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ABSTRACT

A MOBILE AMMUNITION DISTRIBUTION SYSTEM
DESIGN ON THE BATTLEFIELD

Hünkâr Toyoğlu

PhD. in Industrial Engineering

Supervisors: Assoc. Prof. Bahar Yetiş Kara and

Assoc. Prof. Oya Ekin Karaşan

January, 2010

Ammunition has been the most prominent factor in determining the outcome

of combat. In this dissertation we study a military logistics problem in which

ammunition requirements of the combat units, which are located on the battle-

field, are to be satisfied in the right amount when and where they are needed.

Our main objective is to provide a decision support tool that can help plan

ammunition distribution on the battlefield. We demonstrate through an exten-

sive literature review that the existing models are not capable of handling the

specifics of our problem. Hence, we propose a mathematical programming model

considering arc-based product-flow with O(n4) decision variables and constraints.

The model is a three-layer commodity-flow location routing formulation that dis-

tributes multiple products, respects hard time windows, allows demand points to

be supplied by more than one vehicle or depot, and locates facilities at two differ-

ent layers. We then develop a new mathematical programming model with only

O(n3) decision variables and constraints by considering node-based product-flow.

We derive several valid inequalities to speed up the solution time of our models,

illustrate the performance of the models in several realistically sized scenarios,

and report encouraging results. Based on these mathematical models we propose

two three-phase heuristic methods: a routing-first location-second and a location-

first routing-second heuristic. The computational results show that complex real

world problems can effectively be solved in reasonable times with the proposed

heuristics. Finally, we introduce a dynamic model that designs the distribution

system in consecutive time periods for the entire combat duration, and show how

the static model can be utilized in dynamic environments.

Keywords: Location routing, logistics, distribution, network design.
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ÖZET

MUHAREBE SAHASINDA MOBIL BIR MÜHIMMAT
DAĞITIM SISTEMI TASARIMI

Hünkâr Toyoğlu

Endüstri Mühendisliği, Doktora

Tez Yöneticileri: Doç. Dr. Bahar Yetiş Kara ve

Doç. Dr. Oya Ekin Karaşan

Ocak, 2010

Mühimmat savaşın sonucunu belirleyen en önemli etmendir. Bu doktora

çalışmasında muharebe sahasında bulunan birliklerin mühimmat ihtiyaçlarının

istenen yer ve zamanda ve doğru miktarda karşılanması gereken askeri

bir lojistik problem incelenmiştir. Esas amacımız muharebe sahasında

mühimmat dağıtımının planlanmasına yardımcı olabilecek bir karar destek sistemi

geliştirmektir. Kapsamlı bir yazılı eser taramasından sonra önceden geliştirilmiş

olan modellerin problemimizi çözmeye yeterli olmadıkları gösterilmiştir. Bu sebe-

ple ayrıt tabanlı ürün akışına dayanan, O(n4) sayıda karar değişkeni ve kısıt içeren

bir matematiksel model önerilmiştir. Söz konusu model üç katmanlı ürün akış

modeli olup birden fazla ürün dağıtmakta, esnek olmayan zaman pencerelerini

içermekte, ihtiyaç noktalarının birden fazla araç veya depo tarafından desteklen-

mesine izin vermekte ve iki farklı katmana tesis yerleştirmektedir. Daha sonra

düğüm tabanlı ürün akışına dayanan ve sadece O(n3) sayıda karar değişkeni

ve kısıt içeren bir matematiksel model geliştirilmiştir. Modellerin çözüm za-

manının iyileştirilmesi maksadıyla birçok geçerli eşitsizlik geliştirilmiş, bazı gerçek

boyutlu senaryolar üzerinde modellerin performansları denenmiş ve iyi sonuçlar

elde edildiği gösterilmiştir. Bu modeller temel alınarak yol atama-yerleştirme

ve yerleştirme-yol atama olmak üzere üç aşamalı iki ayrı bulgusal yöntem

geliştirilmiştir. Hesaplama sonuçları önerilen yöntemler sayesinde karmaşık

gerçek problemlerin makul zamanlar içerisinde çözülebildiğini göstermektedir.

Son olarak, muharebe boyunca birbirini izleyen zaman aralıklarında dağıtım ağını

tasarlayan dinamik bir model geliştirilmiş ve statik modelden dinamik ortamlarda

nasıl faydalanılabileceği gösterilmiştir.

Anahtar sözcükler : Ağ tasarımı, yer seçimi ve yol atama, lojistik, dağıtım.
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Chapter 1

Introduction and Motivation

A soldier on the battlefield will be; hungry without food, thirsty without

water but dead without ammunition.

The success of any type of combat operation depends on the availability of

ammunition (henceforth called ammo), because a combat unit can fight so long

as it receives ammo in the proper quantity, when and where it is needed. Hence,

ammo is the dominant factor in determining the outcome of combat and any

failure to supply the required amount of ammo may result in tactical defeat.

Previously, land forces of most countries relied upon heavy forces that were

equipped with large number of heavy weapons for their lethality. The more heavy

weapons a land force has, the more fire power it has and the more lethal it is.

However, when equipped with such numbers and types of weapons, land forces

lose their ability to move fast, and they need to keep enormous ammo inventories

stocked at huge depots. Hence, ammo distribution system of these land forces is

designed to support a heavy and slow moving force. It usually consists of different

types of various depots most of which are underground storage facilities, bunkers

or fortified storage areas.

In general, this distribution system is a continuous replenishment system in

2



CHAPTER 1. INTRODUCTION AND MOTIVATION 3

which ammo flows from 1st level depots to combat units. Ammo, which is pro-

duced or procured, is first received by 1st level depots. From there it is trans-

ported to 2nd level depots typically by rail networks. From 2nd level depots ammo

is shipped to 3rd level depots mostly by trucks and if possible by rail. Then com-

bat units draw their ammo requirements from 3rd level depots with their own

trucks. In general, this system is a push system from 1st level depots to 3rd level

depots and a pull system from 3rd level depots to combat units, i.e. it is pushed

down to 3rd level depots and pulled from there by combat units.

With the end of Cold War, most of these traditional heavy land forces have

moved towards a smaller, more agile, deployable and lethal force. Such a force

does not depend solely on its firepower, but also on its mobility. This character-

istic enables newly structured forces to move further and faster on the battlefield.

To supply such a fast moving force, an effective and efficient distribution system

is needed.

Current distribution system of most countries’ land forces may face some

problems in supporting newly structured agile forces in their variety of missions

and rapidly changing combat environments. Therefore, as land forces of most

countries change their structure, their ammo distribution systems should be con-

verted to a more mobile and flexible distribution process to provide more effective

support.

To realize this request for an effective and flexible support system, we propose

Mobile Ammunition Distribution System (Mobile-ADS). Our main objective is

to deliver ammo as close to the combat units as possible, and do this in a timely

manner. To do so, we suggest Fixed Transfer Points (Fixed-TPs) and Mobile

Transfer Points (Mobile-TPs), that – after proper positioning – will cease the

need for the remaining depots. Fixed-TPs are either railheads where the rail

network ends or suitable locations on rail network where ammo can be transported

safely as far as possible on the battlefield. Ammo is transferred from trains to

commercial trucks at Fixed-TPs. Mobile-TPs are mostly forward staging areas

where ammo trucks or stocks of ammo are kept for a short period of time before

being moved further forward to support front line combat units. They are located
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as close to combat units as possible to provide the least supply time. Ammo is

transferred from commercial trucks to ammo trucks at Mobile-TPs. With their

small and mobile structure Mobile-TPs can support agile land forces by moving

with them accordingly.

The rest of this dissertation is organized as follows: Chapter 2 describes

Mobile-ADS design problem, reviews the related literature and compares the

characteristics of our problem with those of the majority of the literature. Chap-

ter 3 demonstrates the 4-index static arc-based product flow mixed integer pro-

gramming formulation of the design problem and derives several valid inequalities

to improve the solution time. Chapter 4 presents the static 3-index node-based

product flow mixed integer programming formulation of the design problem and

derives several valid inequalities. Chapter 5 analyzes the effectiveness of the

valid inequalities for both 4-index and 3-index formulations in some test problem

instances and determines the ones that help reduce the solution time of the mod-

els. Chapter 6 tests the 4-index and 3-index formulations in several realistic size

problem instances. Chapter 7 introduces two heuristic approaches of which the

first is a ”VRP first-LRP second“ and the second is a ”LRP first-VRP second“

heuristic. Chapter 8 evaluates the performance of the two heuristics in the same

realistic scenarios. Chapter 9 extends the static 4-index formulation over time

and presents a dynamic formulation to cover entire battle duration. Chapter 10

discusses how the static model can assist in a multi-period combat operation, and

also how it can help the logistics planners when faced with unplanned combat

situations. Chapter 11 presents the summary and the conclusions.



Chapter 2

Problem Definition and Related

Literature

In this chapter, we first define the Mobile-ADS design problem. We, then, develop

a classification scheme with 17 problem characteristics and classify 78 articles

from the literature. Next, we give the classification of the problem we study.

Finally, we highlight how our Mobile-ADS design problem differs from the existing

studies in the literature.

2.1 Problem definition

Mobile-ADS is a continuous replenishment and a true push system. Highest level

depots are the first to receive ammo that is produced or procured. Ammo is

then moved forward as far as possible with rail networks. Where and how far we

can carry ammo depends on the available rail network structure. We will assume

those locations, where the rail network ends (rail heads), as potential Fixed-TP

locations.

Within the context of this study we do not analyze the flow from the highest

level depots to Fixed-TPs. We assume that the required amount of ammo can

5
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Figure 2.1: Mobile ammo distribution system on the battlefield

be carried from the highest level depots to Fixed-TPs on time by rail. This

assumption imposes no constraint on the system since there is enough ammo

at the highest level depots and current rail network structure and equipment is

sufficient to handle that amount.

Ammo is moved from Fixed-TPs to Mobile-TPs by commercial trucks on

road networks. Then Mobile-TPs issue ammo to their attached units with ammo

trucks which have the capability to move on terrain and to load and unload

themselves with their own crane. In such a system, combat units will not take

the logistic burden of drawing their ammo by themselves, on the contrary, ammo

will be pushed down to them. Figure 2.1 shows an example of a Mobile-ADS

on the battlefield. Solid (dotted) circles represent fixed (potential) locations,

respectively. Ammo is distributed from the highest level depots to Fixed-TPs

(denoted by FTP in the figure) on rail networks by trains, from Fixed-TPs to

Mobile-TPs (denoted by MTP in the figure) on road networks by commercial

trucks, and from Mobile-TPs to combat units (denoted by CU in the figure) on

terrain by ammo trucks.

Consider a battlefield containing Fixed-TPs, Mobile-TPs and combat units.
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In order to model Mobile-ADS we will take a snapshot of the battlefield and freeze

the location of combat units at a particular point in time. Hence, the location

of combat units will be fixed and the remaining decisions will be the locations

of Fixed-TPs and Mobile-TPs in order to provide a bridge between the highest

level depots and combat units.

A Mobile-TP can not be located anywhere on the battlefield. Such a site

should possess characteristics to allow technical support operations as well as

tactical defense against enemy threats. Logistics planners consider these char-

acteristics and perform on-site or map reconnaissance to determine potential

Mobile-TP locations before battle commences. As already explained, potential

Fixed-TP locations are the rail heads that are close to battlefield.

In light of above explanations our problem is to supply combat units with

correct types and quantities of ammo when and where it is needed. To do so, we

need to consider the following planning requirements; (a) number and location of

Fixed-TPs and Mobile-TPs, (b) vehicle routes and schedules to distribute ammo

from Fixed-TPs to combat units via Mobile-TPs.

Solving above problems separately may lead to suboptimal decisions (see,

for example, [75] for interdependency between location and routing). Therefore,

these decisions must be made simultaneously. Hence, Mobile-ADS design prob-

lem, which combines the location, routing and scheduling problems into a single

model, is a Location Routing Problem (LRP).

2.2 Literature review

As stated in [59], LRPs solve the combined problem of (1) determining the opti-

mal number and location of facilities that serve more than one demand point and

(2) finding the optimal set of vehicle routes and schedules. In an LRP some loca-

tion(s) must be decided among potential locations otherwise the problem becomes

a sole routing problem. Likewise, tours must be allowed among facilities/demand

points otherwise the problem would be reduced to a location problem.
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If we follow the framework of [41] we can represent the distribution system in

an LRP as layers. In this study, Fixed-TPs, Mobile-TPs and combat units exist

at the first, second and third layers, respectively. Moreover, in this framework

a tour is a round trip through several Mobile-TPs and/or combat units, making

multiple deliveries.

There are several earlier studies that introduce LRP or review LRP literature,

see for example [13], [41], [53], [59] and most recently [64]. An unpublished

study, [1], also deserves considerable attention. In this study; authors review

the LRP literature extensively including all problem variants (structure location

or extensive facility location problems, etc.) according to a three-characteristic

classification scheme: (1) deterministic or stochastic demand and supply, (2)

central (pull type) or anticentral (push type) facilities and (3) single or multiple

objectives. They explain some milestone studies that have longer lasting impact

on LRP research, and state some untouched areas that require further study.

In [59] 12 (including solution methods) problem characteristics, and in [64]

9 (including solution methods) problem characteristics are used to classify the

literature. Both classifications have 5 problem characteristics in common: (1) de-

terministic or stochastic location-routing parameters (demand, supply size, etc.),

(2) single or multiple facilities, (3) single or multiple periods and (4) single or

multiple objectives (5) exact and heuristic methods ([59] investigates this char-

acteristic separately).

In addition to above characteristics [59] has 7 distinct characteristics: (1)

single-stage (only delivery routes) or two-stage (delivery and pick up routes), (2)

single or multiple vehicles, (3) capacitated or uncapacitated vehicles, (4) capaci-

tated or uncapacitated facilities, (5) primary (origin or destination of a vehicle)

or secondary (intermediate or transshipment node) facilities, (6) none or loose or

strict time deadlines and (7) hypothetical or real data.

Likewise, [64] uses 4 distinct characteristics: (1) standard (no routes between

facilities) or non-standard hierarchical structure, (2) exact or heuristic solution

methods, (3) discrete or network or continuous solution space and (4) single or

homogeneous or heterogeneous vehicle fleet.



CHAPTER 2. PROBLEM DEFINITION AND RELATED LITERATURE 9

While problem characteristics of [59] and [64] cover most of the key elements

of the LRP framework, they do not fully address some elements that we believe

are important. In addition, recent developments in logistics systems necessitate

the alteration of some of their elements and employment of the new dimensions

of distribution logistics into the classification. These alterations and additions of

problem characteristics are described next.

A distribution system may consist of two layers (facilities and customers)

or three/four layers (primary facilities, secondary facilities and customers). In

todays just-in time environment a distribution system should address the time

restrictions of customers. Customers may invoke no time restrictions (very un-

likely), soft time restrictions (for example, one-sided time windows or time limits

on driving times) or hard time restrictions (for example, two-sided time win-

dows). Note that both loose and strict time deadlines of [59] are in the soft time

restriction category. In a two-layer LRP (assuming customers are located at fixed

and known locations at the second layer) we need to locate facilities at the first

layer. In a three-layer LRP (with the same fixed customer location assumption

at the third layer) we need to locate facilities at the first and/or second layers.

In general, in a two or three/four-layer LRP locational decisions may exist at a

single layer or at two different layers. LRPs may seek to distribute either a single

product or multiple products. In an LRP with single sourcing each customer is to

be supplied by exactly one vehicle or depot. On the contrary, customers may be

supplied by more than one vehicle or depot which is referred to as multi sourcing.

In an LRP there may exist inventories at the facilities that are to be located or

there may not exist any inventory.

In light of above explanations we use a classification scheme consisting of 17

problem characteristics a summary of which is depicted in Table 2.1. Briefly,

our classification shares the same 4 common characteristics with [59] and [64]:

(1) deterministic or stochastic location-routing parameters (demand, supply size,

etc.), (2) single or multiple facilities, (3) single or multiple periods and (4) single

or multiple objectives.

We have 5 common characteristics with [59]: (1) single-stage (only delivery
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Table 2.1: Classification scheme
1. Hierarchical level 7. Number of layers 13. Locational decision

a. Delivery or pickup a. Two a. At one layer
b. Delivery and pickup b. Three/Four b. At two layers

2. Nature of demand 8. Planning period 14. Product
a. Deterministic a. Single a. Single
b. Stochastic b. Multiple b. Multiple

3. Number of facilities 9. Time restriction 15. Sourcing
a. Single a. No a. Single
b. Multiple b. Soft b. Multiple

4. Vehicle fleet c. Hard 16. Inventory
a. Single 10. Objective function a. Exist
b. Homogeneous a. Single b. Not exist
c. Heterogeneous b. Multiple 17. Solution method

5. Vehicle capacity 11. Data a. Exact
a. Capacitated a. Real b. Heuristic
b. Uncapacitated b. Hypothetical

6. Facility capacity 12. Solution space
a. Capacitated a. Continuous
b. Uncapacitated b. Discrete

routes) or two-stage (delivery and pick up routes), (2) capacitated or uncapac-

itated vehicles, (3) capacitated or uncapacitated facilities, (4) none or loose or

strict time deadlines and (5) hypothetical or real data. Three of our characteris-

tics exist in the classification of [64]: (1) exact or heuristic solution methods, (2)

discrete or network or continuous solution space and (3) single or homogeneous

or heterogeneous vehicle fleet.

In addition to above characteristics, we have 5 distinct characteristics that

are not used by [59] or [64]: (1) two or three-four layers, (2) location at one layer

or two layers, (3) single or multiple products, (4) single or multiple sourcing and

(5) inventory exists or not exist.

We classify 78 studies according to the explained scheme. The details of our

classification are presented in Tables 2.2 through 2.4 in chronological order.
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2.3 Comparison

To better reflect the characteristics of our Mobile-ADS design problem, to express

where it stands in the LRP literature and to highlight how it distinguishes from

the previous studies, we further explain some specifics pertaining to Mobile-ADS

design problem and compare its classification with that of the majority of the

LRP literature. The classification of Mobile-ADS design problem can be stated

as follows:

• 1a. In Mobile-ADS we only consider the delivery of ammo to combat units.

• 2a. All parameters (travel times, capacities, depot and transportation costs,

etc.) in the problem are assumed to be fixed and known. Here, the most

problematic issue is daily ammo demand of combat units. Today, military

services of almost all countries generally use three approaches to estimate

the amount of ammo expected to be consumed daily (consumption rate) in

combat. In the first method, we predict the number of targets a weapon

will encounter on a daily basis, and multiply it with the required amount of

ammo to destroy each target. In the second method, we predict the life of

a weapon in combat before it is destroyed by enemy. Then, we predict the

number of engagements in its lifetime, and multiply it with the expected

ammo expenditure per engagement. In the third method, we use mathe-

matical programming models. We define a combat scenario consisting of

friendly and enemy weapons. We input several weapon and target charac-

teristics, such as probability of hit, probability of kill, etc. Then the model

gives the amount of ammo expended by each friendly weapon to defeat al-

located enemy weapons. Most parameters used in these three methods (ex-

pected target number, expected ammo expenditure per engagement, etc.)

are based on historical data and actual field experiments or tests. However,

they are constantly adjusted as new data is collected. In addition, to make

the predictions more accurate, these parameters change depending on the

type of mission (offense, defense, etc.), terrain (desert, forest, etc.), day of

the combat (first day, second day, etc.) and anticipated operational tempo.

Although, there is no visible way to predict daily requirements certainly



CHAPTER 2. PROBLEM DEFINITION AND RELATED LITERATURE 15

ahead of time, we are not totally in the dark either. Hence, we consider an-

ticipated daily consumption rates, calculated as explained above, and treat

them as fixed demands for the sake of our model’s tractability. Therefore,

we assume that demand is fixed and known. Hence, Mobile-ADS design

problem is a deterministic LRP.

• 3b. We locate multiple fixed and mobile transfer points.

• 4c. We have two different groups of vehicles, namely commercial and ammo

trucks. In addition, in each group we have various types of trucks that have

different capacities which in turn have different acquisition and operation

costs. For example, there exist 20, 30 and 40-ton commercial trucks and 5,

8 and 10-ton ammo trucks.

• 5a. Both commercial and ammo trucks are capacitated.

• 6a. Due to man power, terrain, enemy threat and fire safety considerations,

all transfer points have capacities.

• 7b. Three layers exist and Fixed-TPs/Mobile-TPs/combat units are located

at the first/second/third layers, respectively.

• 8ab. The problem of designing Mobile-ADS is very complex if we want

to capture all realities at once. Hence, to be able to better explain the

problem and its formulation, we introduce the following limitation. Since

battles generally continue for days, weeks or months, we need to consider

several consecutive planning periods in our problem. However, due to the

complexity, the dynamic version of the problem is presented following the

consideration of the single planning period. Overall, we consider consecutive

24-hour planning periods since each combat unit possesses a specific amount

of ammo on hand to initiate and continue combat operations for 24 hours

until it is supplied from the rear.

• 9c. Battlefield is open to unexpected circumstances. At different times

of combat, depending on the combat type and enemy threat, some ammo

types may become more valuable and combat units may require them more

urgently than other types of ammo. Therefore, there are different time
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deadlines for each type of ammo and for each combat unit. Not supplying

a unit by this deadline with the necessary ammo means the unit continues

combat without the required ammo type – a potentially lethal situation

for a unit engaged with the enemy in combat – between the unit’s time

deadline and the supply time. In addition, as combat continues, units

change their locations and resupply becomes even more difficult. Supplying

a unit with ammo requires the unit to halt for some time and take the

required precautions such as perimeter security, etc. A combat unit can

not always halt in battle especially when it is actively engaged with the

enemy. Hence, after combat starts, units need some time to gain a position

that renders them available for supply and this time constitutes the earliest

time that a unit can be supplied. In summary, we have two-sided time

windows, i.e. hard time restrictions in our problem.

• 10a. Total Mobile-ADS cost consists of three separate components, namely,

fixed cost of opening transfer points, acquisition cost of vehicle fleet and

transportation cost of ammo. Hence, we have a single objective function

that unifies multiple cost components.

• 11b. Since this is a military application on a sensitive topic all data we

present in this dissertation is hypothetical.

• 12b. As already explained, before battle starts, logistics planners deter-

mine potential locations for each type of transfer point on the battlefield.

Therefore, transfer points can only be located at these predefined potential

locations and hence the solution space of our problem is discrete.

• 13b. In Mobile-ADS design problem our aim is to locate Fixed-TPs at the

first layer and Mobile-TPs at the second layer properly to supply combat

units on time. Hence, locational decisions exist at two different layers in

our problem.

• 14b. On the battlefield, combat units need and use several types of ammo.

They need them at different locations, in different times and at different

rates. Therefore, in Mobile-ADS we distribute multiple ammo types.
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• 15b. In an LRP with single sourcing, each customer is to be supplied by

exactly one vehicle or depot. In our problem, even the same ammo type

may be brought to a unit by two or more different trucks. Hence, multi

sourcing exists in our model.

