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ABSTRACT 

GRAPHENE BASED HIGH FREQUENCY ELECTRONICS 

Erçağ Pinçe 

MSc. in Physics 

Supervisor: Asst.Prof. Dr. Coşkun Kocabaş 

August, 2010 

Recent advances in chemical vapor deposition of graphene on large area substrates 

stimulate a significant research effort in order to search for new applications of graphene in 

the field of unusual electronics such as macroelectronics. The primary aim of this work is 

to use single layer of graphene for applications of high frequency electronics. This thesis 

consists of both theoretical and experimental studies of graphene transistors for the use of 

radio frequency electronics. We have grown graphene layer using chemical vapor 

deposition technique on large area copper substrates. The grown graphene layers are then 

transferred onto dielectric substrates for the fabrication of graphene transistors.  The 

theoretical part of the thesis is focused on the understanding the performance limits of the 

graphene transistor for high frequency operation. We investigate the intrinsic high 

frequency performance of graphene field effect transistors using a self consistent transport 

model. The self-consistent transport model is based on a nonuniversal diffusive transport 

that is governed by the charged impurity scattering. The output and transfer characteristics 

of graphene field effect transistors are characterized as a function of impurity concentration 

and dielectric constant of the gate insulator. These experimental and theoretical studies 

shape the basis of our research on the graphene based radio frequency electronics.  

 

Keywords: Graphene, RF, High Frequency Electronics, CVD 
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ÖZET 
 Erçağ Pinçe 

GRAFEN TABANLI YÜKSEK FREKANS ELEKTRONİĞİ 

Fizik Yüksek Lisansı 

Tez Yöneticisi: Yard.Doç. Coşkun Kocabaş 

Ağustos, 2010 

Geniş alanlı alttaşlar üzerine kimyasal buhardan biriktirme tekniği ile elde edilir olması 

nedeniyle son gelişmeler Grafin’in makroelektronik gibi alışalagelmedik elektronik 

uygulamalarındaki araştırmaları gözle görülür biçimde hareketlendirdi. Bu çalışmanın 

öncelikli amacı tek tabakalı Grafin’in yüksek frekans elektroniğinde kullanılmasıdır. Bu tez 

radio frekans elektroniğinde kullanılacak Grafin transistörlerin kuramsal ve deneysel 

çalışmasını içermektedir. Geniş alanlı bakır alttaşlar üzerinde kimyasal buhar biriktirme 

tekniğiyle Grafin tabakası büyütüldü.  Daha sonra bu tabakaları, Grafin transistör  yapmak 

üzere dielektrik yüzeylere aktardık. Tezin kuramsal bölümü Grafin transistörün yüksek 

frekans elektroniğindeki performans limitlerini anlamak üzerine yoğunlaşmıştır. Bu 

bölümde,“Kendi içerisinde tutarlı” bir taşınım teorisi kullanılarak Grafin tabanlı alan etkili 

transistörlerin kendine özgü yüksek frekans başarımları incelendi. “Kendi içerisinde tutarlı” 

taşınım modeli, alttaş yüzeyinde oluşan yük safsızlığı saçılması tarafından belirlenen, 

evrensel nitelikte olmayan yaygın taşınım modeli ile açıklanır. Grafin tabanlı alan etkili 

transistörlerin çıkış ve transfer karakteristikleri, giriş yalıtkanının safsızlık 

konsantrasyonunun ve dielekrik sabitinin bir fonksiyonu olarak karakterize edildi. Yukarıda 

görülen deneysel ve teorik çalışmalar Grafin tabanlı radyo frekansı elektroniği alanındaki 

araştırmamızın temelini oluşturmuştur.  

 

Anahtar sözcükler: Grafin,yüksek frekans elektroniği,RF,kimyasal buharı biriktirme 
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Chapter 1  

1 Introduction 
 

1.1. The Prospects of  Graphene 
 
Considering the silicon based technology is reaching to its limits, every now and then a 

new material draw attention of the researchers and emerges to replace silicon’s role in 

semiconductor technology[1]. Many of the candidates are eliminated and silicon is yet the 

most reliable semiconductor material used in the area. However, as the size of electronic 

devices gets smaller silicon is reaching to the scalable device limit and in near future it is 

widely believed that silicon can no longer support the need of high frequency electronics 

applications in the market. According to Moore’s law number of transistors in integrated 

circuits double in 18 months period. By the silicon based semiconductor devices gets 

smaller and smaller, It is widely believed that now silicon technology is on the boundaries 

of fundamental limit and some problems might arise such as gate tunneling in 

MOSFETs[2]. Therefore, a thorough research is needed to create alternative routes to solid 

state device technology without any scaling problem. 

In 2004, Novoselov et.al discovered a method to deposit Graphene, 2D crystal of carbon 

atoms arranged in hexagonal shape and observed its peculiar electrical properties[3]. 



CHAPTER 1.INTRODUCTION 
 

 
 

2

Beside abrupt electrical properties of fabricated Graphene devices, Graphene layer also 

exhibits unusual transport phenomena[4],[5].  

 

These intrinsic properties make graphene worthwhile for a closer inspection. Graphene is 

one of a solid candidate amongst the other emerging device materials for the post silicon 

era. The main reason for this verdict is based on fabricated graphene field effect transistors 

having potential for immediate applications towards RF device technology[6],[7], showing 

high frequency performance[8],[9] and high mobility, up to 23,000 cm2V-1s-1 [10], 

compared with conventional CMOS devices. Furthermore, intrinsic carrier mobility values 

of higher than 200,000 cm2V-1s-1 is predicted for a graphene based device[11]. Although 

graphene field effect transistors have lower on-off ratio compared to silicon based 

MOSFET and therefore lower switching capabilities, new generation graphene nanoribbons 

could yield promising on/off ratios (up to ~104) [12]. Also, new graphene growth 

techniques, such as chemical vapor deposition of graphene on large area substrates[13],[14] 

has opened up the opportunity to use RF device circuits on large displays as stretchable and 

foldable graphene electronics[15]. 

 

One of the most important parameter we need to investigate in graphene devices is the cut-

off frequency,ft. The cut-off frequency is the frequency at which current gain of the 

transistor drops to one. This means, at the cut-off frequency, the frequency response of a 

system is beginning to decrease. With higher cut-off frequency, the graphene devices 

become more suitable for use in RF applications.  

Nonetheless, graphene is not the only promising carbon based material in semiconductor 

device technology, it has competitors: CVD Diamond and Carbon Nanotube. Diamond and 

carbon nanotube both have high mobilities[16], on-off ratios[17], and cut-off frequency 
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values[18,19,20]. Their physical and electronic properties will be discussed in subsequent 

chapters. 

 

1.2.  Aim and Organization of the Thesis   
 

The aim of this thesis to show the device capability of a fabricated graphene based field 

effect transistor and analyze the device parameters such as mobility, transconductance, 

on/off ratio and other characteristics as a function of channel length.  

 

In chapter 1, the introduction to the new graphene based device technology and latest 

developments in device physics of graphene is given.  

 

Chapter 2 will address the electronic properties of 3 carbon allotropes of graphene, carbon 

nanotube and diamond. Their band gap structure will be briefly analyzed and the device 

capabilities will be discussed.  

 

In chapter 3, we will present the synthesis of single layer graphene and its transfer 

techniques to a dielectric surface. This chapter will mostly concern about the fabrication of 

uniform and atomic thick single layer grown graphene on a substrate.  

 

In chapter 4, Raman spectroscopy of atomic thick single layer graphene will be analyzed.  

We briefly discuss about Raman scattering, and the characterization of the quality of 

epitaxially grown graphene. 
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Chapter 5 summarizes the fabrication process and the electrical performance of the back-

gated field effect transistor. The CVD grown graphene layers on copper foils are 

transferred on SiO2 coated Si substrates.  

