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ABSTRACT

N -TANGLE KANENOBU KNOTS WITH THE SAME
JONES POLYNOMIALS

Deniz Kutluay

M.S. in Mathematics

Supervisor: Assoc. Prof. Dr. Alexander Degtyarev

July, 2010

It is still an open question if there exists a non-trivial knot whose Jones poly-

nomial is trivial. One way of attacking this problem is to develop a mutation

on knots which keeps the Jones polynomial unchanged yet alters the knot it-

self. Using such a mutation; Eliahou, Kauffmann and Thistlethwaite answered,

affirmatively, the analogous question for links with two or more components.

In a paper of Kanenobu, two types of families of knots are presented: a 2-

parameter family and an n-parameter family for n ≥ 3. Watson introduced braid

actions for a generalized mutation and used it on the (general) 2-tangle version

of the former family. We will use it on the n-tangle version of the latter. This

will give rise to a new method of generating pairs of prime knots which share the

same Jones polynomial but are distinguishable by their HOMFLY polynomials.

Keywords: braid action, Jones polynomial, Kanenobu knot, mutation, tangle.
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ÖZET

ORTAK JONES ÇOKTERİMLİSİNE SAHİP
N -DOLANIMLI KANENOBU DÜĞÜMLERİ

Deniz Kutluay

Matematik, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Alexander Degtyarev

Temmuz, 2010

Jones çokterimlisi 1 olan aşikâr düğüm haricinde bir düğüm olup olmadığı

halen açık bir sorudur. Bu soruya saldırmanın bir yolu Jones çokterimlisini

değiştirmeyip düğümün kendisini değiştiren bir düğüm dönüşümü bulmaktır. Eli-

ahou, Kauffmann ve Thistlethwaite, bu şekilde, iki veya daha fazla parçaya sahip

girişik halkalar için soruya olumlu yanıt vermişlerdir.

Kanenobu bir makalesinde, iki çeşit düğüm ailesini sunmuştur: 2-değişkenli

aile ve n-değişkenli aile, n ≥ 3. Watson daha genel bir dönüşüm için örgü etki-

lerini tanıtmış ve bunları ilk ailenin (genel) 2-dolanımlı sürümüne uygulamıştır.

Biz de bu dönüşümü ikinci ailenin n-dolanımlı sürümüne uygulayacağız. Bu da

aynı Jones çokterimlisine sahip fakat HOMFLY çokterimlisiyle ayrılabilen asal

düğüm çiftleri üretmenin yeni bir yolunu verecektir.

Anahtar sözcükler : örgü etkisi, Jones çokterimlisi, Kanenobu Düğümü, dönüşüm,

dolanım.
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Chapter 1

Introduction

Let us consider a piece of string tangled in two different ways and glued at both

ends. It is a natural question to ask if one of the resulting objects can be deformed

to the other without cutting the string. One can try to play with them and if

lucky enough show that it is possible to do so. However, if that is not the case,

we are left with the questions how to discriminate them or up to what extent

the variety of these inequivalent objects can scale. This type of questions were,

indeed, problems of early knot tabulators [T], [Lt] where a knot is represented

mathematically by a homeomorphism from the unit circle to the 3-dimensional

space R
3 (or S3).

Many knot invariants are developed to check inequivalence of knots. One of

the most important of these is the Jones polynomial [J1], [J2] which is a Laurent

polynomial with integer coefficients. In spite of its popularity, it is still unknown

if there is a non-trivial knot whose Jones polynomial is 1. To get such a knot, one

can try to use a “mutation” on unknot which keeps the Jones polynomial same

but changes the unknot to a non-trivial knot. For this reason, study of mutations

is closely related to the open problem. In this paper, we will give a new family

of mutants which depend on a sequence of tangles.

In the first four chapters, basic concepts of the modern theory of knots will

be introduced briefly. We start with clarifying what we mean by equivalence

1



CHAPTER 1. INTRODUCTION 2

of knots and proceed with classical result of Reidemeister [R], which allows us

to deal with diagrams of knots in two dimensions rather than knots themselves.

Our next task is to define and examine the properties of both numerical and

polynomial invariants. In the fourth chapter, Conway’s very useful concept of

tangle will be considered along with its relation to 2-bridge knots and we will

shortly touch to the theory of braids.

In the fifth chapter, a review of some necessary background and tools for our

construction takes place. In particular, it will be clear why we need a muta-

tion distorting the HOMFLY polynomial in regard to the open question. A key

part of underlying linear algebra machinery of the work of Eliahou, Kauffmann,

Thistlethwaite [EKT] and Watson [W] is the idea of the skein module which was

originally due to Conway and is later formalized by Rolfsen [Rf]. Watson formal-

ized the mutation appeared in [EKT] by means of braid actions and applied it to

2-tangle Kanenobu knots. We will use it on n-tangle Kanenobu knots.

The last chapter constitutes the main part of this thesis. We define, study

and generalize the original n-parameter family of Kanenobu knots for n ≥ 3.

Using an argument similar to [W], we show that the Jones polynomial is fixed

by the mutation for our n-tangle family of knots. We then prove that the pairs

obtained by the mutation do not have the same HOMFLY polynomial which in

turn implies they are not Conway mutants. Remember that if we have any chance

to solve the main problem we must avoid ending up with Conway mutants. Next,

we give a simple condition to assure primeness of our family for arbitrary prime

tangles inside. We close with some illustrations of our construction and further

generalizations.



Chapter 2

Knots and Links

A link of n components is a homeomorphism from n copies of the unit circle into

the 3-dimensional space R
3 (or S3). In particular, when n = 1 we have a knot.

We will confuse this homeomorphism with its embedded image when we refer to

a knot or link. We can also consider the projection of a knot to a 2-dimensional

space, in our case, R2 is possible and enough. Nevertheless, we are to put some

restrictions on this projection to prevent some pathologies. Firstly, to give the

information of which string is above the other in the projection, the overpass-

underpass diagrams will be used as in Fig. 2.1. We then impose the conditions

Figure 2.1: Knot Diagrams

on diagrams that no three strings intersect at one point and no string intersects

another one non-transversely. In addition to these information, it is possible to

assign an orientation to knots (or links). Depending on the context, we may

sometimes omit the orientation.

