermore, the performance of the Min-Max techniques varies significantly based

on the uncertainty bounds that might not be readily available.

For overdetermined linear equations, we propose and analyze a new method,

Structured Least Squares with Bounded Data Uncertainties (SLS-BDU), to pro-

vide a better trade-off between the accuracy and robustness of the estimates for

the solution to Ax = y under structured and bounded uncertainty in A and y.

Unlike the SRLS technique that minimizes the worst case error, the proposed

SLS-BDU technique minimizes the best case residual. For ill-conditioned prob-

lems, it is demonstrated both in theory and simulations that a small norm bound

on the perturbation regularizes the solution and prevents numerical instability

which is usually exhibited by the STLS estimator. The proposed estimator does

not force the consistency of given equations, which is the primary reason of insta-

bility in practice. Instead, the most likely solution that is within the confidence

bounds of the perturbations is found. There are important signal processing

applications where such bounds on the perturbations are known. Hence, the
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proposed approach is well suited for such applications including array signal pro-

cessing, channel estimation [14] and equalization [15], system identification [16],

spectral estimation [17], signal modeling [18] where STLS is readily applied.

When bounds on the perturbations are not available, the bound can be treated

as a regularization parameter. For this case, we propose a simple strategy to

determine the value of the bound that yields accurate and robust estimates.

The analysis of known estimators and solution of the proposed formulation

relies mostly on the Fréchet derivatives of pseudoinverses which was studied in

numerical optimization for nonlinear least squares fitting [19]. The geometry

of gradient flow of the cost function reveals how the known techniques behave

differently and their respective performance over different scenarios. The dis-

cussion on the gradient flow leads to a version of SLS-BDU that automatically

chooses the bound parameter when it is not available to us. It is shown in nu-

merical examples that the proposed estimator achieves smaller MSE than other

alternatives for a large set of SNR values.

1.3 Underdetermined Linear Equations

Although most of the equation systems faced in reality contain far more unknown

variables than known quantities, it was long believed that for a reliable solution

of a linear system, the number of equations must be at least the number of un-

knowns. However, recent progress showed that, underdetermined equations can

also be solved exactly with very high probability provided that the solution is

sparse and the coefficient matrix satisfies certain properties. The first implication

of this result was on sampling theory, as it implies sampling and exact recov-

ery below conventional rates. This result is known as Compressed Sensing and

makes the sub-Nyquist sampling and recovery possible by a dramatic change of
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the sensory equipment. In this part of the thesis, we generalize the sparse recov-

ery theory of Compressed Sensing by extending it to general low entropy signals

with an information theoretical analysis. We use a specific structured matrix

which mimics the source/channel polarization phenomenon of Arikan for ran-

dom variables with continuous distributions. Using results from Central Limit

Theorem and Martingale theory, we show that for compressible signals, few inner

products suffice to unveil the uncertainty. Therefore the solvability of the un-

derdetermined system depends on the entropy of the unknowns. This approach

was coined ”Polar Sampling” when applied to sampling low entropy signals. Al-

though our results are valid for restricted family of matrices including Hadamard

and Discrete Fourier matrices, the theoretical methods used in this section can

also be used to analyze many other matrix structures and solvability of such

underdetermined systems as well. We demonstrate the effectiveness of our Polar

Sampling approach on sampling an infinite bandwidth signal below the Nyquist

rate.
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Chapter 2

UNCERTAIN LINEAR

EQUATIONS: Overdetermined

Case

2.1 Preliminaries and Notation

Throughout the thesis, we denote by AT and A† the transpose and Moore-

Penrose pseudoinverse of the matrix A respectively. ‖A‖2 is the spectral norm

of A, i.e., the largest singular value and σmin(A) is the minimum singular value.

For an integer i, 1 ≤ i ≤ Rank(A), σi(A) is the i’th largest singular value.

‖A‖F ,
√∑

i σ
2
i (A) denotes the Frobenious norm of A. A ¯ B denotes the

Hadamard, i.e., elementwise product of two matrices of the same size. ∇ and

D are the gradient and Fréchet derivative operators respectively. E denotes

expectation of a random variable. (·)+ denotes the positive part of a real scalar

and (·)i denotes the ith sub-array of an array of numbers.
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2.2 Review of Existing Approaches

In this section, we provide a short review of algorithms that have been proposed

for overdetermined linear system of equations with uncertainties in all variables.

The following approaches can be first divided in to two categories, namely the

structured and unstructured uncertainties (perturbations on the matrix). The

Total Least Squares (TLS) and Unstructured Bounded Errors in Variables ap-

proaches are in the first category. The Structured Total Least Squares approach

is proposed to fulfill the goals of TLS in case of an existing structure. The Struc-

tured Robust Least Squares approach has been proposed to provide Min-Max

optimal robust solutions to structured least squares problems. In the following

each approach will be briefly reviewed.

2.2.1 The Method of Least Squares

For an overdetermined linear system of equations Ax ≈ y, the well known Least

Squares approach assumes that the only uncertainty is on the observations y.

And it minimizes the residual,

xLS = arg min
x
‖Ax− y‖2

2 , (2.1)

which has the closed form solution,

xLS = (ATA)−1ATy = A†y, (2.2)

if A has full column rank. Finding a Least Squares solution can also be seen

as finding a minimum norm perturbation e on the observation y, such that the

perturbed system Ax = y + e is consistent.

7



2.2.2 The Total Least Squares Approach

In reality, the uncertainty is usually not restricted to only y. In Total Least

Squares (TLS) approach, it is assumed that the coefficient matrix is also un-

certain. In this case, the minimum norm perturbation [∆A ∆y] on [A y] that

results in a consistent system (A+∆A)x = y+∆y is found. The TLS problem

can be solved by using the Singular Value Decomposition (SVD) as [3]:

xTLS = (ATA− σ2
n+1I)

−1ATy , (2.3)

where σn+1 is the smallest singular value of [A y]. However, the subtraction of

σ2
n+1I from the diagonal of ATA deregulates the inverse operation, hence, results

in an increased sensitivity to noise. It is known that the variance of the TLS

estimator is always higher than that of the ordinary Least Squares estimator,

and increases with the condition number of the true matrix A0 [20]. A weighted

TLS solution provides the ML estimate for the random Gaussian linear model [4].

See [21] for other generalizations of the TLS.

2.2.3 (Regularized) Structured Total Least Squares Ap-

proach

Often the imprecisions on A and y have a structure that is desired to be kept

intact during the perturbations to obtain a consistent system. For this purpose,

the structured TLS (STLS) approaches have been proposed as a constrained

optimization problem [5], [6], [22]:

min
∆A,∆y,x

‖[∆A ∆y]‖F + µ ‖Wx‖2

s.t.(A + ∆A)x = y + ∆y and

[∆A ∆y] has the same structure as [A y] ,

8



where, for µ ≥ 0, µ ‖Wx‖ is a penalty term that is used to regularize the solution.

If the perturbations are such that the columns of [∆A ∆y] can be written as,

[∆A ∆y]i = Giv, i = 1, ..., n + 1 , (2.4)

where v is a white noise vector with variance σ2, the RSTLS optimization can

be reduced to the following nonlinear minimization [23,24] :


 x

−1




T

[A y]T (HxH
T
x )−1[A y]


 x

−1


 + µ ‖Wx‖2 , (2.5)

where

Hx =

( m∑
i=1

xiGi

)
−Gm+1 . (2.6)

Except for block circulant matrices [22], this optimization problem is non-convex

and the developed solution techniques are based on local optimization. In [24], it

is shown that for high SNR the covariance matrix of the STLS (µ = 0) estimator

can be approximated by

E[(x̂− x)(x̂− x)T ] ≈ σ2(AT
0 (HxH

T
x )−1A0)

−1 . (2.7)

If A0 has a large condition number, the variance can be extremely large. It is

usually noted in applications that at low SNR, the error variance is even larger

than its approximation in (2.7) [25,26].

2.2.4 Structured Robust Least Squares Approach

As a member of Min-Max class of techniques, the Structured Robust Least

Squares (SRLS) estimates x as the solution to the following optimization prob-

lem:

min
x

max
‖δ‖2≤ρ

∥∥∥∥∥(A +

p∑
i=1

δiAi)x− (y +

p∑
i=1

δiyi)

∥∥∥∥∥
2

. (2.8)

SRLS minimizes the worst case residual over a set of perturbations structured

with constant matrices Ai and vectors yi . As the bound ρ gets larger, the
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obtained solutions become more regularized. Hence, the SRLS approach trades

accuracy for robustness. Since the Min-Max criterion is convex, the solution to

the SRLS problem can be obtained efficiently by using convex, second-order cone

programming [10]. There also exists extensions of this approach incorporating

quantization uncertainty in x, which is solvable using convex programming [27].

2.2.5 Unstructured Bounded Errors-in-Variables (UBEV)

Model

One of the important unstructured techniques is known as the Bounded Errors-

in-Variables approach, where the inner maximization of the unstructured robust

least squares is replaced with a minimization over the allowed perturbations

[28,29]:

min
x

min

‖[∆A]‖F≤ηA

‖[∆y]‖2≤ηy

‖(A + ∆A)x− (y + ∆y)‖ .

As opposed to the cautious approach taken by the Min-Max techniques, this

technique has an optimistic approach and searches for the most favorable per-

turbation in the allowed set of perturbations. In this sense it is closer to the

TLS approach, but more robust since it does not pursue the consistency as

in TLS resulting in sensitivity issues. However, unlike the Min-Max case, the

Min-Min approach may be degenerate if the residual becomes zero [29]. The

non-degenerate and unstructured case has the same form as the TLS solution

xUBEV = (ATA− γI)−1ATy ,

for some positive valued γ which depends on the perturbation bounds and can

be solved using secular equation techniques [30]. For small enough bounds on

the perturbations, it can be shown that the value of γ is less than that of σ2
n+1 in

the TLS solution given in Eqn. 2.3, resulting in less de-regularization than the

TLS, hence more robust solutions.
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The Extended Least Squares (XLS) criterion [31], which is a blend of LS and

STLS is another technique worth noting. In XLS and similar techniques [32],

the model errors and measurement errors are distinguished using a weighted

minimization.

