
SMOOTHNESS OF THE GREEN FUNCTION
FOR SOME SPECIAL COMPACT SETS

a thesis

submitted to the department of mathematics

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Serkan Çelik
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ABSTRACT

SMOOTHNESS OF THE GREEN FUNCTION FOR
SOME SPECIAL COMPACT SETS

Serkan Çelik

M.S. in Mathematics

Supervisor: Assoc. Prof. Dr. Alexander Goncharov

August, 2010

Smoothness of the Green functions for some special compact sets, which are

sequences of closed intervals with certain parameters, is described in terms of the

function ϕ(δ) = 1
log 1

δ

that gives the logarithmic measure of sets. As a tool, we use

the so-called nearly Chebyshev polynomials and Lagrange interpolation. More-

over, some concepts of potential theory are explained with illustrative examples.

Keywords: Smoothness of the Green Function, Potential Theory.
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ÖZET

BAZI ÖZEL KOMPAKT KÜMELER İÇİN GREEN
FONKSİYONUNUN PÜRÜZSÜZLÜĞÜ

Serkan Çelik

Matematik, Yüksek Lisans

Tez Yöneticisi: Assoc. Prof. Dr. Alexander Goncharov

Ağustos, 2010

Belirli parametrelere sahip kapalı aralıkların dizisi olarak tanımlanan bazı özel

kompakt kümeler için Green fonksiyonlarının pürüzsüzlüğü, ϕ(δ) = 1
log 1

δ

fonksiy-

onu aracılığıyla betimledik, öyle ki bu fonksiyon kümelerin logaritmik sığasını

verir. Yöntem olarak, yaklaşık Chebyshev dediğimiz polinomları ve Lagrange

interpolasyonunu kullandık. Ayrıca, potansiyel teorisinin bazı kavramlarını

örneklerle açıkladık.

Anahtar sözcükler : Green Fonksiyonunun Pürüzsüzlüğü, Potansiyel Teorisi.
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Chapter 1

Introduction

In the statement of Newton’s laws, the only forces considered were between

two material points. These forces are proportional to m1m2 and inversely pro-

portional to d2, where m1 and m2 are masses of the point materials and d is the

distance between these two particles. After Newton’s achievements, Lagrange

found a field of gravitational forces that is called a potential field now and in-

troduced a potential function. At present, the achievements of Newton’s and

Lagrange’s works are included in classical mechanics courses.

Later, Gauss discovered the method of potentials which can be applied not

only to solve problems in the gravitation theory, but also to solve many problems

in mathematical physics including electrostatics and magnetism. Hence, poten-

tials were considered not only for the physical problems that concerns the attrac-

tion between positive masses, but also for problems with masses with arbitrary

sign. The principal boundary value problems were defined, such as the Dirichlet

problem, the electrostatic problem of distribution of charges and the Robin prob-

lem. In order to solve the problems mentioned above on domains with sufficiently

smooth boundaries, some kind of potentials became efficient such as logarithmic

potentials and Green potentials. At the end of the 19th century, studies in po-

tential theory about different potentials have gained significant importance.
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CHAPTER 1. INTRODUCTION 2

In the first half of the 20th century, generalization of the principal problems

was based on the general concepts of a capacity and potential functions. Mod-

ern potential theory, which is related to analytic function theory, harmonic and

subharmonic functions, has many applications on approximation theory, complex

analysis and modern physics.

There are several ways to introduce the Green function for a given domain. In

this thesis, we consider the geometric function theory approach. Our aim is to find

lower and upper bounds of the values of the Green function near the boundary

of a special compact set K which is a sequence of closed intervals with certain

parameters. As a method, we use the so-called nearly Chebyshev polynomials for

K. In this way, we find a modulus of continuity of the Green function. It should

be noted that we get a nontrivial smoothness of the Green function for K (that

means that gK(z) is not of class Lip1 or Lip1
2
).

In Chapter 2, we introduce some concepts of potential theory as equilibrium

measure, the minimal energy, the logarithmic capacity of a set, the transfinite

diameter and the Chebyshev constant and some simple illustrative examples are

given. Then we show the relations between these concepts. The concepts intro-

duced in this chapter will be used in the following chapters intensively.

In Chapter 3, we give the definition of the Green function. After this, we

consider another approach to give the Green function by using the methods of

the geometric function theory. Then, we give some results which characterize the

continuity and optimal smoothness of the Green function. In the last part of this

chapter, we consider model examples for smoothness of the Green function.

Chapters 4, 5 and 6 contain new results. In Chapter 4, we define a special

compact set K = {0} ∪
⋃∞
k=1 Ik which is a sequence of closed intervals. We

consider the extended Chebyshev polynomials Tnkk on any interval Ik, where the

degrees nk are chosen in a such way that the polynomial P (x) = x
∏m−1

k=1

Tnkk(x)

Tnkk0
is

“nearly” Chebyshev polynomial on the set K. After that, we give some relations

between the nk’s that will be used in the following chapters.
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In Chapter 5, by means of Berstein-Walsh theorem, we find a lower bound on

the Green function gK(z) by using the polynomial that was defined in Chapter 4.

Chapter 6 contains an upper bound on gK(z) for z = −δ that realizes the

modulus of continuity w(gk, δ). We use the methods of approximation theory,

namely the possibility to represent every polynomial as a Lagrange interpolation

polynomial. We show that Lagrange basis polynomials have the desired bound

from above.



Chapter 2

Elements of Potential Theory

In this chapter, we consider the basic concepts of potential theory and relations

between these concepts.

2.1 Logarithmic Energy and Capacity

Definition 2.1.1 Let (X,T ) be a topological space; let Borel(X) denote Borel σ-

algebra on X, i.e. the smallest σ-algebra on X that contains all open sets U ∈ T .

Let µ be a measure on (X,Borel(X)).Then the support of µ is defined to be the

set of all points x ∈ X for which every open neighborhood of x has a positive

measure:

supp(µ) = {x ∈ X|x ∈ Nx ∈ T ⇒ µ(Nx) > 0}.

We say that µ is a probability measure if µ(supp(µ)) = 1.

Definition 2.1.2 Let µ be a Borel measure with compact support on C. Then

its logarithmic energy is defined by

I(µ) =

∫∫
log

1

|z − t|
dµ(t)dµ(z).

A measure µ is said to be of finite logarithmic energy if I(µ) <∞.

4
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Definition 2.1.3 Let K ⊆ C be a compact set, then we set

V (K) = inf{I(µ)| supp(µ) ⊆ K,µ ≥ 0, µ(K) = 1}. (2.1)

That is, the infimum is taken for all probability Borel measures supported on K.

In the case of finite infimum above, it is called the equilibrium energy.

Definition 2.1.4 The logarithmic capacity of compact set K is defined as

Cap(K) := e−V (K).

We say that a compact set K is polar if Cap(K)=0.

Definition 2.1.5 A property is said to hold quasi-everywhere (q.e.) if it holds

outside a set of zero capacity.

Definition 2.1.6 The logarithmic potential p(µ; z) is defined by

p(µ; z) =

∫
log

1

|z − t|
dµ(t).

Definition 2.1.7 If X is a metric space and f : X → [−∞,∞), then f is upper

semicontinuous if for every c in [−∞,∞), the set {x ∈ X : f(x) < c} is an open

subset of X. Similarly, f : X → (−∞,∞] is lower semicontinuous if for every c

in (−∞,∞], the set {x ∈ X : f(x) > c} is open.

If G is an open subset of C, a function f : G→ [−∞,∞) is subharmonic if f

is upper semicontinuous and for every closed disc B̄(a; r)contained in G, we have

the inequality

f(a) ≤ 1

2π

∫ 2π

0

f(a+ reiθ)dθ.

A function f : G→ R ∪ {+∞} is superharmonic if −f is subharmonic.

Logarithmic potentials are superharmonic functions on C. Because, for any

holomorphic function f , log |f(z)| is subharmonic. Thus, we have

1

2π

∫ π

−π
log

1

|z + reiθ|
dθ ≤ log

1

|z − t|
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∀z, t ∈ C. If we apply Fubini-Tonelli theorem, then we have∫
1

2π

∫ π

−π
log

1

|z + reiθ|
dθdµ(t) ≤

∫
log

1

|z − t|
dµ(t).

Lower semi-continuity of p(ω; z) is obvious from the representation

p(ω; z) = lim
M→∞

∫
min(M, log

1

|z − t|
)dµ(t).

Moreover, logarithmic potentials are harmonic in C \K, where K is a compact

set. Because log 1
(z−t) is analytic in C\K, and log 1

|z−t| is the real part of log 1
(z−t) .

Therefore, log 1
|z−t| is harmonic in C\K. Since harmonic functions can be written

in the form of Taylor expansion, the primitive of a harmonic function is again a

harmonic function. Hence, logarithmic potentials are harmonic in C \K.

Definition 2.1.8 Let K be a compact subset of C with positive capacity. Then

there exists a unique measure ωK for which the infimum in (2.1) is attained (see

the theorem below). This measure is called the equilibrium measure for K.

The corresponding equilibrium potential p(ωk; z) where ωk is the equilibrium

measure has the following important properties.

Theorem 2.1.9 (Frostman, see e.g. [3]) Let E be a bounded Fσ Borel subset

of C of positive capacity. Then there exists a unique probability measure ωK with

the following properties:

� p(ωK ; z) ≤ log 1
Cap(E)

for z ∈ C.

� p(ωK ; z) = log 1
Cap(E)

for quasi-everywhere z ∈ K.

Example 1 Let K = B(0, R), then the equilibrium measure for K is the uniform

measure on ∂K, so dωk = dl
2πR

. Since dl = Rdθ, we have

p(ωk; z) =

∫
K

log
1

|z − t|
dωk =

∫
K

log
1

|z − t|
dθ

2π
=

log 1
R
, if |z| ≤ R,

log 1
|z| if |z| > R.
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Hence, the potential integral is constant on K. Therefore, by Frostman theorem,

ωk is the equilibrium measure and p(ωk; z) is the equilibrium potential. We see

also that, V (K) = log 1
R

. Hence Cap(K) = e−V (K) = elogR = R.

Example 2 Let K = [−1, 1] in C and ω(t) = 1
π

arcsin t. Let us check if ω gives

the equilibrium measure for this compact set K, and let us find Cap(K). Since

ω(t) = 1
π

arcsin t, dω(t) = dt
π
√

1−t2 . So the logarithmic potential of K is

p(ω; z) =

∫
K

log
1

|z − t|
dω(t) =

∫ 1

−1

log
1

|z − t|
dt

π
√

1− t2
.

Let t = cos τ , then dt = − sin τ and
√

1− t2 = sin τ . Hence,

p(w; z) = − 1

π

∫ 0

π

log |z − cos τ |− sin τdt

sin τ
= − 1

π

∫ π

0

log |z − cos τ |dt.

Let z = cosϕ, 0 ≤ ϕ ≤ π. Then we have |z − cosτ | = | sin ϕ+τ
2

sin ϕ−τ
2
|. Thus,

p(w; z) = − 1

π
(

∫ π

0

log 2dτ +

∫ π

0

log | sin(
ϕ+ τ

2
)|)dτ +

∫ π

0

log | sin(
ϕ− τ

2
)|)dτ.