3



CHAPTER 2. KNOTS AND LINKS 4

2.1 Equivalence of knots

The natural idea of equivalence of knots comes essentially from deforming one

knot to another. This can be paraphrased as if there exists an isotopic defor-

mation ht of R
3 such that h0 is identity and h1 sends one knot to another then

we want these two knots to be equivalent. Intuitive idea is close to the actual

definition, albeit not exactly the same at first sight.

Definition 2.1.1. Two knots (or links) K1 and K2 are said to be equivalent if

there is an orientation preserving homeomorphism of R3 sending K1 to K2.

Equivalent knots in the sense of deformation are also equivalent under this

definition. Inverse question is, however, not trivial. Nevertheless, it is known [F]

that every orientation preserving homeomorphism of R3 onto itself is realizable by

an isotopic deformation. We shall also point out that there are knots whose mirror

images are not equivalent to themselves yet they are not listed separately in the

knot tables. Additionally, we say that a link is tame provided it is equivalent to a

link which is a finite union of straight line segments. In particular, continuously

differentiable links parametrized by arc length are tame [CF]. Nota bene, we will

work with tame links only, from now on.

Having a relaxed condition to check equivalence, there is still room to reduce

the process of comparison to just a few basic moves.

2.2 Reidemeister moves

Given two equivalent links L1 and L2, their diagrams are related by a sequence

of the moves demonstrated in the Fig. 2.2, called Reidemeister moves. It is quite

useful to reduce all types of other moves down to three moves. Particularly, when

one candidate of knot invariant is being checked, it is enough to verify that it

respects just these three moves.
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Figure 2.2: Reidemeister Moves

2.3 Knot decompositions

A trivial knot or unknot is defined to be a knot which bounds a copy of embedded

disc in 3-dimensional space. Taking this as starting point, more complicated

knots can be built using known ones. Let K be an oriented knot and S be an

embedded sphere intersecting K at exactly two points transversely. Consider the

part of K within S and take its union with an oriented simple curve c ∈ S in

a way that orientations match up. Let us call this new knot K1 and we obtain

K2 by repeating the procedure for outside of S. In this case, K is said to be

the sum (or connected sum) of K1 and K2, denoted K1 + K2. (See Fig. 2.3)

Summation for links is defined exactly in the same fashion except sums of two

links via different components may result in inequivalent links. If a knot has only

K
1

K
2 +K

1
K

2

c

Figure 2.3: Decomposition of knots

trivial decomposition then we call it prime. In general, we can define a link to

be prime if every sphere intersecting it at two points, transversely, bounds an

unknotted spanning arc on one side of it. At this point, we can refer reader to
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[S1] to see that such a decomposition to primes is always finite and unique up to

reordering.

The concept of genus of a knot turns out to be useful for producing information

about primeness.

Definition 2.3.1. A connected, compact, orientable surface assuming a link L

to be its boundary is called a Seifert surface of L.

Theorem 2.3.2 (Seifert Algorithm). Any oriented link has a Seifert surface.

Proof. In the diagram of L, crossings can be distorted as in Fig. 2.4, so that

we end up with non-intersecting oriented circuits. We can assign each circuit a

disc and connect these discs by half twisted strips. If the remaining object is

not connected, small discs on disconnected components are removed and their

boundaries are replaced with boundaries of tubes. It can be seen at once that

this surface satisfies all desired properties.

Figure 2.4: Distortion of crossings

Now we can define genus g(K) of a knot K as

g(K) = min { genus(S) : S is a Seifert surface of K }

In particular, g(unknot) = 0. Moreover, it is well-known that genus is additive

(cf. [L1], pg. 17-18) which implies that only unknot has additive inverse, prime

decomposition is finite, a knot of genus 1 is prime and there are infinitely many

distinct knots. This suggests why knot tables are designed to include prime knots

only.



Chapter 3

Invariants

As we have mentioned earlier, classifying knots requires invariants to distinguish

them, that is some functions from the set of all knots to an abstract domain such

that values on the equivalence classes are the same. Equivalently, they respect

Reidemeister moves. Historically, numerical knot invariants are introduced first.

Most of them are easy to define but difficult to compute. Thus, more calculable

invariants appeared as the theory progressed. Alexander polynomial is first such

effective polynomial invariant. It was followed by the Jones polynomial and the

HOMFLY polynomial. (Sometimes called the 2-variable Jones polynomial or the

HOMFLYPT polynomial.)

3.1 Numerical invariants

The crossing number c(K) of a knot K is defined to be the minimum possible

number of crossing over all diagrams of the knot. Knot tabulations and enu-

merations are made in an increasing order of crossing number, yet there is a big

difficulty working with this type of data which depends on arbitrary number of

diagrams. For example, additivity of crossing number is another open question.

Nonetheless, one of the applications of the Jones polynomial proved this to hold

[M1] for alternating knots, i.e. those whose crossings alternate, or for even wider

7
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family of links [L1], chapter 5.

We can always consider a knot in R
3 living partially in the xy-plane and

partially in the upper half space. Let us call the pieces of strings above the

plane, bridges, then we can define the bridge number br(K) of a knot K to be

the minimum number of bridges over all diagrams of K. For example, knots with

bridge number 2 are completely classified. (See section 4.2)

Similarly, the unknotting number u(K) of a knot K is the minimum number

of overpass-underpass violations in the diagram of K to make it into an unknot.

We can assign each crossing a sign as in Fig. 3.1 and define the linking number

+1 -1

Figure 3.1: Signs of crossings

lk(K1, K2) of two oriented knotsK1 andK2 to be the half of the sum of signs of all

crossings where one string is from K1 and other one is from K2. A simple check

of the effect of Reidemeister moves on lk(K1, K2) shows that linking number

is an invariant of oriented links of two components. The writhe w(K) of an

oriented knot K is defined, in a similar fashion, to be the sum of signs of all self-

intersections of K. The writhe itself is not really a knot invariant but it plays a

crucial rôle to make the Kauffmann bracket into the Jones polynomial invariant.

(See section 3.3)

3.2 The Alexander polynomial

Given a link L of n components, let F be its Seifert surface with genus g. Consider

the first homology group of F with integer coefficients, which can be given by

([M2], [L1])

H1(F ;Z) = ⊕2g+n−1Z
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where generators are equivalence classes of oriented simple closed curves fi ∈ F .

