
A BACKWARDS THEOREM PROVER WITH
FOCUSING, RESOURCE MANAGEMENT

AND CONSTRAINTS FOR ROBOTIC
PLANNING WITHIN INTUITIONISTIC

LINEAR LOGIC

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Sıtar Kortik

January, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52925481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Uluç Saranlı (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Varol Akman

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ferda Nur Alpaslan

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii

ABSTRACT

A BACKWARDS THEOREM PROVER WITH
FOCUSING, RESOURCE MANAGEMENT AND

CONSTRAINTS FOR ROBOTIC PLANNING WITHIN
INTUITIONISTIC LINEAR LOGIC

Sıtar Kortik

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. Uluç Saranlı

January, 2010

The main scope of this thesis is implementing a backwards theorem prover with fo-

cusing, resource management and constraints within the intuitionistic first-order

linear logic for robotic planning problems. To this end, backwards formulations

provide a simpler context for experimentation. However, existing backward theo-

rem provers are either implemented without regard to the efficiency of the proof-

search, or when they do, restrict the language to smaller fragments such as Linear

Hereditary Harrop Formulas (LHHF). The former approach is unsuitable since it

significantly impairs the scalability of the resulting system. The latter family of

theorem provers address the scalability issue but impact the expressivity of the

resulting language and may not be able to deal with certain non-deterministic

planning elements. The proof theory we describe in this thesis enables us to

effectively experiment with the use of linearity and continuous constraints to

encode dynamic state elements characteristic of robotic planning problems. To

this end, we describe a prototype implementation of our system in SWI-Prolog,

and also incorporate continuous constraints into the prototype implementation of

the system. We support the expressivity and efficiency of our system with some

examples.

Keywords: constrained intuitionistic first-order linear logic, automated theorem

proving, backwards theorem prover, robotic planning, SWI-Prolog implementa-

tion of CFRM .

iii

ÖZET

ROBOTİK PLANLAMA İÇİN ODAKLANMA, KAYNAK
YÖNETİMİ VE KISITLAMALARIN KATILARAK
HEDEFE YÖNELİK TEOREM İSPATLAMANIN

SEZGİSEL DOĞRUSAL MANTIKTA
GERÇEKLEŞTİRİMİ

Sıtar Kortik

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Asst. Prof. Dr. Uluç Saranlı

Ocak, 2010

Bu tezin ana kapsamı, robotik planlama problemleri için, odaklanma, kaynak

yönetimi ve kısıtlamaların da dahil edilerek, sezgisel doğrusal mantıkta, hedefe

yönelik bir teorem ispatlama çatısı oluşturmak. Bu amaçla, hedefe yönelik

formülasyon şekli, uygulama ve test aşamasında daha anlaşılır bir içerik sun-

maktadır. Bununla beraber, mevcut hedefe yönelik teorem ispatlayıcılar, is-

pat aramada ya etkili bir yöntem sunamamaktadırlar ya da kullandıkları dili

Doğrusal Hereditary Harrop Formülleri gibi daha küçük parçalara kısıtlayarak

etkili bir yöntem sağlayabilmektedirler. Bahsedilen yaklaşımlardan ilki, sonuç

sisteminin ölçeklenebilirliğine önemli derecede zarar verdiği için uygun değildir.

İkinci bahsedilen teorem ispatlama yaklaşımlarında ise ölçeklenebilirlik konusu

çözülebilir fakat ifade edebileceği dili kısıtlar ve belirli olmayan planlama ele-

manlarını ele alamayabilir. Bu tezde tanımladığımız ispatlama teorisi, robotik

planlama problemlerindeki dinamik durum elemanlarının ifade edilmesinde,

doğrusallığın ve sürekli kısıtlamaların etkili bir biçimde kullanılmasını sağlıyor.

Bu amaçla, tanımladığımız sistemin SWI-Prolog dilinde bir uygulamasını

gerçekleştirdik. Bu uygulamaya kısıtlamaları da dahil ederek sistemi genişlettik.

Sistemimizin ifade gücünü ve verimliliğini, bazı robot planlama örnekleri vererek

destekledik.

Anahtar sözcükler : kısıtlı sezgisel doğrusal mantık, özdevinimli kuram ispatlama,

hedefe yönelik kuram ispatlama, robotik planlama, mantıksal çatı, CFRM ’nin

SWI-Prolog’da uygulaması.

iv

Acknowledgement

I am heartily thankful to my advisor, Uluç Saranlı, whose encouragement, guid-

ance and support from the initial to the final level enabled me to develop this

thesis. Although I was new in the robotic area, his endless energy, knowdledge

and patience helped me to like and be included in this area.

I also thank to my thesis committee, Varol Akman and Ferda Nur Alpaslan

for their participation and giving advices for this thesis. I am also very grateful

to Frank Pfenning for his collaboration and advices about our theorem prover

system and also for his invaluable class notes of Constructive Logic, Automated

Theorem Proving and Linear Logic lectures.

I am indebted to all members of SensoRhex Project group and Bilkent Dex-

terous Robotics and Locomotion (BDRL) group. Specially, I would like to thank

Ömür Arslan, Tuğba Yıldız, Akın Avcı and Cihan Öztürk for not only our discus-

sions about both robotics and casual conversations but also late night studyings.

Outside the research group, many people directly or indirectly contributed to

my completion of this thesis. I thank to the Bilkent Aviation Club (BILHAVK),

Bilkent Underwater Club (BILSAT) and all of their members for setting great

social organizations. I am also appreciative to Computer Engineering Department

of Bilkent University and European Commission for their financial support.

I owe my deepest gratitude to my parents, Hüseyin and Gönül Kortik, and

my sister Rüçhan Kortik, for their endless love and support. Finally, I thank my

beloved girlfriend Zeynep Çelen, for spicing my life, giving encouragement, moti-

vating, understanding and supporting me through all years of living in different

cities.

v

Contents

1 Introduction 1

1.1 Motivation and Scope . 1

1.2 Contributions . 3

1.3 Organization of the Thesis . 3

2 Background 4

2.1 Planning for Robotics . 4

2.1.1 Situation Calculus . 5

2.1.2 Fluent Calculus . 6

2.1.3 Partial Order Planning . 6

2.1.4 Total Order Planning . 6

2.2 Logic . 7

2.2.1 Propositional Logic . 7

2.2.2 Natural Deduction . 8

2.2.3 First-Order Logic . 10

vi

CONTENTS vii

2.2.4 Intuitionistic First-Order Linear Logic 11

2.3 Constraint Logic Programming 16

2.4 Proof Search In Linear Logic . 17

2.4.1 Bottom-up Proof Search 18

2.4.2 Unification . 18

2.5 Focused Intuitionistic First-Order Linear Logic (FocLL) 19

2.5.1 Focusing . 21

3 Resource Management System For FOCLL (FRM) 25

3.1 Focusing . 26

3.1.1 The Inversion Phase . 26

3.1.2 Decision . 27

3.1.3 The Focusing Phase . 30

4 Adding Constraints 33

4.1 Adding Constraints Into Intuitionistic Linear Logic 33

4.1.1 An Example: The Balanced Blocks World 35

4.2 Adding Constraints Into FRM (CFRM) 38

4.2.1 Restrictions with Constraints 38

4.3 Annotated Proof Terms for CFRM 47

4.3.1 Grammar of Proof Terms 47

4.3.2 Rule Set of Proof Terms 48

CONTENTS viii

5 Implementation Details and Experiment Results 54

5.1 SWI-Prolog as the Programming Environment 54

5.2 Implementation of FRM . 56

5.2.1 Skolemization in FRM . 56

5.2.2 Unification in FRM . 57

5.2.3 Depth-Limited Depth First Search in FRM 60

5.3 Implementation of CFRM . 60

5.3.1 Skolem Variables with Constraints 61

5.4 Experiment Results . 62

5.4.1 Program Outputs of Some Examples 62

5.4.2 Blocks World Example . 64

5.4.3 Path Finding Among Mines 66

5.4.4 Mail Delivery Robot . 69

6 Conclusion And Future Work 72

A Sequent Calculus for Linear Logic 78

B Focused Intuitionistic First-Order Linear Logic (FocLL) 80

C Soundness and Completeness of The FRM System 83

C.1 Key Properties of The FRM System 83

C.2 Soundness . 86

CONTENTS ix

C.3 Completeness . 92

List of Figures

3.1 FRM, Right invertible rules . 28

3.2 FRM, Left invertible rules . 29

3.3 FRM, Decision rules . 30

3.4 FRM, Right focusing rules . 31

3.5 FRM, Left focusing rules . 32

4.1 CFRM, Right invertible rules . 39

4.2 CFRM, Left invertible rules . 40

4.3 CFRM, Decision rules . 41

4.4 CFRM, Right focusing rules . 41

4.5 CFRM, Left focusing rules . 42

4.6 Proof terms for CFRM, Right invertible rules 49

4.7 Proof terms for CFRM, Left invertible rules 50

4.8 Proof terms for CFRM, Decision rules 51

4.9 Proof terms for CFRM, Right focusing rules 51

x

LIST OF FIGURES xi

4.10 Proof terms for CFRM, Left focusing rules 52

5.1 Robot can reach to the position x3, y2 66

5.2 Robot can not reach to the position x3, y2 68

5.3 Mail delivery planning environment 70

A.1 Hypotheses . 78

A.2 Multiplicative Connectives . 78

A.3 Additive Connectives . 79

A.4 Quantifiers . 79

A.5 Exponentials . 79

B.1 Right invertible rules for the FocLL system 80

B.2 Left invertible rule set for FocLL system 81

B.3 Decision rule set for FocLL system 81

B.4 Right focusing rule set for FocLL system 81

B.5 Left focusing rule set for FocLL system 82

List of Tables

2.1 Collection of propositions for the Blocks World 12

2.2 A Mobile Robot and Linear Logic Encoding 15

4.1 Resource predicates for the Balanced Blocks World 36

4.2 CILL representations of BBW actions and supporting rules for

checking balance of newly placed blocks 37

xii

Chapter 1

Introduction

1.1 Motivation and Scope

Day by day, robots are playing a bigger role in our lives. From cleaning robots in

houses to Mars rovers like Phoenix [15], robotics is almost in all areas to facilitate

people’s lives. On earth, when a robot encounters a problem and is stuck while

processing a task, people can intervene and help robot to solve that problem. This

intervention is possible since we can communicate with robots easily. However for

Mars rovers [1], this kind of intervention is almost impossible except sending some

signals. Ideally, robots should achieve their tasks independently from people.

This can be achieved with fully autonomous properties such as charging batteries,

exploring new environments and reacting to changing conditions. However it is

really hard to build a fully consistent system.

One of the biggest challenges in robotics is planning such as motion, task and

etc. Robots have many internal parameters to manage such as joint torques or

forces and the motion of the robot, and at the same time, reaction to changing en-

vironment is another challenging problem. There are many different approaches

to planning for which we will now give some instances. Linear Temporal Logic

(LTL) is used in [25] for artificial intelligence planning. Also in [12], motion plan-

ning using temporal logic for a mobile robot is presented. An automatic parking

1

CHAPTER 1. INTRODUCTION 2

system is also presented in [5] which shows that robot can automatically execute

high level commands in changing environments. Other planning techniques re-

duce planning problem into a constraint satisfaction problem [7], and find plans

by applying model checking techniques [33].

Logic based languages have always been attractive formalisms in which plan-

ning problems can be elegantly represented. However, their adoption in this

context has been limited due to a number of important drawbacks. One ma-

jor problem is that the computational complexity of reasoning systems based on

theorem proving dramatically increases with their expressivity. While logic pro-

gramming systems based on less expressive fragments such as Prolog, Lolli [18]

etc. offer tractable alternatives, the range of planning problems that they can

effectively encode are also limited.

An orthogonal but related issue is the compatibility of the logical formalism

of choice with the problem domain of interest. In general, the concept of planning

has an inherently dynamic nature, where relevant properties of an environment

change as a result of actions taken by active agents. This domain also has a pro-

grammatic flavor since plans have a natural correspondence to possibly reactive

program fragments. Along with various researchers in the field, we also believe

that one of the best logical formalisms that can simultaneously address both of

these issues is intuitionistic first-order linear logic. The choice of an intuitionistic

formulation over a classical one is motivated by our desire to transform proofs in

our system into executable behavioral plans. This would not be possible within

classical logic, where the abstract nature of truth cannot always be associated

with procedural proofs. Linearity is incorporated to deal with dynamic state el-

ements for which a static notion of truth leads to very inefficient and practically

infeasible encodings. Finally, a first-order language is necessary both to admit

concise description of various robotic planning problems within the logic as well

as supporting eventual integration with continuous constraints to model physical

properties of systems being modeled.

CHAPTER 1. INTRODUCTION 3

1.2 Contributions

In this thesis, our main contribution is the specification and implementation an

efficient backward sequent calculus for intuitionistic first-order linear logic with

focusing and resource management (FRM). Our primary motivation is the use

of intuitionistic linear logic for nontrivial robotic planning problems. We prefer

the backward sequent calculus to the potentially more efficient forward search

(i.e. the inverse method [4]) since the latter is significantly more difficult to

implement. Moreover, we also prove that FRM system is sound and complete,

for which details can be found in Appendix C. Our second major contribution

is the integration of continuous constraints into the proof theory FRM. We call

the resulting new system CFRM. Third, we incorporate annotated proof terms

into CFRM system in order to support recording and extraction of plans cor-

responding to the constructed proofs. Finally, we implement this proof theory

in SWI-Prolog and define a few small robotic planning domains to illustrate the

utility of our contributions and the implementation.

1.3 Organization of the Thesis

In Chapter 2, we give some background on linear logic in general, followed by

focused intuitionistic first-order linear logic (FocLL) [31] as well as some recent

work on planning with logical languages. In Chapter 3, we introduce a novel auto-

mated theorem prover system, FRM, based on [3]. To eliminate non-determinism

caused by disjunction and resource consumption, we incorporate focusing and

resource management into this new system. The reader can also find the proof

of soundness and completeness of the new system at the end of Chapter 3. In

Chapter 4, we describe Constrained Intuitionistic Linear Logic (CILL) and give

several examples. We also describe CFRM, a new theorem prover system with

constraints incorporated. To be able to extract plans from CFRM proofs, we

describe proof terms. Implementation details and experiment results are given in

Chapter 5. The last chapter concludes the thesis and discusses future work.

Chapter 2

Background

2.1 Planning for Robotics

In this section, we give some background on planning and some examples related

to planning in robotics. A planner is a special-purpose algorithm to search for a

solution [37]. Many planners use the “classical” approach which describes states

and operators in a restricted language, such as the STRIPS (STanford Research

Institute Problem Solver) language [9].

As in the [37], we categorize planning as being done either in the space of

situations or in the space of plans. Situation space planners search through the

space of possible situations. We will describe two kinds of situation space planners

and two kinds of plan space planners. The first situation space planner is the

situation calculus and the second one is the fluent calculus which is an extension

of the situation calculus. The first plan space planner is the partial order planning

and the second one is the total order planning.

4

CHAPTER 2. BACKGROUND 5

2.1.1 Situation Calculus

Situation calculus was first introduced by John McCarthy in 1963 [26, 30, 28]. It

was designed to represent and reason about dynamical domains. The situation

calculus has the three main elements: Actions, situations and fluents.

• Actions change the world which we define at the beginning. POSS is a

special predicate which is used to indicate that an action is executable.

The constant and function symbols for actions are completely dependent

on the application.

• Situations are finite sequences of actions. A situation is not a state, it is

a history of action occurrences. The initial situation before any action has

been performed is shown by s0. The new situation that results from the per-

forming action a in situation s is denoted by do(a,s). For instance, in the ex-

ample of a robot world, if the robot’s first action is move(right), the resulting

situation would be do(move(right), s0). If the next action were open(Door),

the resulting situation would then be do(open(Door), do(move(right), s0)).

• Fluents are predicates and functions whose values may vary from situation

to situation. Fluents can be seen as properties of the world. If we use the

same robot example above, we define a fluent isOpen(o,s) which indicates

that the robot has opened an object o in a particular situation. If the robot

has opened the door after one step from the initial situation, we can observe

that isOpen(Door,do(open(Door),s0)) is true.

GOLOG [23, 35] is an example logic programming system that has been de-

veloped based on the situation calculus. A disadvantage of the situation calculus

for robotic planning is that the knowledge of the current state is represented in-

directly via initial conditions and actions which the agent has performed up to

now. As a consequence, each time a condition is evaluated in an agent program,

the entire history of actions is involved in the computation.

CHAPTER 2. BACKGROUND 6

2.1.2 Fluent Calculus

The fluent calculus is a variant of the situation calculus. It solves the frame prob-

lem [6], which exists in the situation calculus. The main difference between the

situation calculus and the fluent calculus is that in the fluent calculus, situations

are considered to be representations of states while in the situation calculus, situ-

ations are histories of actions instead of states. A symbol o is used to concatenate

terms that represent facts which are in a situation. Situations which are changed

after the execution of an action are removed and the rest stays the same. We

now give an example on fluent calculus consisting of putting a box from the table

to the shell. This example can be formalized as

State(Do(put(box,table,shell),s)) ◦ on(box,table) = State(s) ◦ on(box,shell) .

This formula states that after the action put, on(box,shell) term is added and

on(box,table) term is removed.

Flux is an example fluent calculus implementation, yielding a programming

method for the design of agents that reason logically about their actions and

sensor information in the presence of incomplete knowledge [40, 39].

2.1.3 Partial Order Planning

Plans can be represented as partial orders, in which some steps are ordered with

respect to others, but other steps are left unordered. The planner starts with an

initial plan representing the start and end steps. Afterwards, in each iteration,

the planner adds one more step. If one branch of the search space leads to an

inconsistent plan, the planner backtracks and tries another branch.

2.1.4 Total Order Planning

An alternative to partial order planning is total order planning. In this approach,

plans consist of a simple list of steps. In total order planning, every step is

CHAPTER 2. BACKGROUND 7

ordered with respect to every other step. As a conclusion, all possible steps are

specified at the beginning of the plan. Since there are no unordered steps, neither

non-determinism nor backtracking exists in a plan.

2.2 Logic

In mathematics, we use logic in a theoretical manner. However, in computer

science, we are interested in using logic in practice. That is why there are many

kinds of logic in philosophy and computer science, while in mathematics, classical

first-order logic is usually sufficient to formalize correct principles of mathemat-

ical reasoning. Another important difference between traditional mathematics

and computer science is that; ”truth” exists abstractly in mathematics, indepen-

dently of anyone knowing the truth or the falsehood of a proposition, while in the

computer science, proofs show how to construct objects. For example, ∃.A(x) is

true if we can construct an object t such that A(t) is true. Also A ⊃ B is true if

we can construct a proof of B from a proof of A.

Since we consider intuitionistic logic (also called constructive logic) in this the-

sis, we need to mention some differences between classical logic and intuitionistic

logic. In classical logic, the principle of excluded middle (A∨¬A) is considered to

be true, while in intuitionistic logic, it is rejected. Also, intuitionistic logic rejects

proof by contradiction because we need to verify the proposition itself rather than

just falsifying its negation. Similar to this, the double negation of a proposition

is not equal to itself (¬¬A 6= A) in intuitionistic logic.

2.2.1 Propositional Logic

In propositional logic,we study the behavior of propositional connectives, such as

’and’ and ’or’ [10, 20]. It is assumed that there is a family of sentences that can

be thought of as expressing primitive propositions. For instance, the English sen-

tence “Milk is white” expresses the proposition that milk is white. We represent

CHAPTER 2. BACKGROUND 8

each such primitive proposition by a single letter like P,Q, One of the most

important things is that each proposition is either true or false, but can not be

both.

A formula in propositional logic is a sentence built up from propositional

letters and propositional connectives. Propositional connectives can be constants

(0-place) like ’T’ and ’⊥’, for true and false, unary like ’¬’ for negation, binary

(2-place), ternary (3-place) like “if-then-else”, and so on. The most commonly

used connectives are ∨ for or, ∧ for and, and ⊃ for implication. If we use these

connectives, we can form an example proposition like

p ∧ q ⊃ ¬r ∨ q ,

which means that “if p and q then not r or q”. For the sake of clarity, it is more

appropriate to write the above formula like

(p ∧ q) ⊃ ((¬r) ∨ q) .