2.3 Structured Least Squares with Bounded

Data Uncertainties

We will consider the following deterministic relationship between the true vari-

ables of a linear system:

y0 = A0x , (2.9)

where the true matrix A0 ∈ Rm×n maps the unknowns x to y0. However neither

A0 nor y0 is available to us directly. The measured y is related to y0 as:

y = y0 +

p∑
i=1

yiθi + w , (2.10)

where non-zero values of θi cause structured uncertainty and w is additive i.i.d.

noise vector with variance σ2
w. Furthermore, the observed untrue matrix A is a

structurally perturbed version of A0:

A = A0 +

p∑
i=1

Aiθi . (2.11)

Here, both Ai and yi are fixed matrices with known structure and θi is the i’th

element of the perturbation vector θ. Note that the structured errors in A and

y may be correlated in this setup as in the case of Linear Prediction Equations

used in harmonic superresolution, AR and ARMA modeling [24, 33]. In those

applications such as deconvolution or system identification where no structure

exists in the measurement vector, all yi ’s can be set to zero.
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2.3.1 The Proposed Optimization Problem

Borrowing the uncertainty set idea from the Min-Max framework we formulate

the following optimization problem that is closer to the Maximum Likelihood

solution in spirit,

min
x

min
‖Wα‖2≤ρ

∥∥∥∥∥(A +

p∑
i=1

αiAi)x− (y +

p∑
i=1

αiyi)

∥∥∥∥∥

2

2

, (2.12)

which is a generalization of the Bounded Errors-in-Variables model to the struc-

tured case [28]. Here, W is a positive-definite weighting matrix which may be

used to incorporate prior knowledge of perturbations, e.g., imposing frequency

domain constraints. Unlike the Min-Max case this optimization problem is non-

convex in general. In the following, we consider the cases of deterministic and

random perturbations and we will assume that ρ is small enough so that the

objective of (2.12) is always positive.

Deterministic Perturbations

In Appendix A, given observations of y and A, we show that there is no unbi-

ased estimator of x with finite variance if p > m− n. This is because of the fact

that for p > m− n the Fisher Information Matrix is singular for a deterministic

unknown vector θ. In particular this result applies to commonly encountered

Toeplitz and Hankel structures which have p = m + n − 1. If the uncertainty

bounds of measurements are known beforehand, a reasonable biased estimate

can be obtained even though the Cramer-Rao Lower Bound is infinite, by us-

ing the proposed constrained optimization. This case is demonstrated in the

signal restoration application in Section 2.7 where the impulse response has an

uncertainty with known bounds.
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Random Perturbations

As a data preprocessing step, if the actual perturbation θ is modeled as a random

vector with non-zero mean mθ and positive definite covariance matrix Σ, one

can define a new set of matrices and vectors:

Ã = A + mθ

p∑
i=1

Ai , ỹ = y + mθ

p∑
i=1

yi , (2.13)

Ãj =

p∑
i=1

PijAi , ỹj =

p∑
i=1

Pijyi , (2.14)

where P is the Cholesky factor of the covariance matrix, Σ = PPT . These new

set of matrices enable us to use a whitened perturbation vector. Hence, without

loss of generality, we can assume θ is a zero mean random vector containing

independent identically distributed elements with variance σ2. Then we have the

expectation:

E[ATA] = AT
0 A0 +

∑
i

∑
j

AT
i AjE[θiθj] (2.15)

= AT
0 A0 + σ2

∑
i

AT
i Ai . (2.16)

For Toeplitz or Hankel structures, this expression can be further simplified to:

E[ATA] = AT
0 A0 + mσ2I . (2.17)

The above expression and also (2.16) illustrate the fact that, as a result of the

diagonal loading term, even if A0 is an ill-conditioned matrix, the observed ma-

trix may be well-conditioned. Hence searching for a consistent system A0x = y0

by employing perturbations on the observed system (A,y) could result in an

inadmissible estimator with large variance. Adding a regularization term as in

the RSTLS formulation may be a remedy for this problem. However as will be

shown next, by using the proposed approach defined in (2.12), it is possible to

find an estimator with smaller MSE.
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2.3.2 The Mean Squared Error of the SLS-BDU Estimate

The proposed estimator falls into the class of biased estimators for the linear

model where bias-variance tradeoff is of primary importance [34,35]. To provide

further insight, we next derive an MSE bound which indicates a similar tradeoff.

We begin with the following definitions:

Definition 1. For a constant α ∈ Rp define functions,

A(α) , A +

p∑
i=1

αiAi , y(α) , y +

p∑
i=1

αiyi . (2.18)

Without loss of generality we will assume that yi = 0 ∀i in the rest of the

thesis, since they can be embedded into Ãi , [Ai yi ]’s as follows:

A(α)x− y(α) = A +

(∑
i

[Ai yi]αi

)
[x − 1]T − y . (2.19)

Then the following theorem characterizes the MSE of the proposed estimator,

Theorem 2.3.1. For A(α) which is of full column rank for ‖Wα‖2 ≤ ρ, the

optimal x̂ for the proposed optimization in (2.12) has the following MSE upper

bound,

E[‖x̂− x‖2
2] ≤

(
‖x‖2

2 E ‖A(α∗)−A0)‖2
2 + nσ2

w

)
E[

1

σ2
α∗

] ,

where α∗ is the optimal α of (2.12) and σα∗ is the minimum singular value of

A(α∗).

Proof:

By analytically minimizing (2.12) over x for a fixed α as an ordinary least squares

problem, (2.12) reduces to

min
‖Wα‖≤ρ

∥∥A(α)A(α)†y − y
∥∥2

2
= min

‖Wα‖≤ρ

∥∥P⊥
αy

∥∥2

2
, (2.20)

where P⊥
α , I−A(α)A(α)† is the projector matrix of the subspace perpendicular

to the Range(A(α)) and we assumed A(α) is of full column rank for ‖Wα‖2 ≤
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Figure 2.1: Cost J(x, α) in (2.28) plotted for a set of estimators on top of each
other.

ρ. Thus, SLS-BDU estimator chooses the α that minimizes the norm of the

observation y(α) which lies out of the range of A(α).

The SLS-BDU estimate x which minimizes (2.12) can be written in terms of

the optimal α∗ of (2.20) as:

x̂SLS−BDU = A(α∗)†y . (2.21)

Since y = A0x + w, the MSE of (2.21) can be written as [34]:

E[‖x̂− x‖2
2] = E[

∥∥(A(α∗)†A0 − I)x + A(α∗)†w
∥∥2

2
]

= E[
∥∥(A(α∗)†A0 − I)x

∥∥2

2
]

+ E[Tr{A(α∗)†TA(α∗)†wwT}] . (2.22)

Since, E[Tr{A(α∗)†TA(α∗)†wwT}] = σ2
wE[

∥∥A(α∗)†
∥∥2

F
], we get:

E[‖x̂− x‖2
2] = E

∥∥(A(α∗)†A0 − I)x
∥∥2

2
+ σ2

wE
∥∥A(α∗)†

∥∥2

F
. (2.23)
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The following inequalities that are valid for full column rank matrices F and G

help to obtain the desired upper bound:

∥∥F†G− I
∥∥

2
=

∥∥F†(G− F)
∥∥

2
≤

∥∥F†
∥∥

2
‖G− F‖2 ,

and,
∥∥F†

∥∥2

F
=

n∑
i=1

1

σ2
i (F)

≤ n

σ2
min(F)

.

Using the previous inequality, we can upper bound (2.23) using:

E
[∥∥A(α∗)†

∥∥2

2
‖A(α∗)−A0‖2

2 ‖x‖2
2

]
+ E

[ n∑
i=1

σ2
w

σ2
α∗,i

]

≤
(
‖x‖2

2 E ‖A(α∗)−A0)‖2
2 + nσ2

w

)
E[

1

σ2
α∗

] .

The obtained upper bound clearly shows that the MSE of the estimate has two

parts: the part that increase with the difference between A0 and its estimate

A(α∗) and the part that increases with the Frobenious norm of the A†(α∗).

Since the Frobenious norm of A†(α∗) can be very large for an ill conditioned A0

when the estimate A(α∗) gets close to A0, the second part of the bound can get

extremely large. Therefore the main idea behind the proposed estimator is to

bound the allowed perturbations such that the MSE in (2.23) is near optimal.

It is straightforward to show that when ρ = 0, the SLS-BDU solution is equal

to the ordinary Least Squares solution. Since the STLS optimization seeks a

minimal norm perturbation to zero out the cost function in (2.12), the solution

given by STLS is identical to the SLS-BDU solution for a large enough value of

the perturbation magnitude bound ρ. However that choice of ρ usually results a

large MSE in (2.23) as previously noted in numerical results of [31].

2.3.3 MSE Comparison of SLS-BDU and STLS

Using the MSE bound in (2.3.1) we derive the condition in which the proposed

estimator has smaller MSE then the Maximum Likelihood STLS estimator and

interpret the result.
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Theorem 2.3.2. For deterministic and bounded perturbations θ, let σA and σ0

be the minimum singular values of A and A0 respectively and define:

S ,





√
p maxi ‖Ai‖2 Arbitrary structure

maxi ‖Ai‖F Non-overlapping structure

√
n Toeplitz or Hankel.

(2.24)

If the following holds:

(ρ + ‖θ‖)2S2‖x0‖2
2

nσ2
w

+ 1 ≤
(

σA − ρS

σ0

)2

+

, (2.25)

then the asymptotically MSE of SLS-BDU with weight W = I, is strictly smaller

than STLS.

Proof: See Appendix B.

Remark 1. Note that the expression R , ‖x0‖22
nσ2

w
in (2.25) denotes the signal to

noise ratio, e.g., if x0 were a zero mean Gaussian vector with variance σ2
x, then

E[R] = σ2
x

/
σ2

w .

Remark 2. The right-hand side of (2.25) is expected to be larger than 1 since,

σA À σ0 by the observation in equation (2.17).

Therefore, Theorem 2.3.2 asserts that, when SNR is sufficiently low, the con-

dition in (2.25) is satisfied and the proposed SLS-BDU has smaller error than

STLS. Furthermore, for ill conditioned problems where σ0 is small, the condition

(2.25) may hold also for large SNR values. In section 2.7 we show that this

theoretical result is in good agreement with numerical experiments.
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2.4 Analysis of Estimator Performance in an Il-

lustrative Example

Consider the single parameter equation A(α)x = y(α) below:


 a1 + α

a2


 x =


 y1

y2 − α


 . (2.26)

The corresponding structures are:

A1 = [1 0]T ,y1 = [0 − 1]T , (2.27)

Define the cost of x given α by:

J(x, α) , ‖A(α)x− y(α)‖2
2 , (2.28)

which corresponds to a constant multiple of the negative log-likelihood given α

for the observation y(α) = A(α)x+w where w is a zero mean Gaussian random

variable. Figure 2.1 depicts J(x, α) for several values of x plotted on top of each

other for {a1, a2, y1, y2} = {0.46, 0.023, 0.38,−0.73}. The lower bound achievable

for any x is given by:

min
x
‖A(α)x− y(α)‖2

2 =
∥∥P⊥

αy(α)
∥∥2

2
, (2.29)

which can be easily shown to be zero only for at most two values of α given by:

α1,2 =
y2 − a1

2
±

√
(
y2 − a1

2
)2 + a1y2 − a2y1 . (2.30)

By carefully inspecting Figure 2.1, the two solutions of (2.30) α1 = −0.69 and

α2 = −0.49 yields the following estimates for x:

x1 = A(α1)
†y(α1) = −1.62 and x2 = A(α2)

†y(α2) = −10, (2.31)

neither of which is robust since they have steeply rising linear costs for a small

change in α. We utilize this observation later in Section VII by using the gradient

of the lower bound as a measure of this sensitivity. Note that given any random
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or deterministic perturbation α, because of the consistency requirement, STLS

and RSTLS methods produce either x1 or x2. If the system were consistent

originally, i.e., A0x = y0, the expected MSE and residual of such consistency

constrained estimators would be large because of the distance |x1 − x2|. Note

that the residual of x1 is extremely large if α2 is the true parameter.