• 16b. We do not hold inventory at transfer points.

• 17ab. We solve the model exactly by a commercial solver and heuristically

by two methods that are developed in this dissertation.

Table 2.5 summarizes the classification of the 78 studies we examined and

compares the classification of the proposed Mobile-ADS design problem with that

of the majority of the literature. We utilize a capacitated heterogeneous vehicle

fleet whereas the studies in the literature generally use capacitated homogeneous

fleet. Majority of the previous studies consider uncapacitated facilities but we

consider capacitated ones. In the literature majority of the models are two layers

whereas Mobile-ADS has three layers.
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Except for 7 studies, the literature solve static LRP problems, while we solve

both a single-period static and a multi-period dynamic case. Time restriction

issue is rarely incorporated within the context of LRP models in the literature.

14 studies include soft time restrictions and only one study (time windows are

used in [78] however no mathematical formulation is given) includes hard time

restrictions. We utilize hard time restrictions in Mobile-ADS design problem.

Locational decisions exist at only one layer in all studies except three. In other

words, almost all three layer models locate facilities only at the second layer and

facility locations at the first layer are assumed to be known a priori. We locate

facilities at two different layers.

To the best of our knowledge, there are only 4 studies that distribute multiple

products and the rest deals with single product. However, single-product formu-

lations can hardly help model complex real world distribution systems with many

number of types of products to be distributed. In Mobile-ADS design problem

we distribute multiple products. Last of all, except one study all previous mod-

els compel single sourcing and no study allows multiple sourcing (a customer is

allowed to be served by at most two vehicles in the model of [63], but one for

pickups and one for deliveries). We utilize multiple sourcing which may help to

reach better solutions in large distribution systems.

This brief analysis illustrates that some characteristics of the Mobile-ADS

design problem are rarely included in the previous models. This dissertation

is aimed directly to handle these aspects and to incorporate them into a single

model. To the best of our knowledge this is the first attempt to construct such

an inclusive real world LRP model.



Chapter 3

Static 4-Index Model

Development

In this chapter we present the mathematical formulation of Mobile-ADS design

problem for a fixed period and derive several valid inequalities to speed up the

solution time.

We model the battlefield as a network of three types of nodes, i.e. potential

Fixed-TP and Mobile-TP locations and fixed combat unit locations. With this

representation we consider the Mobile-ADS, shown in Figure 2.1, as a directed

and connected network G = (N,A) that is defined by a set N of nodes and a

set A of arcs. N is partitioned into three mutually exclusive subsets such that

N = NF

⋃
NM

⋃
NC where NF (NM) is the set of potential Fixed-TP (Mobile-

TP) locations respectively and NC is the set of combat unit locations. Moreover,

we let NFM = NF

⋃
NM and NMC = NM

⋃
NC . A consists of two types of

road networks that is A = A1

⋃
A2. A1 is the two-way road network, on which

commercial trucks can travel between Fixed-TPs and Mobile-TPs and among

Mobile-TPs. A2 is the two-way trace network on the battle terrain, on which

ammo trucks can travel between Mobile-TPs and combat units and among combat

units. Figure 3.1 shows an example of a route of a commercial and ammo truck.

V is the set of all vehicles consisting of two subsets, V = VF

⋃
VM , where VF

20
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Road Network Terrain

MTP

MTPFTP CU

CU

(VF )

Trucks
Commercial

Trucks
Ammo

(VM)

Figure 3.1: Routes of commercial and special ammo trucks

is the set of commercial trucks that are stationed at Fixed-TPs, and VM is the

set of ammo trucks that are stationed at Mobile-TPs. P is the ammo type set.

D = [Dij] is the distance matrix where the distance Dij between two nodes

i and j is the length of the shortest path from i to j on G. We assume that

the matrix D of shortest distances is known in advance. We also assume that

all travel on G occur on the shortest paths and at two different constant speeds.

speedc and speeda denote the constant speeds of commercial and ammo trucks,

respectively where speedc > speeda. Then T = [TIij] is the travel time matrix

where (1) if i ∈ NF and j ∈ NM or i, j ∈ NM , i 6= j then TIij = Dij/speedc and

(2) if i ∈ NM and j ∈ NC or i, j ∈ NC , i 6= j then TIij = Dij/speeda.

We also present all sets, parameters and decision variables that are used

throughout this study in the Appendix.

We introduce a 4-index commodity flow mixed integer programming formu-

lation for the Mobile-ADS design problem. Note that only the nonnegative com-

modity flow variable has 4 indices and all binary variables have three or less

indices. We use the following parameters in the formulation. Qip is the demand

of combat unit i for ammo type p. Each transfer point i has a nonnegative ca-

pacity represented by CDip for ammo type p. Each vehicle v has a nonnegative
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capacity CVvp for ammo type p and in addition all vehicles also have total capac-

ities represented by CTv. As explained above there are different time deadlines

for each type of ammo and for each combat unit and each unit has a different

earliest time after which that unit can be supplied. TEip is the earliest and TLip

is the latest time that combat unit i be supplied with ammo type p. TMp is

the maximum latest arrival time of ammo type p among combat units, that is

TMp = maxi∈NC
{TLip}. TM = maxp∈P{TMp} represents the maximum of the

latest arrival times of all ammo types. TCvp is the cost of transporting one unit

of ammo type p on vehicle v per hour. V Cv is the cost of acquiring vehicle v.

FCi is the fixed cost of establishing/opening transfer point i.

The Mobile-ADS design problem can be summarized as follows. We have a fi-

nite number of combat units engaged with enemy on the battlefield. We also have

a finite set of potential Fixed-TP and potential Mobile-TP locations (two sets are

disjoint). Ammo flows from Fixed-TPs to Mobile-TPs by commercial trucks and

from Mobile-TPs to combat units by special ammo trucks. We have to decide on

(1) the number and location of Fixed-TPs and Mobile-TPs to be established and

(2) the number, home transfer point and route of commercial and ammo trucks

to serve combat units while minimizing transfer point establishment, truck ac-

quisition and ammo transportation costs, such that the following conditions are

satisfied;

• Total demand of combat units is satisfied within the given time window,

• Transfer point and truck capacity restrictions are respected,

• Each commercial (ammo) truck is dispatched from its home transfer point

and returns to that point after serving the Mobile-TPs (combat units) on

its route,

• Each truck is dispatched only once in a planning period.
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3.1 Constraints

We employ the following notational rules throughout the formulation. We enu-

merate separate constraints as usual such as 3.1, 3.2, ... If we write the same

constraint several times for disjoint index sets then we enumerate them such as

3.1a, 3.1b, ... or 3.2a, 3.2b, ... and so on.

3.1.1 Product flow balance constraints

We use nonnegative decision variable fijvp to denote the amount of flow of ammo

type p carried from node i to node j by vehicle v.

∑
v∈VF

( ∑
j∈NFM

j 6=i

fjivp −
∑
j∈NM
j 6=i

fijvp

)
=

∑
v∈VM

∑
j∈NC

fijvp ∀i ∈ NM , p ∈ P (3.1a)

∑
v∈VM

( ∑
j∈NMC

j 6=i

fjivp −
∑
j∈NC
j 6=i

fijvp

)
= Qip ∀i ∈ NC , p ∈ P (3.1b)

∑
j∈NFM

j 6=i

fjivp ≥
∑
j∈NM
j 6=i

fijvp ∀i ∈ NM , v ∈ VF , p ∈ P (3.2a)

∑
j∈NMC

j 6=i

fjivp ≥
∑
j∈NC
j 6=i

fijvp ∀i ∈ NC , v ∈ VM , p ∈ P (3.2b)

Ammo enters the network from Fixed-TPs and it is consumed by combat

units. Constraints (3.1) ensure that inflow to a Mobile-TP or combat unit is equal

to the sum of the total outflow from that node and the demand of that node.

Constraints (3.2) guarantee that vehicles can not pick up ammo at intermediate

nodes on their routes by forcing that a vehicle does not leave a node with more

amount of an ammo type than the amount it was carrying while it was entering

that node.
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Note that constraints (3.1b) declare the problem infeasible if the total demand

can not be satisfied for some reason, such as lack of ammo or trucks or transfer

points, tight time windows, etc. In such situations, instead of giving no solution,

we may want to provide the best solution that can be obtained with available

resources. To do so, we need to allow the demand satisfaction limitation to be

overruled at a certain cost by rewriting hard constraints (3.1b) as soft constraints

as follows
∑

v∈VM

(∑
j∈NMC

j 6=i
fjivp −

∑
j∈NC
j 6=i

fijvp

)
+ uip = Qip where uip is a non-

negative decision variable, indicating the amount of unmet demand of ammo type

p at combat unit i, with a high enough positive cost coefficient in the objective

function.

3.1.2 Vehicle flow balance constraints

We use binary decision variable xijv, where xijv = 1 if vehicle v travels from node

i to node j and xijv = 0 otherwise.

∑
i∈NF

∑
j∈NM

xijv ≤ 1 ∀v ∈ VF (3.3a)

∑
i∈NM

∑
j∈NC

xijv ≤ 1 ∀v ∈ VM (3.3b)

∑
j∈NM

xjiv =
∑
j∈NM

xijv ∀i ∈ NF , v ∈ VF (3.4a)

∑
j∈NC

xjiv =
∑
j∈NC

xijv ∀i ∈ NM , v ∈ VM (3.4b)

∑
j∈NFM

j 6=i

xjiv =
∑

j∈NFM
j 6=i

xijv ∀i ∈ NM , v ∈ VF (3.5a)

∑
j∈NMC

j 6=i

xjiv =
∑

j∈NMC
j 6=i

xijv ∀i ∈ NC , v ∈ VM (3.5b)
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Recall that commercial trucks can be allocated only to Fixed-TPs and ammo

trucks only to Mobile-TPs. Constraints (3.3) indicate that a vehicle can not be

allocated to more than one transfer point. From another point of view, they

maintain that a vehicle can start its route from one and only one transfer point.

Constraints (3.4) force each vehicle to turn back to its home transfer point where

it is allocated. Constraints (3.5) require that each vehicle leaves the node that

it enters. Constraints (3.3)-(3.5) together also maintain that each route contains

only one transfer point and they guarantee that a vehicle can not go from a node

to two or more nodes at the same time.

3.1.3 Capacity constraints

We use binary decision variable yi, where yi = 1 if transfer point i is established

and yi = 0 otherwise.

∑
v∈VF

∑
j∈NM

fijvp ≤ CDip · yi ∀i ∈ NF , p ∈ P (3.6a)

∑
v∈VM

∑
j∈NC

fijvp ≤ CDip · yi ∀i ∈ NM , p ∈ P (3.6b)

∑
v∈VF

∑
j∈NM
j 6=i

fijvp ≤
( ∑

l∈NC

Qlp

)
· yi ∀i ∈ NM , p ∈ P (3.6c)

fijvp ≤ CVvp · xijv ∀i ∈ NF , j ∈ NM , v ∈ VF , p ∈ P (3.7)

∀i, j ∈ NM , i 6= j, v ∈ VF , p ∈ P

∀i ∈ NM , j ∈ NC , v ∈ VM , p ∈ P

∀i, j ∈ NC , i 6= j, v ∈ VM , p ∈ P

∑
p∈P

fijvp ≤ CTv · xijv ∀i ∈ NF , j ∈ NM , v ∈ VF (3.8)

∀i, j ∈ NM , i 6= j, v ∈ VF

∀i ∈ NM , j ∈ NC , v ∈ VM
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∀i, j ∈ NC , i 6= j, v ∈ VM

Constraints (3.6) ensure that transfer points can not send/receive ammo type

p more than their capacity for that ammo type. They also guarantee that there

is no flow from/through any closed transfer point. Constraints (3.7) require that

vehicle capacities are not exceeded and maintain that unused vehicles can not

carry any flow. All vehicles also have total capacities that are respected by

constraints (3.8).

3.1.4 Relation constraints

We use binary decision variable wijp, where wijp = 1 if ammo type p travels from

node i to node j and wijp = 0 otherwise.

∑
p∈P

fijvp ≥ xijv ∀i ∈ NF , j ∈ NM , v ∈ VF (3.9)

∀i, j ∈ NM , i 6= j, v ∈ VF

∀i ∈ NM , j ∈ NC , v ∈ VM

∀i, j ∈ NC , i 6= j, v ∈ VM

( ∑

l∈NC

Qlp

)
· wijp ≥ fijvp ∀i ∈ NF , j ∈ NM , v ∈ VF , p ∈ P (3.10)

∀i, j ∈ NM , i 6= j, v ∈ VF , p ∈ P

∀i ∈ NM , j ∈ NC , v ∈ VM , p ∈ P

∀i, j ∈ NC , i 6= j, v ∈ VM , p ∈ P

∑
v∈VF

fijvp ≥ wijp ∀i ∈ NF , j ∈ NM , p ∈ P (3.11a)

∀i, j ∈ NM , i 6= j, p ∈ P
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∑
v∈VM

fijvp ≥ wijp ∀i ∈ NM , j ∈ NC , p ∈ P (3.11b)

∀i, j ∈ NC , i 6= j, p ∈ P

Constraints (3.9) require that a vehicle carries some type and amount of ammo

if it is dispatched. Note that these constraints do not force vehicles to carry ammo

on their way back to their home transfer points. They also guarantee that if a

vehicle does not carry anything from node i to node j then it should not travel

between these two nodes. Constraints (3.10) and (3.11) set the correct logical

relationships between the decision variables f and w. They maintain that if

ammo type p does not travel between nodes i and j then no flow of p should exist

between these nodes and reversely if ammo type p does travel from i to j then

there must exist some positive flow of p in between.

Note that in constraints (3.9) and (3.11), ammo flow is measured in undefined

units. Hence, one needs to be careful about defining the unit of flow, because

these constraints do not permit a truck to carry an ammo type less than 1 unit.

If one wants to do so, then the right hand sides should be multiplied with an

appropriate multiplier. For example, if our unit is 1 ton, and if we do not want

to carry an ammo type less than 0.2 tons with a single truck, then our multiplier

would be 0.2.

3.1.5 Time related constraints

We use nonnegative decision variable tpip to denote the arrival time of ammo type

p at node i.

tpip ≥ TEip ∀i ∈ NC , p ∈ P (3.12)

tpip ≤ TLip ∀i ∈ NC , p ∈ P (3.13)

tpip = 0 ∀i ∈ NF , p ∈ P (3.14)

tpip + TIij · wijp − TMp · (1− wijp) ≤ tpjp ∀i ∈ NF , j ∈ NM , p ∈ P (3.15)
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∀i, j ∈ NM , i 6= j, p ∈ P

∀i ∈ NM , j ∈ NC , p ∈ P

∀i, j ∈ NC , i 6= j, p ∈ P

Constraints (3.12) and (3.13) impose the time window requirements of combat

units on the model for all ammo types. Constraints (3.14) define the initial

condition by setting the arrival time of all ammo types at Fixed-TPs to time

zero. Constraints (3.15) compute the arrival times of ammo types at nodes.

In fact, since constraints (3.15) refer to the latest ammo arrival, constraints

(3.12) ensure that the latest ammo arrival respects the time windows of units.

Note that waiting of ammo at combat units is allowed, and in the context of

this dissertation, a time window indicates the time interval in which a unit can

halt in battle, and receive the waiting or newly arrived supplies. Hence, ammo

is allowed to reach a unit before the earliest time, and wait there until the unit

actually takes it.

Recall that the decision variable wijp does not carry any information about

vehicles. Hence constraints (3.12)-(3.15), which are written for wijp’s, can not

prevent sub-tours of vehicles. To remedy this condition we introduce subtour

elimination constraints of [25] as constraints (3.16). Note that we use nonnegative

decision variable tviv to denote the arrival time of vehicle v at node i.

tviv + TIij · xijv − TM · (1− xijv) ≤ tvjv ∀i ∈ NF , j ∈ NM , v ∈ VF (3.16)

∀i, j ∈ NM , i 6= j, v ∈ VF

∀i ∈ NM , j ∈ NC , v ∈ VM

∀i, j ∈ NC , i 6= j, v ∈ VM
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3.2 Objective function

In Mobile-ADS design problem two different objectives exists each of which could

be applicable depending on the situation. The first objective considers the costs

of transfer point establishment, vehicle acquisition, and ammo distribution. The

second one considers again the costs of transfer point establishment and vehi-

cle acquisition plus the cost of truck driving. As can be seen, two of the cost

components are common to both objectives and are shown below.

∑
i∈NFM

FCi · yi (3.17)

∑
i∈NF

∑
j∈NM

∑
v∈VF

V Cv · xijv +
∑
i∈NM

∑
j∈NC

∑
v∈VM

V Cv · xijv (3.18)

(3.17) is the total fixed cost of opening transfer points, and (3.18) is the total

acquisition cost of used trucks. Now, we present the last component of each

objective.

Depending on the mission, available forces, enemy threat, country’s economy,

etc. different factors may gain more importance or urgency above others on the

battlefield. If we put economy and financial concerns over others, then total

transportation cost of ammo becomes critical. This cost constitutes the third

component of the first objective and is shown below.

∑
i∈N

∑
j∈N

∑
v∈V

∑
p∈P

TCvp · TIij · fijvp (3.19)

If enemy has the ability to detect our logistics convoys, then the more traffic

we have the more our convoys are exposed to enemy fire. Moreover, we may

want to concentrate some of our forces on a particular region of the combat area

without enemy’s notice. In such circumstances, stealth becomes a big concern,

and we again do not want much traffic on the battlefield. Hence, total driving

time of vehicles becomes critical, and constitutes the third component of the

second objective that is shown below.

∑
i∈N

∑
j∈N

∑
v∈V

DCv · TIij · xijv (3.20)
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To summarize, our objective functions are as follows.

• z1 = (3.17) + (3.18) + (3.19)

• z2 = (3.17) + (3.18) + (3.20)

It is important to note that on the same battlefield and at the same time,

different objectives may gain priority for different units. For example, one brigade

may move to a different direction in concealment while others keep their positions

as they are. Hence, for the first brigade z2 and for the rest z1 may become the

objective on the same battlefield at the same time.

3.3 Model

In light of above explanations Mobile-ADS design model is,

min z1 or z2

s.t. (3.1)− (3.16)

fijvp ≥ 0 ∀i, j ∈ N, i 6= j, v ∈ V, p ∈ P

tpip ≥ 0 ∀i ∈ N, p ∈ P

tviv ≥ 0 ∀i ∈ N, v ∈ V

xijv ∈ {0, 1} ∀i, j ∈ N, i 6= j, v ∈ V

wijp ∈ {0, 1} ∀i, j ∈ N, i 6= j, p ∈ P

yi ∈ {0, 1} ∀i ∈ NFM .

3.4 Valid inequalities

We model the Mobile-ADS design problem as a mixed integer programming

model. In this section we present several valid inequalities to improve its perfor-

mance in terms of solution time and quality.
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3.4.1 Valid inequalities related to product flow balance

∑
v∈VF

∑
i∈NF

∑
j∈NM

fijvp =
∑
i∈NC

Qip ∀p ∈ P (V 1a)

∑
v∈VM

∑
i∈NM

∑
j∈NC

fijvp =
∑
i∈NC

Qip ∀p ∈ P (V 1b)

Valid inequalities (V 1) require that outflow from all Fixed-TPs and from all

Mobile-TPs be equal to the total demand of all combat units for each ammo type.

3.4.2 Valid inequalities related to vehicle flow balance

∑
j∈NFM

j 6=i

xijv ≤ 1 ∀i ∈ NM , v ∈ VF (V 2a)

∑
j∈NMC

j 6=i

xijv ≤ 1 ∀i ∈ NC , v ∈ VM (V 2b)

∑
v∈VF

∑
i∈NF

∑
j∈NM

xijv ≥
⌈∑

p∈P
∑

i∈NC
Qip

maxv∈VF
{CTv}

⌉
(V 3a)

∑
v∈VM

∑
i∈NM

∑
j∈NC

xijv ≥
⌈∑

p∈P
∑

i∈NC
Qip

maxv∈VM
{CTv}

⌉
(V 3b)

Valid inequalities (V 2) maintain that a vehicle can not travel from a node

to two or more nodes in a single planning period. Valid inequalities (V 3) set

a lower bound for the total number of vehicles that must be dispatched from

transfer points to carry the total demand of all combat units.
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3.4.3 Valid inequalities related to variable and logical re-

lations

wijp ≤ yi ∀i ∈ NF , j ∈ NM , p ∈ P (V 4)

∀i, j ∈ NM , i 6= j, p ∈ P

∀i ∈ NM , j ∈ NC , p ∈ P

∑
p∈P

∑
j∈NM

wijp ≥ yi ∀i ∈ NF (V 5a)

∑
p∈P

∑
j∈NC

wijp ≥ yi ∀i ∈ NM (V 5b)

Valid inequalities (V 4) ensure that ammo types can not pass through closed

transfer points. Valid inequalities (V 5) provide that at least one ammo type must

pass through an open transfer point.

wijp ≤
∑
v∈VF

xijv ∀i ∈ NF , j ∈ NM , p ∈ P (V 6a)

∀i, j ∈ NM , i 6= j, p ∈ P

wijp ≤
∑
v∈VM

xijv ∀i ∈ NM , j ∈ NC , p ∈ P (V 6b)

∀i, j ∈ NC , i 6= j, p ∈ P

∑
p∈P

wijp ≥ xijv ∀i ∈ NF , j ∈ NM , v ∈ VF (V 7)

∀i, j ∈ NM , i 6= j, v ∈ VF

∀i ∈ NM , j ∈ NC , v ∈ VM

∀i, j ∈ NC , i 6= j, v ∈ VM
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Valid inequalities (V 6) state that if an ammo type travels from node i to node

j then there must exist at least one vehicle travelling between these two nodes.

Valid inequalities (V 7) maintain the reverse condition by preventing any vehicle

from traveling between nodes i and j if no ammo type travels between these two

nodes.

∑
j∈NM

xijv ≤ yi ∀i ∈ NF , v ∈ VF (V 8a)

∑
j∈NFM

j 6=i

xijv ≤ yi ∀i ∈ NM , v ∈ VF (V 8b)

∑
j∈NC

xijv ≤ yi ∀i ∈ NM , v ∈ VM (V 8c)

∑
v∈VF

∑
j∈NM

xijv ≥ yi ∀i ∈ NF (V 9a)

∑
v∈VM

∑
j∈NC

xijv ≥ yi ∀i ∈ NM (V 9b)

∑
v∈VF

∑
j∈NM

xijv ≤ |VF | · yi ∀i ∈ NF (V 10a)

∑
v∈VM

∑
j∈NC

xijv ≤ |VM | · yi ∀i ∈ NM (V 10b)

Valid inequalities (V 8) provide that no vehicle can be dispatched from or

pass through a closed transfer point. Valid inequalities (V 9) require that an

open transfer point must dispatch at least one vehicle. Valid inequalities (V 10)

guarantee that no transfer point can dispatch more vehicles than there exist in

the system.