2.2.2 Natural Deduction

There are some theorem proving mechanisms such as tableaux, resolution, Hilbert

system [14], sequent calculus, natural deduction, etc. In this section, we will

briefly describe Natural Deduction. Natural deduction attempts to provide a

deductive system which is a formal model of logical reasoning as it naturally

occurs. Natural deduction’s modern form was independently proposed by the

German mathematician Gentzen in 1935 [11].

In natural deduction, we have a collection of proof rules (inference rules),

which allow us to reach a conclusion given a certain collection of premises. Each

logical connective and quantifier is defined by one or more introduction rules,

specifying how to infer a connective. There are also elimination rules which tell

what information can be deduced from the presence of a compound proposition.

CHAPTER 2. BACKGROUND 9

For example, the introduction rule for the conjunction is

A true B true
A ∧B true

∧I ,

asserting that if we have two premises ‘A true’ and ‘B true’, then we can derive

the judgment ‘A ∧ B true’ in the conclusion.

The elimination rules for conjunction are

A ∧B true
A true

∧EL A ∧B true
B true

∧ER .

From conjunction elimination rules, we can derive the judgments ’A true’ and ’B

true’ separately with the elimination of the judgment ’A ∧ B true’.

We continue with the introduction rules of the disjunction as

A true
A ∨B true

∨IL B true
A ∨B true

∨IR ,

meaning that if we know ’A true’, we can conclude ’A ∨ B true’ and also if we

know ’B true’, we can conclude ’A ∨ B true’.

The elimination rule for the disjunction is

A ∨B true

A
...
C

B
...
C

C true
∨E ,

which means that if we have A∨B, and we can prove C from both A or B when

assumed alone, we can conclude that C is true.

The introduction rule for the implication is

CHAPTER 2. BACKGROUND 10

A
...
B

A ⊃ B true
⊃ I .

The introduction rule for implication means that, if we can prove B from the

knowledge of A, then we can say that A ⊃ B is true.

The elimination rule for the implication is

A true A ⊃ B true
B true

⊃ E ,

which means that if we know A is true and also that A ⊃ B is true, we can

conclude that B is also true.

2.2.3 First-Order Logic

Propositional logic deals with the sentence components like not, and, or and if

... then, but the logical aspects of the natural and the artificial languages are

much richer than that [37, 38, 20]. What can we do if we want to use sentence

components like there exists, all, among and only ?

First-order logic (or predicate logic) is an extension of propositional logic

in which formulas may contain variables that can be quantified. Variables are

written with lovercase letters u,v,w,x,y,z.... Two common quantifiers are the

existential ∃ and the universal ∀ quantifiers. For example, if we wanted to express

the statement

“For every x, if x is a student, then there is some y which is an instructor such

that x is younger than y”

in first-order logic, we can formalize the sentence as

∀x(S(x) ⊃ (∃y(I(y) ∧ Y(x,y)))) ,

CHAPTER 2. BACKGROUND 11

where

S(x): x is a student

I(x): x is an instructor

Y(x,y): x is younger than y.

2.2.4 Intuitionistic First-Order Linear Logic

Linear logic was first introduced in [13] by Girard and can be interpreted in the

scope of classical or intuitionistic logic. Our approach to linear logic is in an in-

tuitionistic way. Intuitionistic Linear Logic (ILL) is a refinement of intuitionistic

logic where formulae must be used exactly once (weakening and contraction rules

[13] are removed). ILL is a resource sensitive logic because assumptions can be

consumed during inference. ILL can be used to formalize planning problems in

a way that elegantly solves the frame problem [6]. The resource consumption

property in ILL also provides a more expressive language for planning. For ex-

ample, new state elements can be created or deleted and also non-deterministic

and sensing actions can be expressed in ILL. Each proof in intuitionistic logic

directly corresponds to a program, so it is possible to transform each proof into

an executable plan.

For the motivation of linear logic, the Blocks World [16] can be given as an

example which is often used in artificial intelligence and planning problems. In

this domain, there is a set of blocks on the table and a robot arm can pick up

blocks and place them either on the table or on the another block. The goal is

to have vertically ordered blocks whose order is initially given.

First, we choose the collection of propositions shown in Table 2.1 to encode

the blocks world example.

We can then define an initial state which, for example, specifies that block c

is on block b, block b and block a are on the table and the robot arm is empty.

CHAPTER 2. BACKGROUND 12

empty robot arm is empty
on(x, y) block x is on block y
tb(x) block x is on the table
clear(x) the top of block x is clear
holds(x) robot arm holds block x

Table 2.1: Collection of propositions for the Blocks World

This state can be described as

∆0 = (empty, tb(a), tb(b), clear(a), clear(c) , on(c, b)).

We can also describe the goal state to be achieved as a logical proposition

using the same set of propositions such as on(b,c). But how we can describe the

legal moves to achieve the goal? With an example, we can show some approaches.

Consider this example:

If the robot hand is empty, a block x is clear, and x is on y, then we can pick

up the block, that is, achieve a state where the robot hand holds x and y is clear.

If one tries to use a logical implication as an action to formulate this example,

the formulation would be

∀x.∀y.(empty ∧ clear(x) ∧ on(x,y)) ⊃ (holds(x) ∧ clear(y)) .

However, using this sentence as an hypothesis and putting c for x and b for y,

we can derive contradictory propositions like empty ∧ holds(c). So, using just

logical implication for this formulation is incorrect.

If we try to solve this problem in temporal logic [25, 12] using a notion of time

‘O’, where OA means truth of A at the next time, then we can write

∀x.∀y.(empty ∧ clear(x) ∧ on(x,y)) ⊃ O(holds(x) ∧ clear(y)) .

The contradiction problem can be then solved. However, we need to also

express that everything else stays the same when we pick up a block. This

CHAPTER 2. BACKGROUND 13

suggests us that we do not need a logic of time but a logic of state. Fortunately

linear logic gives a good solution to these kind of problems. We implement blocks

world example in 5.4.2. The general form of a linear hypothetical judgment is

A1 true, ..., An true C true ,

which means that using every assumption exactly once, we can prove C from as-

sumptions A1, ..., An. In this judgment, only linear hypotheses can be used. We

can also introduce a new judgment in order to accommodate ordinary intuition-

istic or classical reasoning. It is called validity, encoding unrestricted hypotheses

in addition to linear resources. Linear assumptions can be seen as consumable

resources and unrestricted assumptions can be seen as non-consumable resources

or rules of the theorem that we can use unlimited times.

Together with unrestricted resources and linear resources, we can write a new

judgment as

(v1 : B1 valid, ..., vm : Bm valid); (u1 : A1 true, ..., un : Antrue) ` C true .

We separate the two different types of assumptions by a semicolon “;”. Further-

more, we abbreviate unrestricted assumptions by Γ and linear assumptions by ∆.

We show the judgment in a short form as

Γ; ∆ C true.

2.2.4.1 Connectives in Linear Logic

In this section, we will briefly introduce important connectives of linear logic.

• Simultaneous Conjunction (⊗):

A ⊗ B is pronounced as “A and B” or “A tensor B”. If both A and B are

true in the same state, then we can write A ⊗ B. For an example, assume

CHAPTER 2. BACKGROUND 14

that we have 2 Euros and we want to buy a coffee (1 Euro) and a chocolate

(1 Euro). Since we have enough money for both coffee and chocolate, we

can buy both them at the same time. After buying, we can conclude that

coffee⊗ chocolate is true and there is no money left.

• Alternative Conjunction (&):

A&B is pronounced as “A with B” or sometimes called internal choice. If

we can conclude A using some resources ∆ and also we can conclude B with

the same resources ∆, we can write A&B. For instance, we have 1 Euro and

the price of a coffee and a tea is 1 Euro. So we can say that coffee & tea

which means that using 1 Euro, we can buy a coffee or a tea, not both at

the same time.

• Linear Implication (():

A (B is pronounced as “A linearly implies B” or “A lolli B”. If we can

achieve B from A, then we can write A (B. We must note that A must

be used exactly once to properly implement linearity.

• Disjunction (⊕):

A⊕B is also called external choice. Our resources can make either A or B

true, then we can write A⊕B.

• Unit (1):

The goal 1 can always be produced without using any resources. This is

the identity for simultaneous conjunction with 1⊗ A = A.

• Top (T):

The goal T can always be achieved regardless of any available resources.

It always consumes all of the resources. T is the identity for alternative

conjunction, with T&A = A.

• Impossibility (0):

If have some resources and they conclude to 0, then we can conclude any-

thing from that resources and with other resources. However, we have

0⊕ A = A.

CHAPTER 2. BACKGROUND 15

• “Of Course” Modality (!):

The unary operator ! connects unrestricted hypotheses and linear hypothe-

ses. For example, if we have unlimited resource of coffee, we can represent

this expression as !coffee.

The usage of these connectives can be shown with a mobile robot example.

Robot is At(0) point and it’s initial power is full (P(100) ⊗ At(0)) (

Moves 100mt. forward At(100)

Moves 100mt. backward & At(-100)

Moves forward 50mt. and Launches Missile & (At(50) ⊗ LM)

With additional 50 Power Launches Missile & ((P(50) (LM)
or the robot Charges itself with the solar energy ⊕ (S (C))

if the weather is sunny

Table 2.2: A Mobile Robot and Linear Logic Encoding

The example on Table 2.2 tells us that with the full power, what the mobile

robot can do. In this example, the robot can choose only one of the actions to

do. We also observe that, with additional 50 power, the robot can launch missile.

Or, the robot can charge itself if the weather is sunny.

2.2.4.2 Sequent Calculus for Linear Logic

Natural deduction is not well-suited for proof search, because it involves mixing

forward and backward reasoning even if we restrict ourselves to searching for

normal deductions. Flow of information in the elimination rules is downwards and

flow of information in the introduction rules is upwards. We need a deterministic

mechanism to find derivations for a given proposition. In this section, we describe

a sequent calculus as a calculus of proof search for normal natural deductions [31].

CHAPTER 2. BACKGROUND 16

Sequent calculus flips elimination rules in natural deduction to be used in an

upside-down manner. With this modification, proof search proceeds only bottom-

up [32]. This modification turns the introduction rules into right rules and the

elimination rules into left rules. In sequent calculus, we denote a judgment by

A1, ..., An =⇒ A,

where propositions A1 to An, at the left side of the arrow, are assumptions and A,

at the right side of the arrow, is called the goal. In Appendix A, we give sequent

rules for intuitionistic first-order linear logic on figures A.1, A.2, A.3, A.4 and

A.5.

2.3 Constraint Logic Programming

Constraint logic programming was first introduced in 1987 [22]. Constraint logic

programming is an extension of constraint programming, in which logic program-

ming is extended to include concepts from constraint satisfaction methods [27, 21].

A constraint logic program may contain constraints in the body of clauses. The

following is an example of a constraint inside a clause.

A(X, Y) :- X + Y > 0, B(X), C(Y) ,

where X+Y > 0 is a constraint, A(X,Y), B(X), and C(Y) are literals as in regular

logic programming. This clause tells us that A(X,Y) holds if X+Y is greater than

zero and both B(X) and C(Y) are true.

A proof for a goal is composed of clauses and literals. Clause bodies are

formed with satisfiable constraints and literals can in turn be proved using other

clauses. Execution starts from the goal and recursively scans clauses, trying to

prove the goal. Constraints encountered during this scan are placed in a set called

constraint store. If this set is found to be unsatisfiable, the interpreter backtracks

and tries to use other clauses for proving the goal.

CHAPTER 2. BACKGROUND 17

Semantics of constraint logic programs can be defined as a pair < G,S >

for an interpreter. The first element of the pair, G, is the current goal, and the

second element, S, is the constraint store. The current goal contains literals that

the interpreter is trying to prove and may contain some constraints to satisfy

that it is trying. The constraint store contains all constraints that the interpreter

thinks are satisfiable.

At first, G contains the current goal and S is empty. The interpreter removes

the first element from the current goal and begins to analyze it. The result of this

analysis is either a failure or a successful termination. During the analysis, some

new literals may be added to the current goal or some constraints may be added

to the constraint store. The addition of the constraints to the constraint store

may cause constraints in the constraint store to become unsatisfiable. If there is

a condition such as the unsatisfiability of constraints, the interpreter backtracks

to a position where the constraints can be satisfied. The main goal is achieved

if the current goal is empty and all the constraints in the constraint store are

satisfiable.

2.4 Proof Search In Linear Logic

Proof search can be simply described as finding a proof for a given theorem. Find-

ing proofs is more challenging than merely proving theorems, since proofs contain

more information than the theorems they prove. Proof search in linear logic can

have a variety of applications depending on the problem. Thus, searching proofs

in such an expressive logic is difficult. For instance, if we search for a proof in the

domain of planning problems, that means we search for a plan. Or, if we search

for a proof in the domain of functional programming and type theory, that means

we search for a program satisfying a given specification.

In proof search, we may need different requirements for each application. How-

ever there are some basic techniques that are applicable to almost all applications.

We point out some of such basic techniques in this section.

CHAPTER 2. BACKGROUND 18

2.4.1 Bottom-up Proof Search

As in [31, 4], we define buttom-up proof search as starting with a given goal

sequent and using inference rules of the logical system in the backward direction

in order to refine goals until we are left with axiomatic or initial sequents. At any

time in bottom-up search, after applying some inference rules, we have a partial

derivation with undecided judgments. The goal is to derive all remaining judg-

ments to complete a proof. We proceed by selecting a judgment which remains

to be derived and an inference rule with which it might be inferred from. We

may also need to determine exactly how the conclusion of the rule matches the

judgment.

2.4.2 Unification

Unification in logic programming is the problem of binding the contents of vari-

ables, atoms or terms. Herbrand first introduced unification [17]. Afterwards,

in [36], Alan Robinson introduced a more detailed formulation of unification for

automated deduction.

When proving a proposition of the form ∃x.A by its right rule in sequent

calculus, we must supply a term t and then prove [t/x]A. When the domain

includes infinitely many terms, we can not try all possible terms. However, we

can postpone the choice of t and substitute a new variable X, an existential

variable, for x in A. Finding an instantiation for existential variables under

which two propositions or terms match is called unification. It’s purpose is to

eliminate existential non-determinism.

Unfortunately, unification with parameters is not so easy to handle. For in-

stance, ∀x.∃y.y = x is valid, while ∃y.∀x.y = x is not [32]. We show each steps

CHAPTER 2. BACKGROUND 19

of the latter:

∃y.∀x.y = x

∀x.Y = x (∃I)

Y = a (∀I)

#

In this derivation, we postpone choosing the instantiation for y by supplying an

existential variable in the rule ∃I. Afterwards, we put a parameter a for x. The

parameter a is a fresh variable and can not exist before. At the last step, we

check if Y may or may not be instantiated with a parameter a. For this control,

we use Skolemization which is described in 5.2. In this example, we can say that

the existential variable Y is created before the parameter a. Therefore, Y can not

be instantiated with the parameter a.

2.5 Focused Intuitionistic First-Order Linear

Logic (FocLL)

Existing efficient implementations of linear logic, such as the Lolli language [18],

often restrict their language to Linear Hereditary Harrop Formulas (LHHF) to

simplify proof search and ensure determinism in the proof search to support logic

programming. These languages correspond to those that are freely generated by

the grammar

A := p | A (A | A& A | T | A ⊃ A | ∀x.A,

as well as positive occurrences of other linear connectives [31]. Unfortunately, un-

supported negative occurrences of missing connectives may potentially be useful

to capture nondeterministic state components the for robotic planning problems

and we would like to have a logical system that allows us to experiment with

the full language. We would like to use a grammar that does not impose such a

restriction and incorporates all linear connectives. We will address the question

of whether such an expressive grammar is needed for realistic problems later in

this thesis, where we describe specific planning problems. In the meantime, the

CHAPTER 2. BACKGROUND 20

language we consider in this section and subsequently for our proof system is

given by

A := P | A (A | A& A | T | A ⊃ A | A ⊗ A | 1 | A ⊕ A | 0 | !A | ∀x.A | ∃x.A ,

where P ranges over atomic formulas having the form p(t1, ..., tn), defined accord-

ing to the specifics of a particular domain.

Efficient methods for theorem proving rely on a classification of connectives

based on the invertibility of associated left and right sequent calculus rules [31].

We adopt a similar classification for our language and the associated proof theory

in order to guide proof search through proper focusing choices:

• Atomic : P

• Right Asynchronous : A1 (A2, A1 & A2, T, A1 ⊃ A2, ∀ x.A

• Left Asynchronous : A1 ⊗ A2, 1, A1 ⊕ A2, 0, !A, ∃ x.A

• Right Synchronous : A1 ⊗ A2, 1, A1 ⊕ A2, 0, !A, ∃ x.A

• Left Synchronous : A1 (A2, A1 & A2, T, A1 ⊃ A2, ∀ x.A ,

where the terms asynchronous and synchronous denote whether associated rules

are invertible or not, respectively.

In this context, the nondeterminism associated with synchronous occurrences

of certain connectives presents serious problems for logic programming systems

where operational semantics must be unambiguously defined. Even though this

nondeterminism does not present a fundamental problem for our domain (where

the presence of multiple different proofs for a single sequent simply corresponds

to alternative solutions for a planning problem), it does impact the efficiency of

the resulting system. Consequently, we also seek to eliminate as much nonde-

terminism as possible from the proof theory while preserving completeness with

respect to the semantics of the original intuitionistic linear logic. Similar to the

methods described in [31], we classify nondeterminism in five different categories:

CHAPTER 2. BACKGROUND 21

• Conjunctive choices: The order in which subgoals of a rule are attempted

is usually left unspecified by the proof theory. This is a form of don’t care

nondeterminism.

• Disjunctive choices: When multiple disjunctive alternatives are available,

the order in which they are attempted is not important in the absence of

side-effects. This is a form of don’t-know non-determinism and necessitates

back-tracking.

• Resource choices: For multiplicative connectives, different ways in which

available resources can be divided among parallel goals is another significant

source of don’t know nondeterminism. Proper resource management and

delaying of associated decisions can solve this kind of determinism.

• Universal choices: The choice of fresh parameters within ∀R and ∃L rules

leads to another form of don’t-care non-determinism.

• Existential choices: The need for choosing specific terms to replace the

quantified variable within the ∃R and ∀L rules leads to another source of

don’t-know non-determinism. This is usually addressed by unification and

its variants that delay such decisions until sufficient information is available.

2.5.1 Focusing

Focusing in linear logic was first introduced by Andreoli [24]. In this section, we

describe the intuitionistic formulation presented in [31], which we call FocLL1,

on which our proof theory will be based. Focusing is used to eliminate non-

determinism which occurs as a result of disjunctive choices in proof search while

maintaining the soundness and completeness of the proof theory. Focusing has

two main phases, inversion and focusing, alternating through decision rules.

1FocLL stands for Focused Intuitionistic First-Order Linear Logic.

CHAPTER 2. BACKGROUND 22

2.5.1.1 The Inversion Phase

In focusing systems, right and left invertible connectives are eagerly decomposed

during the inversion phase of the proof search. Normally, the order in which

invertible rules is applied does not effect soundness or completeness of the proof

system. However, an ordered context Ω is used to eliminate the associated don’t-

care nondeterminism. Judgments for right invertible and left invertible rules are

defined as

Γ; ∆; Ω =⇒ A ⇑ ,

Γ; ∆; Ω ⇑ =⇒ C ,

where we have,

Γ : Unrestricted hypotheses (which may be arbitrary),

∆ : Linear hypotheses (not left asynchronous),

Ω : Ordered hypotheses (which may be arbitrary),

A : The goal (which may be arbitrary),

C : The goal (not right asynchronous).

• Right Inversion Phase

This phase is the entry point of the proof search, and is defined by the inference

rules listed in Appendix B.1.

Note that the inversion phase proceeds until there are no right invertible rules

left, foc-⇑R rule is used to proceed with left invertible connectives.