In Figure 2.1, the cost corresponding to a Min-Max solutions x3 = 0.75 is also

shown. Although the cost Min-Max solution is less sensitive to the variations in

α, its average is considerably large.

However the SLS-BDU solution given by (2.12) achieves the lower bound in

(2.29) for some α∗, which corresponds to an inconsistent system {A(α∗),y(α∗)},
but balances robustness and accuracy by abandoning the consistency condition.

An example of one such solution is given by x4 = −2.73, which is neither over

conservative as the Min-Max solution x3 or over optimistic as the STLS solution

x1.

2.5 Fréchet Derivatives and Gradient Flow

In this section Fréchet Derivatives are introduced to analyze the gradient of the

SLS-BDU cost function in detail. Additionally, some analytical results on the

rotation of the gradient around singularities, and the existence of consistencies

as hyperplanes are presented.

2.5.1 Differentiation of pseudoinverses and projectors

The m×n matrix function A(α) = A+
p∑

i=1

αiAi is a mapping between Rp and the

space of linear transformations L(Rn,Rm). Assuming Rank(A(α)) is constant for

‖Wα‖2 ≤ ρ, the pseudoinverse A(α)† and the projector P⊥
α = I−A(α)A(α)†
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are both Fréchet differentiable with respect to α and closed form formulas were

derived in [19]. Formalism on Fréchet derivatives can be found in [36]. Here we

provide some known facts as well as new results relevant to our application.

Definition 2. The Fréchet derivative of A(α) denoted by DA(α) is a tridimen-

sional tensor, formed with p matrices of size m×n containing partial derivatives

of the elements of A with respect to αi, i.e., [DA(α)]i , ∂
∂αi

A(α).

The Fréchet derivative of P⊥
α is given in [19] as:

DP⊥
α = −DPα = −P⊥

αDA(α)A(α)† − (P⊥
αDA(α)A(α)†)T. (2.32)

The following lemma characterizes each entry in the gradient vector of the SLS-

BDU cost function given in (2.20).

Lemma 2.5.1. Let y(α)⊥ , P⊥
αy(α) and xα , A(α)†y(α) then,

1

2

∂

∂αi

∥∥P⊥
αy(α)

∥∥2

2
=

〈
y(α)⊥, yi −Aixα

〉
. (2.33)

Proof:

∇α

∥∥P⊥
αy(α)

∥∥2

2
= ∇αy(α)TP⊥

αy(α)

= Dy(α)TP⊥
αy(α) + y(α)TDP⊥

αy(α)

+ y(α)TP⊥
αDy(α)

= 2y(α)TP⊥
αDy(α)

− 2y(α)TP⊥
αDA(α)A(α)†y(α)

= 2y(α)TP⊥
α(Dy(α)−DA(α)A(α)†y(α))

= 2

〈
P⊥

αy(α), yi −AiA(α)†y(α)

〉
,

since [DA(α)]i = Ai and [Dy(α)]i = yi .
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Figure 2.2: Negative gradient field for the two parameter case in (2.34). All
vectors rotate around the singularity at (−1,−1).
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2.5.2 The Gradient Flow in a Simple Illustrative Case

Consider the following two parameter case:

A(α) = [1 + α1 1 + α2]
T , y(α) = y = [0 1]T , (2.34)

which is consistent, i.e., y(α) ∈ R(A(α)) for α1 = −1. The vector field

−∇α

∥∥P⊥
αy(α)

∥∥2

2
, which is calculated by (3.16) is shown in Figure 2.2. The

gradient norm is zero on two straight lines α1 = −1 and α2 = −1 denoting

minimum and maximum of (2.20) which intersect at the singular point (−1,−1).

The gradient field rotates around the singularity by flowing from the maximum

(α2 = −1) to minimum (α1 = −1) and the gradient norm increases gradually as

α gets closer to the singular point (−1,−1). In Figure 2.3, the solution of STLS

and the proposed solution (2.12) are compared on a diagram for the example

in (2.34). The points p1 and p2 denote the corrected vectors A(α) for STLS

and proposed SLS-BDU for a given ρ and W = I respectively. p1 denotes the

closest consistent system while p2 is the tangent point of the line passing through

singularity to the circular boundary with radius ρ. This tangent point geometry

was also encountered in unstructured Min-Min and Min-Max problems [30]. It

is evident that with a small ρ, the corrected system is better conditioned with

the proposed method. Note that for a larger value of ρ, the consistency lines will

be in the allowed set of perturbations and the SLS-BDU and the STLS solutions

would be identical.

2.5.3 Analytical Results on the Gradient Flow

In this section we present theoretical results which shed light on the interesting

geometry of Figure 2.2.

Theorem 2.5.2. Rotation around a singularity: If Range(A(α0)) ⊂
Range(A(α)), the gradient field ∇α

∥∥P⊥
αy(α)

∥∥ is orthogonal to α − α0, i.e.,
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〈
∇α

∥∥P⊥
αy(α)

∥∥2

2
, α−α0

〉
= 0. (2.35)

Proof:

By using Lemma 2.5.1 we get,

−1

2

〈
∇α

∥∥P⊥
αy(α)

∥∥2

2
, α0 −α

〉

=
∑

i

〈
P⊥

αy(α), AiA(α)†y(α)

〉
(αi − α0i)

=

〈
P⊥

αy(α),
∑

i

Ai [α0i − αi ]A(α)†y(α)

〉

=y(α)TP⊥
α

[
A(α0)−A(α)

]
A(α)†y(α) . (2.36)

Because Range(A(α0)) ⊂ Range(A(α)) implies Range(A(α0) − A(α)) ⊂
Range(A(α)), P⊥

α(A(α0)−A(α)) = 0, thus (2.36) is zero.

Remark 3. Theorem 2.5.2 reveals the interesting geometry of Figure 2.2, where

all vectors absolutely rotate around the singularity (−1,−1), since A(−1,−1) is

of rank zero.

The next theorem states that every singularity is arbitrarily close to a consis-

tency for a range of structures which are commonly encountered in applications.

Theorem 2.5.3. If there is no structure, or the structure is of Toeplitz or Hankel

type, then, for A(α)TA(α) singular, there exists a vector ε with arbitrarily small

norm, satisfying k ∈ Range(A(α + ε)) for any arbitrary k ∈ Rm.

Proof:

First consider the unstructured case and let v ∈ Null(A). Then:

(A(α) +
ε

vT v
kvT )v = εk (2.37)
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Figure 2.3: Gradient Flow Diagram for the two parameter case in (2.34). The
points p1 and p2 indicate the perturbations done by STLS and SLS-BDU respec-
tively.

which implies k ∈ Range(A(α + ε)). For the Toeplitz case, let v ∈ Null(A(α)),

then

(A(α) +
∑

i

θiAi)v =
∑

i

θivi = Vθ (2.38)

where vi , Aiv and V , [v1 ... vm+n−1].

Because of the Toeplitz structure, it is straightforward to show that V is of

full row rank if v 6= 0 [37]. Then for any ε, θ = εV †k satisfies A(α + θ)v =

V εV †k = εk as desired. The same argument follows similarly for the Hankel

structure or any other structure for which V is of full row rank.
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Theorem 2.5.4. For Toeplitz or Hankel structured problems, every point α such

that A(α)TA(α) is singular, lies on an n-dimensional hyperplane of consistent

systems.

Proof:

Let v ∈ Null(A) and V = U[Σ 0][V1 V2]
T be the Singular Value Decomposition

[38] of V defined after (2.38). Then A(α + ε)v = Vε = β0y has solution:

ε = β0V
†y + V2β = β0V1Σ

−1Uy + V2β (2.39)

= [V1Σ
−1U V2]β̃ (2.40)

for all β̃ = [β0 β]T ∈ Rn. Therefore, since V1 and V2 are orthogonal, any vector

y is in Range(A(α+ ε)) for any ε which is in the n-dimensional columnspace of

[V1Σ
−1U V2].

Theorems 2.5.3 and 2.5.4 illustrate the ill-conditioned nature of the consis-

tency constraints. Note that the structure in (2.34) is Toeplitz and the singularity

lies in a one dimensional plane of consistent systems. Theorems 2.5.2 and 2.5.4

show that, the rotation property and the proximity of consistencies to singulari-

ties are valid for many systems of interest with arbitrary dimensions. Therefore,

the above observations for the simple example (2.34) are commonly encountered

in practice.

2.6 Solution Techniques

2.6.1 Solving the SLS-BDU Optimization Problem

In this section, three iterative techniques are presented to solve the non-convex

optimization problem of the SLS-BDU approach.
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Individual Optimization by Alternating Minimizations

Although the SLS-BDU cost function is non-convex in x and α together, it is

convex for x and α individually. It is easy to see that for a fixed α, the cost

function is convex over x. The following derivation shows that for a fixed x, the

cost is convex over α as well.
∥∥∥∥∥(Ax− y) +

∑
i

αi(Aix− yi)

∥∥∥∥∥ = ‖(Ax− y) + U (x)α‖ ,

where U (x) , [(A1x− y1) ... (Apx− yp)] .

which is convex over α for a fixed x. Therefore alternating minimizations as in

the minimization of Extended Least Squares criterion [31], can be performed:

Algorithm 1. Alternating Minimizations

x0 ← A†y, k ← 0

while
∥∥xk − xk−1

∥∥ > ε do

αk+1 ← arg min‖Wα‖≤ρ

∥∥(Axk − y) + U (xk)α
∥∥

xk+1 ← arg minx

∥∥A(αk+1)x− y(αk+1)
∥∥

k ← k + 1

end while

xMin−Min ← xk

Note that for the α update in the alternating minimizations, a Quadratically

Constrained Quadratic Program (QCQP) needs to be solved [39]. The advantage

of this simple algorithm is that, the QCQP can be replaced with any other convex

optimization and any choice of norm p, 1 ≤ p ≤ ∞ can also be used. It is also

possible to bound the perturbations by using multiple constraints of the form

‖Wiα‖ ≤ εi, i = 1, ..., P , as well.