In general; for a connected, compact, orientable surface S with boundary, there

corresponds [L1] a unique bilinear form

β : H1(S;Z)×H1(S
3\S;Z) −→ Z

such that H1(S
3\S;Z) is isomorphic to H1(S;Z) and β([c], [d]) = lk(c, d) for

oriented simple closed curves c ∈ S3\S, d ∈ S. Now, let N be a tubular neigh-

borhood of F and X be the closure of S3\N . We update F as X ∩F and take a

neighborhood F × [−1, 1] of F = F × 0 in X . Letting i±(x) = x × ±1 = x± for

x ∈ F , the Seifert form of F

α : H1(F ;Z)×H1(F ;Z) −→ Z

is defined by α(f, h) = β(f, i+
∗
(h)) = lk(f, h+). The matrix A of this bilinear

form is called the Seifert matrix for F . Let Xi be a copy of the closure of

X\(F × (−1, 1)) and X∞ be the space obtained by gluing F ×−1 of ∂Xi to F ×1

of ∂Xi+1. Defining t : X∞ −→ X∞ by t(Xi) = Xi+1 canonically, 〈T 〉 acts on

X∞ as a group of homeomorphisms. Thus, the group ring Z〈t〉 = Z[t±] has an

induced action on H1(X∞;Z), consequently H1(X∞;Z) is a Z[t±]-module, called

the Alexander module. Now, B = tA − Aτ is a square presentation matrix for

H1(X∞;Z) (cf. [L1]), i.e. B is a transition matrix from the basis fi of F to the

basis ei of E for the exact sequence

F −→ E −→ H1(X∞;Z) −→ 0.

Finally, the Alexander polynomial ∆L(t) of L is defined, up to a power of ±t±,

to be det(B). There is a way to calculate Alexander polynomial via Fox calculus

[CF] as follows. Let G be a finite group and ZG be its group ring.

Definition 3.2.1. A map D : ZG → ZG is called a derivative if

(i) D(v1 + v2) = Dv1 +Dv2
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(ii) D(v1v2) = Dv1τv2 + v1Dv2

where τ : ZG → Z is defined by τ(g) = 1 for g ∈ G and v1, v2 ∈ ZG.

Indeed, a derivative is the unique linear extension of any mappingD : G → ZG

to ZG satisfying

D(g1g2) = Dg1 + g1Dg2

Clearly, any derivative is uniquely determined by its values on any generating

subset of G. We are interested in derivatives in the group ring of a free group

which is the reason Fox calculus is sometimes called free calculus.

Let F = F (~x) be a free group with basis ~x = (x1, x2, . . .) so that ZF becomes

the ring of finite sums of finite products of powers of xi’s, in other words free

polynomials in xi’s, in defiance of negative powers and non-commutativity of

xi’s.

Theorem 3.2.2. To each free generator xj, there corresponds a unique derivative

Dj =
∂

∂xj

in ZF satisfying
∂xi

∂xj

= δij.

A detailed proof can be found in [CF]. Now, suppose that

F
γ−→ F/R = |~x : ~r| = G

where R is the smallest free normal subgroup containing all relators ~r =

(r1, r1, . . .). Also, taking H := G/[G,G] and α : ZG → Z(G/[G,G]) to be

the extension of G → G/[G,G], we have a composition

ZF

∂
∂xj−−→ ZF

γ−→ Z|~x : ~r| α−→ ZH

Here, Alexander matrix [aij ] of |~x : ~r| is given by
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aij := αγ
∂ri
∂xj

The reason we are dealing with presentations of groups is because there is a

constructive way ([CF], chapter 6) to deduce a finite presentation |~x : ~r| of the
knot group, π(R3\K), for a prescribed knot K. This is achieved by assigning

each overpass strand a generator vector and then obtaining relators by taking

tours around the boundaries of thin neighborhoods of underpass strands. (See

Fig. 3.2) Now, the Alexander polynomial ∆(K) of a knot K can be computed

x
y

z

r

p s

p=z  x  zy, r=xzx  y , s=y  z  yx-1 -1 -1-1 -1 -1

Figure 3.2: π(S3\K) = |x, y, z : p, r, s|

as the greatest common divisor of the determinants of all (n − 1)× (n− 1) sub

matrices of the Alexander matrix (a.k.a. generators of the first elementary ideal

of the Alexander matrix) of the finite presentation of the knot group of K. There

are some technicalities about this construction which are examined at length in

[CF]. For example, it is shown that all generators can be reduced to one generator

which becomes the variable of the polynomial and the g.c.d. always exists.

This approach provides a computational algorithm. For example, results [K]

of Kanenobu about the Alexander polynomial of the n-parameter family of knots

are obtained by making use of Fox calculus. The advantage of the topological

approach, on the other hand, is its practical use to derive the following skein

relation for normalized Alexander polynomials. (cf. [Kw], pg.105)
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(i) ∆( ) = 1

(ii) ∆( )−∆( ) = (t1/2 − t−1/2)∆( )

Here, symbols are used to denote the same links except for the part drawn inside.

This theorem also shows that Alexander polynomial is symmetric.

3.3 The Kauffmann bracket and the Jones poly-

nomial

Even though Jones polynomial was discovered out of certain algebras [J1], we

will define it in a different and simpler way due to Kauffmann.

Definition 3.3.1. The Kauffmann bracket 〈D〉 of an unoriented diagram D is

the polynomial in Z[A−1, A] defined by the relations:

(i) 〈 〉 = 1

(ii) 〈D ∐ 〉 = (−A−2 −A2)〈D〉

(iii) 〈 〉 = A〈 〉+ A−1〈 〉

where bracket symbols represent almost same links except the parts drawn

inside the brackets and 〈 〉 represents the unknot. One can easily verify the

following properties of Kauffmann bracket.

(i) 〈 k〉 = (−A−2 −A2)k−1

(ii) 〈D〉 = 〈D〉

(iii) 〈 〉 = −A3〈 〉

where 〈 k〉 is unlink of k components, overline represents the mirror image and

conjugate, respectively. Kauffmann bracket respects the first two Reidemeister
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moves but is not an invariant under the third move. Still, assigning minus 1

and plus 1, we can make it respect the third Reidemeister move too.