• Left Inversion Phase

Once all right asynchronous connectives are eliminated, we proceed with the

elimination of left asynchronous connectives in Ω. Recall that by construction, ∆

CHAPTER 2. BACKGROUND 23

is not permitted to contain any left asynchronous connectives, so the consideration

of Ω is sufficient for this phase. All left-invertible rules are listed in Appendix

B.2.

When we encounter a proposition in Ω which is not left asynchronous, we use

the ⇑ L rule and move it into ∆ for later consideration during focusing. The

inversion phase is concluded when no propositions are left in Ω. We then proceed

with the decision phase.

2.5.1.2 Decision

When the decomposition of all left and right asynchronous connectives is com-

pleted, the goal is no longer asynchronous and the input context contains no

left asynchronous propositions. At this point, we need to make a decision and

choose a proposition to focus on. The rules associated with this phase are given

in Appendix B.3. Two judgments for focusing on right and left are defined as

Γ; ∆; · =⇒ C ⇓ ,

Γ; ∆; A ⇓ =⇒ C ,

where we have,

Γ : Unrestricted hypotheses (which may be arbitrary),

∆ : Linear hypotheses (not left asynchronous),

A : The focus proposition (which may be arbitrary),

C : The succedent (not right asynchronous).

2.5.1.3 The Focusing Phase

Once a decision is made, proof search proceeds by focusing on a specific non-

invertible proposition and decomposing it until either an invertible connective or

CHAPTER 2. BACKGROUND 24

an atomic proposition is reached. In the former case, proof search goes back to

the inversion case, whereas the latter case terminates with the application of the

init rule.

• Right Focusing

Appendix B.4 details inference rules related to right synchronous connectives.

The right focusing terminates when we encounter a right asynchronous connec-

tive. In that case, proof search shifts back to the inversion phase and continues

to decompose the right side of the sequent. Note that the R rule is applied when

A is atomic as well, going directly to another decision phase to proceed with left

focusing or the decomposition of an unrestricted resource.

• Left Focusing

Left focusing rules are listed in Appendix B.5. The init rule, as usual, is where

unification will be done and resources that are left unused are shifted to the

output context. Note also that if the focused proposition becomes asynchronous,

we immediately switch back to the inversion phase and decompose the same

proposition further.

In this chapter, we first gave some background for planning in robotics. We

categorized planning as being done either in the space of situations or in the space

of plans. Situation space planners are situation calculus and fluent calculus, plan

space planners are partial order planning and total order planning. Afterwards,

we gave background on types of logic such as propositional logic, first-order logic

and intuitionistic first-order linear logic. We continued with describing constraint

logic programming and proof search in linear logic. At the last section, we de-

scribed Focused Intuitionistic First-Order Linear Logic (FocLL) presented in [31].

In subsequent chapters, we will use elements from this background to describe

our contributions to build a theorem prover for robotic planning problems.

Chapter 3

Resource Management System

For FOCLL (FRM)

First of all, we must note that our contributions begin with this chapter. In

proof systems for linear logic, the need for resource management arises from non-

deterministic decisions necessary to split resources in the backward application of

the rules foc-⊗R and foc-(L. Since no further information is available in this

formulation, all possible alternatives (2n in the worst case) must be exhaustively

searched. Fortunately, this problem can be solved using the IO model introduced

in [19], where subgoal judgments only partially consume resources in their input

∆I , returning unused resources as their output ∆O.

We can eliminate a significant amount of non-determinism in splitting re-

sources among parallel goals using the method in [19]. However, an additional

problem remains in that, the presence of the logical constant T on the right hand

side of a sequent allows the consumption of an arbitrary number of input re-

sources. This problem can be solved by introducing an additional flag into the

sequent, recording the presence of such a flexible resource sink to be considered

by later stages of the search. This idea was introduced and developed in the

context of linear logic programming in [3].

We introduce in this chapter, a new proof system for the full linear logic with

25

CHAPTER 3. RESOURCE MANAGEMENT SYSTEM FOR FOCLL (FRM)26

resource management and focusing, which we call Full Resource Management

System (FRM). Our system is different from the IO model introduced in [19]

since they restrict their language to Linear Hereditary Harrop Formulas (LHHF)

to simplify proof search but our grammar incorporates all linear connectives.

3.1 Focusing

We use the same categorization of rules for the FRM system as we did for the

FocLL system in Section 2.5.1. All rules are categorized according whether they

are invertible or non-invertible. Sequent calculus rules for the FRM system are

given in Figures 3.1, 3.2, 3.3, 3.4 and 3.5, corresponding to the right inversion,

left inversion, decision, right focusing and left focusing phases of the proof search,

respectively.

3.1.1 The Inversion Phase

We define judgments for right and left invertible rules as

Γ; ∆I \∆O; Ω =⇒v A ⇑ ,

Γ; ∆I \∆O; Ω ⇑ =⇒v C ,

where

Γ : Unrestricted hypotheses (which may be arbitrary),

∆I : Input resources that may be consumed (not left asynchronous),

∆O : Output resources that are not consumed (arbitrary),

Ω : Ordered hypotheses (arbitrary),

A : The goal (arbitrary),

C : The goal (not right asynchronous),

v : Flag to encode freedom in resource consumption (0 or 1).

CHAPTER 3. RESOURCE MANAGEMENT SYSTEM FOR FOCLL (FRM)27

If any resources are in Ω, we have to use that resource to achieve the goal.

In the (Rv rule, A must be used to achieve B since A is put into the ordered

hypotheses context. This property is presented in the subcontext property which

we will give details in the later section.

• Right Inversion Phase

Rules associated with this phase are given in Figure 3.1. In the FRM system,

four variants are introduced for the &R rule to handle possible combinations of

resource flags. Lack of flexibility in the resource consumption for at least one of

the subgoals (v = 0) requires the exact presence of the associated output in the

conclusion sequent as well. Only when both subgoals are flexible in the resource

consumption can the output freely discard mismatches in the outputs.

• Left Inversion Phase

Inference rules for the left invertible rules are listed in Figure 3.2. The ⊕L rules

have four variants much like the &R rules. It is important to note that, in the

left transition rule ⇑ L, if A is not used and it is transmitted into the output

context, the T-flag is set to 1 (v = 1). We claim that all resources in Ω are going

to be used. However, if the T-flag is set to 1, that means there is a possibility

of transmission A into the output contex. Thus, we need the rule ⇑ L1A. In

contrast, if the T-flag is set to 0, we have to use all resources in Ω.

3.1.2 Decision

Decision rules in FRM are listed in Figure 3.3. Propositions in Γ are not guar-

anteed to be left synchronous in the rule decideL!. Therefore, it would not be

possible to directly start focusing on them. To alleviate this problem, we first

invoke the inversion stage on the selected proposition, the result of which will be

presented to yet another invocation of the decision phase.

CHAPTER 3. RESOURCE MANAGEMENT SYSTEM FOR FOCLL (FRM)28

Γ; ∆I \∆O; Ω, A =⇒v B ⇑
Γ; ∆I \∆O; Ω =⇒v A(B ⇑ (Rv

Γ; ∆I \∆O; Ω =⇒0 A ⇑ Γ; ∆I \∆O; Ω =⇒0 B ⇑
Γ; ∆I \∆O; Ω =⇒0 A&B ⇑ &R00

Γ; ∆I \∆O; Ω =⇒0 A ⇑ Γ; ∆I \∆O, ∆2; Ω =⇒1 B ⇑
Γ; ∆I \∆O; Ω =⇒0 A&B ⇑ &R01

Γ; ∆I \∆O, ∆1; Ω =⇒1 A ⇑ Γ; ∆I \∆O; Ω =⇒0 B ⇑
Γ; ∆I \∆O; Ω =⇒0 A&B ⇑ &R10

Γ; ∆I \∆O1 ; Ω =⇒1 A ⇑ Γ; ∆I \∆O2 ; Ω =⇒1 B ⇑
Γ; ∆I \∆O1 ∩∆O2 ; Ω =⇒1 A&B ⇑ &R11

Γ,A; ∆I \∆O; Ω =⇒v B ⇑
Γ; ∆I \∆O; Ω =⇒v A ⊃ B ⇑ ⊃ R

Γ; ∆I \∆O; Ω =⇒v [a/x]A ⇑
Γ; ∆I \∆O; Ω =⇒v ∀x.A ⇑ ∀R

Γ; ∆I \∆I ; Ω =⇒1 T ⇑ TR

Γ; ∆I \∆O; Ω ⇑ =⇒v C, C not right asynchronous

Γ; ∆I \∆O; Ω =⇒v C ⇑ ⇑ R

Figure 3.1: FRM, Right invertible rules

CHAPTER 3. RESOURCE MANAGEMENT SYSTEM FOR FOCLL (FRM)29

Γ; ∆I \∆O; Ω, A,B ⇑ =⇒v C

Γ; ∆I \∆O; Ω, A⊗B ⇑ =⇒v C ⊗L

Γ; ∆I \∆O; Ω, A ⇑ =⇒0 C Γ; ∆I \∆O, ∆2; Ω, B ⇑ =⇒1 C

Γ; ∆I \∆O; Ω, A⊕B ⇑ =⇒0 C ⊕L01

Γ; ∆I \∆O, ∆1; Ω, A ⇑ =⇒1 C Γ; ∆I \∆O; Ω, B ⇑ =⇒0 C

Γ; ∆I \∆O; Ω, A⊕B ⇑ =⇒0 C ⊕L10

Γ; ∆I \∆O; Ω, A ⇑ =⇒0 C Γ; ∆I \∆O; Ω, B ⇑ =⇒0 C
Γ; ∆I \∆O; Ω, A⊕B ⇑ =⇒0 C ⊕L00

Γ; ∆I \∆O1 ; Ω, A ⇑ =⇒1 C Γ; ∆I \∆O2 ; Ω, B ⇑ =⇒1 C
Γ; ∆I \∆O1 ∩∆O2; Ω, A⊕B ⇑ =⇒1 C ⊕L11

Γ,A; ∆I \∆O; Ω ⇑ =⇒v C

Γ; ∆I \∆O; Ω, !A ⇑ =⇒v C !L

Γ; ∆I \∆O; Ω, [a/x]A ⇑ =⇒v C

Γ; ∆I \∆O; Ω,∃x.A ⇑ =⇒v C ∃L

Γ; ∆I \ ·; Ω,0 ⇑ =⇒0 C 0L
Γ; ∆I \∆O; Ω ⇑ =⇒v C

Γ; ∆I \∆O; Ω,1 ⇑ =⇒v C 1L

Γ; ∆I , A \∆O, A; Ω ⇑ =⇒1 C, A not left asynchronous

Γ; ∆I \∆O; Ω, A ⇑ =⇒1 C ⇑ L1A

Γ; ∆I , A \∆O; Ω ⇑ =⇒v C, A not left asynchronous

Γ; ∆I \∆O; Ω, A ⇑ =⇒v C ⇑ Lv

Figure 3.2: FRM, Left invertible rules

CHAPTER 3. RESOURCE MANAGEMENT SYSTEM FOR FOCLL (FRM)30

Γ; ∆I \∆O; · =⇒v C ⇓, C not atomic

Γ; ∆I \∆O; · ⇑ =⇒v C decideR

Γ; ∆I \∆O; A ⇓ =⇒v C

Γ; ∆I , A \∆O; · ⇑ =⇒v C decideL

Γ, A; ∆I \∆O; A ⇓ =⇒v C

Γ, A; ∆I \∆O; · ⇑ =⇒v C decideL!

Figure 3.3: FRM, Decision rules

3.1.3 The Focusing Phase

Note that the possibility of going back to the inversion phase distinguishes this

system from the application of focusing and resource management to the LHHF

language. For this limited language, focusing always either succeeds or fails,

significantly reducing the impact of backtracking and increasing efficiency. Two

judgments for focusing on right and left are defined as

Γ; ∆I \∆O; · =⇒v A ⇓ ,

Γ; ∆I \∆O; A ⇓ =⇒v C ,

where we have,

Γ : Unrestricted hypotheses (which may be arbitrary),

∆I : Input resources that may be consumed (not left asynchronous),

∆O : Output resources that are not consumed (arbitrary),

C : The goal (not right asynchronous),

A : The focus proposition (arbitrary),

v : Flag to encode freedom in resource consumption (0 or 1).

• Right Focusing

CHAPTER 3. RESOURCE MANAGEMENT SYSTEM FOR FOCLL (FRM)31

Γ; ∆I \∆M ; · =⇒v A ⇓ Γ; ∆M \∆O; · =⇒w B ⇓
Γ; ∆I \∆O; · =⇒v∨w A⊗B ⇓ ⊗R

Γ; · \ ·; · =⇒v A ⇑
Γ; ∆I \∆I ; · =⇒0 !A ⇓ !R Γ; ∆I \∆I ; · =⇒0 1 ⇓ 1R

Γ; ∆I \∆O; · =⇒v A ⇓
Γ; ∆I \∆O; · =⇒v A⊕B ⇓ ⊕R1

Γ; ∆I \∆O; · =⇒v B ⇓
Γ; ∆I \∆O; · =⇒v A⊕B ⇓ ⊕R2

Γ; ∆I \∆O; · =⇒v [t/x]A ⇓
Γ; ∆I \∆O; · =⇒v ∃x.A ⇓ ∃R

Γ; ∆I \∆O; · =⇒v A ⇑ not right synchronous
Γ; ∆I \∆O; · =⇒v A ⇓ ⇓ R

Figure 3.4: FRM, Right focusing rules

Inference rules for the focusing rules are listed in Figure 3.4. The ⊗R rule is one

of the rules where resource management is implemented. Resources left unused by

the first subgoal are shifted to the second subgoal. The resource flexibility flags

resulting from both subgoals are combined with a logical or, since simultaneous

conjunction can push unused resources to either one of the subgoals if they happen

to be flexible in their resource consumption.

An important observation is that ∆M , leftover resources from the first sub-

goal will never contain any left asynchronous formulas. This is because Ω starts

out empty for the right focusing phase, making it impossible to shift any such

connectives to the output. This guarantees that the input resources to the second

subgoal are all left synchronous as well.

• Left Focusing

Left focusing rules are presented in Figure 3.5. Similar to the ⊗R rule, the

(L1 rule uses resource management to increase efficiency. Once again, we can

CHAPTER 3. RESOURCE MANAGEMENT SYSTEM FOR FOCLL (FRM)32

Γ; ∆I \∆M ; · =⇒v A ⇓ Γ; ∆M \∆O; B ⇓ =⇒w C

Γ; ∆I \∆O; A(B ⇓ =⇒v∨w C (L

Γ; ∆I \∆O; B ⇓ =⇒v C Γ; · \ ·; · =⇒w A ⇑
Γ; ∆I \∆O; A ⊃ B ⇓ =⇒v C ⊃ L

Γ; ∆I \∆O; A ⇓ =⇒v C

Γ; ∆I \∆O; A&B ⇓ =⇒v C &L1

Γ; ∆I \∆O; B ⇓ =⇒v C

Γ; ∆I \∆O; A&B ⇓ =⇒v C &L2

Γ; ∆I \∆O; [t/x]A ⇓ =⇒v C

Γ; ∆I \∆O; ∀x.A ⇓ =⇒v C ∀L

Γ; ∆I \∆I ; P ⇓ =⇒0 P init

Γ; ∆I \∆O; A ⇑ =⇒v C A not atomic and not left synchronous

Γ; ∆I \∆O; A ⇓ =⇒v C ⇓ L

Figure 3.5: FRM, Left focusing rules

guarantee that neither ∆O, nor ∆I will have any asynchronous connectives since

the first subgoal has an empty Ω.

Key properties can be found in Appendix C.1, soundness can be found in

Appendix C.2 and completeness of the FRM system can be found in Appendix

C.3.

In this chapter, we introduced a new proof system for the full linear logic with

resource management and focusing, which we call Full Resource Management

(FRM). The FRM system solves the problem of consuming an arbitrary number

of input resources in the case of the presence of T on the right hand side of a

sequence, by introducing an additional flag into the sequent. At the end of the

chapter, we proved the soundness and completeness of FRM.

Chapter 4

Adding Constraints

4.1 Adding Constraints Into Intuitionistic Lin-

ear Logic

Robot behaviors generally include nontrivial goals. Almost all robotic planning

problems include dynamical continuous constraints. Modeling of only the discrete

aspects of a problem may not be sufficient to achieve nontrivial goals. We also

have to consider continuous aspects for these kind of goals. Since we would like

to represent and reason about such problems in our logical system, the current

nature of Intuitionistic First-Order Linear Logic is not sufficient to achieve our

goals. To this end, we need to combine dynamical constraints with our FRM

system.

In [41], Constraint Intuitionistic Linear Logic (CILL) is presented, merging

continuous constraint solvers with linear logic. As a result, hybrid properties

of robotic behaviors can be expressed and reasoned with. By using constraint

solvers for particular domains, we can reduce the complexity associated with the

encoding.

In order to formulate CILL using sequent calculus, we need a new context

to collect and solve constraints. It is called the constraint context and denoted

33

CHAPTER 4. ADDING CONSTRAINTS 34

with the symbol ”Ψ”. The new judgment, incorporating the constraint context,

unrestricted hypotheses and linear resources is defined as

Ψ | Γ; ∆ =⇒ A .

The meaning of this judgment is that, if constraints in Ψ are satisfiable, then

using consumable resources ∆ and unrestricted hypotheses Γ, we can achieve the

goal A. In order to combine constraints into Intuitionistic Linear Logic, we need

two new connectives, which we describe below.

Constraint Implication: The first connective is constraint implication

which introduces a constraint precondition to a linear expression. The right

and left rules for constraint implication are given as

(Ψ, D) | Γ; ∆ =⇒ A

Ψ | Γ; ∆ =⇒ D ⊃c A
⊃c R

Ψ |= D Ψ | Γ; ∆, A =⇒ C

Ψ | Γ; ∆, D ⊃c A =⇒ C
⊃c L .

The right rule can be read as follows: If we want to achieve D ⊃c A, then we

need to show that the goal A can be achieved under the constraint D and existing

constraints. The left rule for this connective is very similar to typical left rules

for implication, except that the constraint D has to be handled by another proof

procedure specific to the constraint domain. Ψ |= D means that the combination

of all constraints in the constraint store must entail the constraint D.

Constraint Conjunction: The second connective for the CILL is constraint

conjunction, which asserts the validity of a constraint in conjunction with a linear

logic expression. The following rules are right and left rules for the constraint

conjunction connective.

Ψ |= D Ψ | Γ; ∆ =⇒ A

Ψ | Γ; ∆ =⇒ D ∧c A
∧cR

(Ψ, D) | Γ; (∆, A) =⇒ C

Ψ | Γ; ∆, D ∧c A =⇒ C
∧cL .

CHAPTER 4. ADDING CONSTRAINTS 35

Right rule can be interpreted as follows, if we want to show that D ∧c A is

achievable, then we need to show that both the goal A can be achieved with

given resources and constraint D is valid under given constraints. The left rule

asserts that the constraint D and consumable resource A are extracted from

Ψ | Γ; ∆, D ∧c A =⇒ C and are inserted into their own contexts.

Constraint Contradiction: The third connective is constraint contradic-

tion. It is given as

Ψ |= ⊥
Ψ | Γ; ∆ =⇒ C

⊥ .

This rule asserts that if we have an inconsitent constraint domain, we can

conclude that achieving any arbitrary goal.

Constraint Split: The last connective is constraint splitting and the associ-

ated rules are given as

Ψ |= Ψ1 ∨Ψ2 Ψ1 | Γ; ∆ =⇒ C Ψ2 | Γ; ∆ =⇒ C

Ψ | Γ; ∆ =⇒ C
∨ split ,

Ψ |= ∃x.Ψ1(x) Ψ1(x) | Γ; ∆ =⇒ C

Ψ | Γ; ∆ =⇒ C
∃ split .

These two rules are also needed to handle inconsistency of constraints. We

give more information about the first rule in 4.2.1. The second rule handles

possible existential nondeterminacy in the constraint domain.

4.1.1 An Example: The Balanced Blocks World

The Blocks World domain serves as a simple but rich testbed for planning algo-

rithms and methods. However, its scope has been limited to discrete planning. In

CHAPTER 4. ADDING CONSTRAINTS 36

order to illustrate the application of CILL to robotic planning problems, the Bal-

anced Blocks World (BBW) is introduced in [41]. In the BBW, dynamic balance

and physical alignment properties of planar blocks are also considered in conjunc-

tion with logical properties associated with different stackings. Top half of Table

4.1 defines some predicates which shows the current state of block placements.