This alternating minimizations approach is widely used for optimizing a non-

convex function over two sets of variables in applications such as super-resolution
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and image deblurring [40]. By Proposition 2.7.1 of [41], Algorithm 1 is guaranteed

to converge globally to a stationary point of the problem.

Joint Optimization by Linearization

The SLS-BDU cost function can also be linearized around a given (x,α) for a

small perturbation [∆x, ∆α] by ignoring second order terms as in [42]:

‖(A(α + ∆α))(x + ∆x)− y‖ ≈

‖A(α)x− y + U(x)∆α + A(α)∆x‖ . (2.41)

Then, the solution to the following optimization provides an update on the esti-

mated x and α:

min
∆x,∆α

‖W(α+∆α)‖≤ε

∥∥∥∥∥∥
[A(α) U (x)]


 ∆x

∆α


 + (A(α)x− y)

∥∥∥∥∥∥
. (2.42)

The following Newton iterations can be used to yield an estimate for the solution

to the SLS-BDU problem in (2.12):

Algorithm 2. Newton’s Method

x0 ← A†y, α0 ← 0, k ← 0

while
∥∥xk − xk−1

∥∥ > ε do

Solve (2.42) for ∆x and ∆α by using QCQP

xk+1 ← xk + ∆x

αk+1 ← αk + ∆α

k ← k + 1

end while

xMin−Min ← xk
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This algorithm is a hybrid of Gauss Newton method and Sequential Quadratic

Programming (SQP). Assuming A(α) is nonsingular for ‖Wα‖ ≤ ρ, it converges

locally quadratically to a stationary point by Theorem 12.4.1 [43].

Fixed point iteration using the Fréchet derivatives

By using Theorem 2.5.1, the gradient of the Lagrangian of problem (2.20) can

be written as:

1

2
∇L(α, λ) = y(α)TP⊥

α(yi −AiA(α)†y(α)) + λα. (2.43)

By solving λ under the constraint of ‖Wα‖2 = ρ, we obtain:

ρf(α) = α ‖Wf(α)‖2 , (2.44)

where fi(α) , y(α)TP⊥
α(AiA(α)†y(α) − yi), i = 1, ..., p. As given below, a

fixed point iteration to solve (2.44) can be used to find the SLS-BDU estimate.

Note that although this fixed point iteration converges faster, it can only be used

for the Euclidean norm.

Algorithm 3. Fixed Point Iteration

α0 ← 0, k ← 0

while
∥∥αk −αk−1

∥∥ > ε do

αk+1 ← ρf(αk)

‖Wf(αk)‖
2

k ← k + 1

end while

α∗ ← αk, xMin−Min ← A(α∗)†y(α∗)

In our numerical experiments, we observed that this fixed point iteration has

superior convergence. In the appendix we give a proof for the local Lipschitz

continuity of ∇α

∥∥P⊥
αy(α)

∥∥2

2
provided that there exists no singularity or consis-

tency inside the constraint set ‖Wα‖ ≤ ρ. Then by Proposition A.26 of [41],
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Algorithm 3 convergences to a stationary point with geometric rate of conver-

gence.

Remark 4. The convergence criterion of Algorithm 3 makes the need of such

a norm constraint clearer. Note that the Lipschitz continuity would fail near a

singularity.

2.6.2 Choosing The Bound Parameter Based on the Gra-

dient Norm

The SLS-BDU technique requires a bound on α. Such a bound may be readily

available when uncertainty bounds on the matrix elements are known. However,

for those cases when there exists no such descriptive information on the bound on

α, it is desirable to have a robust scheme to determine the bound which yields a

good tradeoff between ‖A(α∗)−A0‖ and
∥∥A†(α)

∥∥
F
. In this section we provide

such a criterion based on the gradient norm. Inspecting the example of Section

IV in Figure 2.1, it can be concluded that an abrupt increase in the gradient

norm of the lower bound results in estimates which are highly sensitive to α,

loosing robustness. Hence, we investigated the following simple strategy in the

choice of the bound ρ. As given in Algorithm 4, we start with ρ = 0 and increase

it with small steps ∆ρ till the gradient norm ‖f(α)‖2 starts to increase. In a

wide range of experiments we observed that this simple scheme provides highly

effective results. In the next section, we illustrate its performance over a range

of simulations conducted at different noise levels.

Algorithm 4. Automated Selection of Bound Parameter

ρ0 ← 0, k ← 0, f(α)0 ← 0, f(α)−1 ← 1

while
∥∥∥f(α)k

∥∥∥
2

<
∥∥f(α)k−1

∥∥
2
do

(xk, f(α)k) ← Algorithm 3(ρk,A,y)
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ρ ← ρ + ∆ρ

k ← k + 1

end while

x̂ ← xk

2.7 Applications and Numerical Results

Verification of Theorem 2.3.2

First we verify the accuracy of our result in (2.25). A Toeplitz matrix A0 with

smallest singular value σ0 is generated and perturbed with an unknown θ to

obtain the measured matrix A as in (2.11). Based on the observation y =

A0x0 + w and A only, x0 is estimated using SLS-BDU and STLS for a range

of σ0 and SNR=
‖x‖22
nσ2

w
values while θ is fixed and ‖θ‖2 = 0.5. The theorem

specifies a region in (SNR, σ0) plane where the MSE of SLS-BDU is smaller than

STLS asymptotically as shown in Figure 2.4(a). For comparison, the empirical

probability of ‖xSLS−BDU − x0‖ < ‖xSTLS − x0‖ in 100 trials is shown in Figure

2.4(b). Although the theoretical region is conservative, it clearly indicates the

ill conditioned small σ0 and low SNR region where SLS-BDU outperforms with

probability approaching one.

Next we discuss three signal processing applications of the SLS-BDU approach

to illustrate its effectiveness in ill conditioned problems.
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εb/btrue 0.2 0.6

‖xtrue − xLS‖ / ‖xtrue‖ 0.0820 0.2123
‖xtrue − xSLS−BDU‖ / ‖xtrue‖ 0.0274 0.1279

‖Htrue −HSLS−BDU‖F
/ ‖Htrue‖F

0.1072 0.2589
‖Htrue −HSLS−BDU‖F

/ ‖Htrue‖F
0.0655 0.1284

Table 2.1: xtrue, xLS and xSLS−BDU correspond to actual signal and estimates,
Htrue, H, HSLS−BDU correspond to actual, nominal and corrected matrices re-
spectively.

Deconvolution under Impulse Response Uncertainties

Suppose that the observed signal is the output of an LTI system with impulse

response h[n] :

y[n] =
L−1∑

k=0

x[n− k]h[k] + w[n], (2.45)

where and w[n] is white Gaussian noise and:

h[n] =

p∑
i=1

(ai + δai)e
−(bi+δbi)n cos(win + φi) , (2.46)

with bounded data uncertainties on coefficients | δai |< εai
and damping terms

| δbi |< εbi
, i = 1, ..., p. We want to recover x[n] under this structured uncertainty

on the impulse response h[n]. The uncertainties in bi’s can be linearized by a

first order approximation, e−(bi+δbi)n ≈ e−bin(1− δbin) , to obtain the following

y = (H +

p∑
i=1

αiHi)x + w ,

with the constraint ‖Wα‖∞ ≤ ε . Here H and Hi are Toeplitz structured

matrices which perform convolution operation with the terms in the summation

of (2.46) and αi’s stand for the unknown perturbations δai, δbi.

The impulse response h[n] with uncertainties is shown in Fig. 2.5(a). As

shown in Figure 2.5(b), the SLS-BDU estimate closely approximates the actual

input signal. Table 2.1 provides comparison results between the SLS-BDU and

least squares estimates for both the input signal and the impulse response esti-

mates at two different uncertainty levels. As expected based on Theorem 3.2,
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SNR 4dB 7dB 10dB

LS 0.0347 0.0344 0.0346
TLS 0.0308 0.0295 0.0298
STLS 0.0297 0.0304 0.0321
HTLS 0.0311 0.0309 0.0275

SLS-BDU 0.0279 0.0249 0.0241

Table 2.2: Average Frequency Estimation Errors for LS, TLS, STLS, HTLS and
SLS-BDU

the tabulated results show that the SLS-BDU technique provides significantly

better estimates for both the input and the impulse response. Note that STLS

estimate is unsatisfactory since the perturbations are not bounded and linear

approximation is not valid for large perturbations.

Frequency Estimation of Multiple Sinusoids

Consider the case where parameters of two complex sinusoids which are close in

frequency need to be estimated with frequencies f1 = 0.12 Hz and f2 = 0.10 Hz

in white noise wn:

x(n) = exp(2πjf1n) + exp(2πjf2n) + wn, n = 0, 1, . . . , 25. (2.47)

The following Linear prediction equations can be solved to estimate the param-

eters of L sinusoids [24]:




x1 x2 · · · xL

x2 x3 · · · xL+1

x3 . .
. ...

... . .
.

xN−2

xN−L · · · · · · xN−1




z =




xL+1

xL+2

xL+3

...

xN




. (2.48)

The frequency estimation error defined by

√
(f̂1 − f1)2 + (f̂2 − f2)2 is evalu-

ated for the estimates with SLS-BDU with parameters ρ = 1.3 and W = I in
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1000 independent trials at various SNR values. In table 2.2, a comparison of LS,

TLS, STLS, HTLS [44] and SLS-BDU is given. Histograms of estimation errors

are plotted in Figure 2.6. As expected based on Theorem 3.2, the tabulated

results and histograms reveal that the SLS-BDU estimator not only provides

more accurate estimates on the average but it is also significantly more robust

than the STLS estimator. As indicated by the obtained histograms, the errors of

SLS-BDU estimates have higher concentration around zero, whereas STLS and

HTLS estimates have heavy tailed distributions.

System Identification

Consider the system identification setup depicted in Figure 2.7. An input se-

quence u0 is applied to the FIR filter H(z) and the output y0 is generated.

Measurements of the input and the output contain noise wi and wo respectively.