 

Chapter 6 investigates the intrinsic high frequency performance of graphene field effect 

transistors using a self consistent transport model. The self-consistent transport model is 

based on a nonuniversal diffusive transport that is governed by the scattering owing to the 

presence of the charged impurities on the substrate. The output and transfer characteristics 

of graphene field effect transistors are characterized as a function of impurity concentration 

and dielectric constant of the gate insulator. Important high frequency device parameters 

have been investigated.  

 

Chapter 7 will provide the summary of the thesis and discuss the future directions of our 

research on the graphene based high frequency electronics. 

 

 

 

 

 

 

 

 

 



 

Chapter 2  

2 Electronic Properties of Carbon Allotropes 
 

2.1.  Diamond 
 
 

Diamond is an Carbon allotrope, standing as a crystal of the diamond lattice structure of 

tetrahedrally bonded sp3 hybridized carbon atoms (see Figure 2.1) [21]. Although Natural 

Diamond is defined as an insulator, synthetic diamond is a wide band-gap semiconductor 

(Eg= 5.4 eV) and it has promising thermal and electrical properties. Basically, high pressure 

and high temperature values around respectively 70-80 kbar and 1400-1600 ºC is needed 

for the formation of natural diamond[22]. The first attempt to synthetically grow diamond 

was made by Bundy et al. in 1955 by applying the High Pressure High Temperature 

(HPHT) synthesis method[23]. This method is simply based on applying a high pressure on 

a cylinder container by a piston and raising the temperature inside the container to around 

1400 ºC. HPHT synthesis might yield high quality and large area substrate of diamond but 

recent advances in chemical vapor deposition technique made the diamond growth process 

much practical and accessible. Using Hydrocarbons as carbon feedstock and surface 

passivator at temperatures around 2000 K at maximum, chemical reaction occurs in order 

to grow single or polycrystalline diamond on the substrate concerned. Generally, CH4 
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(methane) or C2H2 (acetylene)are used as carbon feedstock in the chamber[24]. Also, it is 

possible to dope the diamond lattice with nitrogen or boron atom through CVD process to 

make N-type or P-type semiconductor device.  

 
 
 

 

   
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2-1.Tetrahedral diamond lattice structure of Carbon atoms (Designed in software 
“Balls&Sticks”) 
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The main focus here is the measure of high end electronics performance for several base 

materials. Therefore, Diamond is evaluated within the framework of RF electronics. The 

first single crystal diamond based device in history is fabricated by Isberg et al. in 

2002[25]. The device showed excellent high carrier mobility, respective hole and electron 

mobilities up to 3800 cm2/Vs and 4500 cm2/Vs. Also the breakdown electrical field and the 

thermal conductivity of diamond devices are very high values such as 10 MV/cm and 20 

W/cm K. These values suggest good applicability of CVD diamond based semiconductor 

devices to area of high temperature and high power semiconductors among the same class 

of candidate semiconductor material. One of the most important physical features of 

diamond is its thermal conductivity. It can largely be used in RF device power management 

which GaN is mostly leading the area. However, the first GaN-diamond hybrid devices 

were fabricated in 2007, and there is still research going on in the area of thermal properties 

of high power devices[26].  

The Presence of dangling bonds of carbon atoms on the crystal edge of diamond is a 

problem and are needed to be passivated from the surface in order to have a good 

conductance in diamond based field effect transistor. Therefore, Kawarada et al. 

manufactured diamond FET with Hydrogen surface termination[27]. By the deposition of 

Hydrogen to the surface using CVD, a hole channel is constructed around 10 length nm 

below the surface and metal contacts are evaporated at the Hydrogen terminated surface. 

Hence, passivated area acts as if there is a 10 nm length thick dielectric surface above the 

channel. Without proper Hydrogen surface termination,  diamond FET cannot achieve a 

good RF performance[28]. The best RF performance shown up today is a cut-off frequency 

ft of 45 GHz and maximum frequency fmax of 120 GHz which is one of the highest 
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frequency response for a single RF device[20]. This result indicates that diamond field 

effect transistors are excellent candidates for designing RF power amplifiers.   

2.2.  Carbon Nanotube 
 
Rolling up the honeycomb structure to a cylinder of carbon atoms makes the 2D planar 

sheet of carbon into a 3D structure, namely carbon nanotube. The orientation of that 

graphene sheet is rolling onto itself is important by means of band gap structure of carbon 

nanotube. A vector is needed to describe the rolling motion of graphene sheet and it is 

called chiral vector (see Figure 2.2). Depending on the direction of chiral vector, rolling up 

graphene sheet along chiral vector might yield metallic or semiconductor carbon 

nanotubes[17,29]. Generally, 1/3 of yielded carbon nanotubes are metallic and 2/3 of them 

are semiconductors[30]. However, metallic nanotubes aligned in series might short the 

patterned device and can abruptly decrease device parameters such as  the output resistance 

and the on/off ratio[31], therefore metallic nanotubes should be eliminated in order to have 

a good device performance. There are many chemical and physical techniques to select and 

eliminate metallic carbon nanotubes such as applying a breakdown electrical field and high 

current on the parallel aligned carbon nanotubes[32], chemical etching with gas phase 

hydrocarbonation reaction[33] and plasma etching by fluorine gas[34]. 
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There are various numbers of carbon nanotube growth techniques[35,36], however in situ 

growth techniques of carbon nanotubes are preferable due to the difficulties in transfer 

process onto an insulator substrate and the quality obtained. Hence, CVD is one of the most 

reliable and facile method to grow aligned carbon nanotubes. In CVD process, metal 

catalyst nanoparticles are placed aligned upon a substrate and various gas of carbon 

feedstock flows around temperature of 900-1000 ºC. Those Catalyst particles might 

determine the type and diameter of carbon nanotubes. Nevertheless, aligned dense 

nanotube array should be obtained in order to sustain a good device quality and electrical 

 

 
 
Figure 2-2.The honeycomb structure rolled along Chiral vector Ch, T stands for 
Translation vector of hexagonal lattice. Chiral vector can be expressed as linear 
combination of primitive lattice vectors. In this figure Ch= 4a1+2a2.  
 

 

T 

Ch 
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performance. Kocabas et al. achieved the growth of surface guided highly aligned and 

dense single walled carbon nanotubes(SWNT) on quartz substrates[37]. While patterning a 

carbon nanotube based device with lithography, it is highly important to appropriately 

place carbon nanotubes right between the source and drain pads and below the gate. 

Otherwise, carbon nanotubes might touch a nearby device pattern and create a parasitic 

capacitance due to the fringing field or simply short the device. In order to have high 

transconductance, cut-off frequency(ft) and maximum frequency(fmax), one needs to 

implement perfectly aligned and dense carbon nanotubes into the device geometry. 

Therefore, disordered and misaligned carbon nanotubes weaken the RF device performance 

and decrease the on/off ratio, and the mobility of carbon nanotube based devices 

significantly. As an example to highly parallel and dense carbon nanotube arrays, Kocabas 

et. al achieved to assemble SWNT based RF devices showing very high mobility up to 

3000 cm2V-1s-1 [16] and high cut-off frequency(ft) value such as 30 GHz[18]. Furthermore, 

RF applications of carbon nanotube devices are explored. One group at University of 

California Irvine [38] succeeded to fabricate nanotube AM demodulator. A group in 

University of California at Berkeley[39] and another at University of Illinois Urbana 

Champaign[40] successfully demonstrated carbon nanotube based functioning AM radio. 

To conclude, the summarized applications and device performance reflects the carbon 

nanotube FETs’ potential to be used in RF circuit design. The challenge to grow high 

density aligned micrometer long carbon nanotubes still continues to enhance the device 

performance and hopefully a significant improvement will be seen in near future.  
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2.3. Graphene 
 
Graphene is the single atom thick layer of hexagonal lattice shaped carbon atoms[3],[5, 41]. 