Theorem 3.3.2. Let D be a diagram of a link L, then (−A)−3w(D)〈D〉 is an

invariant of the oriented link where w(D) is the writhe of D.

Now, we define the Jones polynomial VL(t) of an oriented link L as

VL(t) := (−A)−3w(D)〈D〉

where D is any oriented diagram for L and the indeterminate t is identified with

A−4. Employing induction on the number of crossings and using bracket relations,

we have VL(t) ∈ Z[t−1/2, t1/2]. Second bracket property and corresponding writhe

change gives the following skein relation.

(i) V ( ) = 1

(ii) t−1V ( )− tV ( ) = (t1/2 − t−1/2)V ( )

3.4 The HOMFLY polynomial

The skein relations for Alexander and Jones polynomials suggests a general poly-

nomial satisfying a skein relation with variable coefficients. Indeed, shortly after

the discovery of Jones polynomial, following theorem is proved [HOMFLY].

Theorem 3.4.1. There is a unique function P from the set of isotopy classes of

tame oriented links to the set of homogeneous Laurent polynomials of degree 0 in

x, y, z such that

(i) xPL+
(x, y, z) + yPL−

(x, y, z) + zPL0
(x, y, z) = 0,

(ii) PL(x, y, z) = 1 if L consists of a single unknotted component.



CHAPTER 3. INVARIANTS 14

Figure 3.3: L+, L−, L0

where L+, L−, L0 are as in Fig. 3.3. This relation can be used to compute

polynomials by forming a skein tree with trivial end points, since every link can

be converted to unlink by changing crossings.

Letting x = l, y = l−1 and z = m; we have the following skein relation for

two variable non-homogeneous polynomial P(l, m)

lPL+
(l, m) + l−1PL−

(l, m) +mPL0
(l.m) = 0

Since we can recover P (x, y, z) as P
(√

x√
y
,

z√
xy

)

, P is the same polynomial

invariant, denoted with the same symbol P from now on and called HOMFLY

polynomial. Some of the immediate observations are:

(i) ∆L(t) = P (i,−i(t1/2 − t−1/2)) and VL(t) = P (it−1,−i(t1/2 − t−1/2))

(ii) P
k
=

(

− l2 + 1

lm

)k−1

(iii) PL = PL1
PL2

for L = L1 + L2

(iv) Reversing the orientation of all components of a links does not change HOM-

FLY polynomial.



Chapter 4

Tangles and Braids

4.1 Prime Tangles

A (2-string) tangle is a pair (B, t) where B is a 3-ball, t is a union of 2 strings

inside B whose ends points are attached to the boundary ∂B and possibly a

number of closed strings in B. We mark the four end points a priori and define

the numerator N(T ), denominator D(T ) of a tangle T and horizontal, vertical

summation of two tangles; T + U , T ⊕ U as shown in Fig. 4.1. Union T ∪ U of

T UT T

U

UU

T

T

Figure 4.1: N(T ), D(T ), T + U , T ⊕ U , T ∪ U

two tangles is given by N(T +U). Two tangles (B1, t1) and (B2, t2) are equivalent

if there is a homeomorphism of pairs from one to the other which is fixed on the

boundary of the sphere. We will denote the tangle by 0 and by ∞. Let

φ : 0 → (D, v) be a homeomorphism of pairs which is not necessarily identity on

the boundary but sends four fixed points to themselves, then the tangle (D, v)

is called trivial. Also, a tangle (B, t) will be called locally trivial if every sub

15
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3-ball A ⊂ B meeting t at exactly two points transversely, bounds an unknotted

spanning arc, that is, an arc resulting in unknot when its endpoints are connected

along a string lying on ∂A. With these conventions, we can say a tangle is prime

if it is locally trivial but non-trivial. Note that, these two conditions imply that

there is no embedded disc in B which separates two arcs of t. Prime tangles can

be used to build prime knots or to check primeness, as we shall do in section 6.5.

For this reason, we state some results due to Lickorish [L2].

Theorem 4.1.1. Let L be a link of one or two components in S3 and a 2-sphere

intersect with L at four points transversely. If the 2-sphere separates (S3, L) to

two prime tangles then L is prime.

Theorem 4.1.2. Let (B, t) be a prime or trivial tangle, a ball A ⊂ B intersect

both components of t in single intervals and (A, u) be a prime tangle. Supposing

∂u = ∂A ∩ t, (B, (t\(t ∩ A)) ∪ u) is prime.

4.2 2-bridge knots

If we start classifying links with respect to their bridge numbers, the first non-

trivial family is 2-bridge knots. Caveat lector, 2-bridge knots can have more than

one components, contrary to what the name suggests. A fast observation is that

every 2-bridge knot is prime and contains at most two components since we have

the relation

br(K1 +K2) = br(K1) + br(K2)− 1

due to Schubert [S2]. This family is completely classified with the help of trivial

tangles. (cf. [M2], pg. 183)

Theorem 4.2.1. A 2-bridge knot is the denominator of some trivial tangle and

denominator of a trivial tangle is a 2-bridge knot.

This theorem completely classifies 2-brigde knots since every trivial tangle can

be characterized by an alternating sequence of horizontal and vertical twists on

0 or ∞. Classification problem of 3-bridge knots, however, is still open.
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4.3 The braid group

Consider a unit 3-dimensional cube in R
3, mark n points Bi on the base and n

points Ci on the ceiling of the cube, each of which is aligned on the plane x = 1/2.

In addition, we choose them in a way that vertical projection of Ci gives Bi for

i = 1, · · · , n. Let s1, · · · , sn be mutually disjoint finite-segmented polygonal arcs

and β = s1 ∪ · · · ∪ sn. β is said to be an n-braid provided ∂β = ∪i(Bi ∪ Ci)

and every plane parallel to the base intersects each string si at exactly one point.

(See Fig.4.2(a)) Two braids β1 and β2 are equivalent if there is an isotopy ht of

(a) A braid

i

i+1

(b) σk (c) Closure of a braid

Figure 4.2: Braids and braid closure

the unit cube such that ht is identity on the boundary for all t ∈ [0, 1], h0 = id

and h1(β1) = β2. Let Bn denote the set of all equivalence classes of braids. We

can define product of two braids by putting one on top of other. This makes Bn a

group, called the n-braid group. We specify the element shown in Fig. 4.2(b) as

σk. Since we can divide a braid horizontally to sub-braids each of which contains

only one twist, Bn is generated by σk for k = 1, 2, · · · , n− 1. Also, the relations

(i) σiσj = σjσi for |i− j| > 1

(ii) σiσi+1σi = σi+1σiσi+1 for i = 1, 2, · · · , n− 1

are seen to hold from geometric pictures at once. Besides, it was shown that

no further relation is possible (due to Artin, cf. [B] for a proof). Hence, above

generators and relators give a presentation of Bn.
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The closure of a braid is obtained by connecting base points to corresponding

ceiling points as in the Fig. 4.2(c).Now, it is natural to ask about the relationship

between braids and knots.

Theorem 4.3.1 (Alexander). Every (oriented) link is a closure of some braid.

Taking closure of equivalent braids yields equivalent knots but not vice versa.

Indeed, closures of two braids are equivalent if and only if the braids are related

by certain braid moves a.k.a. Markov moves.



Chapter 5

Mutations

5.1 The Conway mutation

Let D be a knot diagram and T be a tangle as shown in Fig. 5.1(a). Now,

we rotate T in one of the x, y, z-axis by π, provided four end points are sent

to themselves and obtain a new diagram D′, Fig. 5.1(b). This procedure is

called Conway mutation. We observe that this mutation does not change Jones

(a) Kinoshita-Terasaka knot (b) Conway knot

Figure 5.1: Conway mutation

polynomial of knots. Indeed, we can form the same skein tree by deforming the

crossings inside the tangles for both the original diagram and its mutant. This

process yields one of symmetric tangles in Fig. 5.2. Therefore, the end points

of the skein trees are equivalent, so D and D′ have the same Jones polynomial.

19
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Figure 5.2: Symmetric tangles

Same argument is also valid for their HOMFLY polynomials. As a matter of

fact, this mutation changes the knot itself sometimes, as in the Fig. 5.1. On

the other hand, applying this mutation to an unknot gives another unknot [Kw],

[Rf]. This fact is the motivation to find other mutations which keep the Jones

polynomial same but change the HOMFLY polynomial so that resulting knots

are not Conway mutants.

5.2 Skein module

The idea of forming a vector space with tangles is due to Conway and is formalized

by Rolfsen [Rf]. We will follow the conventions used in [EKT] and [W]. Let M
denote the free Z[A,A−1]-module generated by all equivalence classes of diagrams

of (2-string) tangles, and I the 2-sided ideal generated by the elements

(i) T ∐ − δT

(ii) ( )− A( )−A−1( )

where δ = (−A−2 − A2), T ∈ M and symbols inside the parentheses denote

an arbitrary tangle except the part drawn. The skein module S is defined as the

quotient M/I. Note that condition (i) ensures that there are no free components

of tangles in S and S is generated by the tangles 0 and ∞. Let us write T ∈ S
as

T = T0· 0 + T∞·∞ =
[

T0 T∞

]

[

0

∞

]

:= br(T )

[

0

∞

]

where T0, T∞ lie in Z[A,A−1] and the bracket vector br(T ) of a tangle T is given

as above. Some immediate observations [EKT] are as follows.
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Proposition 5.2.1.

br(T + U) = br(T )

[

U0 U∞

0 U0 + δU∞

]

br(T ⊕ U) = br(T )

[

δU0 + U∞ 0

U0 U∞

]

Proof. Following equalities hold plainly.

br(0 + 0) = br(0)

[

1 0

0 1

]

, br(0 +∞) = br(0)

[

0 1

0 δ

]

br(∞+ 0) = br(∞)

[

1 0

0 1

]

, br(∞+∞) = br(∞)

[

0 1

0 δ

]

As br(∞+ U) = U0 br(∞) + δU∞ br(∞), we have

br(0 + U) = br(0)

[

U0 U∞

0 U0 + δU∞

]

, br(∞+ U) = br(∞)

[

U0 U∞

0 U0 + δU∞

]

Similarly, br(T + U) = T0 br(0 + U) + T∞ br(∞ + U) yields the required result.

The argument for T ⊕ U is the same.

5.3 Braid actions

One particular way of manipulating tangles is given in [EKT] (see Fig. 5.3). This

T

T

Figure 5.3: T −→ T ω
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picture suggests the use of alternative sequence of horizontal and vertical twists

to tangles. The same procedure used in [M2] pg. 183-187, can be applied to this

picture to obtain a braid instead of these twists. In fact, Watson used this idea to

generalize the tangle operation via braid actions [W]. Consider the group action

S × B3 −→ S
(T, β) 7−→ T β

where T β is defined by Fig. 5.4. Taking generators σ1, σ2 of the 3-braid group

T
β

TT
β

:

Figure 5.4: Braid action on tangles

B3 as in Fig. 4.2(b) and applying proposition 5.2.1, one can compute that

br(T ) = br(T σ1)

[

A A−1

0 −A−3

]

, br(T ) = br(T σ2)

[

−A−3 0

A−1 A

]

These two matrices, M1 and M2, define a group homomorphism

Φ : B3 −→ GL2(Z[A,A
−1])

such that Φ(σi) = Mi as one can check the braid relation M1M2M1 = M2M1M2.

5.4 The Watson mutation

We will follow the formalism used in [W]. Let K = K(T, U) be a knot (or link)

such that strings of both tangles T and U are included in K. The item (ii) of I
assures the following equation
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〈K(T, U)〉 = br(T )K brt(U)

where

K =

[

〈K(0, 0)〉 〈K(0,∞)〉
〈K(∞, 0)〉 〈K(∞,∞)〉

]

is the evaluation matrix of K. Defining Kβ = K(T β, Uβ−1

), it ensues that

〈Kβ〉 = br(T )Φ(β)KΦt(β−1)brt(U)

Now, consider the B3 action on GL2(Z[A,A
−1]) given by Kβ = Φ(β)KΦt(β−1).

It is our content that Kβ = K, i.e. β ∈ BK, the stabilizer of K in B3.

Proposition 5.4.1 (Watson). The invertible matrix

X =

[

x δ

δ δ2

]

is fixed by σ1, i.e. σ1 lies in BX , where x ∈ Z[A,A−1].

For a knot (or link) K whose matrix is in this form, we say that K and Kσ1

are Watson mutants. A similar construction is given in [EKT] with β = σ2
1σ

−1
2 σ2

1,

X =
(

x δ2

δ2 δ

)

and K(T, U) as in Fig. 5.5.

T U

Figure 5.5: 2-parallel of Hopf link with two tangles
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5.5 2-tangle Kanenobu knots

The 2-parameter Kanenobu knot was originally defined [K] as in Fig.5.6 except

that T and U were taken to be horizontal twists only. For this general family,

T U

Figure 5.6: 2-tangle Kanenobu knots

we will use the term 2-tangle Kanenobu knots and denote them with the same

notation K(T, U). By direct computation, K is presented in the form described

in proposition 5.4.1. It is also shown [W] that Watson mutants obtained in this

way are prime and do not have a common HOMFLY polynomial provided the

tangle T is prime and U is the mirror image of T . In the next chapter, we will

show that the n-tangle Kanenobu knots shown in Fig. 6.2 share the same Jones

polynomial, have different HOMFLY polynomials and are prime under natural

conditions.



Chapter 6

n-tangle Kanenobu knots

6.1 n-parameter Kanenobu knots

The n-parameter Kanenobu knots K(p1, p2, · · · , pn) defined again in [K] are as

in Fig. 6.1 such that each band consists of pi positive horizontal (half) twists,

where positive (half) twist is as in Fig. 3.1. Next theorem [K] gives information

p 1 2

3
n

p

p
p

Figure 6.1: n-parameter Kanenobu knots for n ≥ 3

about the polynomial invariants of this original family.

Theorem 6.1.1 (Kanenobu). Suppose P (p1, p2, · · · , pn), V (p1, p2, · · · , pn) and

∆(p1, p2, · · · , pn) are given as the HOMFLY, Jones and Alexander polynomials of

K(p1, p2, · · · , pn). Let εi be 0 if pi is even and 1 if pi is odd. Let e be the number

25
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of 0’s in ε1, ε2, · · · , εn. Then

(i) P (p1, p2, · · · , pn) = (−l2)
∑n

i=1
(pi−εi)/2(P (ε1, ε2, · · · , εn)− 1) + 1

(ii) V (p1, p2, · · · , pn) = (−t)
∑n

i=1
pi(V (0, 0, · · · , 0)− 1) + 1

(iii) ∆(p1, p2, · · · , pn) = ∆(ε1, ε2, · · · , εn) = f(t)f(t−1)

where f(t) = (−t)e − (1− t)n

6.2 Generalization

Definition 6.2.1. Let KV(T, U) denote an (n+ 2)-tangle Kanenobu knot where

V denotes a sequence of tangles (V1, V2, · · · , Vn) and T , U are chosen arbitrarily

from the n + 2 arms, n ≥ 1. (See Fig.6.2)

Caveat lector, if the case n = 0 was not excluded, it would not coincide with

the 2-tangle knots defined in section 5.5. In particular, K(0, 0) = 41 + 41 [K]

but K∅(0, 0) = 61
1 with Rolfsen numbering. Their Jones polynomials are also

seen to be different directly.2 Another warning is that, depending on the tangles,

KV(T, U) can be a link of several components, contrary to what its name suggests.

We now apply the braid actions, described in section 5.3, to T and U . Let

T UV V V Vi
i+1

j j+
1

Figure 6.2: KV(T, U)

Kβ
V
(T, U) denote the family KV(T

β, Uβ−1

). In particular, whenever KV(T, U) is a

knot, so is Kβ
V
(T, U). For orientations; firstly, each string whose both endpoints

are attached to the same tangle Vi changes its orientation if and only if the

orientations of the other two strings attached to Vi are changed. Secondly, T

1computed by the software Knotscape [Kns].
2computed by the software KNOT [Kn].
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impose its orientation to T β and U to Uβ−1

by definition. In principle, this

may lead to a conflict of orientations on strings of Kβ
V
(T, U) outside the tangles.

Nonetheless, this is not the case for our particular β ∈ B3 in the next section.

6.3 Equivalence of Jones polynomials

Proposition 6.3.1. The Jones polynomial of the family Kσ1

V
(T, U) is the same

with that of KV(T, U).

Proof. Lets compute the evaluation matrix KV of KV(T, U).

KV(T, U) =

[

〈KV(0, 0)〉 〈KV(0,∞)〉
〈KV(∞, 0)〉 〈KV(∞,∞)〉

]

One can observe from Fig. 6.2 that KV(0,∞) and KV(∞, 0) are equivalent to

a sum of denominators of the tangles, D(V1) + D(V2) + · · · + D(Vn) and an

unlinked copy of unknot. Similarly, KV(∞,∞) is equivalent to the same link

with an additional trivial unlinked component. Writing the Kauffmann bracket

of KV(0, 0) as x and that of KV(0,∞) as u, we have

KV(T, U) =

[

x u

u uδ

]
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Now, we check if KV(T, U) is fixed by σ1:

Kσ1

V
(T, U) = Φ(σ1)KV(T, U)Φt(σ1

−1)

=

[

A A−1

0 −A−3

][

x u

u uδ

][

A−1 0

A −A3

]

=

[

Ax+ A−1u Au+ A−1uδ

−A−3u −A−3uδ

][

A−1 0

A −A3

]

=

[

x+ A−2u+ A2u+ uδ −A4u− A2uδ

−A−4u−A−2uδ uδ

]

=

[

x+ u(A−2 + A2 + δ) −A2u(A2 + δ)

−A−2u(A−2 + δ) uδ

]

=

[

x u

u uδ

]

= KV(T, U)

So we have, σ1 ∈ BKV(T,U) which implies the equivalence of Kauffmann brackets

of Kσ1

V
(T, U) and KV(T, U). (See section 5.4). Note that (1) the contribution

of all crossings, outside the tangles, to writhe is zero. (2) All the strings of the

tangles other than T σ1 and Uσ1 change their orientation, therefore preserve their

contribution to writhe. (3) The total contribution, to writhe, coming from the

crossings of T σ1 , Uσ1 is equivalent to that coming from the crossings of T , U .

Hence, we conclude that VK
σ1
V

(T,U) = VKV(T,U).

The same computation with σ2 yields that σ2 ∈ BKV(T,U) only if x = uδ, which

means that BKV(T,U) is, in general, a proper subset of B3. We end this section by

stating the problem in a general form.

Question 6.3.2. Given an abstract knot K which depends on at least two tangles

and suppose Bn has an action on tangles, then what is the group BK?
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6.4 Inequivalence of HOMFLY polynomials

Proposition 6.4.1. The HOMFLY polynomial of the family Kσ1

V
(T, U) is differ-

ent from that of KV(T, U).

Proof. An inspection of Fig. 6.2 shows that there are eight possible orientations

for the tangles T , U but half of these possibilities is eliminated due to the fact

that inversion of orientations of all components of a link preserves the HOMFLY

polynomial. One instance of remaining possibilities are as follows:

T U T U

T UT U (4)

(3)

(2)

(1)

Temporarily, we switch the notation PKV(T,U) to P (T, U) to ease reading.

Case(1) Using the skein relations for HOMFLY polynomial (see section 3.4),

suppose we have

P

(

T ,
U
)

= T1P

(

,
U
)

+ T2P

(

,
U
)

P

(

T ,
U
)

= U1P

(

T ,

)

+ U2P

(

T ,

)

where Ti, Uj ∈ Z[l±, m±]. These two equations imply that

P

(

T ,
U
)

=T1U1P

(

,

)

+ T1U2P

(

,

)

+

T2U1P

(

,

)

+ T2U2P

(

,

)



CHAPTER 6. N -TANGLE KANENOBU KNOTS 30

Applying σ1 to PKV(T,U), we get

PK
σ1
V

(T,U) =T1U1P

(

,

)

+ T1U2P

(

,

)

+

T2U1P

(

,

)

+ T2U2P

(

,

)

Inspecting Fig. 6.2 and remembering the fact that reversal of all components of

a link preserves the HOMFLY polynomial, last three terms of last two equations

are seen to be the same. Thus, it suffices to show that

P

(

,

)

6= P

(

,

)

Now, we fix all the tangles but V = V1. There are two possible orientations for

V : V and
V

.

Without loss of generality, consider the first case. We denote the right hand side

polynomial as P1

(

V
)

and the left hand side polynomial as P2

(

V
)

, then

write

P1

(

V
)

= v1P1

( )

+ v2P1

( )

and

P2

(

V
)

= v1P2

( )

+ v2P2

( )

.

As before, the second terms of the last two equations are the same so we only need

to compare the first terms. We continue the same procedure for V2, V3, · · · , Vn.

At each step, we have two choices but the surviving terms are the same tangles

for both sides. Thus, it suffices to show that

P (· · · , 0̂, · · · , 0̂, · · · ) 6= P (· · · , 1̂, · · · , −̂1, · · · )
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where hats signify different terms. (See section 6.1 for notation.) We compute

the Alexander polynomials of K(· · · , 0̂, · · · , 0̂, · · · ) and K(· · · , 1̂, · · · , −̂1, · · · ) by
using Theorem 6.1.1.

∆(· · · , 0̂, · · · , 0̂, · · · ) = (6.1)

= f(t)f(t−1) (6.2)

= [(−t)e+2 − (1− t)n][(−t−1)e+2 − (1− t−1)n] (6.3)

= 1− (−t)e+2(1− t−1)n − (1− tn)(−t−1)e + (2− t− t−1)n

(6.4)

where e+2 is the number of zeros in the reduced form of K(· · · , 0̂, · · · , 0̂, · · · ) so
that

∆(· · · , 1̂, · · · , −̂1, · · · ) = (6.5)

= f(t)f(t−1) (6.6)

= [(−t)e − (1− t)n][(−t−1)e − (1− t−1)n] (6.7)

= 1− (−t)e(1− t−1)n − (1− tn)(−t−1)e + (2− t− t−1)n

(6.8)

The degrees of the two middle terms are n− e−2 and n− e, respectively. There-

fore, Alexander polynomials are distinct, hence so are HOMFLY polynomials, as

required. Other three cases can be argued similarly.

Corollary 6.4.2. Kσ1

V
(T, U) and KV(T, U) are not Conway mutants.

6.5 Primeness of KV(T, U)

Proposition 6.5.1. Suppose K = KV(T, U) is a link of one or two components

such that K(0,··· ,0)(0, 0) is not 2-bridged and T , U , V are prime. Then K is prime.

Proof. Consider the following tangle W , shown in Fig. 6.3. We claim that W

is a prime tangle. (1) W is locally trivial. Suppose not then there exists a sub
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Figure 6.3: Tangle W

3-ball A, inside W , bounding a knotted arc, let us say connecting two end points

of this arc along ∂A gives a non-trivial knot H . Now, W ∪ 0 gives an unlink of

two components, which means H is a summand of a trivial component . This

contradicts to the additivity of genus.

(2) Suppose that W is trivial, then the denominator D(W ) of the tangle W must

be a 2-bridge knot by theorem 4.2.1. However, D(W ) = K. This establishes the

claim.

Primeness of U and the sequence V implies that the tangle W , shown in Fig.

6.4, is prime by consecutive applications of Theorem 4.1.2. The black ellipses

represent the tangle sequence V and the tangle U which is somewhere in between

the elements of V. Since K = W ∪ T , K is prime by Theorem 4.1.1.

Figure 6.4: Tangle W

Any partial choice of the tangles T , U and V as 0, instead of prime tangles,
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would still imply the primeness of K.

6.6 Examples

In this section, we demonstrate pairs of prime links with their Jones and HOM-

FLY polynomials. 3 The tangles in the examples are chosen to be either prime

or 0 to insure primeness. Also, an odd number of applications of σ1 are made to

obtain the mutants with the desired properties. The reason for this is explained

in item (1) of section 6.7.

Figure 6.5: L1 and L2

Example 1. VL1
(t) = VL2

(t) = −t−23/2+8t−21/2−31t−19/2+79t−17/2−150t−15/2+

223t−13/2−261t−11/2+231t−9/2−123t−7/2−38t−5/2+203t−3/2−323t−1/2+357t1/2−
304t3/2+186t5/2−52t7/2−51t9/2+99t11/2−96t13/2+65t15/2−32t17/2+11t19/2−2t21/2

PL1
(z, v) = z−1(v3 − 4v + 4v−1 − v−3) + z(−v3 + 8v − 24v−1 + 31v−3 − 18v−5 +

4v−7)+ z3(−2v5+5v3+11v− 55v−1+74v−3− 41v−5+8v−7)+ z5(−9v5+43v3−
65v+17v−1+37v−3−28v−5+5v−7)+z7(−16v5+86v3−164v+129v−1−34v−3−
2v−5+v−7)+z9(−14v5+81v3−161v+133v−1−43v−3+4v−5)+z11(−6v5+40v3−
80v+61v−1−16v−3+v−5)+z13(−v5+10v3−20v+13v−1−2v−3)+z15(v3−2v+v−1)

PL2
(z, v) = z−1(v3− 4v+4v−1− v−3) + z(v− 4v−1+ v−3+7v−5− 7v−7+2v−9) +

3Computations and graphics are done by the software KNOT [Kn].
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z3(−2v5 +6v3 − 15v−1+9v−3+9v−5− 8v−7 + v−9) + z5(−v7 − v5+16v3 − 21v−
9v−1+22v−3−6v−5)+z7(−2v7+3v5+15v3−30v−2v−1+26v−3−11v−5+v−7)+

z9(−v7 +3v5+6v3− 16v− 2v−1+13v−3− 3v−5) + z11(v5+ v3− 3v− v−1 +2v−3)

Figure 6.6: L3 and L4

Example 2. VL3
(t) = VL4

(t) = −2t−39/2 + 14t−37/2 − 53t−35/2 + 143t−33/2 −
294t−31/2+476t−29/2− 610t−27/2+582t−25/2− 312t−23/2 − 183t−21/2+777t−19/2−
1267t−17/2 +1484t−15/2 − 1371t−13/2 +989t−11/2 − 504t−9/2+83t−7/2 +163t−5/2 −
221t−3/2 + 172t−1/2 − 127t1/2 + 160t3/2 − 266t5/2 + 375t7/2 − 420t9/2 + 376t11/2 −
272t13/2 + 160t15/2 − 75t17/2 + 27t19/2 − 7t21/2 + t23/2

PL3
(z, v) = z−1(−v7 + v5) + z(v15 − 12v13 + 58v11 − 148v9 + 214v7 − 178v5 +

84v3− 16v) + z3(v17− 2v15− 50v13+309v11− 800v9+1, 126v7− 893v5+328v3+

85v − 168v−1 + 84v−3 − 16v−5) + z5(4v17 − 21v15 − 76v13 + 687v11 − 1, 874v9 +

2, 629v7−1, 959v5+421v3+643v−691v−1+292v−3−48v−5)+ z7(3v17−34v15−
42v13+832v11−2, 518v9+3, 611v7−2, 497v5+19v3+1, 478v−1, 210v−1+425v−3−
56v−5) + z9(v17 − 23v15 + v13 + 608v11 − 2, 133v9 + 3, 208v7 − 2, 038v5 − 521v3 +

1, 777v − 1, 167v−1 + 328v−3 − 32v−5) + z11(−8v15 + 12v13 + 283v11 − 1, 187v9 +

1, 907v7−1, 089v5−647v3+1, 267v−665v−1+141v−3−9v−5)+z13(−v15+6v13+

83v11−439v9+760v7−370v5−398v3+551v−222v−1+32v−3− v−5)+ z15(v13+

14v11 − 105v9 + 197v7 − 72v5 − 139v3 + 141v − 40v−1 + 3v−3) + z17(v11 − 15v9 +

30v7 − 6v5 − 26v3 + 19v − 3v−1) + z19(−v9 + 2v7 − 2v3 + v)

PL4
(z, v) = z−1(−v7+v5)+z(v17−12v15+58v13−148v11+217v9−187v7+90v5−
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16v3)+z3(v19−5v17−20v15+201v13−638v11+1, 082v9−1, 043v7+489v5+37v3−
168v + 84v−1 − 16v−3) + z5(v19 − 12v17 + 5v15 + 261v13 − 1, 151v11 + 2, 344v9 −
2, 572v7+1, 268v5+298v3−787v+448v−1−96v−3)+z7(−8v17+28v15+154v13−
1, 117v11 + 2, 846v9 − 3, 628v7 + 1, 985v5 + 601v3 − 1, 615v + 965v−1 − 200v−3) +

z9(−v17+18v15+31v13−623v11+2, 111v9−3, 211v7+2, 019v5+625v3−1, 871v+

1, 127v−1−216v−3)+z11(3v15−5v13−196v11+975v9−1, 840v7+1, 366v5+380v3−
1, 338v+797v−1−137v−3)+ z13(−2v13−32v11+273v9−678v7+609v5+136v3−
607v+354v−1−52v−3)+z15(−2v11+43v9−153v7+172v5+26v3−172v+97v−1−
11v−3)+z17(3v9−19v7+28v5+2v3−28v+15v−1−v−3)+z19(−v7+2v5−2v+v−1)

6.7 Final Remarks

(1) Several applications of σ1 to KV(T, U) gives a sequence of links with the same

Jones polynomial and it can be shown by the same argument as in the proof of

Theorem 6.4 that HOMFLY polynomials of K
σn
1

V
(T, U) 6= K

σm
1

V
(T, U) if n 6= m

mod (2). Moreover, it is possible to get the same HOMFLY polynomials if n = m

mod (2). For example, the HOMFLY polynomials of the links shown in Fig. 6.7

are are the same. 4

Figure 6.7: Links with the same HOMFLY polynomials

(2) A further generalization of the 2-tangle Kanenobu knots (see section 5.5) can

be given as in Fig. 6.8. Similar results can be obtained for this family as well.

4computed by the software KNOT [Kn].
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Figure 6.8: Generalization of 2-tangle Kanenobu knots

(3) The question if the Jones polynomial detects knottedness would be answered

in the negative if one could arrange a diagram of unknot which would fit into a

diagram of KV(T, U).
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