The identification of the filter H(z) can be cast as the following regression prob-

lem [16]:

U0h = y0 (2.49)

Where U = U0+Wi is the observed noisy Toeplitz matrix and y = y0+wo is the

observed noisy output. The filter coefficients were set to h = [−0.3,−0.9, 0.8]T ,

the training signal u0 was selected as a random sequence of ±1’s and equal

variance independent white noise was added to input and output. SLS-BDU

estimates are generated with autonomously chosen bound ρ by using Algorithm

4. The MSE in 10000 independent trials of the SLS-BDU estimator, and RSTLS

for a range of regularization parameters are shown in Figure 2.8. As seen from

these results, the SLS-BDU estimator with autonomously chosen bound ρ pro-

vides lower MSE than the RSTLS estimates that are obtained with a range of

regularization parameters. In this example, to illustrate the effectiveness of the

criterion by which Algorithm 4 determines ρ, we included the performance of
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SLS-BDU estimates with hand tuned ρ as well. As seen from the obtained re-

sults, the autonomous choice provides performance results that are close to the

hand tuned case.

The implementations of STLS and RSTLS used in numerical comparisons

are [45, 46] respectively and both available online. And for TLS and HTLS

methods direct implementations of corresponding references are used.
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Figure 2.4: Comparison of SLS-BDU and STLS
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Figure 2.7: System identification with noisy input u and noisy output y.
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Chapter 3

SPARSE UNCERTAINTY

3.1 Sparse Signal Processing

It is well known that, the Least Squares (LS) method for solving the overde-

termined linear equations A0x = y for m > n, is the Maximum Likelihood

solution when the observations y = y0 + e are subject to independent identi-

cally distributed Gaussian noise vector e and recovers x0 with some error [2].

Surprisingly, it was recently shown that, if e is sparse, exact recovery of x0 can

be achieved for some classes of matrices A using linear programming [47]. How-

ever, in practice the elements of the coefficient matrix are also subject to errors

since they may be results of some other measurements or obtained under some

modeling assumptions. When there are errors in both, i.e., A = A0 + E and

y = y0 + e, the Total Least Squares (TLS) technique, which ”corrects” the sys-

tem with minimum perturbation so that it becomes consistent is widely used [3].

TLS also have Maximum Likelihood properties when the perturbations are zero

mean i.i.d. Gaussian random variables.

It is known that the Total Least Squares problem is more ill-conditioned than

the Least Squares problem because the amount of uncertainty greatly increases
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when we introduce perturbations in A [3]. Inspired by [47], we seek a TLS

complement of that result and show in the next section that, if the perturbations

E and e are sparse in some basis, then we may recover both the perturbations

and the unknown x by knowing only the perturbed data (A0 + E,y0 + e).

3.2 Novel Sparse Perturbation Theory

Assume a true, consistent, overdetermined linear system of equations, A0x0 = y0,

while the observed quantities are related via:

A = A0 +
N∑

i=1

Aipi , y = y0 +
N∑

i=1

yipi , (3.1)

where matrices Ai and vectors yi are constants which form a possibly overcom-

plete basis for the perturbation p = [p1 . . . pN ]T .

Case I: x0 is known Although the case where x0 is known might seem

fictitious, there exists applications such as channel identification, which we design

the signal x0 to sense the system matrix A. This recovery scheme is known as

Matrix Identification [48] and recently applied for Compressed Sensing Radar

[49]. First we define the Restricted Isometry Constant (RIC) of a matrix. Then

the following theorem demonstrates exact recovery of the perturbation using

Basis Pursuit (BP).

Definition 3. For s ∈ Z+, define restricted isometry constant (RIC) δs of a

matrix Φ as the smallest nonnegative number such that

(1− δs) ‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δs) ‖x‖2
2 (3.2)

holds for all vectors x which are s-sparse, i.e., have atmost s nonzero elements

[50].

Theorem 3.2.1. (Exact Recovery) Let p be a k-sparse vector and δs be the RIC

for,

Φ(x0) ,
[
A1x0 − y1

∣∣∣∣ · · ·
∣∣∣∣ANx0 − yN

]
. (3.3)
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and δ2k <
√

2− 1. Then the following convex program:

min ‖p′‖1 s.t. (A−
N∑

i=1

Aip
′
i)x0 = y −

N∑
i=1

yip
′
i (3.4)

recovers A0 exactly.

Proof:

Using (3.1) we get:

(A−
N∑

i=1

Aipi)x0 = y −
N∑

i=1

yipi , (3.5)

Ax0 − y =
N∑

i=1

(Aix0 − yi)pi , (3.6)

Ax0 − y = Φ(x0)p , (3.7)

When x0 is known, Φ(x0) ∈ Rm×N is a known overcomplete dictionary satis-

fying Retricted Isometry Property (RIP) and the convex program (3.4) recovers

the perturbation p as shown in [50] and therefore A0 is recovered exactly. If

N ≤ m then recovery is trivial via directly solving (3.7) if Φ(x0) is full rank.

Remark 5. It is straightforward to show that Toeplitz structured perturbations

Ai with yi = 0,∀i result a Toeplitz Φ(x0). It is known that deterministic

Toeplitz matrices satisfy RIP of order O(nγ) if x0 is deterministic and satis-

fies the PDACF property with γ [51]. If x0 is random, it is shown that Toeplitz

matrices satisfy RIP of order k for many practical distributions, with probability

exceeding 1− exp(c1
n
k2 ) if k ≤ c2

√
n
N

where c1, c2 are constants [52].

Instead of RIP we can derive a sufficiency condition as follows:

Theorem 3.2.2. (Coherency of perturbations) Assume Aix0 6= yi ∀i. If µ <

1
2k−1

, where,

µ , max
i 6=j

< Aix0 − yi,Ajx0 − yj >

‖Aix0 − yi‖2 ‖Ajx0 − yj‖2

, (3.8)

then the convex program (3.4) recovers the perturbation exactly.
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Corollary 3.2.3. If perturbations are unstructured as in the Total Least Squares

problem then Ai are the standart basis and it is trivial to show that µ = 1

and sparse perturbations can not be recovered exactly via any method. On the

contrary, if perturbations are orthogonal, i.e., AT
i Aj = yT

i yj = AT
i yj = 0, ∀i 6=

j then µ = 0.

Case II: x0 is not known This is the general case examined in this section

and differs significantly from the usual setup of sparse recovery since the dictio-

nary Φ(x0) is unknown. A straightforward workaround is to employ the Least

Squares solution A†y of x0 and apply a regularized Basis Pursuit [53] with the

estimate Φ(A†y). Using the recent results of [54] on dictionary perturbations we

next prove that this scheme provides stable recovery under some conditions.

Theorem 3.2.4. (Stable Recovery) For a k-sparse p, if RIC of Φ(x0) satisfies:

δ2k <

√
2

(1 + 2kν)2
− 1 ,where ν ,

max
i

∥∥Ai(A
†y − x0)

∥∥
2

min
j

‖Ajx0 − yj‖2

, (3.9)

and k ≤ m, then the following convex program:

min ‖p′‖1 s.t.

∥∥∥∥∥(A−
N∑

i=1

Aip
′
i)A

†y − (y −
N∑

i=1

yip
′
i)

∥∥∥∥∥
2

≤ ε (3.10)

provides stable recovery in the following sense:

‖p∗ − p0‖2 ≤ Cε, (3.11)

where, p∗ is the optimal solution of (3.10), C is a small constant and

ε ,
(

kν

√
1 + δk√
1− δk

+

∥∥A(A†y − x0)y
∥∥

2

‖r‖2

)
‖r‖2 , (3.12)

i.e., the error is in the order of the norm of r , Ax0− y which is the residual of

the perturbed system.

Proof:

Following the results of [54], we seek a bound for the worst case dictionary
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perturbation over k columns when we use the Least Squares estimate x = A†y

in (3.7):

max
i1,...,ik,ip 6=iq

‖[Ai1(x− x0), . . . ,Aik(x− x0)]‖2

max
i1,...,ik,ip 6=iq

‖[(Ai1x0 − yi1), . . . , (Aikx0 − yik)]‖2

(3.13)

≤
max

i1,...,ik,ip 6=iq

√
k max

i∈{i1,...,ik}
‖Ai(x− x0)‖2

max
i1,...,ik,ip 6=iq

‖[(Ai1x0 − yi1), . . . , (Aikx0 − yik)]‖2

≤
max

i1,...,ik,ip 6=iq

√
kR max

i∈{i1,...,ik}
‖Ai(x− x0)‖2

max
i1,...,ik,ip 6=iq

∑
j∈{i1,...,ik}

‖Ajx0 − yj‖2

≤ k
max

i
‖Ai(x− x0)‖2

min
j

‖Ajx0 − yj‖2

,

where R = Rank[(Ai1x0 − yi1), . . . , (Aikx0 − yik)] ≤ k.

The perturbation in the left side is also bounded by,
‖A(x−x0)‖2
‖Ax0−y‖ . A straightforward

application of Theorem 2 of [54] using the derived perturbation bounds completes

the proof.

Remark 6. Note that the stability condition depends heavily on ν and conse-

quently
∥∥A†y − x0

∥∥, which is known to scale with ‖A‖2
2 /

∥∥A†∥∥2

2
, the square of

the condition number of A [55]. In particular, since δ2k is nonnegative, the theo-

rem requires ν <
4√2−1
2k

for stable recovery. Therefore, we conclude that two major

limitations of perturbation recovery is the ill-conditioning of A and coherency of

perturbations.

Remark 7. By using a corrective Min-Min approach that will be introduced next,

the performance of this estimator may be improved significantly.
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3.3 Proposed Estimator when x0 is not known

The following double minimization is proposed for joint estimation of the sparse

perturbation p and unknown x0:

P0 : min
x

min
‖p‖0=k

∥∥∥∥∥(A−
N∑

i=1

Aipi)x− (y −
N∑

i=1

yipi)

∥∥∥∥∥
2

3.3.1 Alternating Minimizations Algorithm to solve P0

When p is fixed the problem reduces to a simple Least Squares problem which

can be solved via the pseudoinverse. If x is fixed then there exists many algo-

rithms to solve for a sparse p [56]. Therefore a local optimum can be found

using an alternating minimizations algorithm [25] where we chose Orthogo-

nal Matching Pursuit (OMP) [57] in the intermediate step for its simplicity:

Algorithm 1. Alternating Minimizations for P0

x0 ← A†y, p0 ← 0, k ← 0

while
∥∥xk − xk−1

∥∥ > ∆ do

pk+1 ← arg min‖p‖0=k

∥∥Axk − y −Φ(xk)pk
∥∥

(using OMP)

xk+1 ← (A−∑N
i=1 Aipi)

†(y −∑N
i=1 yipi)

k ← k + 1

end while

Â ← (A−∑N
i=1 Aip

k
i ), ŷ ← (A−∑N

i=1 yip
k
i ), x̂ ← xk
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3.3.2 Convex Relaxation of the Proposed Estimator

If the constraint on p is relaxed to l1 norm as follows, faster gradient based

techniques can be used to solve the problem since the objective of P0 is convex

in both x and p (but not jointly):

P1 : min
x

min
‖p‖1≤t

∥∥∥∥∥(A−
N∑

i=1

Aipi)x− (y −
N∑

i=1

yipi)

∥∥∥∥∥
2

.