∑
i∈NF

yi ≤ |NF | (V 11a)

∑
i∈NM

yi ≤ |NM | (V 11b)



CHAPTER 3. STATIC 4-INDEX MODEL DEVELOPMENT 34

∑
i∈NF

yi ≥
⌈ ∑

p∈P
∑

i∈NC
Qip

maxp∈P,i∈NF
{CDip}

⌉
(V 12a)

∑
i∈NM

yi ≥
⌈ ∑

p∈P
∑

i∈NC
Qip

maxp∈P,i∈NM
{CDip}

⌉
(V 12b)

Valid inequalities (V 11) and (V 12) set the upper and lower bounds for the

number of opened transfer points.

3.4.4 Valid inequalities related to time

∑
i∈NMC
i6=j

∑
j∈NC

TIij · xijv ≤ TM − min
i∈NF ,j∈NM

{TIij} ∀v ∈ VM (V 13)

Consider the tours of ammo trucks an example of which can be seen in Figure

3.1 and consider deleting the returning arc of each tour from combat units to

Mobile-TPs. Valid inequalities (V 13) set the upper bound for the total traveling

time of these modified routes of ammo trucks. The total traveling time of the

modified route of ammo truck v is represented by
∑

i∈NMC
i6=j

∑
j∈NC

TIij ·xijv. In fact

this summation also defines the serving time of the last combat unit on the tour

of ammo truck v. Now, let the maximum of the latest arrival times of all ammo

types at combat units be 24, that is TM = 24. In other words, all ammo types

must be delivered to combat units in 24 hours. Suppose, minimum traveling time

between Fixed-TPs and Mobile-TPs is 7, that is mini∈NF ,j∈NM
{TIij} = 7. Hence,

the earliest time that a Mobile-TP can dispatch an ammo truck is 7. However,

all ammo types must arrive at combat units before 24. Combining these two

observations, all ammo trucks have at most 14 hours to serve all combat units.

Mathematically, we have
∑

i∈NMC
i 6=j

∑
j∈NC

TIij ·xijv ≤ 14 meaning that each ammo

truck should deliver the demand of the last combat unit on its tour in at most 14

hours.



Chapter 4

Static 3-Index Model

Development

In Chapter 3 we present a 4-index mathematical formulation of Mobile-ADS

design problem with an arc-based product flow approach. In this chapter we

develop a 3-index mathematical formulation of the same problem with a node-

based product flow approach.

As in the 4-index model, we still have the same directed and connected network

G = (N,A) with N = NF

⋃
NM

⋃
NC and A = A1

⋃
A2. We also have the same

vehicle set V = VF

⋃
VM and travel time matrix T . In addition, we use the same

parameters as we did in the 4-index model. Finally, our problem definition and

the answers we are expecting from the 3-index model are the same.

In the 4-index model we consider vehicle and product flows on the arcs of the

network. We indicate the traversal of vehicle v ∈ V on arc (i, j) ∈ A using the

binary decision variable xijv. We also denote the flow of product p ∈ P on arc

(i, j) ∈ A with vehicle v ∈ V by the positive decision variable fijvp.

In the 3-index model we still use the same indicator variables for vehicle

traversals on arcs. However, rather than product flow on arcs we consider product

flow on the nodes of the network. To do so, we consider the product flow on arc

35
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Commercial Trucks Ammo Trucks

MTPFTP CU

ftpoutivp mtpinivp mtpoutivp cuinivp

Figure 4.1: Node-based product flow decision variables

(i, j) in two parts. The first part is the outgoing flow from node i ∈ N , denoted

by fivp, and the second part is the incoming flow to node j ∈ N , denoted by fjvp.

In other words, fivp represents the amount of product p that is sent from node i

on vehicle v and fjvp represents the amount of product p that is dropped to node

j by vehicle v.

4.1 Constraints

4.1.1 Product flow balance constraints

We use four nonnegative product flow variables that can be seen in Figure 4.1.

ftpoutivp (mtpoutivp) denote the amount of ammo type p that is sent from Fixed-

TP (Mobile-TP) i with commercial (ammo) truck v. mtpinivp (cuivp) represent

the amount of ammo type p that is dropped to Mobile-TP (combat unit) i with

commercial (ammo) truck v. Note that in ftpoutivp and mtpinivp, v is a com-

mercial truck, that is v ∈ VF . However, in mtpoutivp and cuinivp, v is an ammo

truck, that is v ∈ VM . This partition of trucks is shown in Figure 4.1.

∑
v∈VM

cuinivp = Qip ∀i ∈ NC , p ∈ P (4.1)

Constraints (4.1) ensure that demand of a combat unit for each ammo type must

be satisfied by ammo trucks.
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∑
i∈NF

ftpoutivp =
∑
i∈NM

mtpinivp ∀v ∈ VF , p ∈ P (4.2a)

∑
i∈NM

mtpoutivp =
∑
i∈NC

cuinivp ∀v ∈ VM , p ∈ P (4.2b)

∑
v∈VF

mtpinivp =
∑
v∈VM

mtpoutivp ∀i ∈ NM , p ∈ P (4.3)

Constraints (4.2) guarantee that each commercial (ammo) truck drops all its load,

which it loads from a Fixed-TP (Mobile-TP), to Mobile-TPs (combat units).

Constraints (4.3) ensure that total inflow of an ammo type to a Mobile-TP that

is dropped by commercial trucks is equal to the total outflow of that ammo type

from that Mobile-TP that is sent by ammo trucks.

4.1.2 Vehicle flow balance constraints

We use the same binary decision variable xijv as in the 4-index model, where

xijv = 1 if vehicle v travels from node i to node j and xijv = 0 otherwise. We

also use the same vehicle flow balance constraints (3.3), (3.4) and (3.5).

4.1.3 Capacity constraints

We use the same binary decision variable yi, where yi = 1 if transfer point i is

established and yi = 0 otherwise.

∑
v∈VF

ftpoutivp ≤ CDip · yi ∀i ∈ NF , p ∈ P (4.4a)

∑
v∈VM

mtpoutivp ≤ CDip · yi ∀i ∈ NM , p ∈ P (4.4b)

Constraints (4.4) ensure that transfer points can not send ammo type p more

than their capacity for that ammo type. They also guarantee that there is no

flow from/through any closed transfer point.
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∑
i∈NM

mtpinivp ≤ CVvp ·
∑
i∈NF

∑
j∈NM

xijv ∀v ∈ VF , p ∈ P (4.5a)

∑
i∈NC

cuinivp ≤ CVvp ·
∑
i∈NM

∑
j∈NC

xijv ∀v ∈ VM , p ∈ P (4.5b)

∑
p∈P

∑
i∈NF

ftpoutivp ≤ CTv ·
∑
i∈NF

∑
j∈NM

xijv ∀v ∈ VF (4.6a)

∑
p∈P

∑
i∈NM

mtpoutivp ≤ CTv ·
∑
i∈NM

∑
j∈NC

xijv ∀v ∈ VM (4.6b)

If any positive flow is carried by truck v, the total capacity of that truck should not

be exceeded but only if that truck has started its tour. Constraints (4.5) require

that vehicle capacities are not exceeded and maintain that unused vehicles can

not carry any flow. All vehicles also have total capacities that are respected by

constraints (4.6).

4.1.4 Relation constraints

We use binary decision variable kivp that is an indicator of (1) whether ammo

type p is dropped to Mobile-TP (combat unit) i with commercial (ammo) truck v

or not and (2) whether ammo type p is sent from Mobile-TP i with ammo truck v

or not. Mathematically, (1) kivp = 1 if mtpinivp > 0 for all i ∈ NM , v ∈ VF , p ∈ P

or kivp = 0 otherwise, (2) kivp = 1 if mtpoutivp > 0 for all i ∈ NM , v ∈ VM , p ∈ P

or kivp = 0 otherwise, (3) kivp = 1 if cuinivp > 0 for all i ∈ NC , v ∈ VM , p ∈ P or

kivp = 0 otherwise.

ftpoutivp ≤ CVvp ·
∑
j∈NM

xijv ∀i ∈ NF , v ∈ VF , p ∈ P (4.7a)

mtpinivp ≤ CVvp ·
∑

j∈NFM
j 6=i

xjiv ∀i ∈ NM , v ∈ VF , p ∈ P (4.7b)

mtpoutivp ≤ CVvp ·
∑
j∈NC

xijv ∀i ∈ NM , v ∈ VM , p ∈ P (4.7c)
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cuinivp ≤ CVvp ·
∑

j∈NMC
j 6=i

xjiv ∀i ∈ NC , v ∈ VM , p ∈ P (4.7d)

Constraints (4.7) state that if there is an outflow (inflow) of an ammo type from

(to) a node by a vehicle then that vehicle must be dispatched from (enter to) that

node. Conversely, they maintain that if no vehicle is dispatched from (enters to)

a node then no outflow (inflow) of any ammo type can exist from (to) that node.

∑
j∈NM

xijv ≤
∑
p∈P

ftpoutivp ∀i ∈ NF , v ∈ VF (4.8a)

∑
j∈NC

xijv ≤
∑
p∈P

mtpoutivp ∀i ∈ NM , v ∈ VM (4.8b)

∑
j∈NFM

j 6=i

xjiv ≤
∑
p∈P

mtpinivp ∀i ∈ NM , v ∈ VF (4.8c)

∑
j∈NMC

j 6=i

xjiv ≤
∑
p∈P

cuinivp ∀i ∈ NC , v ∈ VM (4.8d)

Constraints (4.8) maintain that if there is no outflow (inflow) with a vehicle from

(to) a node then that vehicle must not be dispatched from (enter to) that node.

Conversely, they guarantee that if a vehicle is dispatched from (enters to) a node

then some outflow (inflow) of an ammo type with that vehicle must exist from

(to) that node.

kivp ≤ mtpinivp ∀i ∈ NM , v ∈ VF , p ∈ P (4.9a)

kivp ≤ mtpoutivp ∀i ∈ NM , v ∈ VM , p ∈ P (4.9b)

kivp ≤ cuinivp ∀i ∈ NC , v ∈ VM , p ∈ P (4.9c)

mtpinivp ≤ CVvp · kivp ∀i ∈ NM , v ∈ VF , p ∈ P (4.10a)

mtpoutivp ≤ CVvp · kivp ∀i ∈ NM , v ∈ VM , p ∈ P (4.10b)

cuinivp ≤ CVvp · kivp ∀i ∈ NC , v ∈ VM , p ∈ P (4.10c)
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Constraints (4.9) and (4.10) set the correct logical relationships between the de-

cision variables k and mtpin, mtpout, cuin. They maintain that if a vehicle drops

(carries) an ammo type to (from) a node then there must exist some inflow (out-

flow) of that ammo type to (from) that node with that vehicle. Reversely, they

also ensure that if a vehicle does not drop (carry) an ammo type to (from) a node

then there can not exist any inflow (outflow) of that ammo type to (from) that

node with that vehicle.

4.1.5 Time related constraints

We use the same time related nonnegative decision variables as in the 4-index

model, namely tpip to denote the arrival time of ammo type p at node i and

ttiv to denote the arrival time of vehicle v at node i. We also employ the same

constraints (3.12), (3.13), (3.14) and (3.16) of the 4-index model.

tpip − TMp · (1− kivp) ≤ tviv ∀i ∈ NM , v ∈ VM , p ∈ P (4.11)

Constraints (4.11) ensure that an ammo truck that is carrying an ammo type

from a Mobile-TP can not leave that transfer point before the latest arrival time

of that product to that Mobile-TP.

tviv − TMp · (1− kivp) ≤ tpip ∀i ∈ NM , v ∈ VF , p ∈ P (4.12)

∀i ∈ NC , v ∈ VM , p ∈ P

Constraints (4.12) set the correct relationships between the arrival times of ve-

hicles and products to a node. They maintain that arrival time of an ammo

type to a Mobile-TP (combat unit) can not be less than the arrival time of each

commercial (ammo) truck carrying that product to that transfer point (combat

unit). In other words, ammo types wait for the latest arrival time of the trucks

carrying them.
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4.2 Model

In light of above explanations Mobile-ADS design model is,

min z2

s.t. (3.4)− (3.5), (3.12)− (3.14), (3.16), (4.1)− (4.12)

ftpoutivp ≥ 0 ∀i ∈ NF , v ∈ VF , p ∈ P

mtpinivp ≥ 0 ∀i ∈ NM , v ∈ VF , p ∈ P

mtpoutivp ≥ 0 ∀i ∈ NM , v ∈ VM , p ∈ P

cuinivp ≥ 0 ∀i ∈ NC , v ∈ VM , p ∈ P

tpip ≥ 0 ∀i ∈ N, p ∈ P

tviv ≥ 0 ∀i ∈ N, v ∈ V

xijv ∈ {0, 1} ∀i, j ∈ N, i 6= j, v ∈ V

kivp ∈ {0, 1} ∀i ∈ NM , v ∈ VM , p ∈ P

yi ∈ {0, 1} ∀i ∈ NFM .

4.3 Valid inequalities

As in the 4-index model we use valid inequalities (V 2), (V 3), (V 8), (V 9), (V 10),

(V 11), (V 12) and (V 13) in the 3-index model without any change. We use valid

inequalities (V 1) after a modification and develop 7 new valid inequalities.

We modify valid inequalities (V 1) as follows.

∑
v∈VF

∑
i∈NF

ftpoutivp =
∑
i∈NC

Qip ∀p ∈ P (V 1c)

∑
v∈VM

∑
i∈NM

mtpoutivp =
∑
i∈NC

Qip ∀p ∈ P (V 1d)

Valid inequalities (V 1) require that outflow from all Fixed-TPs and from all

Mobile-TPs be equal to the total demand of all combat units for each ammo

type.
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New valid inequalities are as follows.

∑
i∈NF

ftpoutivp ≤ CVvp ·
∑
i∈NF

∑
j∈NM

xijv ∀v ∈ VF , p ∈ P (V 14a)

∑
i∈NM

mtpoutivp ≤ CVvp ·
∑
i∈NM

∑
j∈NC

xijv ∀v ∈ VM , p ∈ P (V 14b)

Valid inequalities (V 14) state that commercial or ammo trucks can not carry

an ammo type more than their capacity for that ammo type. In fact, they are

different versions of valid inequalities (1.10a) and (1.10c) summed over Fixed-TPs

and Mobile-TPs.

∑
i∈NF

∑
v∈VF

ftpoutivp =
∑
i∈NM

∑
v∈VF

mtpinivp ∀p ∈ P (V 15a)

∑
i∈NM

∑
v∈VM

mtpoutivp =
∑
i∈NC

∑
v∈VM

cuinivp ∀p ∈ P (V 15b)

Valid inequalities (V 15) maintain the product flow balance between Fixed-TPs

and Mobile-TPs as well as between Mobile-TPs and combat units. They require

that total outflow of an ammo type from all Fixed-TPs with commercial trucks

(from all Mobile-TPs with ammo trucks) must be equal to the total inflow of

that ammo type to all Mobile-TPs with commercial trucks (to all combat units

with ammo trucks). In fact, they are different versions of valid inequalities (4.2)

summed over commercial and ammo trucks.

mtpinjvp − (1− xijv) · CVvp ≤ ftpoutivp ∀i ∈ NF , j ∈ NM , v ∈ VF , p ∈ P

(V 16a)

cuinjvp − (1− xijv) · CVvp ≤ mtpoutivp ∀i ∈ NM , j ∈ NC , v ∈ VM , p ∈ P

(V 16b)

Valid inequalities (V 16) set the correct relationships between the product flow

decision variables. Consider commercial truck v goes from Fixed-TP i to Mobile-

TP j carrying ammo type p. First of all, obviously we have xijv = 1. Then
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valid inequalities (V 16a) take the form mtpinjvp ≤ ftpoutivp which states that

commercial truck v can not drop ammo type p to Mobile-TP j more than it

loaded from the Fixed-TP i where it started its tour. If on the other hand, had

we had xijv = 0 (meaning that commercial truck v does not travel between i

and j) then constraints (V 16a) would have been redundant. Constraints (V 16b)

work similarly for the decision variables mtpout and cuin.

yi ≤
∑
v∈VF

∑
p∈P

kivp ∀i ∈ NM (V 17a)

yi ≤
∑
v∈VM

∑
p∈P

kivp ∀i ∈ NM (V 17b)

Valid inequalities (V 17) state that each open Mobile-TP must receive some ammo

by commercial trucks and must send some ammo with ammo trucks.

kivp ≤
∑

j∈NFM
j 6=i

xjiv ∀i ∈ NM , v ∈ VF , p ∈ P (V 18a)

kivp ≤
∑
j∈NC

xijv ∀i ∈ NM , v ∈ VM , p ∈ P (V 18b)

kivp ≤
∑

j∈NMC
j 6=i

xjiv ∀i ∈ NC , v ∈ VM , p ∈ P (V 18c)

Valid inequalities (V 18) require that if a vehicle drops (takes) an ammo type to

(from) a node then that node must be on that vehicle’s route.

kivp ≤ tviv ∀i ∈ NM , v ∈ VF , p ∈ P (V 19)

∀i ∈ NM , v ∈ VM , p ∈ P

∀i ∈ NC , v ∈ VM , p ∈ P

Valid inequalities (V 19) ensure that if a vehicle drops (takes) an ammo type to

(from) a node then the arrival time of that vehicle at that node must be a positive
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number, assuming that minimum traveling time between Fixed-TPs and Mobile-

TPs is greater than one unit time. If there exist such a traveling time that is less

than one, then we can divide the left hand side by a big enough number.

∑
v∈VM

kivp ≥ 1 ∀i ∈ NC , p ∈ NP (V 20)

Valid inequalities (V 20) maintain that the demand of each combat unit for each

ammo type must be satisfied by at least one ammo truck.

kivp ≤ yi ∀i ∈ NM , v ∈ VF , p ∈ P (V 21)

∀i ∈ NM , v ∈ VM , p ∈ P

Valid inequalities (V 21) require that no vehicle can drop (take) any ammo to

(from) a closed Mobile-TP.

tviv ≤ TMp ·
∑
p∈P

kivp ∀i ∈ NM , v ∈ VF (V 22)

∀i ∈ NM , v ∈ VM

∀i ∈ NC , v ∈ VM

Valid inequalities (V 22) state that if a vehicle does not drop (take) any ammo

to (from) a node then its arrival time at that node should be zero.

4.4 Model comparison

In this section we compare 4-index and 3-index models based on the total number

of the decision variables and constraints.

Let n be the total number of transfer points and combat units (n = |N |),
nF be the total number of Fixed-TPs (nF = |NF |), nM be the total number of
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Table 4.1: Number of decision variables
4-index 3-index

variable number variable number
fijvp n2vp ftpoutivp nFvFp

mtpinivp nMvFp
mtpoutivp nMvMp
cuinivp nCvMp

tpip np tpip np
tviv nv tviv nv
xijv n2v xijv n2v
yi nF + nM yi nF + nM

wijp n2p kivp n2p

Mobile-TPs (nM = |NM |), nC be the total number of combat units (nC = |NC |),
v be the total number of trucks (v = |V |), vF be the total number of commercial

trucks (vF = |VF |), vM be the total number of ammo trucks (vM = |VM |), and
p be the total number of ammo types (p = |P |). Number of variables for both

models are presented in Table 4.1. After subtracting the common elements total

number of the decision variables are;

4index = n2
(
vp+ p

)
,

3index = nF

(
vFp

)
+ nM

(
2vp

)
+ nC

(
2vMp

)

<
(
nF + nM + nC

)(
2vp

)

= n
(
2vp

)
.

It is clear that for n ≥ 2 we always have;

4index = n
(
vp+ p

)
> 2vp > 3index,

which proves that 3-index model has always fewer variables than 4-index model.

Number of constraints for both models are presented in Figure 4.2. After

subtracting the common elements total number of the constraints are;

4index = nFvF (2nM + 2nMp) + nMvF (2nM + 2nMp) + nMvM(2nC + 2nCp)

+ nCvM(2nC + 2nCp) + nMp(2n+ 1) + 2n2
Mp,

3index = nFvF (1 + p) + nMvF (1 + 3p) + nMvM(1 + 4p) + nCvM(1 + 3p)
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Table 4.2: Number of constraints
4-index 3-index

constraint number constraint number
(3.1) p(nM + nC) (4.1) nCp
(3.2) p(nMvF + nCvM ) (4.2) vp
(3.3) vF + vM (4.3) nMp
(3.4) nF vF + nMvM (3.3) vF + vM
(3.5) nMvF + nCvM (3.4) nF vF + nMvM
(3.6) p(nF + 2nM ) (3.5) nMvF + nCvM

(3.7)+(3.10) 2
(
nMvF p(nF + nM ) (4.4) p(nF + nM )

+nCvMp(nM + nC)
)

(4.5) vp

(3.8)+(3.9)+(3.16) 3
(
nMvF (nF + nM ) (4.6) v

+nCvM (nM + nC)
)

(4.7)+(4.9)+(4.10) vF p(nF + 3nM )

(3.11) nMp(nF + nM ) +3vMp(nM + nC)
+nCp(nM + nC) (4.8) vF (nF + nM )

(3.12)+(3.13)+(3.14) p(nF + 2nC) vM (nM + nC)
(3.15) nMp(nF + nM ) (3.12)+(3.13)+(3.14) p(nF + 2nC)

+nCp(nM + nC) (3.16) nMvF (nF + nM )
+nCvM (nM + nC)

(4.11) nMvMp
(4.12) p(nMvF + nCvM )

+ v(1 + 2p).

Remember that our Mobile-ADS problem is an LRP problem in which both

facility location and vehicle routing decisions exist. In our problem setting, there

will be at least two potential Fixed-TPs (nF ), Mobile-TPs (nM) and combat units

(nC). For this reason, we have at least nF , nM , nC = 2, n = 6, and total number

of the constraints are;

4index = 4v(4 + 4p) + 34p,

3index = 2vF (1 + p) + 2vF (1 + 3p) + 2vM(1 + 4p) + 2vM(1 + 3p) + v(1 + 2p)

< 4v(1 + 4p) + v(1 + 2p).

Remember that commercial (ammo) trucks distribute ammo between Fixed-TPs

(Mobile-TPs) and Mobile-TPs (combat units). Hence, we will have at least one

commercial and one ammo truck, which is vF , vM = 1, v = 2, and we have;

4index = 66p+ 32 > 36p+ 10 > 3index,

which proves that 3-index model has fewer constraints than 4-index model in

realistic problem settings.



Chapter 5

Computational Experiments

(Part I)

In this chapter we test our valid inequalities (V), which are derived for 4-index

and 3-index formulations, on 6 moderate size test problem instances. All compu-

tations are conducted on a laptop computer with 1.83 GHz CPU, 1 GB RAM and

Windows XP [69] operating system. We use GAMS/Cplex 9.1 [31] as the mixed

integer programming solver and GAMS 22.0 [20] as the modeling language.

5.1 Experiments on test bed problem instances

In order to gain insight in using valid inequalities, we test all of them in 6 moderate

size problem instances. In each problem instance there are; 3 potential Fixed-TP

locations (|NF | = 3), 8 potential Mobile-TP locations (|NM | = 8), 10 combat

units (|NC | = 10), 5 commercial trucks (|VF | = 5), 10 ammo trucks (|VM | = 10)

and 3 ammo types (|P | = 3). Table 5.1 shows the differences among the problem

instances. For example, in problem instance A (PI A) at least one Fixed-TP,

two Mobile-TPs must be opened and two commercial trucks, three ammo trucks

must be dispatched to satisfy the total demand of the combat units in time and

time window tightness is low. Table 5.2 clarifies what we mean by time window

47
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Table 5.1: Differences of problem instances
min number to open/dispatch Time window
|NF | |NM | |VF | |VM | tightness

PI A 1 2 2 3 low
PI B 1 3 3 5 low
PI C 1 2 2 3 medium
PI D 1 3 3 5 medium
PI E 1 2 2 3 high
PI F 1 3 3 5 high

Table 5.2: Time window tightness
Combat Units

1 2 3 4 5 6 7 8 9 10
low TEip 1 6 11

TLip 10 16 24
medium TEip 1 4 10 16

TLip 8 14 20 24
high TEip 2 4 4 16 10 14

TLip 8 8 16 20 20 22

tightness. For example, low tightness means there exists three different groups of

combat units with different time windows. To be exact, TEip = 1 and TLip = 10

for i = 1, 2, 3 and p ∈ P , TEip = 6 and TLip = 16 for i = 4, 5, 6, 7 and p ∈ P ,

TEip = 11 and TLip = 24 for i = 8, 9, 10 and p ∈ P .

All computational results from now on are obtained by using strong branching

for selecting the branching variable and best-estimate search for selecting the

next node when backtracking. For the other parameters we use CPLEX’s default

settings. When comparing valid inequalities, we base the comparison on the

optimality gap reported by CPLEX. Computations for a problem are terminated

after 3600 seconds.

5.2 4-index model

In Table 5.3 we compare the performance of single valid inequalities in each prob-

lem instance. First row presents the optimality gaps after running the original
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formulation for one hour and dashes indicate that no feasible solution can be

found within the given time limit. Subsequent rows demonstrate the optimality

gaps of the formulations after adding the corresponding valid inequalities shown

in the rows. As can be seen in the table in two problem instances no feasible

solution is found with the original formulation in one hour. (V 2) dominate the

original formulation. In other words the gap of the formulation with (V 2) is

superior to the gap of the original formulation in each problem instance. (V 13)

perform better than other valid inequalities in terms of solution quality with an

average gap of 7.64%. In addition, the results indicate that (V 4) are a good

candidate for further examination.

Since (V 2), (V 4) and (V 13) are the best performing valid inequalities, we first

test all pairwise combinations of other valid inequalities with them. The results

that can be seen in Tables 5.4, 5.5 and 5.6 show that no pairwise combination

is superior to (V 2), (V 4) and (V 13). Following the same methodology we test

all triple combinations of other valid inequalities with some promising pairwise

combinations and no improvement is obtained.

Then we propose that (V 2), (V 4) and (V 13) need further examination. Ta-

bles 5.7 and Table 5.8 present the performance of these valid inequalities in 30

and 15 minutes. It can be seen that in 30 minutes (V 13) can not find a feasible

solution to two problem instances whereas (V 2) and (V 4) able to find all of them.

In 15 minutes though, (V 4) can not find a solution to three problem instances

whereas (V 2) can not find to only one problem instance. After such extensive

testing we conclude that (V 2) offer the best improvements.
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5.3 3-index model

In Table 5.9 we compare the performance of single valid inequalities in each

problem instance. As can be seen in the table in one problem instance no feasible

solution is found with the original formulation in one hour. (V 12) perform better

than other valid inequalities in terms of solution quality with an average gap of

1.56%.

Then, we test all pairwise combinations of other valid inequalities with (V 12),

the results of which can be seen in Table 5.10. These results show that pairwise

combinations (V 12-V 1), (V 12-V 2) and (V 12-V 18) are better than the others.

Thus, following the same methodology we test all triple combinations of other

valid inequalities with these pairwise combinations. Finally: in Table 5.11 triple

combinations (V 12-V 1-V 8), (V 12-V 1-V 11), (V 12-V 1-V 13), (V 12-V 1-V 14),

(V 12-V 1-V 15), (V 12-V 1-V 19), (V 12-V 1-V 22); in Table 5.12 (V 12-V 2-V 10),

(V 12-V 2-V 18), (V 12-V 2-V 19); in Table 5.13 (V 12-V 18-V 8), (V 12-V 18-V 20)

give promising results that need further examination.

Tables 5.14 and Table 5.15 present the performance of these triple combina-

tions in 30 and 15 minutes. It can be seen that in 30 minutes triple combinations

(V 12-V 1-V 22), (V 12-V 2-V 10), (V 12-V 2-V 18) and (V 12-V 18-V 20) outper-

form others. In 15 minutes, however, (V 12-V 18-V 20) clearly obtain a much bet-

ter average optimality gap than that of the others. After such extensive testing we

conclude that triple combination (V 12-V 18-V 20) offer the best improvements.
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5.4 Findings

We conclude that in the problem instances we investigated (V 2) help reduce the

solution time of 4-index model. Likewise, we find that (V 12), (V 18) and (V 20)

reduce the solution time of 3-index model. In the following computations we use

these valid inequalities with the corresponding models.



Chapter 6

Computational Experiments

(Part II)

This chapter presents large-scale applications of the 4-index and 3-index models,

strengthen by adding the valid inequalities that help lessen the solution time,

to some realistic battle scenarios. To evaluate the performance of the models

we generate two different sets of problem instances. The first set consists of 6

small size instances, and the second set contains 12 large size instances. Table

6.1 displays the characteristics of the problem instances.

The required number of trucks shows the minimum number of trucks required

to supply the combat units complying all the constraints. In small size instances

(PI G - PI L) number of required commercial trucks ranges from 3 to 5, ammo

trucks ranges from 6 to 10, and number of ammo types ranges from 3 to 5. There

are from 8 to 12 commercial trucks, from 16 to 24 ammo trucks, from 6 to 10

required commercial and from 12 to 20 ammo trucks, and from 2 to 5 ammo types

in medium and large size instances.

In all problem instances; opening cost of Fixed-TP is 100 and of mobile-TP

is 50, acquisition cost of a commercial truck is 50 and of an ammo truck is 25,

transportation cost of a unit of an ammo type per unit time is 1 for commercial

trucks and 0.5 for ammo trucks.

64
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Table 6.1: Characteristics of problem instances
] Fixed ] Mobile ] Combat ] Com. ] Ammo ] required ] required ] Ammo

TPs TPs units trucks trucks Com. Ammo types
trucks trucks

PI G 2 8 16 6 12 3 6 3
PI H 2 8 16 6 12 5 10 3
PI I 2 8 16 6 12 3 6 4
PI J 2 8 16 6 12 5 10 4
PI K 2 8 16 6 12 3 6 5
PI L 2 8 16 6 12 5 10 5
PI1 3 8 20 8 16 6 12 2
PI2 3 8 20 12 24 6 12 2
PI3 3 8 20 12 24 10 20 2
PI4 3 8 20 8 16 6 12 3
PI5 3 8 20 12 24 6 12 3
PI6 3 8 20 12 24 10 20 3
PI7 3 8 20 8 16 6 12 4
PI8 3 8 20 12 24 6 12 4
PI9 3 8 20 12 24 10 20 4
PI10 3 8 20 8 16 6 12 5
PI11 3 8 20 12 24 6 12 5
PI12 3 8 20 12 24 10 20 5

Each Fixed-TP has a capacity of 100 for each ammo type, whereas the capacity

is 50 for Mobile-TPs. There are three different kinds of commercial trucks with

a capacity of 13, 20, and 32 units and three different kinds of ammo trucks with

capacities 7, 10 and 16. Finally, the demand of combat units ranges from 1 to 4

units for each ammo type.

6.1 Small size instances

We consider a strategic scenario in which a country’s land forces are attacking

enemy forces. Generally, land forces of a country consist of several armies, corps,

brigades, and battalions. Figure 6.1 provides information on the organization of

land forces.

The number of soldiers in an army can vary significantly between countries,

commonly from 100.000 up to 200.000 or more. A corps typically includes from

20,000 to 50,000 soldiers. Under the current doctrine of most countries’ land
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Land Forces

Battalion Battalion

Brigade Brigade

Corps Corps

Army Army

Figure 6.1: Organization of a representative land force

forces, armies are mostly concerned with both administrative and institutional

missions. Usually, corps is the highest level of command that is concerned with

operations on the battlefield.

Hence, in our base scenario we consider a corps that is in offense position to

defeat enemy forces. The corps has 4 brigades. A brigade may have 4 or 5 battal-

ions depending on the mission, enemy threat, etc. We assume that each brigade

has 4 battalions. Therefore, there are 16 battalions in total and ammo must be

pushed down to them. In other words these battalions are the so called combat

units in the formulation (|NC | = 16). Logistics planners determine 2 potential

locations for Fixed-TPs (|NF | = 2) and 8 potential locations for Mobile-TPs

(|NM | = 8) in the corps’ control area. The layout of the corps on the battlefield

can be seen in Figure 6.2, which shows the true potential locations of Fixed-

TPs and Mobile-TPs and known locations of battalions. FTP/MTP/CU denotes

Fixed-TP/Mobile-TP/combat unit (battalion), respectively. Dotted circles repre-

sent potential locations for Fixed-TPs and Mobile-TPs. In addition, all distances

are taken from actual highway maps. Note that, the first brigade consists of

battalions 1 to 4, i.e the first brigade={CUi : 1 ≤ i ≤ 4}. Likewise, the second

brigade={CUi : 5 ≤ i ≤ 8}, the third brigade={CUi : 9 ≤ i ≤ 12} and the fourth

brigade={CUi : 13 ≤ i ≤ 16}.

The corps’ transportation unit has 6 commercial (|VF | = 6) and 12 ammo

trucks (|VM | = 12).
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Figure 6.2: The corps’ layout plan on the battlefield

High Density Ammo Medium Density Ammo Low Density Ammo

Figure 6.3: Ammunition groups

To reduce complexity, logistics planners group ammo into three groups ac-

cording to their daily usage amounts as can be seen in Figure 6.3. High density

group consists of mostly used ammo types such as infantry rifle bullets, etc.

Medium density group consists of less frequently used ammo types such as anti-

tank missiles, etc. Low density group consists of least used ammo types such as

anti-aircraft missiles, etc. In other words three different ammo types (|P | = 3)

must be distributed. The demand of each battalion is one ton for ammo type

1 (low density), two tons for ammo type 2 (medium density) and three tons for

ammo type 3 (high density).
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In order to be supplied, a maneuvering battalion must halt and take the

security precautions. However all brigades of the corps can not halt at the same

time when they are engaged with the enemy. Hence corps logistics and tactical

planners decide to supply brigades in turns and determine the beginning and

ending of the supply time window for each brigade. In other words battalions of

a brigade have the same supply time window and brigades have nonoverlaping

time windows.

Note that the two formulations (4-index and 3-index models) that we pro-

vide in the previous chapters do not consider any specific military command and

control structure or any hierarchy among military units. These formulations are

given in their most general form like a distributer or a manufacturer is supplying

its customers with some industrial products. In doing so, our aim is to show that

our model can be used in almost any (military or not) distribution system and to

help readers compare Mobile-ADS design model with the existing network design

or LRP models.

However, we need to state some military requirements to convert these models

into a more realistic military form. To start with, for solving a real life Mobile-

ADS design problem we need to consider a corps in battle. In other words, we

need to design a Mobile-ADS for a corps in real life instances. The military

requirements that we face in reality on the battlefield are as follows.

military requirement 1 Due to the shortage of manpower/equipment re-

sources and enemy threat, a corps can not establish an unlimited number of

Fixed-TPs in its control area. It is preferable to open one Fixed-TP per corps.

military requirement 2 Every brigade uses a separate wireless commu-

nication channel to communicate with its battalions on the battlefield. Hence,

it is always easier for a brigade to communicate with its own battalion than to

communicate with a battalion of another brigade. Besides, a battalion always

reports to its own brigade about its location and demands. Thus, it is usually

preferable to supply a combat unit from a Mobile-TP of its own brigade.
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military requirement 3 For the same reason stated in military require-

ment 1 and because of military requirement 2 it is preferable to open one Mobile-

TP per brigade.

We design 6 different PIs of the base scenario by considering several combi-

nations of two problem parameters. These problem parameters are explained in

detail below.

• Number of product types (3, 4, 5): To evaluate the performance of the

models in different complexity levels we consider 3 different ammo type

numbers. That is, number of ammo types can be 3, 4 and 5.

• Truck usage percentage (50%, 83%): There are 6 commercial and 12 ammo

trucks. We consider two different truck usage levels. In the first level,

which is 50%, at least 3 commercial and 6 ammo trucks must be used. In

the second level, which is 83%, at least 5 commercial and 10 ammo trucks

must be used.

As we explain in Chapter 3, in a real combat environment we may need to

consider two different objectives (z1 and z2). Hence, we test the 4-index model in

each problem instance with both of these objective functions and test the 3-index

model with the second objective function.

Table 6.2 presents the gaps and the objective function values. Note that we

use (V 2), strong branching and best-estimate search, solve LP relaxations at

each node by primal simplex with devex pricing, only generate implied bounds,

cover cuts and clique cuts, implement aggressive scaling, and perform presolve at

nodes.

As can be seen in the table, 4-index model can attain less than 8% gaps in

one hour and can not find a solution only in one instance with the first objective.

With the second objective, 3-index can find a solution for four instances, whereas

4-index can find only for three. In addition, while 4-index can only reach gaps

from 14% to 23%, 3-index is able to attain better gaps, at most 10%.
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Table 6.2: Gaps (%) and costs in 1 hour (small instances)
4-index, first obj. 4-index, second obj. 3-index, second obj.
gap cost gap cost gap cost

PI G 7.50 923.18 14.63 712.41 0.85 662.33
PI H 6.70 1106.62 - - 9.74 873.24
PI I 7.24 922.98 20.29 763.00 8.69 663.45
PI J 6.69 1106,16 - - - -
PI K - - 23.06 790.32 - -
PI L 0.72 1112,83 - - 10.00 875.12

6.2 Large size instances

In the large size instance base scenario we again consider a corps. The corps has 4

brigades. We assume that each brigade has 5 battalions. Therefore, there are 20

battalions in total and ammo must be pushed down to them. In other words these

battalions are the so called combat units in the formulation (|NC | = 20). Logistics

planners determine 3 potential locations for Fixed-TPs (|NF | = 3) and 8 potential

locations for Mobile-TPs (|NM | = 8) in the corps’ control area. The layout of the

corps on the battlefield can be seen in Figure 6.4, which shows the true poten-

tial locations of Fixed-TPs and Mobile-TPs and known locations of battalions.

FTP/MTP/CU denotes Fixed-TP/Mobile-TP/combat unit (battalion), respec-

tively. Dotted circles represent potential locations for Fixed-TPs and Mobile-TPs.

In addition, all distances are taken from actual highway maps. The first brigade

consists of battalions 1 to 5, i.e the first brigade={CUi : 1 ≤ i ≤ 5}. Likewise,

the second brigade={CUi : 6 ≤ i ≤ 10}, the third brigade={CUi : 11 ≤ i ≤ 15}
and the fourth brigade={CUi : 16 ≤ i ≤ 20}.

The corps’ transportation unit has 8 commercial (|VF | = 8) and 16 ammo

trucks (|VM | = 16).

Remember from Chapter 5 that we have three candidate valid inequalities for

4-index model, namely (V 2), (V 4) and (V 13). Hence, we first test their perfor-

mances on the base scenario. Table 6.3 provides the solutions of the strengthen

4-index model, with valid inequalities, as well as the original model. As can be

seen in the table, the original model and the model with (V 13) can not find a



CHAPTER 6. COMPUTATIONAL EXPERIMENTS (PART II) 71

CU

1

CU

2

CU

3

CU

4
CU

5

CU

6

CU

7

CU

8

CU

9

CU

10
CU

11 CU

12

CU

13

CU

14

CU

15

CU

16

CU

17

CU

18

CU

19

CU

20

MTP

1

MTP

2

MTP

3
MTP

4
MTP

5

MTP

6

MTP

8

MTP

7

FTP

1

FTP

2
FTP

3

ENEMY FORCES

Figure 6.4: The corps’ layout plan on the battlefield

feasible solution in 24 hours. However, the model with (V 2) solves the military

scenario up to 2% in 24 hours and, in fact, this model finds the first solution in

17 minutes with a gap of 15.59%.

Then, we use strong branching and best-estimate search as we do in the valid

inequality runs in Chapter 5. We solve the LP relaxations at each node by

primal simplex with devex pricing. We only generate implied bounds, cover cuts

and clique cuts and do not allow the generation of other cuts. We implement

aggressive scaling and perform presolve at nodes. The last row pointed with
? shows the performance of the model under the specified parameter settings.

The results indicate that significant improvements are reached by the strengthen

model with (V 2) under the specified parameter settings in terms of solution

quality. It finds the first solution in two minutes with a gap of 12.04% and

obtains a gap of 0.89% after 24 hours. In addition, the solution of this model is

only 4.98% away from the optimal solution after one hour and 1.90% away after

two hours.

Figure 6.5 shows the graphical representation of the solution obtained by the
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Table 6.3: Results of the base scenario
Utilization Gaps (%)

NFM V 5 h 10 h 15 h 20 h 24 h
Original - - - - - - -
(V 2) 45% 75% 2.22 2.22 2.18 2.17 2.00
(V 4) 45% 75% - 12.99 12.82 12.05 8.65
(V 13) - - - - - - -
(V 2)? 45% 75% 1.15 0.93 0.93 0.93 0.89

model with (V 2) under the specified parameter settings. As can be seen in the

figure; 1 Fixed-TP point, 4 Mobile-TPs (1 for each brigade) are opened and 6

commercial trucks are dispatched from the Fixed-TP, and 12 ammo trucks are

used by Mobile-TPs (each one dispatches 3 ammo trucks). Solid lines represent

the routes of commercial trucks and a double arrowed line denotes a return trip.

For example, commercial truck 1 is dispatched from Fixed-TP 2, drops its load

at Mobile-TP 2 and comes back to Fixed-TP 2. However, commercial truck 3

starts its tour from Fixed-TP 2, serves Mobile-TP 3 and 2 in turn and returns to

its home transfer point. A route (tour) of any ammo truck is represented by one

of the three arrowed line types, namely dotted (· · · ), dashed (- - -) or dash dotted

(− · −) lines. Each line type is used only once for each Mobile-TP. In other

words, each Mobile-TP has only one dotted, one dashed and one dash dotted

line, meaning that each Mobile-TP dispatches three ammo trucks. For example,

dashed line that emanates from Mobile-TP 2 represents the tour of ammo truck

14. It starts its tour from Mobile-TP 2, visits battalion 2 and battalion 1 in turn

and returns to Mobile-TP 2 at the end. Likewise, the tour of ammo truck 4 is

Mobile-TP 7 – Battalion 16 – Battalion 17 – Mobile-TP 7.

A cautious examination of the solution reveals that opening a Mobile-TP

closer to Fixed-TPs is almost always (there is only one exception) more cost-

effective than opening one closer to combat units. The model prefers Mobile-TP

2 over 1, Mobile-TP 6 over 5 and Mobile-TP 7 over 8. The only exception is that

the model chooses Mobile-TP 3 rather than 4, but their distances from Fixed-TP

2 are almost the same. The explanation for selecting the closer Mobile-TP is in

fact straightforward. Transportation cost of commercial trucks is higher than that

of ammo trucks. Hence, less distance from a Fixed-TP means shorter commercial
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truck routes which in turn leads to less total transportation cost. As a matter

of fact, opening a Mobile-TP (which can satisfy all demands of attached units

in time) that is farther from the front line combat units is more advantageous

tactically, too. Such a transfer point will be less vulnerable to enemy fire and

unexpected counter attacks. In addition, it will have more time to change its

location in case of such contingencies.

To help the reader in understanding the solution, we demonstrate the details

of the solution for the first brigade in Figure 6.6. CTrucki and ATrucki denotes

commercial and ammo truck i, respectively. pi represents the amount of ammo

type i. As an example, commercial truck 3 starts its route from Fixed-TP 2 and

carries 20 tons of ammo 2 to Mobile-TP 3. It drops 10 tons of its load there

and continues to Mobile-TP 2 with 10 tons of ammo 2. Finally, it goes back

to its home transfer point after serving Mobile-TP 2 with 10 tons of ammo 2.

Commercial truck 1 is dispatched from Fixed-TP 2 with a load of 5 tons of ammo

1 and 15 tons of ammo 3. It drops all ammo to Mobile-TP 2 and returns to

Fixed-TP 2. Demands of battalion 2 are supplied by two different ammo trucks

(which we called multi-sourcing in the literature classification). To be exact, one

ton of ammo 1 and ammo 2 are provided by ammo truck 9 and one ton of ammo

2 and three tons of ammo 3 are provided by ammo truck 14.

We design 12 different PIs of the base scenario by considering several combi-

nations of two problem parameters. These problem parameters are explained in

detail below.

• Number of product types (2, 3, 4, 5): To evaluate the performance of the

models in different complexity levels we consider 4 different ammo type

numbers. That is, number of ammo types can be 2, 3, 4 and 5.

• Truck usage percentage (75%, 50%, 83%): We consider three different truck

usage levels. In the first level, which is 75%, there exist 8 commercial and

16 ammo trucks out of which at least 6 commercial and 12 ammo trucks

must be used to supply the total demand of combat units. In the second

level, which is 50%, there exist 12 commercial and 24 ammo trucks out of
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which at least 6 commercial and 12 ammo trucks must be used. Finally,

in the third level, which is 83%, there exist 12 commercial and 24 ammo

trucks out of which at least 10 commercial and 20 ammo trucks must be

used.

As we explain in Chapter 3, in a real combat environment we may need to

consider two different objectives (z1 and z2). Hence, we test the 4-index model in

each problem instance with both of these objective functions and test the 3-index

model with the second objective function.

6.3 4-index model

Tables 6.4 and 6.5 presents the gaps and the objective function values with the

first objective function. Abbreviations m and h stand for minutes and hours.

Note that we use (V 2), strong branching and best-estimate search, solve LP

relaxations at each node by primal simplex with devex pricing, only generate

implied bounds, cover cuts and clique cuts, implement aggressive scaling, and

perform presolve at nodes.