Let I1 =
∫ π

0
log 2dτ , I2 =

∫ π
0

log | sin(ϕ+τ
2

)|)dτ and I3 =
∫ π

0
log | sin(ϕ−τ

2
)|)dτ .

Then I1 = π log 2. For I2; let x = ϕ+τ
2

, then

I2 = 2

∫ ϕ
2

+π
2

ϕ
2

log | sinx|dx =2
(∫ π

2

0

log | sinx|dx+

∫ ϕ
2

+π
2

π
2

log | sinx|dx

−
∫ ϕ

2

0

log | sinx|dx
)
.

For I3; let x = τ−ϕ
2

,(since | sin(x)| = | sin(−x)|), then

I3 =

∫ π
2
−ϕ

2

−ϕ
2

log | sinx|dx =2
(∫ π

2

0

log | sinx|dx+

∫ 0

−ϕ
2

log | sinx|dx

−
∫ π

2

π
2
−ϕ

2

log | sinx|dx
)
.

Note that ∫ π
2

π
2
−ϕ

2

log | sinx|dx =

∫ ϕ
2

+π
2

π
2

log | sinx|dx
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and ∫ ϕ
2

0

log | sinx|dx =

∫ 0

−ϕ
2

log | sinx|dx

because of the functional property of | sinx|. Additionally,∫ π
2

0

log | sinx|dx = −π
2

log 2.

Hence;

p(w; z) =
−1

π
(I1 + I2 + I3) =

−1

π
(π log 2 + 2(−π

2
log 2− π

2
log 2))

=
−1

π
(−π log 2) = log 2.

Therefore, by Frostman theorem, since the equilibrium potential is constant on

K, the measure ω is the equilibrium measure. Clearly, V (K) = log 2. Hence

Cap(K) = e−V (K) = 1
2
.

In the same way, one can show that Cap([a, b]) = b−a
4

.

Example 3 Let K = [−1, 1] and let ϑ be the uniform measure on K, that is

dϑ = 1
2
dx. It is obvious from Frostman theorem that this measure is not the

equilibrium measure for K, because we found in the previous example that the

equilibrium measure for K is 1
π

arcsin(t) and it is unique according to Frostman

theorem. But let us see this fact by some calculations.

The logarithmic potential for K is

p(ϑ; z) =

∫ 1

−1

log
1

|z − t|
dt

2
= −1

2

∫ 1

−1

log
1

|z − t|
dt.

Let substitute z − t = τ , then

p(ϑ; z) = −1

2

∫ z+1

z−1

log |τ |dτ = 1− 1

2
[(1 + z) log(1 + z) + (1− z)log(1− z)].

Here p(ϑ; z) is not constant on K, because p(ϑ; 0) = 1 and p(ϑ; 1) = p(ϑ;−1) =

1− log 2. Hence, ϑ is not equilibrium measure for K by Frostman theorem.
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2.2 Transfinite Diameter

Let E denote a closed and bounded infinite set of points in the z-plane. For n

points z1, . . . , zn ∈ E, let V be the Vandermonde determinant of the numbers

z1, . . . , zn . So

V (z1, . . . , zn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 z1 z1
2 . . . z1

n−1

1 z2 z2
2 . . . z2

n−1

1 . . . . . .
...

...
...

...
...

...
...

1 . . . . . zn
n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n∏
k,l=1; k<l

(zk − zl), n ≥ 2. (2.2)

Let Vn = Vn(E) denote the maximum value of |V (z1, . . . , zn)| as z1, . . . , zn

range over all n distinct points of the set E. Here such a maximum exists,

since V (z1, . . . , zn) is a continuous function on the compact set En, the cartesian

product of E with itself n times. The points z1, . . . , zn for which the maximum

is attained are called the Fekete points. Now, let us define

dn = Vn
2

n(n−1) = V

1

(n2)
n .

The value of dn is the geometric mean of the distances between
(
n
2

)
pairs of points

formed by this set of n points for which V (z1, . . . , zn) achieves its maximum.

Proposition 2.2.1 [4] For any natural number n ≥ 2 and compact set E ⊂ C,

we get

dn+1(E) ≤ dn(E).

That is, d2(E), d3(E) . . . is a decreasing sequence.

Proof : Let k1, . . . , kn+1 denote a system of points of the set E such that

|V (k1, . . . , kn+1)| = Vn+1.
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Since V (k1, . . . , kn+1) = (k1 − k2) · (k1 − k3) . . . (k1 − kn+1) · V (k2, . . . , kn+1), we

obtain

Vn+1 ≤ |k1 − k2||k1 − k3| . . . |k1 − kn+1| · Vn.

Similarly,

Vn+1 ≤ |k2 − k1||k2 − k3| . . . |k2 − kn+1| · Vn
Vn+1 ≤ |k3 − k1||k3 − k2| . . . |k3 − kn+1| · Vn

...

Vn+1 ≤ |kn+1 − k1||kn+1 − k1| . . . |kn+1 − kn| · Vn.

After multiplying these inequalities, we obtain

Vn+1
n+1 ≤ Vn+1

2 · Vnn+1.

Divide both sides of the last inequality by Vn+1
2 (note that it is positive)

Vn+1
n−1 ≤ Vn

n+1.

Now take, 2
(n+1)(n−1)n

power of both sides, we obtain

Vn+1

2
n(n+1) ≤ Vn

2
n(n−1) .

So, we have

dn+1 = Vn+1

2
n(n+1) ≤ Vn

2
n(n−1) = dn.

Proposition 2.2.2 [4] The value dn does not exceed the diameter of the set E

for any n ∈ N .

Proof : Case 1: n = 2

For n = 2, d(E) = Diam(E), because, let z1 and z2 be Fekete points, then

V (z1, z2) = (z1 − z2), then clearly V (z1, z2) attains its maximum value when

|z1 − z2| is maximum, i.e, Diam(E) = |z1 − z2|.
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Case 2: n > 2

Let z1, . . . , zn be the Fekete points of the set E. Let p ∈ N , l ∈ N and

|zp − zl| = maxi 6=j i,j≤n{|zi − zj|} then

dn(z1, . . . , zn ) = Vn
2

n(n−1)

= |z1 − z2|
2

n(n−1) · |z1 − z3|
2

n(n−1) . . . |z1 − zn|
2

n(n−1)

· |z2 − z3|
2

n(n−1) . . . |zn−1 − zn|
2

n(n−1)

≤ |zp − zl|
n(n−1)

2
2

n(n−1)

= |zp − zl|

≤ Diam(E).

So by Proposition 2.2.1, we see that dn approaches a finite limit as n → ∞.

This limit is called the transfinite diameter of the set E and is denoted by

d = d(E).

Corollary 2.2.3 If E consists of finite number of points, then d(E) = 0.

Theorem 2.2.4 [3] If K is a compact set, then the transfinite diameter of K

equals its logarithmic capacity.

Corollary 2.2.5 [4] Let K be a compact set, then Cap(K) = Cap(∂K).

Proof : The Fekete points lie on ∂K by maximum principle, so we have

d(K) = d(∂K). By Theorem 2.2.4, we have Cap(K) = Cap(∂K).

Corollary 2.2.6 [4] Logarithmic capacity has the following properties.

a) Monotonicity : If E ⊆ F then Cap(E) ≤ Cap(F ).

b) Homogeneity : If z∗ = az + b maps E onto E∗, then Cap(E) = |a|Cap(E).

c) Contraction property : If |γ(z) − γ(z′)| ≤ |z − z′| for z, z′ ∈ E then

Cap(γ(E)) ≤ Cap(E).
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Proof : a) Let E ⊂ F , z1, . . . , zn be the Fekete points for E and z′1, . . . , z
′
n

be the Fekete points for F. Then

Vn(z1, . . . , zn) =
n∏

k,l=1,k<l

|zk − zl| ≤
n∏

k,l=1,k<l

|z′k − z′l| = Vn(z′1, . . . , z
′
n)

If 2
n(n−1)

-th power is taken on both sides;

(Vn(z1, . . . , zn))
2

n(n−1) ≤ (Vn(z′1, . . . , z
′
n))

2
n(n−1) ⇒ dn(z1, . . . , zn) ≤ dn(z′1, . . . , z

′
n).

Letting n→∞, we have d(E) ≤ d(F ). By Theorem 2.2.4, Cap(E) ≤ Cap(F ).

b) Let z1, . . . , zn be the Fekete points for E. Then, z∗1 , . . . , z
∗
n are the Fekete

points for E∗. Then we have

Vn(z∗1 , . . . , z
∗
n) =

n∏
k,l=1,k<l

|z∗k − z∗l | =
n∏

k,l=1,k<l

|azk + b− azl + b| =
n∏

k,l=1,k l

|a||zk − zl|

= |a|
n(n−1)

2

∏
k,l=1,k<l

n|zk − zl| = |a|
n(n−1)

2 Vn(z1, . . . , zn).

If 2
n(n−1)

-th power of first and last terms of the equation above is taken, and

letting n→∞, we get

d(E∗) = |a|d(E);

so, by Theorem 2.2.4, Cap(E∗) = |a|Cap(E).

c) Let z1, . . . , zn be the Fekete points for E. Then, by following very similar ways

in proofs of a) and b), we get d(γ(E)) ≤ d(E). Then again by Theorem 2.2.4,

Cap(γ(E)) ≤ Cap(E).

Example 4 Let us find the capacity of a closed circle with radius R by using

transfinite diameter.

Let us work on unit circle and let’s denote it by D. By symmetry, the Fekete points

on ∂D are uniformly distributed, that is the points are equally placed around the

unit circle in the shape of a regular n-gon.

Hence, if z1, . . . , zn are the Fekete points for D, then zk = e
i2π(k−1)

n , for k =

1, . . . , n. Therefore, every Fekete point for unit circle is a root of the equation

xn − 1 = 0.
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We know that xn − 1 = (x− 1)(x− e 2πi
n ) . . . (x− e

2πi(n−1)
n ).

We also have xn− 1 = (x− 1)(xn−1 + xn−2 + . . .+ x+ 1). If we divide both sides

by (x− 1), we get

(x− e
2πi
n ) . . . (x− e

2πi(n−1)
n ) = (xn−1 + xn−2 + . . .+ x+ 1).

Substitute 1 for x, then we have

|(1− e
2πi
n )| . . . |(1− e

2πi(n−1)
n )| = (1 + 1 + . . .+ 1) = n.

Similarly, by the symmetry property of the Fekete points on unit circle, we have

|e
2πi
n − 1||e

2πi
n − e

4πi
n | . . . |e

2πi
n − e

2πi(n−1)
n | = n.

...

|e
2πi(n−1)

n − 1| . . . . . . |e
2πi(n−1)

n − e
2πi(n−2)

n | = n.

Hence, (Vn(z1, . . . , zn))2 = nn. If we take the 1
n(n−1)

-th power of both sides, then

we get

dn(z1, . . . , zn) = n
1

n−1 .

By letting n→∞ , we have d(U) = 1. Therefore, the transfinite diameter of unit

disc is 1. Now, we apply Corollary 2.2.6 and Theorem 2.2.4. Since the mapping

z∗ = Rz maps unit circle to a circle with radius R, then capacity of a circle with

radius R is R.