These predicates are used as linear resources. On the other hand, the bottom

half of Table 4.1 gives invariant facts about the world such as the colorings and

slot positions. These predicates are used as unrestricted hypotheses.

dynamic state of the system
tableempty(i) There are no blocks on the table
ontable(b, i) Block b is directly on slot i of the table
available(b) Block b is available for placement
on(a, b, x) Block a is on top of Block b at an absolute position x
clear(b, x) Block b is at absolute position x and its top is clear

invariant facts about the world
tcol(b, c) The top of block b has color c
bcol(b, c) The bottom of block b has color c
slotcol(i, c) Slot i on the table has color c
slotisat(i, x) Slot i is located at distance x from table origin

Table 4.1: Resource predicates for the Balanced Blocks World

After the definition of the BBW, we now give an example on the usage of

CILL for planning in the BBW domain. First we give the starting state where

there is a single empty slot on the table and also there are two available blocks a

and b.

∆0 = (tableempty(1), available(a), available(b))

There are two kinds of unrestricted context. First one, Γf , includes logical

formulae to capture invariant facts about the environment.

Γf = (tcol(a, red), bcol(a, blue), tcol(b, blue), bcol(a, grn), slotcol(1, grn), slotisat(1, 0))

CHAPTER 4. ADDING CONSTRAINTS 37

The second unrestricted context includes models of actions that are available

in the domain in the form of linear implications. In table 4.2, Γa is summarized.

putontable : ∀a.∀i.∀c.∀xi.available(a)⊗ tableempty(i)⊗ slotcol(i, c)⊗ bcol(a, c)(
ontable(a, i)⊗ clear(a)

getofftable : ∀a.∀i.ontable(a, i)⊗ clear(a)(available(a)⊗ tableempty(i)
putonblock : ∀a.∀b.∀c.∃xa.available(a)⊗ clear(b)⊗ bcol(a, c)⊗ tcol(b, c)(

on(a, b, xa)⊗ testing(a)⊗ check(b, mass(a), xa)
getoffblock : ∀a.∀b.∃xa.on(a, b, xa)⊗ clear(a)(available(a)⊗ clear(b)

checkiter : ∀a.∀b.∀m.∀xm.∀xa.check(a, m, xm)⊗ on(a, b, xa)(
isin(xm − xa, tleft(a), tright(a)) ⊃c(
check(b, m + mass(a), mxm+mass(a)xa

m+mass(a))⊗ on(a, b, xa)
)

checkend : ∀a.∀b.∀m.∀i.∀xa.∀xm.check(a, m, xm)⊗ ontable(a, i)⊗ slotisat(i, xa)⊗
testing(b)(isin(xm − xa, tleft(a), tright(a)) ⊃c (ontable(a, i)⊗ clear(b))

Table 4.2: CILL representations of BBW actions and supporting rules for checking
balance of newly placed blocks

Now we can specify the goal as the final component for the planning problem.

If our goal is to reach a state where block b is placed either on the table or on

another block, we can express this goal as

G = (∃i.ontable(b, i)⊕ ∃a.∃x.on(b, a, x))⊗ T .

We must point that T is used to specify incomplete goals since consumes all

resources left unused by the rest of the proof. Disjunction connective is used

to indicate that there are two alternative branches and proof construction has

to pick which one of these will be satisfied. Now, we can express the planning

problem as a sequent,

Ψc | (Γf ,Γa); ∆0 =⇒ G

where additional environmental constraints can be specified in Ψc.

CHAPTER 4. ADDING CONSTRAINTS 38

4.2 Adding Constraints Into FRM (CFRM)

In this section, we will incorporate constraint rules of the CILL language into

FRM. We call this new system CFRM with the associated judgments defined as

Ψ | Γ; ∆I \∆O; Ω =⇒v C ⇑ ,
Ψ | Γ; ∆I \∆O; Ω ⇑ =⇒v C ,

Ψ | Γ; ∆I \∆O; · =⇒v C ⇓ ,
Ψ | Γ; ∆I \∆O; A ⇓ =⇒v C ,

In these definitions, we have,

Ψ : The constraint store,

Γ : Unrestricted hypotheses ,

∆I : Input resources that may be consumed ,

∆O : Output resources that are not consumed ,

Ω : Ordered hypotheses ,

C : The goal ,

A : The focused proposition ,

v : Flag to encode freedom in resource consumption (0 or 1) .

In the previous chapter, we have proven that the FRM system is sound and

complete. However, we have not yet proven that CILL system is complete and it

is not trivial to prove.

Inference rules for the right invertible rules are listed in Figure 4.1, left in-

vertible rules are listed in Figure 4.2, decision rules are listed in Figure 4.3, right

focusing rules are listed in Figure 4.4 and left focusing rules are listed in Figure

4.5.

4.2.1 Restrictions with Constraints

Our CFRM rule set does not include two important aspects of constraint han-

dling, case splitting and supporting for interpreted symbols during unification.

CHAPTER 4. ADDING CONSTRAINTS 39

(Ψ, D) | Γ; ∆I \∆O; Ω =⇒v A ⇑
Ψ | Γ; ∆I \∆O; Ω =⇒v D ⊃c A ⇑ cfrm− ⊃c R

Ψ |= D Ψ | Γ; ∆I \∆O; Ω =⇒v A ⇑
Ψ | Γ; ∆I \∆O; Ω =⇒v D ∧c A ⇑ cfrm− ∧cR

Ψ | Γ; ∆I \∆O; Ω, A =⇒0 B ⇑
Ψ | Γ; ∆I \∆O; Ω =⇒0 A(B ⇑ cfrm−(Rv

Ψ | Γ; ∆I \∆O; Ω =⇒0 A ⇑ Ψ | Γ; ∆I \∆O; Ω =⇒0 B ⇑
Ψ | Γ; ∆I \∆O; Ω =⇒0 A&B ⇑ cfrm−&R00

Ψ | Γ; ∆I \∆O; Ω =⇒0 A ⇑ Ψ | Γ; ∆I \∆O, ∆2; Ω =⇒1 B ⇑
Ψ | Γ; ∆I \∆O; Ω =⇒0 A&B ⇑ cfrm−&R01

Ψ | Γ; ∆I \∆O, ∆1; Ω =⇒1 A ⇑ Ψ | Γ; ∆I \∆O; Ω =⇒0 B ⇑
Ψ | Γ; ∆I \∆O; Ω =⇒0 A&B ⇑ cfrm−&R10

Ψ | Γ; ∆I \∆O1; Ω =⇒1 A ⇑ Ψ | Γ; ∆I \∆O2; Ω =⇒1 B ⇑
Ψ | Γ; ∆I \∆O1 ∩∆O2; Ω =⇒1 A&B ⇑ cfrm−&R11

Ψ | Γ,A; ∆I \∆O; Ω =⇒v B ⇑
Ψ | Γ; ∆I \∆O; Ω =⇒v A ⊃ B ⇑ cfrm− ⊃ R

Ψ | Γ; ∆I \∆O; Ω =⇒v [a/x]A ⇑
Ψ | Γ; ∆I \∆O; Ω =⇒v ∀x.A ⇑ cfrm− ∀R

Ψ | Γ; ∆I \∆I ; Ω =⇒1 T ⇑ cfrm− TR

Ψ | Γ; ∆I \∆O; Ω ⇑ =⇒v C, C not right asynchronous

Ψ | Γ; ∆I \∆O; Ω =⇒v C ⇑ cfrm− ⇑ R

Figure 4.1: CFRM, Right invertible rules

CHAPTER 4. ADDING CONSTRAINTS 40

(Ψ, D) | Γ; ∆I \∆O; Ω, A ⇑ =⇒v C
Ψ | Γ; ∆I \∆O; Ω, D ∧c A ⇑ =⇒v C cfrm− ∧cL

Ψ | Γ; ∆I \∆O; Ω, A,B ⇑ =⇒v C

Ψ | Γ; ∆I \∆O; Ω, A⊗B ⇑ =⇒v C cfrm−⊗L

Ψ | Γ; ∆I \∆O; Ω, A ⇑ =⇒0 C Ψ | Γ; ∆I \∆O, ∆2; Ω, B ⇑ =⇒1 C

Ψ | Γ; ∆I \∆O; Ω, A⊕B ⇑ =⇒0 C cfrm−⊕L01

Ψ | Γ; ∆I \∆O, ∆1; Ω, A ⇑ =⇒1 C Ψ | Γ; ∆I \∆O; Ω, B ⇑ =⇒0 C

Ψ | Γ; ∆I \∆O; Ω, A⊕B ⇑ =⇒0 C cfrm−⊕L10

Ψ | Γ; ∆I \∆O; Ω, A ⇑ =⇒0 C Ψ | Γ; ∆I \∆O; Ω, B ⇑ =⇒0 C

Ψ | Γ; ∆I \∆O; Ω, A⊕B ⇑ =⇒0 C cfrm−⊕L00

Ψ | Γ; ∆I \∆O1; Ω, A ⇑ =⇒1 C Ψ | Γ; ∆I \∆O2; Ω, B ⇑ =⇒1 C
Ψ | Γ; ∆I \∆O1 ∩∆O2; Ω, A⊕B ⇑ =⇒1 C cfrm−⊕L11

Ψ | Γ,A; ∆I \∆O; Ω ⇑ =⇒v C
Ψ | Γ; ∆I \∆O; Ω,!A ⇑ =⇒v C cfrm−!L

Ψ | Γ; ∆I \∆O; Ω, [a/x]A ⇑ =⇒v C

Ψ | Γ; ∆I \∆O; Ω,∃x.A ⇑ =⇒v C cfrm− ∃L

Ψ | Γ; ∆I \ ·; Ω,0 ⇑ =⇒0 C cfrm− 0L
Ψ | Γ; ∆I \∆O; Ω ⇑ =⇒v C

Ψ | Γ; ∆I \∆O; Ω,1 ⇑ =⇒v C cfrm− 1L

Ψ | Γ; ∆I , A \∆O, A; Ω ⇑ =⇒1 C, A not left asynchronous

Ψ | Γ; ∆I \∆O; Ω, A ⇑ =⇒1 C cfrm− ⇑ L1A

Ψ | Γ; ∆I , A \∆O; Ω ⇑ =⇒v C, A not left asynchronous

Ψ | Γ; ∆I \∆O; Ω, A ⇑ =⇒v C cfrm− ⇑ Lv

Figure 4.2: CFRM, Left invertible rules

CHAPTER 4. ADDING CONSTRAINTS 41

Ψ | Γ; ∆I \∆O; · =⇒v C ⇓, C not atomic

Ψ | Γ; ∆I \∆O; · ⇑ =⇒v C decideR

Ψ | Γ; ∆I \∆O; A ⇓ =⇒v C

Ψ | Γ; ∆I , A \∆O; · ⇑ =⇒v C decideL

Ψ | Γ, A; ∆I \∆O; A ⇓ =⇒v C

Ψ | Γ, A; ∆I \∆O; · ⇑ =⇒v C decideL!

Figure 4.3: CFRM, Decision rules

Ψ | Γ; ∆I \∆M ; · =⇒v A ⇓ Ψ | Γ; ∆M \∆O; · =⇒w B ⇓
Ψ | Γ; ∆I \∆O; · =⇒v∨w A⊗B ⇓ cfrm−⊗R

Ψ | Γ; · \ ·; · =⇒v A ⇑
Ψ | Γ; ∆I \∆I ; · =⇒0 !A ⇓ cfrm−!R Ψ | Γ; ∆I \∆I ; · =⇒0 1 ⇓ cfrm− 1R

Ψ | Γ; ∆I \∆O; · =⇒v A ⇓
Ψ | Γ; ∆I \∆O; · =⇒v A⊕B ⇓ cfrm−⊕R1

Ψ | Γ; ∆I \∆O; · =⇒v B ⇓
Ψ | Γ; ∆I \∆O; · =⇒v A⊕B ⇓ cfrm−⊕R2

Ψ | Γ; ∆I \∆O; · =⇒v [t/x]A ⇓
Ψ | Γ; ∆I \∆O; · =⇒v ∃x.A ⇓ cfrm− ∃R

Ψ | Γ; ∆I \∆O; · =⇒v A ⇑ not right synchronous
Ψ | Γ; ∆I \∆O; · =⇒v A ⇓ cfrm− ⇓ R

Figure 4.4: CFRM, Right focusing rules

CHAPTER 4. ADDING CONSTRAINTS 42

Ψ |= D Ψ | Γ; ∆I \∆O; Ω, A ⇓ =⇒v C

Ψ | Γ; ∆I \∆O; Ω, D ⊃c A ⇓ =⇒v C cfrm− ⊃c L

Ψ | Γ; ∆I \∆M ; · =⇒v A ⇓ Ψ | Γ; ∆M \∆O; B ⇓ =⇒w C

Ψ | Γ; ∆I \∆O; A(B ⇓ =⇒v∨w C cfrm−(L

Ψ | Γ; ∆I \∆O; B ⇓ =⇒v C Ψ | Γ; · \ ·; · =⇒w A ⇑
Ψ | Γ; ∆I \∆O; A ⊃ B ⇓ =⇒v C cfrm− ⊃ L

Ψ | Γ; ∆I \∆O; A ⇓ =⇒v C

Ψ | Γ; ∆I \∆O; A&B ⇓ =⇒v C cfrm−&L1

Ψ | Γ; ∆I \∆O; B ⇓ =⇒v C

Ψ | Γ; ∆I \∆O; A&B ⇓ =⇒v C &L2

Ψ | Γ; ∆I \∆O; [t/x]A ⇓ =⇒v C

Ψ | Γ; ∆I \∆O; ∀x.A ⇓ =⇒v C cfrm− ∀L

Ψ | Γ; ∆I \∆I ; P ⇓ =⇒0 P cfrm− init

Ψ | Γ; ∆I \∆O; A ⇑ =⇒v C A not atomic and not left synchronous

Ψ | Γ; ∆I \∆O; A ⇓ =⇒v C cfrm− ⇓ L

Figure 4.5: CFRM, Left focusing rules

CHAPTER 4. ADDING CONSTRAINTS 43

In our case, we avoid these issues by restricting our domains to have only convex1

constraints and no interpreted functions during unification. Below, we examine

in depth these cases and propose solutions on how to handle them.

• Case Splitting

Numerical constraint satisfaction problems (NCSP) are defined as a set of con-

straints on variables. In NCSP, constraints are considered in conjunction and a

solution is an assignment of values to the variables such that all the constraints

are satisfied. For some problem domains, we may use constraints in disjunc-

tion form, which we call disjunctive numerical constraint satisfaction problems

(DNCSPs).

As an example for DNCSPs, we define three constraints over the variable x:

C1 = −3 < x < −1

C2 = 0 < x < 3

C3 = 2 < x < 4 .

Afterwards, combining these constraints with disjunction such as C1 ∨ C2 ∨ C3,

we obtain a DNCSP. Considering another example, negation of an atom which is

a numerical constraint in a logical formula can be expressed as another formula,

¬(x = y) −→ (x < y) ∨ (x > y).

Some work has been done on dealing with disjunctions of constraints. In [34],

Ratschan proposes an extension of constraint programming (CP) framework to

quantified first-order logical formulas whose atoms are numerical constraints. In

[8], Douillard and Jermann introduce the concept of interesting points that repre-

sents potential splitting points and define some splitting heuristics for DNCSPs.

In our system, we don’t handle case splitting. We believe that adding the

following rule would handle possible nonconvexities in the constraint domain.

1We call a constraint formula non-convex if it entails a disjunction of constraints without
entailing any of the constraints alone.

CHAPTER 4. ADDING CONSTRAINTS 44

Ψ |= C1 ∨ C2 Ψ, C1 | Γ; ∆I \∆O; Ω =⇒v P Ψ, C2 | Γ; ∆I \∆O; Ω =⇒v P

Ψ | Γ; ∆I \∆O; Ω =⇒v P
split

The below example shows necessity of split rule for some cases. If we try to prove

Ψ | Γ; ∆I \∆O; Ω =⇒v P ⇑ ,

where we have,

Ψ : 1 < x < 4 (x ∈ N) ,

Γ : a(x) ,

∆I : · ,

Ω : · ,

P : ((a(2)(a)⊗ (a(3)(b))((a⊗ b) ,

we should split the constraint in Ψ using split rule as:

Ψ |= (x = 2) ∨ (x = 3) Ψ, (x = 2) | Γ; ∆I \∆O; Ω =⇒v P Ψ, (x = 3) | Γ; ∆I \∆O; Ω =⇒v P

Ψ | Γ; ∆I \∆O; Ω =⇒v P
split

Although CFRM does not include split rule, SWI-Prolog implementation of

CFRM solves the above example. For each time using the a(x) from unrestricted

rules, x is replaced with a different variable. Thus, no contradiction case occurs

while unification of a(x) with a(2) and a(3).

CFRM can handle above example, however, the example belows illustrates

the necessity of case splitting even for CFRM. Considering the sequent as:

Ψ | Γ; ∆I \∆O; Ω =⇒v P ⇑ ,

where we have,

CHAPTER 4. ADDING CONSTRAINTS 45

Ψ : 1 < x < 4 (x ∈ N) ,

Γ : ∃x.a(x) ,

∆I : · ,

Ω : · ,

P : a(2)⊕ a(3) ,

we should split the constraint in Ψ using split rule as:

Ψ |= (x = 2) ∨ (x = 3) Ψ, (x = 2) | Γ; ∆I \∆O; Ω =⇒v P Ψ, (x = 3) | Γ; ∆I \∆O; Ω =⇒v P

Ψ | Γ; ∆I \∆O; Ω =⇒v P
split

Without this rule, entailment of 1 < x < 4 |= (x = 2) or 1 < x < 4 |= (x = 3)

is not true. Since x may have values between 1 to 4, we can not assign any value

to it. That is why CFRM can not prove above example.

• Supporting for Interpreted Symbols During Unification

Interpreted function symbols consist of arithmetic and logic operators which are

built-in functions. In the initial sequent, if we have the init rule as

Ψ |= s
.
= t

Ψ | Γ; ∆I \∆O; P (s) ⇓ =⇒v P (t)
init

where s and t are in vector form, we can go through the uninterpreted function

symbols in all term arguments and isolate interpreted term equalities. Afterwards,

we can transfer interpreted term equalities to the constraint domain.

Considering an example, P (0 − 1) and P (1 − 2) both include a proposition

P and an interpreted function, because they have a built-in operator minus (−).

Since they evaluate to the same atomic proposition P (−1), both of them are

unified together.

In our implementation, we can implicitly use unification in the init rule as

described here. Returning to the same example above, if we want to unify P (0−1)

CHAPTER 4. ADDING CONSTRAINTS 46

with P (1 − 2), we can add two constraints X = 0 − 1 and Y = 1 − 2 into the

constraint store, and unify P (X) with P (Y). So, X is unified with Y .

There is still another problem which the modification of the init rule as above

can not solve. The constraint solver is designed such that all variables in a

constraint are implicitly in the scope of for-all (∀) quantifiers. The constraint store

Ψ may contain constraints with existential variables. In that case, insufficient

information of existential variable causes failure of constraint entailment. We

give an example for this case where Y and X are existential variables. So, X and

Y both should be treated as an existential variable:

If Ψ = (Y = X − 1) ,

then Ψ |= (Y = −1) fails ,

while

If Ψ = (Y = 0− 1) ,

then Ψ |= (Y = −1) is true .

Thus, we add each constraint into the constraint store instead of checking entail-

ment. Considering the same example above, first case does not fail anymore.

If Ψ = (Y = X − 1) ,

{Ψ, (Y = −1)} is true .

However, this modification may disrupt the soundness property of CFRM system.

Adding constraint rules into FRM resulting more powerful system CFRM.

Thus, we can handle both discrete and continues properties of robotic behaviors.

Using constraint solvers of SWI-Prolog helps us reducing the complexity associ-

ated with the encoding. Nevertheless, there are some restrictions with constraints

such as case splitting and support for interpreted symbols during unification.