As can be derived from the table, after 24 hours the average gaps with the first

objective are 2.85%, 2.84%, 4.82% and 6.55% for |P | = 2, 3, 4 and 5, respectively.

In addition, they are 2.04%, 3.39% and 7.37% for 75%, 50% and 83% truck usage

levels, respectively. It is clear that the problem gets harder to solve as the number

of ammo types and the number of available and used trucks increase.

Tables 6.6 and 6.7 exhibit the gaps and the objective function values with

the second objective function. As can be derived from Table 6.6, after 24 hours

the average gaps with the second objective are 3.25%, 3.31%, 3.40%and 4.23%

for |P | = 2, 3, 4 and 5, respectively. In addition, they are 0.49%, 1.29% and

8.87% for 75%, 50% and 83% truck usage levels, respectively. Similar to the first

objective, the problem gets harder to solve as the number of ammo types and the

number of available and used trucks increase.
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6.4 3-index model

Tables 6.8 and 6.9 exhibit the gaps and the objective function values with the

second objective function. Note that we use (V 18), (V 20), strong branching and

best-estimate search.

As can be derived from the table, after 24 hours the average gaps with the

second objective are 3.64%, 3.72%, 5.57% and 9.02% for |P | = 2, 3, 4 and 5,

respectively. In addition, they are 2.86%, 4.24% and 9.35% for 75%, 50% and

83% truck usage levels, respectively. It is clear that the problem gets harder to

solve as the number of ammo types and the number of available and used trucks

increase.
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Table 6.10: Summary of the problem instances
number of ammo types

2 3 4 5

truck 75% PI1 PI4 PI7 PI10
usage 50% PI2 PI5 PI8 PI11
levels 83% PI3 PI6 PI9 PI12

6.5 Findings with valid inequalities

Recall that 12 large size instance are introduced by considering several combina-

tions of two problem parameters, namely number of ammo types (|P | = 2, 3, 4, 5)

and truck usage percentage (75%, 50%, 83%). Figure 6.10 reminds these instances.

To summarize the results of the computational experiments graphically, we

arrange 12 problem instances into 3 groups according to truck usage percentages.

In detail: the first group consists of PI1, PI4, PI7 and PI10 whose truck usage

percentage is 75%; the second group consists of PI2, PI5, PI8 and PI11 whose

truck usage percentage is 50%; the third group consists of PI3, PI6, PI9 and PI12

with a 83% truck usage percentage. In the 75% group 18 trucks are dispatched

out of 24 trucks, 50% group 18 trucks are dispatched out of 36 trucks, and 83%

group 30 trucks are dispatched out of 36 trucks. In each group we investigate

the effect of the ammo type number on the performance of the models. In detail,

in each group the first/second/third/fourth problem instance has 2/3/4/5 ammo

types. For example, in the 50% truck usage group PI2/PI5/PI8/PI11 has 2/3/4/5

ammo types.

First of all we present the branch and bound details in Table 6.11. Node

shows the number of nodes and iteration shows the number of iterations that are

used by the MIP solver in solving of our problem instances. It can be seen that

as the problem gets harder to solve, the number of nodes and iterations decrease,

since solving linear sub-problems at each node takes more time.

For each instance, model and objective function, we present the CPU time and

the cost of the linear programming bound in Tables 6.12, 6.13 and 6.14. With the

first objective function, the results show that there is not much difference between
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Table 6.11: The number of nodes and iterations
4-index, first obj. 4-index, second obj. 3-index, second obj.
iteration node iteration node iteration node

PI1 92,464,288 193,120 75,757,047 241,601 16,865,584 237,201
PI2 82,535,826 152,678 91,279,736 156,016 16,789,905 137,573
PI3 89,415,817 166,601 57,261,215 167,710 7,636,301 207,130
PI4 96,944,058 145,680 88,736,917 159,301 19,308,708 160,325
PI5 93,782,520 128,101 93,488,993 101,401 10,308,708 109,524
PI6 68,194,211 134,294 69,523,100 119,631 9,721,280 129,768
PI7 128,189,366 119,684 87,283,387 102,501 18,784,518 98,547
PI8 104,855,439 84,270 69,771,864 88,601 129,750,852 77,053
PI9 80,879,446 80,630 60,356,325 87,717 14,580,055 79,642
PI10 117,715,796 60,452 96,405,506 59,301 20,150,938 86,912
PI11 97,524,207 50,162 80,531,638 55,201 14,881,716 43,803
PI12 61,760,104 75,801 48,907,082 73,101 16,190,386 46,371

the original and enhanced (with (V 2)) 4-index model in terms of the computation

time for solving the linear programming relaxations. Run time ranges between 1

to 15 seconds, which consider reasonable. As for the second objective, including

all the valid inequalities into the models certainly deteriorates the computation

time. For 4-index model not a big difference exists between the original model

and the enhanced model. However, running the 3-index model without any valid

inequality clearly gives better run times. In addition, the results reveals that

3-index model solves the linear relaxations faster than 4-index model. Briefly,

for all the instances the linear programming lower bounds can be computed very

quickly.

As for the solution quality, generally including all valid inequalities into the

both models helps to attain a better lower bound in the hard instances. Fur-

thermore, in each instances 4-index provides a better lower bound that 3-index

model.

6.5.1 4-index model

We present the objective values of the 4-index model with the first objective

function in Figure 6.7. As can be seen in Figures 6.7(a), 6.7(b) and 6.7(c) for
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Table 6.12: Linear programming bound of 4-index model with the first objective
Original model with (V 2) with all valid inq.s

run time cost run time cost run time cost
PI1 0.78 1187.55 0.60 1187.55 0.94 1187.55
PI2 1.24 1187.55 1.41 1187.55 1.52 1187.55
PI3 1.30 1477.66 1.68 1477.66 1.39 1537.55
PI4 1.50 1187.55 1.17 1187.55 1.32 1187.55
PI5 2.86 1187.55 2.89 1187.55 2.41 1187.55
PI6 3.14 1477.66 3.72 1477.66 2.36 1537.55
PI7 2.86 1187.55 3.27 1187.55 1.77 1187.55
PI8 5.34 1187.55 5.93 1187.55 2.96 1187.55
PI9 6.81 1477.66 6.22 1477.66 3.36 1537.55
PI10 4.00 1187.55 4.96 1187.55 1.92 1187.55
PI11 7.74 1187.55 9.00 1187.55 4.94 1187.55
PI12 9.32 1477.66 11.17 1477.66 15.12 1537.55

Table 6.13: Linear programming bound of 4-index model with the second objec-
tive

Original model with (V 2) with all valid inq.s
run time cost run time cost run time cost

PI1 2.73 914.46 2.35 914.46 4.48 914.46
PI2 5.00 914.46 4.96 914.46 8.62 914.46
PI3 5.33 1211.72 6.12 1211.72 10.04 1272.60
PI4 5.85 914.46 5.52 914.46 12.57 914.46
PI5 13.04 914.46 12.46 914.46 24.79 914.46
PI6 12.48 1211.72 12.57 1211.72 27.94 1272.60
PI7 10.86 914.46 14.37 914.46 29.34 914.46
PI8 22.67 914.46 26.66 914.46 140.11 914.46
PI9 22.96 1211.72 26.14 1211.72 66.32 1272.60
PI10 22.28 914.46 24.16 914.46 292.31 914.46
PI11 38.88 914.46 49.18 914.46 747.81 914.46
PI12 49.13 1211.72 46.15 1211.72 303.62 1272.60
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Table 6.14: Linear programming bound of 3-index model with the second objec-
tive

Original model with (V 18)-(V 20) with all valid inq.s
run time cost run time cost run time cost

PI1 0.58 911.45 1.07 912.44 2.20 912.51
PI2 0.95 911.45 2.09 912.44 6.31 912.48
PI3 0.96 1207.35 1.96 1208.05 4.18 1269.09
PI4 0.67 910.99 1.52 912.16 8.16 912.21
PI5 1.78 910.99 4.01 912.16 49.14 912.18
PI6 1.79 1206.66 4.09 1207.60 18.13 1268.59
PI7 1.27 910.53 2.76 911.88 11.04 911.92
PI8 2.57 910.53 4.93 911.88 18.90 911.90
PI9 3.21 1205.97 8.63 1207.17 29.99 1268.12
PI10 1.50 910.25 4.65 911.71 21.17 911.76
PI11 4.45 910.25 15.13 911.71 49.21 911.74
PI12 3.88 1205.56 9.42 1206.91 62.36 1267.87

the 75% and 50% groups the objective values improve fast in the first 4-6 hours

and for the 83% group it improves in the first 2 hours. After these time intervals

no significant improvements can be obtained and this observation is valid for all

ammo type numbers in each group.

In addition, for the 75% and 50% groups ammo type number affects the

performance of the model more than it does for the 83% group. For the 83%

level in 2 hours the model can attain a similar objective for 5-ammo type instance

(PI12) as in the other instances, whereas for the 75% and 50% levels the objective

value of the 5-ammo type instances (PI10 and PI11) stays higher than those of

the other instances.

The objective values of the 4-index model with the second objective function

are presented in Figure 6.8. Figure 6.8(a) shows that for the 75% level except

5-ammo type instance (PI10) the objective values do not improve much after the

first 10 hours. It can be seen in Figure 6.8(b) that for the 50%, again except 5-

ammo type instance (PI11), objective values mostly improve in the first 2 hours.

In both levels the objective function values of the 5-ammo type level take more

than 20 hours to get close to the level of the objective values of the other instances

that have less number of ammo types. In 83% level, as can be seen in Figure
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6.8(c), all instances attain low objective function values in the first 4 hours.

Furthermore, similar to the results of the first objective, ammo type number

affects the performance of the model more in the 75% and 50% levels than it does

in the 83% level.

6.5.2 3-index model

Objective values of the 3-index model with the second objective function is pre-

sented in Figure 6.9. Figures 6.9(a), 6.9(b) and 6.9(c) exhibit that, different than

the 4-index model, for the 3-index model in all truck usage levels 5-ammo type

instances (PI10, PI11 and PI12) attain an objective value higher than those of

the other instances. In addition, it takes longer for the 5-ammo type instance

to lower the objective values, i.e. 10 hours for the 75% level, and more than 20

hours for the 50% and 83% levels.

A comparative analysis between the 4-index and 3-index models reveals that

in the situations similar to our problem setting it is more advantageous to use the

4-index model with the valid inequalities if there are more than 4 ammo types.

6.6 Findings without valid inequalities

What we notice after extensive computational experiments is that performance

of the valid inequalities may slightly differ from one scenario to another. In other

words, while in the scenarios we covered in Chapter 5 and 6, (V 2) helps reduce

the solution time for 4-index model, there may exist other scenarios where some

other valid inequality or inequalities outperform it or no valid inequality can help

at all. Hence we also want to compare 4-index and 3-index models without the

effects of the valid inequalities.

In addition, recall that in all the computations with 4-index model we use

strong branching and best-estimate search, solve LP relaxations at each node
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by primal simplex with devex pricing, only generate implied bounds, cover cuts

and clique cuts, implement aggressive scaling, and perform presolve at nodes.

However, these specifications may also be case dependent. Hence, in the following

computations we use the default parameter settings of the GAMS/Cplex except

for strong branching and best-estimate search.

Briefly, we evaluate the 4-index and 3-index models in their original forms

without the effects of the valid inequalities and of the specific GAMS/Cplex

parameter settings.

We compare the models according to two different criteria of which the first

is the general statistics (number of equations, nonzero elements and variables) of

the models generated by the formulations and the second is the optimality gaps

reached in a certain time period. As for the first comparison, we present three

statistics obtained from the Model Statistics section of GAMS 22.0 in Figure 6.10.

For the sake of simplicity we do not present the results of the instances that

have two ammo types (PI1 - PI3) for their results are similar. We also show the

results of the 75% and 50% truck usage levels (PI5 - PI6, PI8- PI9 and PI11 -

PI12) together since they have the same statistics.

Figure 6.11 compares the 4-index and 3-index models. It can be seen that 4-

index model has; 260% more single equations, 300%-360% more non-zero elements

and 310%-450% more single variables than 3-index model. We expect that having

a lower number of equations, nonzero elements and variables will lead to better

computational results for 3-index model.

Table 6.15 exhibits the computational results of both models. We use strong

branching for selecting the branching variable, best-estimate search for selecting

the next node when backtracking and GAMS/Cplex’s default settings for the

other parameters. No valid inequalities are used for both models. Computations

for a problem are terminated after 14 hours. Note that these computations are

conducted on a computer with 2.4 GHz CPU, 4 GB RAM and Windows XP

operating system.
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Table 6.15: Computational results of the 4-index and 3-index models
Gaps (%) after

5 m 15 m 1 h 2 h 4 h 11 h 14 h

PI4 4-index - - - - - 9.11 6.71
PI5 - - - - - 8.74 8.74
Other PIs - - - - - - -

PI4 3-index - 4.58 1.42 1.40 1.37 1.35 1.35
PI5 - - 6.95 1.44 1.44 1.43 1.43
PI6 - - - - - - -
PI7 - - - 7.27 4.32 1.42 1.42
PI8 12.00 11.89 6.88 1.50 1.44 1.42 1.40
PI9 - - - - - - -
PI10 - - - - - - 15.64
PI11 - - - - 15.71 11.22 11.22
PI12 - - - - - - -

It can be seen that 4-index model finds a solution in only two problem in-

stances, whereas 3-index model finds a solution in six instances. 3-index model

can not find a solution only to 5-ammo type instances (PI6, PI9 and PI12). In

addition, even in these two instances (PI4 and PI5) 3-index model finds an initial

solution in less than an hour (4-index finds an initial in 11 hours) and reaches a

better gap (6.71% and 8.74% for 4-index, whereas 1.35% and 1.43% for 3-index)

in 14 hours. It is clear from the results that 3-index model performs better than

4-index model in a fixed amount of time without using valid inequalities and

specific GAMS/Cplex parameter settings.
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(a) 75% truck usage

(b) 50% truck usage

(c) 83% truck usage

Figure 6.7: 4-index model run times with the first objective
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(a) 75% truck usage

(b) 50% truck usage

(c) 83% truck usage

Figure 6.8: 4-index model run times with the second objective
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(a) 75% truck usage

(b) 50% truck usage

(c) 83% truck usage

Figure 6.9: 3-index model run times with the second objective
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(a) Number of single equations

(b) Number of nonzero elements

(c) Number of single variables

Figure 6.10: Comparison of the general statistics of 4-index and 3-index models
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Figure 6.11: Comparison summary of the 4-index and 3-index models



Chapter 7

Heuristic Solution Methodology

In this chapter we present two heuristic methods of which the first is “VRP first-

LRP second” and the second is “LRP first-VRP second” method to solve the

Mobile-ADS design problem more efficiently. Broadly speaking, it can be said

that the first method falls under the route first, location-allocation second and

the second method falls under the location-allocation first, route second categories

of Min et al. [59] with some differences. For example, in the second method we

also do routing at the location-allocation phase.

Recently, Nagy and Salhi [64] classify LRP heuristics into four groups, namely;

sequential, clustering-based, iterative and hierarchical methods. In general, all

methods decompose an LRP into its major components, that is location, alloca-

tion and routing. Then, they solve these parts either repeatedly, iteratively or

simultaneously.

In detail, sequential methods usually first solve a location problem to decide

which depots to open and to allocate customers to open depots. Then, given the

locations of the open depots a vehicle routing problem (VRP) is solved.

Clustering-based methods first group the customers into some clusters such

that each cluster contains one potential depot or vehicle. Then, for each cluster

a VRP is solved either after or before locating a depot.

95
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Iterative methods usually construct two or more subproblems each one in-

cluding one or two of the major components. Then, these subproblems are solved

in a loop sequentially. Note that in the solution process a subproblem provides

some input to the next subproblem in an iterative manner.

Hierarchical methods treat the location subproblem as the main problem and

the routing subproblem as the subordinate problem that is embedded into the

main problem. A hierarchical method then solves the location problem while

in each step of the location problem it solves a routing problem which in turn

provides information to the location problem.

Our solution approach in this study is a clustering-based heuristic according

to this categorization. In general terms, we first partition all combat units into

some clusters such that each cluster contains at least one potential Mobile-TP

site. Then, in the “VRP first-LRP second” heuristic we solve a VRP for each

cluster and using the solutions of VRPs we solve an LRP for the rest of the

problem. Whereas, in the “LRP first-VRP second” heuristic, we solve an LRP

and using the solution of this LRP we solve a VRP for each cluster. The details

of these methods are as follows.

7.1 VRP first-LRP second heuristic

“VRP first-LRP second” heuristic consists of three phases. Phase 1 is the clus-

tering part that partitions the combat units into clusters. Phase 2 is the VRP

part that finds the routes of ammo trucks distributing ammo from Mobile-TPs to

units. Phase 3 is the LRP part that decides the locations of the transfer points

to open and the routes of commercial trucks distributing ammo from Fixed-TPs

to Mobile-TPs. The flowchart for this method can be seen in Figure 7.1.
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Is NMi
empty?

1. Select a Mobile-TP j from NMi
.

2. Delete this Mobile-TP from NMi
.

Solve VRP.

Update VRP cost.

Solve LRP.

Let NMi
be the Mobile-TP set of cluster i.

Is VMi
empty?

Update ammo truck set VMi
.

1. Select a cluster i from K.

2. Delete this cluster from K.

Is K empty?

Modify ammo truck costs.
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2. Let K be the cluster set.

Does a VRP

solution exist?

Infeasible. STOP.

Yes

No

No

No

No

Yes

Yes
Yes

Phase 1

Phase 2

Phase 3

Figure 7.1: Flowchart for the VRP first-LRP second heuristic method
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7.1.1 Phase 1. Clustering

In this phase we group all combat units into clusters such that for each cluster

there exists at least one potential Mobile-TP, which can serve the total demand

of clustered units within the specified time windows.

7.1.1.1 Step 1. Form the clusters

Because of the military requirements that are provided in section 6.1, it is clear

that we already have these clusters. The second and the third requirements state

that each brigade opens a single Mobile-TP and the units of that brigade can be

served by only that transfer point. Hence, each brigade forms a cluster with at

least one potential Mobile-TP. Since each unit belongs to a single brigade there

exist as many distinct clusters as there are brigades. Let K be the cluster set

and proceed to Step 2.

7.1.1.2 Step 2. Modify ammo truck costs

Each cluster contains at least one potential Mobile-TP meaning that it may

contain two or more. Note that in the next phase a VRP will be solved for each

potential Mobile-TP within each cluster. Consider that we have two clusters each

having two potential Mobile-TPs. We first solve a VRP for the first Mobile-TP

of the first cluster. This Mobile-TP can use any ammo truck in its solution as

long as its feasible. Then, we solve another VRP for the second Mobile-TP of

the same cluster. Since, only one of them will be opened in the end the second

Mobile-TP can also use any ammo truck, too. In other words it can use the same

ammo trucks that the first Mobile-TP used for the same cluster.

Next, we solve the VRP of the first Mobile-TP of the second cluster. This

time, since we do not know yet which transfer point of the first cluster will be

opened in the final solution, this transfer point can not use the ammo trucks that

are used by either the first or the second transfer points of the first cluster. In
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addition, the second Mobile-TP of the second cluster can use the trucks that are

used by the first transfer point but it can not use (like the first transfer point)

the trucks that are used by the transfer points of the first cluster.

If not taken care of, this situation may cause false infeasibility. To solve this

problem we must increase the probability of same truck usage of the Mobile-TPs

of the same cluster. To do so, we modify the acquisition costs of ammo trucks

(V Cv for all v ∈ VM) in a decreasing/increasing fashion slightly such that every

truck has a different cost. With the modified costs if using trucks a and b are less

costly then it is more probable that transfer points of the same cluster will use

them. Proceed to Step 3.

7.1.2 Phase 2. Vehicle routing problem (VRP)

In this phase we solve a VRP for each potential Mobile-TP complying with all of

the original constraints.

7.1.2.1 Step 3. Select a cluster

If set K is empty this means that all clusters have been processed already and we

are ready to proceed to the next phase, hence go to Step 10. Otherwise, select a

cluster , i, delete it from K and proceed to Step 4.

7.1.2.2 Step 4. Update ammo truck set (VM)

In this step we try to increase computational efficiency. To do so we make an

additional (not unrealistic though) assumption that all combat units require less

than truck loads (LTL). If this is the case, then a Mobile-TP dispatches at most

one truck for each unit of its cluster. Hence, the number of trucks that are used

by any Mobile-TP can be bounded above by the number of units of its cluster.

In other words, we can modify the ammo truck set for each cluster such that it
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includes exactly the same number of trucks, which are not used by any Mobile-

TP of the previously solved cluster, as the number of units in the cluster. To do

so we employ the following procedure. Note that |VMi
| is the cardinality of this

set and |cluster i| is the number of units in this cluster. Let VMi
be the modified

ammo truck set that will be used by the potential Mobile-TPs of cluster i.

let VMi
= ∅

for (v ∈ VM) do

while (|VMi
| ≤ |cluster i|) do

if v /∈ ∩k∈K:i6=kVMk

let v ∈ VMi

end while

end for

Proceed to Step 5.

7.1.2.3 Step 5. Check infeasibility

If set VMi
is empty this means that there is no unused ammo truck left for that

cluster to dispatch and the problem is infeasible, hence STOP. Otherwise, proceed

to Step 6.

7.1.2.4 Step 6. Select a potential Mobile-TP

Let NMi
be the set of all potential Mobile-TPs of cluster i. If set NMi

is empty

this means that a VRP for all potential Mobile-TPs of that cluster is solved and

nothing is remained to be processed, hence proceed to Step 7. Otherwise, select

a Mobile-TP, j∗, delete it from NMi
and go to Step 8.
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7.1.2.5 Step 7. Check infeasibility

If no VRP has a feasible solution this means that the demands of the units of this

cluster can not be satisfied in the given problem setting according to the specified

constraints. In other words the problem is infeasible, hence STOP. Otherwise, if

at least one feasible solution exists for the VRP of a Mobile-TP then this means

that we processed all potential Mobile-TPs of this cluster and no transfer point

is remained to be solved a VRP for. Then we are ready to process a new cluster,

hence go to Step 3.

7.1.2.6 Step 8. Solve VRP

In this step we are going to solve a VRP for cluster i and Mobile-TP j∗ using

vehicle set VMi
. Let NCi

be the set of all combat units of cluster i and N∗
Ci

=

NCi

⋃
j∗. In other words, N∗

Ci
includes all combat units of cluster i and Mobile-TP

j∗. The VRP to be solved in this step is presented below.

4-index VRP

If we want to use the 4-index model, then we are going to solve the following

model in this step.

min o1 or o2

s.t.

∑
v∈VMi

( ∑

h∈N∗
Ci

h6=g

fhgvp −
∑

r∈NCi
r 6=g

fgrvp

)
= Qgp ∀g ∈ NCi

, p ∈ P (7.1)

∑

h∈N∗
Ci

h6=g

fhgvp ≥
∑

h∈N∗
Ci

h6=g

fghvp ∀g ∈ NCi
, v ∈ VMi

, p ∈ P (7.2)

∑
g∈NCi

xj∗gv ≤ 1 ∀v ∈ VMi
(7.3)

∑
g∈NCi

xj∗gv =
∑

g∈NCi

xgj∗v ∀v ∈ VMi
(7.4)
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∑

h∈N∗
Ci

h6=g

xghv =
∑

h∈N∗
Ci

h6=g

xhgv ∀g ∈ NCi
, v ∈ VMi

(7.5)

∑
v∈VMi

∑
g∈NCi

fj∗gvp ≤ CDj∗p ∀p ∈ P (7.6)

fj∗gvp ≤ CVvp · xj∗gv ∀g ∈ NCi
, v ∈ VMi

, p ∈ P (7.7)

fghvp ≤ CVvp · xghv ∀g, h ∈ NCi
, g 6= h, v ∈ VMi

, p ∈ P (7.8)
∑
p∈P

fj∗gvp ≤ CTv · xj∗gv ∀g ∈ NCi
, v ∈ VMi

(7.9)

∑
p∈P

fghvp ≤ CTv · xghv ∀g, h ∈ NCi
, g 6= h, v ∈ VMi

(7.10)

∑
p∈P

fj∗gvp ≥ xj∗gv ∀g ∈ NCi
, v ∈ VMi

(7.11)

∑
p∈P

fghvp ≥ xghv ∀g, h ∈ NCi
, g 6= h, v ∈ VMi

(7.12)

∑
v∈VMi

fj∗gvp ≥ wj∗gp ∀g ∈ NCi
, p ∈ P (7.13)

∑
v∈VMi

fghvp ≥ wghp ∀g, h ∈ NCi
, g 6= h, p ∈ P (7.14)

( ∑

h∈NCi

Qhp

)
· wj∗gp ≥ fj∗gvp ∀g ∈ NCi

, v ∈ VMi
, p ∈ P (7.15)

( ∑

h∈NCi

Qhp

)
· wgrp ≥ fgrvp ∀g, r ∈ NCi

, g 6= r, v ∈ VMi
, p ∈ P (7.16)

tpgp ≥ TEgp ∀g ∈ NCi
, p ∈ P (7.17)

tpgp ≤ TLgp ∀g ∈ NCi
, p ∈ P (7.18)

tpj∗p = min
g∈NF

{TIgj∗} ∀p ∈ P (7.19)

tpj∗p + TIj∗g · wj∗gp − TMp · (1− wj∗gp) ≤ tpgp ∀g ∈ NCi
, p ∈ P (7.20)

tpgp + TIgh · wghp − TMp · (1− wghp) ≤ tphp ∀g, h ∈ NCi
, g 6= h, p ∈ P (7.21)

tvj∗v + TIj∗g · xj∗gv − TM · (1− xj∗gv) ≤ tvgv ∀g ∈ NCi
, v ∈ VMi

(7.22)

tvgv + TIgh · xghv − TM · (1− xghv) ≤ tvhv ∀g, h ∈ NCi
, g 6= h, v ∈ VMi

(7.23)
∑

g∈NCi

xj∗gv ≤ 1 ∀v ∈ VMi
(7.24)
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∑

h∈N∗
Ci

h6=g

xghv ≤ 1 ∀g ∈ NCi
, v ∈ VMi

(7.25)

fghvp ≥ 0 ∀g, h ∈ N∗
Ci
, g 6= h, v ∈ VMi

, p ∈ P (7.26)

tpgp ≥ 0 ∀g ∈ N∗
Ci
, p ∈ P (7.27)

tvgv ≥ 0 ∀g ∈ N∗
Ci
, v ∈ VMi

(7.28)

xghv ∈ {0, 1} ∀g, h ∈ N∗
Ci
, g 6= h, v ∈ VMi

(7.29)

wghp ∈ {0, 1} ∀g, h ∈ N∗
Ci
, g 6= h, p ∈ P (7.30)

where

o1 =
∑

g∈NCi

∑
v∈VMi

V Cv · xj∗gv (7.31)

+
∑

g∈N∗
Ci

∑

h∈N∗
Ci

h6=g

∑
v∈VMi

∑
p∈P

TCvp · TIgh · fghvp (7.32)

o2 =
∑

g∈NCi

∑
v∈VMi

V Cv · xj∗gv (7.33)

+
∑

g∈N∗
Ci

∑

h∈N∗
Ci

h6=g

∑
v∈VMi

DCvp · TIgh · xghv (7.34)

3-index VRP

If we want to use the 3-index model, then we are going to solve the following

model in this step.

min o2

s.t.
∑

v∈VMi

cuingvp = Qgp ∀g ∈ NCi
, p ∈ P (7.35)

mtpoutj∗vp =
∑

g∈NCi

cuingvp ∀v ∈ VMi
, p ∈ P (7.36)

∑
g∈NCi

xj∗gv ≤ 1 ∀v ∈ VMi
(7.37)



CHAPTER 7. HEURISTIC SOLUTION METHODOLOGY 104

∑
g∈NCi

xj∗gv =
∑

g∈NCi

xgj∗v ∀v ∈ VMi
(7.38)

∑

h∈N∗
Ci

h6=g

xghv =
∑

h∈N∗
Ci

h6=g

xhgv ∀g ∈ NCi
, v ∈ VMi

(7.39)

∑
v∈VMi

mtpoutj∗vp ≤ CDj∗p ∀p ∈ P (7.40)

∑
g∈NCi

cuingvp ≤ CVvp ·
∑

g∈NCi

xj∗gv ∀v ∈ VMi
, p ∈ P (7.41)

mtpoutj∗vp ≤ CVvp ·
∑

g∈NCi

xj∗gv ∀v ∈ VMi
, p ∈ P (7.42)

cuingvp ≤ CVvp ·
∑

h∈N∗
Ci

h6=g

xhgv ∀g ∈ NCi
, v ∈ VMi

, p ∈ P (7.43)

∑
p∈P

mtpoutj∗vp ≤ CTv ·
∑

g∈NCi

xj∗gv ∀v ∈ VMi
(7.44)

∑
g∈NCi

xj∗gv ≤
∑
p∈P

mtpoutj∗vp ∀v ∈ VMi
(7.45)

∑

h∈N∗
Ci

h6=g

xhgv ≤
∑
p∈P

cuingvp ∀g ∈ NCi
, v ∈ VMi

(7.46)

kj∗vp ≤ mtpoutj∗vp ∀v ∈ VMi
, p ∈ P (7.47)

kgvp ≤ cuingvp ∀g ∈ NCi
, v ∈ VMi

, p ∈ P (7.48)

mtpoutj∗vp ≤ CVvp · kj∗vp ∀v ∈ VMi
, p ∈ P (7.49)

cuingvp ≤ CVvp · kgvp ∀g ∈ NCi
, v ∈ VMi

, p ∈ P (7.50)

tpgp ≥ TEgp ∀g ∈ NCi
, p ∈ P (7.51)

tpgp ≤ TLgp ∀g ∈ NCi
, p ∈ P (7.52)

tpj∗p = min
g∈NF

{TIgj∗} ∀p ∈ P (7.53)

tvj∗v + TIj∗g · xj∗gv − TM · (1− xj∗gv) ≤ tvgv ∀g ∈ NCi
, v ∈ VMi

(7.54)

tvhv + TIhg · xhgv − TM · (1− xhgv) ≤ tvgv ∀g, h ∈ NCi
, g 6= h, v ∈ VMi

(7.55)

tpj∗p − TMp · (1− kj∗vp) ≤ tvj∗v ∀v ∈ VMi
, p ∈ P (7.56)

tvgv − TMp · (1− kgvp) ≤ tpgp ∀g ∈ NCi
, v ∈ VMi

, p ∈ P (7.57)

mtpoutj∗vp ≥ 0 ∀v ∈ VMi
, p ∈ P (7.58)
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cuingvp ≥ 0 ∀g ∈ NCi
, v ∈ VMi

, p ∈ P (7.59)

tpgp ≥ 0 ∀g ∈ N∗
Ci
, p ∈ P (7.60)

tvgv ≥ 0 ∀g ∈ N∗
Ci
, v ∈ VMi

(7.61)

xghv ∈ {0, 1} ∀g, h ∈ N∗
Ci
, g 6= h, v ∈ VMi

(7.62)

kgvp ∈ {0, 1} ∀g ∈ N∗
Ci
, v ∈ VMi

, p ∈ P (7.63)

Note that in realistic problem instances a brigade has 4 or 5 combat units

meaning that each cluster contains at most 5 units, that is |NCi
| ≤ 6 for all

i ∈ K. Hence, the VRP in this step contains a single depot and at most 5

customers. We assume that such a problem size can be solved in a reasonable

amount of time with either 4-index or 3-index model.

7.1.2.7 Step 9. Update VRP cost

A careful examination reveals two differences between z1 and o1 and z2 and o2.

The first difference is the fixed opening costs of Mobile-TPs. z1 includes these

costs but o1 does not, since there is only one transfer point in each VRP of Step

8 and this transfer point is already considered open. The second difference is the

vehicle acquisition costs. Remember that ammo truck costs are modified in Step

2 and VRP in Step 8 considers these modified costs rather than the actual costs.

Hence to get the real total cost and to compare it with the cost of the original

formulation we need to modify the VRP costs as follows.

Firstly, add the fixed cost of Mobile-TP j∗ (FCj∗) to the VRP cost. Secondly,

add the difference between the actual and modified cost of each used ammo truck

to the VRP cost. Let εv represent the difference between the actual and modified

cost of ammo truck v. Then, we need to update the VRP costs as follows.

o1∗ = o1 + FCj∗ +
∑

g∈NCi

∑
v∈VMi

εv · xj∗gv (7.64)

o2∗ = o2 + FCj∗ +
∑

g∈NCi

∑
v∈VMi

εv · xj∗gv (7.65)
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These modified costs are the actual costs and will be used in the LRP that

will be explained in Phase 3. Since we are done with Mobile-TP j∗ go to Step 6.

7.1.3 Phase 3. Location routing problem (LRP)

In the first two phases we determine the routes and schedules of ammo trucks

that distribute ammo from each Mobile-TP to the units of the cluster where its

home Mobile-TP belongs to. In other words, until now we are interested in the

distribution from Mobile-TPs to units. In this phase we will be interested in the

distribution network design and the distribution from Fixed-TPs to Mobile-TPs

using commercial trucks. By distribution network design we mean that we are

going to decide which Mobile-TPs and Fixed-TPs to open. Since, both location

and routing decisions exist in this phase we will solve an LRP model including

all Fixed-TPs and Mobile-TPs and complying with all of the original constraints.

7.1.3.1 Step 10. Solve LRP

In this step no combat unit exists and we solve a two layer LRP in which Fixed-

TPs lie on the first and Mobile-TPs lie on the second layer. We need to decide

(1) which Fixed-TP and Mobile-TP (one for each cluster) to open and (2) routes

of the commercial trucks among open transfer points.

Let o1∗j and o2∗j represent the o1∗ and o2∗ of Mobile-TP j. For example,

o1∗j is the fixed cost of opening Mobile-TP j, the acquisition cost of the ammo

trucks that are used by Mobile-TP j and the distribution cost of ammo to units

from Mobile-TP j. Hence, by using o1∗ and o2∗ in this step we incorporate the

VRP into the LRP as a simple cost parameter that will be used in the objective

function.

4-index LRP

If we want to use the 4-index model, then we are going to solve the following
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model in this step.

min s1 or s2

s.t.

(3.2a), (3.3a), (3.4a), (3.5a), (3.6a), (3.11a), (3.14), (V8b)

(3.7) ∀i ∈ NF , j ∈ NM , v ∈ VF , p ∈ P ; ∀i, j ∈ NM , i 6= j, v ∈ VF , p ∈ P

(3.8)− (3.9) ∀i ∈ NF , j ∈ NM , v ∈ VF ; ∀i, j ∈ NM , i 6= j, v ∈ VF

(3.10) ∀i ∈ NF , j ∈ NM , v ∈ VF , p ∈ P ; ∀i, j ∈ NM , i 6= j, v ∈ VF , p ∈ P

(3.15) ∀i ∈ NF , j ∈ NM , p ∈ P ; ∀i, j ∈ NM , i 6= j, p ∈ P

(3.16) ∀i ∈ NF , j ∈ NM , v ∈ VF ; ∀i, j ∈ NM , i 6= j, v ∈ VF

∑
v∈VF

( ∑
j∈NFM

j 6=i

fjivp −
∑
j∈NM
j 6=i

fijvp

)
=

∑
j∈NCi

Qjp · yi ∀i ∈ NM , p ∈ P (7.66)

tpip ≤ min
g∈NCi

{TLgp − TIig} ∀i ∈ NM , p ∈ P (7.67)

∑
j∈NMi

yj = 1 ∀i ∈ K (7.68)

fijvp ≥ 0 ∀i, j ∈ NFM , i 6= j, v ∈ VF , p ∈ P (7.69)

tpip ≥ 0 ∀i ∈ NFM , p ∈ P (7.70)

tviv ≥ 0 ∀i ∈ NFM , v ∈ VF (7.71)

xijv ∈ {0, 1} ∀i, j ∈ NFM , i 6= j, v ∈ VF (7.72)

wijp ∈ {0, 1} ∀i, j ∈ NFM , i 6= j, p ∈ P (7.73)

yi ∈ {0, 1} ∀i ∈ NFM (7.74)

where

s1 =
∑
i∈NF

FCi · yi (7.75)

+
∑
i∈NF

∑
j∈NM

∑
v∈VF

V Cv · xijv (7.76)

+
∑

i∈NFM

∑
j∈NFM

∑
v∈VF

∑
p∈P

TCvp · TIij · fijvp (7.77)

+
∑
i∈NM

o1∗i · yi (7.78)
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s2 =
∑
i∈NF

FCi · yi (7.79)

+
∑
i∈NF

∑
j∈NM

∑
v∈VF

V Cv · xijv (7.80)

+
∑

i∈NFM

∑
j∈NFM

∑
v∈VF

DCv · TIij · xijv (7.81)

+
∑
i∈NM

o2∗i · yi (7.82)

(7.83)

3-index LRP

If we want to use the 3-index model, then we are going to solve the following

model in this step.

min s2

s.t.

(3.3a), (3.4a), (3.5a), (4.2a), (4.4a), (4.5a), (4.6a), (4.7a), (4.7b), (3.14)

(4.8a), (4.8c), (4.9a), (4.10a), (7.67), (7.68), (V8b)

(3.16) ∀i ∈ NF , j ∈ NM , v ∈ VF ;∀i, j ∈ NM , i 6= j, v ∈ VF

(4.12) ∀i ∈ NM , v ∈ VF , p ∈ P
∑
v∈VF

mtpinivp =
∑
j∈NCi

Qjp · yi ∀i ∈ NM , p ∈ P (7.84)

ftpoutivp ≥ 0 ∀i ∈ NF , v ∈ VF , p ∈ P (7.85)

mtpinivp ≥ 0 ∀i ∈ NM , v ∈ VF , p ∈ P (7.86)

tpip ≥ 0 ∀i ∈ NFM , p ∈ P (7.87)

tviv ≥ 0 ∀i ∈ NFM , v ∈ VF (7.88)

xijv ∈ {0, 1} ∀i, j ∈ NFM , i 6= j, v ∈ VF (7.89)

kivp ∈ {0, 1} ∀i ∈ NFM , v ∈ VF , p ∈ P (7.90)
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7.2 LRP first-VRP second heuristic

“LRP first-VRP second” is a three phase heuristic method. Phase 1 is the clus-

tering part that partitions the combat units into clusters. Phase 2 is the location

and routing part that decides the locations of the transfer points to open and the

routes of commercial trucks distributing ammo from Fixed-TPs to Mobile-TPs.

Phase 3 is the routing part that finds the routes of ammo trucks distributing

ammo from Mobile-TPs to units. The flowchart for this method can be seen in

Figure 7.2.

7.2.1 Phase 1. Clustering

In this phase we group all combat units into clusters such that each cluster in-

cludes at least one potential Mobile-TP and this Mobile-TP can serve the total

demand of units within the specified time windows.

7.2.1.1 Step 1. Form the clusters

This step is the same as Step 1 of the first heuristic method.

7.2.2 Phase 2. Location routing problem (LRP)

In this phase, as in the Phase 3 of the first heuristic, we will be interested in

the distribution network design and the distribution from Fixed-TPs to Mobile-

TPs using commercial trucks. In other words, we are going to decide which

Mobile-TPs and Fixed-TPs to open and how ammo will be distributed from open

Fixed-TPs to open Mobile-TPs using commercial trucks.
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Infeasible. STOP.

Yes

No

No

No

Yes

Yes

Yes

Phase 1

Phase 2

Phase 3

Modify ammo truck costs.

Is K empty?

1. Select a cluster i from K.

2. Delete this cluster from K.

Update ammo truck set VMi
.

Is VMi
empty?

Let NMi
be the Mobile-TP set of cluster i.

Is NMi
empty?

1. Select a Mobile-TP j from NMi
.

2. Delete this Mobile-TP from NMi
.

Solve VRP.

STOP.

1. Let Mobile-TP j∗ is open for cluster i.

2. Delete this Mobile-TP from NMi
.

Solve LRP.

1. Cluster the combat units.

2. Let K be the cluster set.

No

Does VRP

has a solution?

Figure 7.2: Flowchart for the LRP first-VRP second heuristic method
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7.2.2.1 Step 2. Solve LRP

In this step, we solve an LRP model similar (except the objective functions) to

that of the first heuristic to decide (1) which Fixed-TP and Mobile-TP (one for

each cluster) to open and (2) routes of the commercial trucks among open transfer

points. Let NMi
be the set of all potential Mobile-TPs of cluster i. The LRP

model to be solved in this step is presented below.

4-index LRP

If we want to use the 4-index model, then we are going to solve the following

model.

min w1 or w2

s.t. the same constraint set of 4-index LRP of the first heuristic.

where

w1 =
∑

i∈NFM

FCi · yi (7.91)

+
∑
i∈NF

∑
j∈NM

∑
v∈VF

V Cv · xijv (7.92)

+
∑

i∈NFM

∑
j∈NFM

∑
v∈VF

∑
p∈P

TCvp · TIij · fijvp (7.93)

w2 =
∑

i∈NFM

FCi · yi (7.94)

+
∑
i∈NF

∑
j∈NM

∑
v∈VF

V Cv · xijv (7.95)

+
∑

i∈NFM

∑
j∈NFM

∑
v∈VF

DCv · TIij · xijv (7.96)

3-index LRP

If we want to use the 3-index model, then we are going to solve the following

model in this step.

min w2
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s.t. the same constraint set of 3-index LRP of the first heuristic.

Note that the only difference between the LRP models of the first and the

second heuristics are in the objective functions. In the second method we do

not solve any VRP for any Mobile-TP before solving LRP. Hence, we do not

have any knowledge about the distribution system beyond Mobile-TPs. The

only thing we know about the combat units is their demand. Thus, in the LRP

model we open one Mobile-TP for each cluster and we try to send each open

Mobile-TP an amount equal to the total demand of combat units that belong

to the same cluster. That is why we include the fixed opening costs of Mobile-

TPs into the objective function. In other words in the LRP model we consider

fixed opening costs of transfer points, commercial truck acquisition costs and

distribution among transfer points.

7.2.3 Phase 3. Vehicle routing problem (VRP)

In this phase we solve a VRP for each open Mobile-TP complying with all of the

original constraints.

7.2.3.1 Step 3. Modify ammo truck costs

This step is the same as Step 2 of the first heuristic method.

7.2.3.2 Step 4. Select a cluster

If set K is empty this means that all clusters have been processed already and

we are done, hence STOP. Otherwise, select a cluster , i, delete it from K and

proceed to Step 5.
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7.2.3.3 Step 5. Update ammo truck set (VM)

This step is the same as Step 4 of the first heuristic method.

7.2.3.4 Step 6. Check infeasibility

If set VMi
is empty this means that there is no unused ammo truck left for that

cluster to dispatch and the problem is infeasible, hence STOP. Otherwise, proceed

to Step 7.

7.2.3.5 Step 7. Select the open Mobile-TP

There exists exactly one open Mobile-TP for cluster i in the LRP solution and

let Mobile-TP j∗ be this one. Select this Mobile-TP, j∗, delete it from NMi
and

proceed to Step 8.

7.2.3.6 Step 8. Solve VRP

In this step we are going to solve exactly the same VRP model of the first heuristic

model for cluster i and Mobile-TP j∗ using vehicle set VMi
to determine the routes

of ammo trucks distributing ammo to combat units. The VRP to be solved in

this step is presented below.

4-index VRP

If we want to use the 4-index model, then we are going to solve the following

model in this step.

min o1 or o2

s.t. the same constraint set of 4-index VRP of the first heuristic.

where constraint (7.19) is changed as shown below and ŷg is the value of the
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decision variable yi for all i ∈ NF in the LRP solution.

tpj∗p = max
g∈NF

{TIgj∗ · ŷg} ∀p ∈ P (7.97)

3-index VRP

If we want to use the 3-index model, then we are going to solve the following

model in this step.

min o2

s.t. the same constraint set of 3-index VRP of the first heuristic.

where constraint (7.53) is replaced with (7.97).

7.2.3.7 Step 9. Check VRP solution

If VRP does not have a feasible solution this means that the demands of the

units of this cluster can not be satisfied in the given problem setting according

to the specified constraints from Mobile-TP j∗. Then we need to check a new

Mobile-TP, hence proceed to Step 10. Otherwise, if VRP has a feasible solution

with Mobile-TP j∗ then this means that we are ready to process a new cluster,

hence go to Step 4.

7.2.3.8 Step 10. Check infeasibility

If no Mobile-TP is left to be solved a VRP for, this means that the demands of

the units of this cluster can not be satisfied in the given problem setting according

to the specified constraints from any Mobile-TP of this cluster. In other words

the problem is infeasible, hence STOP. Otherwise, select a Mobile-TP j from NMi

and delete it from NMi
. Go to Step 8.



Chapter 8

Computational Experiments

(Part III)

This chapter compares the performances of the two heuristic approaches that are

introduced in Chapter 7 by using the same 12 problem instances.

Remember that we introduce 12 problem instances in Section 6.2 that are

developed according to their ammo type numbers (|P | = 2, 3, 4, 5) and truck

usage percentages (75%, 50%, 83%). A summary of the instances can be found in

Figure 6.10. In the 75% group 18 trucks are dispatched out of 24 trucks, in the

50% group 18 trucks are dispatched out of 36 trucks, and in the 83% group 30

trucks are dispatched out of 36 trucks.

8.1 4-index model

8.1.1 VRP first-LRP second heuristic

Table 8.1 demonstrates the run times of heuristic 1 for each problem instance

with the first objective. To calculate the run times of heuristic 1 we introduce

the following rule. Remember that in the first heuristic, that is “VRP first-LRP

115
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second” heuristic, we solve a VRP for each MTP and using the solutions of these

VRPs we solve a single LRP for the rest of the problem. Remember also that

in each problem instance we have 8 MTPs. Hence, in heuristic 1 we solve eight

VRPs and one LRP for each problem instance. We are interested in the time

needed for heuristic 1 to reach the objective value of the original model after 24

hours. To be exact, for example we run heuristic 1 with the first objective for

problem instance 1 until it reaches a cost of 1301.84. Note that Table 6.5 shows

corresponding costs of problem instances

To calculate the run time we also introduce the following procedure. We allow

each VRP to run for at most 60 seconds. In other words, each VRP is terminated

after 60 seconds if it can not find the optimum until that time. For example,

in problem instance 1, VRP for MTP 1 finds the optimum in 6.7 seconds, but

VRP for MTP 3 is terminated after 60 seconds at a feasible (may be sub-optimal)

solution, before it finds the optimum.

After running all 8 VRPs in this manner, we run the LRP until it reaches

to the objective value that is obtained by the original model in 24 hours. The

LRP is terminated after 3600 seconds if it can not reach to it. For example, in

problem instance 1, LRP for FTPs reaches a cost of 1301.84 in 2 seconds. The

total run time for heuristic 1 for each problem instance is the sum of the run

times of 8 VRPs plus the run time of the single LRP. For example, total run time

of heuristic 1 for problem instance 1 is 195.7 seconds.

We can summarize the running procedure of heuristic 1 as follows:

• Run 8 VRPs either to completion or at most 60 seconds,

• Run a single LRP until it reaches to the objective value that is obtained by

the original model in 24 hours or at most 3600 seconds,

• Total run time is the sum of the run times of all 8 VRPs and that of the

single LRP.

Table 8.2 demonstrates the run times of heuristic 1 for each problem instance

with the second objective.
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8.1.2 LRP first-VRP second heuristic

Run times of heuristic 2 for each problem instance can be seen in Table 8.3. To

calculate the run times of heuristic 2 we introduce the following rule. Remember

that in this heuristic we solve an LRP first and using the solution of this LRP

we solve a VRP for each open MTP. Note that in each problem instance we have

only 4 open MTPs, one for each brigade. Hence, in heuristic 2 we solve 4 VRPs

and one LRP in each instance.

To calculate the run time we introduce the following procedure. We allow the

LRP to run for at most 3600 seconds. The LRP is terminated after 3600 seconds

if it can not find the optimum until that time. For example, in problem instance

1, the LRP finds the optimum in 74.8 seconds, but LRP for problem instance 6

is terminated after 3600 seconds without even finding a feasible solution.

After running the LRP in this manner, we run one VRP for each open MTP

in the solution of the LRP. We let each VRP to run at most 60 seconds. For

example, in problem instance 1, no VRP is solved for MTP 1 because it is not

opened in the solution of the LRP. VRP for MTP 2 finds the optimum in 1.7

seconds. In addition, VRP for MTP 3 is terminated after 60 seconds at a feasible

(may be sub-optimal) solution, before it finds the optimum. Note that no VRP is

initialized for problem instance 6 since the LRP can not find a feasible solution.

The total run time for heuristic 2 for each problem instance is the sum of the run

times of four VRPs plus the run time of the single LRP.

We can summarize the running procedure of heuristic 2 as follows:

• Run a single LRP either to completion or at most 3600 seconds,

• Run 4 VRPs either to completion or at most 60 seconds,

• Total run time is the sum of the run times of all VRPs and of LRP.

Run times of heuristic 2 with the second objective for each problem instance can

be seen in Table 8.4.
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8.2 3-index model

8.2.1 VRP first-LRP second heuristic

Table 8.5 demonstrates the run times of heuristic 1 for each problem instance

with the second objective. We calculate the run times as explained above.

8.2.2 LRP first-VRP second heuristic

Run times of heuristic 2 with the second objective for each problem instance can

be seen in Table 8.6. Run times are calculated as explained above.
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Table 8.7: Summary of 4-index model with the first objective
Original model Heuristic 1 Heuristic 2

run time cost run time cost run time cost
PI1 80879 1301.84 196 1301.84 158 1301.84
PI2 78086 1301.84 368 1301.84 3686 1301.84
PI3 78344 1688.26 2366 1688.26 3840 1686.17
PI4 79236 1301.84 288 1301.84 157 1301.84
PI5 78035 1301.84 727 1301.84 3129 1301.84
PI6 7005 1686.17 3780 1686.17 - -
PI7 83157 1304.80 365 1301.84 197 1301.84
PI8 85911 1314.80 346 1305.83 375 1301.85
PI9 82383 1686.17 682 1686.17 - -
PI10 86198 1342.75 518 1304.79 467 1304.62
PI11 84541 1386.06 530 1378.83 1152 1306.13
PI12 13605 1686.17 1132 1686.17 - -
AVERAGE 69782 1441.88 941 1437.12 - -

8.3 Findings

8.3.1 4-index model

Table 8.7 compares both the run times (seconds) and the first objective function

values of the original model with those of the two heuristics. On the average, the

original model reaches an objective value of 1441.88 in approximately 19 hours

(69782 seconds), whereas heuristic 1 reaches an objective value of 1437.12 in

approximately 16 minutes (941 seconds). From another point of view, heuristic

1 provides a better solution with 0.3% less cost within 98.7% less time. Heuristic

2 can not find a solution in three problem instances within the allowed run time.

Table 8.8 displays the cost structure of the 4-index model with the first ob-

jective. As can be seen cost of the VRP phase generally constitutes 45% percent

of the overall costs with the first heuristic, whereas it is 34% with the second

heuristic.

Table 8.9 compares both the run times (seconds) and the objective function

values of the original model with those of the two heuristics. On the average,
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Table 8.8: 4-index model cost structure with the first objective
Heuristic 1 Heuristic 2

VRP LRP VRP/TOTAL VRP LRP VRP/TOTAL
PI1 587.04 714.80 0.45 437.04 864.80 0.34
PI2 587.04 714.80 0.45 437.04 864.80 0.34
PI3 776.47 911.79 0.46 626.47 1059.70 0.37
PI4 587.04 714.80 0.45 437.04 864.80 0.34
PI5 587.04 714.80 0.45 437.04 864.80 0.34
PI6 776.47 909.70 0.46 - - -
PI7 587.04 714.80 0.45 437.04 864.80 0.34
PI8 587.05 718.78 0.45 437.05 864.80 0.34
PI9 776.47 909.70 0.46 - - -
PI10 589.99 714.81 0.45 439.82 864.80 0.34
PI11 592.63 786.20 0.43 441.33 864.80 0.34
PI12 776.47 909.70 0.46 - - -

the original model reaches an objective value of 1060.90 in approximately 18

hours (65354 seconds), whereas heuristic 1 reaches an objective value of 1058.43

in approximately 12 minutes (745 seconds), and heuristic 2 reaches an objective

value of 1058.42 in approximately 1 hour (3672 seconds). From another point of

view, heuristic 1 provides a better solution with 0.2% less cost within 98.9% less

time, and heuristic 2 provides a better solution with 0.2% less cost within 94.4%

less time.

The cost structure of the 4-index model with the second objective is shown in

Table 8.10. Likewise with the first objective, the cost of the VRP phase is bigger

in the first heuristic than that of the second heuristic. In detail, generally 55%

of the overall cost is VRP cost in the first heuristic, whereas it is around 40% in

the second heuristic.

8.3.2 3-index model

Table 8.11 compares both the run times (seconds) and second objective function

values of the original model with those of the two heuristics. On the average,

the original model reaches an objective value of 1076.70 in approximately 21

hours (75483 seconds), whereas heuristic 1 reaches an objective value of 1068.77
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Table 8.9: Summary of 4-index model with the second objective
Original model Heuristic 1 Heuristic 2

run time cost run time cost run time cost
PI1 79286 921.98 569 921.44 1900 921.64
PI2 81395 923.46 456 921.98 3809 921.93
PI3 30461 1331.72 732 1331.67 3840 1331.72
PI4 52175 922.03 493 921.60 3814 921.64
PI5 81250 921.89 1512 921.60 3837 921.64
PI6 41800 1332.01 1355 1331.94 3840 1332.01
PI7 77941 922.02 576 921.94 3840 921.64
PI8 83123 922.53 615 921.99 3827 921.77
PI9 30340 1331.72 694 1331.67 3840 1331.72
PI10 80375 922.05 661 921.85 3840 921.85
PI11 82937 947.32 500 921.75 3840 921.75
PI12 63165 1332.01 783 1331.67 3840 1331.72
AVERAGE 65354 1060.90 745 1058.43 3672 1058.42

Table 8.10: 4-index model cost structure with the second objective
Heuristic 1 Heuristic 2

VRP LRP VRP/TOTAL VRP LRP VRP/TOTAL
PI1 507.60 413.84 0.55 358.28 563.36 0.39
PI2 507.56 414.42 0.55 358.28 563.65 0.39
PI3 709.02 622.65 0.53 560.20 771.52 0.42
PI4 507.56 414.04 0.55 358.28 563.36 0.39
PI5 507.56 414.04 0.55 358.28 563.36 0.39
PI6 708.33 623.61 0.53 560.49 771.52 0.42
PI7 507.56 414.38 0.55 358.28 563.36 0.39
PI8 507.69 414.30 0.55 358.42 563.35 0.39
PI9 709.02 622.65 0.53 560.20 771.52 0.42
PI10 508.49 413.36 0.55 358.49 563.36 0.39
PI11 507.67 414.08 0.55 358.39 563.36 0.39
PI12 709.02 622.65 0.53 560.20 771.52 0.42
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Table 8.11: Summary of 3-index model with the second objective
Original model Heuristic 1 Heuristic 2

run time cost run time cost run time cost
PI1 78724 921.60 780 921.60 3184 921.63
PI2 39880 921.60 865 921.60 3726 921.64
PI3 44365 1332.00 1050 1331.72 3671 1332.01
PI4 80718 921.84 468 921.84 3774 921.64
PI5 79641 921.60 1253 921.60 3772 921.64
PI6 78905 1333.90 360 1332.01 3686 1332.01
PI7 85829 922.35 482 922.19 3816 921.65
PI8 80781 978.16 520 975.24 3811 921.64
PI9 83322 1332.00 838 1331.99 3738 1331.72
PI10 81992 998.76 484 978.30 3840 998.10
PI11 85638 998.17 515 931.90 3840 923.65
PI12 85999 1338.36 497 1335.27 3747 1332.03
AVERAGE 75483 1076.70 676 1068.77 3717 1064.95

in approximately 11 minutes (676 seconds), and heuristic 2 reaches an objective

value of 1064.95 in approximately 1 hour (3717 seconds). From another point of

view, heuristic 1 provides a better solution with 0.7% less cost within 99.1% less

time, and heuristic 2 provides a better solution with 1.1% less cost within 95.1%

less time.

Table 8.12 presents the cost structure of the 3-index model with the second

objective. The results are similar to those of the 4-index model with the sec-

ond objective. VRP phase generally constitutes 55% percent of the overall cost,

whereas it is around 40% with the second heuristic.

8.3.3 Comparison of the heuristics

With the 4-index formulation and the first objective, on the average heuristic 1

(VRP first-LRP second) reaches a better objective function value than that of

the original formulation within 98.7% less time (941 seconds). There exist three

instances that heuristic 2 (LRP first-VRP second) can not find a solution within

the allowed time.
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Table 8.12: 3-index model cost structure with the second objective
Heuristic 1 Heuristic 2

VRP LRP VRP/TOTAL VRP LRP VRP/TOTAL
PI1 507.56 414.07 0.55 358.28 563.35 0.39
PI2 507.56 414.08 0.55 358.28 563.36 0.39
PI3 709.02 622.99 0.53 560.49 771.52 0.42
PI4 507.56 414.08 0.55 358.28 563.36 0.39
PI5 507.56 414.08 0.55 358.28 563.36 0.39
PI6 710.49 621.52 0.53 560.49 771.52 0.42
PI7 507.57 414.08 0.55 358.29 263.36 0.58
PI8 507.56 414.08 0.55 358.28 563.36 0.39
PI9 709.07 622.65 0.53 560.20 771.52 0.42
PI10 510.62 487.48 0.51 434.74 563.36 0.44
PI11 509.70 413.95 0.55 360.29 563.36 0.39
PI12 708.83 623.20 0.53 560.50 771.53 0.42

With the 4-index formulation and the second objective, on the average both

heuristics are better than the original formulation. However, heuristic 1 attains a

similar objective function value (1058.43) to that of the heuristic 2 in 745 seconds,

whereas the run time of heuristic 2 is 3672 seconds.

With the 3-index formulation and the second objective, on the average both

heuristics perform better than the original formulation. Nevertheless, in 676

seconds heuristic 1 reaches a slightly higher objective value (1068.77) that is

attained by heuristic 2 in 3717 seconds.

These computational results assert that the “VRP first-LRP second” heuristic

outperforms the “LRP first-VRP second” heuristic.

8.3.4 Comparison of the models

With the heuristic 1, on the average, 4-index model reaches a better objective

function value (1058.43 versus 1068.77) in a longer amount of time (745 versus

676 seconds). With the heuristic 2, on the average, 4-index model outperforms

3-index model with a better objective function value (1058.42 versus 1064.95)

that is attained in less time (3672 versus 3717 seconds).



Chapter 9

Dynamic Model Development

Remember that in Chapter 3 we take a snapshot of the battlefield, which contains

Fixed-TPs, Mobile-TPs and combat units, at a particular point in time and

develop a static 4-index mathematical formulation of Mobile-ADS design problem

for a fixed period. In this chapter we extend this formulation over time, assuming

that known locations of combat units, as well as the set of potential Mobile-TP

locations change in every consecutive planning period. Note that for the sake of

brevity we only provide the dynamic version of the 4-index formulation, however it

is straightforward to obtain the dynamic version of the 3-index model by following

similar modifications that are explained below.

9.1 Model development

We assume that the planning horizon (combat duration) T is partitioned into

consecutive 24-hour time periods, represented by t ∈ T . In other words, there are

|T | time periods, i.e. t ∈ {1, 2, ..., |T |}. We also assume that potential location

set for Fixed-TPs (NF ) do not change over time. N t
M is the potential location set

of Mobile-TPs and N t
C is the known locations of combat units in period t ∈ T .

An example of the movement of Mobile-TPs and combat units between the first

and the second periods is shown in Figure 9.1.

130
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Figure 9.1: Movement of Mobile-TPs and combat units between time periods

We use the following set relations in the dynamic formulation. N t
M ⊆ N t+1

M

for all t ∈ {1, 2, ..., |T | − 1}. N t = NF

⋃
N t

M

⋃
N t

C , N
t
FM = NF

⋃
N t

M , N t
MC =

N t
M

⋃
N t

C for all t ∈ T and NFM = NF

⋃
N

|T |
M . These set relationships are

depicted in Figure 9.2.

We permit the opening of new Mobile-TPs at the beginning of any time period

and the closing of existing ones at the end of any time period. We also let an

existing Mobile-TP to re-open once it is closed or a new Mobile-TP to re-close

once it is open. We assume that if a Mobile-TP is to be moved to another potential

location then its transportation will take a relatively short time compared to 24-

hour planning period; hence, we suppose it changes its location instantaneously.

We know that the available number of trucks or the capacity of Mobile-TPs

may vary between the time periods due to breakdowns, enemy fire, etc. However,

we admit time-independent fleet size and transfer point capacity for the sake of

simplicity. Nevertheless, these parameters could easily be made time-dependent.
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Figure 9.2: Fixed-TP, Mobile-TP and combat unit sets in the dynamic case

Note that in the dynamic formulation, we use the same decision variables as in

the static model with an extra index t ∈ T , and they all refer to the related time

period t. We also have two new binary decision variables: yytij is 1 if Mobile-TP

of a brigade is opened at potential location i at the beginning of time period t

and relocated at a different potential location j (such that i and j are potential

locations of the same brigade) at the beginning of time period t+1, 0 otherwise;

and xxv is 1 if vehicle v is dispatched from a transfer point in at least one time

period, 0 otherwise. The dynamic Mobile-ADS design problem can be formulated

as follows:

min
∑

i∈NFM
t=1

FCi · yti +
∑
t∈T

∑

i∈Nt
M

∑

j∈Nt
M

∑
v∈VM

DCt
v · TI tij · yytij

+
∑
v∈V

V Cv · xxv +
∑
t∈T

∑

i∈Nt

∑

j∈Nt

∑
v∈V

∑
p∈P

TCt
vp · TI tij · f t

ijvp

+
∑
t∈T

∑

i∈Nt
C

∑

j∈Nt
M

∑
v∈VM

DCt
v · TI tij · xt

ijv

subject to
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∑
v∈VF

( ∑

j∈Nt
FM

j 6=i

f t
jivp −

∑

j∈Nt
M

j 6=i

f t
ijvp

)
=

∑
v∈VM

∑

j∈Nt
C

f t
ijvp ∀i ∈ N t

M , p ∈ P, t ∈ T

(D-1a)

∑
v∈VM

( ∑

j∈Nt
MC

j 6=i

f t
jivp −

∑

j∈Nt
C

j 6=i

f t
ijvp

)
= Qt

ip ∀i ∈ N t
C , p ∈ P, t ∈ T (D-1b)

∑

j∈Nt
FM

j 6=i

f t
jivp ≥

∑

j∈Nt
M

j 6=i

f t
ijvp ∀i ∈ N t

M , v ∈ VF , p ∈ P, t ∈ T (D-2a)

∑

j∈Nt
MC

j 6=i

f t
jivp ≥

∑

j∈Nt
C

j 6=i

f t
ijvp ∀i ∈ N t

C , v ∈ VM , p ∈ P, t ∈ T (D-2b)

∑
i∈NF

∑

j∈Nt
M

xt
ijv ≤ 1 ∀v ∈ VF , t ∈ T (D-3a)

∑

i∈Nt
M

∑

j∈Nt
C

xt
ijv ≤ 1 ∀v ∈ VM , t ∈ T (D-3b)

∑

j∈Nt
M

xt
jiv =

∑

j∈Nt
M

xt
ijv ∀i ∈ NF , v ∈ VF , t ∈ T (D-4a)

∑

j∈Nt
C

xt
jiv =

∑

j∈Nt+1
C

xt+1
ijv ∀i ∈ N t+1

M , v ∈ VM , t ∈ {1, 2, ..., |T | − 1} (D-4b-1)

∑

j∈Nt
C

xt
jiv =

∑

j∈Nt
C

xt
ijv ∀i ∈ N t

M , v ∈ VM , t = |T | (D-4b-2)

∑

j∈Nt
FM

j 6=i

xt
jiv =

∑

j∈Nt
FM

j 6=i

xt
ijv ∀i ∈ N t

M , v ∈ VF , t ∈ T (D-5a)

∑

j∈Nt
MC

j 6=i

xt
jiv =

∑

j∈Nt
MC

j 6=i

xt
ijv ∀i ∈ N t

C , v ∈ VM , t ∈ T (D-5b)

∑
v∈VF

∑

j∈Nt
M

f t
ijvp ≤ CDip · yti ∀i ∈ NF , p ∈ P, t ∈ T (D-6a)

∑
v∈VM

∑

j∈Nt
C

f t
ijvp ≤ CDip · yti ∀i ∈ N t

M , p ∈ P, t ∈ T (D-6b)

∑
v∈VF

∑

j∈Nt
M

f t
ijvp ≤

( ∑

l∈Nt
C

Qt
lp

)
· yti ∀i ∈ N t

M , i 6= j, p ∈ P, t ∈ T (D-6c)

f t
ijvp ≤ CVvp · xt

ijv ∀i ∈ NF , j ∈ N t
M , v ∈ VF , p ∈ P, t ∈ T ; (D-7)

∀i, j ∈ N t
M , i 6= j, v ∈ VF , p ∈ P, t ∈ T
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∀i ∈ N t
M , j ∈ N t

C , v ∈ VM , p ∈ P, t ∈ T ;

∀i, j ∈ N t
C , i 6= j, v ∈ VM , p ∈ P, t ∈ T

∑
p∈P

f t
ijvp ≤ CTv · xt

ijv ∀i ∈ NF , j ∈ N t
M , v ∈ VF , t ∈ T ; (D-8)

∀i, j ∈ N t
M , i 6= j, v ∈ VF , t ∈ T

∀i ∈ N t
M , j ∈ N t

C , v ∈ VM , t ∈ T ;

∀i, j ∈ N t
C , i 6= j, v ∈ VM , t ∈ T

∑
p∈P

f t
ijvp ≥ xt

ijv ∀i ∈ NF , j ∈ N t
M , v ∈ VF , t ∈ T ; (D-9)

∀i, j ∈ N t
M , i 6= j, v ∈ VF , t ∈ T

∀i ∈ N t
M , j ∈ N t

C , v ∈ VM , t ∈ T ;

∀i, j ∈ N t
C , i 6= j, v ∈ VM , t ∈ T( ∑

l∈Nt
C

Qt
lp

)
· wt

ijp ≥ f t
ijvp ∀i ∈ NF , j ∈ N t

M , v ∈ VF , p ∈ P, t ∈ T ; (D-10)

∀i, j ∈ N t
M , i 6= j, v ∈ VF , p ∈ P, t ∈ T

∀i ∈ N t
M , j ∈ N t

C , v ∈ VM , p ∈ P, t ∈ T ;

∀i, j ∈ N t
C , i 6= j, v ∈ VM , p ∈ P, t ∈ T

∑
v∈VF

f t
ijvp ≥ wt

ijp ∀i ∈ NF , j ∈ N t
M , p ∈ P, t ∈ T ; (D-11a)

∀i, j ∈ N t
M , i 6= j, p ∈ P, t ∈ T

∑
v∈VM

f t
ijvp ≥ wt

ijp ∀i ∈ N t
M , j ∈ N t

C , p ∈ P, t ∈ T ; (D-11b)

∀i, j ∈ N t
C , i 6= j, p ∈ P, t ∈ T

TEt
ip ≤ tptip ≤ TLt

ip ∀i ∈ N t
C , p ∈ P, t ∈ T (D-12)

tptip = 0 ∀i ∈ NF , p ∈ P, t ∈ T (D-13)

tptip + TI tij · wt
ijp − TM t

p · (1− wt
ijp) ≤ tptjp ∀i ∈ NF , j ∈ N t

M , p ∈ P, t ∈ T

(D-14)

∀i, j ∈ N t
M , i 6= j, p ∈ P, t ∈ T ;

∀i ∈ N t
M , j ∈ N t

C , p ∈ P, t ∈ T ;

∀i, j ∈ N t
C , i 6= j, p ∈ P, t ∈ T
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tvtiv + TI tij · xt
ijv − TM t · (1− xt

ijv) ≤ tvtjv ∀i ∈ NF , j ∈ N t
M , v ∈ VF , t ∈ T

(D-15)

∀i, j ∈ N t
M , i 6= j, v ∈ VF , t ∈ T ;

∀i ∈ N t
M , j ∈ N t

C , v ∈ VM , t ∈ T ;

∀i, j ∈ N t
C , i 6= j, v ∈ VM , t ∈ T

2 · yytij ≤ yti + yt+1
j ∀i ∈ N t

M , j ∈ N t+1
M , i 6= j, t ∈ {1, 2, ..., |T | − 1} (D-16)

1 + yytij ≥ yti + yt+1
j ∀i ∈ N t

M , j ∈ N t+1
M , i 6= j, t ∈ {1, 2, ..., |T | − 1} (D-17)

+xxv ≥ xt
ijv ∀i ∈ NF , j ∈ N t

M , v ∈ VF , t ∈ T (D-18a)

xxv ≥ xt
ijv ∀i ∈ N t

M , j ∈ N t
C , v ∈ VM , t ∈ T (D-18b)

f, tp, tv nonnegative; y, x, w, yy, xx binary. (D-19)

The objective function contains five different cost components. The first com-

ponent calculates the fixed cost of opening a new transfer point in period 1. Note

that if we buy the equipment for a transfer point once, we can use it several times

in different time periods. Opening a new transfer point actually means a transfer

point is changing its location. Hence, in reality the cost of opening a new transfer

point is its cost of repositioning and this constitutes the second component. The

third and fourth components are vehicle acquisition and ammunition distribution

costs. The fifth component calculates the driving cost of empty trucks returning

to their home transfer points.

Note that constraints have the same equation numbers, with a D in front that

represents dynamic version, as their duplicates have in the static formulation.

For example, constraints (D-1a) are the dynamic version of constraints (1a). The

only constraints that are different from their static duplicates are constraints (D-

4b-1) and (D-4b-2). To be exact, their static version is constraints (4b) which

force each ammo truck to turn back to its home Mobile-TP from where it is

dispatched. Nevertheless, in the dynamic model Mobile-TPs can change their

location in every consecutive time period.

Now, suppose a Mobile-TP is located at node i in time period t and dispatches

ammo truck v. Then, that transfer point moves to node j in period t+1, meaning

that any truck that will serve combat units in period t+1 will be dispatched from
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time period t time period t + 1

i

k

j
v v

Figure 9.3: Returning arcs of ammo trucks to transfer points

node j. Consider that unit k is the last unit on the route of truck v in period

t. As depicted in Figure 9.3, we must allow the truck to return to the transfer

point, which may be located at a different node, of the next period (dashed line

incoming to node j), as well as allowing it to return to the original transfer point

(dashed line incoming to node i). Hence, we introduce constraints (D-4b-1) and

(D-4b-2) in place of (4b) in the dynamic model.

We also have four new constraints that are (D-16), (D-17), (D-18a) and (D-

18b). Constraints (D-16) and (D-17) provide that if a transfer point changes its

location in a time period, the cost of repositioning is properly added to the overall

cost. Constraints (D-18a) and (D-18b) let us count the cost of a truck only once,

even if it is used many times.

9.2 Sample scenario

We present a sample multi-period scenario and its solution in Figures 9.4, 9.5

and 9.6. We again consider a corps including 20 combat units as can be seen

in Figure 9.4, and also consider two consecutive planning periods, i.e. t1 and t2.

CUi1 (resp. CUi2) represents the known location of combat unit i in the first

(resp. second) period. Potential Mobile-TP locations for the first brigade in the

first period is MTP1 and MTP2, whereas it is MTP1, MTP2, MTP9 and MTP10

in the second period. The solution for the first period is shown in Figure 9.5.

Solid (resp. dashed and dotted) lines represent the routes of commercial (resp.
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Figure 9.4: The corps’ layout plan on the battlefield for two periods

ammo) trucks.

As can be seen in the figure, for the third brigade, a Mobile-TP is established

at location MTP6 in period 1, and it is moved to location MTP13 in period 2.

Hence, at the end of their routes, all ammo trucks return to location MTP13

rather than MTP6. However, a Mobile-TP serves the second brigade at the same

location, namely MTP3, in both periods. Thus, all ammo trucks return to the

same location, MTP3, from where they were dispatched. Figure 9.6 shows the

solution for period 2, and all ammo trucks return to their home transfer points,

since this is the last planning period.

Note that the dynamic model finds an initial solution to this two-period sce-

nario in 8 hours with a gap of 23%, and the gap is still 23% after 24 hours.
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period



Chapter 10

Static Model in Real Life

In this chapter we first show how the static model can assist in a multi-period

combat operation and then discuss how the model can help the logistics planners

when faced with unplanned combat situations.

10.1 Multi-period Planning with the Static

Model

In what follows, we provide a framework to guide in the successive use of the

static model for multi-period strategic decision making. Recall that one of the

main differences of the two models lies in the costing structure of the ammo trucks

mainly due to the fact that in the dynamic model this cost refers to the travel

cost to the new (possible) Mobile-TP location whereas in the static model this

cost is neglected. In order to compare the two models more fairly, we now include

the Mobile-TP return cost within the objective function of the static model. As

another modification, we adjust the fixed costs of Mobile-TPs in the static model

in compliance with the logic we used for the dynamic model. Note that the first

component of the objective function of the dynamic model corresponds to the

fixed cost of opening a new transfer point in the first period. Since we incur

139
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this cost only once in the first period, in the consecutive periods, we take the

fixed costs of all opened Mobile-TPs as zero and add their repositioning costs

(whenever applicable). Moreover, the potential Mobile-TP location set in each

period should also contain the selected Mobile-TP locations of the previous period

as output by the static model.

Consider the layout of the corps in Figure 9.4. The static model can be used to

solve this problem exactly in the same way explained in Chapter 3, with the above

suggested adjustment. Figure 10.1 and 10.2 present the static model solution for

the first and the second periods. In a comparison with the dynamic solution

we can see both similarities and differences. Briefly, both the dynamic and the

static models keep MTP3 at the same place for both periods and move MTP7 to

MTP15 in the second period. However, the static model continues to use MTP6,

but moves MTP2 to MTP10 in the second period, whereas the dynamic model

continues to use MTP2 and relocates MTP6 to MTP13.

As for the truck routes, again there are similarities and differences between

the solutions of the models. For example, ammo truck routes are similar for the

2nd brigade in period 1 and for the 3rd and 4th brigades in period 2. However, the

most obvious difference is in commercial truck routes. The dynamic model uses

4 commercial trucks whereas the static model dispatches 3 commercial trucks.

At the same time, it can also clearly be seen from the figures that the dynamic

model has less traffic than the static model.

Which model (static or dynamic) is more advantageous depends on the combat

environment and enemy capabilities. For instance, if the enemy has the ability to

detect our logistics convoys then the dynamic model would be more advantageous,

because it has less traffic.

Note that the static model finds the initial solution for the first period in 1

minute with a gap of 20%, and for the second period in 20 minutes with a gap

of 15%, whereas the dynamic model finds an initial solution for both periods in

8 hours with a gap of 23%.

In addition, it is very straightforward to adjust the heuristic methods, which
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Figure 10.1: Static model solution of the multi-period scenario for the first period

are introduced in Chapter 7, to solve the static models in each period according to

the framework explained above. Hence, our heuristics can easily be employed to

solve the successive static models for each period to further shorten the solution

time.

In fact, the framework of successive use of the static model for the solution of

multi-period scenarios can be considered as a heuristic methodology in itself for

the dynamic model.

10.2 Facing Unplanned Contingencies with the

Static Model

Consider that logistics planners begin to execute the first day of the dynamic

distribution plan that is shown in 9.5. However, at the end of the first day or just

before the distribution plan for the second day is put into action, they receive the

following Logistics Related Update from the Corps Headquarters: For the first
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Figure 10.2: Static model solution of the multi-period scenario for the second
period

brigade, due to unexpectedly high enemy presence, Battalion 4 triples its ammo

requirements for each type. The bridge between MTP2 and Battalion 5 has been

destroyed and other battalions of the brigade are too far away that Battalion 5

must be supplied by the second brigade (MTP3). For the second brigade, due to

unexpectedly high enemy presence, Battalion 8 doubles its ammo requirements

for each type. For the third brigade, everything is as planned and no change

is required. For the fourth brigade, due to heavy enemy artillery fire, MTP15

is no longer suitable for any further logistics operations. All ammo trucks have

been moved to MTP16 and distribution must be made from this site from now

on. Transportation between Battalion 16 and 17 is blocked because of an enemy

mine field.

Similar updates can be encountered at any (the first, the last or a middle)

day of a given distribution plan. In such circumstances, logistics planners must

prepare the new distribution plan according to the update. However, the first

and utmost important challenge is not to prepare the whole distribution plan.

The real issue is to save the present day as soon and as good as possible, and



CHAPTER 10. STATIC MODEL IN REAL LIFE 143

FTP

1

1st Brigade 4th Brigade3rd Brigade2nd Brigade

t
2

t
1

MTP

3

MTP

16

CU

5
2

CU

6
2

CU

7
2

CU

8
2

CU

9
2

CU

10
2

CU

16
2

CU

17
2

CU

18
2

CU

19
2

CU

20
2

CU

11
2

CU

12
2

CU

13
2

CU

14
2

CU

15
2

MTP

13

CU

2
2

CU

3
2

CU

4
2

CU

5
2

MTP

2

CU

1
2

Figure 10.3: New distribution plan for the second period

then to prepare the distribution plan for the rest of the battle duration. For the

present day, we have serious time pressure to answer the needs of the combat

units confronting the enemy. But for the next days we will have enough time to

plan. Hence, the best way to proceed is to run the static model for the present

day and then run the dynamic model for the rest of the combat duration.

Figure 10.3 shows the new distribution plan for the second period that is

obtained by the static model. This solution is obtained in 7 minutes, which we

believe is short enough to answer the needs of the combat units in time.



Chapter 11

Summary and Conclusion

What was the main reason of the defeat in Operation Barbarossa (the code-

name of German invasion of Russia with approximately three million men in

1941 during World War II) after seven months of continuous combat and very

close to Moscow? In the first two weeks Russian defense forces could not stop

German forces and they reached deep into the Russian territory with a shocking

speed. After a short time, German supply lines were about 1,600 km long and

sustaining the battle became almost impossible. Combat units could not exploit

the tactical advantages because of the lack of ammunition supply. They used

more than 600,000 horses due to the shortage of trucks and at last it came to

a point where the transportation system could not supply the demands of the

combat units for the three most important supply classes which are clothing,

food and ammunition. At the end German dream turned into a nightmare after

a counter-attack of Russian Army just about 30 km reach of Moscow. It could

be said that logistics was not the only reason but it was the primary factor that

took part in German failure.

Above example is not the only failure in which logistics is the primary con-

tributing factor. On the contrary such a failure list would be so long including the

failed Damascus siege of King Louis VII and Emperor Conrad III in 1148 during

the second Crusade, the surrender of John Burgoyne at Saratoga in 1777 during

the American Revolutionary War, the retreat of Napoleon from Moscow in 1812
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during the Napoleonic Wars, and so on. These real events show that logistics has

always remained one of the most important actors on the battlefield throughout

centuries and it will remain as such in the following centuries.

“Logistics can be a force multiplier; however, if not controlled, it can be the

Achilles’ heel of an operation.” Following this statement of [55] and realizing that

ammunition is one of the most important supply classes, to provide an effective

and flexible distribution system on the battlefield we propose Mobile Ammunition

Distribution System (Mobile-ADS) which can support fast moving land forces in

rapidly changing combat environments.

In Chapter 2, we show that Mobile-ADS design problem is in fact a Location

Routing Problem (LRP). Then, to find a suitable model for the problem in this

study we search the existing LRP literature. In doing so, we first create a clas-

sification scheme consisting of 17 problem characteristics. We then classify 78

previous articles and state the aspects which have received little or no attention

so far. In summary; only one study gives an explicit mathematical formulation

including hard time windows, three of the three-layer studies locate facilities at

two different layers, all studies distribute single product except for four and only

one study allows demand points to be supplied by more than one vehicle and/or

depot. However, we show that the Mobile-ADS design problem includes all of

these four aspects in it. Hence, the problem in this study is relatively new and

the literature does not contain any model that can handle it.

In Chapter 3, we develop a static 4-index (considering arc-based product

flow) mixed integer programming formulation that integrates all above mentioned

aspects. We then derive several problem specific valid inequalities to lessen the

solution time.

In Chapter 4, we introduce a static 3-index (considering node-based product

flow) mixed integer programming formulation. To the author’s knowledge, such

a programming approach has not been used in LRP formulations before. We

also present some valid inequalities for this model. Finally, we show that 3-index

formulation has fewer decision variables and constraints then 4-index formulation.
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In Chapter 5, we test the valid inequalities on 6 moderate size hypothetical

problem instances. By doing so, we determine the valid inequalities that help re-

duce the solution time of each formulation in the problem instances we examined.

In Chapter 6, we evaluate the performances of both formulations on 6 small

size and 12 large size realistic problem instances with and without the valid

inequalities. We first introduce the base scenario and test some valid inequalities.

Then, we present the objective values and solution times of the models in each

problem instance. Briefly, we conclude that with the valid inequalities 4-index

formulation performs better than 3-index formulation in the 12 problem instances.

However, in general 3-index formulation outperforms the other without the valid

inequalities.

In Chapter 7, we provide two heuristic solution methods of which the first is a

“VRP first-LRP second” and the second is a “LRP first-VRP second” approach.

In the first method, we solve a VRP for each Mobile-TP and then solve a single

LRP depending on the solutions of these VRPs. In the second method, we first

solve a single LRP and then solve a VRP for each opened Mobile-TP in the

solution of the LRP.

In Chapter 8, we compare the performances of the two heuristics with those

of the original formulation in each problem instance. We show that, in most of

the instances, heuristics provide a better solution than the original model in at

least 94% less time. To be more specific, VRP first-LRP second (LRP first-VRP

second) attains better solutions in about 11-16 minutes (1 hour) than the original

model obtains in about 18-21 hours.

In Chapter 9, we extend the static 4-index formulation over time and present

a dynamic formulation to cover entire battle duration. We assume that entire

planning horizon is partitioned into consecutive 24-hour time periods. We also

assume that the locations of combat units and potential locations of Mobile-

TPs are known in every 24-hour planning period. We solve a sample two-period

scenario and present the solution.

In Chapter 10, we show how the static model could assist in a multi-day
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combat operation. To do so we provide a framework to guide in the successive

use of the static model for multi-period strategic decision making. Finally, we

discuss how the static model can help the logistics planners when faced with

unplanned combat situations where spontaneous problems must be solved in a

short amount of time.

As stated in [1], large scale complex applications, dynamic multiple period

models, time windows, stochastic parameters, and applications of metaheuristics

are either very few or not exist in the LRP literature. In one of the recent sur-

veys, [59], authors report the key dimensions of LRPs that have not been fully

incorporated as follows; stochastic parameters, time windows, dynamic multiple

period models, multiple objectives, both delivery and pickups, benchmarks for

solution efficiency, inventory and large scale complex applications. In the most

recent review of LRP literature, [64], authors suggest the following areas for fur-

ther research; using of approximation formulae, dynamic multiple period models,

stochastic parameters, continuous solution space, inventory, multiple objectives,

competitive location, combining several heuristics together or combining heuris-

tics with exact methods and large scale complex applications.

Common research directions suggested by the authors of the reviews of the

LRP literature can be highlighted as follows. Complex and diverse real world

applications of LRP to untouched actual problems, other than well studied depot-

customer setting, are needed to extend the spectrum of LRPs. Incorporation

of dynamic nature as multiple periods into the LRP models are expected to

enhance the realism of the models. Consideration of the time windows in LRPs

is a necessity especially in todays logistics environment where the value of time

becomes an important factor. Combining inventory decisions into LRP models is

advised to examine the interaction among location, routing and inventory.

We believe that our dissertation enriches the LRP literature by addressing

some of the key dimensions of the location-routing, that have been rarely included

in the previous LRP models and suggested for further research. To begin with, we

provide a broader perspective of the LRP literature encompassing most of the past

classifications both in terms of the number of surveyed problem characteristics
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and the number of reviewed articles. We hope this wider coverage leads to a better

understanding of where the LRP literature stands now and to where it should

proceed, revealing the gaps that require further exploration by the researchers.

We develop a decision support tool for an actual complex real world military

problem that extends the spectrum of the LRP literature. In [64], the last review

of LRP literature, [60] (solves a single-period military equipment location problem

by a decomposition heuristic) and [7] (solves a multi-period plant-depot-facility-

customer distribution problem that includes some inventory aspects by CPLEX)

are given as the examples of the most complex LRP models. However, both

studies have no time windows, distribute single products, allow the demands to be

met by only one vehicle or depot. In this dissertation, we first provide a complex

single-period static model (for short term tactical decisions) that considers hard

time windows, distributes multiple products among three layers, and supplies

demand points with multiple vehicles or depots if needed. We, then, extend

the static model over time (for long term strategic decisions) to the case with

multi-periods within the planning horizon incorporating the dynamic nature of

the problem. We assume that even our static model, let alone the dynamic

version, surpasses most of the previous studies in terms of complexity and fills

some of the gaps, which we determine above, in the LRP literature. Furthermore,

we also demonstrate a framework, which can be utilized as a heuristic solution

methodology for the dynamic model, in which the static model can be used

successively such that each period’s solution provides an input for the next period.

Due to its complexity LRP models are generally hard to solve. To overcome

this disadvantage, researchers usually resort to heuristics or urge the use of them

instead of investigating different mathematical formulations. However, the 3-

index model we develop in this dissertation is a promising attempt to improve

the computational efficiency of the LRP models purely through modeling. The

novelty of our 3-index mathematical formulation stems from the incorporation of

node-based product-flow approach that is frequently used in vehicle routing lit-

erature. The proposed formulation enables us to decrease the number of decision

variables and constraints in the model, which in turn leads to better computa-

tional performances. We anticipate that applying new formulations, which are
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tested and proved to be useful in other areas, to LRP models has the potential

to improve the efficiency, and thus may pave the way for successful applications

of LRP models to significant real world problems. Hence, one other contribution

of this dissertation lies in its mathematical formulation leading to an enrichment

of the LRP literature.

We analyze the Mobile-ADS design problem as an LRP in great detail, how-

ever we conclude that there are several features of this problem that deserve

further consideration. Including inventory decision into our formulations would

increase the reality of our models, since usually some amount of ammunition in-

ventory is kept on the battlefield. However, we need to state here that one of

our main objectives in developing our models is to keep these ammo inventory

levels at minimum at the Fixed-TPs and preferably no inventory at Mobile-TPs.

Another possible extension would be the incorporation of Geographical Informa-

tion Systems, which are becoming more and more popular every day, into our

models as proposed by [1]. Frequent changes in the combat environments usually

render long term logistics support plans obsolete or induces repeated updates

to them. These circumstances generally include combat units, engaged with the

enemy, waiting desperately for the ammunition supply–a very undesirable situ-

ation on the battlefield. Such unplanned contingencies require rapid short term

decisions that can be made fast enough only by feeding the new data into the

models in a short amount of time. Geographical Information Systems, with their

user-friendly interfaces, can enable the easy and fast entry of large amounts data

into the models leading especially to faster short term decisions and can enhance

the applicability of our models as real time decision support systems on the bat-

tlefield.

Although Mobile-ADS design models developed in this dissertation may seem

to be derived for the specific ammunition distribution military logistics problem,

we strongly believe that they can be applied to a wide variety of distribution

systems after some straightforward modifications. Since they contain most of

the real world aspects, we hope that they will help model complex distribution

systems more realistically.
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Appendix A

Model specifications

Tables A.1 and A.2 list the sets and parameters that are used throughout this

dissertation by 4-index and 3-index formulations. Table A.3 gives the decision

variables of the 4-index formulation, whereas Table A.4 presents those of the

3-index formulation.

Table A.1: Sets
N : set of all nodes such that N = NF

⋃
NM

⋃
NC and NF ,

and NF , NM , NC are mutually exclusive.
NF : set of potential Fixed-TP nodes such that NF ⊂ N .
NM : set of potential Mobile-TP nodes such that NM ⊂ N .
NC : set of combat unit nodes such that NC ⊂ N .
Note that NFM = NF

⋃
NM and NMC = NM

⋃
NC .

V : set of all vehicles such that V = VF

⋃
VM and VF , VM are

mutually exclusive.
VF : set of commercial trucks (all stationed at Fixed-TPs) such that VF ⊂ V .
VM : set of ammo trucks (all stationed at Mobile-TPs) such that VM ⊂ V .
P : set of ammo types.
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Table A.2: Parameters
Qip : demand of combat unit i for ammo type p.
CDip : nonnegative capacity of transfer point i for ammo type p.
CVvp : nonnegative capacity of vehicle v for ammo type p.
CTv : nonnegative total capacity of vehicle v.
TIij : travel time between nodes i and j, which includes the service time

at node i.
TEip : earliest time that combat unit i can receive supplies of ammo type p.
TLip : latest time that combat unit i can receive supplies of ammo type p.
TMp : maximum latest arrival time of ammo type p among units,

that is TMp = maxi∈NC
{TLip}.

TM : maximum of the latest arrival times of all ammo types,
that is TM = maxp∈P{TMp}.

TCvp : cost of transporting one unit of ammo type p on vehicle v per hour.
V Cv : cost of acquiring vehicle v.
DCv : cost of driving vehicle v per hour.
FCi : fixed cost of opening transfer point i.

Table A.3: Decision variables of the 4-index formulation
fijvp : nonnegative amount of flow of ammo type p carried from

node i to j by vehicle v.
tpip : nonnegative arrival time of ammo type p at node i.
tviv : nonnegative arrival time of vehicle v at node i.
yi : 1, if transfer point i is opened; 0 otherwise.
xijv : 1, if vehicle v travels from node i to j; 0 otherwise.
wijp : 1, if ammo type p travels from node i to j; 0 otherwise.
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Table A.4: Decision variables of the 3-index formulation
ftpoutivp : nonnegative amount of flow of ammo type p sent from

Fixed-TP i by commercial truck v.
mtpoutivp : nonnegative amount of flow of ammo type p sent from

Mobile-TP i by ammo truck v.
mtpinivp : nonnegative amount of flow of ammo type p dropped to

Mobile-TP i by commercial truck v.
cuinivp : nonnegative amount of flow of ammo type p dropped to

combat unit i by ammo truck v.
tpip : nonnegative arrival time of ammo type p at node i.
tviv : nonnegative arrival time of vehicle v at node i.
yi : 1, if transfer point i is opened; 0 otherwise.
xijv : 1, if vehicle v travels from node i to j; 0 otherwise.
kivp : 1, if ammo type p is dropped to Mobile-TP (combat unit) i

by commercial (ammo) truck v, or
if ammo type p is sent from Mobile-TP i by ammo truck v;
0 otherwise.


