
ALGORITHMS FOR THE SURVIVABLE
TELECOMMUNICATIONS NETWORK

DESIGN PROBLEM UNDER DEDICATED
PROTECTION

a thesis

submitted to the department of industrial engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Pelin Damcı

July, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52925487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Oya Ekin Karas.an (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Hande Yaman

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. İbrahim Körpeoğlu

Approved for the Institute of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Institute

ii

ABSTRACT

ALGORITHMS FOR THE SURVIVABLE
TELECOMMUNICATIONS NETWORK DESIGN
PROBLEM UNDER DEDICATED PROTECTION

Pelin Damcı

M.S. in Industrial Engineering

Supervisor: Assoc. Prof. Dr. Oya Ekin Karas.an

July, 2010

This thesis presents algorithms to solve a survivable network design problem aris-

ing in telecommunications networks. As a design problem, we seek to find 2-edge

disjoint paths between every potential origin destination pair such that the fixed

costs of installing edges and the routing costs are jointly minimized. Despite the

fact that the survivable network design literature is vast, the particular problem

at hand incorporating fixed and variable edge costs as well as different cost struc-

tures on the two paths has not been studied. Initially, an IP model addressing the

proposed problem is developed. In order to solve problems of higher dimensions,

different heuristic algorithms are designed and results of a computational study

on a large bed of problem instances are reported.

Keywords: Survivable network design, Primary and secondary paths, Dedicated

protection.

iii

ÖZET

ADANMIŞ KORUMALI GÜVENİLİR HABERLEŞME
AĞLARI İÇİN ALGORİTMALAR

Pelin Damcı

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Oya Ekin Karas.an

Temmuz, 2010

Bu tez, güvenilir haberleşme ağları tasarımı problemlerini çözmek için algorit-

malar sunmaktadır. Amacımız her bir kaynak ve hedef ikilisi için 2-ayrıt yol bulan

ve aynı zamanda ayrıt kullanmak için verilen sabit giderleri ve yol atama maliyet-

lerini enküçülten bir tasarım elde etmektir. Her ne kadar güvenilir haberleşme

ağları ile ilgili geniş bir teknik yazın kaynakçası olsa da, bahsettiğimiz her bir

ayrıt için sabit giderleri, rotalama maliyetlerini ve her bir yol için farklı maliyet

yapısını göz önünde bulunduran problem daha önce çalışılmamıştır. İlk olarak,

bu problem için bir tamsayılı programlama modeli geliştirilmiştir. Büyük ölçekli

problemleri çözebilmek için farklı sezgisel algoritmalar tasarlanmıştır ve bu algo-

ritmaların hesaplama sonuçları çok sayıda örnek için rapor edilmiştir.

Anahtar sözcükler : Güvenilir ağların tasarımı, Birincil ve ikincil yollar, Adanmış

koruma.

iv

To my parents and grandfather Ali Rıza Özbek...

v

Acknowledgement

First and foremost, I feel very lucky to have had worked with both of my

Professors; Assoc. Prof. Dr. Oya Ekin Karas.an and Assoc. Prof. Hande Yaman.

Therefore, here I would like to express my gratitude to both of them. Throughout

the two years I spent at Bilkent University as a M.S. student I have learned from

my Professors how to balance my work both in and out of class.

Furthermore, my thanks and appreciation goes to my thesis committee mem-

ber, Asst. Prof. Dr. İbrahim Körpeoğlu, for his valuable time and reviews of this

thesis.

I am grateful to TÜBİTAK for the financial support they provided during my

research.

My mother and father, Gülçin Damcı and Nezih Damcı have supported me

throughout my education life. They made me realize I could do whatever I set

my mind to in life. I’d like to thank them for all they are, and all they have done

for me.

I thank my fiancee, Mehmet Can Kurt for his amazing support during my six

years at Bilkent University.

Finally, I would like to send my best wishes and thanks to my friends who have

given me support throughout my two years of graduate study. Gonca Aydoğdu,

İlker Tufan, Ezgi Demirci, Gökçe Akın, Korhan Aras, Hatice Çalık, Ece Zeliha

Demirci, Gülşah Hançerlioğulları, Ceyda Kırıkçı and Başak Renklioğlu. I feel

very lucky that you were by my side! I am also thankful to all other friends that

I failed to mention here.

vi

Contents

1 Introduction 1

2 Literature Review 6

3 Mathematical Model 12

4 Heuristic Algorithms 17

4.1 Suurballe’s Algorithm . 18

4.2 Construction Heuristics . 19

4.2.1 Two-Step Algorithm . 19

4.2.2 One-Step Algorithm . 23

4.3 Improvement Heuristics . 26

4.3.1 IP Based Heuristic . 26

4.3.2 Edge Deletion . 27

4.3.3 Edge Addition . 27

4.3.4 Cycle Algorithm . 28

vii

CONTENTS viii

5 Numerical Results of Algorithms 32

5.1 Test Instances . 32

5.1.1 Node Number (V) . 33

5.1.2 Edge Number (E) . 33

5.1.3 Primary and Secondary Path Costs (ce1ij and ce2ij) 33

5.1.4 Fixed Cost (fij) . 33

5.1.5 Demand (d) . 34

5.2 Results of Test Instances . 34

5.2.1 One-step and One-step-2 Algorithm Comparison 35

5.2.2 Edge Deletion Heuristic and Cycle Algorithm Comparison 36

5.2.3 Summary of Our Findings 39

6 Conclusion 47

A Results of Computational Studies 51

List of Figures

1.1 2-edge disjoint paths from s to t: Path 1: s-1-3-5-t, Path 2: s-2-4-t 5

4.1 An example which shows how Suurballe’s algorithm works 20

4.2 Steps of Edge Deletion Heuristic 27

4.3 Steps of Edge Addition Heuristic 28

4.4 An example for a single commodity i and j which shows how cycle

algorithm works . 29

5.1 One-step and One-step-2 Algorithm Results for node # = 30 . . . 37

5.2 One-step and One-step-2 Algorithm Results for node # = 40 . . . 38

5.3 Edge Deletion Heuristic and Cycle Algorithm Results for node

= 30 and Comparison Results for One-step and One-step-2 Al-

gorithms as the Construction Heuristics 40

5.4 Edge Deletion Heuristic and Cycle Algorithm Results for node

= 40 and Comparison Results for One-step and One-step-2 Al-

gorithms as the Construction Heuristics 41

5.5 Edge Deletion Heuristic and Cycle Algorithm Results for node # =

30 . 42

ix

LIST OF FIGURES x

5.6 Edge Deletion Heuristic and Cycle Algorithm Results for node # =

40 . 43

5.7 One-step and One-step-2 Algorithm: Results for All Test Instances 45

5.8 Edge Deletion Heuristic and Cycle Algorithm: Results for All Test

Instances . 46

List of Tables

3.1 Notation . 13

A.1 Computational Results of the One-Step and One-Step-2 Algorithm

along with Rerouting, Node # = 30, Coefficient = 1, Demand

∈ {1, 100} . 53

A.2 Computational Results of the One-Step and One-Step-2 Algorithm

along with Rerouting, Node # = 30, Coefficient = 10, Demand

∈ {1, 100} . 54

A.3 Computational Results of the One-Step and One-Step-2 Algorithm

along with Rerouting, Node # = 30, Coefficient = 100, Demand

∈ {1, 100} . 55

A.4 Computational Results of the One-Step and One-Step-2 Algorithm

along with Rerouting, Node # = 40, Coefficient = 1, Demand

∈ {1, 100} . 56

A.5 Computational Results of the One-Step and One-Step-2 Algorithm

along with Rerouting, Node # = 40, Coefficient = 10, Demand

∈ {1, 100} . 57

A.6 Computational Results of the One-Step and One-Step-2 Algorithm

along with Rerouting, Node # = 40, Coefficient = 100, Demand

∈ {1, 100} . 58

xi

LIST OF TABLES xii

A.7 Computational Results of the One-Step and One-Step-2 Algorithm

along with Rerouting, Node # = 30, Coefficient = 1, Demand

∈ {1, 10} . 59

A.8 Computational Results of the One-Step and One-Step-2 Algorithm

along with Rerouting, Node # = 30, Coefficient = 10, Demand

∈ {1, 10} . 60

A.9 Computational Results of the One-Step and One-Step-2 Algorithm

along with Rerouting, Node # = 30, Coefficient = 100, Demand

∈ {1, 10} . 61

A.10 Computational Results of the One-Step and One-Step-2 Algorithm

along with Rerouting, Node # = 40, Coefficient = 1, Demand

∈ {1, 10} . 62

A.11 Computational Results of the One-Step and One-Step-2 Algorithm

along with Rerouting, Node # = 40, Coefficient = 10, Demand

∈ {1, 10} . 63

A.12 Computational Results of the One-Step and One-Step-2 Algorithm

along with Rerouting, Node # = 40, Coefficient = 100, Demand

∈ {1, 10} . 64

A.13 Computational Results of the Edge-Deletion Heuristic and Cycle

Algorithm Applied After One-Step-2 Algorithm, Node # = 30,

Coefficient = 1, Demand ∈ {1, 100} 65

A.14 Computational Results of the Edge-Deletion Heuristic and Cycle

Algorithm Applied After One-Step-2 Algorithm, Node # = 30,

Coefficient = 10, Demand ∈ {1, 100} 66

A.15 Computational Results of the Edge-Deletion Heuristic and Cycle

Algorithm Applied After One-Step-2 Algorithm, Node # = 30,

Coefficient = 100, Demand ∈ {1, 100} 67

LIST OF TABLES xiii

A.16 Computational Results of the Edge-Deletion Heuristic and Cycle

Algorithm Applied After One-Step-2 Algorithm, Node # = 40,

Coefficient = 1, Demand ∈ {1, 100} 68

A.17 Computational Results of the Edge-Deletion Heuristic and Cycle

Algorithm Applied After One-Step-2 Algorithm, Node # = 40,

Coefficient = 10, Demand ∈ {1, 100} 69

A.18 Computational Results of the Edge-Deletion Heuristic and Cycle

Algorithm Applied After One-Step-2 Algorithm, Node # = 40,

Coefficient = 100, Demand ∈ {1, 100} 70

A.19 Computational Results of the Edge-Deletion Heuristic and Cycle

Algorithm Applied After One-Step-2 Algorithm, Node # = 30,

Coefficient = 1, Demand ∈ {1, 10} 71

A.20 Computational Results of the Edge-Deletion Heuristic and Cycle

Algorithm Applied After One-Step-2 Algorithm, Node # = 30,

Coefficient = 10, Demand ∈ {1, 10} 72

A.21 Computational Results of the Edge-Deletion Heuristic and Cycle

Algorithm Applied After One-Step-2 Algorithm, Node # = 30,

Coefficient = 100, Demand ∈ {1, 10} 73

A.22 Computational Results of the Edge-Deletion Heuristic and Cycle

Algorithm Applied After One-Step-2 Algorithm, Node # = 40,

Coefficient = 1, Demand ∈ {1, 10} 74

A.23 Computational Results of the Edge-Deletion Heuristic and Cycle

Algorithm Applied After One-Step-2 Algorithm, Node # = 40,

Coefficient = 10, Demand ∈ {1, 10} 75

A.24 Computational Results of the Edge-Deletion Heuristic and Cycle

Algorithm Applied After One-Step-2 Algorithm, Node # = 40,

Coefficient = 100, Demand ∈ {1, 10} 76

LIST OF TABLES xiv

A.25 Computational Results of the One-Step Algorithm, Node # = 30,

Coefficient = 1, Demand ∈ {1, 100} 77

A.26 Computational Results of the One-Step Algorithm, Node # = 30,

Coefficient = 10, Demand ∈ {1, 100} 78

A.27 Computational Results of the One-Step Algorithm, Node # = 30,

Coefficient = 100, Demand ∈ {1, 100} 79

A.28 Computational Results of the One-Step Algorithm, Node # = 40,

Coefficient = 1, Demand ∈ {1, 100} 80

A.29 Computational Results of the One-Step Algorithm, Node # = 40,

Coefficient = 10, Demand ∈ {1, 100} 81

A.30 Computational Results of the One-Step Algorithm, Node # = 40,

Coefficient = 100, Demand ∈ {1, 100} 82

A.31 Computational Results of the One-Step-2 Algorithm, Node # =

30, Coefficient = 1, Demand ∈ {1, 100} 83

A.32 Computational Results of the One-Step-2 Algorithm, Node # =

30, Coefficient = 10, Demand ∈ {1, 100} 84

A.33 Computational Results of the One-Step-2 Algorithm, Node # =

30, Coefficient = 100, Demand ∈ {1, 100} 85

A.34 Computational Results of the One-Step-2 Algorithm, Node # =

40, Coefficient = 1, Demand ∈ {1, 100} 86

A.35 Computational Results of the One-Step-2 Algorithm, Node # =

40, Coefficient = 10, Demand ∈ {1, 100} 87

A.36 Computational Results of the One-Step-2 Algorithm, Node # =

40, Coefficient = 100, Demand ∈ {1, 100} 88

LIST OF TABLES xv

A.37 Computational Results of the One-Step-2 Algorithm, Node # =

30, Coefficient = 1, Demand ∈ {1, 10} 89

A.38 Computational Results of the One-Step-2 Algorithm, Node # =

30, Coefficient = 10, Demand ∈ {1, 10} 90

A.39 Computational Results of the One-Step-2 Algorithm, Node # =

30, Coefficient = 100, Demand ∈ {1, 10} 91

A.40 Computational Results of the One-Step-2 Algorithm, Node # =

40, Coefficient = 1, Demand ∈ {1, 10} 92

A.41 Computational Results of the One-Step-2 Algorithm, Node # =

40, Coefficient = 10, Demand ∈ {1, 10} 93

A.42 Computational Results of the One-Step-2 Algorithm, Node # =

40, Coefficient = 100, Demand ∈ {1, 10} 94

Chapter 1

Introduction

Networks are being used in many settings to model and solve problems. A num-

ber of problems that can be found in everyday life using networks are: Finding

shortest paths, designing telecommunications networks, speeding up Internet,

balancing the traffic on highways etc. Since the 90’s, an increasing number of

telecommunications networks are being used. Especially, with the vast devel-

opment of the Internet, and the need to transmit more data, design of surviv-

able and properly capacitated networks have become imperative. Survivability

is a keyword for today’s telecommunications networks due to the domination

of telecommunications systems that have invaded consumers’ lives in every way.

Hence, survivability is a critical design constraint for high-speed networks that

satisfy the users. There are different types of protection schemes. However, the

general idea is to connect source and destination pairs with more than a single

path. By this way, if a failure on a path occurs another path can become active

and the data transfer to the destination can be made safely. Equipment failures

may occur due to construction or due to destructive natural events, such as earth-

quakes, tsunamis, tornadoes etc. Since, repairing an equipment in a short time

may not be possible, the use of another path during the mending of the failure

will be necessary for the transfer of data between the source and the destination

to continue.

How to choose the paths between source and destination pairs depends on the

1

CHAPTER 1. INTRODUCTION 2

severity of the survivability requirement. In general, node or link failures may

occur so the paths can be either node-disjoint or edge-disjoint. Any number of

disjoint paths can be considered from a source to a destination. But, finding and

using disjoint paths is costly therefore a balance between survivability and total

costs needs to be considered. In the literature two types of paths are referred to;

primary(working) and secondary(backup) paths and most research focuses on the

recovery from a single link or node failure. In other words, one failure is repaired

before another failure occurs. Nonetheless, multiple failures in a realistic network

may occur but this subject is beyond the scope of this thesis.

There are two types of protection schemes for using primary and secondary

paths as survivability measures; dedicated protection and shared protection. In

dedicated protection, a spare capacity is available such that if a destination point

suffers a failure due to the spare capacity it is guaranteed that there will be avail-

able resources to recover from the failure, assuming that the secondary resources

have not failed. There are two types of categories of dedicated protection. In

1+1 dedicated protection, both the primary and the secondary path is active and

the circuitry in the network chooses the better connection. On the contrary, in

1:1 dedicated protection only the primary path is active until a failure occurs in

the network only then the secondary path is used. After the failure is overcome

the primary path can be used again or the connection may continue to use the

secondary path. The advantage of 1+1 dedicated protection is that the recovery

from a failure can be nearly immediate. But, 1:1 dedicated protection is slower

since the transmit must start over from the secondary path. Since 1+1 dedicated

protection has both the primary and secondary paths active this type of approach

requires more equipment which may be costly. For both 1+1 and 1:1 dedicated

protection a spare capacity is needed which is considered as a downside of the

dedicated protection scheme due to its cost. Shared dedication protection ad-

dresses this downside by making the spare capacity available for more than one

primary path. There is a restriction to which primary paths can share the spare

capacity; they cannot have links or nodes in common.

While finding node-disjoint or edge-disjoint paths the total costs incurred by

using the edges are considered. The edges have costs such that if 1 unit of demand

CHAPTER 1. INTRODUCTION 3

is sent through that edge the cost of that specific edge is added to the total cost.

This is called the minsum problem which consists of finding k disjoint paths

between two distinct nodes, a source and a destination such that the sum of the

cost of the routes is minimum [5]. A polynomial running time algorithm developed

for the edge-disjoint problem by Suurballe and Tarjan [12] solves the problem of

finding 2-edge disjoint paths to optimality when the objective is the minimization

of the sum of the costs of the used edges on both paths. However, Suurballe’s

algorithm finds an optimal solution for only a single source and destination pair

and when there is a single cost for each edge. According to the requirements of

survivability and the objective function the problem can become NP-hard which

causes the researchers to focus on different heuristic algorithms. In many real

life problems which fall into the category of survivable network design there is a

relationship between the two costs cp(e), cs(e) for each edge e, where the former

cost is used to compute the cost of a primary path while the latter is used for

secondary path computation. This relationship is typically characterized in terms

of a coefficient α such that 0 < α < 1 and cs(e) = αcp(e). However, the costs

cp(e), cs(e) can also be arbitrary. For the special case of cs(e) = αcp(e) for all

edges e, the problem of minimizing the total costs incurred is known to be NP-

hard for directed graphs, i.e. graphs in which links have directions. This result

holds whether the paths are required to be node or edge disjoint[3]. The node-

disjoint and edge-disjoint paths problem for undirected graphs is also known to

be NP-hard according to Xu et al. [14]. However, Bhatia et al. show that Xu et

al.’s proof for the edge-disjoint problem in undirected graphs is flawed.

Other than the minsum problem, there is also a min-max version of the prob-

lem. This problem minimizes the cost of the most expensive of the selected routes.

Min-max version is much more difficult, Li et al. [9] showed that the min-max

problem is strongly NP-complete even when k = 2 for the four possible variants

of the problem; edge-disjoint, node-disjoint and the network is either directed or

undirected.

In this thesis our aim is to solve a network design problem with requirements

that define the survivability level along with different cost structures while min-

imizing the total cost. We seek 2-edge disjoint paths for every possible origin

CHAPTER 1. INTRODUCTION 4

destination pair. We are given a graph G = (V,E), where V represents the node

set and E represents the edge set. There is a a fixed cost, i.e., a cost for opening(or

activating) an edge and two variable costs for an edge. Fixed cost is incurred once

if edge is used. Two variable costs are costs for sending 1 unit of flow from that

edge. There are two variable costs since one of the costs ce1ij is incurred if that

edge {i, j} ∈ E is used along a primary path for a source-destination pair and the

other cost ce2ij is incurred if edge {i, j} ∈ E is used along a secondary path for

a source-destination pair. These two costs are also referred to as dual edge costs

since there are two costs for each edge. We assume that the relationship between

primary and secondary path costs is cs(e) = 1/2cp(e). In the literature, the cost

of using secondary paths is generally accepted as lower than their primary coun-

terparts. This is because in normal circumstances the primary paths are used and

only if some damage occurs in a primary path the secondary path is utilized for

a source-destination pair. Any source-destination pair has a demand that needs

to be satisfied. Throughout this thesis all possible source and destination pairs

are assumed to exist. Figure 1.1 represents 2-edge disjoint paths for a source-

destination pair, s− t. The first path is s→ 1→ 3→ 5→ t and the second path

is s→ 2→ 4→ t. One may notice that there are only 2-edge disjoint paths from

s to t hence, for any k > 2 this example will be infeasible. However, more than

1 different pair of edge-disjoint paths can be found. For example, the first path

can be s→ 1→ 3→ t and the second path can be s→ 2→ 4→ 5→ t.

The rest of the thesis is organized as follows. Chapter 2 contains the literature

review for survivable network design. In Chapter 3 an IP model which solves the

2-edge disjoint network problem with fixed and dual edge costs is presented. In

Chapter 4, the specific details of the algorithms used to solve the problem are

explained. In Chapter 5, the numerical results obtained from both the IP model

and the algorithms are provided along with interpretations of the results. Finally,

the thesis is summarized in Chapter 6 and possible future work is also discussed.

For detailed numerical results the reader can review the Appendix.

CHAPTER 1. INTRODUCTION 5

Figure 1.1: 2-edge disjoint paths from s to t: Path 1: s-1-3-5-t, Path 2: s-2-4-t

Chapter 2

Literature Review

Survivability has become a major issue in telecommunications networks with the

emerging need to transfer more data compared to earlier decades. Consumers

desire a satisfying service that is without failure at all times. This requirement

can be met via utilizing more than one route between a source and a destination

pair to transfer data. Having an additional route, referred to as the back up or

secondary path will provide a protection against a failure caused by a destruction

in the primary path. By assumption a single node or link failure can happen.

Therefore, if a problem occurs in transferring data that uses the primary path

automatically the data transfer is continued by utilizing the secondary path until

the complication in the primary path is fixed. To use the secondary path without

any difficulties the primary and secondary path must be node or edge disjoint

(having no common nodes or no common edges) that is, if one of the paths is out

of order the other one will be ready to continue the data transfer.

The problem of finding “disjoint paths” is being studied since late 1950’s. De-

velopments in MIP models, heuristic and exact algorithms can be seen throughout

five decades. Research related to finding “disjoint paths” is divided according to

different constraints since several types of equipment failure may occur in a net-

work and interrupt traffic along paths. Hence, one of the major responsibilities

of “disjoint paths” between a given source and sink is to increase reliability in

communication networks. However, increasing reliability “too much” may be

6

CHAPTER 2. LITERATURE REVIEW 7

costly according to given network parameters. Therefore, a compromise between

reliability and total cost needs to be achieved for a desirable output. Given a

brief description of the general problem, the following paragraphs analyze the

literature on “disjoint paths” in more depth.

In Suurballe’s paper [13] the problem of finding K node-disjoint paths with

minimum total cost is presented. The total cost includes the summation of indi-

vidual arc lengths used on paths between a source and a destination. Suurballe

[13] describes a labeling algorithm involving K shortest path iterations. The idea

presented by the author gives a polynomial time algorithm. Furthermore, with

slight modifications as discussed in [12] the algorithm can also be used for finding

edge-disjoint paths. Bhandari’s algorithm [2] which is a slight variation of Suur-

balle’s algorithm also achieves the same results as Suurballe’s algorithm. Both

Suurballe’s algorithm and Bhandari’s algorithm provide optimal results to the

problem of finding a pair of edge-disjoint paths for a single source and destina-

tion pair. The problem solved by Suurballe and Bhandari differ from our problem

in several ways. First of all, we assume that all possible source and destination

pairs exist in a given graph G. In addition, we consider two different path costs

ce1ij and ce2ij for each edge {i, j} and fixed cost fij of activating an edge {i, j}.

Li et al. [10] consider a different problem compared to Suurballe since for a

network G = (V,E) with source and sink nodes there are k different costs on every

edge. Li et al. describe their problem as a minsum problem, where jth edge-cost

is associated with the jth path. They analyze several variants of the problem;

node-disjoint or edge-disjoint problems with directed or undirected networks. Li

et al. claim that all four versions of the problem are NP-complete even when

k = 2, for arbitrary primary and secondary path costs, however, Bhatia et al.

[3] show that when, ce1ij < ce2ij, Li et al.’s. NP hardness results do not extend

to this case. Li et al. present polynomial time heuristics and an algorithm for

their proposed problem. The first heuristic they describe is a heuristic in which

a function f of the k costs on each arc that “averages”’ the individual costs is

defined. However, this “averages”’ concept is a function determined by the users

of the algorithm so it may or may not be the same as the customary meaning of

taking the average of k numbers. After computing this function f of k different

CHAPTER 2. LITERATURE REVIEW 8

costs for each arc a Minimum Cost Network Flow (MCNF) problem is solved

such that the supply at the source node is k, the demand at the sink node is

k, all other nodes have supply/demand equal to 0 and edges have capacity of 1.

The second heuristic discussed in the paper arranges the edge costs according to

the customary meaning of average, so it takes the average of the k different costs

without creating a function f . Although Li et al. consider different path costs

for edges their problem is fundamentally different from our problem since they

do not consider fixed costs for activating edges.

Bhatia et al. [3] point out that the cost metric used for primary and secondary

paths differ in some settings and in others they are somehow related to each other.

More precisely, one of the costs may be a multiple of the other. The problem

considered by Bhatia et al. is to find a pair of edge or node-disjoint paths of

minimum cost where the costs of primary path is the total cost of the edges

used on the paths while the cost for the secondary path is α times the sum of

the cost of the links used on the path, where α < 1. This study is of great

importance to this thesis where α = 1/2 for all of the test instances that are

present in Chapter 5. Bhatia et al. argue that a simple algorithm achieves an

approximation ratio of O(1/α) for the proposed problem. They also consider the

four versions of the problem that are previously described in the above paragraph.

The approximation algorithm they mention is Suurballe’s algorithm which runs

in polynomial time. They prove that this algorithm is a 1/2+1/α approximation

algorithm for their problem. They conclude by saying that if α is a fixed constant,

as in this thesis, the hardness of the problem is still an open question. The

problem that Bhatia et al. consider is the closest one to our problem in survivable

network design literature. However, like other papers they do not consider fixed

costs for activating edges.

A recent study conducted by Gomes et al. [5] like Li et al. [10] also analyzes

the problem of calculating k disjoint paths from a source to a destination (two

distinct nodes) in which there are k arbitrary costs on every edge and the total

cost is minimized. Even when k = 2 this problem is NP-complete since the

costs on edges are arbitrary. The authors refer to the networks as dual arc cost

networks when k = 2. They propose an exact algorithm that finds 2 disjoint

CHAPTER 2. LITERATURE REVIEW 9

paths for source and destination pairs when the network has dual arc costs. The

exactness of the algorithm they describe results from the fact that it allows the

calculation of optimal solutions by using a condition to satisfy the optimality.

The algorithm is based on calculating upper and lower bounds on the optimal

cost. Two alternative problems can also be solved by slightly modifying their

proposed algorithm. These problems are finding node-disjoint paths and disjoint

paths with length constraints. The authors claim that their exact algorithm can

solve any instance to optimality if memory and CPU times were unlimited. They

present test instances with up to 1000 nodes and when the number of arcs are

3 or 4 times the number of nodes in the network. The worst case complexity of

the algorithm is O(n3(u + v) + n(u + v)2), where n is the number of nodes and

u+ v is the number of generated shortest paths. The study presented by Gomes

et al. in [5] is an extension to ideas presented in [4]. Although the algorithms

provided in the two papers differ, the basic approach used to find the optimal

solutions remains the same. The exact algorithm presented by Gomes et al. [5]

is not utilized in this thesis due to its high complexity and memory usage. In

addition, the algorithm described by the authors do not take into consideration

fixed costs for activating edges.

Ho et al. [7] propose an Integer Linear Program (ILP) and two heuristics

called Iterative Two-Step-Aprroach (ITSA) and Maximum Likelihood Relaxation

(MLR) to solve the least-cost primary and secondary path-pair (in terms of the

sum of the total cost). The authors use the shared protection scheme while

solving the problem. Recall that in shared protection scheme a spare capacity

is available such that if a destination point suffers a failure due to the spare

capacity it is guaranteed that there will be available resources to recover from

the failure, assuming that the secondary resources have not failed. In contrast

to dedicated protection scheme this spare capacity is available for more than one

primary path assuming that the primary paths in consideration do not share a

link or a node. The ITSA heuristic enumerates and inspects all of the k-shortest

paths as the primary path. Although ITSA provides better results in terms of

the proximity to the optimal solution, the computational complexity becomes

a bottleneck for larger problems in terms of node or link numbers. The other

CHAPTER 2. LITERATURE REVIEW 10

heuristic, MLR is a modified version of the Dijkstra’s algorithm [1] and yields

polynomial time complexity. To explain it in more detail, MLR considers finding

the secondary path during the calculations for finding the primary path. However,

since MLR yields a polynomial time complexity the results obtained from it are

not as satisfying as ITSA’s computational results. Networks with up to 100 nodes

have been tested in the paper.

Another version of finding disjoint paths problem is to maximize the number

of disjoint paths between a source and a destination. An extension to this problem

is that length of every path is bounded by a given value, p. Itai et al. [8] analyze

the complexity of this problem, while Perl and Ronen [11] present a polynomial

time heuristic algorithm for any given bound value, p. For the test instances used

in the paper, they prove that when p ≤ 5 optimal solutions are found and when

p ≥ 5 solution values are in proximity to the optimal solution.

In addition to minimizing the cost of finding disjoint paths for single source

and destination problems, several different source and destinations can also be

added to the problem. However, having several source and destinations increases

the complexity of the problem. Depending on the context of the problem there

may be several destination points and one single source or vice versa. But any

number of source and destination pairs is also possible.

One other problem differing from the previously mentioned settings is pre-

sented by Guruswami et al. in [6]. The specific problem at hand is finding

a maximum number of length bounded edge-disjoint paths between any given

source and destination pairs. The authors show an analysis of the approximabil-

ity of the proposed problem. Having presented their analysis, an O(
√
m) time

approximation algorithm to solve the maximum edge-disjoint path problem is

also provided.

The contribution of this thesis to the survivable network design literature

is as follows: A new 2-edge connected network design problem is introduced.

The task is to find 2-edge disjoint paths for every possible source to destination

in the presence of fixed costs for edges and different routing costs for primary

and secondary paths. First of all, the costs of primary and secondary paths

CHAPTER 2. LITERATURE REVIEW 11

are different but related to each other since, ce1ij = 2ce2ij (primary path costs is 2

times the secondary path costs). Although there are are some studies on different

path costs for edges, as Bhatia et al. [3] point out when αce1
ij = ce2ij and α is a

constant the question of whether the problem is NP-hard or not is still an open

question. However, in addition to routing costs, ce1ij and ce2ij, we also consider

fixed costs fij for each edge {i, j} ∈ E.

In the next chapter, the IP model for the proposed problem is presented.

Chapter 3

Mathematical Model

In this section the IP model for our problem, namely, the Survivable Network

Design Dedicated Protection (SND DP) is introduced along with some analysis.

Given a network, the task is to find 2-edge disjoint paths for every commodity in

the network such that primary and secondary paths have different edge costs and

a fixed cost for opening an edge for usage is encountered. Although a network

is assumed to be available at hand, using an edge for the first time or activating

it requires a fixed cost. The outcome of the model will produce two paths that

have no common edges for each commodity. The objective is to minimize the

total costs.

Given a graph G = (V,E) with edge costs ce1ij, ce
2
ij, fij and commodity set

K, the survivable network design problem discussed in this thesis is to find a

minimum cost subgraph of G such that between every pair in the commodity set

K, there are at least 2-edge disjoint paths.

Cost ce1ij is the cost of routing a unit flow on edge {i, j} ∈ E on the primary

path and cost ce2ij is the cost of routing a unit flow on edge {i, j} ∈ E on the

secondary path. Cost fij is the fixed cost of activating edge {i, j} ∈ E. For each

commodity k ∈ K, s(k) ∈ V is the origin, t(k) ∈ V is the destination, and d(k)

is the demand between the origin and destination. For quick reference to the

notation used in this chapter the reader may look at Table 3.1.

12

CHAPTER 3. MATHEMATICAL MODEL 13

G : Given graph
V : Vertex set in graph G
E : Edge set in graph G
K : Commodity set
ce1ij : Unit routing cost of edge {i, j} ∈ E for primary path
ce2ij : Unit routing cost of edge {i, j} ∈ E for secondary path
fij : Fixed cost of activating edge {i, j} ∈ E

s(k) : Origin for commodity k ∈ K
t(k) : Destination for commodity k ∈ K
d(k) : Demand for commodity k ∈ K

Table 3.1: Notation

We use the following decision variables in our model:

xpk
ij is the decision variable to keep track of which edge belongs to the pri-

mary path of the specific commodity at hand. Similarly, xsk
ij is the decision

variable which holds the edges belonging to the secondary path for each com-

modity. The last decision variable, yij is necessary to keep track of the edges that

are −opened− in order to add the fixed costs of opening an edge to the objective

function value.

xpk
ij =


1, if edge {i, j} ∈ E is used in the direction from i to j

on the primary path of commodity k ∈ K
0, otherwise

xsk
ij =


1, if edge {i, j} ∈ E is used in the direction from i to j

on the secondary path of commodity k ∈ K
0, otherwise

yij =

{
1, if edge {i, j} ∈ E is used

0, otherwise

Now, we can model SND DP as follows:

CHAPTER 3. MATHEMATICAL MODEL 14

min
∑

{i,j}∈E

fijyij+
∑
k∈K

∑
{i,j}∈E

(ce1ijd(k)(xpk
ij+xp

k
ji)+ce

2
ijd(k)(xsk

ij+xs
k
ji)) (3.1)

s.t.

∑
j:{i,j}∈E

xpk
ij−

∑
j:{i,j}∈E

xpk
ji =


1, if i = s(k) ∀ k ∈ K, ∀ i ∈ V
−1, if i = t(k) ∀ k ∈ K, ∀ i ∈ V
0, otherwise

(3.2)

∑
j:{i,j}∈E

xsk
ij−

∑
j:{i,j}∈E

xsk
ji =


1, if i = s(k) ∀ k ∈ K, ∀ i ∈ V
−1, if i = t(k) ∀ k ∈ K, ∀ i ∈ V
0, otherwise

(3.3)

xpk
ij +xpk

ji +xsk
ij +xsk

ji ≤ yij ∀k ∈ K, ∀ {i, j} ∈ E (3.4)

xpk
ij, xs

k
ij ∈ {0, 1} ∀k ∈ K, ∀ {i, j} ∈ E (3.5)

yij ∈ {0, 1} ∀ {i, j} ∈ E (3.6)

Constraints (3.2) and (3.3) are flow balance constraints. Here since we are

searching for two paths, for each commodity, two sets of flow balance equations

are written; one for the primary path (3.2) and one for the secondary path (3.3).

However, finding two paths for each commodity is not adequate since the task

is to find two −disjoint− paths. Therefore, an edge {i, j} ∈ E can only be used

in one path; primary or secondary path for each commodity. Constraint (3.4)

satisfies this request by bounding the number of times a commodity can use an

edge. This constraint also opens edge {i, j} ∈ E if that edge has been used by a

commodity in either its primary or secondary path.

The first part of the summation in the objective function;
∑

{i,j}∈E

fijyij is for

CHAPTER 3. MATHEMATICAL MODEL 15

calculating the total costs incurred due to the activation of the edges. The second

part of the summation;
∑
k∈K

∑
{i,j}∈E

(ce1ijd(k)(xpk
ij + xpk

ji) + ce2ijd(k)(xsk
ij + xsk

ji)) is

necessary for calculating the total routing costs. The demands are used in this

calculation since, the variable costs ce1ij and ce2ij are costs for routing a unit

demand.

As observed in the above given model, constraints (3.2) and (3.3) are flow

balance constraints. Hence, if the edge set to be used is given, i.e., yij values are

fixed, the problem boils down to finding 2-edge disjoint paths for each commod-

ity. This implies that if the fixed cost fij values are small in value to routing

costs ce1ij and ce2ij the problem becomes easier. Furthermore, this problem is a

Minimum Cost Network Flow (MCNF) problem if there were single edge costs cij

for finding 2-edge disjoint paths. We refer to this problem as Single Commodity

Routing Problem (SCRP). The idea of using MCNF is important since Suur-

balle’s algorithm [12] takes its origins from this model. The detailed explanation

for Suurballe’s algorithm is presented in Chapter 4.

We define,

xk
ij =


1, if edge {i, j} ∈ E is used in the direction from i to j

on a path for commodity k ∈ K
0, otherwise

Now, we can model the SCRP as follows:

min
∑
k∈K

∑
{i,j}∈E

cijx
k
ij

s.t.

∑
j:{i,j}∈E

xk
ij −

∑
j:{i,j}∈E

xk
ji =


2, if i = s(k) ∀ k ∈ K, ∀ i ∈ V
−2, if i = t(k) ∀ k ∈ K, ∀ i ∈ V
0, otherwise

CHAPTER 3. MATHEMATICAL MODEL 16

0 ≤ xk
ij ≤ 1 ∀k ∈ K, ∀ {i, j} ∈ E

The number of commodities used in SND DP severely enlarges the problem

in terms of the memory that is used. As the number of nodes increases, so does

the number of commodities. This is because by assumption, in this thesis all of

the possible combinations of source and destination pairs exist. In addition, the

possible density of the graph; the amount of edges that are available, also effects

the memory usage.

Differing edge costs for primary and secondary paths are other factors that

make the problem harder (Recall that Suurballe and Tarjan’s algorithm solves

to optimality the 2 edge-disjoint problem with single routing costs for edges for

a single commodity [12]). Throughout this thesis the assumption is that the

relationship between the routing costs is: 1/2ce1ij = ce2ij.

In the next chapter, different consruction and improvement heuristics are

expressed.

Chapter 4

Heuristic Algorithms

In our problem, we find 2-edge disjoint paths between source and destination

pairs. The objective is to minimize the total costs. These costs include primary

and secondary path routing costs and fixed costs for opening edges. Recall that

primary path costs is 2 times the secondary path costs.

To solve our problem, in this chapter, we make use of several algorithms.

Firstly, Suurballe’s algorithm is described since it is one of the basic algorithms

utilized in the heuristic algorithms that are illustrated in this section. Afterwards

two of the consrtuction heuristics, namely, the two-step and one-step algorithm

are described. These algorithms find initial feasible solutions for our problem.

Finally, before concluding this chapter we explain improvement methods that

can be applied to both of the construction heuristics. The improvement methods

are referred to as the IP based heuristic, edge deletion heuristic, edge addition

heuristic and cycle algorithm. These methods are explained in depth in section

Improvement Heuristics.

17

CHAPTER 4. HEURISTIC ALGORITHMS 18

4.1 Suurballe’s Algorithm

Given a graph G = (V,E), with single edge costs cij for each edge {i, j} ∈ E,

a source node s, and destination node d, the survivable network design problem

solved by Suurballe finds 2-edge disjoint paths between s and d while minimizing

the total cost of these 2 paths. Cost cij is the cost of routing a unit flow on edge

{i, j} ∈ E.

Suurballe and Tarjan [12] describe Suurballe’s algorithm that solves the 2-edge

disjoint paths problem. The method is based on the generic algorithm explained

in [13] which is for finding node-disjoint paths. The altered version of the algo-

rithm, which solves the 2-edge disjoint paths problem, runs in O(m log1+m/n n)

time and O(m) space, where m is the number of edges and n is the number of

nodes given in a graph G.

The algorithm starts by finding a shortest path tree from node s to all other

nodes using Dijkstra’s algorithm [1]. Afterwards, the original graph G is altered

by changing the cost values of the edges, while everything else remains the same.

The new edge costs for an edge {u, v} are calculated as follows:

πu,v = cu,v +ds,u−ds,v, where cu,v represents the original cost values of the edges,

ds,u is the shortest path distance from node s to u and ds,v is the shortest path

distance from node s to v. The new edge costs are simply the reduced costs

from LP duality when the LP model in discussion is the relaxation of SCRP.

Then, the edges’ directions used in the shortest path from node s to node d are

reversed. The shortest path from node s to node d is calculated again using new

edge costs and new edge directions for the edges found on the previous shortest

path. After removing the links that appear (in opposite direction) in both the

original shortest s− d path and the latter shortest path s− d tree 2-link disjoint

paths between nodes s and d can be easily constructed. The pseudo-code of the

algorithm can be found in Algorithm 1.

For a deeper understanding of the algorithm one can analyze the example

in Figure 4.2. In this example 2-edge disjoint paths from node 0 to node 5 are

to be found. Numbers next to edges which are inside rectangles represent edge

CHAPTER 4. HEURISTIC ALGORITHMS 19

Algorithm 1 Suurballe

Compute the shortest-path tree rooted at node s using Dijkstra’s algorithm [1].
Let ds,u denote the shortest-path distance from node s to node u.

Transform the original graph G to an auxiliary graph G′ as follows:
Node and links are kept unchanged.
The cost of each link {u, v} in G′ is defined by
πu,v = cu,v + ds,u − ds,v, where πu,v denotes the
cost of link {u, v} in graph G′ and cu,v denotes the
cost of link {u, v} in graph G.
Reverse the directions of the links along the shortest path from
node s to node d.

Compute the shortest path from node s to node d in graph G′.
The shortest path between nodes s and d in G(G′) is denoted as P (P ′).

Remove the links appearing in both P and P ′

(in opposite direction), all the other links in P and P ′

form a cycle when ignoring their directions. Two link-disjoint paths
between nodes s and d are found from the cycle.

costs. The dashed lines show the shortest-path tree rooted at node 0. The

shortest path from node 0 to node 5 is P = 0→ 1→ 4→ 5. After completing

the transformation of the graph from G to G′, the shortest path between nodes

0 and 5 is P ′ = 0→ 3→ 4→ 1→ 2→ 5, which can be observed in part (b)

of the figure. After removing the arcs (1, 4) and (4, 1), the 2-edge disjoint paths

0→ 3→ 4→ 5 and 0→ 1→ 2→ 5 are found and shown in part (c) of the figure.

4.2 Construction Heuristics

In this section, the construction heuristics that utilize both Dijkstra’s and Suur-

balle’s algorithm are described. These heuristics find initial feasible solutions.

4.2.1 Two-Step Algorithm

The basic idea used in the two-step algorithm is the application of Dijkstra’s al-

gorithm [1] using single link costs that are equal to primary path costs, ce1ij. For

CHAPTER 4. HEURISTIC ALGORITHMS 20

Figure 4.1: An example which shows how Suurballe’s algorithm works

CHAPTER 4. HEURISTIC ALGORITHMS 21

each commodity Dijkstra’s shortest path algorithm is applied once to construct

the primary path. Then, the edges used in the primary path are temporarily

deleted from the network so that the second application of the Dijkstra’s algo-

rithm does not use these edges. By this way, the secondary path is also found

assuming 2-edge disjoint paths exist for that commodity. This process is done

as if only the particular commodity at hand exists, i.e., the total costs for each

commodity are calculated seperately without considering active or inactive edges.

Thus, the fixed costs are not included in the total costs. Afterwards the com-

modity in discussion is placed in a commodities array which holds the total costs

(primary path cost + secondary path cost) for that commodity. Finally, when the

total cost calculation for each commodity is completed the values in this array

are sorted according to descending order of total costs for each commodity.

At the end of the above process the problem is solved again according to

the order of commodities in the commodities array. However, in this case the

fixed costs are also considered while finding total costs for each commodity. Fur-

thermore, each commodity is not thought of seperately, i.e., after a commodity’s

two paths are fixed and total costs are calculated the next commodity does not

pay any fixed costs if it uses edges that were previously activated. Until all of

the commodities in the commodities array are processed the assigment of paths

continues. At the end a feasible solution is obtained.

To improve the feasible solution at hand, a “rerouting”’ procedure is also

performed. In this procedure, only the edges which were activated during the

above explained steps are used and the fixed costs are added to the total costs

at the end of the algorithm. Basically, for every commodity two paths are found

again assuming that only the active edge set provided by the above steps is

available. Furthermore, if any of the edges which were activated as a result of

the above process are not used during the rerouting procedure, they are left out

of the active edge set and their fixed cost values are not included in total costs.

The important point to consider in this algorithm is the order of connection

of the commodities. In other words, the key question is which commodity should

be processed first since the primary and secondary paths constructed for that

CHAPTER 4. HEURISTIC ALGORITHMS 22

commodity become permanent. This is essential in terms of activating the edges.

If the fixed cost values are large in value compared to routing costs ce1ij and ce2ij

the order of activating edges becomes crucial in finding good solutions; solutions

that are closer in value to the optimal solution.

A number of approaches have been considered in determining the order of

commodities to be processed. One of these approaches calculates the total costs

(objective value) for each commodity as if other commodities do not exist by

using the two-step algorithm. However, during this calculation fixed costs are

not included in the total costs; only routing costs are considered. Afterwards,

the commodities are listed in descending values in terms of their total costs (This

process is explained in the first paragraph). Hence, the commodity that gives

the largest total cost is processed first by this approach and the commodity that

gives the smallest total cost is processed last. Furthermore, this approach can

also be applied multiple times by using a dynamic calculation technique. After

processing the first commodity in the list, several edges are activated. By using

this information the calculation of the total costs for each commodity can be

made again and the new ordering will probably be different from the previous

ordering since the activated edge set will be different after the first(in the list)

commodity’s paths are made permanent. This dynamic calculation technique can

be repeated as many times as |K| − 1 where |K| is the number of commodities.

However, although the results provided by this dynamic calculation technique

may be better compared to ordering the commodity list only once, the running

times of the dynamic calculations will be much higher. Another approach is to

randomly list the commodities. Unfortunately, the drawback of this approach is

that the total cost found by using random listing can be very close to the optimal

solution in some cases and in others far away from the optimal solution. The

unstability of random listing makes this approach unfavorable.

After testing these approaches, we have decided to use the static listing of

commodities. Calculating the total costs once for each commodity has better

times compared to dynamic listing. Furthermore, several improvement methods

have been discussed that will improve the quality of the solution and still obtain

considerably less running times. As discussed above, the random listing approach

CHAPTER 4. HEURISTIC ALGORITHMS 23

has not been chosen due to its unstable results. The pseudo-code for the two-step

algorithm that lists the commodities according to static listing and by following

this list processes the commodities one by one can be found in Algorithm 2.

Algorithm 2 Two-Step

for all k ∈ K do
Using Dijkstra’s algorithm (edge costs according to ce1ij) calculate the short-
est(primary) path from source s(k) to destination t(k)
Temporarily delete the edges used on the primary path for commodity k
from the given graph G
Using Dijkstra’s algorithm (edge costs according to ce2ij) calculate the short-
est(secondary) path from source s(k) to destination t(k)
Place commodity k in commoditiesArray after calculating the total costs as
primary path cost + secondary path cost

Sort the commoditiesArray in descending order of total costs
for all k ∈ commoditiesArray do

Using Dijkstra’s algorithm calculate the shortest(primary) path from source
s(k) to destination t(k) using the following costs for edges
if Edge has been activated before then

Cost of edge = ce1ij
else if Edge has not been activated before then

Cost of edge = ce1ij + fij and activate edge e = {i, j}
Temporarily delete the edges used on the primary path for commodity k
from the given graph G
Using Dijkstra’s algorithm calculate the shortest(secondary) path from
source s(k) to destination t(k)
if Edge has been activated before then

Cost of edge = ce2ij
else if Edge has not been activated before then

Cost of edge = ce2ij + fij and activate edge {i, j}
Reroute and close unused edges

4.2.2 One-Step Algorithm

In one-step algorithm instead of the naive approach of merely using Dijkstra’s

algorithm, Suurballe’s algorithm is utilized. The underlying process used in both

algorithms; the one-step and two-step algorithms are the same. Both of the

algorithms initially find the total costs for each commodity as if other commodities

CHAPTER 4. HEURISTIC ALGORITHMS 24

do not exist in the problem and a listing of the commodities is done according

to descending order of total costs. The total costs include the routing costs;

fixed cost values are not considered. Thus, the basic difference is the usage of

Suurballe’s algorithm for one-step algorithm. At the very end of the one-step

algorithm, a “rerouting”’ procedure is performed like the rerouting procedure

explained in the two-step algorithm.

In addition to the importance of listing the commodities as explained previ-

ously, one of the other crucial factors in using Suurballe’s algorithm is to deter-

mine which costs will be used during the utilization of the algorithm. This is

important since Suurballe’s algorithm assumes that only a single cost for an edge

is available.

For the calculation of the initial total costs, the edge costs are arranged as

primary path costs; ce1ij for the Suurballe’s algorithm. However, after the sorting

of the commodities according to descending order of total costs is completed

the former approach is altered. During the second application of Suurballe’s

algorithm for each commodity, the edge costs remain as primary path costs (ce1ij)

if that specific edge has not been activated before else, the cost of the edge

becomes primary path costs (ce1ij) + fixed cost of that edge. Since by using the

one-step algorithm we make the fixed cost (fij) values the important factors in

defining the paths, the solution tries to choose all of the edges with lower fixed

costs (fij) if available. This makes the problem favor some edges over others.

By altering the edge costs the favoring of the edges can become more balanced.

This can be achieved by considering the weight (wij) of an edge. The one-step

algorithm is altered to create the one-step version 2 algorithm by changing the

edge costs. Instead of checking if an edge has been activated and arranging

the costs to include the fixed costs if that edge has not been activated before a

more complex method is used. In this method, during the second application

of the Suurballe’s algorithm for each commodity the edge costs are arranged as

primary path costs (ce1ij) + fixed cost (fij) / weight of edge (wij). The edge

weights(wij) are calculated during the first application of Suurballe’s algorithm

in the part before the commodities are sorted according to their total costs in the

one-step algorithm. The edge weights(wij) for a particular edge {i, j} is equal

CHAPTER 4. HEURISTIC ALGORITHMS 25

to the amount of routing done throughout that edge. The routing amount for

an edge is calculated by considering −how much− demand that edge carries. By

cumulatively adding all of the demands that are carried by edge {i, j} we obtain

the weight of edge {i, j}, wij. In compact form, the weight of an edge, wij is equal

to
∑

k∈K: k uses edge on primary path{i,j} dk +
∑

k∈K: k uses edge on secondary path{i,j} 1/2dk

.

Furthermore, the outcome of Suurballe’s algorithm is two paths. The decision

of making which path to be primary and which path to be secondary is important

in reducing the total costs as much as possible. Both of the alternatives are

considered by assigning one path to be primary path and other to be secondary

path and vice versa. The assignment which provides the lowest total cost is

chosen and the activation of the edges are done accordingly. The pseudo-code for

the one-step algorithm that processes the commodities according to static listing

one by one can be found in Algorithm 3.

Algorithm 3 One-Step

for all k ∈ K do
Using Suurballe’s algorithm (edge costs according to ce1ij) calculate two paths
from source s(k) to destination t(k)
Make the path with the larger total cost value the secondary path and the
other primary path for commodity k
Place commodity k in commoditiesArray after calculating the total costs as
primary path cost + secondary path cost

Sort the commoditiesArray in descending order of total costs
for all k ∈ commoditiesArray do

Using Suurballe’s algorithm calculate two paths from source s(k) to destina-
tion t(k)
if Edge has been activated before then

Cost of edge = ce1ij
else if Edge has not been activated before then

Cost of edge = ce1ij + fij and activate edge {i, j}
Assign one path to be primary path and other to be secondary path and vice
versa.
Pick the arrangement with the lowest costs and change the activated edge
information if necessary

Reroute and close unused edges

From this point on there will be no discussion about the two-step algorithm,

CHAPTER 4. HEURISTIC ALGORITHMS 26

this is because the computational results for the two-step algorithm are very poor

when compared to one-step algorithm’s results. This is an implied result since

the two-step algorithm eliminates all of the edges that are used on a primary

path from a source to a destination in order to find a disjoint secondary path

for the same pair. However, one-step algorithm utilizes Suurballe’s algorithm

and in this algorithm the edges used on a primary path for a source and des-

tination pair are not completely removed from the graph before calculating the

secondary paths for the same pair. Instead, the edges utilized on the primary

path’s directions(orientations) are reversed. Hence, merely using two applica-

tions of Dijkstra’s algorithm provides a smaller subset of edges for the search of

secondary paths compared to Suurballe’s algorithm.

4.3 Improvement Heuristics

In this section several improvement methods for the one-step and one-step ver-

sion 2 algorithms are explained (These improvement methods can also be ap-

plied to the two-step algorithm but no computational results are presented for

the two-step algorithm due to the explanation made in the previous paragraph).

One-step and one-step version 2 algorithms are constructive heuristics and essen-

tially provide initial feasible solutions that can be further improved. All of the

improvement methods can be applied to both of the algorithms.

4.3.1 IP Based Heuristic

IP based heuristic basically does what “rerouting”’ procedure does but it finds

the optimal solution for the resulting active edge set that is found after the

application of one of the construction heuristics. In other words, the active edge

set is provided to the model described in Chapter 3 and the fixed costs are omitted

from the objective function. After an optimal solution to this problem is found

the edge set is checked for any edge that may have become inactive and only then

the fixed cost values are calculated for the new active edge set and added to the

CHAPTER 4. HEURISTIC ALGORITHMS 27

Figure 4.2: Steps of Edge Deletion Heuristic

problem. Although IP based heuristic may provide better solutions compared

to the “rerouting”’ procedure, the resource usage of IP based heuristic is much

higher.

4.3.2 Edge Deletion

In this improvement all of the active edges provided by one of the construction

heuristics are made inactive one by one and the problem is solved again for

the same algorithm. After making an edge inactive the problem may become

infeasible hence, in these situations the edge is reactivated without checking the

total cost value. Furthermore, making an edge inactive may increase the previous

total costs so, inactivating that edge is not favorable. An edge is made inactive

only when the new solution to the problem with the new active edge set has

smaller total costs compared to the previous costs and it provides a feasible

solution. This improvement method can also be applied using GAMS with the

model in Chapter 3. However, having to do as many iterations as the active edges

provided by one of the algorithms can be very costly in terms of the running times.

The reader can view Figure 4.2 for the steps of Edge Deletion Heuristic.

4.3.3 Edge Addition

Edge addition is the reverse of edge deletion. Inactive edges; edges that are not

provided by the result of one of the construction heuristics are made active one by

one. There is no infeasibility in this case since edges that were inactive are made

active (the active edge set becomes larger) and the problem is solved again with

CHAPTER 4. HEURISTIC ALGORITHMS 28

Figure 4.3: Steps of Edge Addition Heuristic

the algorithm that had provided the inactive edges. If the total costs decrease, a

new solution is found. Total costs can decrease in value if some other previously

active edge has become inactive. However, if the total costs increase, the edge

that was activated is inactivated once again. This process continues until all of

the inactive edges have been activated once. The reader can view Figure 4.3 for

the steps of Edge Addition Heuristic.

4.3.4 Cycle Algorithm

Having tested improvement heuristics that merely add or delete edges but do not

combine both approaches we thought that we could unite these heuristics under

the same algorithm. Therefore, in this section we describe the cycle algorithm

that both removes and adds edges to a solution at a single iteration. The algo-

rithm utilizes the one-step version 2 algorithm. Essentialy an alternative cycle

after obtaining a feasible solution for a source-destination pair is sought for. The

steps of the cycle algorithm for a single source and destination pair; i and j can

be observed in Figure 4.4. In part (a) edge {i, j} shows the primary path and the

dashed curved line shows the secondary path for the i and j pair. This solution

is obtained via the usage of one-step version 2 algorithm. In part (b), if possible,

a third path is found such that no common edges between this path and primary

and secondary paths exist. After closing edge {i, j}, we still have two paths for

the i and j pair, as shown in part (c).

The algorithm starts by finding an initial feasible solution by applying the

one-step version 2 algorithm. Afterwards, for every edge {i, j} in the activated

edge set, E ′ obtained via the initial feasible solution, edges in the primary and

secondary paths from source i to j is removed. Dijkstra’s shortest path algorithm

CHAPTER 4. HEURISTIC ALGORITHMS 29

Figure 4.4: An example for a single commodity i and j which shows how cycle
algorithm works

CHAPTER 4. HEURISTIC ALGORITHMS 30

is applied to the i and j pair. The edge costs are arranged according to the

activated edge set E ′, if an edge belongs to the edge set obtained from the initial

feasible solution (E ′) its cost is equal to primary path costs, ce1kl, if an edge

belongs to the edge set of the original graph but has not been activated in the

initial feasible solution (E − E ′) its cost is equal to primary path costs (ce1kl) +

fixed cost (fij) / weight of edge (wij) (wij is described in the previous section). If a

new shortest path from i to j is not found (no path exists) the algorithm continues

with the next edge in the activated edge set, E ′ else, edge {i, j} is inactivated

and −rerouting− described in the two-step algorithm is applied once again. The

cost arrangement for the edges is the same as the arrangement used for applying

Dijkstra’s algorithm. If closing edge {i, j} provides a new feasible solution with

improved costs then the edge stays inactive else the edge is reactivated. This

process continues till there are no more edges to process in the initial activated

edge set provided by the initial feasible solution. The pseudo-code for the cycle

algorithm can be found in Algorithm 4.

Algorithm 4 Cycle

Run One-step version 2 algorithm
current cost is equal to the total cost returned by the algorithm
for all e = {i, j} ∈ E ′ do

Temporarily delete the edges used in primary and secondary paths for
i(source) and j(destination) pair
Find a new shortest path from i to j using Dijkstra’s algorithm
Using edge costs
if Edge e = {k, l} ∈ E ′ then

Cost of edge e = ce1kl

else if Edge e = {k, l} ∈ E − E ′ then
Cost of edge e = ce1kl + fij/wij

if a shortest path from i to j is found then
inactivate e = {i, j}
Reroute using the same edge cost structure used for running Dijkstra’s
algorithm
if new cost returned from rerouting < current cost then

current cost = new cost
else if new cost returned from rerouting > current cost then

activate e = {i, j}

Having completed describing the construction algorithms and improvement

CHAPTER 4. HEURISTIC ALGORITHMS 31

methods in this section, in Chapter 5 we take a look at the computational results

provided by these algorithms and improvement methods.

Chapter 5

Numerical Results of Algorithms

In this chapter the algorithms and improvement methods described in Chapter 4

are tested on a computer with 2.6 GHz AMD Opteron 252 processor and 2 GB

of RAM operating under the system CentOS (Linux version 2.6.9-42.0.3.ELsmp).

Furthermore, in order to obtain the optimal solution values for the test instances,

we solved the IP model presented in Chapter 3 by using GAMS 22.5 and CPLEX

11.0.0 on the same computer.

5.1 Test Instances

In this section the characteristics of the test instances are explained. The running

times of the algorithms and improvement methods are effected differently accord-

ing to particular aspects of the test instances. Increasing the node number and

edge numbers also increase the running times. In addition, the memory usage

increases and in some test instances the computer runs out of memory. Fur-

thermore, relationship between routing costs ce1ij, ce
2
ij and fixed cost fij severely

effect the running times of the IP model. If the routing costs and fixed costs

are in proximity of each other, the problem becomes easier so the running times

decrease. However, if the routing costs and fixed costs are very different from

each other and the fixed cost values are extremely higher than routing costs then

32

CHAPTER 5. NUMERICAL RESULTS OF ALGORITHMS 33

the running times severely increase. Therefore, a bound of 60 minutes is used for

any test case and any method of solving the problem in this thesis.

5.1.1 Node Number (V)

The number of nodes selected for the test instances is 30 and 40. This choice is

due to the memory restrictions of the mathematical model. Comparison of the

optimal solution provided by the mathematical model and the total cost value

obtained from the algorithms along with their improvements is impossible for

larger instances when an optimal solution cannot be found. In these cases the

lower bound provided by the IP model is used for comparison purposes.

5.1.2 Edge Number (E)

Edges are generated randomly according to three different density levels; 0.5, 0.75

and 1 respectively. Each corresponds to the probability of an edge appearing in

the graph.

5.1.3 Primary and Secondary Path Costs (ce1
ij and ce2

ij)

Nodes are randomly selected from a 100 × 100 grid and the edge distances are

simply calculated as the Euclidean distances between the points. This process

is done for each edge of the network. The euclidean distance found is set as the

secondary path costs (ce2ij) of each corresponding edge. To obtain the primary

path costs, ce1ij = 2ce2ij calculations are done for each edge of the network.

5.1.4 Fixed Cost (fij)

There are three components that make up a fixed cost; a random number, a co-

efficient c and primary path costs (ce1ij).

CHAPTER 5. NUMERICAL RESULTS OF ALGORITHMS 34

fixed cost fij for some edge {i, j} = RandomNumber+c×ce1ij(primary path cost

of some edge (i, j))

The random number ∈ [0, 1000]. Coefficient c is either one of 1, 10 or 100 in

different settings. Here the random number is assigned according to the geo-

graphical conditions the fibers are installed. For example, having to install fibers

underground and aboveground have different costs. The coefficient c is a param-

eter for us to detect how the IP model and the algorithms behave when the range

between fixed costs fij and routing costs ce1ij vary.

5.1.5 Demand (d)

Every possible combination of commodities is available according to the node

number 30 or 40. However, a commodity with source node s and destination

node d, and source node d and destination node s use the same primary and

secondary paths. Hence, adding both demands and finding 2-edge disjoint paths

from source node s to destination node d is adequate. Two demand value ranges

are possible; either d ∈ [1, 10] or d ∈ [1, 100].

5.2 Results of Test Instances

In this section the results of the one-step and one-step version 2 algorithm are

presented. Furthermore, a comparison between the edge deletion improvement

heuristic and cycle algorithm is done. For detailed tables the reader may look

at the Appendix. In the Appendix the running times along with the number of

edges that were activated in the relevant algorithms are also presented.

The IP based heuristic results for the one-step algorithm have been tested.

However, the running times are slow therefore, the “rerouting”’ procedure de-

scribed in the construction heuristics is utilized instead. This improvement heuris-

tic has not been used to test one-step version 2 algorithm due to its running times.

The interested reader may take a look at the detailed results in the Appendix.

CHAPTER 5. NUMERICAL RESULTS OF ALGORITHMS 35

No graphs showing the results of the edge addition heuristic are presented

in this section. This is because, the edge addition heuristic has not improved

the objective value for the one-step version 2 algorithm for both cases, when

d ∈ [1, 10] and d ∈ [1, 100]. In other words, after applying edge addition heuristic

to the result of the one-step version 2 algorithm none of the unused edges became

active. However, the reader may observe the detailed results in the Appendix.

5.2.1 One-step and One-step-2 Algorithm Comparison

In this section the results of the test instances for comparing the one-step and one-

step-2 algorithms is presented. The graphs show the %gap which is calculated

according to the optimal solution in the y-axis and the three levels of density

of the graphs in the x-axis. Specifically, %gap = (heuristic value − optimal

value/optimal value) × 100. For each point on the graph that coincide with

the density levels and for each algorithm, 3 sample instance results’ %gaps are

averaged. As mentioned earlier, the reader can observe each test instance in detail

in the Appendix section.

Figure 5.1 show the results of the test instances for node # = 30 and for each

coefficient value c; 1, 10 and 100. Additionally we assume that d ∈ [1, 100] for the

graphs aligned to the left and we assume that d ∈ [1, 10] for the graphs aligned

to the right. It is observed from the figure that the increase in the coefficient

value increases the %gap. The largest %gap is observed in the last graph of the

figure where c = 100 for both demand value ranges. This is also true for the test

instances when node # = 40 (see Figure 5.2). We can also compare the results

obtained from the two different demand ranges where d ∈ [1, 100] and d ∈ [1, 10].

The %gap values are considerably high when d ∈ [1, 10] for both node # = 30

and node # = 40 cases, this is because lowering the demand values makes the

same effect as increasing the fixed cost values (increasing the c value) since we try

to minimize total costs for each commodity and each commodity carries demand

that the total cost includes by multiplying the demand values with the routing

costs.

CHAPTER 5. NUMERICAL RESULTS OF ALGORITHMS 36

When c = 1 for both cases where node # = 30 and node # = 40 the %gap of

both algorithms are nearly identical for d ∈ [1, 100]. However, when c = 10 and

node # = 30, one-step algorithm provides lower %gap values but when c = 10

and node # = 40, one-step-2 algorithm provides lower %gap values again for

d ∈ [1, 100]. In the final coefficient value, that is when c = 100 for both cases

where node # = 30 and node # = 40 the %gap of one-step-2 algorithm is better

for both d ∈ [1, 100] and d ∈ [1, 10]. Actually, when d ∈ [1, 10] in all of the

instances one-step-2 algorithm provides better %gap values. This result can be

predicted since the one-step algorithm favors edges (as explained in Chapter 4),

and in all our test cases activates a smaller set of edges compared to the one-step-

2 algorithm. The small set of edges cannot provide good results in some cases,

especially when the difference between the fixed cost values and the routing costs

severely increase, that is when c = 100.

5.2.2 Edge Deletion Heuristic and Cycle Algorithm Com-

parison

The same instances that were used to compare one-step and one-step-2 algorithms

are also used in this section to compare the edge deletion heuristic and the cycle

algorithm’s performances. In these instances only the one-step-2 algorithm is uti-

lized for the improvement methods this is because one-step-2 algorithm produces

better results in terms of the %gap, this can be observed in Figures 5.3 and 5.4

where the construction heuristic is the one-step algorithm for the graphs aligned

to the right and the construction heuristic is the one-step-2 algorithm for the

graphs aligned to the left and also d ∈ [1, 100] (Especially when the c values get

larger the difference can be observed easily). From this point on, we only consider

the one-step-2 algorithm as the best construction heuristic method and utilize it

in our improvement heuristics. This result is due to one-step algorithm’s edge

favoring aspect. The improvement heuristics show better performances for the

one-step-2 algorithm since the active edge set provided by the one-step algorithm

is, in all our test cases, smaller than the active edge set provided by the one-step-2

algorithm’s. This is due to the fact that when there are a larger number of edges

CHAPTER 5. NUMERICAL RESULTS OF ALGORITHMS 37

Figure 5.1: One-step and One-step-2 Algorithm Results for node # = 30

CHAPTER 5. NUMERICAL RESULTS OF ALGORITHMS 38

Figure 5.2: One-step and One-step-2 Algorithm Results for node # = 40

CHAPTER 5. NUMERICAL RESULTS OF ALGORITHMS 39

to select from a better solution can be obtained.

Similar to the above section, the graphs show the %gap which is calculated

according to the optimal solution in the y-axis and the three levels of density

of the graphs in the x-axis. For each point on the graph that coincide with

the density levels and for each algorithm, 3 sample instance results’ %gaps are

averaged.

In both Figures 5.5 and 5.6 the cycle algorithm beats the edge deletion heuris-

tic in terms of the %gap or provides nearly identical results in a small number

of cases. This result can be predicted since cycle algorithm includes all of the

processes utilized in the edge deletion heuristic. The demand ranges, d ∈ [1, 100]

and d ∈ [1, 10] do not change the relationship between the edge deletion heuris-

tic and cycle algorithm, for every graph in Figures 5.5 and 5.6 cycle algorithm

shows better results for the %gap values. But, for d ∈ [1, 10], our results are far

worse compared to d ∈ [1, 100] case. The reason for this has been explained in

the previous section. However, the reader may notice that although the %gap

are considerably large for the one-step-2 algorithm in Figures 5.1 and 5.2 (for

d ∈ [1, 10]) when the improvement heuristics are run the %gap’s decrease by a

large amount.

5.2.3 Summary of Our Findings

For the convenience of the reader, in this section we incorporate some of the

graphs presented in the above figures and summarize our findings.

In Figure 5.7 we have unified the graphs for the coefficient value c for node

= 30 and # = 40 to compare the one-step and one-step-2 algorithm. From

these graphs it can be visualized more clearly how the %gap’s increase when the

c values increase. Also the range of the %gap values is very large when d ∈ [1, 10]

for both node (# = 30, 40) cases. Almost in all the test instances one-step-2

algorithm presents better %gap values or very similar results when compared to

the one-step algorithm.

CHAPTER 5. NUMERICAL RESULTS OF ALGORITHMS 40

Figure 5.3: Edge Deletion Heuristic and Cycle Algorithm Results for node # = 30
and Comparison Results for One-step and One-step-2 Algorithms as the Con-
struction Heuristics

CHAPTER 5. NUMERICAL RESULTS OF ALGORITHMS 41

Figure 5.4: Edge Deletion Heuristic and Cycle Algorithm Results for node # = 40
and Comparison Results for One-step and One-step-2 Algorithms as the Con-
struction Heuristics

CHAPTER 5. NUMERICAL RESULTS OF ALGORITHMS 42

Figure 5.5: Edge Deletion Heuristic and Cycle Algorithm Results for node # = 30

CHAPTER 5. NUMERICAL RESULTS OF ALGORITHMS 43

Figure 5.6: Edge Deletion Heuristic and Cycle Algorithm Results for node # = 40

CHAPTER 5. NUMERICAL RESULTS OF ALGORITHMS 44

In Figure 5.8 we have unified the graphs for the coefficient value c for node # =

30 and # = 40 to compare the edge deletion heuristic and the cycle algorithm.

Similar to the results obtained in Figure 5.7, when d ∈ [1, 10] the %gap’s are very

high compared to the instances with d ∈ [1, 100]. But, even when d ∈ [1, 10], the

improvement heuristics make the %gap’s considerably smaller compared to the

construction heuristic results. The %gap’s go from %50’s to %10’s for the worst

cases. The cycle algorithm presents much better %gap values when weighed

against the edge deletion heuristic since the cycle algorithm also includes the

processes exercised in the edge deletion heuristic.

To sum up, we can conclude by saying that the best results are obtained if

the one-step-2 algorithm is employed as the construction heuristic and the cycle

algorithm is used as the improvement heuristic.

CHAPTER 5. NUMERICAL RESULTS OF ALGORITHMS 45

Figure 5.7: One-step and One-step-2 Algorithm: Results for All Test Instances

CHAPTER 5. NUMERICAL RESULTS OF ALGORITHMS 46

Figure 5.8: Edge Deletion Heuristic and Cycle Algorithm: Results for All Test
Instances

Chapter 6

Conclusion

In this thesis, we study algorithms to solve a survivable network design problem

arising in telecommunications networks. 2-edge disjoint paths for each possible

source and destination pair given a graph G are desired for the survivability

requirement. These paths are categorized as primary and secondary paths and

have different cost values for the edges. The cost of an edge if used on a primary

path is 2 times the cost of an edge used on a secondary path. In addition to

routing costs, fixed costs for each edge are also parameters of the problem. Each

commodity has demand requests.

An IP model for the proposed problem is developed in Chapter 3. The ob-

jective is to minimize the total costs while finding 2-edge disjoint paths for each

commodity. Although, problems with differing arc costs for different paths are

available in the literature, problems including additional fixed costs are not con-

sidered in the literature according to our knowledge.

In Chapter 4, construction heuristics and improvement heuristics that solve

the 2-edge disjoint paths problem is presented. Two-step and one-step algorithms

are the construction heuristics. The two-step algorithm uses two applications of

the Dijkstra’s algorithm [1] while one-step algorithm uses two applications of the

Suurballe’s algorithm [12]. There are four types of improvement heuristics: IP

47

CHAPTER 6. CONCLUSION 48

based heuristic, edge deletion, edge addition and cycle algorithm. The best im-

provement heuristic in terms of total costs that are in proximity of the optimal

value is the cycle-algorithm. This algorithm tries to find new cycles including

source and destination pairs by utilizing one-step version 2 algorithm. Improve-

ment edge deletion tries to reduce the number of active edges by inactivating each

edge one by one and solving the problem again. Improvement edge addition is

the reverse of edge-deletion; since in this method the inactive edges are activated

one by one and the problem is solved again. For both improvement methods

during the calculations of the new solutions the current solution is updated if the

solutions found by the improvement methods are better in terms of proximity

to the optimal solution. Furthermore, for improvement edge deletion feasibility

conditions are also checked since closing an edge may make the problem infeasible.

Future work for this thesis can include comparing different routing cost struc-

tures. Specifically instead of assuming that 1/2ce1 = ce2, new α values that are

different than 1/2 can be tested with the methods explained in Chapter 3 and

Chapter 4. Additionally, cases in which the secondary path costs are larger than

primary path costs can also be tested. One can also try installing capacities on

edges such that more than some demand value cdij for edge {i, j} cannot be sent

through that edge. Moreover, new algorithms that are based on a tabu search

heuristic can be developed to solve the proposed problem.

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,

Algorithms, and Applications. Prentice Hall, Upper Saddle River, New Jersey

07458, 1993.

[2] R. Bhandari. Survivable Networks: Algorithms for Diverse Routing. Kluwer

Academic Publishers, Boston, 1999.

[3] R. Bhatia, M. Kodialam, and T. Lakshman. Finding disjoint paths with

related path costs. Journal of Combinatorial Optimization, 12:83–96, 2006.

[4] T. Gomes, J. Craveirinha, and L. Jorge. An effective algorithm for obtaining

the minimal cost pair of disjoint paths with dual arc costs. Computers and

Operations Research, 36:1670–1682, 2009.

[5] T. Gomes, J. Craveirinha, and L. Jorge. An effective algorithm for obtaining

the whole set of minimal cost pairs of disjoint paths with dual arc costs.

Journal of Combinatorial Optimization, 19:394–414, 2010.

[6] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yan-

nakakis. Near-optimal hardness results and approximation algorithms for

edge-disjoint paths and related problems. Journal of Computer and System

Sciences, 67:473–496, 2001.

[7] P. H. Ho, J. Tapolcai, and H. T. Mouftah. On achieving optimal survivable

routing for shared protection in survivable next-generation internet. IEEE

Transactions on Reliability, 53:216–225, 2004.

49

BIBLIOGRAPHY 50

[8] A. Itai, Y. Perl, and Y. Shiloach. The complexity of finding maximum

disjoint paths with length constraints. Networks, 12:277–286, 1982.

[9] C. L. Li, S. McCormick, and D. Simchi-Levi. The complexity of finding

two disjoint paths with min-max objective function. Discrete Appl. Math.,

26:(1), 1990.

[10] C. L. Li, S. McCormick, and D. Simchi-Levi. Finding disjoint paths with

different path-costs: complexity and algorithms. Networks, 22:653–667, 1992.

[11] D. Ronen and Y. Perl. Heuristics for finding a maximum number of disjoint

bounded paths. Networks, 14:531–544, 1984.

[12] J. Suurballe and R. Tarjan. A quick method for finding shortest pairs of

disjoint paths. Networks, 14:325–336, 1984.

[13] J. W. Suurballe. Disjoint paths in a network. Networks, 4:125–145, 1974.

[14] D. Xu, Y. Chen, Y. Xiong, C. Qiao, and X. He. On finding disjoint paths in

single and dual link cost networks. IEEE INFOCOM, 2004.

Appendix A

Results of Computational Studies

Tables A.1 to A.6 show the results of one-step and one-step version 2 algorithm

with demand ∈ {1, 100}(along with rerouting method) and tables A.7 to A.12

show the results of one-step and one-step version 2 algorithm with demand ∈
{1, 10}.

Tables A.13 to A.18 show the results for the edge deletion heuristic and cycle

algorithm with demand ∈ {1, 100}. Tables A.19 to A.24 show the results for

the edge deletion heuristic and cycle algorithm with demand ∈ {1, 10}. For

both improvement heuristics one-step version 2 algorithm is employed as the

construction heuristic. For comparison the optimal solution obtained by the

mathematical model described in Chapter 3 is also provided.

Tables A.25 to A.42 show the results of one-step and one-step version 2 algo-

rithm along with reroutings and improvement methods listed in Chapter 4. The

tables A.25 to A.27 present instances with 30 nodes along with different coefficient

c values and edge densities for demand values ranging from 1 to 100. For each

edge density there are three different networks. The instances are solved using

one-step algorithm and rerouting after the algorithm ends and also for the edge

deletion heuristic. The same tests are also conducted for the 40 node case (next

three Tables A.28 to A.30) for one-step algorithm, reroutings and improvement

methods.

51

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 52

Using the one-step version 2 algorithm for the settings explained in Chapter

5, Tables A.31 to A.36 present the results. The tables A.37 to A.42 show the

results when one-step version 2 algorithm is utilized along with the same settings

that differ only in demand values. For the last six tables the demand values range

from 1 to 10.

According to the test results for the same settings of the test instances for

both one-step and one-step version 2 algorithms (Tables A.25 to A.30 for one-step

algorithm and Tables A.31 to A.36 for one-step version 2 algorithm), after the

improvements’ results, starting with a feasible solution provided by the one-step

version 2 algorithm ultimately led to better solutions compared to starting with

feasible solutions obtained by the one-step algorithm. After using the one-step

version 2 algorithm, the %gap between the optimal solutions and the result of the

improvements, especially edge deletion heuristic and cycle algorithm has become

considerably small.

However, when the demand values’ ranges were reduced to [1, 10] from [1, 100]

the %gap even for the one-step version 2 algorithm increased.

Finally, the reader may notice that the results of improvement edge addition

are always the same as results of rerouting after an algorithm which implies that

no new edge is opened after it has become inactive.

The structure of each table in this section is the same. The first column

presents the three different density levels for the edge number calculations. The

second column gives the instance number along with the edge number for that

instance. The remaining columns present the edges that are activated (edge #),

the resource used (running time in seconds) and the %gap calculated according

to the optimal solution for the algorithm and/or improvement results. If the

optimal solution was not found due to memory or resource restrictions, the %gap

is calculated according to the best solution found by the IP model.

Note that instances marked with * do not have optimal solutions due to

memory or resource restrictions (RLE stands for Resource Limit Exceeded). For

these instances we use the lower bound obtained from the IP model’s solution.

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 53

Table A.1: Computational Results of the One-Step and One-Step-2 Algorithm
along with Rerouting, Node # = 30, Coefficient = 1, Demand ∈ {1, 100}
Density Instances,edge# One-Step & Reroute One-Step-2 & Reroute Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,212 192 200 187

0.09 0.01 15.83
0.04 0.05 —

2,201 187 190 178
0.09 0.11 15.11
0.02 0.04 —

3,204 189 196 187
0.08 0.10 14.90
0.03 0.03 —

0.75
1,320 258 279 234

0.09 0.09 32.10
0.13 0.03 —

2,309 262 279 221
0.09 0.10 27.40
0.15 0.23 —

3,316 264 285 233
0.10 0.10 46.67
0.18 0.20 —

1.0
1,435 334 361 261

0.08 0.08 99.36
0.51 0.53 —

2,435 320 347 234
0.08 0.08 43.78
0.47 0.54 —

3,435 343 372 257
0.08 0.08 96.48
0.50 0.56 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 54

Table A.2: Computational Results of the One-Step and One-Step-2 Algorithm
along with Rerouting, Node # = 30, Coefficient = 10, Demand ∈ {1, 100}
Density Instances,edge# One-Step & Reroute One-Step-2 & Reroute Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,212 167 179 155

0.09 0.10 15.74
0.22 0.20 —

2,201 164 174 152
0.09 0.10 15.10
0.19 0.19 —

3,204 169 177 150
0.08 0.08 14.82
0.27 0.20 —

0.75
1,320 217 234 177

0.09 0.09 32.73
0.53 0.64 —

2,309 213 236 173
0.09 0.10 27.72
0.68 0.76 —

3,316 223 240 174
0.09 0.10 27.86
0.72 0.76 —

1.0
1,435 246 191 181

0.08 0.09 125.29
1.39 1.61 —

2,435 237 283 173
0.08 0.10 44.78
1.17 1.47 —

3,435 251 295 184
0.08 0.09 127.84
1.26 1.58 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 55

Table A.3: Computational Results of the One-Step and One-Step-2 Algorithm
along with Rerouting, Node # = 30, Coefficient = 100, Demand ∈ {1, 100}
Density Instances,edge# One-Step & Reroute One-Step-2 & Reroute Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,212 87 130 91

0.08 0.10 40.06
2.65 2.55 —

2,201 94 134 101
0.08 0.10 16.16
2.81 2.03 —

3,204 102 129 97
0.08 0.10 16.02
4.32 1.94 —

0.75
1,320 105 147 103

0.08 0.09 34.36
5.37 3.84 —

2,309 99 147 105
0.09 0.09 30.31
5.67 3.12 —

3,316 108 155 105
0.08 0.08 84.07
3.94 3.54 —

1.0
1,435 108 157 103

0.08 0.08 352.04
5.23 5.04 —

2,435 98 172 102
0.08 0.08 251.83
5.54 6.31 —

3,435 105 158 105
0.08 0.08 49.08
5.40 4.03 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 56

Table A.4: Computational Results of the One-Step and One-Step-2 Algorithm
along with Rerouting, Node # = 40, Coefficient = 1, Demand ∈ {1, 100}
Density Instances,edge# One-Step & Reroute One-Step-2 & Reroute Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,390 350 366 316

0.30 0.31 125.67
0.08 0.09 —

2,383 331 352 296
0.29 0.28 120.60
0.10 0.12 —

3,373 341 349 313
0.29 0.32 166.32
0.08 0.08 —

0.75
1,580 467 491 362

0.30 0.30 198.89
0.31 0.32 —

2,580 432 462 352
0.30 0.28 197.17
0.31 0.30 —

3,576 449 483 369
0.30 0.30 246.74
0.20 0.24 —

*1.0
1,780 565 613 Out of Memory

0.28 0.28 325.77
0.52 0.64 —

2,780 531 604 Out of Memory
0.28 0.26 298.90
0.70 0.67 —

3,780 573 618 Out of Memory
0.28 0.26 301.46
0.58 0.54 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 57

Table A.5: Computational Results of the One-Step and One-Step-2 Algorithm
along with Rerouting, Node # = 40, Coefficient = 10, Demand ∈ {1, 100}
Density Instances,edge# One-Step & Reroute One-Step-2 & Reroute Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,390 300 305 246

0.29 0.28 134.51
0.54 0.33 —

2,383 276 301 243
0.28 0.29 322.92
0.37 0.35 —

3,373 279 301 238
0.34 0.34 117.59
0.39 0.32 —

0.75
1,580 341 375 272

0.30 0.29 213.79
0.87 0.72 —

2,580 336 365 263
0.29 0.30 672.32
0.86 0.69 —

3,576 326 359 278
0.30 0.28 704.02
0.70 0.51 —

*1.0
1,780 365 442 Out of Memory

0.28 0.28 307.21
1.62 1.27 —

2,780 377 439 Out of Memory
0.28 0.28 313.94
1.65 1.17 —

3,780 377 436 Out of Memory
0.28 0.28 309.79
1.79 1.15 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 58

Table A.6: Computational Results of the One-Step and One-Step-2 Algorithm
along with Rerouting, Node # = 40, Coefficient = 100, Demand ∈ {1, 100}
Density Instances,edge# One-Step & Reroute One-Step-2 & Reroute Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,390 139 205 151

0.27 0.28 427.90
3.86 1.90 —

2,383 143 208 149
0.28 0.28 126.49
4.56 1.92 —

3,373 126 194 142
0.27 0.29 361.56
4.30 1.57 —

0.75
1,580 146 242 154

0.27 0.30 1287.57
4.19 4.01 —

2,580 140 227 155
0.28 0.27 1307.09
5.57 2.64 —

3,576 136 251 156
0.28 0.28 1103.88
4.99 4.20 —

*1.0
1,780 133 258 Out of Memory

0.25 0.29 455.46
6.09 5.38 —

2,780 142 241 Out of Memory
0.25 0.26 576.27
5.93 3.97 —

3,780 134 255 Out of Memory
0.27 0.29 717.44
6.99 4.76 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 59

Table A.7: Computational Results of the One-Step and One-Step-2 Algorithm
along with Rerouting, Node # = 30, Coefficient = 1, Demand ∈ {1, 10}
Density Instances,edge# One-Step & Reroute One-Step-2 & Reroute Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,212 144 172 121

0.08 0.08 16.43
2.05 1.53 —

2,201 131 165 120
0.08 0.08 46.98
1.35 1.22 —

3,204 145 170 122
0.08 0.08 15.34
1.77 1.35 —

0.75
1,320 179 211 136

0.10 0.11 33.91
2.57 2.35 —

2,309 152 198 134
0.08 0.08 72.50
2.72 2.42 —

3,316 172 217 137
0.07 0.09 87.23
2.69 2.41 —

1.0
1,435 175 254 136

0.08 0.09 172.89
4.71 4.27 —

2,435 166 247 128
0.08 0.08 53.27
5.12 4.83 —

3,435 192 266 144
0.08 0.08 79.90
4.83 4.54 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 60

Table A.8: Computational Results of the One-Step and One-Step-2 Algorithm
along with Rerouting, Node # = 30, Coefficient = 10, Demand ∈ {1, 10}
Density Instances,edge# One-Step & Reroute One-Step-2 & Reroute Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,212 89 135 87

0.08 0.09 48.75
3.92 3.40 —

2,201 90 132 93
0.07 0.08 16.44
3.51 3.09 —

3,204 94 131 88
0.05 0.08 15.82
3.24 3.01 —

0.75
1,320 94 154 97

0.09 0.09 115.05
5.02 4.84 —

2,309 95 141 98
0.07 0.08 188.58
3.91 3.60 —

3,316 105 158 98
0.08 0.09 31.47
4.98 4.83 —

1.0
1,435 97 165 95

0.07 0.08 56.68
7.35 6.99 —

2,435 91 186 93
0.07 0.08 3604.11
10.88 10.39 —

3,435 103 177 102
0.07 0.08 74.14
8.47 7.32 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 61

Table A.9: Computational Results of the One-Step and One-Step-2 Algorithm
along with Rerouting, Node # = 30, Coefficient = 100, Demand ∈ {1, 10}
Density Instances,edge# One-Step & Reroute One-Step-2 & Reroute Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,212 53 90 51

0.07 0.08 226.68
18.12 16.91 —

2,201 51 95 55
0.08 0.10 3601.96
19.21 17.72 —

3,204 54 89 58
0.07 0.08 640.36
13.91 11.11 —

0.75
1,320 55 107 57

0.08 0.08 3603.20
28.01 24.41 —

2,309 55 112 55
0.09 0.10 3616.24
35.11 32.09 —

3,316 54 103 57
0.12 0.08 3602.83
19.37 17.13 —

1.0
1,435 56 143 57

0.12 0.08 3603.82
41.90 62.88 —

2,435 66 137 57
0.09 0.08 3603.76
50.19 54.21 —

3,435 60 119 58
0.08 0.08 3603.20
30.59 28.58 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 62

Table A.10: Computational Results of the One-Step and One-Step-2 Algorithm
along with Rerouting, Node # = 40, Coefficient = 1, Demand ∈ {1, 10}
Density Instances,edge# One-Step & Reroute One-Step-2 & Reroute Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,390 237 275 184

0.32 0.28 127.19
1.60 1.43 —

2,383 207 266 185
0.32 0.28 126.10
1.67 1.48 —

3,373 231 276 194
0.31 0.28 122.41
1.63 1.31 —

0.75
1,580 251 345 193

0.32 0.29 872.01
3.61 3.22 —

2,580 238 342 194
0.30 0.28 1297.85
3.84 3.46 —

3,576 279 346 206
0.30 0.29 854.12
2.56 2.34 —

*1.0
1,780 278 419 Out of Memory

0.28 0.29 359.60
5.38 5.04 —

2,780 259 402 Out of Memory
0.28 0.28 102.05
5.06 4.69 —

3,780 306 441 Out of Memory
0.29 0.28 721.88
5.92 5.54 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 63

Table A.11: Computational Results of the One-Step and One-Step-2 Algorithm
along with Rerouting, Node # = 40, Coefficient = 10, Demand ∈ {1, 10}
Density Instances,edge# One-Step & Reroute One-Step-2 & Reroute Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,390 130 207 144

0.32 0.27 711.18
3.57 3.01 —

2,383 126 206 132
0.32 0.27 147.80
3.96 3.16 —

3,373 149 202 135
0.31 0.27 448.13
3.11 2.65 —

0.75
1,580 130 241 145

0.32 0.28 1066.10
6.09 5.19 —

2,580 125 242 134
0.30 0.30 3609.27
7.24 5.99 —

3,576 143 250 147
0.32 0.28 3188.68
6.13 5.37 —

*1.0
1,780 133 290 Out of Memory

0.28 0.26 1088.13
9.75 8.27 —

2,780 135 262 Out of Memory
0.28 0.25 2693.73
9.37 6.19 —

3,780 143 284 Out of Memory
0.32 0.26 1778.69
12.15 8.45 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 64

Table A.12: Computational Results of the One-Step and One-Step-2 Algorithm
along with Rerouting, Node # = 40, Coefficient = 100, Demand ∈ {1, 10}
Density Instances,edge# One-Step & Reroute One-Step-2 & Reroute Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,390 86 143 RLE

0.32 0.27 3607.56
18.32 15.90 —

2,383 75 147 84
0.32 0.26 3606.05
23.27 18.01 —

3,373 82 141 81
0.30 0.26 3606.06
19.16 15.85 —

0.75
1,580 90 189 RLE

0.30 0.27 3607.26
26.68 19.91 —

2,580 88 171 RLE
0.30 0.28 3607.94
26.24 22.14 —

3,576 84 194 RLE
0.36 0.27 3607.18
27.06 22.63 —

*1.0
1,780 100 212 RLE

0.26 0.26 3609.82
49.85 40.07 —

2,780 90 178 RLE
0.28 0.25 3609.79
45.59 30.88 —

3,780 89 212 RLE
0.32 0.26 3609.75
55.96 51.71 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 65

Table A.13: Computational Results of the Edge-Deletion Heuristic and Cycle
Algorithm Applied After One-Step-2 Algorithm, Node # = 30, Coefficient = 1,
Demand ∈ {1, 100}
Density Instances,edge# Edge-Deletion Cycle Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,212 186 186 187

10.02 10.10 15.83
0.01 0.01 —

2,201 178 178 178
9.40 9.48 15.11
0 0 —

3,204 187 187 187
9.57 9.64 14.90
0 0 —

0.75
1,320 229 233 234

14.04 14.25 32.10
0.01 0.004 —

2,309 219 220 221
14.40 14.17 27.40
0.01 0.003 —

3,316 227 230 233
14.09 14.09 46.67
0.02 0.01 —

1.0
1,435 244 249 261

17.31 17.58 99.36
0.07 0.06 —

2,435 227 229 234
16.92 16.92 43.78
0.05 0.04 —

3,435 247 251 257
17.68 18.05 96.48
0.02 0.01 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 66

Table A.14: Computational Results of the Edge-Deletion Heuristic and Cycle
Algorithm Applied After One-Step-2 Algorithm, Node # = 30, Coefficient = 10,
Demand ∈ {1, 100}
Density Instances,edge# Edge-Deletion Cycle Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,212 154 155 155

8.77 8.85 15.74
0.004 0.002 —

2,201 152 152 152
8.40 8.51 15.10
0 0 —

3,204 149 149 150
8.42 8.52 14.82
0.01 0.01 —

0.75
1,320 167 171 177

11.54 11.70 32.73
0.06 0.03 —

2,309 169 172 173
11.63 11.81 27.72
0.04 0.01 —

3,316 171 173 174
11.78 11.98 27.86
0.06 0.01 —

1.0
1,435 172 174 181

14.15 14.35 125.29
0.22 0.18 —

2,435 161 167 173
13.94 14.16 44.78
0.17 0.12 —

3,435 173 178 184
14.16 14.36 127.84
0.15 0.12 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 67

Table A.15: Computational Results of the Edge-Deletion Heuristic and Cycle
Algorithm Applied After One-Step-2 Algorithm, Node # = 30, Coefficient = 100,
Demand ∈ {1, 100}
Density Instances,edge# Edge-Deletion Cycle Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,212 87 90 91

5.96 6.08 40.06
0.30 0.13 —

2,201 99 99 101
6.10 6.25 16.16
0.24 0.10 —

3,204 96 96 97
5.78 5.89 16.02
0.26 0.11 —

0.75
1,320 99 101 103

6.82 6.99 34.36
0.23 0.10 —

2,309 98 100 105
6.78 6.94 30.31
0.21 0.09 —

3,316 112 106 105
7.10 7.30 84.07
0.72 0.08 —

1.0
1,435 100 101 103

7.35 7.41 352.04
0.48 0.40 —

2,435 96 98 102
8.39 8.15 251.83
0.91 0.88 —

3,435 100 102 105
7.53 7.32 49.08
0.53 0.46 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 68

Table A.16: Computational Results of the Edge-Deletion Heuristic and Cycle
Algorithm Applied After One-Step-2 Algorithm, Node # = 40, Coefficient = 1,
Demand ∈ {1, 100}
Density Instances,edge# Edge-Deletion Cycle Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,390 313 315 316

58.60 59.57 125.67
0.003 0.001 —

2,383 295 296 296
55.16 56.25 120.60
0.01 0.003 —

3,373 309 311 313
55.87 57.04 166.32
0.01 0.004 —

0.75
1,580 355 357 362

79.38 80.02 198.89
0.02 0.02 —

2,580 353 350 352
81.11 74.34 197.17
0.01 0.003 —

3,576 367 368 369
78.45 79.94 246.74
0.01 0.01 —

*1.0
1,780 373 376 Out of Memory

96.67 96.67 325.77
0.08 0.07 —

2,780 370 372 Out of Memory
93.67 98.82 298.90
0.07 0.06 —

3,780 385 386 Out of Memory
96.87 99.03 301.46
0.05 0.03 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 69

Table A.17: Computational Results of the Edge-Deletion Heuristic and Cycle
Algorithm Applied After One-Step-2 Algorithm, Node # = 40, Coefficient = 10,
Demand ∈ {1, 100}
Density Instances,edge# Edge-Deletion Cycle Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,390 245 245 246

47.12 48.05 134.51
0.001 0.001 —

2,383 241 242 243
45.83 46.64 322.92
0.02 0.02 —

3,373 234 236 238
46.68 47.86 117.59
0.01 0.002 —

0.75
1,580 262 265 272

58.71 60.29 213.79
0.06 0.05 —

2,580 255 257 263
55.83 57.18 672.32
0.04 0.03 —

3,576 269 274 278
56.21 57.42 704.02
0.02 0.02 —

*1.0
1,780 257 259 Out of Memory

69.07 70.92 307.21
0.11 0.10 —

2,780 266 268 Out of Memory
67.74 68.67 313.94
0.12 0.11 —

3,780 267 269 Out of Memory
68.26 69.51 309.79
0.17 0.14 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 70

Table A.18: Computational Results of the Edge-Deletion Heuristic and Cycle
Algorithm Applied After One-Step-2 Algorithm, Node # = 40, Coefficient = 100,
Demand ∈ {1, 100}
Density Instances,edge# Edge-Deletion Cycle Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,390 149 150 151

29.47 30.52 427.90
0.13 0.04 —

2,383 141 142 149
29.48 30.23 126.49
0.22 0.06 —

3,373 139 141 142
27.95 28.91 361.56
0.15 0.04 —

0.75
1,580 146 148 154

35.39 36.54 1287.57
0.35 0.31 —

2,580 152 153 155
32.73 33.41 1307.09
0.34 0.23 —

3,576 156 155 156
36.87 36.87 1103.88
0.83 0.60 —

*1.0
1,780 177 176 Out of Memory

38.27 38.75 455.46
1.74 1.05 —

2,780 151 153 Out of Memory
34.97 35.80 576.27
0.99 0.69 —

3,780 168 164 Out of Memory
37.75 38.21 717.44
1.33 0.56 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 71

Table A.19: Computational Results of the Edge-Deletion Heuristic and Cycle
Algorithm Applied After One-Step-2 Algorithm, Node # = 30, Coefficient = 1,
Demand ∈ {1, 10}
Density Instances,edge# Edge-Deletion Cycle Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,212 116 119 121

7.29 8.33 16.43
0.17 0.15 —

2,201 115 116 120
7.12 7.79 46.98
0.13 0.12 —

3,204 115 117 122
6.91 7.88 15.34
0.06 0.06 —

0.75
1,320 128 130 136

10.04 10.35 33.91
0.10 0.08 —

2,309 123 125 134
8.72 10.03 72.50
0.24 0.21 —

3,316 130 131 137
9.83 10.38 87.23
0.13 0.12 —

1.0
1,435 124 125 136

11.48 12.33 172.89
0.57 0.51 —

2,435 118 123 128
10.81 12.11 53.27
0.51 0.44 —

3,435 131 131 144
12.10 12.80 79.90
0.48 0.46 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 72

Table A.20: Computational Results of the Edge-Deletion Heuristic and Cycle
Algorithm Applied After One-Step-2 Algorithm, Node # = 30, Coefficient = 10,
Demand ∈ {1, 10}
Density Instances,edge# Edge-Deletion Cycle Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,212 84 86 87

5.14 6.26 48.75
0.45 0.39 —

2,201 88 89 93
5.92 6.07 16.44
0.51 0.47 —

3,204 85 88 88
5.12 5.87 15.82
0.14 0.13 —

0.75
1,320 92 95 97

6.28 7.16 115.05
0.44 0.40 —

2,309 90 90 98
6.07 6.54 188.58
0.64 0.59 —

3,316 97 99 98
6.51 7.22 31.47
0.12 0.08 —

1.0
1,435 93 100 95

5.93 7.73 56.68
1.19 1.02 —

2,435 90 90 93
7.14 8.72 3604.11
1.97 1.82 —

3,435 95 96 102
7.26 8.13 74.14
1.85 1.72 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 73

Table A.21: Computational Results of the Edge-Deletion Heuristic and Cycle
Algorithm Applied After One-Step-2 Algorithm, Node # = 30, Coefficient = 100,
Demand ∈ {1, 10}
Density Instances,edge# Edge-Deletion Cycle Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,212 52 50 51

3.18 3.94 226.68
2.33 2.28 —

2,201 50 50 55
3.58 4.01 3601.96
2.54 2.41 —

3,204 54 55 58
3.29 3.88 640.36
2.17 2.11 —

0.75
1,320 52 55 57

4.28 4.87 3603.20
2.83 2.66 —

2,309 49 51 55
4.82 5.12 3616.24
3.18 3.07 —

3,316 55 58 57
4.80 5.24 3602.83
2.91 2.68 —

1.0
1,435 52 58 57

5.04 6.57 3603.82
4.48 4.32 —

2,435 53 61 57
4.62 6.19 3603.76
4.31 4.06 —

3,435 55 57 58
4.47 5.24 3603.20
3.58 3.42 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 74

Table A.22: Computational Results of the Edge-Deletion Heuristic and Cycle
Algorithm Applied After One-Step-2 Algorithm, Node # = 40, Coefficient = 1,
Demand ∈ {1, 10}
Density Instances,edge# Edge-Deletion Cycle Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,390 183 184 184

40.51 41.14 127.19
0.10 0.09 —

2,383 179 183 185
39.24 39.31 126.10
0.08 0.06 —

3,373 185 187 194
40.12 41.88 122.41
0.07 0.06 —

0.75
1,580 179 182 193

51.86 53.07 872.01
0.26 0.23 —

2,580 170 173 194
49.93 51.27 1297.85
0.45 0.41 —

3,576 196 199 206
52.34 53.41 854.12
0.28 0.23 —

*1.0
1,780 186 188 Out of Memory

64.10 64.55 359.60
0.88 0.82 —

2,780 180 182 Out of Memory
59.22 60.75 102.05
0.97 0.90 —

3,780 185 185 Out of Memory
67.29 68.38 721.88
1.05 0.94 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 75

Table A.23: Computational Results of the Edge-Deletion Heuristic and Cycle
Algorithm Applied After One-Step-2 Algorithm, Node # = 40, Coefficient = 10,
Demand ∈ {1, 10}
Density Instances,edge# Edge-Deletion Cycle Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,390 133 137 144

28.21 29.76 711.18
0.35 0.31 —

2,383 127 130 132
27.61 29.05 147.80
0.19 0.16 —

3,373 131 135 135
27.85 29.29 448.13
0.19 0.15 —

0.75
1,580 139 144 145

33.52 35.34 1066.10
0.65 0.59 —

2,580 130 134 134
33.09 34.81 3609.27
0.83 0.76 —

3,576 137 140 147
35.26 36.79 3188.68
0.76 0.72 —

*1.0
1,780 137 138 Out of Memory

41.53 42.90 1088.13
1.18 1.14 —

2,780 129 134 Out of Memory
35.72 37.95 2693.73
1.22 1.14 —

3,780 134 136 Out of Memory
40.16 41.81 1778.69
1.14 1.06 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 76

Table A.24: Computational Results of the Edge-Deletion Heuristic and Cycle
Algorithm Applied After One-Step-2 Algorithm, Node # = 40, Coefficient = 100,
Demand ∈ {1, 10}
Density Instances,edge# Edge-Deletion Cycle Optimal Sol.

edge# edge# edge#
time(sec.) time(sec.) time(sec.)

%gap %gap −−−

0.5
1,390 78 80 RLE

17.32 18.44 3607.56
5.13 5.02 —

2,383 103 105 84
16.12 17.25 3606.05
6.22 6.14 —

3,373 75 81 81
17.58 19.10 3606.06
4.12 4.01 —

0.75
1,580 74 99 RLE

21.84 24.52 3607.26
5.46 5.24 —

2,580 79 79 RLE
24.06 24.15 3607.94
6.89 6.76 —

3,576 85 96 RLE
22.16 25.83 3607.18
7.14 7.02 —

*1.0
1,780 83 90 RLE

27.38 30.16 3609.82
8.01 7.54 —

2,780 83 86 RLE
24.50 25.65 3609.79
7.65 7.42 —

3,780 85 91 RLE
28.87 30.47 3609.75
9.48 9.32 —

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 77

T
ab

le
A

.2
5:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
A

lg
or

it
h
m

,
N

o
d
e

#
=

30
,

C
o
effi

ci
en

t
=

1,
D

em
an

d
∈
{1
,1

00
}

D
en

si
ty

In
st

an
ce

s,
ed

g
e#

O
n
e-

S
te

p
IP

B
as

ed
H

eu
ri

st
ic

R
er

ou
te

E
d
ge

-D
el

.
C

y
cl

e
O

p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
21

2
19

2
19

2
19

2
18

4
18

4
18

7
0.

05
4.

99
0.

09
9.

24
9.

71
15

.8
3

0.
13

0.
04

0.
04

0.
02

0.
02

—
2,

20
1

18
7

18
7

18
7

17
8

17
8

17
8

0.
06

4.
63

0.
09

8.
22

9.
49

15
.1

1
0.

09
0.

02
0.

02
0

0
—

3,
20

4
18

9
18

9
18

9
18

5
18

5
18

7
0.

04
4.

69
0.

08
8.

45
9.

33
14

.9
0

0.
10

0.
03

0.
03

0.
01

0.
01

—

0.
75

1,
32

0
25

8
25

8
25

8
22

5
22

6
23

4
0.

06
6.

88
0.

09
13

.1
0

13
.3

0
32

.1
0

0.
23

0.
13

0.
13

0.
03

0.
01

—
2,

30
9

26
2

26
2

26
2

22
0

22
0

22
1

0.
06

6.
87

0.
09

14
.2

2
14

.3
5

27
.4

0
0.

33
0.

15
0.

15
0.

02
0.

01
—

3,
31

6
26

4
26

3
26

4
22

6
22

5
23

3
0.

05
6.

88
0.

10
13

.2
5

13
.4

6
46

.6
7

0.
36

0.
17

0.
18

0.
04

0.
01

—

1.
0

1,
43

5
33

4
33

4
33

4
25

2
25

3
26

1
0.

04
9.

22
0.

08
16

.1
4

17
.2

6
99

.3
6

0.
71

0.
51

0.
51

0.
13

0.
07

—
2,

43
5

32
0

31
9

32
0

22
7

22
9

23
4

0.
04

12
.2

7
0.

08
15

.0
2

16
.6

7
43

.7
8

0.
69

0.
46

0.
47

0.
08

0.
05

—
3,

43
5

34
3

34
1

34
3

24
6

24
7

25
7

0.
05

9.
18

0.
08

15
.8

1
16

.4
2

96
.4

8
0.

72
0.

48
0.

50
0.

05
0.

03
—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 78

T
ab

le
A

.2
6:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
A

lg
or

it
h
m

,
N

o
d
e

#
=

30
,

C
o
effi

ci
en

t
=

10
,

D
em

an
d
∈
{1
,1

00
}

D
en

si
ty

In
st

an
ce

s,
ed

g
e#

O
n
e-

S
te

p
IP

B
as

ed
H

eu
ri

st
ic

R
er

ou
te

E
d
ge

-D
el

.
C

y
cl

e
O

p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
21

2
16

7
16

7
16

7
14

9
15

1
15

5
0.

04
4.

52
0.

09
8.

12
8.

83
15

.7
4

0.
52

0.
21

0.
22

0.
05

0.
01

—
2,

20
1

16
4

16
4

16
4

14
8

14
9

15
2

0.
04

4.
44

0.
09

7.
89

8.
14

15
.1

0
0.

47
0.

19
0.

19
0.

04
0.

02
—

3,
20

4
16

9
16

9
16

9
14

7
14

6
15

0
0.

04
4.

41
0.

08
6.

98
7.

56
14

.8
2

0.
49

0.
26

0.
27

0.
05

0.
01

—

0.
75

1,
32

0
21

7
21

7
21

7
16

9
17

1
17

7
0.

04
6.

41
0.

09
10

.0
3

11
.3

2
32

.7
3

0.
84

0.
53

0.
53

0.
06

0.
03

—
2,

30
9

21
3

21
3

21
3

16
7

16
8

17
3

0.
04

6.
28

0.
09

10
.5

5
10

.9
4

27
.7

2
1.

02
0.

68
0.

68
0.

12
0.

05
—

3,
31

6
22

3
22

3
22

3
17

2
17

2
17

4
0.

05
6.

34
0.

09
11

.2
4

11
.3

2
27

.8
6

1.
10

0.
72

0.
72

0.
08

0.
02

—

1.
0

1,
43

5
24

6
24

6
24

6
16

2
16

5
18

1
0.

04
8.

19
0.

08
13

.6
7

13
.8

8
12

5.
29

1.
75

1.
39

1.
39

0.
31

0.
27

—
2,

43
5

23
7

23
7

23
7

16
0

16
0

17
3

0.
06

7.
96

0.
08

12
.3

0
13

.1
3

44
.7

8
1.

67
1.

17
1.

17
0.

27
0.

20
—

3,
43

5
25

1
25

1
25

1
17

2
17

8
18

4
0.

04
8.

15
0.

08
12

.6
3

13
.5

2
12

7.
84

1.
82

1.
26

1.
26

0.
30

0.
21

—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 79

T
ab

le
A

.2
7:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
A

lg
or

it
h
m

,
N

o
d
e

#
=

30
,

C
o
effi

ci
en

t
=

10
0,

D
em

an
d
∈
{1
,1

00
}

D
en

si
ty

In
st

an
ce

s,
ed

g
e#

O
n
e-

S
te

p
IP

B
as

ed
H

eu
ri

st
ic

R
er

ou
te

E
d
ge

-D
el

.
C

y
cl

e
O

p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
21

2
87

87
87

80
82

91
0.

05
3.

76
0.

08
3.

29
4.

00
40

.0
6

6.
07

2.
64

2.
65

2.
04

1.
73

—
2,

20
1

94
94

94
84

84
10

1
0.

04
3.

67
0.

08
2.

57
4.

03
16

.1
6

5.
21

2.
80

2.
81

1.
56

1.
34

—
3,

20
4

10
2

10
2

10
2

86
85

97
0.

07
3.

81
0.

08
3.

14
4.

68
16

.0
2

8.
20

4.
32

4.
32

2.
49

2.
15

—

0.
75

1,
32

0
10

5
10

5
10

5
86

90
10

3
0.

05
5.

15
0.

08
4.

07
4.

96
34

.3
6

8.
16

5.
36

5.
37

3.
38

3.
12

—
2,

30
9

99
99

99
83

86
10

5
0.

05
4.

96
0.

09
4.

21
4.

60
30

.3
1

9.
04

5.
67

5.
67

4.
26

4.
13

—
3,

31
6

10
8

10
8

10
8

88
90

10
5

0.
05

5.
07

0.
08

3.
71

4.
95

84
.0

7
7.

07
3.

94
3.

94
2.

31
2.

06
—

1.
0

1,
43

5
10

8
10

8
10

8
85

91
10

3
0.

04
6.

47
0.

08
4.

91
5.

04
35

2.
04

10
.5

0
5.

14
5.

23
2.

98
2.

63
—

2,
43

5
98

98
98

83
85

10
2

0.
04

6.
36

0.
08

4.
05

4.
54

25
1.

83
8.

95
5.

54
5.

54
3.

66
3.

34
—

3,
43

5
10

5
10

5
10

5
90

89
10

5
0.

06
6.

32
0.

08
4.

22
4.

80
49

.0
8

9.
81

5.
40

5.
40

3.
34

3.
22

—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 80

T
ab

le
A

.2
8:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
A

lg
or

it
h
m

,
N

o
d
e

#
=

40
,

C
o
effi

ci
en

t
=

1,
D

em
an

d
∈
{1
,1

00
}

D
en

si
ty

In
st

an
ce

s,
ed

g
e#

O
n
e-

S
te

p
IP

B
as

ed
H

eu
ri

st
ic

R
er

ou
te

E
d
ge

-D
el

.
C

y
cl

e
O

p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
39

0
35

0
35

0
35

0
31

2
31

3
31

6
0.

17
18

.6
2

0.
30

56
.2

2
57

.5
6

12
5.

67
0.

22
0.

08
0.

08
0.

01
0.

00
4

—
2,

38
3

33
1

33
1

33
1

29
1

29
3

29
6

0.
15

16
.3

2
0.

29
52

.2
2

53
.5

4
12

0.
60

0.
23

0.
10

0.
10

0.
02

0.
01

—
3,

37
3

34
1

34
1

34
1

30
9

30
9

31
3

0.
14

16
.3

4
0.

29
55

.3
5

56
.1

2
16

6.
32

0.
14

0.
07

0.
08

0.
01

0.
01

—

0.
75

1,
58

0
46

7
46

6
46

7
35

6
35

4
36

2
0.

18
25

.4
5

0.
30

75
.1

3
77

.7
9

19
8.

89
0.

56
0.

31
0.

31
0.

05
0.

03
—

2,
58

0
43

2
43

0
43

2
34

2
34

4
35

2
0.

15
32

.8
2

0.
30

71
.2

3
74

.4
4

19
7.

17
0.

53
0.

30
0.

31
0.

05
0.

02
—

3,
57

6
44

9
44

5
44

9
35

8
36

2
36

9
0.

17
23

.5
4

0.
30

72
.8

8
74

.8
0

24
6.

74
0.

38
0.

18
0.

20
0.

02
0.

01
—

*1
.0

1,
78

0
56

5
56

2
56

5
37

2
37

2
O

ut
of

M
em

or
y

0.
15

40
.4

3
0.

28
91

.0
2

92
.8

6
32

5.
77

0.
78

0.
51

0.
52

0.
08

0.
08

—
2,

78
0

53
1

52
4

53
1

36
9

37
2

O
ut

of
M

em
or

y
0.

14
35

.3
2

0.
28

85
.0

2
86

.5
7

29
8.

90
0.

81
0.

67
0.

70
0.

09
0.

08
—

3,
78

0
57

3
56

7
57

3
38

1
38

2
O

ut
of

M
em

or
y

0.
14

30
.9

5
0.

28
92

.2
7

93
.4

3
30

1.
46

0.
68

0.
56

0.
58

0.
08

0.
07

—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 81

T
ab

le
A

.2
9:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
A

lg
or

it
h
m

,
N

o
d
e

#
=

40
,

C
o
effi

ci
en

t
=

10
,

D
em

an
d
∈
{1
,1

00
}

D
en

si
ty

In
st

an
ce

s,
ed

g
e#

O
n
e-

S
te

p
IP

B
as

ed
H

eu
ri

st
ic

R
er

ou
te

E
d
ge

-D
el

.
C

y
cl

e
O

p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
39

0
30

0
30

0
30

0
24

0
24

2
24

6
0.

17
16

.9
2

0.
29

46
.8

4
48

.2
1

13
4.

51
0.

91
0.

54
0.

54
0.

11
0.

06
—

2,
38

3
27

6
27

5
27

6
23

3
23

5
24

3
0.

15
14

.9
8

0.
28

41
.1

8
43

.3
6

32
2.

92
0.

75
0.

35
0.

37
0.

07
0.

04
—

3,
37

3
27

9
27

8
27

9
23

0
23

3
23

8
0.

15
15

.0
1

0.
34

43
.3

6
45

.1
5

11
7.

59
0.

70
0.

38
0.

39
0.

15
0.

08
—

0.
75

1,
58

0
34

1
34

1
34

1
25

2
25

6
27

2
0.

17
21

.1
6

0.
30

52
.3

3
55

.4
4

21
3.

79
1.

41
0.

87
0.

87
0.

19
0.

14
—

2,
58

0
33

6
33

6
33

6
24

8
24

8
26

3
0.

15
28

.1
0

0.
29

51
.2

2
53

.5
8

67
2.

32
1.

36
0.

86
0.

86
0.

22
0.

16
—

3,
57

6
32

6
32

6
32

6
25

3
25

4
27

8
0.

15
20

.5
4

0.
30

52
.7

8
54

.3
1

70
4.

02
1.

11
0.

69
0.

70
0.

19
0.

11
—

*1
.0

1,
78

0
36

5
36

4
36

5
25

7
26

1
O

ut
of

M
em

or
y

0.
14

25
.3

4
0.

28
58

.4
4

59
.4

1
30

7.
21

2.
43

1.
60

1.
62

0.
28

0.
21

—
2,

78
0

37
7

37
7

37
7

26
5

26
9

O
ut

of
M

em
or

y
0.

14
34

.9
6

0.
28

58
.7

4
60

.3
6

31
3.

94
2.

41
1.

62
1.

65
0.

32
0.

27
—

3,
78

0
37

7
37

4
37

7
25

2
25

6
O

ut
of

M
em

or
y

0.
15

25
.9

6
0.

28
59

.1
5

61
.0

3
30

9.
79

2.
52

1.
74

1.
79

0.
26

0.
19

—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 82

T
ab

le
A

.3
0:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
A

lg
or

it
h
m

,
N

o
d
e

#
=

40
,

C
o
effi

ci
en

t
=

10
0,

D
em

an
d
∈
{1
,1

00
}

D
en

si
ty

In
st

an
ce

s,
ed

g
e#

O
n
e-

S
te

p
IP

B
as

ed
H

eu
ri

st
ic

R
er

ou
te

E
d
ge

-D
el

.
C

y
cl

e
O

p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
39

0
13

9
13

9
13

9
12

2
12

0
15

1
0.

16
12

.3
5

0.
27

19
.3

8
20

.2
2

42
7.

90
7.

28
3.

84
3.

86
2.

82
2.

27
—

2,
38

3
14

3
14

3
14

3
12

0
12

2
14

9
0.

16
12

.2
6

0.
28

20
.0

3
21

.0
1

12
6.

49
8.

27
4.

48
4.

56
3.

05
2.

74
—

3,
37

3
12

6
12

6
12

6
11

0
11

0
14

2
0.

15
11

.8
8

0.
27

18
.0

3
19

.6
3

36
1.

56
7.

22
4.

26
4.

30
3.

36
3.

17
—

0.
75

1,
58

0
14

6
14

6
14

6
12

9
12

9
15

4
0.

16
16

.3
7

0.
27

20
.1

6
21

.7
5

12
87

.5
7

7.
68

4.
17

4.
19

2.
91

2.
40

—
2,

58
0

14
0

14
0

14
0

12
2

12
6

15
5

0.
15

16
.4

6
0.

28
19

.1
8

20
.5

0
13

07
.0

9
9.

95
5.

56
5.

57
4.

40
4.

27
—

3,
57

6
13

6
13

6
13

6
11

7
12

1
15

6
0.

15
18

.5
5

0.
28

18
.2

8
19

.0
9

11
03

.8
8

7.
91

4.
99

4.
99

3.
25

3.
12

—

*1
.0

1,
78

0
13

3
13

3
13

3
12

2
12

1
O

ut
of

M
em

or
y

0.
14

19
.9

8
0.

25
17

.8
6

19
.4

4
45

5.
46

9.
97

6.
04

6.
09

2.
12

1.
94

—
2,

78
0

14
2

14
2

14
2

11
8

12
0

O
ut

of
M

em
or

y
0.

14
20

.1
5

0.
25

18
.5

8
20

.8
4

57
6.

27
9.

94
5.

89
5.

93
2.

25
2.

03
—

3,
78

0
13

4
13

4
13

4
11

7
12

1
O

ut
of

M
em

or
y

0.
14

20
.1

6
0.

27
17

.8
6

19
.6

6
71

7.
44

10
.0

1
6.

94
6.

99
2.

77
2.

32
—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 83

T
ab

le
A

.3
1:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
-2

A
lg

or
it

h
m

,
N

o
d
e

#
=

30
,

C
o
effi

ci
en

t
=

1,
D

em
an

d
∈
{1
,1

00
}

D
en

si
ty

In
st

an
ce

s,
ed

g
e#

O
n
e-

S
te

p
-2

R
er

ou
te

E
d
ge

D
el

.
E
d
ge

A
d
d
.

O
p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
21

2
20

0
20

0
18

6
20

0
18

7
0.

06
0.

01
10

.0
2

1.
17

15
.8

3
0.

06
0.

05
0.

01
0.

05
—

2,
20

1
19

0
19

0
17

8
19

0
17

8
0.

06
0.

11
9.

40
1.

16
15

.1
1

0.
06

0.
04

0
0.

04
—

3,
20

4
19

6
19

6
18

7
19

6
18

7
0.

05
0.

10
9.

57
0.

79
14

.9
0

0.
04

0.
03

0
0.

03
—

0.
75

1,
32

0
27

9
27

9
22

9
27

9
23

4
0.

04
0.

09
14

.0
4

3.
74

32
.1

0
0.

20
0.

03
0.

01
0.

03
—

2,
30

9
27

9
27

9
21

9
27

9
22

1
0.

05
0.

10
14

.4
0

2.
98

27
.4

0
0.

28
0.

23
0.

01
0.

23
—

3,
31

6
28

5
28

5
22

7
28

5
23

3
0.

05
0.

10
14

.0
9

3.
09

46
.6

7
0.

23
0.

20
0.

02
0.

20
—

1.
0

1,
43

5
36

1
36

1
24

4
36

1
26

1
0.

04
0.

08
17

.3
1

6.
33

99
.3

6
0.

60
0.

53
0.

07
0.

53
—

2,
43

5
34

7
34

7
22

7
34

7
23

4
0.

04
0.

08
16

.9
2

7.
64

43
.7

8
0.

62
0.

54
0.

05
0.

54
—

3,
43

5
37

2
37

2
24

7
37

2
25

7
0.

03
0.

08
17

.6
8

5.
45

96
.4

8
0.

63
0.

56
0.

02
0.

56
—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 84

T
ab

le
A

.3
2:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
-2

A
lg

or
it

h
m

,
N

o
d
e

#
=

30
,

C
o
effi

ci
en

t
=

10
,

D
em

an
d
∈
{1
,1

00
}

D
en

si
ty

In
st

an
ce

s,
ed

g
e#

O
n
e-

S
te

p
-2

R
er

ou
te

E
d
ge

D
el

.
E
d
ge

A
d
d
.

O
p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
21

2
17

9
17

9
15

4
17

9
15

5
0.

06
0.

10
8.

77
3.

01
15

.7
4

0.
30

0.
20

0.
00

4
0.

20
—

2,
20

1
17

4
17

4
15

2
17

4
15

2
0.

05
0.

10
8.

40
2.

46
15

.1
0

0.
26

0.
19

0
0.

19
—

3,
20

4
17

7
17

7
14

9
17

7
15

0
0.

04
0.

08
8.

42
2.

45
14

.8
2

0.
28

0.
20

0.
01

0.
20

—

0.
75

1,
32

0
23

4
23

4
16

7
23

4
17

7
0.

04
0.

09
11

.5
4

8.
35

32
.7

3
0.

82
0.

64
0.

06
0.

64
—

2,
30

9
23

6
23

6
16

9
23

6
17

3
0.

05
0.

10
11

.6
3

6.
58

27
.7

2
0.

89
0.

76
0.

04
0.

76
—

3,
31

6
24

0
24

0
17

1
24

0
17

4
0.

05
0.

10
11

.7
8

6.
88

27
.8

6
0.

92
0.

76
0.

06
0.

76
—

1.
0

1,
43

5
29

1
29

1
17

2
29

1
18

1
0.

04
0.

09
14

.1
5

12
.8

0
12

5.
29

2.
12

1.
61

0.
22

1.
61

—
2,

43
5

28
3

28
3

16
1

28
3

17
3

0.
05

0.
10

13
.9

4
13

.0
5

44
.7

8
1.

63
1.

47
0.

17
1.

47
—

3,
43

5
29

5
29

5
17

3
29

5
18

4
0.

05
0.

09
14

.1
6

11
.4

2
12

7.
84

1.
80

1.
58

0.
15

1.
58

—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 85

T
ab

le
A

.3
3:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
-2

A
lg

or
it

h
m

,
N

o
d
e

#
=

30
,

C
o
effi

ci
en

t
=

10
0,

D
em

an
d
∈
{1
,1

00
}

D
en

si
ty

In
st

an
ce

s,
ed

g
e#

O
n
e-

S
te

p
-2

R
er

ou
te

E
d
ge

D
el

.
E
d
ge

A
d
d
.

O
p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
21

2
13

0
13

0
87

13
0

91
0.

05
0.

10
5.

96
7.

82
40

.0
6

3.
87

2.
55

0.
30

2.
55

—
2,

20
1

13
4

13
4

99
13

4
10

1
0.

06
0.

10
6.

10
5.

85
16

.1
6

2.
72

2.
03

0.
24

2.
03

—
3,

20
4

12
9

12
9

96
12

9
97

0.
05

0.
10

5.
78

6.
47

16
.0

2
2.

73
1.

94
0.

26
1.

94
—

0.
75

1,
32

0
14

7
14

7
99

14
7

10
3

0.
04

0.
09

6.
82

16
.4

1
34

.3
6

6.
92

3.
84

0.
23

3.
84

—
2,

30
9

14
7

14
7

98
14

7
10

5
0.

05
0.

09
6.

78
14

.0
9

30
.3

1
4.

52
3.

12
0.

21
3.

12
—

3,
31

6
15

5
15

5
11

2
15

5
10

5
0.

04
0.

08
7.

10
15

.4
5

84
.0

7
5.

24
3.

54
0.

72
3.

54
—

1.
0

1,
43

5
15

7
15

7
10

0
15

7
10

3
0.

04
0.

08
7.

35
22

.6
7

35
2.

04
10

.6
3

5.
04

0.
48

5.
04

—
2,

43
5

17
2

17
2

96
17

2
10

2
0.

04
0.

08
8.

39
21

.5
7

25
1.

83
8.

93
6.

31
0.

91
6.

31
—

3,
43

5
15

8
15

8
10

0
15

8
10

5
0.

04
0.

08
7.

53
23

.6
9

49
.0

8
5.

91
4.

03
0.

53
4.

03
—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 86

T
ab

le
A

.3
4:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
-2

A
lg

or
it

h
m

,
N

o
d
e

#
=

40
,

C
o
effi

ci
en

t
=

1,
D

em
an

d
∈
{1
,1

00
}

D
en

si
ty

In
st

an
ce

s,
ed

g
e#

O
n
e-

S
te

p
-2

R
er

ou
te

E
d
ge

D
el

.
E
d
ge

A
d
d
.

O
p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
39

0
36

6
36

6
31

3
36

6
31

6
0.

16
0.

31
58

.6
0

7.
17

12
5.

67
0.

12
0.

09
0.

00
3

0.
09

—
2,

38
3

35
2

35
2

29
5

35
2

29
6

0.
14

0.
28

55
.1

6
8.

99
12

0.
60

0.
14

0.
12

0.
01

0.
12

—
3,

37
3

34
9

34
9

30
9

34
9

31
3

0.
15

0.
32

55
.8

7
7.

81
16

6.
32

0.
16

0.
08

0.
01

0.
08

—

0.
75

1,
58

0
49

1
49

1
35

5
49

1
36

2
0.

16
0.

30
79

.3
8

25
.3

7
19

8.
89

0.
37

0.
32

0.
02

0.
32

—
2,

58
0

46
2

46
2

35
3

46
2

35
2

0.
14

0.
28

81
.1

1
33

.0
6

19
7.

17
0.

35
0.

30
0.

01
0.

30
—

3,
57

6
48

3
48

3
36

7
48

3
36

9
0.

15
0.

30
78

.4
5

27
.5

2
24

6.
74

0.
28

0.
24

0.
01

0.
24

—

*1
.0

1,
78

0
61

3
61

3
37

3
61

3
O

ut
of

M
em

or
y

0.
14

0.
28

96
.6

7
45

.6
6

32
5.

77
0.

72
0.

64
0.

08
0.

64
—

2,
78

0
60

4
60

4
37

0
60

4
O

ut
of

M
em

or
y

0.
12

0.
26

93
.6

7
44

.6
3

29
8.

90
0.

76
0.

67
0.

07
0.

67
—

3,
78

0
61

8
61

8
38

5
61

8
O

ut
of

M
em

or
y

0.
12

0.
26

96
.8

7
42

.8
2

30
1.

46
0.

60
0.

54
0.

05
0.

54
—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 87

T
ab

le
A

.3
5:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
-2

A
lg

or
it

h
m

,
N

o
d
e

#
=

40
,

C
o
effi

ci
en

t
=

10
,

D
em

an
d
∈
{1
,1

00
}

D
en

si
ty

In
st

an
ce

s,
ed

g
e#

O
n
e-

S
te

p
-2

R
er

ou
te

E
d
ge

D
el

.
E
d
ge

A
d
d
.

O
p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
39

0
30

5
30

5
24

5
30

5
24

6
0.

14
0.

28
47

.1
2

24
.2

9
13

4.
51

0.
43

0.
33

0.
00

1
0.

33
—

2,
38

3
30

1
30

1
24

1
30

1
24

3
0.

14
0.

29
45

.8
3

24
.9

8
32

2.
92

0.
43

0.
35

0.
02

0.
35

—
3,

37
3

30
1

30
1

23
4

30
1

23
8

0.
19

0.
34

46
.6

8
22

.3
4

11
7.

59
0.

42
0.

32
0.

01
0.

32
—

0.
75

1,
58

0
37

5
37

5
26

2
37

5
27

2
0.

14
0.

29
58

.7
1

57
.8

8
21

3.
79

0.
87

0.
72

0.
06

0.
72

—
2,

58
0

36
5

36
5

25
5

36
5

26
3

0.
15

0.
30

55
.8

3
60

.0
67

2.
32

0.
83

0.
69

0.
04

0.
69

—
3,

57
6

35
9

35
9

26
9

35
9

27
8

0.
14

0.
28

56
.2

1
61

.4
8

70
4.

02
0.

69
0.

51
0.

02
0.

51
—

*1
.0

1,
78

0
44

2
44

2
25

7
44

2
O

ut
of

M
em

or
y

0.
13

0.
28

69
.0

7
89

.2
8

30
7.

21
1.

48
1.

27
0.

11
1.

27
—

2,
78

0
43

9
43

9
26

6
43

9
O

ut
of

M
em

or
y

0.
14

0.
28

67
.7

4
89

.0
6

31
3.

94
1.

37
1.

17
0.

12
1.

17
—

3,
78

0
43

6
43

6
26

7
43

6
O

ut
of

M
em

or
y

0.
14

0.
28

68
.2

6
90

.3
0

30
9.

79
1.

38
1.

15
0.

17
1.

15
—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 88

T
ab

le
A

.3
6:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
-2

A
lg

or
it

h
m

,
N

o
d
e

#
=

40
,

C
o
effi

ci
en

t
=

10
0,

D
em

an
d
∈
{1
,1

00
}

D
en

si
ty

In
st

an
ce

s,
ed

g
e#

O
n
e-

S
te

p
-2

R
er

ou
te

E
d
ge

D
el

.
E
d
ge

A
d
d
.

O
p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
39

0
20

5
20

5
14

9
20

5
15

1
0.

15
0.

28
29

.4
7

50
.8

7
42

7.
90

3.
01

1.
90

0.
13

1.
90

—
2,

38
3

20
8

20
8

14
1

20
8

14
9

0.
15

0.
28

29
.4

8
47

.3
4

12
6.

49
2.

77
1.

92
0.

22
1.

92
—

3,
37

3
19

4
19

4
13

9
19

4
14

2
0.

16
0.

29
27

.9
5

48
.9

0
36

1.
56

2.
52

1.
57

0.
15

1.
57

—

0.
75

1,
58

0
24

2
24

2
14

6
24

2
15

4
0.

16
0.

30
35

.3
9

93
.1

2
12

87
.5

7
6.

87
4.

01
0.

35
4.

01
—

2,
58

0
22

7
22

7
15

2
22

7
15

5
0.

14
0.

27
32

.7
3

95
.3

6
13

07
.0

9
3.

80
2.

64
0.

34
2.

64
—

3,
57

6
25

1
25

1
15

6
25

1
15

6
0.

14
0.

28
36

.8
7

90
.1

4
11

03
.8

8
6.

98
4.

20
0.

83
4.

20
—

*1
.0

1,
78

0
25

8
25

8
17

7
25

8
O

ut
of

M
em

or
y

0.
15

0.
29

38
.2

7
14

2.
82

45
5.

46
8.

94
5.

38
1.

74
5.

38
—

2,
78

0
24

1
24

1
15

1
24

1
O

ut
of

M
em

or
y

0.
13

0.
26

34
.9

7
14

7.
23

57
6.

27
7.

19
3.

97
0.

99
3.

97
—

3,
78

0
25

5
25

5
16

8
25

5
O

ut
of

M
em

or
y

0.
15

0.
29

37
.7

5
13

5.
96

71
7.

44
8.

64
4.

76
1.

33
4.

76
—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 89

T
ab

le
A

.3
7:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
-2

A
lg

or
it

h
m

,
N

o
d
e

#
=

30
,

C
o
effi

ci
en

t
=

1,
D

em
an

d
∈
{1
,1

0}
D

en
si

ty
In

st
an

ce
s,

ed
g
e#

O
n
e-

S
te

p
-2

R
er

ou
te

E
d
ge

D
el

.
E
d
ge

A
d
d
.

O
p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
21

2
17

2
17

2
11

6
17

2
12

1
0.

04
0.

08
7.

29
3.

63
16

.4
3

1.
95

1.
53

0.
17

1.
53

—
2,

20
1

16
5

16
5

11
5

16
5

12
0

0.
04

0.
08

7.
12

3.
23

46
.9

8
1.

59
1.

22
0.

13
1.

22
—

3,
20

4
17

0
17

0
11

5
17

0
12

2
0.

04
0.

08
6.

91
3.

37
15

.3
4

1.
85

1.
35

0.
06

1.
35

—

0.
75

1,
32

0
21

1
21

1
12

8
21

1
13

6
0.

06
0.

11
10

.0
4

9.
86

33
.9

1
3.

44
2.

35
0.

10
2.

35
—

2,
30

9
19

8
19

8
12

3
19

8
13

4
0.

04
0.

08
8.

72
9.

85
72

.5
0

3.
12

2.
42

0.
24

2.
42

—
3,

31
6

21
7

21
7

13
0

21
7

13
7

0.
04

0.
09

9.
83

8.
87

87
.2

3
3.

17
2.

41
0.

13
2.

41
—

1.
0

1,
43

5
25

4
25

4
12

4
25

4
13

6
0.

04
0.

09
11

.4
8

15
.0

9
17

2.
89

5.
23

4.
27

0.
57

4.
27

—
2,

43
5

24
7

24
7

11
8

24
7

12
8

0.
03

0.
08

10
.8

1
15

.6
4

53
.2

7
6.

03
4.

83
0.

51
4.

83
—

3,
43

5
26

6
26

6
13

1
26

6
14

4
0.

04
0.

08
12

.1
0

14
.0

17
9.

90
5.

63
4.

54
0.

48
4.

54
—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 90

T
ab

le
A

.3
8:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
-2

A
lg

or
it

h
m

,
N

o
d
e

#
=

30
,

C
o
effi

ci
en

t
=

10
,

D
em

an
d
∈
{1
,1

0}
D

en
si

ty
In

st
an

ce
s,

ed
g
e#

O
n
e-

S
te

p
-2

R
er

ou
te

E
d
ge

D
el

.
E
d
ge

A
d
d
.

O
p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
21

2
13

5
13

5
84

13
5

87
0.

04
0.

09
5.

14
6.

76
48

.7
5

4.
81

3.
40

0.
45

3.
40

—
2,

20
1

13
2

13
2

88
13

2
93

0.
04

0.
08

5.
92

5.
99

16
.4

4
3.

87
3.

09
0.

51
3.

09
—

3,
20

4
13

1
13

1
85

13
1

88
0.

04
0.

08
5.

12
6.

31
15

.8
2

4.
06

3.
01

0.
14

3.
01

—

0.
75

1,
32

0
15

4
15

4
92

15
4

97
0.

04
0.

09
6.

28
14

.6
2

11
5.

05
6.

89
4.

84
0.

44
4.

84
—

2,
30

9
14

1
14

1
90

14
1

98
0.

04
0.

08
6.

07
14

.5
4

18
8.

58
4.

89
3.

60
0.

64
3.

60
—

3,
31

6
15

8
15

8
97

15
8

98
0.

04
0.

09
6.

51
13

.8
4

31
.4

7
6.

45
4.

83
0.

12
4.

83
—

1.
0

1,
43

5
16

5
16

5
93

16
5

95
0.

04
0.

08
5.

93
22

.2
0

58
.6

8
11

.0
1

6.
99

1.
19

6.
99

—
2,

43
5

18
6

18
6

90
18

6
93

0.
04

0.
08

7.
14

20
.5

1
36

04
.1

1
13

.7
4

10
.3

9
1.

97
10

.3
9

—
3,

43
5

17
7

17
7

95
17

7
10

2
0.

03
0.

08
7.

26
20

.9
5

74
.1

4
9.

41
7.

32
1.

85
7.

32
—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 91

T
ab

le
A

.3
9:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
-2

A
lg

or
it

h
m

,
N

o
d
e

#
=

30
,

C
o
effi

ci
en

t
=

10
0,

D
em

an
d
∈
{1
,1

0}
D

en
si

ty
In

st
an

ce
s,

ed
g
e#

O
n
e-

S
te

p
-2

R
er

ou
te

E
d
ge

D
el

.
E
d
ge

A
d
d
.

O
p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
21

2
90

90
52

90
51

0.
04

0.
08

3.
18

10
.3

6
22

6.
68

19
.8

8
16

.9
1

2.
33

16
.9

1
—

2,
20

1
95

95
50

95
55

0.
06

0.
10

3.
58

8.
97

36
01

.9
6

20
.1

7
17

.7
2

2.
54

17
.7

2
—

3,
20

4
89

89
54

89
58

0.
04

0.
08

3.
29

9.
61

64
0.

36
13

.4
1

11
.1

1
2.

17
11

.1
1

—

0.
75

1,
32

0
10

7
10

7
52

10
7

57
0.

04
0.

08
4.

28
18

.9
6

36
03

.2
0

28
.9

1
24

.4
1

2.
83

24
.4

1
—

2,
30

9
11

2
11

2
49

11
2

55
0.

06
0.

10
4.

82
18

.3
4

36
16

.2
4

36
.6

9
32

.0
9

3.
18

32
.0

9
—

3,
31

6
10

3
10

3
55

10
3

57
0.

04
0.

08
4.

80
18

.0
7

36
02

.8
3

19
.5

9
17

.1
3

2.
91

17
.1

3
—

1.
0

1,
43

5
14

3
14

3
52

14
3

57
0.

04
0.

08
5.

04
23

.9
2

36
03

.8
2

73
.8

8
62

.8
8

4.
48

62
.8

8
—

2,
43

5
13

7
13

7
53

13
7

57
0.

04
0.

08
4.

62
24

.2
5

36
03

.7
6

61
.7

1
54

.2
1

4.
31

54
.2

1
—

3,
43

5
11

9
11

9
55

11
9

58
0.

04
0.

08
4.

47
25

.1
8

36
03

.8
0

33
.2

4
28

.5
8

3.
58

28
.5

8
—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 92

T
ab

le
A

.4
0:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
-2

A
lg

or
it

h
m

,
N

o
d
e

#
=

40
,

C
o
effi

ci
en

t
=

1,
D

em
an

d
∈
{1
,1

0}
D

en
si

ty
In

st
an

ce
s,

ed
g
e#

O
n
e-

S
te

p
-2

R
er

ou
te

E
d
ge

D
el

.
E
d
ge

A
d
d
.

O
p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
39

0
27

5
27

5
18

3
27

5
18

4
0.

14
0.

28
40

.5
1

32
.4

3
12

7.
19

1.
95

1.
43

0.
10

1.
43

—
2,

38
3

26
6

26
6

17
9

26
6

18
5

0.
14

0.
28

39
.2

4
32

.4
7

12
6.

10
1.

97
1.

48
0.

08
1.

48
—

3,
37

3
27

6
27

6
18

5
27

6
19

4
0.

14
0.

28
40

.1
2

27
.3

6
12

2.
41

1.
70

1.
31

0.
07

1.
31

—

0.
75

1,
58

0
34

5
34

5
17

9
34

5
19

3
0.

14
0.

29
51

.8
6

66
.1

7
87

2.
01

4.
34

3.
22

0.
26

3.
22

—
2,

58
0

34
2

34
2

17
0

34
2

19
4

0.
13

0.
28

49
.9

3
66

.0
7

12
97

.8
5

4.
53

3.
46

0.
45

3.
46

—
3,

57
6

34
6

34
6

19
6

34
6

20
6

0.
14

0.
29

52
.3

4
70

.1
7

85
4.

12
3.

08
2.

34
0.

28
2.

34
—

*1
.0

1,
78

0
41

9
41

9
18

6
41

9
O

ut
of

M
em

or
y

0.
14

0.
29

64
.1

0
95

.5
4

35
9.

60
6.

32
5.

04
0.

88
5.

04
—

2,
78

0
40

2
40

2
18

0
40

2
O

ut
of

M
em

or
y

0.
13

0.
28

59
.2

2
98

.6
8

10
2.

05
5.

76
4.

69
0.

97
4.

69
—

3,
78

0
44

1
44

1
18

5
44

1
O

ut
of

M
em

or
y

0.
14

0.
28

67
.2

9
89

.3
5

72
1.

88
6.

60
5.

54
1.

05
5.

54
—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 93

T
ab

le
A

.4
1:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
-2

A
lg

or
it

h
m

,
N

o
d
e

#
=

40
,

C
o
effi

ci
en

t
=

10
,

D
em

an
d
∈
{1
,1

0}
D

en
si

ty
In

st
an

ce
s,

ed
g
e#

O
n
e-

S
te

p
-2

R
er

ou
te

E
d
ge

D
el

.
E
d
ge

A
d
d
.

O
p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

1,
39

0
20

7
20

7
13

3
20

7
14

4
0.

14
0.

27
28

.2
1

50
.3

3
71

1.
18

4.
42

3.
01

0.
35

3.
01

—
2,

38
3

20
6

20
6

12
7

20
6

13
2

0.
14

0.
27

27
.6

1
47

.7
4

14
7.

80
4.

34
3.

16
0.

19
3.

16
—

3,
37

3
20

2
20

2
13

1
20

2
13

5
0.

14
0.

27
27

.8
5

46
.7

8
44

8.
13

3.
55

2.
65

0.
19

2.
65

—

0.
75

1,
58

0
24

1
24

1
13

9
24

1
14

5
0.

14
0.

28
33

.5
2

65
.5

1
10

66
.1

0
7.

31
5.

19
0.

65
5.

19
—

2,
58

0
24

2
24

2
13

0
24

2
13

4
0.

17
0.

30
33

.0
9

91
.8

2
36

09
.2

7
7.

97
5.

99
0.

83
5.

99
—

3,
57

6
25

0
25

0
13

7
25

0
14

7
0.

14
0.

28
35

.2
6

89
.7

6
31

88
.6

8
7.

59
5.

37
0.

76
5.

37
—

*1
.0

1,
78

0
29

0
29

0
13

7
29

0
O

ut
of

M
em

or
y

0.
12

0.
26

41
.5

3
12

7.
74

10
88

.1
3

10
.4

8
8.

27
1.

18
8.

27
—

2,
78

0
26

2
26

2
12

9
26

2
O

ut
of

M
em

or
y

0.
12

0.
25

35
.7

2
13

1.
40

26
93

.7
3

9.
37

6.
19

1.
22

6.
19

—
3,

78
0

28
4

28
4

13
4

28
4

O
ut

of
M

em
or

y
0.

12
0.

26
40

.1
6

12
9.

0
17

78
.6

9
10

.7
7

8.
45

1.
14

8.
45

—

APPENDIX A. RESULTS OF COMPUTATIONAL STUDIES 94

T
ab

le
A

.4
2:

C
om

p
u
ta

ti
on

al
R

es
u
lt

s
of

th
e

O
n
e-

S
te

p
-2

A
lg

or
it

h
m

,
N

o
d
e

#
=

40
,

C
o
effi

ci
en

t
=

10
0,

D
em

an
d
∈
{1
,1

0}
D

en
si

ty
In

st
an

ce
s,

ed
g
e#

O
n
e-

S
te

p
-2

R
er

ou
te

E
d
ge

D
el

.
E
d
ge

A
d
d
.

O
p
ti

m
al

S
ol

.
ed

g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ed
g
e#

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

ti
m

e(
se

c.
)

%
g
a
p

%
g
a
p

%
g
a
p

%
g
a
p

−
−
−

0.
5

*1
,3

90
14

3
14

3
78

14
3

R
L
E

0.
14

0.
27

17
.3

2
66

.5
3

36
07

.5
6

18
.0

1
15

.9
0

5.
13

15
.9

0
—

2,
38

3
14

7
14

7
10

3
14

7
84

0.
14

0.
26

16
.1

2
64

.7
6

36
06

.0
5

21
.8

2
18

.0
1

6.
22

18
.0

1
—

3,
37

3
14

1
14

1
75

14
1

81
0.

14
0.

26
17

.5
8

62
.0

5
36

06
.0

6
18

.6
6

15
.8

5
4.

12
15

.8
5

—

*0
.7

5
1,

58
0

18
9

18
9

74
18

9
R

L
E

0.
14

0.
27

21
.8

4
10

6.
01

36
07

.2
6

26
.6

4
19

.9
1

5.
46

19
.9

1
—

2,
58

0
17

1
17

1
79

17
1

R
L
E

0.
15

0.
28

24
.0

6
10

8.
27

36
07

.9
4

25
.7

9
22

.1
4

6.
89

22
.1

4
—

3,
57

6
19

4
19

4
85

19
4

R
L
E

0.
14

0.
27

22
.1

6
10

4.
61

36
07

.1
8

27
.8

3
22

.6
3

7.
14

22
.6

3
—

*1
.0

1,
78

0
21

2
21

2
83

21
2

R
L
E

0.
12

0.
26

27
.3

8
14

5.
60

36
09

.8
2

48
.3

2
40

.0
7

8.
01

40
.0

7
—

2,
78

0
17

8
17

8
83

17
8

R
L
E

0.
12

0.
25

24
.5

0
14

9.
43

36
09

.7
9

37
.2

5
30

.8
8

7.
65

30
.8

8
—

3,
78

0
21

2
21

2
85

21
2

R
L
E

0.
12

0.
26

28
.8

7
14

5.
05

36
09

.7
5

57
.5

8
51

.7
1

9.
48

51
.7

1
—