2.3 Chebyshev Polynomials and the Chebyshev

Constant

Definition 2.3.1 The polynomial Tn(z) = zn + c1z
n−1 + . . . + cn with the least

maximum modulus on a compact subset K of C is called the Chebysev polynomial

for K. (For more information about Chebyshev polynomials, please look at the

Appendix.)
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Let Tn(z) = zn+c1z
n−1 + . . .+cn be the Chebyshev polynomial for a compact

subset K of C. Let Mn = ||Tn||K .

Now define τn = (Mn)
1
n .

Lemma 2.3.2 [4] τn = (Mn)1/n, n = 1, 2, . . . is bounded and converges.

Definition 2.3.3 The number τ to which the sequence {τn} converges is called

the Chebyshev constant of the set K.

Lemma 2.3.4 [4] We have Mn ≤ Vn+1

Vn
≤ (n+ 1)Mn for all n ∈ N.

Theorem 2.3.5 [4] The Chebyshev constant τ of the set K is equal to the trans-

finite diameter of the set K.

Proof : By lemma 2.3.4, we have

Mn ≤
Vn+1

Vn
≤ (n+ 1)Mn.

It can be written as

τnn ≤
Vn+1

Vn
≤ (n+ 1)τnn .

So, we have

τ 2
2 ≤

V3

V2

≤ 3τ 2
2 .

τ 3
3 ≤

V4

V3

≤ 4τ 3
3 .

...
...

...

τnn ≤
Vn+1

Vn
≤ (n+ 1)τnn .

If we multiply the expressions above consequently, we get

(τ 2
2 τ

3
3 . . . τ

n
n )V2 ≤ Vn+1 < [(n+ 1)!](τ 2

2 τ
3
3 . . . τ

n
n )V2. (2.3)
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Now take 2
n(n+1)

-th power of all sides of equation (2.3) we get

(τ 2
2 τ

3
3 . . . τ

n
n )

2
n(n+1) (V2)

2
n(n+1) ≤ dn+1

< [(n+ 1)!]
2

n(n+1) (τ 2
2 τ

3
3 . . . τ

n
n )

2
n(n+1) (V2)

2
n(n+1) .

Claim : (V2)
2

n(n+1) → 1 and [(n+ 1)!]
2

n(n+1) → 1 as n→∞.

Proof : Here V2 is a finite number, so it is clear that

lim
n→∞

(V2)
2

n(n+1) = (V2)0 = 1.

For [(n + 1)!]
2

n(n+1) , let k = limn→∞[(n + 1)!]
2

n(n+1) then ln k = limn→∞
2

n(n+1)
·

ln[(n+ 1)!]. If we apply L’Hópital’s rule, we have

lim
n→∞

k = 2 lim
n→∞

(ln[(n+ 1)!])′

(n(n+ 1))′

= 2 lim
n→∞

[(n+ 1)!]′

(n+ 1)!(n(n+ 1))′
→ 0.

so k = 1.

Hence, we just need to prove that (τ1 · τ 2
2 · τ 3

3 . . . τ
n
n )

2
n(n+1) → τ as n→∞. Let

k = limn→∞(τ1 · τ 2
2 · τ 3

3 . . . τ
n
n )

2
n(n+1) . Then

ln k = lim
n→∞

2

n(n+ 1)
(ln(τ1 · τ 2

2 · τ 3
3 . . . τ

n
n ))

= lim
n→∞

2

n(n+ 1)
(ln τ1 + 2 ln τ2 + 3 ln τ3 . . .+ n ln τn).

We know from calculus that if a sequence of real numbers a1, . . . , an converges

to a, then (a1+...+an)
n

also converges to a as n → ∞. Additionally, we know that

limn→∞ τn = τ , so limn→∞ ln τn = ln τ .

Hence, if a1 = log τ1, a2 = log τ2, a3 = log τ2, a4 = log τ3, . . . , an(n+1)
2

=

log τn and a = τ , then we have limn→∞
(a1+...+an)

n(n+1)
2

(n+1)
2

= a, so τ = k. Hence,

(τ1τ
2
2 τ

3
3 . . . τ

n
n )

2
n(n+1) → τ as n→∞ is proven. Hence, we have

lim
n→∞

(τ 2
2 τ

3
3 . . . τ

n
n )

2
n(n+1) (V2)

2
n(n+1) ≤ lim

n→∞
dn+1

≤ lim
n→∞

[(n+ 1)!]
2

n(n+1) (τ 2
2 τ

3
3 . . . τ

n
n )

2
n(n+1) (V2)

2
n(n+1) .

So τ ≤ d ≤ τ , hence τ = d.
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Corollary 2.3.6 For any compact set K, τ(K) = d(K) = Cap(K).

This corollary is a direct result of Theorem 2.3.5 and Theorem 2.2.4.

Example 5 In Example 2, we found that Cap[−1, 1] = 1
2
. Let us find the Cheby-

shev constant for this interval.

Note that Chebyshev polynomial of degree n on [−1, 1] is

Tn(x) = 2n−1

n∏
1

(x− ξj),

where ξj, j = 1, . . . , n are zeros of the Chebyshev polynomial. Then, Mn =

||Tn||[−1,1] = 1
2n−1 . Thus,

τ([−1, 1]) = lim
n→∞

( 1

2n−1

) 1
n

=
1

2
.

Hence, this example illustrates the equality of the Capacity and the Chebyshev

constant.

Remark 2.3.7 As it is seen from this chapter, the logarithmic capacity, trans-

finite diameter and the Chebyshev constant of a nonpolar compact set are the

same, but each has some advantages that other concepts do not. For example; the

advantage of transfinite diameter over the logarithmic capacity is that transfinite

diameter is more geometric. Note that, the definition of the logarithmic capac-

ity of a set is given by measures, while the definition of transfinite diameter is

given by distances. Thus, if we know the equilibrium measure of a compact set,

it is useful to use the logarithmic capacity. On the other hand, for some compact

sets, if their corresponding Chebyshev polynomials are known, in other words, the

polynomials on these compact sets which have the least deviation, then using the

Chebyshev constant is much more advantageous.



Chapter 3

The Green Function

3.1 Green Function

Definition 3.1.1 Let K be a compact subset of C with positive capacity. If U

is the unbounded component of K, then we define the Green function for K with

the pole at ∞ as

gK(z) = gU(z,∞) = V (K)− p(ωk; z),

where p(ωk; z) is the equilibrium potential with equilibrium measure ωk and V (K)

is the equilibrium energy .

Here it is obvious that gK(z) is nonnegative because p(ωk; z) is smaller than

or equal to the equilibrium energy.

Under this definition of the Green function, we have three very important

properties of the Green function.

Proposition 3.1.2 The Green Function gK(z) has following properties.

i) The function gK(z) is subharmonic on C and harmonic on C \K.

17
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ii) The function gK(z) − log |z| is harmonic in a neighborhood of infinity and

remains bounded as z goes to infinity.

iii) gK(z) = 0 quasi-everywhere on K.

Proof : (i) We know that p(ωk; z) is superharmonic on K and harmonic on

C \K. Since V (K) is a constant (we are working with equilibrium measure ωk),

and −p(ωk; z) is subharmonic function on K, then gK(z) is subharmonic function

on K. Similarly, p(ωz; z) is harmonic on C\K, so −p(ωz; z) is harmonic on C\K.

Hence, gK(z) is harmonic on C \K.

(2) Here, we should observe that if ωk is the equilibrium measure then

p(ωk; z) ∼ log 1
|z| because∫

K

log
1

|z|
dωk(t) = log

1

|z|
, since ωk(K) = 1.

So, p(ωk, z)− log
1

|z|
=

∫
K

log
|z|
|z − t|

dµ(t).

If z → ∞, then log |z|
|z−t| → 0 uniformly with respect to t ∈ K. Therefore,

p(ωk; z) ∼ log 1
|z| . Moreover,

gK(z)− log |z| = −p(ωk, z) + V (K)− log |z| ∼ V (K).

Since K has positive capacity, then V (K) is finite. Thus gK(z)− log |z| remains

bounded as z goes to infinity and harmonic in the neighborhood of infinity.

The third property directly comes from the definition of the Green function

with pole at ∞.

Theorem 3.1.3 [11] If B is a Borel set such that C\B is bounded and of positive

capacity, then the Green function gB with properties (i)-(iii) which are defined at

previous proposition exist and is uniquely defined.

Note that, the idea of proof of this theorem comes from the minimum principle.

In more details, if g′B is another function satisfying these properties, then gB−g′B
is bounded and harmonic on C. Then, the result follows from minimum principle.
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Example 6 In Example 1, for compact set K = B(0, R), we found that

p(ωk; z) =

∫
K

log
1

|z − t|
dωk =

∫
K

log
1

|z − t|
dθ

2π
=

log 1
R
, if |z| ≤ R,

log 1
|z| if |z| > R.

Hence, the Green function for K is

gK(z) =

0, if |z| ≤ R,

log |z||R| if |z| > R.

Definition 3.1.4 Let K be a compact subset of C. Then the Robin constant for

K is defined as limz→∞ (gK(z)− log |z|) and is denoted by Rob(K).

Second condition of Proposition 3.1.2 gives that Rob(K) = V (K). Hence, for a

compact set K, the capacity is also equal to

Cap(K) = e−Rob(K).

Definition 3.1.5 (The Green Function with Pole at α 6=∞) For an open

set Ω of C∞, a Green Function with pole at α 6= ∞ is a function G : Ω × Ω →
(−∞,∞] having these properties:

i) For each α ∈ Ω, the function G(z, α,Ω) = GΩ(α) is positive and harmonic.

ii) For each α ∈ Ω, z 7→ GΩ(α) + log |z − α| is harmonic in a neighborhood of α.

iii) GΩ(α) is the smallest function from Ω×Ω into (−∞,∞] satisfying properties

(i) and (ii).

Theorem 3.1.6 [3] Let Ω1 ∈ C∞, let G be the Green function of Ω1 and let Ω2 ∈
C∞ be another region with pole α. f we have a conformal mapping T : Ω2 → Ω1,

then

H(z, α,Ω2) = G(T (z), T (α),Ω1),

where H is the Green function for Ω2.
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Example 7 In Example 6, for K = B(0, R), we have

g(z,∞,C \K) = log
|z|
R
.

Now, let take Ω1 = {|z| > 1 : z ∈ C} and Ω2 = C\ [−1, 1], and take the conformal

mapping ψ : Ω1 → Ω2 such that

ψ(z) =
1

2

(
z +

1

z

)
,

which is a continuous mapping. Moreover, ψ(∞) =∞. Thus, by Theorem 3.1.6

with w = ψ(z)

g(w,∞,Ω2) = g(z,∞,Ω1) = log |z| = log |w +
√
w2 − 1|,

where
√
w2 − 1 ≥ 0. Therefore,

Rob([−1, 1]) = lim
|w|→∞

[g(w,∞,Ω2)− log |w|] = lim
|w|→∞

log
∣∣∣1 +

√
1− 1

w2

∣∣∣ = log 2.

Hence, Cap[−1, 1] = 1
2
.

Example 8 Let K = [a, b] where a and b are real numbers and b > a. Let

Ω1 = C \ B
(
a+b

2
, b−a

2

)
, and Ω2 = C \K and take the mapping φ : Ω1 → Ω2 such

that

φ(z) =
b− a

4

(2z − a− b
b− a

+
b− a

2z − a− b

)
+
a+ b

2
,

where φ(∞) =∞.