However, we can handle the latter restriction with some encoding modifications

of constraints.

CHAPTER 4. ADDING CONSTRAINTS 47

4.3 Annotated Proof Terms for CFRM

We introduced a new theorem prover system, CFRM, in Chapter 4.2. This system

answers either yes if a given theorem is provable or no if a given theorem is not

provable. We can also use this system for robotic planning such as a given goal

is achievable or not in a defined domain. However, CFRM does not give any

information for the constructed plan. We want to carry this work one step further

and we want to record the constructed proof to yield corresponding plan to be

used in our domain. To this end, we enrich CFRM with proof terms that carry

enough information to reconstruct deduction of the proof. We achieve this with

a notation for derivations to be carried along in deductions.

4.3.1 Grammar of Proof Terms

In this section, we describe the proof term grammar below.

Proof terms I ::= u (variables)

| I ⊗ I | let⊗ u1 ⊗ u2 = I in I (A⊗B)

| ? | let1 ? = I in I (1)

| 〈I, I〉 | fst I | snd I (A&B)

| 〈〉 (T)

| 〈u, I〉∃ | let∃ 〈u1, u2〉∃ = I in I (∃x.A)

| inlCI | inrCI | (case I of inl u1 ⇒ I1 | inr u2 ⇒ I2) (A⊕B)

| λu.I | II (A (B)

| λ̂u.I | IˆI (A ⊃ B)

| λ∀u.I | I∀I (∀.xA)

| abortC I (0)

|!I | letbang !u = I in I (!A)

| λc{D}. I | I{D} (D ⊃c A)

| {D, I} | letc{D, I} = I in I (D ∧c A)

Our proof term grammar is mostly inspired from similar existing formulations

in the literature [31, 32]. However, we also incorporate constraint expressions.

We do not explicitly record constraint proofs since we trust that the constraint

solver can recheck the constraints at the program execution. In the proof term

grammar, D denotes constraint expressions.

CHAPTER 4. ADDING CONSTRAINTS 48

4.3.2 Rule Set of Proof Terms

In this section, first we describe judgments of proof terms. Afterwards, we give

rule set of proof terms. The proof term assignment is defined via four judgments:

Ψ | Γ; ∆I \∆O; Ω =⇒v I : C ⇑ ,
Ψ | Γ; ∆I \∆O; Ω ⇑ =⇒v I : C ,

Ψ | Γ; ∆I \∆O; · =⇒v I : C ⇓ ,
Ψ | Γ; ∆I \∆O; u : A ⇓ =⇒v I : C ,

where we have,

Ψ : Constraint store,

Γ : Unrestricted hypotheses ,

∆I : Input resources that may be consumed ,

∆O : Output resources that are not consumed ,

Ω : Ordered hypotheses ,

C : The goal ,

A : The focused proposition ,

v : Flag to encode freedom in resource consumption (0 or 1) ,

I : Proof Term ,

u : Label ,

and each formula in Γ ,∆I ,∆O and Ω is labeled. Rule set of proof terms corre-

spond with the annotations is given in Figure 4.6, 4.7, 4.8, 4.9 and 4.10.

We give some examples, yielding proof extraction of CFRM system. The

following proof objects are generated by our theorem prover.

λv1.λv1 : a(a

λv1.let v2 ⊗ v3 = v1 in v3 ⊗ v2 : (b⊗ a)((a⊗ b)

λv1.(case v1 of inl v2 ⇒ v2 | inr v3 ⇒ v3) : (a⊕ a)(a

λv1.λv2.((v2)∗(1))(v1) : a(1)((∀x.a(x)(b(x))(b(1)

CHAPTER 4. ADDING CONSTRAINTS 49

(Ψ, D) | Γ; ∆I \∆O; Ω =⇒v I : A ⇑
Ψ | Γ; ∆I \∆O; Ω =⇒v λ{D}. I : D ⊃c A ⇑ cfrm− ⊃c R

Ψ |= D Ψ | Γ; ∆I \∆O; Ω =⇒v I : A ⇓
Ψ | Γ; ∆I \∆O; Ω =⇒v {D, I} : D ∧c A ⇓ cfrm− ∧cR

Ψ | Γ; ∆I \∆O; Ω, u : A =⇒v I : B ⇑

Ψ | Γ; ∆I \∆O; Ω =⇒v λ̂u.I : A (B ⇑ cfrm−(Rv

Ψ | Γ; ∆I \∆O; Ω =⇒0 I : A ⇑ Ψ | Γ; ∆I \∆O; Ω =⇒0 J : B ⇑
Ψ | Γ; ∆I \∆O; Ω =⇒0 〈I, J〉 : A&B ⇑ cfrm−&R00

Ψ | Γ; ∆I \∆O; Ω =⇒0 I : A ⇑ Ψ | Γ; ∆I \∆O,∆2; Ω =⇒1 J : B ⇑
Ψ | Γ; ∆I \∆O; Ω =⇒0 〈I, J〉 : A&B ⇑ cfrm−&R01

Ψ | Γ; ∆I \∆O,∆1; Ω =⇒1 I : A ⇑ Ψ | Γ; ∆I \∆O; Ω =⇒0 J : B ⇑
Ψ | Γ; ∆I \∆O; Ω =⇒0 〈I, J〉 : A&B ⇑ cfrm−&R10

Ψ | Γ; ∆I \∆O1 ; Ω =⇒1 I : A ⇑ Ψ | Γ; ∆I \∆O2 ; Ω =⇒1 J : B ⇑
Ψ | Γ; ∆I \∆O1 ∩∆O2 ; Ω =⇒1 〈I, J〉 : A&B ⇑ cfrm−&R11

Ψ | Γ,u:A; ∆I \∆O; Ω =⇒v I : B ⇑
Ψ | Γ; ∆I \∆O; Ω =⇒v λu.I : A ⊃ B ⇑ cfrm− ⊃ R

Ψ | Γ; ∆I \∆O; Ω =⇒v I : [a/x]A ⇑
Ψ | Γ; ∆I \∆O; Ω =⇒v λ∀x.[x/a]I : ∀x.A ⇑ cfrm− ∀R

Ψ | Γ; ∆I \∆I ; Ω =⇒1 〈 〉 : T ⇑ cfrm− TR

Ψ | Γ; ∆I \∆O; Ω ⇑ =⇒v I : C, C not right asynchronous

Ψ | Γ; ∆I \∆O; Ω =⇒v I : C ⇑ cfrm− ⇑ R

Figure 4.6: Proof terms for CFRM, Right invertible rules

CHAPTER 4. ADDING CONSTRAINTS 50

(Ψ, D) | Γ; ∆I \∆O; Ω, w : A ⇑ =⇒v I : C

Ψ | Γ; ∆I \∆O; Ω, u : D ∧c A ⇑ =⇒v let {D,w} = u in I : C cfrm− ∧cL

Ψ | Γ; ∆I \∆O; Ω, u : A, w : B ⇑ =⇒v I : C

Ψ | Γ; ∆I \∆O; Ω, k : A⊗B ⇑ =⇒v let u⊗ w = k in I : C cfrm−⊗L

Ψ | Γ; ∆I \∆O; Ω, v : A ⇑ =⇒0 I : C Ψ | Γ; ∆I \∆O,∆2; Ω, w : B ⇑ =⇒1 J : C

Ψ | Γ; ∆I \∆O; Ω, u : A⊕B ⇑ =⇒0 (case u of inlv ⇒ I | inrw ⇒ J) : C cfrm−⊕L01

Ψ | Γ; ∆I \∆O,∆1; Ω, v : A ⇑ =⇒1 I : C Ψ | Γ; ∆I \∆O; Ω, w : B ⇑ =⇒0 J : C

Ψ | Γ; ∆I \∆O; Ω, u : A⊕B ⇑ =⇒0 (case u of inlv ⇒ I | inrw ⇒ J) : C cfrm−⊕L10

Ψ | Γ; ∆I \∆O; Ω, v : A ⇑ =⇒0 I : C Ψ | Γ; ∆I \∆O; Ω, w : B ⇑ =⇒0 J : C

Ψ | Γ; ∆I \∆O; Ω, u : A⊕B ⇑ =⇒0 (case u of inlv ⇒ I | inrw ⇒ J) : C cfrm−⊕L00

Ψ | Γ; ∆I \∆O1 ; Ω, v : A ⇑ =⇒1 I : C Ψ | Γ; ∆I \∆O2 ; Ω, w : B ⇑ =⇒1 J : C

Ψ | Γ; ∆I \∆O1 ∩∆O2; Ω, u : A⊕B ⇑ =⇒1 (case u of inlv ⇒ I | inrw ⇒ J) : C cfrm−⊕L11

Ψ | Γ,u:A; ∆I \∆O; Ω ⇑ =⇒v I : C

Ψ | Γ; ∆I \∆O; Ω, w : !A ⇑ =⇒v let !u = w in I : C cfrm−!L

Ψ | Γ; ∆I \∆O; Ω, w : [a/x]A ⇑ =⇒v I : C

Ψ | Γ; ∆I \∆O; Ω, u : ∃x.A ⇑ =⇒v let 〈x, w〉∃ = u in [x/a]I : C cfrm− ∃L

Ψ | Γ; ∆I \ ·; Ω, u : 0 ⇑ =⇒0 abortC u : C cfrm− 0L

Ψ | Γ; ∆I \∆O; Ω ⇑ =⇒v I : C

Ψ | Γ; ∆I \∆O; Ω, u : 1 ⇑ =⇒v let ? = u in I : C cfrm− 1L

Ψ | Γ; ∆I , u : A \∆O, u : A; Ω ⇑ =⇒1 I : C, A not left asynchronous

Ψ | Γ; ∆I \∆O; Ω, u : A ⇑ =⇒1 I : C cfrm− ⇑ L1A

Ψ | Γ; ∆I , u : A \∆O; Ω ⇑ =⇒v I : C, A not left asynchronous

Ψ | Γ; ∆I \∆O; Ω, u : A ⇑ =⇒v I : C cfrm− ⇑ Lv

Figure 4.7: Proof terms for CFRM, Left invertible rules

CHAPTER 4. ADDING CONSTRAINTS 51

Ψ | Γ; ∆I \∆O; · =⇒v I : C ⇓, C not atomic

Ψ | Γ; ∆I \∆O; · ⇑ =⇒v I : C cfrm− decideR

Ψ | Γ; ∆I \∆O; u : A ⇓ =⇒v I : C

Ψ | Γ; ∆I , u : A \∆O; · ⇑ =⇒v I : C cfrm− decideL

Ψ | Γ, u : A; ∆I \∆O; u : A ⇓ =⇒v I : C

Ψ | Γ, u : A; ∆I \∆O; · ⇑ =⇒v I : C cfrm− decideL!

Figure 4.8: Proof terms for CFRM, Decision rules

Ψ | Γ; ∆I \∆M ; · =⇒v I : A ⇓ Ψ | Γ; ∆M \∆O; · =⇒w J : B ⇓
Ψ | Γ; ∆I \∆O; · =⇒v∨w I ⊗ J : A⊗B ⇓ cfrm−⊗R

Ψ | Γ; · \ ·; · =⇒v I : A ⇑
Ψ | Γ; ∆I \∆I ; · =⇒0 !I : !A ⇓ cfrm−!R

Ψ | Γ; ∆I \∆I ; · =⇒0 ? : 1 ⇓ cfrm− 1R

Ψ | Γ; ∆I \∆O; · =⇒v I : A ⇓
Ψ | Γ; ∆I \∆O; · =⇒v inlBI : A⊕B ⇓ cfrm−⊕R1

Ψ | Γ; ∆I \∆O; · =⇒v I : B ⇓
Ψ | Γ; ∆I \∆O; · =⇒v inrAI : A⊕B ⇓ cfrm−⊕R2

Ψ | Γ; ∆I \∆O; · =⇒v I : [t/x]A ⇓
Ψ | Γ; ∆I \∆O; · =⇒v 〈t, I〉 : ∃x.A ⇓ cfrm− ∃R

Ψ | Γ; ∆I \∆O; · =⇒v I : A ⇑ not right synchronous

Ψ | Γ; ∆I \∆O; · =⇒v I : A ⇓ cfrm− ⇓ R

Figure 4.9: Proof terms for CFRM, Right focusing rules

CHAPTER 4. ADDING CONSTRAINTS 52

Ψ |= D Ψ | Γ; ∆I \∆O; Ω, w : A ⇓ =⇒v I : C

Ψ | Γ; ∆I \∆O; Ω, u : D ⊃c A ⇓ =⇒v [u{D}/w] I : C cfrm− ⊃c L

Ψ | Γ; ∆I \∆M ; · =⇒v J : A ⇓ Ψ | Γ; ∆M \∆O; w : B ⇓ =⇒k I : C

Ψ | Γ; ∆I \∆O; u : A(B ⇓ =⇒v∨k [ûJ/w] I : C cfrm−(L

Ψ | Γ; · \ ·; · =⇒v J : A ⇑ Ψ | Γ; ∆I \∆O; w : B ⇓ =⇒k I : C

Ψ | Γ; ∆I \∆O; u : A ⊃ B ⇓ =⇒k [uJ/w]I : C cfrm− ⊃ L

Ψ | Γ; ∆I \∆O; w : A ⇓ =⇒v I : C

Ψ | Γ; ∆I \∆O; u : A&B ⇓ =⇒v [fst u/w]I : C cfrm−&L1

Ψ | Γ; ∆I \∆O; w : B ⇓ =⇒v I : C

Ψ | Γ; ∆I \∆O; u : A&B ⇓ =⇒v [snd u/w]I : C cfrm−&L2

Ψ | Γ; ∆I \∆O; w : [t/x]A ⇓ =⇒v I : C

Ψ | Γ; ∆I \∆O; u : ∀x.A ⇓ =⇒v [u∀t/w]I : C cfrm− ∀L

Ψ | Γ; ∆I \∆I ; u : P ⇓ =⇒0 u : P cfrm− init

Ψ | Γ; ∆I \∆O; u : A ⇑ =⇒v I : C A not atomic and not left synchronous

Ψ | Γ; ∆I \∆O; u : A ⇓ =⇒v I : C cfrm− ⇓ L

Figure 4.10: Proof terms for CFRM, Left focusing rules

CHAPTER 4. ADDING CONSTRAINTS 53

In this chapter, we described CILL system which is generated by adding con-

straints into Intuitionistic Linear Logic. Afterwards, we incorporated constraints

into FRM system, yielding CFRM system. We prove neither the soundness nor

the completeness of CFRM system, since it is nontrivial to prove. We also in-

clude some restrictions with constraints into this chapter such as case splitting

and support for interpreted symbols during unification. At the last section of this

chapter, we introduced annotated proof terms for CFRM system, helping proof

extraction.

Chapter 5

Implementation Details and

Experiment Results

In this chapter, we will give a detailed information about the implementation

environment, the implementation of FRM and CFRM systems, and also some

planning examples for CFRM system.

5.1 SWI-Prolog as the Programming Environ-

ment

Prolog is a declarative programming language. In the declarative programming

languages, there are definitions and statements in programs to achieve some goals.

When a computer executes a logic program, it uses the inference rules which are

given in the program to derive the derived rules. The main purpose is to find

a solution for the given goal. Prolog tries to solve the goals by searching all

possible ways which are given in the program. For more information about Prolog,

see [2, 29]. To implement our proof system FRM, we use SWI-Prolog1 which

is an open source implementation of the programming language Prolog. The

1Home page is: http://www.swi-prolog.org

54

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS55

main reason using this prolog environment is that it provides some libraries such

as CHR (Constraint Handling Rules), clpfd (over Finite Domains), clpqr(over

Rationals and Reals) and various others, for the constraint logic programming.

We use ”clpr” (constraint logic programming over reals) library among other

libraries for handling constraints over the real numbers (using floating point num-

bers as representation).

We use some predicates in SWI-Prolog for handling constraints in the imple-

mentation. We give short descriptions about these predicates.

• {}(+Constraints):

Adds the constraints given by Constraints to the constraint store.

• entailed(+Constraint):

Succeeds if Constraint is necessarily true within the current constraint store.

This means that adding the negation of the constraint to the store results

in failure.

Using the unification mechanism is also another option to store constraints,

instead of using the { }/1 predicate. The following code samples are equivalent:

• Unification with a variable

{X =:= Y}

{X = Y}

X = Y

• Unification with a number

{X =:= 5.0}

{X = 5.0}

X = 5.0

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS56

5.2 Implementation of FRM

In SWI-Prolog implementation of FRM system, there are four main sub-

predicates which are right invertible rules, left invertible rules, right focusing and

left focusing. The main predicate is prove and our theorem prover is invoked by

this predicate. One can use prove predicate with two different variations. First

one is invoked as prove(Unrestricted Hypotheses, Resources, Goal). Second vari-

ation is prove(Unrestricted Hypotheses, Resources, Goal, Actions) which has one

more parameter, Actions. At the end of the run, if there is any solution for

the goal, applied actions during the search are returned in the Actions context.

Operators and their equivalents used in the implementation are on the below:

linImp((), ⇒(⊃), +(⊕), x(⊗), &, all(∀), ex(∃).

5.2.1 Skolemization in FRM

For the right rule of existential(∃) quantifier and the left rule of for all(∀) quan-

tifier, a new term t is introduced in ∃x.A or ∀x.A, and all occurrences of variable

x in A is replaced by this new term. However, we need to replace x with a new

variable a in A for the left rule of ∃ and for the right rule of ∀. Thus, this new

variable must be a unique variable which is not defined before and this variable

must not be unified with other variables or terms except itself during unification

process. Therefore, we replace the quantified variable x by a Skolem function

which is created as Ŝ FV where S is the level of the formula tree, and FV is the

free variable list. If we call again the example ∃y.∀x.y = x;

∃y.∀x.y = x

∀x.Y = x (∃I)

Y = S [̂Y] (∀I)

#

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS57

5.2.2 Unification in FRM

In 2.4.2, we mentioned unification, however unification in the implementation de-

serves some more explanations. The atomic propositions are handled and unified

in the init rule. In FRM system, right invertible, left invertible, right focusing

and left focusing rules are applied, respectively. Init rule is in the end of left

focusing rule set, thus init rule is applied last. In some conditions, it would in-

crease the performance of the system if we could unify the atomic propositions

whenever an atomic proposition is first encountered on the right. As an example,

assume that the initial case of a sequent is given as

Γ; ∆I \∆O; Ω, P =⇒ P

where Ω is not empty (at least there is a left invertible term) and P is an atomic

proposition. In our FRM system, first right invertible rules are tried to apply.

Since P is an atomic proposition and is not considered as a right invertible term,

non of the rules are applicable. So next trial is done over left invertible rules. All

left invertible rules are applied until none of left invertible terms are left. Since

in the above example, Ω has at least one left invertible term, the appropriate

rule is applied. Unification of P is only possible in the init rule, where there is a

P on the both sides. But somehow, if we can recognize that there is an atomic

term on the right hand side during application of right invertible rules, we can

search a matching of atomic term in Ω. In this example, P is also on the left

hand side, thus, we can catch a matching. This will reduce the search space and

as a conclusion, the performance will be increased.

Standard Unification Algorithm

In Prolog, standard unification is done according to the following algorithm:

1. If T1 and T2 are constants, then T1 and T2 unify if they are the same

atom, or the same number.

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS58

2. If T1 is a variable and T2 is any type of term, then T1 and T2 unify, and

T1 is instantiated to T2. (and vice versa)

3. If T1 and T2 are complex terms, then they unify if:

(a) They have the same functor and arity, and

(b) all their corresponding arguments unify, and

(c) the variable instantiations are compatible.

In some cases, the standard prolog unification does not work. For an instance,

if we run in Prolog

?- A = f(A).

we get

A = f(f(f(f(f(f(f(f(f(f(...))))))))))

as a result. To solve infinite condition, we use a special predicate,

unify with occurs check. If we run in Prolog

?- unify with occurs check(A, f(A)).

we get

No

meaning that unification fails.

Herbrand’s Unification Algorithm

We give Herbrand Algorithm [17] for the most general unifier (MGU) which is

more comprehensive than the Standard Unification Algorithm.