Another definition might also be written as Graphene is a 2D planar sp2 hybridization of 

Carbon atoms. Since Carbon atom has 4 valence orbitals; 2s 2px,2py and 2pz, z showing the 

perpendicular direction to the x-y plane of graphene sheet, the s,px,py orbitals yield the in 

plane σ bond. The lateral σ bonds are strong covalent bonds which hold the honeycomb 

structure. However, the uncoupled pz orbital of one carbon atoms in the sheet interacts with 

neighboring pz orbitals of different carbon atoms and creates π and π* bonding along the z 

direction with respect to graphene sheet. Hence, each graphene sheet is bonded to each 

other with weak Van der Waals bonds[42]. Lumps of graphene layers, stacked one on top 

each other construct graphite sheet. In Figure 2.3, the lattice shape of a graphene molecule 

can be seen. The lattice vectors a1 and a2 are written as �� � �

�
�3, √3� , �� � �

�
	3, 
√3� . 

These are the real space lattice vectors for hexagonal shaped carbon atoms and the 

reciprocal lattice vectors in the Brilliouin zone can be obtained as �� � ��

��
�1, √3� , �� �

��

��
	1, 
√3�  (see the Figure 2.3 for vector representations). K and K’ points are called 

Dirac points where the upper energy band (π) and lower energy band (π*) in the energy 

band diagram of graphene overlap (see Figure 2.4).  
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Figure 2-3.Hexagonal shape of honeycomb lattice and its Brilliouin zone lattice. a1 and 
a2 are primitive lattice vectors, b1 and b2 are reciprocal lattice vectors. Points K and K’ 
are called Dirac points. 
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The Fermi level is at zero conductivity point for pristine graphene, since the Fermi surface 

at the intersection points of π and π* band is infinitesimally thin, it would be more 

appropriate to name graphene other than a metallic surface. Hence, graphene is named zero 

band-gap semimetal. The name “Dirac” comes for the points K and K’ resulting from linear 

energy dispersion of charge carriers behaving as massless Dirac fermions around these 

points. The energy dispersion for honeycomb lattice  is given by 

 
 
Figure 2-4. Energy band diagram of graphene structure. Dirac points are manifested as 
where upper(π) and lower energy bands coincide(π*). 
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�����, ��� � ���	1 � 4 
�� √3���2 
�� ���2 � 4 
��� ���2  

 where kx and ky are the components of electron momentum vector k and γ0 is the transfer 

energy between first neighbors π orbitals (also called the nearest neighbor hopping energy) 

which is around 2.9-3.1 eV [5, 42]. This energy dispersion formula reduces to � �

����|� 
 �|, where k is the electron momentum vector, vf is the Fermi velocity having a 

value of approximately 106 m/s and K is the momentum vector at K point, and it resembles 

to the energy of a Dirac particle in relativistic field which is governed by Dirac equation. 

These symmetric π and π* bands provide an ambipolar device switch being symmetric 

around zero conductivity point which suggests an adjustable electron hole symmetry. 

Since, pz state of carbon atoms in the graphene sheet is occupied by an electron, π band is 

filled with that electron. Thus, the points in different sides of Dirac cone (e.g. K and K’ 

point) are interrelated by time reversal symmetry. Therefore, the six corners of reciprocal  

honeycomb lattice in Brillouin zone are called Dirac points and each one of them contains 

two Dirac cones one for hole (π* band) and one for electron state (π band). 

At zero conductivity point (also suggested as neutrality point) charges carriers, both 

electrons and holes contribute equally to conduction and there is certain charge symmetry 

around zero conductivity point. Therefore, it is possible to use graphene as a flexible 

ambipolar device which can be switched easily from n-type to p-type, and vice versa. 

General point of view upon the universality of zero conductivity point on graphene is that 

around the minimum conductivity value of 4e2/hπ and it is independent of charge carrier 

concentration and therefore the transport is ballistic around these points. However, Adam et 

al. articulate that the universal ballistic transport can be rendered to a nonuniversal 

diffusive transport by adjusting the charge impurities upon the substrate[43]. By this 
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theory, the governing mechanism nearby Dirac point is the charge impurity scattering and it 

is due to the self-consistently determined induced charge carrier density. We will discuss 

the implication of this theory in Chapter 6.  



 

Chapter 3  

3 Synthesis of Graphene 
 

3.1.  Deposition Methods of Graphene 
 

Another important issue in graphene device fabrication is creating scalable, controllable 

and facile growth of graphene. Scalability of growing graphene is needed for the 

fabrication of graphene devices over large areas. Large area means higher conduction 

output for devices such as photovoltaics and RF communication device. The most 

important aspect of graphene growth is the controllability of grown graphene layers and the 

challenge to obtain in situ single layer or bilayer graphene. Without proper control over the 

scalable size of graphene layer growth process, one can have graphitic structure with many 

layers of graphene and thus the fabricated device will show inferior performance 

comparing to single layer graphene based devices. Therefore, the problem of growing 

single layer graphene is a crucial one which nowadays researchers are still struggling to 

solve.   

In the early days of graphene research, graphene layers were mostly obtained from kish 

graphite and graphite derivatives such as highly oriented pyrolytic graphite (HOPG) by 

using mechanical exfoliation[3]. Since, graphite is the stack of graphene layers and bonded 

to each other with weak van der Waals force, graphene layers can be physically detached 
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from the remaining graphitic structure. This process is also called ‘scotch tape’ method, 

after all the exfoliating is performed by sticking the tape onto the graphite and pulling it 

apart. Although high quality single layer graphene can be isolated by applying this 

technique; it does not supply the large area need of graphene for scaling graphene based 

devices. This technique is further improved by using SiO2/Si based stamps[44]. These 

stamps are put onto the surface of graphite in order to cut a piece of graphene layer and 

exfoliate it. By exploiting this technique, isolated graphene can be pre-patterned for the 

desired device geometry or purpose. Also Polydimethylsiloxane (PDMS) and pre-patterned 

gold films were used for the exfoliation by other research groups[45],[46]. 
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Figure 3-1. A schematic of electrostatic exfoliation. Graphene is exfoliated from HOPG  

surface with an applied bias. 

 
V 

Exfoliated   

Graphene 

Si 

SiO2 

HOPG STAMP 



CHAPTER 3. SYNTHESIS OF GRAPHENE 
 

 
 

19

An inspiring method was discovered by Liang et al. for exfoliation of graphene from 

graphite structure in 2009[47]. An explanatory schematic of the technique can be seen in 

Figure 3-1. A bias voltage applied between pre-patterned HOPG layer and Si/SiO2 surface 

to create an electrostatic field in order to pull the pre-patterned graphene apart from HOPG 

and attach it onto the insulator surface. This novel technique is also called electrostatic 

exfoliation of graphene and it provides production of high quality few-layer graphene 

sheets and graphene nanoribbons up to 18 nm. Another useful exfoliation technique is 

liquid phase exfoliation of graphene layers. Generally in this method, the stack of graphene 

layers in graphitic structure are intercalated by several chemical compounds or polymers in 

a liquid suspension and separated into few-layers of graphene by sonication or other means 

of agitation. For instance, Green et al. used a density gradient ultracentrifugation in order to 

isolate encapsulated graphene sheets by sodium cholate[48]. They achieved to exfoliate 

graphene sheets and detect the number of layer by observing the buoyant density of 

graphene-sodium cholate suspensions. Thicker graphene layers are located near the bottom 

of the tube containing suspensions after density gradient ultracentrifugation treatment. This 

sort of exfoliation techniques provide the controllability over the number of graphene 

layers fabricated from HOPG or simply kish graphite. However, patterning is still an issue 

and is not applicable in the exfoliation process. Therefore one needs to develop a much 

more scalable technique to pre-pattern and put the graphene layers into the desired shapes 

suitable for device fabrication usage. One of the techniques that provide this kind of 

patterning is epitaxial growth of graphene by thermal decomposition of silicon carbide 

(SiC)[49],[50].    

Application of the technique starts with honeycomb lattice patterning (graphitization) of 

carbon atoms on silicon carbide, thus epitaxial growth of graphene on top of silicon carbide 

template and silicon sublimation under ultrahigh vacuum. There are several drawbacks of 
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this technique such as the difficulty to reach ultrahigh vacuum of the order of 10-10 Torr at 

high temperatures (around 1500ºC), limitations of device geometry due to the lack of back 

gate and requirements of a top gate. Nevertheless, epitaxial grown graphene can be 

transferred to Si/SiO2 or other substrates by using gold/polyimide films as sacrificial layer 

[51]. Epitaxial growth of graphene onto SiC is an unfavorable technique as a result of its 

harsh experimental conditions and graphene quality that it yields. There are some other 

creative and state-of-the-art experimental techniques to produce patterned graphene layers 

such as producing graphene nanomesh and unzipping carbon nanotubes [52],[53]. Since 

CNTs are basically rolled up graphene sheets, it should be possible to unroll them with 

several chemical and physical treatments. Jiao et al. unzipped nanotubes through using 

PMMA layer as etching mask and etched multi walled CNTs in Argon plasma in order to 

obtain a several nanometer width graphene nanoribbons, furthermore transfered them onto 

SiO2 substrate. Also Raman spectroscopy reveals their quality and single layer character. 

Graphene nanoribbon devices around 6nm wide fabricated by using the unzipping CNT 

technique showed promising on-off ratio up to 100 and the technique can be further 

improved. Another effective method to obtain graphene nanoribbons is to align silicon 

nanowires on top of graphene sheets and use them as etching mask to oxygen plasma[54]). 

In this method, silicon nanowires protect underlying graphene sheet and leave remaing part 

of the sheet exposed to oxygen plasma. Finally, etchant mask nanowires are detached and 

removed by sonication. Various sub-10 nm width graphene nanoribbons are obtained. An 

explanatory schematic of the technique is shown in Figure 3-2. The width of graphene 

nanoribbons can be controlled by the diameters of selected silicon nanowires and adjusting 

oxygen plasma etching rate. It can be claimed that this techniques brings an alternative to 

conventional lithography techniques to pattern graphene sheets.  

 



CHAPTER 3. SYNTHESIS OF GRAPHENE 
 

 
 

21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although thermal decomposition of SiC, mechanical, electrostatic and liquid exfoliation are 

effective technique to produce graphene layers, several drawbacks make them unfavorable 

such as lack of yielding large-area few layers graphene at high quality, applicability, 

controllability of the technique and pre-patterning the substrate in order to have desired, 

necessary patterns beforehand. Hence, epitaxial growth of graphene on a template should 

be provided by a more handy growth process. These requirements can be achieved by the 

chemical vapor deposition (CVD) and we will discuss this technique in the next section. 

 
 
 
Figure 3-2. Schematic of nanowire etching mask technique in fabrication of graphene 
nanoribbons with various widths. Nanowire alignment takes place in step 2 and patterns 
the underlying graphene sheet.By step 4, sonication clears up the patterned surface from 
silicon nanowires. 
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3.2.  Chemical Vapor Deposition of Graphene 
 
Chemical vapor deposition (CVD) of graphene is a facile and controllable epitaxial 

graphene synthesis method to produce large-area few layer graphene sheets. CVD is also 

used in carbon nanotube[18] and various nanomaterial production[55]. The process consists 

of high temperature containing in a hot wall furnace and generally flowing H2 (Hydrogen), 

and CH4 (Methane) or C2H5OH (Ethyl alcohol) under certain pressure. Gas molecules like 

methane and ethanol are carbon feedstock needed for graphitization over the catalyst 

surface. Generally, catalyst particles of CVD process are transition metals such as 

Ni,Cu,Co,Pt,Ir which are deposited on a wafer or simply put as large area foils or metal 

blocks. Resembling to the growth of Carbon Nanotubes, catalyst particles dictate the 

growth pattern of graphene in desired geometries determined beforehand and catalyze the 

chemical decomposition of carbon feedstock molecules on the surface or within the catalyst 

itself. Also, they play the role of support to carbon atoms during growth process. Carbon 

solubility of catalyst takes a crucial role in the controllability of epitaxial growth graphene 

layer number. General opinion upon the dynamics of carbon graphitization in catalyst metal 

such as Nickel during CVD process was either carbon precipitation[14] or segregation[56]. 

In 2009, Li et al. illuminated the growth mechanism of CVD graphene on Ni and Cu 

surfaces by using carbon isotope labeling in order to track down their movement during 

graphitization[57]. They concluded that CVD growth of graphene on Ni is a carbon 

segregation and precipitation process whereas growth on Cu is a process based on surface 

adsorption. In Ni catalyzed process, carbon atoms first diffuses in metal thin film, segregate 

into islands of graphene, and precipitate onto the surface, on the other hand in Cu case 

carbon atoms are attached to the surface to form the graphene layer and the growth process 

is self-terminating which limits the formation of multilayer graphene. The main reason of 
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self-termination of the growth process on the Cu surface is the low-carbon solubility of Cu. 

Once CH4 diffuses into Cu surface, it catalytically decomposes and begins to form 

graphene islands. When the whole Cu surface is covered with graphene layers, catalyst 

particles deplete on the surface and carbon atoms cannot dissolve within Cu anymore 

indicating the carbon saturation and low solubility of Cu. Hence, CVD growth of graphene 

on Cu is named as surface catalyzed self-terminating process and therefore the thickness of 

graphene, the number of layers is much more controllable on large scales. Ni films have 

higher carbon solubility than Cu, therefore uniform graphene layers are not produced and 

layer thickness spatially varies on Ni surface. To control the formation monolayer graphene 

sheet on Ni surface, one needs to cool down the CVD process much faster in order to 

suppress the carbon precipitation. This method is much more difficult whereas CVD on 

large-area copper foils seems more reliable and physically controllable[13]. As an extreme 

example to CVD growth of graphene on large area Cu foil, Ahn et al. succeded to 

manufacture 30-inch diagonal width of rectangular monolayer graphene film by[15]. This 

development made the monolayer graphene production and graphene macroelectronics 

accessible on very large scales (e.g. large displays). 

In this work, we used CVD growth technique in order to produce graphene sheets needed 

for graphene based field effect transistors. The process we carried on to grow uniform 

graphene layers is illustrated in Figure 3-3. To grow graphene layer onto Cu surface, 

process chamber is heated until reached to 1000 ºC while Argon and Hydrogen gases are 

flowing throughout the chamber at 240 sccm (cm3 per minute) and 8 sccm respectively. 

The gas rate flowing into the chamber is adjusted through using mass flow controllers 

(MFCs) shown in Figure 3-4. Sample is annealed at 1000ºC for 10 minutes then methane is 

introduced to chamber at rate of 5 sccm for 10 minutes to start growth sequence. After 10 

minutes of growth, sample is sharply cooled down to room temperature. During cool down 
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hydrogen and argon gas are flowing at rate of 8 sccm and 240 sccm respectively. The 

surface morphology of graphene grown on copper surface is following the pattern of low 

purity (%99.8) copper foils. 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

      

 
 
 
Figure 3-3. Schematic of CVD graphene growth process on copper foil. a) Methane 
Hydrogen and Argon gases are flowing into the chamber of furnace at ambient pressure 
b) Chemical decomposition of carbon atoms occur at 1000ºC, methane decompose into 
carbon and hydrogen gas c) carbon atoms are adsorbed on the catalyst surface and 
graphene islands start to grow. 
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CVD system that we used in our laboratory is shown in Figure 3-4, Protherm furnace 

containing 180 cm long quartz silica tube is labeled as 1, it is able to reach up to 1100ºC 

temperature by a speed of 8ºC per minute. Vacuum flange is labeled as 2 and MFCs for 

Hydrogen, Argon and Methane is labeled as 3 in the Figure.                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3-4. General view of CVD system equipments. a) CVD system consisting of 
quartz silica tube, Protherm furnace (1), Vacuum Flange (2), Mass Flow Controllers 
(MFCs)(3). b) Close-up inside of the furnace. c) Close-up MFCs. All photos are 
courtesy of Emre Ozan Polat. 
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CVD growth sample of graphene on top of copper surface (~1cm2) can be seen in Figure 3-

5. After growth copper surface becomes shiner than before growth process. Post treatment 

of the graphene sheet starts with transferring it to Si/SiO2 surface. Polymethylmethacrylate 

(PMMA) solution is deposited onto of Cu/Graphene surface and cured at 120ºC for 1 

minute. The process continues until PMMA properly adhere to the graphene surface. Then 

Cu/Graphene/PMMA is released to 0.05 g/ml Fe(III)Cl3 solution  to etch the Cu surface 

.After staying for ~4 hours of Cu etching, sample is pulled from the Fe(III)Cl3 solution and 

rinsed in de-ionized water. Graphene/PMMA sample is then transferred to Si/SiO2 surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 3-5. (a)As-grown graphene on copper surface, compare with clean copper foil 
surface. (b) Transferred graphene to Si/SiO2 surface, color contrast indicates a few-layer 
graphene flakes.  
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Figure 3-6.The schematic of graphene transfer onto Si/SiO2. After graphene growth on 
Cu, PMMA is cured onto the Cu foil and sample is put into 0.05 g/mL Fe(III)Cl3 
solution. PMMA/Graphene composition is transferred onto Si/SiO2 surface by applying 
a mechanical force onto the surface. Finally, PMMA is etched away by acetone and 
isopropyl alcohol.    
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Transfer of graphene procedure can be better comprehended by following the schematics in 

Figure 3-6.  

SiO2 surface is highly flat and smooth whereas surfaces of both Cu foil and as-grown 

graphene are rough enough to have large corrugations[58]. PMMA follow the same surface 

topology as well and becomes even rougher after cured at high temperatures. As a result of 

that large gaps are formed between graphene and SiO2 surface causing cracks and leaks 

during transfer process. In order to prevent this, we followed the same procedure as Li et al. 

which is depositing PMMA on transferred graphene surface and curing it at 150 ºC[59]. 

The second PMMA treatment is needed for relaxing the underlying rough graphene sheet in 

order to avoid cracks due to large gaps underneath. 

Graphene transfer to SiO2 procedure might potentially damage graphene sheet due to 

cracks formed on graphene surface and deteriorate device performance significantly. 

Therefore, other methods should be investigated to eliminate transfer process and its 

negative effects on device operation process. According to Ismach et al. graphene can be 

directly grown onto SiO2 by dewetting of deposited Cu on Si/SiO2 surface [60]. This 

procedure is based on normal vacuum (100-500 mTorr) CVD growth process on Cu 

deposited SiO2 surface for several hours (15-420 mins.). As a result of that, Cu dewets as a 

“finger-like” structure (see Figure 3-6) from SiO2 surface and grown graphene is directly 

adhere to the insulator surface. However, the method needs to be improved if higher quality 

and less defected graphene sheet is desired to be directly transferred. Figure 3-6 shows  the 

graphene sample for which we applied direct CVD process. The thickness of Cu layer is 

between 100 nm and 150 nm. One can see the evolution of the surface morphology and 

dewet finger-like shaped Cu surface after 30-45 mins. and 90 mins. of CVD at ambient 

pressure. This method basically eliminates Cu etching and graphene transfer to a dielectric 
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surface. Hence, Direct CVD is a promising method in graphene based device fabrication 

and electronic performance enhancement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3-7. Dewetting process of Cu evaporated on  Si/SiO2 surface. (a)-(b) Surface 
morphology after 45 mins. of CVD. (c)-(d) after 90 mins. of CVD. Finger-like pattern is 
becoming less dense with increasing quantity of dewet copper. 



 

Chapter 4  
 

4 Raman Spectroscopy of Graphene 

4.1. Raman Scattering 
 
Raman scattering is basically phonon creation or annihilation [21] in a crystal structure due 

to inelastic scattering of a photon by that crystal. Let ω, k be the wave frequency and 

vectors of incident photons, ω´, k´ be wave frequency and vector of the scattered photons 

and σ, K be wave frequency and vector of the created or annihilated phonon. The allowed 

transitions between states for the first order Raman effect are � � �´ � σ and � � �´ � �. 

The order of Raman process is proportional with the phonon number involved in scattering, 

e.g. in second order Raman process two phonons are involved in the scattering of one 

photon. To activate Raman scattering in a molecule, polarizability plays an important role. 

Strain induced electronic polarizability on a molecule activates the Raman effect on that 

molecule or crystal concerned. Assume that polarizability α is a function of phonon mode 

and can be written in a power series of phonon amplitude u: 

������	 � ��� �� � � 

Let phonon amplitude be �	�� � ��cos "� and electric field component of the incident 

photon  �	�� � ��#$%��, then the induced dipole moment of the system to the first degree 

is given as follows: 
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)()( tEtP α= and therefore the induced electrical dipole moment on the first order Raman 

process becomes to the form. [ ]ttEutEuP )cos()cos(
2

1
cos)( 00101 σωσωαωα −++==

This equation suggests that two photons can be emitted after scattering takes place, a 

photon at frequency ω + σ and a photon at frequency ω - σ. The photon at ω + σ represents 

the Stokes line and photon at  ω - σ anti-Stokes line. Stokes process corresponds to phonon 

creation inside the crystal by the scattering of incident photon and anti-stokes process 

corresponds to phonon annihilation.  
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Figure 4-1. Raman scattering processes corresponding to (a) Stokes, (b) Anti-Stokes 
process.  
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In graphene lattice, stretching of C-C atoms along σ bonds create strain induced 

polarizability and causes to break hexagonal symmetry[61]. This polarization makes 

graphene surface Raman active. There are six phonon dispersion branches, 3 of them are 

acoustic and 3 are optic phonon branches. Depending on the direction of the C-C atoms 

(noted as A and B atoms in Figure 2.3), vibrations perpendicular and parallel with respect 

to A-B carbon atoms orientation are respectively called transverse and longitudinal phonon 

modes. Two out of three optic phonon modes are transverse; one corresponds to in plane 

and the other one to out-of-plane vibrations. Remaining one optic phonon mode 

corresponds to longitudinal mode. Likewise, two of the acoustic phonon modes are 

transverse corresponding to in- and out-of-plane vibrational phonon modes and the 

remaining one is longitudinal acoustic mode[62]. These dispersion curves are important for 

detecting Raman active modes which give rise to several Raman peaks of graphene. 

Especially, phonon modes in the vicinity of K symmetry point (see Figure 2.3-b) is 

important by means of double resonance process[61]. The significant character of atom 

thick layer of graphene in Raman spectroscopy is sharp Lorentzian peaks appearing at 1582 

cm-1 and 2700 cm-1 so called G-band and G´-band respectively. Third peak appearing at 

1350 cm-1 with lower intensity is called D-band addressing disorder induced Raman 

signals. The G-band corresponds to the in-plane transverse and longitudinal optical mode, 

around Γ point, therefore these are the Raman active phonon modes occurring as a first 

order Raman process, whereas D and G´ bands are second order Raman scattering 

processes involving a double resonance (DR) process. The double resonance process 

includes scattering of two phonon  inside the boundary of the first Brillouin zone around K 

and K´ points which are related to each other with time reversal symmetry[62]. Basically in 

DR process, laser induces excitation of an electron hole pair in the circle around K point, 

then electron is inelastically scattered by a phonon with momentum q. The electron is back 
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scattered to the previous energy state by a phonon with momentum –2q. Therefore, these 

momentum vectors cancel out each other and electron emits a photon by recombining with 

the hole in previous energy state (see Figure 4-2). From kinematical point of view, in both 

first order and second order Raman processes energy and momentum are conserved 

quantities.  
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Figure 4-2. (a)The first order G band Raman process is depicted. Laser induces an 
electron hole pair and G band phonon is generated. (b) The second order double 
resonance (second order) G´ band Raman process Excited electron is scattered by in-
plane Transverse optic phonon modes. (c)The second order double resonance (second 
order) D band Raman process. Momentum is conserved in both (a) and (b) type of 
Raman process whereas momentum is not conserved in process (c). 
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Importance of the G´-band in Raman spectrum of graphene is that the number of layers in a 

graphitic structure can be deduced from the full width at maximum (FWHM) of G´ band 

peaks which is around 24 cm-1. 

4.2.  Raman Spectrum of CVD grown single layer graphene 

 
D, G and G´ bands are generally characterizing graphene layer both quantitatively and 

qualitatively. Intensity ratio of D band over G band, ID/IG, shows us the general quality of 

graphene layer. Since D-band spots the defective part of graphene layer, the more 

disordered graphene structure is the more D-band Raman signal intensity will be. 

Therefore, ID/IG ratio should be minimum (preferably zero). Another important feature of 

graphene Raman spectroscopy is the G´ band width. It generally indicates the number of 

graphene layers. As the number of layers increases sharp Lorentzian peak of G´ band  

becomes wider and FWHM of the peak increases[63]. Some researchers articulate that the 

IG/IG  ́ratio is as important as FWHM of G´ band for the judgment of number of layers, also 

for the quality of graphene layer and this ratio should be less than 1 in order to have a high 

quality graphene layer [60]. However, this point has not been clarified yet and there is no 

concrete background in Raman literature to explicitly prove the correlation between IG/IG´ 

ratio and quality of graphene layer.   

The Raman spectrum of the graphene layer grown on thin copper foil in our CVD system 

can be seen in Figure 4-3. Here the Raman spectrum of the sample grown at 1000ºC with 5 

sccm of methane, 8 sccm of hydrogen and 240 sccm of argon gas flow for 10 minutes at 

ambient pressure. 
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Here couple of distinct features of Raman spectrum of transferred graphene explicitly 

shows us that the graphene layer is mostly few-layer since (1) FWHM of G´ band is ~46 

cm-1, (2) the intensity of the G´  peak is larger than  D band and (3) the spectral shape of  

G´ band is Lorentzian. Furthermore, IG/IG  ́is less than 1 which is also an indication for few-

layer graphene formation on the substrate concerned. Moreover, Raman spectrum shows a 

low ID/IG addressing the quality and absence of large area defects on the graphene sheet. 

 

We have optimized the growth conditions by looking at the Raman spectra of the grown 

samples. The growth temperature, time and the rate of flow of methane and hydrogen plays 

the critical role for the optimum growth of a few layer graphene. Figure 4-4 shows the 

effect of flow of methane during the growth process. The growth time and temperature is 

kept at 5 min. and 1000 oC, respectively. The flow of CH4 is scanned from 10 sccm to 40 

sccm at ambient pressure. By looking at the intensity of D band and G` band, it can be seen 

 
 

Figure 4-3. The Raman spectrum of (a) Graphene on copper foil, (b) Graphene 
transferred to Si/SiO2 surface. 
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that the optimum rate of flow is around 15-20 sccm. Generally, the optimum CVD growth 

sample is lumping around 1000 ºC where ID/IG is low, IG/IG  ́ and FWTH of G´ indicate 

lower number of graphene layers. Comparing the quality of these samples by means of 

CVD growth parameter opens up the possibility to fully control the CVD process 

parameters and obtain the optimum conditions to grow almost defect free single-layer 

graphene sheet. Hence, Raman spectroscopy is a good roadmap to find the optimum CVD 

growth parameters.  
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Figure 4-4. The Raman spectrum of graphene samples grown by different flow of 
Methane gas.  Higher quality samples are yielded between 15 and 20 sccm flow of CH4. 
CVD is carried on at ambient pressure. 
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The growth temperature is another important growth parameter. We grew graphene 

samples with different growth temperature. Figure 4.5 shows the Raman spectrum of the 

samples. The growth temperature of 1000 oC provides the lowest IG/IG  ́ ratio and lowest 

ID/IG  ratio which indicates the lowest concentration of defects.   
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Figure 4-5. The Raman spectrum shift as a function of growth temperature. As it can 
seen in the plot, the high quality graphene sheet growth generally occurs around 1000  
ºC. 
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Figure 4.6 shows the effect of growth duration. The growth is start by flowing methane and 

stopped by termination of the flow.  The growth time of 5-10 min. provides the optimum 

graphene samples at 1000 oC and at the ambient pressure. In all Figures 4-4, 4-5 and 4-6 it 

can be seen an attempt to optimize the graphene layer quality and number. The experiment 

which has the Raman spectrum given in Figure 4-4 is carried on for finding optimum 
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Figure 4-6. The Raman spectrum shift as a function of growth duration. Red,Blue and 
Black peaks are for 10 sccm CH4 flow. Cyan and Orange peaks are for 40 sccm CH4 

flow at 1000°C. CVD is carried on at ambient pressure. 
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carbon feedstock (here, Methane) flow quantity while keeping other CVD parameters 

constant such as pressure at ambient, growth duration at 5 minutes and temperature at 

1000ºC. Here on this point, Raman spectroscopy determines how varied and constant 

parameters effect defect formation and number of layers on graphene surface. 

 
 
                                    
 
 
 
 
 
 
 
 
 
 
 
              
 
 
 
  



 

Chapter 5  

5 Fabrication of Graphene Based Field Effect Transistor 
 

5.1.  Field Effect Transistor Fabrication 
 
Graphene based field effect transistor fabrication starts with the transfer of graphene onto 

the Si/SiO2 (see Figure3-5c). After characterization of graphene on dielectric surface, we 

pattern the device template (Si/SiO2 + graphene) by conventional pholithography 

techniques. This process begins with photoresist coating on the template surface by 

AZ5214E and spinning the sample at 5000 rpm. for 50 seconds. Then, the sample is hard 

baked at 110ºC for 50 seconds like in most photolithographic processes. Sample is exposed 

to U.V. for 120 seconds in order to pattern the electrodes of the device by using DC device 

mask in Karl-Suss mask aligner. Photoresist residue is developed away by AZ5214E 

developer. As a result, source and drain pads are patterned on graphene/SiO2. Metallization 

of S/D pads is performed within the box coater; Au and Ti respectively on the thickness of 

50 nm and 5 nm are evaporated on the patterned surface with evaporation rate of 0.5 nm/s 

and 0.2 nm/s. Post-treatment of evaporated sample is lifting-off Ti/Au in acetone from the 

sample surface in order to complete the metallization. The isolation layer protecting the 

graphene layer in the device area should be patterned before reactive ion etching (RIE) of 

residual transferred graphene. Therefore, the isolation layer is patterned by using AZ5214E 
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once again, exposed to U.V. for 40 s. and developed for 2 minutes. Finally, residual 

graphene is etched away by RIE with 100W O2 plasma for 1 minute. Device geometry and 

actual device can be seen in Figure 5-1. Source and Drain pads are coated with Ti/Au and 

graphene layer is located between them (see Figure 5-1b).  

The probe station that we intended to measure electrical capability of the graphene DC 

FETs did not allow us to practically connect every micrometer scaled device on the probes 

for back gate bias; therefore we used conductive epoxy to connect the whole wafer 

containing DC FETs. Silver conductive epoxy is carried on by curing adhesive flakes at 

around 100ºC for 30-45 minutes. The bonded red cable to the DC device wafer can be seen 

in Figure 5-1a.  
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Figure 5-1. Real image photos and device schematic of the graphene DC FET. (a) Close-
up to graphene based FET, Total area of patterned devices is ~3.75 cm2. Back gate is 
implemented by conductive epoxy for measurement purpose (red cable embedded to 
upper part of device) Microscopic image of a device on the wafer is shown. Graphene 
layer can be recognized from the contrast between SiO2 and graphene Device photo is 
courtesy of Emre Ozan Polat (b) 3D schematic of the graphene device geometry. 
Courtesy of Ertuğrul Karademir. 
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Figure 5-2. Fabrication process of graphene based FET. Transferred graphene to 
dielectric surface is patterned by photolithography. The photomask selectively transmits 
U.V. rays to pattern the DC device geometry. Ti and Au is evaporated onto the patterned 
graphene surface, then sacrificial photoresist layer is lifted off by acetone. In order to 
obtain graphene layer only between source and drain pads, an isolation layer is patterned   
by photolithography. Finally, remaining part of graphene outside the isolation area is 
etched away by reactive ion etching with O2 plasma. 
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5.2.  Performance of DC Field Effect Transistor  
 
The electrical measurement of our fabricated graphene based device is performed on probe 

station of brand named Alessi. We used HP 4241B semiconductor parameter analyzer to 

measure the electrical performance of the fabricated devices.  The device that we measured 

has channel-length of 8µm. First of all, we checked whether the device has a gate leakage.  

The gate current IG vs. the gate voltage VG characteristics of the device showed us that it 

has almost no gate leakage (The gate current is less than 1nA). Transfer and output 

characteristics of a device provide the information about the device performance and 

quality of the graphene layer.  

The transfer curve of the device can be seen in Figure 5-2. We sweep the gate voltage from 

-90 V to +90 by keeping the drain bias at 1V. and source bias at 0V. The Drain current as a 

function of gate voltage is plotted in Figure 5-2. Drain current of 250µA is obtained at the 

on state and 100µA is obtained at the off state. The transfer curve shows a moderate 

modulation of the drain current with an Ion/Ioff of around 2 which indicate that the graphene 

is only a few layer. Single layer graphene should provide Ion/Ioff more than 3. 

The output characteristics of the device are measured by sweeping the drain bias between -

10V to 10 V for a constant gate voltage. We repeat the drain voltage sweep for 11 different 

gate bias (ranging between -90 V to 90 V) to obtain the full output characteristics.  Figure 

5-3 shows the measured IdVd curves of the device with a channel length of 8µm and 

channel width of 100 µm.  
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Figure 5-3. The transfer characteristics of the fabricated graphene based back gated field 
effect transistor. The transistor has a channel length of 8µm and channel width of  100 
µm. The curve is obtained for a drain voltage of 1V. The highly doped silicon substrate 
is used a global gate electrode.   
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Figure 5-4. The output characteristics of the fabricated graphene based back gated field 
effect transistor. The transistor has a channel length of 8µm and channel width of 100 
µm. The drain voltage sweep is repeated for 11 different gate voltage ranging between -
90V to 90V.  The highly doped silicon substrate is used a global gate electrode.   
 



 

Chapter 6  

6 Investigation of High Frequency Performance of Graphene 
Field Effect Transistor 

 
This chapter will be submitted to Applied Physics Letters under the name “Investigation of 

High Frequency Performance of Graphene Field Effect Transistor Using a Self-Consistent 

Transport Model” Erçağ Pinçe, Coşkun Kocabaş.  

 

Recent advances of chemical vapor deposition of graphene on large area substrates[13] 

stimulate a significant research effort searching for new applications of graphene in the 

field of unusual electronics such as macroelectronics[64],. Graphene can function as an 

effective semiconductor or a transparent conducting coating for large area displays and 

photovoltaic devices. Recent developments in scaling of graphene films open up new 

opportunities for flexible electronics. Extremely high field effect mobility of graphene 

together with the large area deposition process, could provide alternative solutions for the 

challenges of traditional organic materials. Operation at radio frequencies is one of the 

main challenges of the organic based field effect transistors owing to the poor field effect 

mobilities of organic semiconductors. Therefore radio frequency analog electronics could 

be an immediate high-end application of graphene.   
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In this chapter we provide a framework based on an analytical model for understanding the 

design considerations of the graphene based transistors operating at radio frequency band. 

Although high frequency analog electronics is a well established field for inorganic 

semiconducting materials, the effects of unusual transport properties of mono-atomic 

graphene sheets at high frequencies are widely unknown. Recent experimental studies show 

several demonstrations of graphene and carbon nanotube arrays for high frequency 

operation[65],[8],[40]. Cut-off frequencies of 10 GHz for carbon nanotube 

arrays[40],[18],[16] and 100 GHz for graphene[8, 9] have been achieved. Using critical 

design considerations, these values can be advanced by orders of magnitude. There is little 

in the literature that provides a simple yet quantitative model to analyze the critical design 

considerations of radio frequency operation of graphene based field effect transistors. This 

work is aiming to develop an analytical model to design a graphene based RF transistors 

based on diffusive transport governed by the charged impurity scattering.  

6.1. Introduction 
 
A schematic representation of a model RF transistor is shown in Figure 6-1. The transistor 

consists of a graphene layer printed on an insulating substrate (e.g. quartz or sapphire). The 

source and drain electrodes are formed on the graphene layer.  A thin layer of dielectric 

material functions as a gate dielectric for the field effect transistor configuration.  The gate 

electrode is formed on top of the gate dielectric. This electrode is registered with the source 

and drain electrodes in such a way that the parasitic capacitance and resistance are 

decreased.  
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A typical layout (common drain) of a RF transistor is more complicated than the schematic 

shown in the Figure because electrical measurements of these type of devices requires 

passive coplanar waveguide probes (ground-signal-ground configuration, GSG). The heart 

of RF devices however is the same with the diagram. For the model, the dielectric thickness 

is 50 nm and the channel length and width are 1 µm. Here, we consider the transport 

mechanism governed by the charged impurity scattering owing to the presence of the 

charged impurities on the substrate and the gate dielectric. The dielectric constant of the 

surrounding medium (gate dielectric and substrate) controls the effects of the impurity 

charges on the graphene layer. High-k dielectric materials (e.g. HfO2) concentrate the 

electric field in to the dielectric material and reduce the formation of residue charges on the 

graphene layer. Fang et.al[66, 67] confirmed the effect of the charge screening on the 

charge mobility of the graphene[67]. Recent experimental results also agree with charge 

mobility lowering of graphene device by increasing charged impurities with potassium 

doping[68]. For the top gate configuration, both substrate and the gate dielectric determine 

the effective dielectric constant. Therefore, the substrate should have high dielectric 

constant or has to be coated with high-k material, such as HfO2. A quartz wafer coated with 

a thin layer of HfO2, grown by atomic layer deposition, could be a good substrate for 

graphene based RF transistors.  
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Figure 6-1. (a) Layout of a graphene based radio frequency transistor with a channel 
length Lc and channel width W. (b) The calculate the residue charges n*  as a function 
of charged impurity concentration nimp for two different dielectric material Hf02 and 
Si02 . (c) The conductivity of graphene layers as a function of gate voltage. The 
charged impurity concentration is scanned from 2x1011  cm-2 to 10x1011 cm-2 .  
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6.2. A Self-Consistent Transport Model 
 
Here, we consider the transport mechanism governed by the charged impurity scattering 

owing to the presence of the charged impurities on the substrate and the gate dielectric. The 

dielectric constant of the surrounding medium (gate dielectric and substrate) controls the 

effects of the impurity charges on the graphene layer. High-k dielectric materials (e.g. 

HfO2) concentrate the electric field in to the dielectric material and reduce the formation of 

residue charges on the graphene layer. Fang et.al[66, 67] confirmed the effect of the charge 

screening on the charge mobility of the graphene[67]. Recent experimental results also 

agree with charge mobility lowering of graphene device by increasing charged impurities 

with potassium doping[68]. For the top gate configuration, both substrate and the gate 

dielectric determine the effective dielectric constant. Therefore, the substrate should have 

high dielectric constant or has to be coated with high-k material, such as HfO2. A quartz 

wafer coated with a thin layer of HfO2, grown by atomic layer deposition, could be a good 

substrate for graphene based RF transistors. The charge transport mechanism of single 

layer graphene has been the focus of various theoretical and experimental studies. The 

unique band structure makes graphene unlike the other 2D confined electronic systems. In 

the present analysis of the radio frequency devices we consider a self-consistent transport 

model developed by S. Adam et al. based on a charged impurity scattering. This model 

explains the most of the observed electrical behavior of graphene sheets, e.g. non-universal 

minimum conductivity and ultrahigh mobility of suspended graphene layers. The beauty of 

the model is that it requires only a few empirical parameters, density of charged impurities  

and the distance between the impurity and graphene layer and the dielectric constant of the 

surrounding medium. The distance of charged impurities between graphene is effectively 

located around 0.1-1 nm from the graphene sheet[69]. We have analyzed the frequency 
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response of graphene devices in three steps. First, we have used the self consistent 

model[43] to calculate the residue charges n* on the graphene layer (Fig. 6-2b). After 

calculating the conductivity from the residue charges, then we calculated the drain current 

at a given bias condition using a 2-dimensional FET model. Scanning the gate and drain 

bias voltages we obtained the transfer and output curves of the device. Finally using the 

outcome of the device model we calculate the maximum transconductance which provides 

the highest frequency response point. The residue charges on graphene layer n* depends on 

the charge impurity concentration and the dielectric constant of the gate dielectric and the 

substrate. Figure 1.b shows the graph which provides the self consistent solution of the 

residue charge for SiO2 and HfO2 gate dielectrics. SiO2 provides 6 times more residue 

charges on graphene layer than HfO2 owing to the low dielectric constant. Having 

calculated the residue charges, we have calculated the conductivity of the graphene layer as 

a function of gate voltage by Equation 6-1 [43].              

��� � ��� � ����� ��

� ����

���� ��

� ����

	      
�� �	�
���

    �� �	�
���
           (6-1) 

 

where �� � ����
�

���
 . Here the carrier concentration n on the graphene layer is used as 

goxVCn ====  where Cox is the gate capacitance and Vg is the gate voltage. Figure 6-1c shows 

the calculated conductivity as a function of the gate voltage for impurity concentrations 

ranging from 2x1011 cm-2 to 10x1011 cm-2.  

For a bias point, the carrier density changes as a function of position along the graphene 

layer. Knowing the gate voltage dependence of the conductivity, the carrier density can be 
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calculated as a function of position. We have considered the constant contact resistance Rs 

of 1.2 kΩ between the source/drain electrodes and the graphene layer. For 2-dimensional 

FET, the drain current is written as [70] 

                              
                    (6-2) 

  

Where σ(x) is the conductivity and E(x) is the electric field along the graphene layer. With 

a change of variable including the voltage drops at the contacts, the integral becomes a 

simple transcendental equation. Solving this transcendental equation using the conductivity 

values calculated by Eq.(6-1) provides the drain current for a given biasing condition. 

Figure 2a and 2b show transfer and output curves of a device with a channel length of 1 µm 

and channel width of 1 µm. In this calculation we have used a 50 nm HfO2 as a gate 

dielectric with a dielectric constant of 16. For these calculation, the only empirical 

parameter that we used is impurity concentration on the dielectric and contact resistance 

between the electrodes and the graphene.   
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Figure 6-2. (a) The transfer curves for a graphene FET with a channel length of 1 µm 
and channel width of 1 µm. The gate dielectric used for the calculation is 50 nm HfO2. 
A clear ambipolar behavior and current saturation because of contact resistance is seen 
on the transfer curves. The Dirac point shifts to as a function of drain voltage. (b) The 
output curves of the same device for the gate voltage range from 0V to 1.2V. The 
curves in (a) and (b) are calculated for for n=4x1011 cm-2 . (c) The transfer curves for 
the device for different charged impurity concentrations at a drain voltage of 0.6 V.  
(d) Calculated maximum transconductance of the device as a function of charged 
impurity concentration.  
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This framework allows us to analyze the effect of the gate dielectric material on the device 

performance. Figure 6-2c shows the calculated transfer curves for different charge impurity 

concentration.   The Dirac point shifts to the higher voltages and the on/off ratio increases 

with increasing charge impurity concentration. The on/off ratio of the devices increases 

from 1.7 to 3.0 as the impurity concentration increases. Dependence of on/off ratio on the 

impurity concentration can be understood from the decreasing of minimum conductivity of 

the graphene layer as the impurity concentration increases. This behavior provides a 

tradeoff between transconductance and output resistance for the high frequency 

performance.  

6.3. RF Device Performance 
 

Cutoff frequency is defined as the frequency where the current gain is 0 dB. After cutoff 

frequency the drain current due to the modulation of the channel is less than the gate 

leakage current. Gate capacitance and the small signal transconductance of a device 

determine the cutoff frequency of a device as gmt Cgf π2= . Figure 6-3d shows the 

calculated maximum transconductance of the device and the associated cutoff frequency as 

function of charged impurity concentration. The parallel plate gate capacitance used for the 

calculation. Cleanest samples with charged impurity levels of 2x1011 have ft around 25 

GHz for 1 µm channel length. The calculated cutoff frequency decays down to 18 GHz as 

we increase the charged impurity concentration.    
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Figure 6-3(a) The simplified small signal circuit model for of the graphene FET.  Here 
gm is transconductance ,R0 is output resistance, Rd is drain resistance and Cgd is the 
intrinsic gate-drain capacitance. (b)The output resistance calculated from the output 
curves (inset in (b)) for different impurity concentration raging from the cleanest to the 
dirtiest sample. (c) Two-dimensional map of small signal power gain of the device. 
The x and y axis represents gate and drain voltages, respectively.   (d) Maximum 
available gain of the device as a function of charged impurity concentration.  
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A small signal circuit model for the graphene devices is presented to understand the high 

frequency performance. A simplified small-signal equivalent circuit model of a graphene 

device is given in Figure 6-3a. Cgd, gm, Rd and R0 represent gate-drain capacitance, 

transconductance, drain resistance and the output resistance of the device round a bias 

point, respectively. We have not used the source-gate capacitance because it will be much 

smaller than the drain-gate capacitance at the saturation regime[18]. Graphene FETs have 

very small on/off ratios owing to a large minimum conductivity at the Dirac Point. This 

minimum conductivity limits the output resistance of the device. The output resistance, 

defined as

gVd

d

V

I
R










∂∂∂∂
∂∂∂∂

====
1

0 , plays a critical role in the high frequency operation especially for 

the signal amplification. Figure 6-3b shows the output resistance as a function of the drain 

voltage. Large output resistance (~30 kΩ) can be achieved at a very narrow range of drain 

and gate voltages. The knowledge of output resistance and transconductance provides the 

power gain of the device. Power gain of a transistor used as an amplifier is another 

important parameter for high frequency operation.  Power gain is defined as 0RgG m====

where gm is the transconductance, and R0 is the output resistance. The highest available 

gain for a device with a given impurity concentration is given in Figure 4d. A gain of 45 

can be achieved for the impurity concentration around 2x1011cm-2.   
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6.4. Results and Discussion 
 
The most striking point here is that even devices with a very poor on/off ratio can provide 

power gain at suitable. The results reveal that graphene transistors can be used for RF 

power amplifiers. 

In this work we provide a simple yet quantitative framework to model the high frequency 

performance of graphene based field effect transistors. The model uses a self consistent 

charge transport mechanism based on a charge impurity scattering. The effect of contact 

resistance, minimum conductivity and gate dielectric is studied. Basic device 

considerations for analog electronic applications such as output resistance and power gain 

are discussed. Although graphene has very unusual device performance, radio frequency 

analog electronics could be an immediate high-end application of graphene.  

 

 
 



 

Chapter 7  

7 Conclusions and Future Work 
 

In this work, we studied the chemical vapor deposition of graphene layers on copper 

substrates. The characterization of the grown graphene samples were  performed by Raman 

Spectroscopy.  We also developed a transfer printing technique to transfer the grown 

graphene layers on  a dielectric substrates such as quartz. Graphene layers on dielectric 

substrate allowed  us to fabricate field effect transistors.  Graphene based back gated FETs 

were fabricated and their electrical performance have been characterized.  

Also, we investigated high frequency limits of the graphene based devices by exploiting a 

self-consistent transport theory in graphene. The results showed us that graphene is very 

suitable for high-end applications and can be used as a RF power amplifier. 

By this vision, in near future we are going to research the fabrication of graphene based 

high frequency operating device. Afterwards, we will research the area of graphene based 

devices which can fully operate in RF region and some applications will be studied.  
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