First define the following matrix functions:

Definition 4. Let,

A(p) , A−
N∑

i=1

Aipi , y(p) , y −
N∑

i=1

yipi . (3.14)

Assuming A(p) is of full column rank for ‖p‖1 ≤ t, the outer minimization

of P1 can be carried out analytically as:

min
‖p‖1≤t

min
x

‖A(α)x− y(α)‖2 = min
‖p‖1≤t

∥∥P⊥
py(p)

∥∥
2

(3.15)

where P⊥
p , I−A(p)A(p)† is the projector matrix of the subspace perpendicular

to the Range(A(p)). Let y(α)⊥ , P⊥
py(α) and xp , A(α)†y(α), the authors

prove the following in [58]:

1

2

∂

∂pi

∥∥P⊥
py(α)

∥∥2

2
=

〈
y(α)⊥, Aixp − yi

〉
, (3.16)

which makes P1 solvable using fast gradient based techniques such as the follow-

ing:

Coordinate Gradient Descent (CGD): CGD is a gradient based algo-

rithm to solve l1 constrained optimization problems [59]. The following adapta-

tion of CGD provides a solution to P1:

Algorithm 2 CGD for P1
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p0 ← 0, k ← 0

while
∥∥pk − pk−1

∥∥ > ∆ do

l ← arg min
i

∣∣∣∣〈y(α)⊥, Aixp − yi〉
∣∣∣∣

c ← 0 , ck ← −sign(< y(α)⊥, Alxp − yl) >

λ̂ ← arg min
λ∈[0,1]

∥∥∥P⊥
p
⊥
pk+λ(c−pk)

y(pk + λ(c− pk))
∥∥∥

2

pk+1 ← p + k + λ̂(c− p + k)

k ← k + 1

end while

Â ← (A−∑N
i=1 Aip

k
i ), ŷ ← (A−∑N

i=1 yip
k
i ), x̂ ← xk

Remark 8. The exact optimization over λ is non-convex. However it can be

accurately approximated via the following:

arg min
λ∈[0,1]

∥∥∥P⊥
p

⊥
p+λ(c−p)

y(p + λ(c− p))
∥∥∥

2

≈ arg min
λ∈[0,1]

‖A(p + λ(c− p))x− y(p + λ(c− p))‖2

=





0 α(A†y) ≤ 0

α(A†y) 0 < α(A†y) < 1

1 α(A†y) > 1

where α(x) , (A(p)x− y(p))T
∑

i(Aix− yi)(c− p)

‖∑i(Aix− yi)(c− p)‖2
2

.
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3.4 Numerical Results and Applications

3.4.1 Probability of Exact Recovery

For the case x0 is unknown, the exact recovery of perturbation may seem hope-

less. However we demonstrate that exact recovery can be achieved with a high

probability with the proposed estimator if the overdetermination ratio m
n

of the

matrix is sufficiently large. A Toeplitz matrix with random elements A0 is per-

turbed by preserving the structure with k-sparse perturbations p and P0 is solved

to recover the perturbation. The empirical probability of exact recovery in 100

trials versus the ratio m/n is shown in Figure 3.1(a). And the probability of

exact recovery is examined in the (m
n
, k) plane in Figure 3.1(b).

3.4.2 Blind Identification of Sparse Multipath Channels

Consider a channel model which consists of Np paths with attenuations ai, delays

ni and doppler shifts νi :

y[n] =

Np∑
i=1

aix0[n− ni]e
j2π

νi
d + w[n] , (3.17)

which can be written more compactly as, y = Hx0 + w, where w is circularly

symmetric Gaussian white noise. Here we consider the joint estimation of the

channel and its input following a training session that provided a channel estimate

H with Np paths. Since the paths are usually sparse in delay-doppler domain

[60], the problem turns out to be a sparse perturbation recovery problem over a

discretized delay-doppler domain with bins of length ∆ν = 1
n
, ∆τ = 1

B
where

B is the bandwidth of x0[n]. To simplify the development, we define N = md

structure matrices as the following basis of time-frequency shifts [49]:

Hkl = diag([1 ej 2π
d

k . . . ej 2π
d

km])Rl , (3.18)
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where Rl is a matrix whose lth subdiagonal entries are 1 and the rest is zero,

effectively performing shift by l operation.

Note that Hkl’s have Toeplitz structure and generate sufficiently incoherent

perturbations depending on x0[n] as we outline in Remark 5. A simulation study

is done to demonstrate the performance of proposed solver P1 where x0 is selected

as a random ±1 sequence and assumed unknown. 1, 3 and 5 more paths with

unknown attenuations, delays and doppler shifts are added respectively to a

known channel H. The parameter t is selected such that the perturbation sparsity

matches the number of unknown channels. In Figures 3.2 and 3.3, the Basis

Pursuit approach that we described in (3.4) where x0 is known is compared

in terms of doppler and delay estimation error defined by
√

ν
d∆ν

and
√

τ
d∆τ

by

averaging 100 realizations of noise in 30 SNR levels. Although x0 is unknown,

the proposed scheme outperforms BP in terms of perturbation recovery and

successfully estimates both the input sequence by identifying unknown paths in

the channel.
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Figure 3.1: Empirical probability of exact recovery for the case where x0 is
unknown.
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Chapter 4

UNDERDETERMINED CASE:

Polarization of Continuous

Random Variables

4.1 Definitions and Preliminaries

4.1.1 Differential Entropy

For a random variable X with probability density function f , we define its dif-

ferential entropy H(X) as,

h(X) , −
∫

f log f, (4.1)

which measures the amount of uncertainty in the distribution of X. It is a well

known fact that, for a fixed mean and variance the entropy is maximized by the

Gaussian distribution, i.e.,

h(X) ≤ 1

2
log 2πeV ar(X) (4.2)
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Figure 4.1: (a) Building block of the transform

with equality if and only if X is Gaussian.

The next lemma of Shannon and Stam shows that the entropy of the sum of two

independent variables is at least the average of the individual entropies:

Lemma 4.1.1. Shannon-Stam Inequality [61]

For X, Y independent,

h(
X + Y√

2
) ≥ h(X) + h(Y )

2
. (4.3)

with equality if and only if X and Y are Gaussian.

Now consider the circuit shown in Figure 4.1 which performs the following

operation, 
 Y0

Y1


 =

1√
2


 1 1

1 −1





 X0

X1


 or y = H2x, (4.4)

where X0 and X1 are two independent identically distributed (i.i.d.) copies of

the random variable X with entropy h(X). The division by
√

2 is to ensure that

the mean power at the output equals the mean power at the input. Since the

transform is unitary, we have h(x) = h(y). Using chain rule for joint entropy [62]

we can express this equality as,

h(x) = 2h(X) = h(Y0) + h(Y1|Y0), (4.5)

where h(Y1|Y0) denotes the conditional differential entropy of Y1 given Y0, defined

as:

h(Y1|Y0) ,
∫

y

h(Y1|Y0 = y)fY0(y)dy (4.6)
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Noting that h(Y0) ≥ h(X), we can rewrite (4.5) to get,

h(X)− h(Y1|Y0) = h(Y0)− h(X). (4.7)

The above equation states that, the entropic increase from X to Y0 is equal to the

decrease from X to Y1|Y0. The information theoretical significance of this circuit

can be explained as follows: Given two i.i.d. copies of a random variable, the

output is two different random objects Y0 and Y1|Y0, one being more uncertain

and the other being less uncertain than the original variable X. This phenomenon

is called polarization in [63].

Figure 4.2: (a) Two layer application of the basic transform. (Factors of 1√
2

are

omitted from the figure.)

An important observation is that, this process can be applied in a recursive

manner to obtain more uncertain and less uncertain variables in each step. Now

consider Figure 4.2, which applies the same operation to the previously generated

variables. Now again apply the chain rule at the output of this circuit to obtain,

h(y) = h(Y0) + h(Y1|Y0) + h(Y1|Y0) + h(Y2|Y0, Y1) + h(Y3|Y0, Y1, Y2). (4.8)

We now have four entropy terms compared to a single term h(X) at the start

of the construction. It turns out these terms show a polarization effect in some

sense to be made precise in the following.
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We formalize the above construction by defining recursively for each n =

1, 2, . . . the transform y = Hnx where,

y = [Y0, . . . , YN−1]
T , x = [X0, . . . , XN−1]

T , N = 2n , (4.9)

Hn = BF⊗n, F =
1√
2


 1 1

1 −1


 . (4.10)

B is an N × N permutation matrix known as the bit reversal operation [63],

and F⊗n denotes the nth Kronocker power of F. Next, we consider the following

conditional entropy terms in the chain rule expansion of h(y):

h(y) =
N−1∑

k=0

h(Yk|Y0, . . . , Yk−1). (4.11)

This transform is known as the Hadamard, or the Walsh-Fourier transform in

signal processing literature. Note that the analysis for the Discrete Fourier Trans-

form is identical to the Hadamard case, since the only difference is ±j multiplica-

tions in the butterfly structure. From now on we will use the shorthand notation

h(Yk|Y k−1
0 ) for h(Yk|Y0, . . . , Yk−1).

4.2 Polarizing Transform

Let, y = Hnx + n, where x is an i.i.d vector of a random variable X with

V ar(X) = σ2
x, and n is a Gaussian vector containing i.i.d copies of N ∼ N (0, σ2

n).

As described in [63], the path of the conditional entropy terms in (4.11) can be

thought of as being determined by a sequence of i.i.d. Bernoulli(1
2
) random

variables. First, define a random process En whose realizations are 2n possible

values of h(Yk|Y k−1
0 ), 0 ≤ k ≤ 2n − 1 at stage n with equal probability 1/2n.

En is a martingale process by the observation in (4.7). Moreover, we have the

following upper and lower bounds,

h(N)
(a)

≤ h(Yk|Y k−1
0 )

(b)

≤ h(Yk)
(c)

≤ log 2πe(σ2
x + σ2

n) (4.12)
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where the inequalities follow from the following facts:

(a) h(Yk|Y k−1
0 ) ≥ h(Yk|Y k−1

0 ,x) = h(Yk + Nk|Y k−1
0 ,x) = h(Nk|Y k−1

0 ,x) = h(Nk).

(b) Conditioning on other variables does not increase entropy.

(c) Follows from Equation (4.2).

Therefore En is a bounded martingale. Then the Theorem 9.4.6 of [64] implies

that the sequence of random variables {En; n ≥ 0} → E∞ a.e. where E[E∞] =

E[E0].

The next lemma shows that the average of the conditional entropy terms is

equal to h(X + N).

Lemma 4.2.1.

For any N ,
1

N

N−1∑

k=0

h(Yk|Y k−1
0 ) = h(X + N). (4.13)

Proof:

Note that the transform y = Hnx+n can also be written as y = Hn(x+ñ) where

ñ is statistically equivalent to n since Hn is unitary. Then, h(y) = h(x + ñ) =

Nh(X + N). Using the chain rule to expand h(y) proves the result. ¥

The next lemma states the condition under which the entropy strictly in-

creases in recursive application of the butterfly structure.

Lemma 4.2.2. , Given random variables Y0, Y1, Y2, Y3 with joint distribution

fY0,Y1,Y2,Y3(y0, y1, y2, y3) = fY0,Y1(y0, y1)fY2,Y3(y2, y3),

h(
Y1 + Y3√

2
|Y0, Y2) ≥ 1

2

(
h(Y1|Y0) + h(Y3|Y2)

)
, (4.14)

with equality if and only if fY1|Y0=y0 and fY3|Y2=y2 are Gaussian and h(Y1|Y0 =

y0) = h(Y3|Y2 = y2) ∀y0, y2.

Proof:

The Entropy Power Inequality [61] states that, for two independent random
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variables X,Y ,

e2H(X+Y ) ≥ e2H(X) + e2H(Y ) (4.15)

with equality if and only if both X and Y are Gaussian. By simple algebraic

manipulations we get:

h(
X + Y√

2
) ≥ 1

2
log

(
e2h(X) + e2h(Y )

2

)
. (4.16)

By the strict concavity of the logarithm,

h(
X + Y√

2
) ≥ 1

2

(
1

2
log(e2h(X)) +

1

2
log(e2h(Y )

)
(4.17)

=
1

2

(
h(X) + h(Y )

)
(4.18)

with equality if and only if h(X) = h(Y ) and X, Y Gaussian. Now, returning to

the original variables,

h(
Y1 + Y3√

2
|Y0, Y2) =

∫

y0

∫

y2

h(
Y1 + Y3√

2
|Y0 = y0, Y2 = y2)fY0,Y2(y0, y2)dy0dy2

≥
∫

y0

∫

y2

h(Y1|Y0 = y0) + h(Y3|Y2 = y2)

2
fY0,Y2(y0, y2)dy0dy2

=
1

2

(∫

y0

h(Y1|Y0 = y0)fY0(y0)dy0 +

∫

y2

h(Y3|Y2 = y2)fY2(y2)dy2

)

=
1

2

(
h(Y1|Y0) + h(Y3|Y2)

)

with equality if and only if, fY1|Y0=y0 and fY3|Y2=y2 are Gaussian and h(Y1|Y0 =

y0) = h(Y3|Y2 = y2) ∀y0, y2. ¥

Therefore, as long as the conditional distributions are non-Gaussian in the nth

stage, there will be increases and decreases in conditional entropy terms from nth

stage to (n + 1)th stage. We now present a bound on conditional entropy terms

which is asymptotically tight.

Theorem 4.2.3.

For any k, h(Yk|Y k−1
0 ) ≤ 1

2
log 2πeE[V ar(Yk|Y k−1

0 )], (4.19)

and the equality condition is satisfied asymptotically ∀k.
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Proof:

h(Yk|Y0, . . . , Yk−1) =

∫
h(Yk|Y k−1

0 = yk−1
0 )p(yk−1

0 )dyk−1
0 (4.20)

(a)

≤
∫ [

1

2
log 2πeV ar(Yk|Y k−1

0 = yk−1
0 )

]
p(yk−1

0 )dyk−1
0

(b)

≤ 1

2
log 2πe

∫
V ar(Yk|Y k−1

0 = yk−1
0 )]p(yk−1

0 )dyk−1
0

=
1

2
log 2πeE[V ar(Yk|Y0, . . . , Yk−1)] (4.21)

where the inequalities follow from the following facts:

(a) Gaussians maximize entropy for a fixed variance,

(b) strict concavity of the logarithm and Jensen’s Inequality.

We have equality in (a) if and only if Yk is conditionally Gaussian given

Y k−1
0 = yk−1

0 for each yk−1
0 , and equality in (b) if and only if V ar(Yk|Y k−1

0 = yk−1
0 )

is independent of yk−1
0 . Next, note that by the Martingale argument, the process

converges to a limiting distribution. The convergence of the process En implies

that, the equality conditions of Lemma 4.2.2 are asymptotically satisfied, which

in turn implies the equality conditions in the above set of inequalities. ¥

The previous theorem shows that the conditional entropy terms can not po-

larize to a binary valued limiting random variable as in the finite field case. The

conditional entropy terms are bounded by Gaussian entropies corresponding their

expected conditional variances. A simple corollary of this result is the following

limit on the expected variances:

Lemma 4.2.4.

lim
N→∞

[
N−1∏

k=0

2πeE[V ar(Yk|Y k−1
0 )]

] 1
N

= e2h(X+N). (4.22)
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Proof:

Using the result of Theorem 4.2.3 in Lemma 4.2.1 we have,

lim
N→∞

1

N

N−1∑

k=0

1

2
log 2πeE[V ar(Yk|Y k−1

0 )] = h(X + N). (4.23)

which is equivalent to (4.22) by the continuity of the logarithm.

The next lemma will demonstrate that if k is a power of two then h(Yk|Y k−1
0 )

converges to the upper bound .

Lemma 4.2.5. Let k = 2i for some i ≥ 0. Then,

E[V ar(Yk|Y0, . . . , Yk−1)] = σ2
x + σ2

n. (4.24)

Proof:

Using the Law of Total Variance we have,

E[V ar(Yk|Y0, . . . , Yk−1)]+V ar(E[Yk|Y1, . . . , Yk−1]) = V ar(Yk) = σ2
x+σ2

n. (4.25)

For any r > 0, we have the following property by the recursive construction:

V ar(E[Y2r|Y1, . . . , Y2r−1]) = V ar

(
E

[
Ur + Vr√

2
|Y1, . . . , Y2r−1

])
(4.26)

= V ar(E[Ur|U1, . . . , Ur−1], (4.27)

where U and V are the variables of the previous layer whose sum constructs the

variables at the output layer. Since k is a power of 2, we can apply the above

reduction formula till we reach the input variables x and we get,

V ar(E[Yk|Y1, . . . , Yk−1]) = V ar(E[X1|X0]) = 0, (4.28)

where the last equality follows from the fact taht E[X1|X0] is equal to zero with

probability 1. Then we have E[V ar(Yk|Y1, . . . , Yk−1)] = σ2
x + σ2

n. ¥

Therefore, the terms with power of two indices have expected variance σ2
x+σ2

n

and converge to the upper bound 1
2
log 2πe(σ2

x + σ2
n).
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We also conjecture that, infinitely many conditional terms should converge to

the lower bound h(N). This can be verified by working on a given distribution.

For example, when X has a memoryless distribution the analysis is tractable.

However we conclude that the polarization phenomenon in the continuous case

is slightly different than the finite field case since the conditional entropy terms

converge to Gaussian entropies with a spectrum of variances.

4.3 Polar Sampling

Let x ∈ RN be a signal which is composed of i.i.d copies of a compressible, i.e.,

low entropy random variable X. First apply the polarizing transform Hn,

y = Hnx + n . (4.29)

For a highly compressible X, we expect that many conditional entropy terms

in the expansion,

N−1∑

k=0

h(Yk|Y1, . . . , Yk−1) = Nh(X + N), (4.30)

converge to the lower bound h(N). The following numerical example shows that

this is the case. An i.i.d random vector containing copies of U [−a, a] is ap-

plied to the Hn and the conditional entropy h(Yk|Y1, . . . , Yk−1) = h(Y1 . . . , Yk)−
h(Y1 . . . , Yk−1) is estimated using Kozachenko- Leonenko entropy estimator [65].

Therefore a high entropy subset of the output variables y are sufficient to

recover the whole vector y, hence the unknown x to the linear equations. In the

next example, we demonstrate the recovery of a low entropy signal by sampling

only high-entropy rows, which correspond to high conditional entropy terms, of

its Hadamard transform and compare with Compressed Sensing.
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(a) Empirical Distribution of Conditional Entropies

The signal shown in Figure 4.3(b) is a piecewise polynomial signal of the

following form,

s[n] = ain
3 + bin

2 + cin + di, 1 ≤ ni ≤ n ≤ ni+1 ≤ 2048

and those signals are known to be sparse in the Daubechies-8 wavelet basis,

hence compressible. The transform domain wavelet coefficients are shown in

Figure 4.3(c). The length 2048 signal is compressively sampled using 600 in-

ner products both using a random Gaussian matrix and a Hadamard matrix.

For the Hadamard matrix, only the high-entropy indices corresponding to high

h(Yk|Y k−1
1 ) values are sampled. Those high indices of the Hadamard matrix are

calculated beforehand by the KL entropy estimator. In both cases the recov-

ery is done using Basis Pursuit DeNoising (BPDN) of Sparco Toolbox [66] and

compared in Figure 4.3(d) and 4.3(e).
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The reconstruction using the high entropy rows of the Hadamard matrix show

superior performance compared to random Gaussian sampling using less number

of wavelet coefficients. This result is a simple demonstration of the practical

performance of a high entropy sampling approach. It should also be noted that,

the main advantage of random Gaussian sampling is its universality. In order

to use the Polar Sampling approach, the high entropy rows should be calculated

beforehand. We also conjecture that the order in which the conditional entropies

are distributed asymptotically is universal and independent from source distri-

bution. Therefore there may be no need to recalculate the order of conditional

entropies.
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(b) Piecewise polynomial signal
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(c) Coefficients of the signal in Daubechies-8 wavelet basis
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(d) Compressed Sensing using a random Gaussian matrix and re-
covery using 175 terms
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(e) Polar Sampling and Recovery using 140 terms

Figure 4.3: Sub-Nyquist sampling and recovery of a piecewise polynomial signal
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Chapter 5

CONCLUSIONS

In this thesis we presented theoretical and practical results on linear equations

with uncertainty. In the first part, the case in which the number of equations

exceeds the number of unknowns is considered. The main focus was on linear

regression problems with possibly structured uncertainty in all variables. A novel

estimator, SLS-BDU is proposed in terms of a non-convex optimization problem.

The analysis of the MSE of the SLS-BDU estimator reveals the advantage over

the alternative estimators. We derived sufficient conditions where the proposed

estimator improves upon the conventional estimate. Three different methods are

presented for iterative solution of the optimization problem. Among the three

methods, the Fréchet gradient approach provides the fastest convergence. Fur-

thermore, the gradient flow space enables us to study alternative approaches

and be able to compare their performances. New theorems that characterize the

gradient flow for practical cases of interest are proven. A simple but efficient

criterion to select the optimization parameter based on the gradient norm is

proposed. Extensive comparison results on the SLS-BDU estimator reveal the

superior performance of the proposed technique in signal restoration, multiple

frequency estimation and system identification applications. The automated se-

lection of the optimization parameter adaptively regularizes the solution based
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on SNR and achieves improved MSE compared to the notable alternative RSTLS

technique.

An important special case of uncertainty in the overdetermined case is when

uncertainty is sparse in some basis. We showed that the exact or stable recov-

ery of sparse perturbations in Least Squares problems is achievable under some

conditions. It is found that, ill-conditioning of the matrix and coherence of per-

turbations are the limitations of recovery of a sparse uncertainty. We proposed

an optimization scheme and its convex relaxation to recover the uncertainty and

the solution jointly. The numerical examples show that the empirical probabil-

ity of exact recovery is very high for reasonable overdetermination ratios and

it has superior performance in practice when applied to identification of sparse

multipath channels.

The second part is on the recovery of the solution when the number of equa-

tions is less than the number of unknowns. We took an information theoretical

approach and exhibited a special matrix which enables the recovery of unknowns

from few equations. Our results are a generalization of source/channel polariza-

tion theory for continuous distributions and not limited to solving linear equa-

tions. Theoretical results on the evolution of conditional entropies are presented.

We showed that, the Hadamard matrix and Discrete Fourier Transform matrix,

can be used to capture the entropy of a compressible i.i.d vector from few inner

products. The performance of the method is compared with Compressed Sens-

ing in a numerical example where we sample and reconstruct a low dimensional

signal.
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APPENDIX A

Singularity of the Fisher

Information Matrix

It is known that for a singular Fisher information matrix, there exists no un-

biased estimator with finite variance except under unusual circumstances [67].

In the following proof, we show that the information matrix is singular for the

deterministic perturbation case when p > m− n.

Proof: The observation y is related to unknowns x and θ as,

y = A0x +
∑

i

yiθi + w = (A−
∑

i

Aiθi)x +
∑

i

yiθi + w.

Define Aθ , (A −∑
i Aiθi) and B , [y1, ...,yp]. Given that w is a zero mean

Gaussian random vector with covariance σ2I, the log-likelihood can be written

as:

log pθ(y) = −m

2
log 2π −m log σ − 1

2σ2
‖y − (Aθx + Bθ)‖2

2 .

Defining the vector of unknowns z ,


 x

θ


 and Q , [A1x, ...,Apx], the gradient

of the log-likelihood can be obtained as:

∂

∂z
pθ(y) =

−1

σ2


 AT

θ (Aθx + Bθ − y)

(B−Q)T (A0x−Qθ + Bθ − y)


 .
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and the corresponding Fisher Information Matrix can be expressed as:

Ix,θ = E

[
∂

∂z
pθ(y)

(
∂

∂z
pθ(y)

)T ]

=
1

σ4
E


 AT

θ wwTAθ AθwwT (B−Q)

(B−Q)TwwTAθ (B−Q)TwwT (B−Q)




=
1

σ2


 AT

θ Aθ Aθ(B−Q)

(B−Q)TAθ (B−Q)T (B−Q)


 .

Next we use the following fact, assume A11 is invertible, the block matrix


 A11 A12

A21 A22




is invertible if and only if A22 − A21A
−1
11 A12 is invertible. Since we assumed

AT
0 A0 = AT

θ Aθ is invertible, Ix,θ is invertible if and only if:

det

[
(B−Q)T (B−Q)− (B−Q)TAθ(A

T
θ Aθ)

−1AT
θ (B−Q)

]
,

is nonzero. By using P⊥
θ , I−Aθ(A

T
θ Aθ)

−1AT
θ , this condition can be simplified

to:

det

[
(B−Q)TP⊥

θ (B−Q)

]
6= 0

Therefore Ix,θ is invertible if and only if P⊥
θ (B−Q) ∈ Rm×p is full column rank.

Since Rank(P⊥
θ ) = m− Rank(Aθ) it is easy to show that:

Rank(P⊥
θ (B−Q)) ≤ min

{
Rank(P⊥

θ ), Rank(B−Q)

}

≤ m− n

which implies that Ix,θ is not invertible for p > m− n and hence there exists no

unbiased estimator with finite variance.
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APPENDIX B

Proof of Theorem 2.3.2

Proof: First, for any β ∈ Rp, the following bounds can be obtained:
∥∥∥∥∥
∑

i

Aiβi

∥∥∥∥∥

2

2

≤
(∑

i

‖Ai‖2 |βi|
)2

≤ max
i
‖Ai‖2

2 ‖β‖2
1

≤ p max
i
‖Ai‖2

2 ‖β‖2
2 (B.1)

And for nonoverlapping structures, i.e., Ai ¯Aj = 0 , ∀i 6= j:
∥∥∥∥∥
∑

i

Aiβi

∥∥∥∥∥

2

2

≤
∥∥∥∥∥
∑

i

Aiβi

∥∥∥∥∥

2

F

=
∑

i

‖Ai‖2
F β2

i

≤ max
i
‖Ai‖2

F ‖β‖2
2 . (B.2)

In particular Toeplitz and Hankel structures are nonoverlapping and both have

maxi ‖Ai‖2
F = n. Next we use the bound ‖α‖2 ≤ ρ of SLS-BDU and Weyl’s

Theorem [68] and get:

1

σ2
α∗
≤ 1

(σA − ‖
∑

i Aiαi‖2)
2
+

≤ 1

(σA − ρS)2
+

. (B.3)

Also observe that,

‖A(α∗)−A0)‖2
2 =

∥∥∥∥∥
∑

i

Ai(αi + θi)

∥∥∥∥∥

2

2

≤ (ρ + ‖θ‖)2S2 (B.4)

Using (B.4) and (B.3) in Theorem 2.3.1 another MSE bound of SLS-BDU can

be stated as follows:

E[‖x̂− x‖2
2] ≤

(ρ + ‖θ‖)2S2 ‖x0‖2
2 + nσ2

w

(σA − ρS)2
+

. (B.5)
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Since STLS is an ML estimator it is asymptotically unbiased and the asymptotic

MSE is equivalent to the second part of (2.23) when A(α∗) is replaced by A0:

E[‖xSTLS − x‖2
2] = σ2

w ‖A0‖2
F =

n∑
i=1

σ2
w

σ2
A0,i

>
σ2

w

σ2
0

(B.6)

Therefore, when (2.25) is satisfied, we get,

E[‖xSTLS − x‖2
2] > E[

∥∥xSLS−BDU(ρ) − x
∥∥2

2
] ,

asymptotically.
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APPENDIX C

Local Lipschitz Continuity

Proposition C.0.1. Assume A(α) is of full column rank and
∥∥P⊥

αy
∥∥ 6= 0 for

‖Wα‖ ≤ ρ, then f(α) , ∇α

∥∥P⊥
αy

∥∥2

2
is locally Lipschitz continuous.

Proof: Let α, β ∈ Rp be any two vectors satisfying Rank(A(α)) =

Rank(A(β)). And let σmin be the minimum singular value of A(α) in ‖Wα‖ ≤
ρ. Using Lemma 2.5.1 we get:

‖f(α)− f(β)‖2
2 (C.1)

≤ 4
∑

i

(yTy)2
∥∥P⊥

αAiA(α)† −P⊥
βAiA(β)†

∥∥2

2
(C.2)

= 4 ‖y‖4
2

∑
i

∥∥∥∥
1

2

(
(P⊥

α −P⊥
β )Ai(A(α)† + A(β)†)

+(P⊥
α + P⊥

β )Ai(A(α)† −A(β)†)
)∥∥∥∥

2

2

(C.3)

Now let M+ , max(‖A(α)‖2 ,
∥∥A(β)†

∥∥
2
) and M− , min(‖A(α)‖2 ,

∥∥A(β)†
∥∥

2
).

In [55], the following are derived for pseudoinverses and projectors having the

same rank:

∥∥A(α)† −A(β)†
∥∥ ≤ 3M+ ‖A(α)−A(β)‖ (C.4)

∥∥P⊥
α −P⊥

β

∥∥ ≤ M− ‖A(α)−A(β)‖ (C.5)
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Using the above bounds with (B.1) yields that ∇α

∥∥P⊥
αy

∥∥2

2
is Lipschitz continu-

ous with constant:

‖y‖2
2 S(3M+

∥∥P⊥
α + P⊥

β

∥∥ + M− ∥∥A(α)† + A(β)†
∥∥

2
)

≤ 2 ‖y‖2
2 S

(
1

σ2
min

+
3

σmin

)
(C.6)

Using the above result, we will next prove that the Algorithm 3 converges geo-

metrically provided that ρ is sufficiently small:

Theorem C.0.2. If ρ satisfies:

2ρκ ‖y‖2
2 S ≤ σ2

min

1 + 3σmin

min
‖Wα≤ρ‖

‖Wf(α)‖2 , (C.7)

where κ , ‖W‖2

∥∥W†∥∥
2
is the condition number of W, then (2.44) is a contrac-

tion mapping and Algorithm 3 converges to a minimum of (2.28) with a geometric

rate.

Proof: Define the contraction mapping of Algorithm 3 as T (α) , ρf(α)
‖f(α)‖2 .

Then we have:

‖T (α)− T (β)‖ =

∥∥∥∥
‖Wf(β)‖ f(α)− ‖Wf(α)‖ f(β)

‖Wf(α)‖ ‖Wf(β)‖

∥∥∥∥ (C.8)

=
‖(f(α)− f(β)) ‖Wf(β)‖+ f(β)((‖Wf(β)‖ − ‖Wf(α)‖‖

‖Wf(α)‖ ‖Wf(β)‖
≤ ‖W‖ ‖f(β)‖ ‖f(α)− f(β)‖

‖Wf(α)‖ ‖Wf(β)‖ ≤ κ ‖f(α)− f(β)‖
‖Wf(α)‖ (C.9)

In Proposition A.26 of [41] it is shown that geometric convergence is assured

when ‖T (α)− T (β)‖ ≤ γ ‖α− β‖ with γ < 1. Then using (C.6) in (C.9) we

arrive at (C.7) which satisfies the specified condition.
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