Given a set of equations of the form t1 = t2, apply in any order one of the

following non-exclusive steps:

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS59

1. If there is an equation of the form:

(a) f=g where f and g are different atomic terms, or

(b) f=g where f is an atomic term and g is a compound term, or f is a

compound term and g is an atomic term, or

(c) f(...) = g(...) where f and g are different functors, or

(d) f(a1, a2, ..., aN) = g(b1, b2, ..., bM) where N and M are different,

then exit with failure (not unifiable).

2. If there is an equation of the form X = X, X being a variable, then remove

it.

3. If there is an equation of the form c = c, c being a atomic term, then remove

it.

4. If there is an equation of the form f(a1, a2, ..., aN) = f(b1, b2, ..., bN) then

replace it by the set of equations ai = bi.

5. If there is an equation of the form t = X, X being a variable and t a non-

variable term, then replace it by the equation X = t,

6. If there is an equation of the form X = t where:

(a) X is a variable and t is a term in which the variable does not occur,

and

(b) the variable X occurs in some other equation, then substitute in all

other equations every occurrence of the variable X by the term t.

7. If there is an equation of the form X = t such that X is a variable and t is a

non-variable term which contains this variable, then exit with failure (not

unifiable, positive occurs check.

8. If no other step is applicable, then exit with success (unifiable).

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS60

5.2.3 Depth-Limited Depth First Search in FRM

We use Depth-Limited Depth-First Search (DLDFS) method for the proof search

in FRM system. Before giving details about DLDFS, we give the definition of

Depth-First Search (DFS) algorithm since DLDFS is derived from DFS. DFS is

an algorithm that always expands one of the nodes at the deepest level of the

tree, until finds a goal node [37]. If the search hits a dead end which means a

nongoal node with no expansion, then the search backtracks and expand nodes

at shallower levels. The drawback of DFS is that it can get stuck going down the

wrong path (an infinite loop occurs), even when a shallow solution exists. The

solution is imposing a cutoff on the maximum depth of a path for DFS which

we call this method Depth-Limited Depth-First Search (DLDFS). The basic idea

about DLPFS is that we do not only apply DFS but also give a depth limit which

determines number of level to continue for searching. Considering when we try to

prove the sequent ((p⊕ (p ⊃⊥)) ⊃⊥) ⊃⊥ with DFS method, applying FRM rule

set to this sequent will cause an infinite loop. However, when we limit the depth

with an adequate number, proof will be completed. In the implementation, there

is an upper limit. Proof search starts with an initial depth limit, 1, increasing it

one by one for each failure until reaching upper depth limit.

5.3 Implementation of CFRM

We divided SWI-Prolog code of CFRM system into subroutines. Two variations

of prove predicate is used for FRM system. The last variation has one more

parameter then the previous ones, prove(Constraints, Unrestricted Hypotheses,

Resources, Goal, Actions). This extra context Constraints holds constraints if

the user wants to give some constraints at the beginning of the proof search. In

addition to FRM rules, four more rules about constraints, ⊃c R, ∧cR, ⊃c L, ∧cL,

are added for CFRM system.

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS61

5.3.1 Skolem Variables with Constraints

Since we use the skolem variables for ∀R and ∃L rules in the form of L̂ F, binding

constraint variables with skolem variables is not possible. However, we can handle

this case with a trivial trick. For each skolem variable, a new variable is created

and these new variables are replaced with skolem variables. Shortly before the

unification, if the variable is in the constraint store and also mapping a skolem

variable, then we do not replace anything. However, if the variable is not in the

constraint store but mapping a skolem variable, then we replace the variable with

the skolem variable.

The following example is about above condition.

(∃y.((y = 0− 1) ∧c p(y)))(p(−1)

The corresponding proof tree for this example is:

(a = 0− 1) | p(a) =⇒ p(−1)

(a = 0− 1) ∧c p(a) =⇒ p(−1)
∧cL

∃y.((y = 0− 1) ∧c p(y)) =⇒ p(−1)
∃La

· =⇒ (∃y.((y = 0− 1) ∧c p(y)))(p(−1)
(R

A parametric variable is not unified with a constant during unification. Con-

sidering unification of propositions p(a) and p(−1), for this reason they are not

unified. However, having a constraint over the parametric variable helps unifica-

tion. Since the parameter a is in the constraint store, a new variable mapping

a is used in unification. p(A) =⇒ p(−1) is unified, assuming that A maps the

parameter a and coherent with the constraint store.

We must also note that, the constraint solver is designed such that all variables

in a constraint are implicitly in the scope of for-all(∀) quantifier. Hence, we can

not use ∃L rule and ∀R rule within constraints.

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS62

5.4 Experiment Results

In this section, first we describe some theorems and give output of our imple-

mentation for these theorems. Afterwards, we describe some nontrivial planning

problems to denote expressivity of CFRM system and discuss efficiency and per-

formance of the system. Since we introduce new problem domains, non of the

existing theorem provers have encodings and solutions of these problems. Thus,

we can not compare the performance of our theorem prover with other provers.

We must also note that, to be able to load the program in SWI-Prolog, one

must type [’CIFOLL.pl’] on command line. This will load the program into the

memory.

5.4.1 Program Outputs of Some Examples

In this part, we give SWI-Prolog outputs while proving some theorems. Program

is called with the predicate prove(A,B,C) where

A : Unrestricted hypotheses,

B : Consumable resources,

C : The goal.

Representation of all operators used in the program and their equivalent op-

erators are described below.

linImp : (,

=> : ⊃ ,

impC : ⊃c ,

andC : ∧c ,

+ : ⊕ ,

x : ⊗ ,

& : & ,

all : ∀ ,

ex : ∃ .

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS63

We give a list of examples. First lines for each proof are program inputs and

other lines are program outputs. Proof terms for each proof also can be seen

in the outputs. We also note that the counter denotes the number of entered

predicates and depth limit is given 50.

?- prove([], [b x a], (a x b)).

Program starts..

(let x (v2 x v3) = v1 in (v3 x v2))

Total time is: 0.0

Counter is: 18

true

?- prove([],[],((a linImp (a1 & a2)) linImp (a linImp a1))).

Program starts..

(\ \ˆ v1. (\ \ˆ v2. (fst (app̂ (v1, v2)))))

Total time is: 0.0

Counter is: 17

true

?- prove([], [a linImp b linImp c], b linImp a linImp c).

Program starts..

(\ \ˆ v2. (\ \ˆ v3. (app̂ ((app̂ (v1, v3)), v2))))

Total time is: 0.0

Counter is: 26

true

?- prove([],[],((p + (p ⇒ 0)) ⇒ 0)⇒ 0).

Program starts..

(\\v116. (app(v116, (inr (\\v318. (app(v116, (inl v318))))))))

Total time is: 0.03

Counter is: 2584

true

?- prove([], [a + b, c], c).

Program starts..

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS64

false.

?- prove([], [], all X: (ex Y: ((all Y: p(Y)) ⇒ p(X)))).

Program starts..

(\\all- G364. (pair ex < G364, (\\v2. (app all(v2, G364))) >))

Total time is: 0.0

Counter is: 23

true

?- prove([test act (all X: (at(X) linImp (ex Y: ((Y = X - 1) andC at(Y)))))],

[at(0)], at(-1.0)).

Program starts..

(let ex (pair ex< [app lin, [app all, [var, v2], 0], [var, v1]], v5 >) =

(app̂ ((app all(v2, 0)), v1)) in (let c (pair c-1.0=0-1, v6) = v5 in v6))

Total time is: 0.0

Counter is: 30

true

5.4.2 Blocks World Example

We recall the blocks world example from 2.2.4. The initial state of the environ-

ment is described as:

∆0 = (empty, tb(a), tb(b), clear(a), clear(c) , on(c, b)).

We define the goal as tb(c). That means the block c will be on the table. The

program input and output are described below:

We give rules, resources and the goal to the program as an input:

?- Grab = [

grab on block act (all X: (all Y:((empty x clear(X) x on(X,Y)) linImp (holds(X)

x clear(Y))))),

grab on table act (all X: ((empty x clear(X) x tb(X)) linImp holds(X))),

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS65

put on block act (all X: (all Y: ((holds(X) x clear(Y)) linImp (empty x clear(X)

x on(X,Y))))),

put on table act (all X: (holds(X) linImp (empty x clear(X) x tb(X))))

],

Area = [empty, tb(a), tb(b), clear(a), clear(c), on(c,b)],

Goal = (tb(c) x erase),

prove(Grab, Area, Goal, Actions).

Proof terms are:

Program starts..

(let x (v251 x v252) = (app̂ ((app all((app all(v247, c)), b)), (v1 x (v5

x v6)))) in (let x (v293 x v294) = (app̂ ((app all(v290, c)), v251)) in

(let x (v295 x v296) = v294 in (v296 x < >))))

The output of time, entered predicates and actions are given below:

Total time is: 0.02

Counter is: 2258

Grab = [grab on block act (all X:all Y: (empty x clear(...)x on(..., ...)linImp

holds(X)x clear(Y))), grab on table act (all X: (empty x clear(X)x tb(X)linImp

holds(X))), put on block act (all X:all Y: (...x...linImp...x...)), put on table act

(all X: (holds(X)linImp empty x ...x...))],

Area = [empty, tb(a), tb(b), clear(a), clear(c), on(c, b)],

Goal = tb(c)x erase,

Actions = [put on table, grab on block]

In the action context, we can see actions used in planning. The robot arm

first grabs the block c and later puts it on the table. This is a simple example

but important to point the usage of CFRM system in planning domains.

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS66

5.4.3 Path Finding Among Mines

First of all, we define the domain of the planning example and give the initial

states. Planning domain comprises an area (3x3) and a mobile robot which can

move one cell for each time. Robot has a power constraint such that if there is

not enough power to reach the goal, robot can not achieve the goal. Planning

domain also includes mines on the area. If there is a mine on any point, the

robot can not move to that point. The robot tries to find a mine free path

from initial state to the goal state. We define three propositions, at, free and

power. The proposition at(x,y) gives the location information about the robot and

the proposition free(x,y) gives the mine free location. The proposition power(p)

denotes the power of the robot. For instance, if the initial power is 5, the robot

can not move more than 5 steps.

As an example, the initial state is illustrated in Figure 5.1. The robot is at

the (x1 ,y1) position and there are mines at (x2, y1), (x3, y1), (x1, y3), (x2, y3),

(x3, y3) points. Initial power of the robot is 3, which means that robot can move

at most 3 steps. Reaching the (x3, y2) point is the goal in this example.

y1 y2 y3

x1

x2

x3

Figure 5.1: Robot can reach to the position x3, y2

For this example, below we encode resources and the goal for the program input.

Four unrestricted rules (actions) are:

Γ = [

move down : ∀x.∀y.∀z.(((z = x + 1), (p1 = p − 1), (p1 >= 0)) ∧c ((at(x, y) ⊗
free(z, y)⊗ power(p))((at(z, y)⊗ free(x, y)⊗ power(p1)))),

move right : ∀x.∀y.∀z.(((z = y + 1), (p1 = p − 1), (p1 >= 0)) ∧c ((at(x, y) ⊗
free(x, z)⊗ power(p))((at(x, z)⊗ free(x, y)⊗ power(p1)))),

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS67

move up : ∀x.∀y.∀z.(((z = x − 1), (p1 = p − 1), (p1 >= 0)) ∧c ((at(x, y) ⊗
free(z, y)⊗ power(p))((at(z, y)⊗ free(x, y)⊗ power(p1)))),

move left : ∀x.∀y.∀z.(((z = y − 1), (p1 = p − 1), (p1 >= 0)) ∧c ((at(x, y) ⊗
free(x, z)⊗ power(p))((at(x, z)⊗ free(x, y)⊗ power(p1))))

].

Initial resources for the example are:

∆0 = [power(3), at(1, 1), free(1, 2), free(2, 2), free(3, 2)].

And finally, the goal is:

G = at(3, 2)⊗ T .

Constraint store (Ψ) is initially empty since at the beginning we do not define

any constraints. But during the plan search, Ψ will have some constraints which

come from actions. Using Γ,∆0 and G, our planner finds a path constructed from

actions, [move right, move down, move down].

If we change the initial power from 3 to 2, the resource store will be:

∆0 = [power(2), at(1, 1), free(1, 2), free(2, 2), free(3, 2)] .

With the same Γ, the planner can not find a path for the same goal G, since

reaching the goal position is achieved at least 3 steps.

Considering the same initial resources and the goal above, adding one more

mine at (x2, y2) as in Figure 5.2 results a failure for the robot achieving the goal.

We must indicate that, we can not define negation of any resource in the

planning domain. Considering the above examples, we define free points with

free proposition rather than not mine proposition, telling there is not any mine.

This restriction is caused by nature of the linear logic resources, since we can not

show absence of a resource unlike in the classical logic.

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS68

y1 y2 y3

x1

x2

x3

Figure 5.2: Robot can not reach to the position x3, y2

For now, we do not interpret proof terms which are complicated and a huge

collection of terms, however, as a future work we plan to interpret proof terms

and extract plans after the proof construction. For this example, the elapsed time

is about some seconds for finding a proof. The input and output of the program

are below.

Rules, resources and the goal are given to the program:

?- Rules = [

move down act (all X: (all Y: (all Z: (all P: (all P1: (((Z = X + 1), (P1 = P-1),

(P1 >= 0)) andC ((at(X,Y) x free(Z,Y) x power(P)) linImp (at(Z,Y) x free(X,Y)

x power(P1))))))))),

move right act (all X: (all Y: (all Z: (all P: (all P1: (((Z = Y + 1), (P1 = P-1),

(P1 >= 0)) andC ((at(X,Y) x free(X,Z) x power(P)) linImp (at(X,Z) x free(X,Y)

x power(P1))))))))),

move up act (all X: (all Y: (all Z: (all P: (all P1: (((Z = X - 1), (P1 = P-1), (P1

>= 0)) andC ((at(X,Y) x free(Z,Y) x power(P)) linImp (at(Z,Y) x free(X,Y) x

power(P1))))))))),

move left act (all X: (all Y: (all Z: (all P: (all P1: (((Z = Y - 1), (P1 = P-1), (P1

>= 0)) andC ((at(X,Y) x free(X,Z) x power(P)) linImp (at(X,Z) x free(X,Y) x

power(P1)))))))))

],

Area = [power(3.0), at(1.0,1.0), free(1.0,2.0), free(2.0,2.0), free(3.0,2.0)],

Goal = at(3.0,2.0) x erase,

prove(Rules, Area, Goal, Actions).

Proof terms are:

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS69

Program starts..

(let c (pair c 3.0=2.0+1, 0.0=1.0-1, 0.0>=0, v15332) = (app all((app all(

(app all((app all((app all(v15326, 2.0)), 2.0)), 3.0)), 1.0)), 0.0))

in (let c (pair c 2.0=1.0+1, 1.0=2.0-1, 1.0>=0, v16617) = (app all((app all(

(app all((app all((app all(v16611, 1.0)), 2.0)), 2.0)), 2.0)), 1.0)) in (let c

(pair c 2.0=1.0+1, 2.0=3.0-1, 2.0>=0, v17013) = (app all((app all((app all(

(app all((app all(v17007, 1.0)), 1.0)), 2.0)), 3.0)), 2.0)) in (let x (v17110

x v17111) = (app̂ (v17013, (v2 x (v3 x v1)))) in (let x (v17112 x v17113)

= v17111 in (let x (v17138 x v17139) = (app̂ (v16617, (v17110 x (v4 x v17113

)))) in (let x (v17140 x v17141) = v17139 in (let x (v17148 x v17149) =

(app̂ (v15332, (v17138 x (v5 x v17141)))) in (let x (v17150 x v17151) =

v17149 in (v17148 x < >))))))))))

Information about time, entered predicates and actions are:

Total time is: 11.94

Counter is: 192580

Rules = [move down act (all X:all Y:all Z:all... : ...), move right act (all X:all

Y:all Z:all...), move up act (all X:all Y:all... : ...), move left act (all X:all Y:all...)],

Area = [power(3.0), at(1.0, 1.0), free(1.0, 2.0), free(2.0, 2.0), free(3.0, 2.0)],

Goal = at(3.0, 2.0)x erase,

Actions = [move right, move down, move down]

5.4.4 Mail Delivery Robot

Next problem domain is about the mail delivery robot. In the problem domain,

there is a mobile robot collecting mails from office rooms and moving them into

a common mail store. We must note that, the weight of mails vary. For the sake

of less processing time, planning area is limited to three rooms. In three rooms,

mails have 10kg, 7kg and 3kg weights, respectively. Figure 5.3 illustrates the

initial case of the planning environment.

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS70

10kg 7kg 3kg

Room1 Room2 Room3

Figure 5.3: Mail delivery planning environment

In this planning domain, propositions are weight, mail and power. The propo-

sition weight(w) denotes the total weight of mails which the robot is carrying. In

the proposition mail(x,w), x denotes the room number and w denotes the weight

of the mail. Same as in the example 5.4.3, power(p) proposition denotes the total

power of the robot. Formulation of the power consuming while picking up a mail

is:

Final Power = Initial Power − (Initial Weight+Mail Weight) ,

where Initial Weight is the total weight of mails which the robot is carrying and

Mail Weight is the weight of the mail, picking up by the robot. Emptying all

mails on the robot decreases the power 5. On the following, we encode resources

and the goal for SWI-Prolog code. Two unrestricted rules (actions) are:

Γ = [

pick mail : ∀x.∀w.∀w1.∀k.∀p1.∀p.(((k > 0), (w1 = w + k), (p1 = p− w1), (p1 >=

0)) ∧c ((weight(w) ⊗ mail(x, k) ⊗ power(p)) ((weight(w1) ⊗ mail(x, 0.0) ⊗
power(p1)))),

empty mails : ∀w.∀p1.∀p.(((w > 0), (p1 = p − 5), (p1 >= 0)) ∧c ((weight(w) ⊗
power(p))((weight(0.0)⊗ power(p1))))

].

Initial resources for the example are:

∆0 = [power(33.0), weight(0.0),mail(1.0, 10.0),mail(2.0, 7.0),mail(3.0, 3.0)].

CHAPTER 5. IMPLEMENTATION DETAILS AND EXPERIMENT RESULTS71

The goal for this example is:

G = weight(0.0)⊗mail(1.0, 0.0)⊗mail(2.0, 0.0)⊗mail(3.0, 0.0)⊗ T ,

meaning that the robot collects all mails from office rooms and empties them

into the mail store. Running this example on Swi-Prolog with a depth limit

50, CFRM system constructs a plan with actions [pick mail, empty mails, pick

mail, pick mail, empty mails]. With this resources and the goal, the least power

requirement is 33. If we run the program with a power less than 33, the planner

can not construct any plan. The plan of the planner is listed as:

1. The robot picks up the mail in Room1.

(Weightmail = 10kg,Weighttotal = 10kg, Powerfinal = 33− 10 = 23)

2. The robot empties the mail.

(Weightmail = 0kg,Weighttotal = 0kg, Powerfinal = 23− 5 = 18)

3. The robot picks up the mail in Room3.

(Weightmail = 3kg,Weighttotal = 3kg, Powerfinal = 18− 3 = 15)

4. The robot picks up the mail in Room2.

(Weightmail = 7kg,Weighttotal = 10kg, Powerfinal = 15− 10 = 5)

5. The robot empties the mail.

(Weightmail = 0kg,Weighttotal = 0kg, Powerfinal = 5− 5 = 0)

In this example, a proof is constructed in about 30 minutes and 1,852,338

predicates are entered during the proof search. When the problem domain gets

bigger, the time for finding a proof takes longer. Thus, we show examples in

small domains. However, when we increase the speed of the system, we can try

different and more complex problems in huge domains.

Chapter 6

Conclusion And Future Work

Robotic planning and automation in continues domains are more challenging

than discrete domains. Thus, many researchers work on planning for continues

domains and uncertain environments. We are interested in logic based languages

for robotic planning. However, one major problem for logic based systems is that

the computational complexity of reasoning systems based on theorem proving in-

creases with their expressivity. We believe that one of the best logical formalisms

that can address robotic planning issues is Intuitionistic First-Order Linear Logic.

