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ABSTRACT

SMOOTHNESS OF THE GREEN FUNCTION FOR
SOME SPECIAL COMPACT SETS

Serkan Celik
M.S. in Mathematics
Supervisor: Assoc. Prof. Dr. Alexander Goncharov
August, 2010

Smoothness of the Green functions for some special compact sets, which are
sequences of closed intervals with certain parameters, is described in terms of the
loé% that gives the logarithmic measure of sets. As a tool, we use
the so-called nearly Chebyshev polynomials and Lagrange interpolation. More-

function ¢(J) =

over, some concepts of potential theory are explained with illustrative examples.

Keywords: Smoothness of the Green Function, Potential Theory.
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OZET

BAZI OZEL KOMPAKT KUMELER ICIN GREEN
FONKSIYONUNUN PURUZSUZLUGU

Serkan Celik
Matematik, Yiiksek Lisans
Tez Yoneticisi: Assoc. Prof. Dr. Alexander Goncharov
Agustos, 2010

Belirli parametrelere sahip kapali araliklarin dizisi olarak tanimlanan bazi ozel
1
1og%
onu araciligiyla betimledik, 6yle ki bu fonksiyon kiimelerin logaritmik sigasini

kompakt kiimeler i¢in Green fonksiyonlarinin piiriizsiizliigii, ¢(6) = fonksiy-

verir. Yontem olarak, yaklagik Chebyshev dedigimiz polinomlar1 ve Lagrange
interpolasyonunu kullandik.  Ayrica, potansiyel teorisinin bazi kavramlarim

orneklerle agikladik.

Anahtar sézciikler: Green Fonksiyonunun Piirtizstizliigli, Potansiyel Teorisi.
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Chapter 1

Introduction

In the statement of Newton’s laws, the only forces considered were between
two material points. These forces are proportional to mi;ms and inversely pro-
portional to d?, where m; and m, are masses of the point materials and d is the
distance between these two particles. After Newton’s achievements, Lagrange
found a field of gravitational forces that is called a potential field now and in-
troduced a potential function. At present, the achievements of Newton’s and

Lagrange’s works are included in classical mechanics courses.

Later, Gauss discovered the method of potentials which can be applied not
only to solve problems in the gravitation theory, but also to solve many problems
in mathematical physics including electrostatics and magnetism. Hence, poten-
tials were considered not only for the physical problems that concerns the attrac-
tion between positive masses, but also for problems with masses with arbitrary
sign. The principal boundary value problems were defined, such as the Dirichlet
problem, the electrostatic problem of distribution of charges and the Robin prob-
lem. In order to solve the problems mentioned above on domains with sufficiently
smooth boundaries, some kind of potentials became efficient such as logarithmic
potentials and Green potentials. At the end of the 19th century, studies in po-

tential theory about different potentials have gained significant importance.
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In the first half of the 20th century, generalization of the principal problems
was based on the general concepts of a capacity and potential functions. Mod-
ern potential theory, which is related to analytic function theory, harmonic and
subharmonic functions, has many applications on approximation theory, complex

analysis and modern physics.

There are several ways to introduce the Green function for a given domain. In
this thesis, we consider the geometric function theory approach. Our aim is to find
lower and upper bounds of the values of the Green function near the boundary
of a special compact set K which is a sequence of closed intervals with certain
parameters. As a method, we use the so-called nearly Chebyshev polynomials for
K. In this way, we find a modulus of continuity of the Green function. It should
be noted that we get a nontrivial smoothness of the Green function for K (that

means that gk (z) is not of class Lipl or Lip3).

In Chapter 2, we introduce some concepts of potential theory as equilibrium
measure, the minimal energy, the logarithmic capacity of a set, the transfinite
diameter and the Chebyshev constant and some simple illustrative examples are
given. Then we show the relations between these concepts. The concepts intro-

duced in this chapter will be used in the following chapters intensively.

In Chapter 3, we give the definition of the Green function. After this, we
consider another approach to give the Green function by using the methods of
the geometric function theory. Then, we give some results which characterize the
continuity and optimal smoothness of the Green function. In the last part of this

chapter, we consider model examples for smoothness of the Green function.

Chapters 4, 5 and 6 contain new results. In Chapter 4, we define a special
compact set K = {0} U J;—, Iy which is a sequence of closed intervals. We
consider the extended Chebyshev polynomials 7}, on any interval I, where the

m—1 Tnkk(x) .
i

degrees ny, are chosen in a such way that the polynomial P(z) =« [],Z, 775
"k

“nearly” Chebyshev polynomial on the set K. After that, we give some relations

between the n;’s that will be used in the following chapters.
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In Chapter 5, by means of Berstein-Walsh theorem, we find a lower bound on

the Green function gk (z) by using the polynomial that was defined in Chapter 4.

Chapter 6 contains an upper bound on gg(z) for z = —¢ that realizes the
modulus of continuity w(gk,d). We use the methods of approximation theory,
namely the possibility to represent every polynomial as a Lagrange interpolation
polynomial. We show that Lagrange basis polynomials have the desired bound

from above.



Chapter 2
Elements of Potential Theory

In this chapter, we consider the basic concepts of potential theory and relations

between these concepts.

2.1 Logarithmic Energy and Capacity

Definition 2.1.1 Let (X, T) be a topological space; let Borel(X) denote Borel o-
algebra on X, i.e. the smallest o-algebra on X that contains all open sets U € T.
Let p be a measure on (X, Borel(X)).Then the support of  is defined to be the
set of all points v € X for which every open neighborhood of x has a positive

measure:

supp(pu) = {z € X|z € N, € T = u(N,) > 0}.
We say that p is a probability measure if p(supp(u)) = 1.

Definition 2.1.2 Let p be a Borel measure with compact support on C. Then
its logarithmic energy is defined by

1
1) = [ tos —dn(tyintc).
A measure p is said to be of finite logarithmic energy if I(p) < oo.

4
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Definition 2.1.3 Let K C C be a compact set, then we set
V(K) = inf{I(u)|supp(p) C K, > 0, p(K) = 1}. (2.1)

That is, the infimum is taken for all probability Borel measures supported on K.

In the case of finite infimum above, it is called the equilibrium energy.

Definition 2.1.4 The logarithmic capacity of compact set K is defined as
Cap(K) := e V),

We say that a compact set K is polar if Cap(K)=0.

Definition 2.1.5 A property is said to hold quasi-everywhere (q.e.) if it holds

outside a set of zero capacity.

Definition 2.1.6 The logarithmic potential p(u; z) is defined by
1
12) = [ log ——du(t).
i) = [ lom —d(t)
Definition 2.1.7 If X is a metric space and f : X — [—00,00), then f is upper
semicontinuous if for every c in [—00,00), the set {x € X : f(x) < ¢} is an open
subset of X. Similarly, f: X — (—o00, 0] is lower semicontinuous if for every c

in (—oo, 00|, the set {x € X : f(x) > c} is open.

If G is an open subset of C, a function f : G — [—00,00) is subharmonic if f
is upper semicontinuous and for every closed disc B(a;r)contained in G, we have

the inequality
I _
fla) < —/ fla+re)dd.
2 Jo
A function f: G — RU {+o0} is superharmonic if —f is subharmonic.

Logarithmic potentials are superharmonic functions on C. Because, for any

holomorphic function f, log|f(z)| is subharmonic. Thus, we have

1 4 1 1
— log ————df < log ———
o /7r Og\z+7"el9| =08 |z — 1]
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Vz,t € C. If we apply Fubini-Tonelli theorem, then we have

/ /lg () < /10g| it|du(t).

Lower semi-continuity of p(w; z) is obvious from the representation

plw;z) = lim | min(M,log

Jdpu(t).

Moreover, logarithmic potentials are harmonic in (C \ K, where K is a compact
set. Because log —— ( 5 is analytic in C\ K, and log = | is the real part of log )
Therefore, log — 7 is harmonic in C\ K. Since harmonic functions can be ertten
in the form of Taylor expansion, the primitive of a harmonic function is again a

harmonic function. Hence, logarithmic potentials are harmonic in C \ K.

Definition 2.1.8 Let K be a compact subset of C with positive capacity. Then
there exists a unique measure wg for which the infimum in is attained (see

the theorem below). This measure is called the equilibrium measure for K.

The corresponding equilibrium potential p(wy; z) where wy, is the equilibrium

measure has the following important properties.

Theorem 2.1.9 (Frostman, see e.g. [3]) Let E be a bounded F,, Borel subset
of C of positive capacity. Then there exists a unique probability measure wg with

the following properties:

o p(wg;z) < logm for z € C.
o p(wg;z) =log =—— Cap fm’ quasi-everywhere z € K.

Example 1 Let K = B(0, R) then the equilibrium measure for K is the uniform

measure on 0K, so dwy, = . Since dl = Rdf, we have

1 1 db log %, if |2| <R,
p<wk;2’)=/ log dwk:/ log av _ ]8R /=]
T gt i > R
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Hence, the potential integral is constant on K. Therefore, by Frostman theorem,
w18 the equilibrium measure and p(wy; z) is the equilibrium potential. We see
also that, V(K) = log %. Hence Cap(K) =¢e V) = ¢lef = R,

Example 2 Let K = [—1,1] in C and w(t) = Larcsint. Let us check if w gives
the equilibrium measure for this compact set K, and let us find Cap(K). Since

w(t) = Larcsint, dw(t) = W%' So the logarithmic potential of K is

(:2) /1 1 do(t) /11 1 dt
w;z) = o w(t) = o) .
P c Bla—t| [ gy

Let t = cosT, then dt = —sinT and /1 — t?> = sinT. Hence,

I —sin7dt 1 [
p(w; z) = ——/ log |z — COSTl_—T = ——/ log |z — cos T|dt.
T Jr sin 7 T Jo
Let z =cosp, 0 < ¢ < m. Then we have |z — cost| = |sin €% sin £27|. Thus,

+T

1 ™ ™ ™
p(w;z):——(/ lodeT—l—/ log | sin(2 )|)d¢+/ log | sin(2—)|)dr.
T Jo 0 0

Let Iy = [[log2dr, I, = [ log|sin(237)|)dr and Iy = [ log|sin(¥5")|)dr.
Then I, = wlog?2. For Iy; let x = “";LT, then

P
2+2

3 2
I, = 2/ log | sin x|dx :2(/ log | sin z|dx +/ log | sin x|dx
3 0 3

»
- /2 log|sinx|dq:).
0

For I3; let v = 5% (since | sin(z)| = [sin(—=x)|), then

0

%
[3—/ log | sin z|dx —2(/ log|sinx|dx—|—/ log | sin z|dx
L o

L
2

[NIE]
SIS

2

log | sin a7|da:>

|
M\:\\
| SIE
[ShY

Note that

[N
+
[N

2

%
/ log |sinz|dx = / log | sin z|dx
T _ P s
2
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and
£ 0
/ log|sinx|dx:/ log | sin z|dx
0 —

because of the functional property of |sinx|. Additionally,

(S

i

2 m
/ log | sinz|dx = ——log 2.
0 2

Hence;

—1 —1
plw;z) = (L + Iy + Is) = —(mlog2 +2(— log 2 — — log 2))
s s 2 2

= —(—mlog2) = log 2.
T

Therefore, by Frostman theorem, since the equilibrium potential is constant on

K, the measure w is the equilibrium measure. Clearly, V(K) = log2. Hence
Cap(K) = e V&) = %

In the same way, one can show that Cap(|a,b]) =

o
W~

Example 3 Let K = [—1,1] and let ¥ be the uniform measure on K, that is
dvy = %dm. It is obvious from Frostman theorem that this measure is not the
equilibrium measure for K, because we found in the previous example that the
equilibrium measure for K 1is %arcsin(t) and it is unique according to Frostman
theorem. But let us see this fact by some calculations.

The logarithmic potential for K is

1 1 dt 1 /! 1
9 z) = 1 —— [ 1
p(¥; 2) /_10g|_t|2 2/ 0g|Z_t|

Let substitute z —t = 7, then

p(0;2) = —% /j log|r|dr =1— %[(1 + 2)log(1 + 2) 4+ (1 — z)log(1 — z)].

Here p(v; z) is not constant on K, because p(¥;0) = 1 and p(9;1) = p(v;—1) =

1 —log2. Hence, ¥ is not equilibrium measure for K by Frostman theorem.
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2.2 Transfinite Diameter

Let E denote a closed and bounded infinite set of points in the z-plane. For n

points zq,...,2, € E, let V be the Vandermonde determinant of the numbers
Z1yeeey Zn - D0
1 = 212 Zlnil
1 Z9 222 Zzn_l n
V2, z) = |1 = ] -=), n>=2 (22
: kl=1; k<l
1 2,1
Let V,, = V,(F) denote the maximum value of |V (z1,...,2,)| as z1,...,2,

range over all n distinct points of the set E. Here such a maximum exists,
since V' (21, ..., 2,) is a continuous function on the compact set E", the cartesian
product of E with itself n times. The points 21, ..., z, for which the maximum
is attained are called the Fekete points. Now, let us define

1

d, = v, — )

The value of d,, is the geometric mean of the distances between (g) pairs of points

formed by this set of n points for which V' (2, ..., 2,) achieves its maximum.

Proposition 2.2.1 [j]] For any natural number n > 2 and compact set E C C,
we get

o1 (E) < dp(E).

That is, do(E),ds(E) ... is a decreasing sequence.

Proof: Let ky,...,k,.1 denote a system of points of the set £ such that

V(kis oo Rpgn)| = Viga.
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Since V(lfl, .. 7kn+1) = (k?l - ]{32) : (k?l - k?3) c. (kl - kn—l—l) . V(kg, ey kn+1)7 we

obtain
Vi1 < kv — kollkr — k3| .. [k — kpga| - Voo
Similarly,

Vi1 < |k — kullka — k3| ... |ka — ki - Vi
Visr < |ks — kil||ks — ka| ... |ks — knga] - Vi

Via1 < k1 — killkner — k1| - kna1 — knl - Vi,
After multiplying these inequalities, we obtain
Vo < Vg2 V0
Divide both sides of the last inequality by V;,1* (note that it is positive)
V" < VM

Now take, ( power of both sides, we obtain

2
n+1)(n—1)n

2

2
V’I’L+1 n(n+1) S Vnn(nfl) .

So, we have

2 2
dn—i—l = Vn+1 n(ntt) < Vn nn—1) = dn

Proposition 2.2.2 [J]] The value d,, does not exceed the diameter of the set E
for anyn € N .

Proof: Case 1: n=2

For n = 2, d(E) = Diam(F), because, let z; and zy be Fekete points, then
V(z1,22) = (21 — 22), then clearly V(z1,2;) attains its maximum value when

|21 — 22| is maximum, i.e, Diam(FE) = |21 — 2a].
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Case 2: n > 2

Let z1,...,2, be the Fekete points of the set £. Let p € N, [ € N and
|2p — 21| = maxiz; ; j<n{|2zi — 2;[} then
dn(21, .0y 2n ) = Vn”<”2*1>
_2 _2 _2
— ‘21 — Zz’n(nfl) . "Zl — 23’n(n71) . ’Zl — Zn n(n—1)
‘|29 — 23|ﬁ el — zn|"(+—1>

n(n—1) 2
S |Zp — Zl| 2 n(n—1)

= |Zp — 2

< Diam(FE).

So by Proposition [2.2.1] we see that d,, approaches a finite limit as n — oo.
This limit is called the transfinite diameter of the set E and is denoted by
d=d(E).

Corollary 2.2.3 If E consists of finite number of points, then d(E) = 0.

Theorem 2.2.4 [3] If K is a compact set, then the transfinite diameter of K

equals its logarithmic capacity.
Corollary 2.2.5 [/ Let K be a compact set, then Cap(K) = Cap(0K).

Proof: The Fekete points lie on 0K by maximum principle, so we have
d(K) = d(0K). By Theorem [2.2.4) we have Cap(K) = Cap(0K).

Corollary 2.2.6 [/ Logarithmic capacity has the following properties.

a) Monotonicity : If E C F then Cap(E) < Cap(F).
b) Homogeneity : If z* = az + b maps E onto E*, then Cap(E) = |a| Cap(E).

c) Contraction property : If |v(z) — v(Z)| < |z — 2| for z,2/ € E then
Cap(y(E)) < Cap(E).
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Proof: a) Let E C F, zy,...,z, be the Fekete points for F and z],..., 2!
be the Fekete points for F. Then

n

n
Va(z1, .oy 2n) = H |z — 2] < H 1z — 21| = V(21 .-, 21)

kl=1,k<l kl=1,k<l

If ﬁ—th power is taken on both sides;

(V21 ooy 20)) 700 < (Vi Zh o 2T = di (21, 20) < dn(2), .., 20).

’rn

Letting n — oo, we have d(E) < d(F'). By Theorem [2.2.4) Cap(FE) < Cap(F).
b) Let z,...,2, be the Fekete points for E. Then, zf,..., z* are the Fekete

points for E*. Then we have

n n n
V(2] oo 20) = H |z; — 2| = H laz +b—az + b = H la||zi — 2
kl=1k<l kl=1,k<l kl=1k1
n(n=1) (n—1)
= |a|" 2 H nlz— 2| =lal" 7 Vilz1, ..., ).
kd=1,k<l

If ﬁ—th power of first and last terms of the equation above is taken, and

letting n — oo, we get
d(E") = |ald(E);

so, by Theorem [2.2.4] Cap(E™*) = |a| Cap(E).
c) Let zq,. .., z, be the Fekete points for E. Then, by following very similar ways
in proofs of a) and b), we get d(v(E)) < d(E). Then again by Theorem [2.2.4]

Cap(7(E)) < Cap(E).

Example 4 Let us find the capacity of a closed circle with radius R by using
transfinite diameter.

Let us work on unit circle and let’s denote it by D. By symmetry, the Fekete points
on 0D are uniformly distributed, that is the points are equally placed around the
unit circle in the shape of a reqular n-gon.

Hence, if z1,...,z, are the Fekete points for D, then z, = ei%(:fl), for k =

1,...,n. Therefore, every Fekete point for unit circle is a root of the equation

" —1=0.
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2mi 2mwi(n—1)

We know that 2" — 1= (z —1)(x —e™n )...(x —e” = ).
We also have 2" —1 = (z —1)(z" ' + 2" 2 + ...+ 2 +1). If we divide both sides
by (x — 1), we get
(x—en)... (z— eQﬂ(:_l)) =@+ 2"+t 1)
Substitute 1 for x, then we have
274 27i(n—1)

(L= 1= ) =1 +1+...+1) =n.

Similarly, by the symmetry property of the Fekete points on unit circle, we have

27i 27 4mi 27 2mwi(n—1)
e —1llen —en|...]lem —e n | =n.
|€27Ti(:l7.71) _ 1| ..... ’627ri(:71) _ 627775(:1172) | —n

Hence, (V,(21,...,2,))% = n™. If we take the n(nl_l)—th power of both sides, then

we get

1
dp(21, ... 2,) =001,

By letting n — oo , we have d(U) = 1. Therefore, the transfinite diameter of unit
disc is 1. Now, we apply Corollary[2.2.6 and Theorem [2.2.4) Since the mapping
2* = Rz maps unit circle to a circle with radius R, then capacity of a circle with

radius R is R.

2.3 Chebyshev Polynomials and the Chebyshev

Constant

Definition 2.3.1 The polynomial T,,(2) = 2" + c12" ' + ... + ¢, with the least
maximum modulus on a compact subset K of C is called the C'hebysev polynomial
for K. (For more information about Chebyshev polynomials, please look at the

Appendiz.)
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Let T,,(z) = 2"+ 12" ' +...+ ¢, be the Chebyshev polynomial for a compact
subset K of C. Let M,, = ||T,||x-

3=

Now define 7,, = (M,,)

Lemma 2.3.2 [J] 7, = (M,)"", n =1,2,... is bounded and converges.

Definition 2.3.3 The number 7 to which the sequence {7,} converges is called
the C'hebyshev constant of the set K.

Lemma 2.3.4 [}/ We have M, < V{;:l < (n+1)M, for alln € N.

Theorem 2.3.5 [J] The Chebyshev constant T of the set K is equal to the trans-
finite diameter of the set K.

Proof: By lemma [2.3.4] we have

Vi
M, < L < (n41)M,.

It can be written as

So, we have

T < <(n+ 1)1

If we multiply the expressions above consequently, we get

(7’2275’ W < Vo < [(n+ 1)!](7227'33 T Vs, (2.3)

n
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Now take — +1) -th power of all sides of equation 1} we get

2.3 nnn21 nn21
(1373 ... T)PEAD (Vo) nd D) < g

< [(n+ DY (7375 7 7 (V) .

Claim : (VQ)"<n2+1> — 1 and [(n+ 1)!]”<n2+1> — 1 asn — oo.

Proof: Here V5 is a finite number, so it is clear that

lim (Va) 700 = (V3)0 = 1.

n—oo

For [(n + 1)!]"("2“)7 let k = lim,eo[(n + 1)!]ﬁ then Ink = lim,,_, n(n2+1) '

In[(n 4 1)!]. If we apply L’'Hépital’s rule, we have

_ o (Inf(n+ 1))
nh—{ilok - 2nh—>120 (n(n+1))
=2 lim [+ 1)1 — 0.

n—oo (n + 1)!(n(n+ 1))

so k=1.
2
Hence, we just need to prove that (7 - 7375 ...77) @+ — 7 as n — oo. Let

_2
k=1lim, soo(m1 - 75 - 75 ... 72) 00, Then

Ink = lim m(ln(ﬁ Ty Th . TH)
2
— nh—>nolo m(1n7'1 +2Inmp+3In7s...+nlnt,).
We know from calculus that if a sequence of real numbers ay,...,a, converges
to a, then w also converges to a as n — oo. Additionally, we know that

lim, o 7 = 7, s0 lim,, .o In7, =InT.

Hence, if ay = logm, as = logm, az = logm, ay = log7s, ..., Gnwsy =
2
. 1
log 7, and a = 7, then we have lim,,_, %("; ) = a, so 7 = k. Hence,
2

2 :
(ry7373 ... 7)"#D — 7 as n — oo is proven. Hence, we have

2 2
lim (7575 ... 7)) 70D (Vo) ned D < lim diyy g
n—oo n—oo

< lim [(n 4 1)!]»0+D D (7- 7-3 T oD (Va) n(n2+l)'

n—oo

So T <d<T, hence 7 = d.
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Corollary 2.3.6 For any compact set K, 7(K) = d(K) = Cap(K).
This corollary is a direct result of Theorem [2.3.5 and Theorem [2.2.4]

Example 5 In Example@ we found that Cap|—1,1] = % Let us find the Cheby-

shev constant for this interval.

Note that Chebyshev polynomial of degree n on [—1,1] is

n

Tu(a) =2 [[(= — &),

1

where §5,7 = 1,...,n are zeros of the Chebyshev polynomial. Then, M, =
Tl = in,l. Thus,

~([~1,1)) = Tim ( ! )’11 - %

n—oo \ 2n—1

Hence, this exzample illustrates the equality of the Capacity and the Chebyshev

constant.

Remark 2.3.7 As it is seen from this chapter, the logarithmic capacity, trans-
finite diameter and the Chebyshev constant of a monpolar compact set are the
same, but each has some advantages that other concepts do not. For example; the
advantage of transfinite diameter over the logarithmic capacity is that transfinite
diameter is more geometric. Note that, the definition of the logarithmic capac-
ity of a set is given by measures, while the definition of transfinite diameter is
giwen by distances. Thus, if we know the equilibrium measure of a compact set,
it is useful to use the logarithmic capacity. On the other hand, for some compact
sets, if their corresponding Chebyshev polynomials are known, in other words, the
polynomials on these compact sets which have the least deviation, then using the

Chebyshev constant is much more advantageous.



Chapter 3

The Green Function

3.1 Green Function

Definition 3.1.1 Let K be a compact subset of C with positive capacity. If U
1s the unbounded component of K, then we define the Green function for K with

the pole at oo as
9x(2) = gu(z,00) = V(K) — p(wr; ),
where p(wy; z) is the equilibrium potential with equilibrium measure wy, and V (K)
15 the equilibrium energy .
Here it is obvious that gx(z) is nonnegative because p(wy; z) is smaller than

or equal to the equilibrium energy.

Under this definition of the Green function, we have three very important

properties of the Green function.

Proposition 3.1.2 The Green Function gi(z) has following properties.

i) The function gk (z) is subharmonic on C and harmonic on C\ K.

17
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ii) The function gix(z) — log|z| is harmonic in a neighborhood of infinity and

remains bounded as z goes to infinity.

iii) gx(z) = 0 quasi-everywhere on K.

Proof: (i) We know that p(wy; 2) is superharmonic on K and harmonic on
C\ K. Since V(K) is a constant (we are working with equilibrium measure wy,),
and —p(wg; z) is subharmonic function on K, then gk (z) is subharmonic function
on K. Similarly, p(w.; z) is harmonic on C\ K, so —p(w,; z) is harmonic on C\ K.

Hence, gx(#) is harmonic on C\ K.

(2) Here, we should observe that if wy is the equilibrium measure then
p(wg; 2) ~ log ‘—i| because

1 1
/ log —dwy(t) = log —, since wi(K) = 1.
T E
1
SO7 p(wkaz) o IOg— = / lOg
] K

2]
|2 — ]

du(t).

If 2 — oo, then log% — 0 uniformly with respect to t € K. Therefore,

p(wg; 2) ~ log ‘71| Moreover,
gr(2) —log |z| = —p(w, 2) + V(K) — log |2| ~ V(K).

Since K has positive capacity, then V(K) is finite. Thus gx(z) — log |z| remains

bounded as z goes to infinity and harmonic in the neighborhood of infinity.

The third property directly comes from the definition of the Green function

with pole at oo.

Theorem 3.1.3 [71] If B is a Borel set such that C\ B is bounded and of positive
capacity, then the Green function gg with properties (i)-(iii) which are defined at

previous proposition exist and is uniquely defined.

Note that, the idea of proof of this theorem comes from the minimum principle.
In more details, if g5 is another function satisfying these properties, then g5 — g’

is bounded and harmonic on C. Then, the result follows from minimum principle.
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Example 6 In E:L’ample for compact set K = B(0, R), we found that

1 1 do |log+, if|z| <R,
p(wk;z):/ log—dwk:/ log ——— = sx 1A
ool kB2 g L iflel > R
||
Hence, the Green function for K is
gK(z) - 2| .
10g|7 if |z| > R.

Definition 3.1.4 Let K be a compact subset of C. Then the Robin constant for
K is defined as lim,_, (gi(2) — log |z|) and is denoted by Rob(K).

Second condition of Proposition gives that Rob(K) = V(K). Hence, for a

compact set K, the capacity is also equal to

Cap(K) = ¢~ Robl),

Definition 3.1.5 (The Green Function with Pole at a # c0) For an open
set Q) of C, a Green Function with pole at o # oo is a function G : 2 x Q —
(—00, 00| having these properties:

i) For each v € 2, the function G(z,a, Q) = Go(a) is positive and harmonic.
ii) For each a € ), z — Gq(a) +log|z — af is harmonic in a neighborhood of «.
iii) Ggq(«) is the smallest function from 2 x ) into (—oo, 00| satisfying properties

(i) and (ii).

Theorem 3.1.6 [3] Let Oy € Co, let G be the Green function of Qy and let Qy €
Cw be another region with pole . f we have a conformal mapping T : s —

then
H(z,a,) =G(T(2), T(), 1),

where H is the Green function for €)s.
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Example 7 In Emample@ for K = B(0, R), we have

o(z100,C\ K) = log .
Now, let take Q; = {|z| > 1: 2z € C} and Qy = C\ [—1, 1], and take the conformal
mapping ¥ : Q1 — Qs such that
1 1
v =3(=+2).
which is a continuous mapping. Moreover, 1(c0) = oco. Thus, by Theorem
with w = (z)
g(w,00,Qy) = g(z,00,8;) = log |z| = log |w + Vw? — 1],

where v/w? —1 > 0. Therefore,

1
Rob([~1,1]) = lim [g(w, 00, ) — log|w[] = lim log‘l—i—y/l——Q
|w]|—o00 |w|—o0 w

Hence, Cap[—1,1] = %

= log 2.

Example 8 Let K = [a,b] where a and b are real numbers and b > a. Let
0, =C\ B(“TH’, I’_T“), and Qo = C\ K and take the mapping ¢ : Q1 — Qo such
that

b—a/2z—a—0» b—a a+b
o(z) = 4 ( b—a +22—@—()) 2 7’

where ¢(o0) = 00.

If w = ¢(z), then
b—a<2z—a—b+ b—a ) a+b
4 b—a 22 —a—0 2
dw—2(a+0b)  t*+(b—a)
b—a  t(b—a)
= 1>~ 202w — (a — b))t + (b—a)* =0,

where t = 2z —a — b. Hence,
22w — (a+b)) +2v/(2w — (a +b))? — (b — a)?
2
=22—a—b=2w— (a+b)++/(2w—(a+0)2— (b—a)?

\/(Zw —(a+10b))?2—(b—a)?
5 .

t =

= z=w-+
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Now, by Example[t] and Theorem we have

2 2 2w — M2 — (b— q)2
9(2700,91)=log |Z| zlog w + \/( w ((Z—|— )) ( Cl)
b— b—a b—a
:g(w,OO,Qz).
Thus,
Rob([a, b]) —llllm g(w, 00, Qy — log |w|)
w|—00
|
_lwllinooog b—& b_a
4
-l
og b—a+b—a og r—
Hence,
b—a
Cap(K) = —,

Now for I = [a,b], the Chebyshev polynomial is

" a —l— b b —a
(-5 —e757)
Hence, by the definition of the Chebyshev constant, we get

7(K) = lim ((b—a)")i = b—a'

n—00 92n—1 4

a+b 22n 1

To(z) = 27 f[ (== - ,5]> _

j=1 2

Therefore, for K = [a,b] with a < b, we have

b—a

7(K) = Cap(K) =

3.2 Some Additional Properties of Green Fucn-

tion

Theorem 3.2.1 [3] Let {€,} be a sequence of open sets such that €, C Q44
and Q =, Q. If G,, is the Green function for Q, and G is the Green function
for Q, then for each o € Q, Gy(z,a) 1 G(z, ) uniformly on compact subsets of

O\ {a}.
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Corollary 3.2.2 [3] Let {D,} be a sequence of open sets such that D, C D,
and let K = ﬂ?’;lﬁj, so D; | K.Then

9k (2) = lim gp-(2)

Jj—o0

uniformly on compact set from C\ K.

Therefore, for any given K, the function gx(2) can be found as lim; gx, where

K =, K.

Corollary 3.2.3 [3] If {K,} is a sequence of compact sets such that K, O K, 1
for all n and N, K,, = K, the Cap(K,) — Cap(K).

Proof: For K,
Rob(K,) = ‘llim (9K, (2) — log |2]),
Z|—00

Cap(K,,) = e~ oblin),

By the previous corollary, we know that gx(2z) = lim, o (9x, (2) — log |z]), then
lim,, .o Rob(K,) = Rob(K). Thus,

lim Cap(K,) = Cap(K).

n—oo

Example 9 Let D, = B(O, 1+ %), it 1s clear that Dy € D,,. Let K, = D,,
then we know that
z
91, (2) = ox o

Moreover, K = (2, K; = B(0,1). We also know that

9k (2) = log z|.

Then, let us check the results of previous corollaries for this specific example:

lim gg, (2) = lim log : |j_|1 = log |z| = gk (2).

n—00 n—o0

3
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Additionally,

lim Cap(K,) = lim (1+ l) = 1= Cap(K).
n

n—oo n—oo

Example 10 Let K,, = [— 1-— %, 1+ ﬂ, it is clear that K, 2 K,1. Let ¢(2)
be a mapping such that

¥:C\B(0,1) = C\ K,

= (5]

If w =1(2), then

1+ 2 1 ) )
< 2"><z+—>:w:>(n+1)z —2nwz+ (n+1)*=0
z
2nw + /An2w? —4(n +1)2 Wy w? — ()
z = =
2(n+1) n+1
w+ yfw? — (14 1)
1+1

Then, by Theorem|3.1.0]

w+ /w2 — (14 1)2

9B — log |z| = log 141 = gk, (w).

Note that, K = (K, = [-1,1], and gx(w) = log|w + vw? — 1|, so

w+ (/w2 — (14 1)
! — tog | + Vi —T| = gr(2).

lim gg, = lim log
n—oo

1_(_q_1
Moreover, Cap(K,) = W =1+ L and Cap(K) =1, so
lim Cap(K,) = li 1+1 ! Cap(K)
1m a n) = 1M — —_— = = = a .
noeo P w2 o 2 TP

Proposition 3.2.4 Let K be a compact set such that K = {|P(2)| < 1:z € C},
where P(2) = ap2™ + o 12" + ... + ap, then

9x() = - log | P(2)]
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Moreover,

_ 1

Cap(K) =an".

Proof: Here, 1log|P(z)| = log|z| + log% + o(z). Now, we should check

n

whether X log|P(2)| is the Green function or not.

On 0K, |P(2)| =1, s0 gox(z) = 0. Near oo, ~log|P(z)| — log|z| = % +
o(z) which is bounded. Hence, +log |P(z)| —log|z| € H(c0).

Moreover, polynomials are analytic functions and logarithm of analytic func-

tions are harmonic functions. Hence, 1 log|P(z)| € H(C\ K).

n

Therefore, by the uniqueness of the Green function, 1log|P(z)| = gk(2).
Now,

1

1 1
%8n o(z)) = log a;

Rob(K) = lim (gx(2) —log|2|) = lim (

|z| =00 |z| =00 n

1

_1
= Cap(K) = e~ RPE) — plogan™ — 7

Theorem 3.2.5 (Bernstein-Walsh Theorem, [13]) Let K € C be a non-

polar compact set. Then, for any polynomial P of degree n, we have

[P (2)] < exp (ngx ()| P,

Vz € C, where ||P||x = sup,cx |[P(2)].

From the theorem above, we have the following representation of the Green func-

tion:

Corollary 3.2.6

log |P
{M P el degP>1,|P|x <1},

where K € C is a non-polar compact set, 11,, denotes the set of all polynomials of

degree at most n, I = | J -, I1,.
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3.3 Smoothness of the Green Function

Definition 3.3.1 Let U be a bounded nonempty subset of R¥, let f be a real-
valued function defined on the boundary of U, then the classical Dirichlet problem
on U is to find a harmonic function h on U such that lim,_,, h(y) = f(x),Vz €
OU. The point p is said to be a reqular point with respect to the Dirichlet problem
if the classical Dirichlet problem has a solution for each continuous function at p.
Also, the set U is said to be reqular with respect to the Dirichlet problem if every

boundary point of U 1is a reqular point in the Dirichlet sense.

Theorem 3.3.2 (Wiener Theorem, see e.g. [12]) Let K be a compact set,
QO=C\ K, and let 0 < X <1 and set

A(2)={yly € QA" < |y — 2| < A"}

Then z € 0N) is a regular boundary point of Q if and only if

(oo}

n
E = 0.
=1 lo L

&) (—Capmn(z)))

Theorem 3.3.3 (see e.g. [12]) Let K be a compact set. Then g (z) is contin-
uous on the whole plane if and only if K s reqular with respect to the Dirichlet

problem.

Example 11 Let K = [0,1], then K is a reqular set. To see this, let us show that
0 is a reqular point of C\K. Let us choose X = 5. Then, we have Cap(A,) = 5.
Thus, log m = (n+2)log2. Since, Y -, T2/ ogz = O©: then 0 is a regular
point. Similarly, all other points of K are regular points of C\ K. Thus K is

reqular. By the theorem above, gi(z) is continuous on the whole plane.

On the other hand, in Example 8, we see that gx(2) is continuous, thus the

set K s reqular.
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Example 12 [12] Let K = {0}UU;, I, such that I = [ay, by, where b, = e~ ™"
and aj = by — b1 with M > 0. Then by Theorem gk (z) is continuous if
M, 1

wos = a7 Thus, gi (%) is continuous.

and only if 7~ Wil = 00. In this case
Definition 3.3.4 Let f be a real or complex valued function on Fuclidean space.
Then f is called Holder continuous if there exists nonnegative real constants C'

and o such that

[f(x) = fy)| < Clo —y[*

for all x and y in the domain of f. In this case, f satisfies Holder condition of
order a > 0 or f belongs to Lipschitz class «, denoted by f € Lip(a). If a = %

and K C [a,b], this is an optimal smoothness for gy .

Definition 3.3.5 Given a function f, the modulus of continuity of f is a function
UJ(f, 5) = Sup|m—y|§§ ‘f(l’) - f(y)’7 where T,y € DOHl(f)

Let K be a regular compact set. Since gx(z) = 0, Vz € K, and gg(z) is
continuous on C\ K, it is interesting to figure out what kind of continuity g (z)
has near the boundary of K. Given regular compact set K and 6 > 0. We say that
the point p = p(0) realizes the modulus of continuity of g if dist(p, K) < 0, and
9k (2) < gk (p) for all z with dist(z, K) < §. Here, we get w(gx, ) = gx(p) — gk (9)
for some ¢ € K.

Let us start with some known examples.

Example 13 Let K = [—1,1], then gk(z) admits a modulus of continuity at the
points —1 — & and 1+ 6. From Ezample 8, we know that gx(2) = |z + /22 — 1|.
Thus, g (—1—10), gx(14+08) < V30, and gx(6i) < 8, and for all remained z such
that dist(z, K) < 6, gk (z) < C6*, where 3 < o < 1. Thus, gk (z) € Lip(3).

Let K = B(0,1), then by Example@ we have

0, if 2] <1,
9 (2) =
log|z| if |z] > 1.
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Then, ¥z € B(0,1+ )\ B(0,1), we have gk (z) < 0, hence gk (z) € Lip(1).

Now, let us introduce some recent results.

Example 14 [12] Let K be a compact subset of an open disc with positive ca-
pacity, then

. ' o? 2
gi(2) < Clz|2 exp <D/ u<3u>du) log Cap(K)

||

for |z| <1, where C and D are constants and © = O is a function that measures
the density near the origin of the circular projection of K onto the positive real
azis. More specifically, let K be the set of a € [0,1] such that K intersects the
circle |z| = a, then ©(t) = d([0,t] \ K), where d is the Lebesque measure.

Example 15 [0] Let K* be a Cantor-type set, such that 1 < o < 2. Then K* =
Noey Es, where Eg = 1o = [0,1], Es is a union of 2° closed basic intervals I; ; of
length ly = 13 | with 2097 < 1 and where Eo, is obtained by deleting the open
concrete subinterval of length hy == lg — 21541 from each I; s with j =1,2,...,2°.
Then, for every 0 < e < ~, there exists constants &g, Cy, depending on o and e,

such that

gr=(2) < Cop?(9)

log %

for z € C with dist(z, K*) = 0 < &y, where p(6) = (log 5)™*, and vy =

the smoothness of the Green function is described in terms of the function p(9).

0. Here,
og o

Moreover,

gre(—0) > Cp(9).



Chapter 4
Nearly Chebyshev Polynomials

We will consider a special compact set, see also [5]. Let K = {0} U ;- I such
that I}, = [ax, br]. Now fix m € Z, and define

P(x)=1=z 1:[ Vel k()

on K, where v, = m, ni denotes the degree of the Chebyshev polynomial
~ nk ~
deﬁned in [k and Tnkk<ﬂj‘> = T”k(%)? where L = bk""Tak and 5k — bk;ak .

Notation 1 For simplicity of notation, from now on let T,, (z) = T, x(z). Thus,
T, (x) represents the extended Chebyshev polynomial which is defined on a given

I}, with degree ny.

First of all, we need to approximate the degrees ny in order to make P(z) the
polynomial which has almost the least deviation on a given compact set K, in

other words, in order to make P(z) a nearly Chebyshev polynomial for K.

28
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4.1 Determination of the Degrees of the Cheby-

shev Polynomials

Theorem 4.1.1 Let b, = e 2%, b2 = bgy1, and by—byy1 = ai. We can determine
all ny, values for k < m so that |P(z)| < b, Yo € K and x > by,.

Before the proof of the theorem, let us prove the following two lemmas.

Tnk (bj)
T, (0)

Lemma 4.1.2 7
k

b; \ "k .
< (—J> , where j < k.

Proof: Let {z1,x9,...,2,,} be the zeros of T,,, (z). Then,

Tnk (bj> ﬁ bj — Tk

Tk

k=1

Now, take any arbitrary zero x, of the Chebyshev polynomial. Since z, > a;, we

get

ok—j_1 ok—j+1_1
bi—wy _by—ax _bi—bitbn b (L0 V4 9]

Tp ag bk — bk+1 bk (1 — bk)
Now, since 1 — 027 > by, then 1 — b~V 4 o777 < 1 27 Thus,

b]-—zp bj . . .
e < - Since z, is arbitrary, we get

Ty () | ﬁ bi =@ <ﬁ)"’“.

Tk by,

k=1

Lemma 4.1.3 [T, (0)| > %4”‘“(1),(:’“_1))”’“, where € = ——

e2k ok

Proof: By definition, |T,,, (0)| > 54™ [T}%, o = T4m H?il(blzl —1). Now
let

(b)) < bt — 1= (1— )28 < 2Flog (1 — ).
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By the power series expansion of log (1 — ), it is known that log (1 — z) < —uz.

_9k _9k
(1—¢)2"F <2log(1—e ) < —e? = & 2 oy

Thus,
|T,,,,(0)] > 4%( by

; _ 1
with € = o2k gk

Proof: [of Theorem {4.1.1] Let x = b, is fixed where 1 <p < m — 1. Then

m—1
|P(by)] = by H Ve Ty (bp)
k=1

Let us divide this representation of the polynomial above into two parts in a way
that

m—1

Ly = by H %Tnkk(bp)a
k=p

p—1

Rp = HVankk(bp)'
k=1

Note that for any 1 < p < m — 1, the value of R, is less than 1. However, the

value of L, is huge when it is compared to I,. Hence, we want to have

byn—
- < [T, (0)]

bm,

bm 2 Tnm 1(bm 2

| S < 1T (0)

bm—3 Tnml(bm3>‘ Tnm Q(bm 3 ‘ | (0)‘

b T, _,(0) T, ,(0) |~ fim =3

bm*j Tnm—l (bm—j) TnmfjJrl (bm—j) (0) |
b | T, ,(0) ) e

However, usage of the lemmas above guarantees the correctness of the above

expression. They also give us an easier calculation opportunity. Thus, let us



CHAPTER 4. NEARLY CHEBYSHEV POLYNOMIALS

calculate degrees according to

b1 _ 1 (em_1—1)
< _4nm71 b 1 Nm—1
bm — 2 ( m—1 )
bm—2 bm—2 fm—1 1 (€m—2—1)
< _4nm—2 b m—2 Nm—2
bin (bm1> ) (2" ")
bm—S bm—3 Mm—1 bm—3>nm2 1 (ém—3—1)
< _4nm_3 b m—3 Nm—3

b (bm1> <bm2 2 (bnZ" )

From (4.1), we get

b7:l£1 S 22nmfl*1 (bmil)nmfl(ﬁmflfl)

- b(nm—1(1*6m—1)*1) < 92nm-1-1

m—1
= 2l _9m (1= €epy) < 201 log 2 — log 2

2m=1 4 Jog 2 log2 — EQ'm%I

= Nm—1 Z 2m—1(
Hence, we can take n,,_1 = 1.

From (4.2), we get

by obinly < 2ty p)en s

= b(nm72(1_5’m*2)_4) < 22nm72—1

m—2
= Ny_a(2log2 +2"72(1 — €,,_9)) > 2™ %4 + log 2
2m=24 4 log 2 4log4—10g2—62%

Hence, we can take n,, o = 4.

1 —é€n_1)+2log2 - 2m—1 _ e2”1*1 +log4’

1 —€m2) +log4 - m=2 — ezwlL—z +log4

31

(4.1)
(4.2)

(4.3)

(4.4)
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From (4.3), by similar calculations, we get

1410g4—10g2— 62,1,1—4,2

m3 > 14 — )
Nm—3 = gm—2 _ 627}172 + log4

Thus, we can take n,,_3=14.

Finally, if

<.
|
—

¢ =) (nm-i(27F = 1)) + (2 = 1),

1

i

then, from (4.4), by similar calculations, we get

(log4 —log2 — 6%%2

> ( — .
C 2m—2 — 62”1;_2 + 10g4

nmfj el

Hence, for any j < m — 1, we have

7j—1

Mg = Y (i s(27F = 1)) + (2 — 1)

k=1

and by construction, we have |P(z)| < by,.
Corollary 4.1.4 ny,_j—1 = 4np—j — 2Ny j11 With Ny, = 1 and ny,—o = 4.

Proof: We prove this corollary by induction. First of all, note that, 4n,, o —
201 =4-4—2-1 =14 = n,,_3, by calculations which are done in the proof of

the previous theorem. Now, this recursive relation holds up to n,,—;. Then;

N1 = Nn1(2 = 1) + 12 (27 = 1)+ o+ T o + 3Nt + N
+ (27— 1) = npj + 31 + 3o+ T3 + - .
+ (277 = Dngyy + (27 = 1)) = 2[nmjyo + 30z + - .
+ (2772 = Dngp oy + (277 = 1) = dngj — 2041

Corollary 4.1.5 For any k <m — 1, nj, = ﬁg((Q +V/2) 7k 4 (2 — V/2)m ).
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Proof: We prove this corollary by induction too. First of all, ; f<<2 +
V2)m=m=1) 4 (2 — /2y (m=1)) = 1 = p,, ;. Now, assume this corollary holds

up to n,. Then by previous theorem, we have;
Ng+1 = 4ng — 2ng

= VA2V 2V - %((2 + V2 (2= V)Y
= Va4V (v - Ve - Ve - v

= (VD 2 - VB,

4.2 Some Properties of the Degrees

In this section, we give some additional properties of the degrees found in the

previous section that will be used intensively in Chapter 5 and Chapter 6.

Corollary 4.2.1
m—1

1+ Z Ny = Ng—1 — 3MNyg.
k=q+1

Proof: We prove this corollary by induction too. First of all, 1 + n,,_1 +
Np—o =14+1+4=6=48—-3-14 = ny_g — 3np—3. Now assume 1+...+ngqo =

ng — 3ng+1. Then

1+ .. 4+ ng =ng — 3ngp1 +ngp1 = ng — 2ng
=4ng — 2ng41 — 3ng — ng—1 — 3n,.

Note that the last equality comes from Corollary [4.1.4]

Corollary 4.2.2
Z me= 12+ V2T (2= VDT - (24 V)T - 2 - VR,

'wherelgqugm—l.
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Proof:
Y= = Yl 2 VR
— slee Ve e Ve - e - v Y e - vay]
1 mep (V2(2+ V2P 1)
T 2/2 [<2 +V2) ( 24++2 )

- (2- \/§)mp<\/§(1 - ;2_+\/\§)““)>]

= %[(2 FV2) 4 (2= V2) (24 2) P (2 = )mrl),

Corollary 4.2.3

1+ mz_ ny, = %[(2 +V2)" (2 - V2)m Y.

Proof: Apply Corollary withg=1and p=m — 1.

Corollary 4.2.4

N — 2 Ng+1 1+1+...4+ng __ png—2—3ng—1
bbbl LB = b — b .

Proof: We prove this theorem by induction.

First of all, byby,_1 = b1 b2 o, = b8 , = b-r* Now assume that

n 1+1+...4n
Drbm 100757 . bqu; =0, 1 Then

n n, 1+1+4+...+n n
b bm 1b m— 2 bqjjil _ bq+1 q+1bqi-51 — b2+2nm 1+.. +2nq+2+4nq+1

I+.. +"q-&-lJF"q Mgi+3ngyq

— b b1+nm,1+...+nq — bnq72—3nq,1
q q :
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Corollary 4.2.5 We have the following inequalities:

Proof: Lower bounds in both inequalities are obvious. Let us find the upper
bounds. Note that

Z ngby (140, (2+1¢§ R e )) < naby(1+by)
< 2n4b,.

Moreover,

é:%: b—:’( b2+ V) + B2+ VD + BT 2+ VR <222

P

Corollary 4.2.6

4—1—2\/§nq m_ln 4+2\/§nq
— 6 JE—
3+4+2v220 2% = 349,220

| /\

e G = O R ) I =N O R P
; 2k ﬁ(kz 2k e ok
IR R S L)
(X %))
2+ V)m = 1 K 1
22 (Z (22 +v2))k % (2(2+\/§))k>
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_ 2+ (1 +224V2) +... + 202+ ﬁ))m—q—2>
2v/2 (2 4 /2)m-12m-1
2=V <1 +22-V2)+ ...+ (22— ﬁ))mﬂ)
2v/2 (2 — y/2)m-1gm-1
1 4+2\/§<(2+\/§)m—q 1 )

T 223+ 242 2 2m
1 4—2\/§<(2—\/§)m—q 1>
2v23 -2v2 2 2m
:4+2\/§@_<1+\/§)(2_\/§)m—qJr 1
3+2\/§2q 24q om+1"

Corollary 4.2.7 bg < bebe—y...by < by, where g < c.

Proof: It is obvious that b.b.—; ...b, < b,. For the other inequality,

_ 1274 _ pl42+4. 42074 2
bebeor . by = b2 by = b} > P2,
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Chapter 5

A Lower Bound for the Green

Function

In this chapter, we will find a lower bound for the Green function for compact sets
defined in previous chapter for —0 = —bs value which is close to the boundary of
these compact sets. By Corollary [3.2.6] we know that any polynomial on these
compact sets gives us a lower bound for the Green function. However, the major-
ity of them gives us useless lower bounds. The polynomial which was introduced
in the previous chapter with calculated degrees gives us a nearly Chebyshev poly-
nomial, so we use a slightly modified version of this polynomial to have a good

lower bound for the Green function.

Note that

m—1 m—
T, (x) (z)
=z
g T, (0) 1;[ an (0)’
where if {z1,...,z,,} are the zeros of the Chebyshev polynomial T;,, , then @,
ok (@ — ), since T, = 271 (—2—)" ][5, (z — ;). Now, let H(z) = (

br—ay
We use this polynomial to have a lower bound for the Green function at —5

value, since by the construction of degrees |H(z)| < 1 on compact sets, whereas

|P(z)| < by,

37
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Theorem 5.0.8 Let K = {0}UJ;~, I, where Iy = [ay, by], b, = e 2, b2 = bep

and ay = by — bgr1. Then

gK(_(S) Z 39077

- O @ s
where p = <log%> , Y = w, and § = by = e 2. Note that s € Z,

s <m—1, and s is big enough so that by is close to the boundary of K.

Proof: If we evaluate |H(x)| at —4, we get

)| 5 m—1 an(_a)‘ _ o 0+ z1)(0+22)...(0 +zN)
by, P Qn, (0) by, T1ToX3 ... TN ’
where {x1,z9,...,xx} are all zeros of the corresponding Chebyshev polynomials

and N is the total degree. Let z,, be an arbitrary zero in I, then

bi, if k> s,
0+ *
E>¢2  ifk=s,
Tp
1 if k < s.
Thus,
) 0 \"m-2 d st
H(=6)| > — ( ) ( ) 20
|H(=0)| = b b \o bars
SLHnm—1+nm 2t Ans 19 §rs T3Ns+1 QN
bnb U BT g

The last equality is from Corollary and Corollary

Note that ng — 3ngyy —ns_o +3ns_1 = —Ngi1 + 3ng — 3Ny = —Ng — Ngy1.

Thus,
ez ()" ()"

Therefore,

2 1
log |H(—4)| > ns logg + nsp1log 5
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By Corollary [£.2.3] if we denote the total degree in this calculation by N, then

m—1

N=2+) ny= %((2+\/§)m‘1 +(2-V2)"hH + L

k=1

Note that %5 > \%(2 +/2)17%, and "5 > \%(2 +4/2)7*. Thus,

log |H(—9)| 1 1 N
> (2+V2) "t log = + —=(2+ V2)*log -
= (2 VD) og s + 2+ V) log
242 1 34+42
> 2 - V2) + —=(2-V2)' = 2 _ \/2)*
> =75 ( ) \/5( ) 7 ( )
log (2—v/2)
Moreover, 2° = logi. Note that (2 — v/2)* = <log %) ’ = 7, where
-1 o N
goz(log%) ,andvzw. So,
3 2
gr(—=0) > + V2 > 3¢"



Chapter 6

An Upper Bound for the Green

Function

In this chapter, first of all, we are going to find an upper bound for the Green
function for compact sets defined in Chapter 4 for —6 = —b, value which is close

to the boundary of these compact sets. Theorem [3.2.5] states that

log | P(=0)|
_6) = {—;Pen,d P>1|P <1}.
(=) = sup {50 cgP > 1,|Plk <
Let F'(—6) be the function that realizes the supremum above. By the tools of La-
grange interpolation, we can write F'(z) in term of the Lagrange basis polynomials

(see the Appendix for more explanation), as

N
k=0

We choose the interpolating points as the zeros of the Chebyshev polynomials on
Ly 1, 1o, ..., I3with xyg = 0 and 1 = b,,. Then, we have two ways to determine
the upper bound of the Green function on K. The first way is to determine the
basis polynomial which has maximal absolute value. Let’s say |lx(—¢)| is the

maximal one, then with the condition |F'(zx)| < 1, we have

log |[F(=0)] _ log ¥ |Flenlu(=0)| _ log N log Jie(~0)|
N - N - N N ’

40
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where N denotes the total degree.

The second way is to find a function which is an upper bound for |lx(—0)]
for k = 0,1,..., N, and calculate the above expression for this upper bound
function. In our case, we prefer to use the second way as the first way requires

more calculations and theorems.

However, in order to find the upper bound of the Green function for K, we do
not use the degrees of the Chebyshev polynomials defined on intervals I, which
were used at evaluating the lower bound of the Green function for K, since if we
take ny; as in the previous chapter, then the Lagrange basis polynomials do not
give us the desired bound. The reason for this problem is that the degrees of the
Chebyshev polynomials which are defined on first few intervals are so big when
compared to the length of these intervals. For this reason, we have to reduce the
degrees of the basis polynomials for the first few intervals. Let m, denote the
new degrees such that my, = ny, — vy, where v, = | “228% | where | 2] denotes the
floor function of z.

The theorem below gives us an upper bound of a basis polynomial.

Theorem 6.0.9 Let x;, € I, then
log |l(—0)| < ng + 2°ng,

where 3 < q<m —1.

Proof: In this proof, we use Corollary [4.2.1], Corollary 4.2.4], Corollary
and Corollary (4.2.7, First of all let z;, € I, where 3 < ¢ < s, then
O(0 4 bm) (0 + by—1) (0 + byy—2) ™2 ... (6 + by) ™

b2
ag(ag — bm—1)(ag — by2)™m2 ... (ag = bgi1)™a+1mg(5 )™

lk(=0)| <

H [T (14 Sty Ot o b
Ta — Tk — b(11+1+1+mm_1+---+mq+14mq(bq)2mq,2

y=3x.€ly

[0+ TI0+ 0" (I (v ™)

k=s+1 k=q k=q+1
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‘ﬁ Qe+ 5+xk> AB,D, §°Fmm-it- +"s+1(25)"5b2511...b”q4"q

b=3 zq€1 q

bzq)m71+-~~+vq+1+2vq

5vm_1+...+v5+1 (25)1}58728_*11 L b;‘1}44uq )

where A = H?:S_H <1+bf> B = Hk q <1+bk> ka Cq = H;n:q—i-l (1_bq_2_§> k
and Dq = Hg;i Ha:aelb (1 + xi"__m;k> :

n n
Now, note that % — 1<y < %, SO <%> ! < by < <%> qbq_l, and by
Corollary 4.2.6] we have

1 4+2v2 m—1 1 4+2v2
(_) 3425 < bZk 2 Ve (_) 3+2v2 q8(1+\/§)(2_\/§)qub;(m_q)'
8 —\8

Thus,

ABqu 51+n571—3n5 s bgq—2*3nq—1 bgns*l_ns*Q bgq4nq
qu bZ+nq+173nq ban—Q

[l(=0)] <

7+4v2
1) 3+2v2 q8(1+\[)(2 V2)m= qb (m—q—1)
8

4422

(3)7 (1) L@V -V -2 VE) - 2oV
8 8

 AB,D,F, 4m2"s
- C,G, et

where F, = 8022 G = 570 and T = 42+ V2" 4 (2 -
V2)ml— (24/2)m 7 — (2 \/_)m 5] — ;E§nq+ gj:;%ns Now note that, since
(2 —/2)°79 < 1. we have

(24 v/2)m e T+4V2\  (2+V2)" 0 14+ 2V/2
T 2 (1_4+3f)+ 2 <4+3\/§_1)
1 243V2 1 2 -
B 2\F4+3f< 2+ V2™ ﬁ4+3\/§(2+\/§)

C2+3vV2 2
113v2 " 1132

Thus,

AB,D,F, 4ma2ms 1

ns—1 _2+3v2,
Cqu 0 84+3v2 ‘1+4+3\f

[lk(=0)| <
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Now we have

q—1

o+ 1
log D, =Y Y log(l+ Ty <@+0)Y T < (24 5)ng-1bg-1
b=3 wacly Ta = Tk k=3 ©
—logC, = — E nilog (1 —b, — —) < N (bq + —> < Angiq1b,
bq bq
k=q+1 k=q+1
1
S énq_lb —

1
log A = Z nklogl—i—— < = Z nibr < 2ng1105 < 6nq 1bg—1

k=s+1 k s+1
s—1

1
long:anlogl—l——<6Z—<2ns bt < Zngibe
k=q

1
log F, = 3log2(1 + v/2)(2 — \/§)m—q <6(2—V2)m 1< Ma-1be1

1
logG, =21(m—q—1) < gnq_lbq_l.

Thus,
AB,D,F, 42" 1 2+ 3v2
log — 111 < 3ng_1b,1 +nylog2(2 —3———=)
Cqu onet iigx\? q+4+3f ! ! ! 4+ 3\/§
2
+nglog2(1 —3——=) + (ns — 1)2°.
g2(1 -3 n 3\/5) ( )
Note that, 3n,_1b,—1 + n,log2(2 342112\*;) + nglog 2(1 — 34+§\/§) — 2% <0, since
q > 3. Thus,

log |lk(—=9)| < ng2°.

Now let z, € I, where s < ¢ < m — 1, then by similar calculations above and

by Corollary [£.2.7, we have

) < AD, 2nsqnab, by T Rty s
- C’ E (5713 bvm 1+.. +'Us

7+4\/§

<8>3+2\f "R +VR -V (mma—l)

Ik (=

AD;,
<

= C,E, ; \ 222,
o (é)mﬁ " Q3l2HV2) M (2= V) — (24 V21— (2-v/2) ) 52

onsqnah,  AD, 2ms4mab, .
<
0 T CuE,G, 0%tne
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where B, = [/~ (1 by — g;_)” and T = L[(2 4+ v2)" 0 4 (2 — V2)m 1 — (24

V2)mTE — (2 = /2)" 0] — giggnq + ‘;Egns + (14 v/2)(2 — v/2)™49. Note that

in this case

2+ 3v2 9
—_— n_
To4+43vV2 " 4432

4 2ove _45\/5(2 —V2)ms,

met (V- 2)(2 - VO

Thus,
ADgH, 2"s4Mb, 1

24n 2+3v2 2 ’
CqEqu 0 ° 84+3\/§nq"—4+3\/§n5

[le(=0)| <

where H, = 8(2V2-HE-VI" I E=RE VR thig case, like the calculations

above, we have

AD,H
1 1 < Tng_1bs_.
®cEG, =
Hence,
6 24+ 3v2
log [l,(—=8)| < Tng_1bs 1 +nglog2(1l — ———) =29 4+ n, log2(2 — 3=——*=
gllk(=0)| < 1051 g2( 4+3\/§) ¢1og 2( 4+3\/§)

+25%2 4 2%

Note that, Tng_1bs_1 + nglog 2(1 — 4+§¢5) —29+n,log2(2— 3%) L2 <y

Thus if z, € I,, where 3 < ¢ < m — 1, we have

log |lx(—0)| < ng + 2°n,.

Theorem 6.0.10 Let x4 = b,,, then

log |11 (=9)| < 3ns + 2°ns.

Proof: If we make the calculations as in the proof of the previous theorem,

we get

AD, 2m Bl b AD, e g OISR et
|l1(_(5>’ S Em 571«3 bvm71+~-+vs S Em 577,5 52
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Since, ng(3 + gi;g) —ne_1 4+ 1 < (5 —3v2)n,, we get

AD, 2"
1 (=68)| < £ g6-3v2)ns,

By similar calculations at previous theorem, we get
log |11(—0)| < 5ng_1bs_1 + nglog 2(16 — 9V/2) 4 2572 + 2°n,.
Note that 5ng_1bs 1 + nslog2(16 — 9\/5) + 2572 < 3n,. Thus,

log |l1(—9)] < 3ns + 2°n,.

Remark 6.0.11 Let xy = 0, then the corresponding basis polynomials are ex-

panded, we get
lo(—=0)| < [li(=9)].
Thus, there is no need to find an upper bound for log |lo(—0)].
Theorem 6.0.12 Let N = 2 + 221:_31 my, and let xo = 0,21 = by, and x), € I,
where 3 < q<m —1. Then
log |lk(—9)| < 3ng + 2°n;

fork=0,1,... N —1.
Proof: This theorem is a result of Theorem [6.0.9 and Theorem [6.0.101

Theorem 6.0.13

g (—0) < 45¢7,

o V2 s
where @ = (log%) , Y= w, and § = b, = e~ 2.
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Let F(—0) realize the supremum value at Theorem then we

Proof:
have
log |F(—4 log N log|lx(—6 log N 3ns+ 2°n,
sy < BIFCO] o N loglh(-0)] _log N 3, + 2,
N N N N N
2 < (1-1%88) fork=3,4,...,m—

Note that ngN+3% < 1—70(2—\/5)5. Moreover, 15

1. Thus, ;5N < N < N, where N = ZZ:; ni. Hence,
10 25n,

7 S
gK(_5)§1—O(2—\/§) + 9N

Additionally, % < L(2+

log (2—v/2) _
Note that (2 — v/2)* = <log% ’ = 7, where ¢ = <log %) ,and v =

lo 1+Q
—g(2 2). So,

10 7
gr(—08) < (3(2 +v2)3 + 1—O)w < 45y,

Theorem 6.0.14 Let 0 < § << 1 be fized. Then

3p(0)” < gk (2) < 450(0)7,
where z € A, A = {z|dist(z, K) < 0} and ¢ and v are as defined in Theorem

10.0. 15
0 < b,. Then

Since § << 1, the there exist s such that b, ; <
< ¢(bs). By the

Proof:
= %@(bs) Thus, %‘P(bs) < ()0(5>

we have, p(bsy1) = ¢(b3)
structure of the set K, the modulus of continuity is attained at —d for gx(z) with

dist(z, K) < §. Thus,
gr(2) < gr(—0) < 45p(9),
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where ¢ and 7 are same as defined in Theorem [6.0.13] Note that, by Theorem
5.0.8, we have

3p(6)" < gr(z) < 45p(0)".



Appendix A
Chebyshev Polynomials

Definition A.0.15 The polynomial T,,(z) = 2" + 12" ' + ... + ¢, with the least
mazimum modulus on a compact subset K of C is called the Chebysev polynomaial

of degree n for K.

The theorem below guarantees the existence of the Chebyshev polynomials

for any compact set K.

Theorem A.0.16 [J] For any n, there exists a polynomial of degree n whose

mazximum modulus is minimal on a compact set K.

Since, in this thesis, Chebyshev polynomials on closed intervals are used more

often, some properties of it should be given.

Definition A.0.17 Let II,, denote all polynomials of degree at most n. The
Chebyshev polynomials on the interval [—1,1] are usually denoted by T,(x) and
uniquely defined by the condition

/ (1= 2 2T (2)T(x)dx =0, 1 # s, (A.1)

1

where T, € 11,, and T,.(1) =1 for r > 0.
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From the definition above, we can conclude that
T, (x) = cosn(arccos x) (A.2)

because if we apply the integration in (A.1]) with 7),(z) as in (A.2)) with x = cos ¥,
substitution 0 < 6§ < 7, we get

/ cos 16 cos s6db.
0

Due to the orthogonality of trigonometric functions, the above integral is 0. More-
over, for 6 = 0, we get cosn(arccos(cos0)) = cosn(arccos(1)) = 1. Now we will

obtain some properties of Chebyshev polynomials.
Property 1 To(x) =1 and Ty (z) = z, and Tp11(x) = 22T, (x) — Th1(x).

Proof: If we apply the substitution x = cosf to (A.2)), we get
T, (cos6) = cosné.

For n = 0, we get To(x) = 1, and T} (z) = z. Additionally we know by trigono-
metric identities that cos(n + 1) + cos(n — 1)8 = 2cosnf cosf, which implies
Toi1(x) = 22T, (z) — Th—1 ().

By using the recurrence relation in Property [I, we can find all Chebyshev
polynomials defined on [—1, 1].

To(z) =1

Ti(x)=x

Ty(z) = 22> — 1

Ts(z) = 42° — 32

Ty(z) = 8x* — 82 + 1

Ts(w) = 162° — 202° + 5z
Ts(z) = 322° — 482" +182% — 1

By using known trigonomeric properties we can find the following three properties

of Chebyshev polynomials.
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Property 2 T,,(T,(z)) = Tyn(x) for all nonnegative integers m and n.

Property 3 T,,(2)T,(z) = H(Tnin(x) + Tim—n(z)) for all nonnegative integers

m and n.
Property 4 T,,(—x) = (—=1)"T,(x) for all nonnegative integers n.

Property 5 (Zeros and Extrema of Chebyshev Polynomials) Let {; =

cos(—(zj;nl)”) and n; = cos(%), then &; are the zeros of T, (x) for j = 1,2,...,n
and n; are extrema of T,,(x) for j =0,1,...,n.

The above property can easily be proved by using T),(x) = cosnf with z =

cos 6 substitution.
Extension of Chebyshev Polynomials

Chebyshev polynomials can be extended to the whole real line by using
DeMoivre’s theorem.
eint | g—ind
—

T, (cos ) = cos

—~
3
>

~—

_ %[(cos@ +isin0)" + (cos0 —isin0)"]
= Sl VT @) + (o — iV T— )]
_ %[(1; V221" 4 (o — Va2 — 1)
Hence,
To(z) = %[(:c + Va2 =1)" + (= VaZ = 1)"]
for all |z| > 1.

Let’s denote the extended Chebyshev polynomial by 7,,(z). By using the zeros

of Chebyshev polynomials, we also have

To(x) =2""](z - &)

j=1
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for all x € R. Here &;’s are zeros of T,,(x) on [—1,1].
Chebyshev Polynomials on any Closed Interval on R
Let I = [a,b] be any closed interval on R. Then consider the mapping

X :[a,b] — [—1,1],

_ bta
2
b—a :
2

T
X —

Note that, the mapping is 1-1 and onto. Moreover, it carries b to 1 and a to —1.

Hence, the Chebyshev polynomial on any compact interval I on R, denote by

Tn](ZL’), 1S




Appendix B

Lagrange Interpolation

Let {zg,1,...,2,} C [a,b] be such that z; # x; for k # [. Let y,. = f(xy).

Theorem B.0.18 For all y, where k = 0,1,...,n, there exists a unique poly-
nomial P, such that P,(xy) = yx for k=0,1,... n.

Proof: Let P(z) = ag+ a1z + ...+ a,a™, then by P(zy) = yi, we get

ap + a1x9 + ... + a,xy = Yo

ag+ayxy + ...+ apx] =10

ap + a1, + . ..+ apx, = Yy.

Note that this system forms a Vandermonde matrix, and the determinant of this
matrix is not equal to zero as xy # x; for k # [. Thus, the system has unique

solution.

Let’s define w(z) = [[_,(z—x), then clearly w € II,,;;. If we define the basis
polynomials by l(z) = % for k =0,1,...,n, then [, € II,,. The most

important property of the basis polynomials is lx(z;) = & for i = 0,1,...,n,
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where

1, ifk =1,
0, ifk#i.

Opi =

This method is called the Lagrange interpolation formula. We write it as
Lof(x) =Y fz)lk(z).
k=0

The uniqueness property allows us to regard the interpolation process as an
operator from Cfa,b] to II,, which depends on the choice of the fixed points

{zo,x1,...,2,}. Moreover, the operator is linear in and independent of f.

Proposition B.0.19 Lagrange interpolation have the following properties.

i) Let P €11, then L,(P,x) = P(z).

i) Y () = L.

iii) Yo (n — zg)Pli(z) = 0, where p < n.

Proof: The first property follows from the definition. For the second property,
let P(z) = 1, then L,(1,2) = 1 = Y ;_,lx(z). For the third property, let
(x —n)? € I1,,, then (z —n)? = >} _,(zx — n)li(x). Now let z = n, then result

follows.
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