If w = φ(z), then

b− a
4

(2z − a− b
b− a

+
b− a

2z − a− b

)
+
a+ b

2

⇒ 4w − 2(a+ b)

b− a
=
t2 + (b− a)2

t(b− a)

⇒ t2 − 2(2w − (a− b))t+ (b− a)2 = 0,

where t = 2z − a− b. Hence,

t =
2(2w − (a+ b)) + 2

√
(2w − (a+ b))2 − (b− a)2

2

⇒ 2z − a− b = (2w − (a+ b)) +
√

(2w − (a+ b))2 − (b− a)2

⇒ z = w +

√
(2w − (a+ b))2 − (b− a)2

2
.
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Now, by Example 6 and Theorem 3.1.6, we have

g(z,∞,Ω1) = log
2|z|
b− a

= log
∣∣∣ 2w

b− a
+

√
(2w − (a+ b))2 − (b− a)2

b− a

∣∣∣
= g(w,∞,Ω2).

Thus,

Rob([a, b]) = lim
|w|→∞

g(w,∞,Ω2 − log |w|)

= lim
|w|→∞

log

∣∣∣∣∣∣ 2

b− a
+

√
(2− a+b

w
)2 − ( b−a

w
)2

b− a

∣∣∣∣∣∣
= log

∣∣∣ 2

b− a
+

2

b− a

∣∣∣ = log
∣∣∣ 4

b− a

∣∣∣.
Hence,

Cap(K) =
b− a

4
.

Now for I = [a, b], the Chebyshev polynomial is

T̃nI(x) = 2n−1

n∏
j=1

(x− a+b
2

b−a
2

− ξj
)

=
22n−1

(b− a)2

n∏
j=1

(
x− a+ b

2
− ξj

b− a
2

)
.

Hence, by the definition of the Chebyshev constant, we get

τ(K) = lim
n→∞

((b− a)n

22n−1

) 1
n

=
b− a

4
.

Therefore, for K = [a, b] with a < b, we have

τ(K) = Cap(K) =
b− a

4
.

3.2 Some Additional Properties of Green Fucn-

tion

Theorem 3.2.1 [3] Let {Ωn} be a sequence of open sets such that Ωn ⊆ Ωn+1

and Ω =
⋃
n Ωn. If Gn is the Green function for Ωn and G is the Green function

for Ω, then for each α ∈ Ω, Gn(z, α) ↑ G(z, α) uniformly on compact subsets of

Ω \ {α}.
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Corollary 3.2.2 [3] Let {Dn} be a sequence of open sets such that Dn+1 ⊆ Dn

and let K =
⋂∞
j=1Dj, so Dj ↓ K.Then

gK(z) = lim
j→∞

gDj(z)

uniformly on compact set from C \K.

Therefore, for any given K, the function gK(z) can be found as limj gKj where

K =
⋂
jKj.

Corollary 3.2.3 [3] If {Kn} is a sequence of compact sets such that Kn ⊇ Kn+1

for all n and
⋂
nKn = K, the Cap(Kn)→ Cap(K).

Proof : For Kn,

Rob(Kn) = lim
|z|→∞

(gKn(z)− log |z|),

Cap(Kn) = e−Rob(Kn).

By the previous corollary, we know that gK(z) = limn→∞(gKn(z)− log |z|), then

limn→∞Rob(Kn) = Rob(K). Thus,

lim
n→∞

Cap(Kn) = Cap(K).

Example 9 Let Dn = B
(

0, 1 + 1
n

)
, it is clear that Dn+1 ⊆ Dn. Let Kn = Dn,

then we know that

gKn(z) = log
|z|

1 + 1
n

.

Moreover, K =
⋂∞
j=1Kj = B(0, 1). We also know that

gK(z) = log |z|.

Then, let us check the results of previous corollaries for this specific example:

lim
n→∞

gKn(z) = lim
n→∞

log
|z|

1 + 1
n

= log |z| = gK(z).
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Additionally,

lim
n→∞

Cap(Kn) = lim
n→∞

(1 +
1

n
) = 1 = Cap(K).

Example 10 Let Kn =
[
− 1− 1

n
, 1 + 1

n

]
, it is clear that Kn ⊇ Kn+1. Let ψ(z)

be a mapping such that

ψ : C \B(0, 1)→ C \Kn

ψ(z) =
(1 + 1

n

2

)(
z +

1

z

)
.

If w = ψ(z), then(1 + 1
n

2

)(
z +

1

z

)
= w ⇒ (n+ 1)z2 − 2nwz + (n+ 1)2 = 0

⇒ z =
2nw +

√
4n2w2 − 4(n+ 1)2

2(n+ 1)
=
nw + n

√
w2 − (n+1

n
)

n+ 1

⇒ z =
w +

√
w2 − (1 + 1

n
)2

1 + 1
n

.

Then, by Theorem 3.1.6,

gB(0,1) = log |z| = log

∣∣∣∣∣∣
w +

√
w2 − (1 + 1

n
)2

1 + 1
n

∣∣∣∣∣∣ = gKn(w).

Note that, K =
⋂
Kn = [−1, 1], and gK(w) = log |w +

√
w2 − 1|, so

lim
n→∞

gKn = lim
n→∞

log

∣∣∣∣∣∣
w +

√
w2 − (1 + 1

n
)2

1 + 1
n

∣∣∣∣∣∣ = log |w +
√
w2 − 1| = gK(z).

Moreover, Cap(Kn) =
1+ 1

n
−(−1− 1

n
)

4
= 1

2
+ 1

2n
, and Cap(K) = 1

2
, so

lim
n→∞

Cap(Kn) = lim
n→∞

1

2
+

1

2n
=

1

2
= Cap(K).

Proposition 3.2.4 Let K be a compact set such that K = {|P (z)| ≤ 1 : z ∈ C},
where P (z) = αnz

n + αn−1z
n−1 + . . .+ α0, then

gK(z) =
1

n
log |P (z)|.
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Moreover,

Cap(K) = α
− 1
n

n .

Proof : Here, 1
n

log |P (z)| = log |z| + logαn
n

+ o(z). Now, we should check

whether 1
n

log |P (z)| is the Green function or not.

On ∂K, |P (z)| = 1, so g∂K(z) = 0. Near ∞, 1
n

log |P (z)| − log |z| = log |αn|
n

+

o(z) which is bounded. Hence, 1
n

log |P (z)| − log |z| ∈ H(∞).

Moreover, polynomials are analytic functions and logarithm of analytic func-

tions are harmonic functions. Hence, 1
n

log |P (z)| ∈ H(C \K).

Therefore, by the uniqueness of the Green function, 1
n

log |P (z)| = gK(z).

Now,

Rob(K) = lim
|z|→∞

(gK(z)− log |z|) = lim
|z|→∞

( logαn
n

+ o(z)
)

= logα
1
n
n

⇒ Cap(K) = e−Rob(K) = elogα
− 1
n

n = α
− 1
n

n .

Theorem 3.2.5 (Bernstein-Walsh Theorem, [13]) Let K ∈ C be a non-

polar compact set. Then, for any polynomial P of degree n, we have

|P (z)| ≤ exp (ngK(z))‖P‖K ,

∀z ∈ C, where ‖P‖K = supz∈K |P (z)|.

From the theorem above, we have the following representation of the Green func-

tion:

Corollary 3.2.6

gK(z) = sup
{ log |P (z)|

degP
: P ∈ Π, degP ≥ 1, ‖P‖K ≤ 1

}
,

where K ∈ C is a non-polar compact set, Πn denotes the set of all polynomials of

degree at most n, Π =
⋃∞
n=0 Πn.
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3.3 Smoothness of the Green Function

Definition 3.3.1 Let U be a bounded nonempty subset of Rk, let f be a real-

valued function defined on the boundary of U , then the classical Dirichlet problem

on U is to find a harmonic function h on U such that limy→x h(y) = f(x),∀x ∈
∂U . The point p is said to be a regular point with respect to the Dirichlet problem

if the classical Dirichlet problem has a solution for each continuous function at p.

Also, the set U is said to be regular with respect to the Dirichlet problem if every

boundary point of U is a regular point in the Dirichlet sense.

Theorem 3.3.2 (Wiener Theorem, see e.g. [12]) Let K be a compact set,

Ω = C \K, and let 0 ≤ λ ≤ 1 and set

An(z) = {y|y 6∈ Ω, λn ≤ |y − z| ≤ λn−1}.

Then z ∈ ∂Ω is a regular boundary point of Ω if and only if

∞∑
n=1

n

log
(

1
Cap(An(z))

) =∞.

Theorem 3.3.3 (see e.g. [12]) Let K be a compact set. Then gK(z) is contin-

uous on the whole plane if and only if K is regular with respect to the Dirichlet

problem.

Example 11 Let K = [0, 1], then K is a regular set. To see this, let us show that

0 is a regular point of C\K. Let us choose λ = 1
2
. Then, we have Cap(An) = 1

2n+2 .

Thus, log 1
Cap(An(z))

= (n+2) log 2. Since,
∑∞

n=0
n

(n+2) log 2
=∞, then 0 is a regular

point. Similarly, all other points of K are regular points of C \ K. Thus K is

regular. By the theorem above, gK(z) is continuous on the whole plane.

On the other hand, in Example 8, we see that gK(z) is continuous, thus the

set K is regular.
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Example 12 [12] Let K = {0}∪
⋃∞
k=1 Ik such that Ik = [ak, bk], where bk = e−M

k

and ak = bk − bk+1 with M ≥ 0. Then by Theorem 3.3.2, gK(z) is continuous if

and only if
∑∞

k=1
Mk

Mk+1
=∞. In this case Mk

Mk+1
= 1

M
. Thus, gK(z) is continuous.

Definition 3.3.4 Let f be a real or complex valued function on Euclidean space.

Then f is called Hölder continuous if there exists nonnegative real constants C

and α such that

|f(x)− f(y)| ≤ C|x− y|α

for all x and y in the domain of f . In this case, f satisfies Hölder condition of

order α > 0 or f belongs to Lipschitz class α, denoted by f ∈ Lip(α). If α = 1
2

and K ⊂ [a, b], this is an optimal smoothness for gK.

Definition 3.3.5 Given a function f, the modulus of continuity of f is a function

w(f, δ) = sup|x−y|≤δ |f(x)− f(y)|, where x, y ∈ Dom(f).

Let K be a regular compact set. Since gK(z) = 0, ∀z ∈ K, and gK(z) is

continuous on C \K, it is interesting to figure out what kind of continuity gK(z)

has near the boundary of K. Given regular compact set K and δ > 0. We say that

the point p = p(δ) realizes the modulus of continuity of gK if dist(p,K) ≤ δ, and

gK(z) ≤ gK(p) for all z with dist(z,K) ≤ δ. Here, we get w(gk, δ) = gK(p)−gK(φ)

for some φ ∈ K.

Let us start with some known examples.

Example 13 Let K = [−1, 1], then gK(z) admits a modulus of continuity at the

points −1− δ and 1 + δ. From Example 8, we know that gK(z) = |z +
√
z2 − 1|.

Thus, gK(−1− δ), gK(1 + δ) ≤
√

3δ, and gK(δi) ≤ δ, and for all remained z such

that dist(z,K) ≤ δ, gK(z) ≤ Cδα, where 1
2
< α < 1. Thus, gK(z) ∈ Lip(1

2
).

Let K = B(0, 1), then by Example 6, we have

gK(z) =

0, if |z| ≤ 1,

log |z| if |z| > 1.
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Then, ∀z ∈ B(0, 1 + δ) \B(0, 1), we have gK(z) ≤ δ, hence gK(z) ∈ Lip(1).

Now, let us introduce some recent results.

Example 14 [12] Let K be a compact subset of an open disc with positive ca-

pacity, then

gK(z) ≤ C|z|
1
2 exp

(
D

∫ 1

|z|

Θ2(u)

u3
du
)

log
2

Cap(K)

for |z| ≤ 1, where C and D are constants and Θ = ΘK is a function that measures

the density near the origin of the circular projection of K onto the positive real

axis. More specifically, let K̃ be the set of a ∈ [0, 1] such that K intersects the

circle |z| = a, then Θ(t) = d([0, t] \ K̃), where d is the Lebesgue measure.

Example 15 [6] Let Kα be a Cantor-type set, such that 1 < α < 2. Then Kα =⋂∞
s=0Es, where E0 = I1,0 = [0, 1], Es is a union of 2s closed basic intervals Ij,s of

length ls = lαs−1 with 2lα−1
1 < 1 and where Es+1 is obtained by deleting the open

concrete subinterval of length hs := ls − 2ls+1 from each Ij,s with j = 1, 2, . . . , 2s.

Then, for every 0 ≤ ε ≤ γ, there exists constants δ0, C0, depending on α and ε,

such that

gKα(z) ≤ C0ϕ
γ−ε(δ)

for z ∈ C with dist(z,Kα) = δ ≤ δ0, where ϕ(δ) = (log 1
δ
)−1, and γ =

log 2
α

logα
. Here,

the smoothness of the Green function is described in terms of the function ϕ(δ).

Moreover,

gKα(−δ) ≥ Cϕγ(δ).



Chapter 4

Nearly Chebyshev Polynomials

We will consider a special compact set, see also [5]. Let K = {0} ∪
⋃∞
k=1 Ik such

that Ik = [ak, bk]. Now fix m ∈ Z+ and define

P (x) = x
m−1∏
k=1

γkT̃nkk(x)

on K, where γk = 1
T̃nkk(0)

, nk denotes the degree of the Chebyshev polynomial

defined in Ik and T̃nkk(x) = T̃nk(
x−ck
δk

), where ck = bk+ak
2

and δk = bk−ak
2

.

Notation 1 For simplicity of notation, from now on let Tnk(x) = T̃nkk(x). Thus,

Tnk(x) represents the extended Chebyshev polynomial which is defined on a given

Ik with degree nk.

First of all, we need to approximate the degrees nk in order to make P (x) the

polynomial which has almost the least deviation on a given compact set K, in

other words, in order to make P (x) a nearly Chebyshev polynomial for K.

28
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4.1 Determination of the Degrees of the Cheby-

shev Polynomials

Theorem 4.1.1 Let bk = e−2k, b2
k = bk+1, and bk−bk+1 = ak. We can determine

all nk values for k < m so that |P (x)| ≤ bm ∀x ∈ K and x > bm.

Before the proof of the theorem, let us prove the following two lemmas.

Lemma 4.1.2
∣∣∣Tnk (bj)

Tnk (0)

∣∣∣ ≤ ( bjbk)nk , where j < k.

Proof : Let {x1, x2, . . . , xnk} be the zeros of Tnk(x). Then,∣∣∣Tnk(bj)
Tnk(0)

∣∣∣ =

nk∏
k=1

bj − xk
xk

.

Now, take any arbitrary zero xp of the Chebyshev polynomial. Since xp > ak, we

get

bj − xp
xp

≤ bj − ak
ak

=
bj − bk + bk+1

bk − bk+1

=
bj
bk

(1− b(2k−j−1)
j + b

(2k−j+1−1)
j )

(1− bk)
.

Now, since 1 − b2k−j
j ≥ bj, then 1 − b

(2k−j−1)
j + b

(2k−j+1−1)
j ≤ 1 − b2k−j

j . Thus,
bj−xp
xp
≤ bj

bk
. Since xp is arbitrary, we get

∣∣∣Tnk(bj)
Tnk(0)

∣∣∣ =

nk∏
k=1

bj − xk
xk

≤
( bj
bk

)nk
.

Lemma 4.1.3 |Tnk(0)| ≥ 1
2
4nk(b

(εk−1)
k )nk , where εk = 1

e2k2k
.

Proof : By definition, |Tnk(0)| ≥ 1
2
4nk
∏nk

j=1
ak
bk+1

= 1
2
4nk
∏nk

j=1(b−1
k − 1). Now

let

(b−1
k )1−εk ≤ b−1

k − 1⇒ (1− εk)2k ≤ 2k log (1− e−2k).
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By the power series expansion of log (1− x), it is known that log (1− x) < −x.

(1− εk)2k ≤ 2k log (1− e−2k) ≤ −e−2k ⇒ εk ≥
1

e2k2k
.

Thus,

|Tnk(0)| ≥ 1

2
4nk(b

(εk−1)
k )nk

with εk = 1

e2k2k
.

Proof : [of Theorem 4.1.1] Let x = bp is fixed where 1 ≤ p ≤ m− 1. Then

|P (bp)| = bp

m−1∏
k=1

γkT̃nkk(bp).

Let us divide this representation of the polynomial above into two parts in a way

that

Lp = bp

m−1∏
k=p

γkT̃nkk(bp),

Rp =

p−1∏
k=1

γkT̃nkk(bp).

Note that for any 1 ≤ p ≤ m − 1, the value of Rp is less than 1. However, the

value of Lp is huge when it is compared to Rp. Hence, we want to have

bm−1

bm
≤ |Tnm−1(0)|

bm−2

bm

∣∣∣Tnm−1(bm−2)

Tnm−1(0)

∣∣∣ ≤ |Tnm−2(0)|

bm−3

bm

∣∣∣Tnm−1(bm−3)

Tnm−1(0)

∣∣∣∣∣∣Tnm−2(bm−3)

Tnm−2(0)

∣∣∣ ≤ |Tnm−3(0)|

...

bm−j
bm

∣∣∣Tnm−1(bm−j)

Tnm−1(0)

∣∣∣ . . . ∣∣∣Tnm−j+1
(bm−j)

Tnm−j+1
(0)

∣∣∣ ≤ |Tnm−j(0)|

...

However, usage of the lemmas above guarantees the correctness of the above

expression. They also give us an easier calculation opportunity. Thus, let us
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calculate degrees according to

bm−1

bm
≤ 1

2
4nm−1(b

(εm−1−1)
m−1 )nm−1 (4.1)

bm−2

bm

(bm−2

bm−1

)nm−1

≤ 1

2
4nm−2(b

(εm−2−1)
m−2 )nm−2 (4.2)

bm−3

bm

(bm−3

bm−1

)nm−1
(bm−3

bm−2

)nm−2

≤ 1

2
4nm−3(b

(εm−3−1)
m−3 )nm−3 (4.3)

...

bm−j
bm

(bm−j
bm−1

)nm−1

. . .
( bm−j
bm−j+1

)nm−j+1

≤ 1

2
4nm−j(b

(εm−j−1)
m−j )nm−j (4.4)

...

From (4.1), we get

b−1
m−1 ≤ 22nm−1−1(bm−1)nm−1(εm−1−1)

⇒ b
(nm−1(1−εm−1)−1)
m−1 ≤ 22nm−1−1

⇒ 2m−1 − 2m−1nm−1(1− εm−1) ≤ 2nm−1 log 2− log 2

⇒ nm−1 ≥
2m−1 + log 2

2m−1(1− εm−1) + 2 log 2
= 1−

log 2− 1

e2m−1

2m−1 − 1

e2m−1 + log 4
.

Hence, we can take nm−1 = 1.

From (4.2), we get

b−3
m−2b

−1
m−2 ≤ 22nm−2−1(bm−2)nm−2(εm−2−1)

⇒ b
(nm−2(1−εm−2)−4)
m−2 ≤ 22nm−2−1

⇒ nm−2(2 log 2 + 2m−2(1− εm−2)) ≥ 2m−24 + log 2

⇒ nm−2 ≥
2m−24 + log 2

2m−2(1− εm−2) + log 4
= 4−

4 log 4− log 2− 4

e2m−2

2m−2 − 1

e2m−2 + log 4
.

Hence, we can take nm−2 = 4.
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From (4.3), by similar calculations, we get

nm−3 ≥ 14−
14 log 4− log 2− 14

e2m−2

2m−2 − 1

e2m−2 + log 4
.

Thus, we can take nm−3=14.

Finally, if

ζ =

j−1∑
k=1

(nm−k(2
j−k − 1)) + (2j − 1),

then, from (4.4), by similar calculations, we get

nm−j ≥ ζ −
ζ log 4− log 2− ζ

e2m−2

2m−2 − 1

e2m−2 + log 4
.

Hence, for any j ≤ m− 1, we have

nm−j =

j−1∑
k=1

(nm−k(2
j−k − 1)) + (2j − 1)

and by construction, we have |P (x)| ≤ bm.

Corollary 4.1.4 nm−j−1 = 4nm−j − 2nm−j+1 with nm−1 = 1 and nm−2 = 4.

Proof : We prove this corollary by induction. First of all, note that, 4nm−2−
2nm−1 = 4 · 4− 2 · 1 = 14 = nm−3, by calculations which are done in the proof of

the previous theorem. Now, this recursive relation holds up to nm−j. Then;

nm−j−1 = nm−1(2j − 1) + nm−2(2j−1 − 1) + . . .+ 7nm−j+2 + 3nm−j+1 + nm−j

+ (2j+1 − 1) = nm−j + 3[nm−j+1 + 3nm−j+2 + 7nm−j+3 + . . .

+ (2j−1 − 1)nm−1 + (2j − 1)]− 2[nm−j+2 + 3nm−j+3 + . . .

+ (2j−2 − 1)nm−1 + (2j−1 − 1)] = 4nm−j − 2nm−j+1.

Corollary 4.1.5 For any k < m− 1, nk = 1
2
√

2
((2 +

√
2)m−k + (2−

√
2)m−k).
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Proof : We prove this corollary by induction too. First of all, 1
2
√

2
((2 +

√
2)m−(m−1) + (2 −

√
2)m−(m−1)) = 1 = nm−1. Now, assume this corollary holds

up to nq. Then by previous theorem, we have;

nq+1 = 4nq − 2nq−1

=
√

2((2 +
√

2)m−q + (2−
√

2)m−q)− 1√
2

((2 +
√

2)m−q + (2−
√

2)m−q)

=
√

2(2 +
√

2)m−q−1(
3

2
+
√

2)−
√

2(2−
√

2)m−q−1(
3

2
−
√

2)

=
1

2
√

2
((2 +

√
2)m−q+1 + (2−

√
2)m−q+1).

4.2 Some Properties of the Degrees

In this section, we give some additional properties of the degrees found in the

previous section that will be used intensively in Chapter 5 and Chapter 6.

Corollary 4.2.1

1 +
m−1∑
k=q+1

nk = nq−1 − 3nq.

Proof : We prove this corollary by induction too. First of all, 1 + nm−1 +

nm−2 = 1 + 1 + 4 = 6 = 48− 3 · 14 = nm−4− 3nm−3. Now assume 1 + . . .+nq+2 =

nq − 3nq+1. Then

1 + . . .+ nq+1 = nq − 3nq+1 + nq+1 = nq − 2nq+1

= 4nq − 2nq+1 − 3nq − nq−1 − 3nq.

Note that the last equality comes from Corollary 4.1.4.

Corollary 4.2.2
p∑
k=q

nk =
1

2
[(2 +

√
2)m−q + (2−

√
2)m−q − (2 +

√
2)m−p−1 − (2−

√
2)m−p−1],

where 1 ≤ q ≤ p ≤ m− 1.
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Proof :

p∑
k=q

nk =
1

2
√

2

p∑
k=q

[(2 +
√

2)m−k − (2−
√

2)m−k]

=
1

2
√

2

[
(2 +

√
2)m−p

p−q∑
k=0

(2 +
√

2)k − (2−
√

2)m−p
p−q∑
k=0

(2−
√

2)k
]

=
1

2
√

2

[
(2 +

√
2)m−p

(√2((2 +
√

2)p−q+1 − 1)

2 +
√

2

)
− (2−

√
2)m−p

(√2(1− (2 +
√

2)p−q+1)

2−
√

2

)]
=

1

2
[(2 +

√
2)m−q + (2−

√
2)m−q − (2 +

√
2)m−p−1 − (2−

√
2)m−p−1].

Corollary 4.2.3

1 +
m−1∑
k=1

nk =
1

2
[(2 +

√
2)m−1 + (2−

√
2)m−1].

Proof : Apply Corollary 4.2.2 with q = 1 and p = m− 1.

Corollary 4.2.4

bmbm−1b
nm−2

m−2 . . . b
nq+1

q+1 = b1+1+...+nq
q = bnq−2−3nq−1

q .

Proof : We prove this theorem by induction.

First of all, bmbm−1 = b4
m−2b

2
m−2 = b6

m−2 = b1+1+4
m−2 . Now assume that

bmbm−1b
nm−2

m−2 . . . b
nq+2

q+2 = b
1+1+...+nq+1

q+1 . Then

bmbm−1b
nm−2

m−2 . . . b
nq+1

q+1 = b
1+1+...+nq+1

q+1 b
nq+1

q+1 = b2+2nm−1+...+2nq+2+4nq+1
q

= b
1+...+nq+1+nq−3nq+1+3nq+1
q = b1+nm−1+...+nq

q = bnq−2−3nq−1
q .
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Corollary 4.2.5 We have the following inequalities:

nqbq ≤
p∑
k=q

nkbk ≤ 2nqbq,

np
bp
≤

p∑
k=q

nk
bk
≤ 2

np
bp
.

Proof : Lower bounds in both inequalities are obvious. Let us find the upper

bounds. Note that
p∑
k=q

nk
bk

= nqbq

(
1 + bq

( 1

2 +
√

2
+

1

(2 +
√

2)2 + . . .+ 1
(2+
√

2)p−q

))
≤ nqbq(1 + bq)

≤ 2nqbq.

Moreover,

p∑
k=q

nk
bk
≤ np
bp

(
bp(2 +

√
2) + b3

p(2 +
√

2)2 + . . .+ b2q−p−1
p (2 +

√
2)q−p

)
≤ 2

np
bp
.

Corollary 4.2.6

4 + 2
√

2

3 + 2
√

2

nq
2q
− εq ≤

m−1∑
k=q

nk
2k
≤ 4 + 2

√
2

3 + 2
√

2

nq
2q
,

where εq = (1 +
√

2) (2−
√

2)m−q

2q
.

Proof : We use some properties of geometric series in this proof.

m−1∑
k=q

nk
2k

=
1

2
√

2

(m−1∑
k=0

(2 +
√

2)m−k

2k
−

q−1∑
k=0

(2 +
√

2)m−k

2k
−

(m−1∑
k=0

(2−
√

2)m−k

2k
−

q−1∑
k=0

(2−
√

2)m−k

2k

))
=

(2 +
√

2)m

2
√

2

(m−1∑
k=0

1

(2(2 +
√

2))k
−

q−1∑
k=0

1

(2(2 +
√

2))k

)
− (2−

√
2)m

2
√

2

(m−1∑
k=0

1

(2(2−
√

2))k
−

q−1∑
k=0

1

(2(2−
√

2))k

)
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=
(2 +

√
2)m

2
√

2

(1 + 2(2 +
√

2) + . . .+ (2(2 +
√

2))m−q−2

(2 +
√

2)m−12m−1

)
− (2−

√
2)m

2
√

2

(1 + 2(2−
√

2) + . . .+ (2(2−
√

2))m−q−2

(2−
√

2)m−12m−1

)
=

1

2
√

2

4 + 2
√

2

3 + 2
√

2

((2 +
√

2)m−q

2q
− 1

2m

)
− 1

2
√

2

4− 2
√

2

3− 2
√

2

((2−
√

2)m−q

2q
− 1

2m

)
=

4 + 2
√

2

3 + 2
√

2

nq
2q
− (1 +

√
2)

(2−
√

2)m−q

2q
+

1

2m+1
.

Corollary 4.2.7 b2
q ≤ bcbc−1 . . . bq ≤ bq, where q ≤ c.

Proof : It is obvious that bcbc−1 . . . bq ≤ bq. For the other inequality,

bcbc−1 . . . bq = b2c−q

q . . . bq = b1+2+...+2c−q

q ≥ b2
q.



Chapter 5

A Lower Bound for the Green

Function

In this chapter, we will find a lower bound for the Green function for compact sets

defined in previous chapter for −δ = −bs value which is close to the boundary of

these compact sets. By Corollary 3.2.6, we know that any polynomial on these

compact sets gives us a lower bound for the Green function. However, the major-

ity of them gives us useless lower bounds. The polynomial which was introduced

in the previous chapter with calculated degrees gives us a nearly Chebyshev poly-

nomial, so we use a slightly modified version of this polynomial to have a good

lower bound for the Green function.

Note that

P (x) = x
m−1∏
k=1

Tnk(x)

Tnk(0)
= x

m−1∏
k=1

Qnk(x)

Qnk(0)
,

where if {x1, . . . , xnk} are the zeros of the Chebyshev polynomial Tnk , then Qnk =∏nk
k=1(x − xk), since Tnk = 2nk−1( 2

bk−ak
)nk
∏nk

k=1(x − xk). Now, let H(x) = P (x)
bm

.

We use this polynomial to have a lower bound for the Green function at −δ
value, since by the construction of degrees |H(x)| ≤ 1 on compact sets, whereas

|P (x)| ≤ bm.

37



CHAPTER 5. A LOWER BOUND FOR THE GREEN FUNCTION 38

Theorem 5.0.8 Let K = {0}∪
⋃∞
k=1 Ik, where Ik = [ak, bk], bk = e−2k , b2

k = bk+1

and ak = bk − bk+1. Then

gK(−δ) ≥ 3ϕγ,

where ϕ =
(

log 1
δ

)−1

, γ =
log (1+

√
2

2
)

2
, and δ = bs = e−2s. Note that s ∈ Z,

s ≤ m− 1, and s is big enough so that bs is close to the boundary of K.

Proof : If we evaluate |H(x)| at −δ, we get

|H(−δ)| = δ

bm

m−1∏
k=1

∣∣∣Qnk(−δ)
Qnk(0)

∣∣∣ =
δ

bm

(δ + x1)(δ + x2) . . . (δ + xN)

x1x2x3 . . . xN
,

where {x1, x2, . . . , xN} are all zeros of the corresponding Chebyshev polynomials

and N is the total degree. Let xp be an arbitrary zero in Ik, then

δ + xp
xp

≥


δ
bk
, if k > s,

2 if k = s,

1 if k < s.

Thus,

|H(−δ)| ≥ δ

bm

δ

bm−1

( δ

bm−2

)nm−2

. . .
( δ

bs+1

)ns+1

2ns

=
δ1+nm−1+nm−2+...+ns+12ns

bmb
nm−1

m−1 b
nm−2

m−2 b
ns+1

s+1

. . . =
δns−3ns+12ns

δns−2−3ns−1
.

The last equality is from Corollary 4.2.4 and Corollary 4.2.1.

Note that ns − 3ns+1 − ns−2 + 3ns−1 = −ns+1 + 3ns − 3ns+1 = −ns − ns+1.

Thus,

|H(−δ)| ≥
(2

δ

)ns(1

δ

)ns+1

.

Therefore,

log |H(−δ)| ≥ ns log
2

δ
+ ns+1 log

1

δ
.
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By Corollary 4.2.3, if we denote the total degree in this calculation by N , then

N = 2 +
m−1∑
k=1

nk =
1

2
((2 +

√
2)m−1 + (2−

√
2)m−1) + 1.

Note that ns
N
≥ 1√

2
(2 +

√
2)1−s, and ns+1

N
≥ 1√

2
(2 +

√
2)−s. Thus,

log |H(−δ)|
N

≥ 1√
2

(2 +
√

2)1−s log
2

δ
+

1√
2

(2 +
√

2)−s log
1

δ

≥ 2 +
√

2√
2

(2−
√

2)s +
1√
2

(2−
√

2)s =
3 +
√

2√
2

(2−
√

2)s.

Moreover, 2s = log 1
δ
. Note that (2 −

√
2)s =

(
log 1

δ

) log (2−
√
2)

2
= ϕγ, where

ϕ =
(

log 1
δ

)−1

, and γ =
log (1+

√
2

2
)

2
. So,

gK(−δ) ≥ 3 +
√

2√
2

ϕγ ≥ 3ϕγ.



Chapter 6

An Upper Bound for the Green

Function

In this chapter, first of all, we are going to find an upper bound for the Green

function for compact sets defined in Chapter 4 for −δ = −bs value which is close

to the boundary of these compact sets. Theorem 3.2.5 states that

gK(−δ) = sup
{ log |P (−δ)|

degP
: P ∈ Π, degP ≥ 1, |P |K ≤ 1

}
.

Let F (−δ) be the function that realizes the supremum above. By the tools of La-

grange interpolation, we can write F (x) in term of the Lagrange basis polynomials

(see the Appendix for more explanation), as

F (−δ) =
N∑
k=0

F (xk)lk(−δ).

We choose the interpolating points as the zeros of the Chebyshev polynomials on

Im−1, Im−2, . . . , I3 with x0 = 0 and x1 = bm. Then, we have two ways to determine

the upper bound of the Green function on K. The first way is to determine the

basis polynomial which has maximal absolute value. Let’s say |lk(−δ)| is the

maximal one, then with the condition |F (xk)| ≤ 1, we have

log |F (−δ)|
N

≤ log
∑N

k=0|F (xk)lk(−δ)|
N

≤ logN

N
+

log |lk(−δ)|
N

,

40
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where N denotes the total degree.

The second way is to find a function which is an upper bound for |lk(−δ)|
for k = 0, 1, . . . , N , and calculate the above expression for this upper bound

function. In our case, we prefer to use the second way as the first way requires

more calculations and theorems.

However, in order to find the upper bound of the Green function for K, we do

not use the degrees of the Chebyshev polynomials defined on intervals Ik which

were used at evaluating the lower bound of the Green function for K, since if we

take nk as in the previous chapter, then the Lagrange basis polynomials do not

give us the desired bound. The reason for this problem is that the degrees of the

Chebyshev polynomials which are defined on first few intervals are so big when

compared to the length of these intervals. For this reason, we have to reduce the

degrees of the basis polynomials for the first few intervals. Let mk denote the

new degrees such that mk = nk − vk, where vk = bnk log 8
2k
c, where bxc denotes the

floor function of x.

The theorem below gives us an upper bound of a basis polynomial.

Theorem 6.0.9 Let xk ∈ Iq, then

log |lk(−δ)| ≤ ns + 2sns,

where 3 ≤ q ≤ m− 1.

Proof : In this proof, we use Corollary 4.2.1, Corollary 4.2.4, Corollary 4.2.6

and Corollary 4.2.7. First of all let xk ∈ Iq where 3 ≤ q ≤ s, then

|lk(−δ)| ≤
δ(δ + bm)(δ + bm−1)(δ + bm−2)mm−2 . . . (δ + bq)

mq

a2
q(aq − bm−1)(aq − bm−2)mm−2 . . . (aq − bq+1)mq+1mq(

b2q
4

)mq−1

q−1∏
y=3

∏
xa∈Iy

(
1 +

δ + xk
xa − xk

)
≤
δ1+1+mm−1+...+ms+1(2δ)msb

ms−1

s−1 . . . b
mq
q 4mq

b
1+1+1+mm−1+...+mq+1
q 4mq(bq)2mq−2

m∏
k=s+1

(
1 +

bk
δ

)nk s−1∏
k=q

(
1 +

δ

bk

)nk( m∏
k=q+1

(
1− bq −

bk
bq

)nk)−1
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q−1∏
b=3

∏
xa∈Ib

(
1 +

δ + xk
xa − xk

)
≤ ABqDq

Cq

δ2+nm−1+...+ns+1(2δ)nsb
ns−1

s−1 . . . b
nq
q 4nq

b
1+1+1+nm−1+...+nq+1+2nq−2
q

b
vm−1+...+vq+1+2vq
q

δvm−1+...+vs+1(2δ)vsb
vs−1

s−1 . . . b
vq
q 4vq

,

where A =
∏m

k=s+1

(
1+ bk

δ

)nk
, Bq =

∏s−1
k=q

(
1+ δ

bk

)nk
, Cq =

∏m
k=q+1

(
1−bq− bk

bq

)nk
and Dq =

∏q−1
b=1

∏
xa∈Ib

(
1 + δ+xk

xa−xk

)
.

Now, note that nk log 8
2k
− 1 ≤ vk ≤ nk log 8

2k
, so

(
1
8

)nq
≤ b

vq
q ≤

(
1
8

)nq
b−1
q , and by

Corollary 4.2.6, we have(1

8

) 4+2
√
2

3+2
√
2
nq
≤ b

∑m−1
k=q vq

q ≤
(1

8

) 4+2
√
2

3+2
√
2
nq

8(1+
√

2)(2−
√

2)m−qb−(m−q)
q .

Thus,

|lk(−δ)| ≤
ABqDq

Cq

δ1+ns−1−3ns2nsb
nq−2−3nq−1
q b3ns−1−ns−2

s b
nq
q 4nq

b
2+nq+1−3nq
q b

2nq−2
q(

1
8

) 7+4
√

2
3+2
√

2
nq

8(1+
√

2)(2−
√

2)m−qb
−(m−q−1)
q(

1
8

) 4+2
√
2

3+2
√
2
ns(

1
8

) 1
2

[(2+
√

2)m−q+(2−
√

2)m−q−(2+
√

2)m−s−(2−
√

2)m−s]

=
ABqDqFq
CqGq

4nq2ns

δns−1
8Υ,

where Fq = 8(1+
√

2)(2−
√

2)m−q , Gq = b
(m−q−1)
q , and Υ = 1

2
[(2 +

√
2)m−q + (2 −

√
2)m−q− (2 +

√
2)m−s− (2−

√
2)m−s]− 7+4

√
2

3+2
√

2
nq + 4+2

√
2

3+2
√

2
ns. Now note that, since

(2−
√

2)s−q ≤ 1. we have

Υ ≤ (2 +
√

2)m−q

2

(
1− 7 + 4

√
2

4 + 3
√

2

)
+

(2 +
√

2)m−s

2

(4 + 2
√

2

4 + 3
√

2
− 1
)

= − 1

2
√

2

2 + 3
√

2

4 + 3
√

2
(2 +

√
2)m−q − 1

2
√

2

2

4 + 3
√

2
(2 +

√
2)m−s

≤ −2 + 3
√

2

4 + 3
√

2
nq −

2

4 + 3
√

2
ns.

Thus,

|lk(−δ)| ≤
ABqDqFq
CqGq

4nq2ns

δns−1

1

8
2+3
√
2

4+3
√
2
nq+

2
4+3
√
2
ns
.
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Now we have

logDq =

q−1∑
b=3

∑
xa∈Ib

log (1 +
δ + xk
xa − xk

) ≤ (δ + bq)

q−1∑
k=3

nk
bk
≤ (2 +

1

6
)nq−1bq−1

− logCq = −
m∑

k=q+1

nk log (1− bq −
bk
bq

) ≤
m∑

k=q+1

nk

(
bq +

bk
bq

)
≤ 4nq+1bq

≤ 1

6
nq−1bq−1

logA =
m∑

k=s+1

nk log 1 +
bk
δ
≤ 1

δ

m∑
k=s+1

nkbk ≤ 2ns+1bs ≤
1

6
nq−1bq−1

logBq =
s−1∑
k=q

nk log 1 +
δ

bk
≤ δ

s−1∑
k=q

nk
bk
≤ 2ns−1bs−1 ≤

1

6
nq−1bq−1

logFq = 3 log 2(1 +
√

2)(2−
√

2)m−q ≤ 6(2−
√

2)m−q ≤ 1

6
nq−1bq−1

logGq = 2q(m− q − 1) ≤ 1

6
nq−1bq−1.

Thus,

log
ABqDqFq
CqGq

4nq2ns

δns−1

1

8
2+3
√
2

4+3
√
2
nq+

2
4+3
√
2
ns
≤ 3nq−1bq−1 + nq log 2(2− 3

2 + 3
√

2

4 + 3
√

2
)

+ ns log 2(1− 3
2

4 + 3
√

2
) + (ns − 1)2s.

Note that, 3nq−1bq−1 + nq log 2(2− 32+3
√

2
4+3
√

2
) + ns log 2(1− 3 2

4+3
√

2
)− 2s ≤ 0, since

q ≥ 3. Thus,

log |lk(−δ)| ≤ ns2
s.

Now let xk ∈ Iq, where s ≤ q ≤ m− 1, then by similar calculations above and

by Corollary 4.2.7, we have

|lk(−δ)| ≤
ADs

CqEq

2ns4nqbq
δns

b
vm−1+...+vq+1+2vq
q b

vq−1

q−1 . . . b
vs
s

b
vm−1+...+vs
s

≤ ADs

CqEq

(
1
8

) 7+4
√
2

3+2
√
2
nq

8(1+
√

2)(2−
√

2)m−qb
−(m−q−1)
q(

1
8

) 4+2
√
2

3+2
√
2
ns

8
1
2

[(2+
√

2)m−s+(2−
√

2)m−s−(2+
√

2)m−q−(2−
√

2)m−q ]δ2

2ns4nqbq
δns

≤ ADs

CqEqGq

2ns4nqbq
δ2+ns

8Υ,
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where Eq =
∏q−1

k=s

(
1− bk − bq

bk

)nk
, and Υ = 1

2
[(2 +

√
2)m−q + (2−

√
2)m−q − (2 +

√
2)m−s − (2−

√
2)m−s]− 7+4

√
2

3+2
√

2
nq + 4+2

√
2

3+2
√

2
ns + (1 +

√
2)(2−

√
2)m−q. Note that

in this case

Υ ≤ −2 + 3
√

2

4 + 3
√

2
nq −

2

4 + 3
√

2
ns + (2

√
2− 3

2
)(2−

√
2)m−q

+
9− 5

√
2

4
(2−

√
2)m−s.

Thus,

|lk(−δ)| ≤
ADsHq

CqEqGq

2ns4nqbq
δ2+ns

1

8
2+3
√
2

4+3
√
2
nq+

2
4+3
√
2
ns
,

where Hq = 8(2
√

2− 3
2

)(2−
√

2)m−q+ 9−5
√
2

4
(2−
√

2)m−s . In this case, like the calculations

above, we have

log
ADsHq

CqEqGq

≤ 7ns−1bs−1.

Hence,

log |lk(−δ)| ≤ 7ns−1bs−1 + ns log 2(1− 6

4 + 3
√

2
)− 2q + nq log 2(2− 3

2 + 3
√

2

4 + 3
√

2
)

+ 2s+2 + ns2
s.

Note that, 7ns−1bs−1 +ns log 2(1− 6
4+3
√

2
)− 2q +nq log 2(2− 32+3

√
2

4+3
√

2
) + 2s+2 ≤ ns.

Thus if xk ∈ Iq, where 3 ≤ q ≤ m− 1, we have

log |lk(−δ)| ≤ ns + 2sns.

Theorem 6.0.10 Let x1 = bm, then

log |l1(−δ)| ≤ 3ns + 2sns.

Proof : If we make the calculations as in the proof of the previous theorem,

we get

|l1(−δ)| ≤ ADs

Em

2ns

δns
b
vm−1

m−1 . . . b
vs
s

b
vm−1+...+vs
s

≤ ADs

Em

2ns

δns
8

[ns(3+ 4+2
√
2

3+2
√
2

)−ns−1+1]

δ2
.
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Since, ns(3 + 4+2
√

2
3+2
√

2
)− ns−1 + 1 ≤ (5− 3

√
2)ns, we get

|l1(−δ)| ≤ ADs

Em

2ns

δ2+ns
8(5−3

√
2)ns .

By similar calculations at previous theorem, we get

log |l1(−δ)| ≤ 5ns−1bs−1 + ns log 2(16− 9
√

2) + 2s+2 + 2sns.

Note that 5ns−1bs−1 + ns log 2(16− 9
√

2) + 2s+2 ≤ 3ns. Thus,

log |l1(−δ)| ≤ 3ns + 2sns.

Remark 6.0.11 Let x0 = 0, then the corresponding basis polynomials are ex-

panded, we get

|l0(−δ)| ≤ |l1(−δ)|.

Thus, there is no need to find an upper bound for log |l0(−δ)|.

Theorem 6.0.12 Let Ñ = 2 +
∑m−1

k=3 mk and let x0 = 0, x1 = bm and xk ∈ Iq,
where 3 ≤ q ≤ m− 1. Then

log |lk(−δ)| ≤ 3ns + 2sns

for k = 0, 1, . . . , Ñ − 1.

Proof : This theorem is a result of Theorem 6.0.9 and Theorem 6.0.10.

Theorem 6.0.13

gK(−δ) ≤ 45ϕγ,

where ϕ =
(

log 1
δ

)−1

, γ =
log (1+

√
2
2

)

2
, and δ = bs = e−2s.
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Proof : Let F (−δ) realize the supremum value at Theorem 3.2.5, then we

have

gK(−δ) ≤ log |F (−δ)|
Ñ

≤ log Ñ

Ñ
+

log |lk(−δ)|
Ñ

≤ log Ñ

Ñ
+

3ns + 2sns

Ñ
.

Note that log Ñ

Ñ
+ 3ns

Ñ
≤ 7

10
(2−
√

2)s. Moreover, 9
10
≤ (1− log 8

2k
), for k = 3, 4, . . . ,m−

1. Thus, 9
10
N ≤ Ñ ≤ N , where N =

∑m−1
k=3 nk. Hence,

gK(−δ) ≤ 7

10
(2−

√
2)s +

10

9

2sns
N

.

Additionally, ns
N
≤ 1√

2
(2 +

√
2)3−s. Therefore,

gK(−δ) ≤ 7

10
(2−

√
2)s +

10

9
(2 +

√
2)3(2−

√
2)s

= (2−
√

2)s(
10

9
(2 +

√
2)3 +

7

10
).

Note that (2 −
√

2)s =
(

log 1
δ

) log (2−
√
2)

2
= ϕγ, where ϕ =

(
log 1

δ

)−1

, and γ =

log (1+
√
2

2
)

2
. So,

gK(−δ) ≤ (
10

9
(2 +

√
2)3 +

7

10
)ϕγ ≤ 45ϕγ.

Theorem 6.0.14 Let 0 < δ << 1 be fixed. Then

3ϕ(δ)γ ≤ gK(z) ≤ 45ϕ(δ)γ,

where z ∈ A, A = {z|dist(z,K) ≤ δ} and ϕ and γ are as defined in Theorem

6.0.13.

Proof : Since δ << 1, the there exist s such that bs+1 ≤ δ ≤ bs. Then

we have, ϕ(bs+1) = ϕ(b2
s) = 1

2
ϕ(bs). Thus, 1

2
ϕ(bs) ≤ ϕ(δ) ≤ ϕ(bs). By the

structure of the set K, the modulus of continuity is attained at −δ for gK(z) with

dist(z,K) ≤ δ. Thus,

gK(z) ≤ gK(−δ) ≤ 45ϕ(δ)γ,
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where ϕ and γ are same as defined in Theorem 6.0.13. Note that, by Theorem

5.0.8, we have

3ϕ(δ)γ ≤ gK(z) ≤ 45ϕ(δ)γ.



Appendix A

Chebyshev Polynomials

Definition A.0.15 The polynomial Tn(z) = zn + c1z
n−1 + . . .+ cn with the least

maximum modulus on a compact subset K of C is called the Chebysev polynomial

of degree n for K.

The theorem below guarantees the existence of the Chebyshev polynomials

for any compact set K.

Theorem A.0.16 [4] For any n, there exists a polynomial of degree n whose

maximum modulus is minimal on a compact set K.

Since, in this thesis, Chebyshev polynomials on closed intervals are used more

often, some properties of it should be given.

Definition A.0.17 Let Πn denote all polynomials of degree at most n. The

Chebyshev polynomials on the interval [−1, 1] are usually denoted by Tn(x) and

uniquely defined by the condition∫ 1

−1

(1− x2)−
1
2Tr(x)Ts(x)dx = 0, r 6= s, (A.1)

where Tr ∈ Πn and Tr(1) = 1 for r ≥ 0.

48
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From the definition above, we can conclude that

Tn(x) = cosn(arccosx) (A.2)

because if we apply the integration in (A.1) with Tn(x) as in (A.2) with x = cos θ,

substitution 0 ≤ θ ≤ π, we get ∫ π

0

cos rθ cos sθdθ.

Due to the orthogonality of trigonometric functions, the above integral is 0. More-

over, for θ = 0, we get cosn(arccos(cos 0)) = cosn(arccos(1)) = 1. Now we will

obtain some properties of Chebyshev polynomials.

Property 1 T0(x) = 1 and T1(x) = x, and Tn+1(x) = 2xTn(x)− Tn−1(x).

Proof : If we apply the substitution x = cos θ to (A.2), we get

Tn(cos θ) = cosnθ.

For n = 0, we get T0(x) = 1, and T1(x) = x. Additionally we know by trigono-

metric identities that cos(n + 1)θ + cos(n − 1)θ = 2 cosnθ cos θ, which implies

Tn+1(x) = 2xTn(x)− Tn−1(x).

By using the recurrence relation in Property 1, we can find all Chebyshev

polynomials defined on [−1, 1].

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

T6(x) = 32x6 − 48x4 + 18x2 − 1

...

By using known trigonomeric properties we can find the following three properties

of Chebyshev polynomials.
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Property 2 Tm(Tn(x)) = Tmn(x) for all nonnegative integers m and n.

Property 3 Tm(x)Tn(x) = 1
2
(Tm+n(x) + T|m−n|(x)) for all nonnegative integers

m and n.

Property 4 Tn(−x) = (−1)nTn(x) for all nonnegative integers n.

Property 5 (Zeros and Extrema of Chebyshev Polynomials) Let ξj =

cos( (2j−1)π
2n

) and ηj = cos( jπ
n

), then ξj are the zeros of Tn(x) for j = 1, 2, . . . , n

and ηj are extrema of Tn(x) for j = 0, 1, . . . , n.

The above property can easily be proved by using Tn(x) = cosnθ with x =

cos θ substitution.

Extension of Chebyshev Polynomials

Chebyshev polynomials can be extended to the whole real line by using

DeMoivre’s theorem.

Tn(cos θ) = cos(nθ) =
einθ + e−inθ

2

=
1

2
[(cos θ + i sin θ)n + (cos θ − i sin θ)n]

=
1

2
[(x+ i

√
1− x2)n + (x− i

√
1− x2)n]

=
1

2
[(x+

√
x2 − 1)n + (x−

√
x2 − 1)n].

Hence,

Tn(x) =
1

2
[(x+

√
x2 − 1)n + (x−

√
x2 − 1)n]

for all |x| ≥ 1.

Let’s denote the extended Chebyshev polynomial by T̃n(x). By using the zeros

of Chebyshev polynomials, we also have

T̃n(x) = 2n−1

n∏
j=1

(x− ξj)
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for all x ∈ R. Here ξj’s are zeros of Tn(x) on [−1, 1].

Chebyshev Polynomials on any Closed Interval on R

Let I = [a, b] be any closed interval on R. Then consider the mapping

χ :[a, b]→ [−1, 1],

x 7→
x− b+a

2
b−a

2

.

Note that, the mapping is 1-1 and onto. Moreover, it carries b to 1 and a to −1.

Hence, the Chebyshev polynomial on any compact interval I on R, denote by

T̃nI(x), is

T̃nI(x) = T̃n(
x− b+a

2
b−a

2

).



Appendix B

Lagrange Interpolation

Let {x0, x1, . . . , xn} ⊂ [a, b] be such that xk 6= xl for k 6= l. Let yk = f(xk).

Theorem B.0.18 For all yk, where k = 0, 1, . . . , n, there exists a unique poly-

nomial Pn such that Pn(xk) = yk for k = 0, 1, . . . , n.

Proof : Let P (x) = a0 + a1x+ . . .+ anx
n, then by P (xk) = yk, we get

a0 + a1x0 + . . .+ anx
n
0 = y0

a0 + a1x1 + . . .+ anx
n
1 = y1

...

a0 + a1xn + . . .+ anx
n
n = yn.

Note that this system forms a Vandermonde matrix, and the determinant of this

matrix is not equal to zero as xk 6= xl for k 6= l. Thus, the system has unique

solution.

Let’s define w(x) =
∏n

k=0(x−xk), then clearly w ∈ Πn+1. If we define the basis

polynomials by lk(x) = w(x)
(x−xk)w′(xk)

for k = 0, 1, . . . , n, then lk ∈ Πn. The most

important property of the basis polynomials is lk(xi) = δki for i = 0, 1, . . . , n,
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where

δki =

1, if k = i,

0, if k 6= i.

This method is called the Lagrange interpolation formula. We write it as

Lnf(x) =
n∑
k=0

f(xk)lk(x).

The uniqueness property allows us to regard the interpolation process as an

operator from C[a, b] to Πn, which depends on the choice of the fixed points

{x0, x1, . . . , xn}. Moreover, the operator is linear in and independent of f .

Proposition B.0.19 Lagrange interpolation have the following properties.

i) Let P ∈ Πn, then Ln(P, x) = P (x).

ii)
∑n

k=0 lk(x) = 1.

iii)
∑n

k=0(n− xk)plk(x) = 0, where p ≤ n.

Proof : The first property follows from the definition. For the second property,

let P (x) = 1, then Ln(1, x) = 1 =
∑n

k=0 lk(x). For the third property, let

(x − n)p ∈ Πn, then (x − n)p =
∑n

k=0(xk − n)lk(x). Now let x = n, then result

follows.



Bibliography

[1] Bernstein, C.A., Gay, R. (1991): Complex Variables: An Introduction,

Springer-Verlag, New York.

[2] Conway, J.B. (1978): Functions of One Complex Variable, Springer-

Verlag, New York.

[3] Conway, J.B. (1995): Functions of One Complex Variable II, Springer-

Verlag, New York.

[4] Goluzin, G.M. (1966): Geometric Theory of Functions of a Complex Vari-

able, American Mathematical Society, Rhode Island.

[5] Goncharov, A. (1996): A compact set without Markov’s property but

with an extension operator for C∞ functions, Studia Math. 119, 27-35.

[6] Goncharov, A., Altun M. (2009): On Smoothness of the Green Function

for the Complement of a Rarefied Cantor-Type Set, Const. Approx.

[7] Helms, F.L. (2009): Potential Theory, Springer-Verlag, London.

[8] Pommerenke, C. (1975): Univalent Functions, Vanderhoeck und

Ruprecht, Göttingen.

[9] Pommerenke, C. (1992): Boundary Behaviour of Conformal Maps,

Springer-Verlag, Berlin.

[10] Saff, E.B., Totik, V. (1997): Logarithmic Potentials with External Fields,

Springer-Verlag, Berlin.

54



BIBLIOGRAPHY 55

[11] Stalh, H., Totik, V. (1992): General Orthogonal Polynomials, Cambridge

University Press, New York.

[12] Totik, V. (2006): Metric properties of Harmonic Measures, Memoirs of

the American Mathematical Society, Rhode Island.

[13] Walsh, J.L. (1960): Interpolation and Approximation by Rational Fucn-

tions in the Complex Domain, Colloquium publications, American Math-

ematical Society, Providence.


	Introduction
	Elements of Potential Theory
	Logarithmic Energy and Capacity
	Transfinite Diameter
	Chebyshev Polynomials and the Chebyshev Constant

	The Green Function
	Green Function
	Some Additional Properties of Green Fucntion
	Smoothness of the Green Function

	Nearly Chebyshev Polynomials
	Determination of the Degrees of the Chebyshev Polynomials
	Some Properties of the Degrees

	A Lower Bound for the Green Function
	An Upper Bound for the Green Function
	Chebyshev Polynomials
	Lagrange Interpolation