In this thesis, based on FocLL system, first we introduced a new auto-

mated theorem prover system, which we called Full Resource Management sys-

tem (FRM), for robotic planning in discrete domains. FRM system is an efficient

backward sequent calculus for intuitionistic linear logic with focusing and resource

management. Afterwards, for robotic planning in both discrete and continues do-

mains, we incorporated constraints into FRM system, which we called this new

system as CFRM. Using constraint solvers of SWI-Prolog helped us reducing the

complexity associated with the encoding. However, some restrictions with con-

straints are still existing such as case splitting and support for interpreted symbols

during unification. We handled the latter restriction with some encoding modifi-

cations of constraints. Since we wanted to record the constructed proof to yield

corresponding plan to be used in our domain, we enriched CFRM system with

proof terms that carry enough information to reconstruct deduction of the proof.

72

CHAPTER 6. CONCLUSION AND FUTURE WORK 73

We tested our CFRM system for some robotic planning examples, where we

introduced these planning examples in the thesis. One of the planning domain is

about path finding among mines and the other one is mail delivery system. Our

theorem prover system successfully achieved all goals. However, as we mentioned

in the first chapter, when the example domain increases linearly, computational

time increases exponentially. Hence, in the future, we are planning to either

modify our SWI-Prolog implementation or restrict our language into LHHF for

finding plans in a shorter time.

We also mentioned that CFRM system had some restrictions such as case

splitting and support for interpreted symbols during unification. We can handle

the latter restriction with some encoding modifications of constraints. However,

we also need to handle case splitting for the soundness and completeness of CFRM

system. To this end, we are planning to modify our proof system for proving the

soundness and completeness of the system. We expect that this will help us a

better understanding of the CFRM system behavior.

As we mentioned in 5.4.3, we can not define the negation of any resource in

the planning domain. However, as a future work, we are planning to incorporate

encoding the negation of any resource into CFRM system. In [4], Chaudhuri

introduced possibility concept for encoding the negation of linear resources. To

this end, we can use the same approach as in the dissertation of Chaudhuri.

Our next step will be applying experiences gained from this thesis into a

real mobile robot. We suppose that working on planning for real robots will be

more challenging than working on simulations, however, gained experiences will

be priceless. Our ultimate goal is building a reliable and fully automated robotic

planning system.

Bibliography

[1] http://marsrovers.nasa.gov/home/index.html.

[2] I. Bratko. Prolog programming for artificial intelligence. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[3] I. Cervesato, J. S. Hodas, and F. Pfenning. Efficient resource management for

linear logic proof search. Theoretical Computer Science, 232(1-2):133–163,

Feb. 2000.

[4] K. Chaudhuri. The Focused Inverse Method for Linear Logic. Phd, Carnegie

Mellon University, Pittsburgh, PA, December 2006.

[5] D. C. Conner, H. Kress-Gazit, H. Choset, A. Rizzi, and G. J. Pappas. Valet

parking without a valet. pages 572–577, October 2007.

[6] D. C. Dennett. Brainstorms: Philosophical essays on mind and psychology.

Cambridge, Mass.: Bradford Books/MIT Press, 1978.

[7] M. B. Do and S. Kambhampati. Planning as constraint satisfaction: Solving

the planning graph by compiling it into CSP. Artificial Intelligence, 132:151–

182, 2001.

[8] T. Douillard and C. Jermann. Splitting heuristics for disjunctive numerical

constraints. In SAC ’08: Proceedings of the 2008 ACM symposium on Applied

computing, pages 140–144, New York, NY, USA, 2008. ACM.

[9] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 2(3-4):189–208,

1971.

74

BIBLIOGRAPHY 75

[10] M. Fitting. First-order logic and automated theorem proving. Springer-Verlag

New York, Inc., New York, NY, USA, 1990.

[11] G. Gentzen. Untersuchungen uber das logische SchlieBen. PhD thesis, Uni-

versity of Gottingen, 1935.

[12] H. K.-G. Georgios E. Fainekos and G. J. Pappas. Temporal logic motion

planning for mobile robots. 2005.

[13] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[14] H. Goguen, S. Combinators, and J. Goubault-Larrecq. Sequent combinators:

A hilbert system for the lambda calculus, 1999.

[15] B. Goldstein and R. Shotwell. Phoenix: The first mars scout mission. In

Aerospace conference, 2009 IEEE, pages 1–20, March 2009.

[16] N. Gupta and D. S. Nau. On the complexity of blocks-world planning. Artif.

Intell., 56(2-3):223–254, 1992.

[17] J. Herbrand. Logical Writings. Harvard University Press, 1971. Edited by

Warren D. Goldfarb.

[18] J. S. Hodas. Logic Programming in Intuitionistic Linear Logic: Theory,

Design and Implementation. PhD thesis, University of Pennsylvania, 1994.

[19] J. S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic

linear logic. Information and Computation, 110:32–42, 1994.

[20] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning

about Systems. Cambridge University Press, New York, NY, USA, 2004.

[21] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. J. Log.

Program., 19/20:503–581, 1994.

[22] J. Jaffar and S. Michaylov. Methodology and implementation of a clp system.

In J.-L. Lassez, editor, Logic Programming: Proc. of the Fourth International

Conference (Volume 1), pages 196–218. MIT Press, Cambridge, MA, 1987.

BIBLIOGRAPHY 76

[23] H. J. Levesque, R. Reiter, Y. Lesprance, F. Lin, and R. B. Scherl. Golog:

A logic programming language for dynamic domains. Journal of Logic Pro-

gramming, 31, 1997.

[24] J. marc Andreoli. Logic programming with focusing proofs in linear logic.

Journal of Logic and Computation, 2:297–347, 1992.

[25] M. C. Mayer, C. Limongelli, A. Orlandini, and V. Poggioni. Linear temporal

logic as an executable semantics for planning languages. J. of Logic, Lang.

and Inf., 16(1):63–89, 2007.

[26] J. McCarthy. A basis for a mathematical theory of computation. In Computer

Programming and Formal Systems, pages 33–70. North-Holland, 1963.

[27] S. Michaylov. Design and implementation of practical constraint logic pro-

gramming systems. PhD thesis, Carnegie Mellon University, Pittsburgh, PA,

USA, 1992.

[28] V. Nr, H. Levesque, C. F. H. Levesque, F. Pirri, F. Pirri, R. Reiter, and

R. Reiter. Foundations for the situation calculus, 1998.

[29] R. A. O’Keefe. The craft of Prolog. MIT Press, Cambridge, MA, USA, 1990.

[30] P. P. Parra, E. Yescas, and J. Vásquez. Planning using situation calculus,

prolog and a mobile robot. In LA-NMR, 2007.

[31] F. Pfenning. Lecture notes on linear logic. Technical report, Carnegie Mellon

University, 2002.

[32] F. Pfenning. Lecture notes on automated theorem proving. Technical report,

Carnegie Mellon University, 2004.

[33] M. Pistore and P. Traverso. Planning as model checking for extended goals

in non-deterministic domains. In In Proc. IJCAI’01, pages 479–484. AAAI

Press, 2001.

[34] S. Ratschan. Efficient solving of quantified inequality constraints over the

real numbers. ACM Trans. Comput. Logic, 7(4):723–748, 2006.

BIBLIOGRAPHY 77

[35] R. Reiter. Knowledge in action : logical foundations for specifying and im-

plementing dynamical systems. MIT Press, Cambridge, Mass., 2001. The

frame problem and the situation calculus.

[36] J. A. Robinson. Computational logic: The unification computation. Machine

Intelligence, 6:63–72, 1971.

[37] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pren-

tice Hall, second edition, 2003.

[38] R. M. Smullyan. First-Order Logic. Dover Publications, Inc., 1995.

[39] M. Thielscher. From situation calculus to fluent calculus: state update ax-

ioms as a solution to the inferential frame problem. Artificial Intelligence,

111(1–2):277–299, 1999.

[40] M. Thielscher. Flux: A logic programming method for reasoning agents.

Theory Pract. Log. Program., 5(4-5):533–565, 2005.

[41] F. P. Uluc Saranli. Using constrained intuitionistic linear logic for hybrid

robotic planning problems. 2007.

Appendix A

Sequent Calculus for Linear Logic

Γ;A =⇒ A init
(Γ, A); (∆, A) =⇒ C

(Γ, A); ∆ =⇒ C
copy

Figure A.1: Hypotheses

Γ; ∆, A =⇒ B
Γ; ∆ =⇒ A(B (R

Γ; ∆1 =⇒ A Γ; ∆2, B =⇒ C
Γ; ∆1,∆2, A(B =⇒ C (L

Γ; ∆1 =⇒ A Γ; ∆2 =⇒ B
Γ; ∆1,∆2 =⇒ A⊗B ⊗R

Γ; ∆, A,B =⇒ C
Γ; ∆, A⊗B =⇒ C ⊗L

Γ; · =⇒ 1 1R
Γ; ∆ =⇒ C

Γ; ∆, 1 =⇒ C 1L

Figure A.2: Multiplicative Connectives

78

APPENDIX A. SEQUENT CALCULUS FOR LINEAR LOGIC 79

Γ; ∆ =⇒ A Γ; ∆ =⇒ B

Γ; ∆ =⇒ A&B &R

Γ; ∆, A =⇒ C

Γ; ∆, A&B =⇒ C &L1

Γ; ∆, B =⇒ C

Γ; ∆, A&B =⇒ C &L2

Γ; ∆ =⇒ T TR
No T left rule

Γ; ∆ =⇒ A
Γ; ∆ =⇒ A⊕B ⊕R1

Γ; ∆ =⇒ B
Γ; ∆ =⇒ A⊕B ⊕R2

Γ; ∆, A =⇒ C Γ; ∆, B =⇒ C

Γ; ∆, A⊕B =⇒ C ⊕L

No 0 right rule Γ; ∆, 0 =⇒ C 0L

Figure A.3: Additive Connectives

Γ; ∆ =⇒ [a/x]A

Γ; ∆ =⇒ ∀x.A ∀Ra
Γ; ∆, [t/x]A =⇒ C

Γ; ∆,∀x.A =⇒ C ∀L

Γ; ∆ =⇒ [t/x]A

Γ; ∆ =⇒ ∃x.A ∃R
Γ; ∆, [a/x]A =⇒ C

Γ; ∆,∃x.A =⇒ C ∃La

Figure A.4: Quantifiers

(Γ, A); ∆ =⇒ B

Γ; ∆ =⇒ A ⊃ B ⊃ R
Γ; · =⇒ A Γ; ∆, B =⇒ C

Γ; ∆, A ⊃ B =⇒ C ⊃ L

Γ; · =⇒ A

Γ; · =⇒!A !R
(Γ, A); ∆ =⇒ C

Γ; (∆, !A) =⇒ C !L

Figure A.5: Exponentials

Appendix B

Focused Intuitionistic

First-Order Linear Logic (FocLL)

Γ; ∆; Ω,A =⇒ B ⇑
Γ; ∆; Ω =⇒ A(B ⇑ foc-(R

Γ; ∆; Ω =⇒ A ⇑ Γ; ∆; Ω =⇒ B ⇑
Γ; ∆; Ω =⇒ A&B ⇑ foc-&R

Γ; ∆; Ω =⇒ T ⇑ foc-TR
Γ,A; ∆; Ω =⇒ B ⇑

Γ; ∆; Ω =⇒ A ⊃ B ⇑ foc- ⊃ R

Γ; ∆; Ω ⇑ =⇒ [a/x]A C not right asynchronous

Γ; ∆; Ω =⇒ ∀x.A ⇑ foc-∀Ra

Γ; ∆; Ω ⇑ =⇒ C, C not right asynchronous

Γ; ∆; Ω =⇒ C ⇑ foc- ⇑ R

Figure B.1: Right invertible rules for the FocLL system

80

APPENDIX B. FOCUSED INTUITIONISTIC FIRST-ORDER LINEAR LOGIC (FOCLL)81

Γ; ∆; Ω,A,B ⇑ =⇒ C
Γ; ∆; Ω,A⊗B ⇑ =⇒ C foc-⊗ L

Γ; ∆; Ω ⇑ =⇒ C
Γ; ∆; Ω,1 ⇑ =⇒ C foc-1L

Γ; ∆; Ω,A ⇑ =⇒ C Γ; ∆; Ω,B ⇑ =⇒ C
Γ; ∆; Ω,A⊕B ⇑ =⇒ C foc-⊕ L Γ; ∆; Ω,0 ⇑ =⇒ C foc-0L

Γ,A; ∆; Ω ⇑ =⇒ C
Γ; ∆; Ω,!A ⇑ =⇒ C foc-!L

Γ; ∆; Ω,[a/x]A ⇑ =⇒ C
Γ; ∆; Ω,∃x.A ⇑ =⇒ C foc-∃La

Γ; ∆,A; Ω ⇑ =⇒ C, A not left asynchronous

Γ; ∆; Ω,A ⇑ =⇒ C foc- ⇑ L

Figure B.2: Left invertible rule set for FocLL system

Γ; ∆; · =⇒ C ⇓, C not atomic

Γ; ∆; · ⇑ =⇒ C foc-decideR

Γ; ∆; A ⇓ =⇒ C

Γ; ∆,A; · ⇑ =⇒ C foc-decideL
Γ,A; ∆; A ⇓ =⇒ C

Γ,A; ∆; · ⇑ =⇒ C foc-decideL!

Figure B.3: Decision rule set for FocLL system

Γ; ∆1; · =⇒ A ⇓ Γ; ∆2; · =⇒ B ⇓
Γ; ∆1,∆2; · =⇒ A⊗B ⇓ foc-⊗R Γ; ·; · =⇒ 1 ⇓ foc-1R

Γ; ∆; · =⇒ A ⇓
Γ; ∆; · =⇒ A⊕B ⇓ foc-⊕R1

Γ; ∆; · =⇒ B ⇓
Γ; ∆; · =⇒ A⊕B ⇓ foc-⊕R2

Γ; ∆; · =⇒ [t/x]A ⇓
Γ; ∆; · =⇒ ∃x.A ⇓ foc-∃Ra

Γ; ·; · =⇒ A ⇑
Γ; ·; · =⇒ !A ⇓ foc-!R

Figure B.4: Right focusing rule set for FocLL system

APPENDIX B. FOCUSED INTUITIONISTIC FIRST-ORDER LINEAR LOGIC (FOCLL)82

Γ; ∆2; B ⇓ =⇒ C Γ; ∆1; · =⇒ A ⇓
Γ; ∆1,∆2; A(B ⇓ =⇒ C foc-(L

Γ; ∆; B ⇓ =⇒ C Γ; ·; · =⇒ A ⇑
Γ; ∆; A ⊃ B ⇓ =⇒ C foc- ⊃ L

Γ; ∆; A ⇓ =⇒ C

Γ; ∆; A&B ⇓ =⇒ C foc-&L1

Γ; ∆; B ⇓ =⇒ C

Γ; ∆; A&B ⇓ =⇒ C foc-&L2

no left rule for T

Γ; ∆; [t/x]A ⇓ =⇒ C

Γ; ∆; ∀x.A ⇓ =⇒ C foc-∀L

Γ; ·; P ⇓ =⇒ P foc-init

Γ; ∆; A ⇑ =⇒ C A not atomic and not left synchronous

Γ; ∆; A ⇓ =⇒ C foc- ⇓ L

Γ; ∆; · =⇒ A ⇑
Γ; ∆; · =⇒ A ⇓ foc- ⇓ R

Figure B.5: Left focusing rule set for FocLL system

Appendix C

Soundness and Completeness of

The FRM System

C.1 Key Properties of The FRM System

Certain properties of the FRM system will be useful in proving its soundness and

completeness with respect to the FocLL system.

Lemma C.1.1 (Subcontext property for FRM).

• If Γ; ∆I \∆O; Ω =⇒v G ⇑, then ∆O ⊆ ∆I .

• If Γ; ∆I \∆O; Ω ⇑ =⇒v G, then ∆O ⊆ ∆I .

• If Γ; ∆I \∆O; · =⇒v G ⇓, then ∆O ⊆ ∆I .

• If Γ; ∆I \∆O; A ⇓ =⇒v G, then ∆O ⊆ ∆I .

Proof. The proof proceeds by nested structural induction on the following deriva-

tions

83

APPENDIX C. SOUNDNESS AND COMPLETENESS OF THE FRM SYSTEM84

Γ; ∆I \∆O; Ω =⇒v G ⇑ ,
Γ; ∆I \∆O; Ω ⇑ =⇒v G ,

Γ; ∆I \∆O; · =⇒v G ⇓ ,
Γ; ∆I \∆O; A ⇓ =⇒v G .

We show some key cases that are nontrivial to prove. Other cases that are

not shown here are either trivial or similar to the ones proven below.

Case &R01: Suppose that the given derivation ends with the rule

F1

Γ; ∆I \∆O; Ω =⇒0 A ⇑
F2

Γ; ∆I \∆O,∆2; Ω =⇒1 B ⇑
Γ; ∆I \∆O; Ω =⇒0 A&B ⇑ &R01

∆O ⊆ ∆I By i.h. on F1

Case &R11: Suppose that the given derivation ends with the rule

F1

Γ; ∆I \∆O1; Ω =⇒1 A ⇑
F2

Γ; ∆I \∆O2; Ω =⇒1 B ⇑
Γ; ∆I \∆O1 ∩∆O2; Ω =⇒1 A&B ⇑ &R11

∆O1 ⊆ ∆I By i.h. on F1

∆O2 ⊆ ∆I By i.h. on F2

∆O1 ∩∆O2 ⊆ ∆I By multiset properties

Case ⊕L01: Suppose that the given derivation ends with the rule

F1

Γ; ∆I \∆O; Ω, A ⇑ =⇒0 C

F2

Γ; ∆I \∆O2; Ω, B ⇑ =⇒1 C

Γ; ∆I \∆O; Ω, A⊕B ⇑ =⇒0 C
⊕L01

APPENDIX C. SOUNDNESS AND COMPLETENESS OF THE FRM SYSTEM85

∆O ⊆ ∆I By i.h. on F1

Case ⇑ L1A: Suppose that the given derivation ends with the rule

F1

Γ; ∆I , A \∆O, A; Ω ⇑ =⇒1 C, A not left asynchronous

Γ; ∆I \∆O; Ω, A ⇑ =⇒1 C
⇑ L1A

∆O, A ⊆ ∆I , A By i.h. on F1

∆O ⊆ ∆I By multiset properties, deleting A from both sides

Case ⇑ Lv: Suppose that the given derivation ends with the rule

F1

Γ; ∆I , A \∆O; Ω ⇑ =⇒v C, A not left asynchronous

Γ; ∆I \∆O; Ω, A ⇑ =⇒v C
⇑ Lv

A /∈ ∆O We know that A is not in the output. L1A holds counter case

∆O ⊆ ∆I , A By i.h. on F1

∆O ⊆ ∆I By multiset properties, if we delete A, it still holds

Case decide− L: Suppose that the given derivation ends with the rule

F1

Γ; ∆I \∆O; A ⇓ =⇒v C

Γ; ∆I , A \∆O; · ⇑ =⇒v C
decide− L

∆O ⊆ ∆I By i.h. on F1

∆O ⊆ ∆I , A By multiset properties

Case ⊗R: Suppose that the given derivation ends with the rule

APPENDIX C. SOUNDNESS AND COMPLETENESS OF THE FRM SYSTEM86

F1

Γ; ∆I \∆M ; · =⇒u A ⇓
F2

Γ; ∆M \∆O; · =⇒w B ⇓
Γ; ∆I \∆O; · =⇒u∨w A⊗B ⇓ ⊗R

∆M ⊆ ∆I By i.h. on F1

∆O ⊆ ∆M By i.h. on F2

∆O ⊆ ∆I Since ∆O ⊆ ∆M ⊆ ∆I

Case(L: Suppose that the given derivation ends with the rule

F1

Γ; ∆I \∆M ; B ⇓ =⇒u C

F2

Γ; ∆M \∆O; · =⇒w A ⇓
Γ; ∆I \∆O; A(B ⇓ =⇒u∨w C

(L

∆M ⊆ ∆I By i.h. on F1

∆O ⊆ ∆M By i.h. on F2

∆O ⊆ ∆I Since ∆O ⊆ ∆M ⊆ ∆I

�

C.2 Soundness

Theorem C.2.1 (Soundness of FRM with respect to FocLL).

• If Γ; ∆I \∆O; Ω =⇒0 G ⇑, then Γ; ∆I −∆O; Ω =⇒ G ⇑ .

• If Γ; ∆I \∆O; Ω =⇒1 G ⇑, then Γ; (∆I −∆O,∆
′); Ω =⇒ G ⇑ for every

context ∆′ ⊆ ∆O .

• If Γ; ∆I \∆O; Ω ⇑ =⇒0 G, then Γ; ∆I −∆O; Ω ⇑ =⇒ G .

APPENDIX C. SOUNDNESS AND COMPLETENESS OF THE FRM SYSTEM87

• If Γ; ∆I \∆O; Ω ⇑ =⇒1 G, then Γ; (∆I −∆O,∆
′); Ω ⇑ =⇒ G for every

context ∆′ ⊆ ∆O .

• If Γ; ∆I \∆O; · =⇒0 G ⇓, then Γ; ∆I −∆O; · =⇒ G ⇓ .

• If Γ; ∆I \ ∆O; · =⇒1 G ⇓, then Γ; (∆I − ∆O,∆
′); · =⇒ G ⇓ for every

context ∆′ ⊆ ∆O .

• If Γ; ∆I \∆O; A ⇓ =⇒0 G, then Γ; ∆I −∆O; A ⇓ =⇒ G .

• If Γ; ∆I \∆O; A ⇓ =⇒1 G, then Γ; (∆I −∆O,∆
′); A ⇓ =⇒ G for every

context ∆′ ⊆ ∆O .

Proof. The proof proceeds by nested structural induction on the following deriva-

tions

Γ; ∆I \∆O; Ω =⇒0 G ⇑ ,

Γ; ∆I \∆O; Ω =⇒1 G ⇑ ,

Γ; ∆I \∆O; Ω ⇑ =⇒0 G ,

Γ; ∆I \∆O; Ω ⇑ =⇒1 G ,

Γ; ∆I \∆O; · =⇒0 G ⇓ ,

Γ; ∆I \∆O; · =⇒1 G ⇓ ,

Γ; ∆I \∆O; A ⇓ =⇒0 G ,

Γ; ∆I \∆O; A ⇓ =⇒1 G .

We show some key cases of the proof.

Case(Rv: Suppose that the given derivation ends with the rule

F1

Γ; ∆I \∆O; Ω, A =⇒v B ⇑
Γ; ∆I \∆O; Ω =⇒v A(B ⇑ (Rv

APPENDIX C. SOUNDNESS AND COMPLETENESS OF THE FRM SYSTEM88

For v = 0

Γ; ∆I −∆O; Ω, A =⇒ B ⇑ By i.h. on F1

Γ; ∆I −∆O; Ω =⇒ A(B ⇑ By rule foc-(R

For v = 1

Γ; ∆I −∆O,∆
′; Ω, A =⇒ B ⇑ By i.h. on F1, ∀.∆′ ⊆ ∆O

Γ; ∆I −∆O,∆
′; Ω =⇒ A(B ⇑ By rule foc-(R

Case &R01: Suppose that the given derivation ends with the rule

F1

Γ; ∆I \∆O; Ω =⇒0 A ⇑
F2

Γ; ∆I \∆O,∆2; Ω =⇒1 B ⇑
Γ; ∆I \∆O; Ω =⇒0 A&B ⇑ &R01

Γ; ∆I −∆O; Ω =⇒ A ⇑ By i.h. on F1

Γ; ∆I − (∆O,∆2),∆′; Ω =⇒ B ⇑ By i.h. on F2, ∀.∆′ ⊆ (∆O,∆2)

Γ; ∆I −∆O; Ω =⇒ A&B ⇑ By rule foc-&R for ∆′ = ∆2

Case &R10 is symmetric to &R01.

Case &R11: Suppose that the given derivation ends with the rule

F1

Γ; ∆I \∆O1; Ω =⇒1 A ⇑
F2

Γ; ∆I \∆O2; Ω =⇒1 B ⇑
Γ; ∆I \∆O1 ∩∆O2; Ω =⇒1 A&B ⇑ &R11

Γ; ∆I −∆O1, ∆′1; Ω =⇒ A ⇑ By i.h. on F1 ∀ .∆′1 ⊆ ∆O1

Γ; ∆I −∆O2, ∆′2; Ω =⇒ B ⇑ By i.h. on F2 ∀ .∆′2 ⊆ ∆O2

Γ; ∆I − (∆O1 ∩∆O2), ∆′3; Ω =⇒ A&B ⇑ By rule foc-&R, ∀.∆′3 ⊆ (∆O1 ∩∆O2)

Case TR: Suppose that the given derivation ends with the rule

APPENDIX C. SOUNDNESS AND COMPLETENESS OF THE FRM SYSTEM89

Γ; ∆I \∆I ; Ω =⇒1 T ⇑ TR

Γ; ∆′; Ω =⇒ T ⇑ By rule foc-TR, ∀.∆′ ⊆ ∆I

Case ⇑ R: Suppose that the given derivation ends with the rule

F1

Γ; ∆I \∆O; Ω ⇑ =⇒v C, C not right asynchronous

Γ; ∆I \∆O; Ω =⇒v C ⇑ ⇑ R

For v = 0

Γ; ∆I −∆O; Ω ⇑ =⇒ C By i.h. on F1

Γ; ∆I −∆O; Ω =⇒ C ⇑ By rule foc-⇑ R
For v = 1

Γ; ∆I −∆O,∆
′; Ω ⇑ =⇒ C By i.h. on F1 ∀ .∆′ ⊆ ∆O

Γ; ∆I −∆O,∆
′; Ω =⇒ C ⇑ By By rule foc-⇑ R, ∀.∆′ ⊆ ∆O

Case ⊕L01: Suppose that the given derivation ends with the rule

F1

Γ; ∆I \∆O; Ω, A ⇑ =⇒0 C
F2

Γ; ∆I \∆O,∆2; Ω, B ⇑ =⇒1 C

Γ; ∆I \∆O; Ω, A⊕B ⇑ =⇒0 C
&R01

Γ; ∆I −∆O; Ω, A ⇑ =⇒ C By i.h. on F1

Γ; ∆I − (∆O,∆2),∆′; Ω, B ⇑ =⇒ C By i.h. on F2 ∀ .∆′ ⊆ ∆O,∆2

Γ; ∆I −∆O; Ω ⇑ =⇒ A⊕B By rule foc-⊕R for ∆′ = ∆2

Case ⊕L11: Suppose that the given derivation ends with the rule

F1

Γ; ∆I \∆O1; Ω, A =⇒1 C ⇑
F2

Γ; ∆I \∆O2; Ω, B =⇒1 C ⇑
Γ; ∆I \∆O1 ∩∆O2; Ω, A⊕B =⇒1 C ⇑ &L11

APPENDIX C. SOUNDNESS AND COMPLETENESS OF THE FRM SYSTEM90

Γ; ∆I −∆O1, ∆′1; Ω =⇒ A ⇑ By i.h. on F1 ∀ .∆′1 ⊆ ∆O1

Γ; ∆I −∆O2, ∆′2; Ω =⇒ B ⇑ By i.h. on F2 ∀ .∆′2 ⊆ ∆O2

Γ; ∆I − (∆O1 ∩∆O2), ∆′3; Ω =⇒ A&B ⇑ By rule foc-&R, ∀.∆′3 ⊆ (∆O1 ∩∆O2)

Case ⇑ R: Suppose that the given derivation ends with the rule

F1

Γ; ∆I \∆O; Ω ⇑ =⇒v C, C not right asynchronous

Γ; ∆I \∆O; Ω =⇒v C ⇑ ⇑ R

For v = 0

Γ; ∆I −∆O; Ω ⇑ =⇒ C By i.h. on F1

Γ; ∆I −∆O; Ω =⇒ C ⇑ By By rule foc-⇑ R
For v = 1

Γ; ∆I −∆O,∆
′; Ω ⇑ =⇒ C By i.h. on F1 ∀ .∆′ ⊆ ∆O

Γ; ∆I −∆O,∆
′; Ω =⇒ C ⇑ By By rule foc-⇑ R, ∀.∆′ ⊆ ∆O

Case ⇑ L 1A: Suppose that the given derivation ends with the rule

F1

Γ; ∆I , A \∆O, A; Ω ⇑ =⇒1 C, A not left asynchronous

Γ; ∆I \∆O; Ω, A =⇒1 C ⇑ ⇑ L1A

Γ; ∆I −∆O,∆
′; Ω ⇑ =⇒ C By i.h. on F1 ∀ .∆′ ⊆ (∆O, A)

Γ; ∆I −∆O,∆
′; Ω =⇒ C ⇑ By rule foc-⇑ L1A

Case decideL: Suppose that the given derivation ends with the rule

F1

Γ; ∆I \∆O; A ⇓ =⇒v C

Γ; ∆I , A \∆O; · ⇑ =⇒v C
decideL

APPENDIX C. SOUNDNESS AND COMPLETENESS OF THE FRM SYSTEM91

For v = 0

Γ; ∆I −∆O; A ⇓ =⇒ C By i.h. on F1

Γ; ∆I −∆O, A; · ⇑ =⇒ C By rule foc-decideL

For v = 1

Γ; ∆I −∆O,∆
′; A ⇓ =⇒ C By i.h. on F1 ∀ .∆′ ⊆ ∆O

Γ; ∆I −∆O,∆
′, A; · ⇑ =⇒ C By rule foc-decideL

Case ⊗R: Suppose that the given derivation ends with the rule

F1

Γ; ∆,∆M ,∆O \∆M ,∆O; · =⇒u A ⇓
F2

Γ; ∆M ,∆O \∆O; · =⇒w B ⇓
Γ; ∆,∆M ,∆O \∆O; · =⇒u∨w A⊗B ⇓ ⊗R

For vw = 10

Γ; ∆,∆′; · =⇒ A ⇓ By i.h. on F1 ∀ .∆′ ⊆ ∆M ,∆O

Γ; ∆M ; · =⇒ B ⇓ By i.h. on F2

Γ; ∆,∆M ,∆
′; · =⇒ A⊗B ⇓ By rule foc-⊗R, ∀ .∆′ ⊆ ∆O

For vw = 00

Γ; ∆; · =⇒ A ⇓ By i.h. on F1

Γ; ∆M ; · =⇒ B ⇓ By i.h. on F2

Γ; ∆,∆M ; · =⇒ A⊗B ⇓ By rule foc-⊗R

Case(L: Suppose that the given derivation ends with the rule

F1

Γ; ∆,∆M ,∆O \∆M ,∆O; · =⇒u A ⇓
F2

Γ; ∆M ,∆O \∆O; B ⇓ =⇒w C

Γ; ∆,∆M ,∆O \∆O; A(B ⇓ =⇒u∨w C
(L

For vw = 10

Γ; ∆,∆′; · =⇒ A ⇓ By i.h. on F1 ∀ .∆′ ⊆ ∆M ,∆O

Γ; ∆M ; B ⇓ =⇒ C By i.h. on F2

Γ; ∆,∆M ,∆
′; A(B ⇓ =⇒ C By rule foc-(L, ∀ .∆′ ⊆ ∆O

APPENDIX C. SOUNDNESS AND COMPLETENESS OF THE FRM SYSTEM92

�

C.3 Completeness

Theorem C.3.1 (Completeness of FRM with respect to FocLL).

• If Γ; ∆; Ω =⇒ G ⇑, then

either Γ; (∆,∆O) \∆O; Ω =⇒0 G ⇑ for every context ∆O

or Γ; (∆,∆O) \ (∆′,∆O); Ω =⇒1 G ⇑ for every context ∆O and for some

∆′ ⊆ ∆ .

• If Γ; ∆; Ω ⇑ =⇒ G, then

either Γ; (∆,∆O) \∆O; Ω ⇑ =⇒0 G for every context ∆O

or Γ; (∆,∆O) \ (∆′,∆O); Ω ⇑ =⇒1 G for every context ∆O and for some

∆′ ⊆ ∆ .

• If Γ; ∆; · =⇒ G ⇓, then

either Γ; (∆,∆O) \∆O; · =⇒0 G ⇓ for every context ∆O

or Γ; (∆,∆O) \ (∆′,∆O); · =⇒1 G ⇓ for every context ∆O and for some

∆′ ⊆ ∆ .

• If Γ; ∆; A ⇓ =⇒ G, then

either Γ; (∆,∆O) \∆O; A ⇓ =⇒0 G for every context ∆O

or Γ; (∆,∆O) \ (∆′,∆O); A ⇓ =⇒1 G for every context ∆O and for some

∆′ ⊆ ∆ .

Proof. By induction on the structure of a derivation of

Γ; ∆; Ω =⇒ G ⇑ ,

APPENDIX C. SOUNDNESS AND COMPLETENESS OF THE FRM SYSTEM93

Γ; ∆; Ω ⇑ =⇒ G ,

Γ; ∆; · =⇒ G ⇓ ,

Γ; ∆; A ⇓ =⇒ G . We show some cases of the proof.

Case foc−(R: Suppose that the given derivation ends with the rule

F1

Γ; ∆; Ω, A =⇒ B ⇑
Γ; ∆; Ω =⇒ A(B ⇑ foc−(R

Either

Γ; ∆, ∆O \∆O; Ω, A =⇒0 B ⇑ By i.h. on F1 ∀ .∆O

Γ; ∆, ∆O \∆O; Ω =⇒0 A(B ⇑ By rule (Rv

or

Γ; ∆, ∆O \∆′, ∆O; Ω, A =⇒1 B ⇑ By i.h. on F1 ∀ .∆O and for some ∆′ ⊆ ∆

Γ; ∆, ∆O \∆′, ∆O; Ω =⇒1 A(B ⇑ By rule (Rv

Case foc−&R: Suppose that the given derivation ends with the rule

F1

Γ; ∆; Ω =⇒ A ⇑
F2

Γ; ∆; Ω =⇒ B ⇑
Γ; ∆; Ω =⇒ A&B ⇑ foc−&R

By i.h. on Fi, either Γ; ∆,∆O \∆O; Ω =⇒0 Gi ⇑

or Γ; ∆,∆O \∆′i,∆O; Ω =⇒1 Gi ⇑ ∀ .∆O and for some ∆′i ⊆ ∆ for i = 1,2.

There are four T − flag possibilities.

APPENDIX C. SOUNDNESS AND COMPLETENESS OF THE FRM SYSTEM94

Subcase (0,0):

Γ; ∆,∆O \∆O; Ω =⇒0 A ⇑ and Γ; ∆,∆O \∆O; Ω =⇒0 B ⇑ .

Combining them by rule &R00 satisfies .

Subcase (0,1):

Γ; ∆,∆O \∆O; Ω =⇒0 A ⇑ and Γ; ∆,∆O \∆′2,∆O; Ω =⇒1 B ⇑ .

Combining them by rule &R01 satisfies .

Subcase (1,0): Similar with the subcase (0,1) .

Subcase (1,1):

Γ; ∆,∆O \∆′1,∆O; Ω =⇒1 A ⇑ and Γ; ∆,∆O \∆′2,∆O; Ω =⇒1 B ⇑ .

By rule &R11, Γ; ∆,∆O \ (∆′1,∆O) ∩ (∆′2,∆O); Ω =⇒1 A&B ⇑
is desired result if we take ∆′ = (∆′1 ∩∆′2) .

Case foc−⊕L: Suppose that the given derivation ends with the rule

F1

Γ; ∆; Ω, A ⇑ =⇒ C
F2

Γ; ∆; Ω, B ⇑ =⇒ C

Γ; ∆; Ω, A⊕B ⇑ =⇒ C
foc−⊕L

By i.h. on Fi, either Γ; ∆,∆O \∆O; Ω =⇒0 Gi ⇑

or Γ; ∆,∆O \∆′i∆O; Ω =⇒1 Gi ⇑ ∀ .∆O and for some ∆′i ⊆ ∆ for i = 1,2 .

There are four T − flag possibilities.

Subcase (0,0):

Γ; ∆, ∆O \∆O; Ω, A ⇑ =⇒0 C and Γ; ∆, ∆O \∆O; Ω, B ⇑ =⇒0 C .

Combining them by rule ⊕L00 satisfies .

Subcase (0,1):

Γ; ∆, ∆O \∆O; Ω, A ⇑ =⇒0 C and Γ; ∆, ∆O \∆′2, ∆O; Ω, B ⇑ =⇒1 C .

Combining them by rule ⊕L01 satisfies .

Subcase (1,0): Similar with the subcase (0,1) .

Subcase (1,1):

Γ; ∆, ∆O \∆′1, ∆O; Ω, A ⇑ =⇒1 C and Γ; ∆, ∆O \∆′2, ∆O; Ω, B ⇑ =⇒1 C .

By rule ⊕L11, Γ; ∆, ∆O \ (∆′1, ∆O) ∩ (∆′2, ∆O); Ω, A⊕B ⇑ =⇒1 C

is desired result if we take ∆′ = (∆′1 ∩∆′2) .

APPENDIX C. SOUNDNESS AND COMPLETENESS OF THE FRM SYSTEM95

Case foc− decideL: Suppose that the given derivation ends with the rule

F1

Γ; ∆; A ⇓ =⇒ C

Γ; ∆, A; · ⇑ =⇒ C
foc− decideL

Either

Γ; ∆,∆O \∆O; A ⇓ =⇒0 C By i.h. on F1 ∀ .∆O

Γ; ∆,∆O, A \∆O; · ⇑ =⇒0 C By rule decideL

or

Γ; ∆,∆O \∆′,∆O; A ⇓ =⇒1 C By i.h. on F1 ∀ .∆O and for some ∆′ ⊆ ∆

Γ; ∆,∆O, A \∆′,∆O; · ⇑ =⇒1 C By rule decideL

Goal:

Γ; ∆,∆O, A \∆
′′
,∆O; · ⇑ =⇒1 C ∀ .∆O and for some ∆

′′ ⊆ (∆, A); take ∆
′′

= ∆′ from above .

Case foc−⊗R: Suppose that the given derivation ends with the rule

F1

Γ; ∆1; · =⇒ A ⇓
F2

Γ; ∆2; · =⇒ B ⇓
Γ; ∆1,∆2; · =⇒ A⊗B ⇓ foc−⊗R

There are four T − flag possibilities.

Subcase (0,0):

Γ; ∆1,∆2,∆O \∆2,∆O; · =⇒0 A ⇓ By i.h. on F1, ∀ .∆O

Γ; ∆2,∆O \∆O; · =⇒0 B ⇓ By i.h. on F2, ∀ .∆O

Γ; ∆1,∆2,∆O \∆O; · =⇒0 A⊗B ⇓ By rule ⊗R00

Subcase (0,1):

Γ; ∆1,∆2,∆O \∆2,∆O; · =⇒0 A ⇓ By i.h. on F1, ∀ .∆O

Γ; ∆2,∆O \∆O,∆
′; · =⇒1 B ⇓ By i.h. on F2, ∀ .∆O and for some ∆′ ⊆ ∆2

Γ; ∆1,∆2,∆O \∆O,∆
′; · =⇒1 A⊗B ⇓ By rule ⊗R

Goal:

Γ; ∆1,∆2,∆O \∆
′′
,∆O; · =⇒1 A⊗B ⇓ ∀ .∆O, ∆

′′ ⊆ (∆1,∆2); take ∆
′′

= ∆′ from above.

Subcase (1,0): Similar with the subcase (0,1).

Subcase (1,1):

Γ; ∆1,∆2,∆O \∆2,∆O,∆
′
1; · =⇒1 A ⇓ By i.h. on F1, ∀ .∆O and for some ∆′1 ⊆ ∆1

Γ; ∆2,∆O,∆
′
1 \∆O,∆

′
2; · =⇒1 B ⇓ By i.h. on F2, ∀ .∆O and for some ∆′2 ⊆ (∆2,∆′1)

Γ; ∆1,∆2,∆O \∆O,∆
′
2; · =⇒1 A⊗B ⇓ By rule ⊗R ∀ .∆O and for some ∆′2 ⊆ (∆1,∆2)

�

