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ABSTRACT

REFRACTIVE INDEX TUNING WITH
BURSTEIN-MOSS EFFECT IN INDIUM NITRITE

UNDER PHOTOEXCITATION

Cem Murat Turgut

M.S. in Physics

Supervisor: Assoc. Prof. Dr. Ceyhun Bulutay

August, 2009

The band filling effect due to free carriers introduces a shift in the absorption

edge, which in turn modifies the refractive index of the medium through the

Kramers-Kronig relation. This is known as the Burstein-Moss effect. Based on

the full band pseudopotential electronic structure calculations, we demonstrate

that Burstein-Moss effect will be crucial in the design of InN based lasers. The

primary reason is the small effective mass and the strong nonparabolicity of the

conduction band of InN where the shift in the absorption edge is more than

0.5 eV for an electron density of the order of 1019 cm−3. On the other hand,

for the case of valence band, the shift in the absorption edge is approximately

0.04 eV. However due to high density of states at the edge of the valence band,

also this shift becomes crucial since it opens intraband transitions in the medium.

In the case of laser structures, the Burstein-Moss effect in both conduction and

valence bands needs to be considered. Furthermore, we take into account the

band gap renormalization due to high free carrier concentration. For the case of

semiconductor laser structures, which can be also considered as an n-p junction,

we predict about 2% change in the refractive index for a wavelength 1.55 µm

at an electron-hole density of 1019 cm−3. When we compare photoexcited (i.e.,

n = p) InN with n-type doped InN, in the former case the intraband transitions

in the valence band which is a result of Γv
5 → Γv

6 transition, partially cancels

the Burstein-Moss effect. Our findings can also have direct implications for InN

based optical modulators.

Keywords: Refractive index change, semiconductor optics, band filling, band gap

renormalization.
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ÖZET

IŞIK UYARIMI ALTINDA İNDİYUM NİTRAT’ IN
BURSTEIN-MOSS ETKİSİYLE KIRINIM İNDİSİNDEKİ

DEĞİŞİM

Cem Murat Turgut

Fizik, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Ceyhun Bulutay

Ağustos, 2009

Serbest taşıyıcılar sebebiyle oluşan band dolum etkisi, soğurma eşiğinde kaymaya

sebep olur ve bu değişiklik, Kramers-Kronig ilişkisiyle, maddenin kırınım indisini

değiştirir. Bu, Burstein Moss etkisi olarak da bilinir. Tüm Brillouin bölgesi

boyunca elektronik bant yapısı görünür potansiyel yaklaşımıyla elde edilmiştir ve

bu hesaplamalara dayanarak, InN temelli lazerlerin tasarımında Burstein Moss

etkisinin can alıcı olduğu gösterilmiştir. İletkenlik bant kenarındaki parabolik

olmayan enerji dağınım bağıntısı ve küçük etkin kütle, bu etkinin en başta ge-

len sebeplerindendir. 1019 cm−3 mertebesindeki elektron yoğunluğu iletkenlik

bandının soğurma eşiğinde, 0.5 eV’tan daha fazla kaymaya sebep olur. Değerlik

bandında bu değer 0.04 eV olmasına rağmen, bant kenarındaki yüksek durum

yoğunluğu, soğurma eşiğindeki bu küçük kaymayı önemli kılmaktadır. Lazer

yapılarında, Burstein Moss etkisi hem iletkenlik hem de değerlik bandı göz önüne

alarak değerlendirilmelidir. Buna ilaveten, yüksek yoğunluktaki serbest taşıyıcılar

bant aralığında daralmaya neden olur. Bütün bu etkilerin yanında plazma etkisi

de hesaba katılarak, kırınım indisindeki değişim hesaplanmıştır. Burstein Moss

etkisiyle, tipik lazer dalgaboyu olan 1.55 µm’de, yarıiletken maddenin kırınım

indisinde yaklaşık 2% değişim tahmin ediyoruz. Sonuçlarımızı n-tipi InN ile

karşılaştırdığımızda, Γv
5 → Γv

6 geçişinden kaynaklanan yoğun bant içi geçişleri

n-p tipi InN’ta Burstein Moss etkisini kısmen kaybettirmektedir. Bulgularımızın,

InN temelli optik modülatörler için de ilgili olacağı düşünülmektedir.

Anahtar sözcükler : Kırınım indis değişimi, yarıiletken optiği, bant dolumu, bant

aralığında daralma.
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Chapter 1

Introduction

1.1 Band Filling Effect

The history behind this thesis goes back to 1950’s. The first problem is encoun-

tered with the Indium including compounds in 1953. The measured band gap

(∆Eg) of Indium Antimonide (InSb) had divergent values. Tatenbaum and Briggs

tried to explain this anomalous behaviour of InSb [1]. For different concentration

of impurity levels, they measured different band gap values by means of photo

absorption experiment and according to their measurement they concluded that

the reason for this anomalous behaviour was related to the impurities however,

they couldn’t explain the physical reasons [1].

In the same year 1953, Burstein remeasured the band gap of InSb [2], and

he also confirmed the absorption values for InSb reported by Tatenbaum and

Briggs’ work. However, he explained the anomalous band gap behaviour with a

different perspective. The reason was explained as being due to the small effective

mass of InSb rather than an impurity effect. The sharp curvature in the bottom

of the conduction band results in the small electron effective mass and small

density of states at that region. For the relatively small electron densities, the

Fermi level of the semiconductor lies above the conduction band as a result of

filling available density of states and the Fermi level increases rapidly with the

1



CHAPTER 1. INTRODUCTION 2

increasing electron density [2]. As the carrier density increases, the absorption

energy from valence band to Fermi energy level increases. At the same time, Moss

independently proposed the same reason for the unusual band gap of InSb [3].

Hence this is named as the Burstein Moss effect which is generally observed in the

semiconductors which have small effective masses. The importance of this effect

for applied physics is realized in 1960’s, as it gives a chance to obtain different

optical properties with the same semiconductor.

1.2 Burstein-Moss Effect in Semiconductor

Physics

By doping the semiconductor, one can modulate the absorption edge, refractive

index, emission of the medium by means of Burstein-Moss effect. In 1969, Dapkus

and his colleagues modulated the laser transition energies and wavelength limits

of GaAs by n-type doping [4]. With a doping level Nd ∼ 1018 donors/cm3, photon

energy of emitted laser light increases rapidly. This is because the Fermi level in

the conduction band moves up with the doping level. Interband recombination

processes predominantly occur from the Fermi level in the conduction band to

the valence band edge. So n-type semiconductor lasers lase at higher energies

compared to the undoped semiconductor lasers. On the other hand, the effect of

donors and the acceptors in the band structure should be considered since they

can open new transition levels in the forbidden gap of the medium [4].

The effect of band filling on the absorption coefficient is calculated for GaAs

based lasers in Bell Laboratories in 1975 [5]. The measurements were made on

highly doped n-type samples with a free electron concentration ∼ 6.7×1018 cm−3.

By using the reflectance data, together with the Kramers-Kronig relation, they

obtained the absorption coefficient. The result showed that absorption is strongly

dependent on the impurity concentration. A similar work was done in 2001 for

InSb [6]. Through the Kramers-Kronig relations carrier dependent absorption

spectra and the refractive index change is calculated in correction to the laser

structures. Compared to the intrinsic semiconductor, high doping tends to reduce
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the refractive index [6].

In 1989, Schubert applied Burstein Moss effect to the quarter wave semicon-

ductor plates of InP-InGaAs. As the carrier density increased, they filled the

available states in the conduction band for n-type semiconductors. As a result

of band filling, states at the bottom of the conduction band were blocked, so the

electron excitation from valence band to these states was reduced for a photon

energy with corresponding wavelength. So the reflectivity at this wavelength was

increased [7]. This effect was used for passive mode locking and Q switching

of an erbium laser at a wavelength 3 µm by using InAs. At room temperature

band gap of InAs is 0.35 eV which corresponds a wavelength 3.54 µm however

n-type InAs shows a band to band transitions at 0.44 eV with a wavelength 2.8

µm [8]. Also in the same year, this effect was used to modulate the waveguide

in a two dimensional system. Junction field-effect transistor was incorporated to

an optical waveguide and the gates modulated the light by band filling effect.

By applying reverse gate-source bias Vgs and drain-source bias Vds, free carriers

doped the waveguide, and as the free carrier concentration increased band filling

effect was observed. As a result the absorption and the refractive index of the

medium was modulated [9].

A more recent application of band filling effect was published in 2007 by Yang.

Mercury-cadmium-telluride (HgCdTe) is an important semiconductor which is

used for infrared photodetectors. By doping the material n-type, the luminescence

peak of the semiconductor showed a blue shift with an amount of ∼ 40 meV [10].

These are the examples of Burstein-Moss effect which are used in semiconductor

physics.

1.3 Band Filling Effect in InN

Band filling effect can be observed in the semiconductors which have small elec-

tron effective masses and low density of states at the conduction band edge. As

it is seen above, In-included compounds are the best candidates for this effect.
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Indium is a III-A group member in periodic table and makes compounds with

V-A group members. In the last decades III-V semiconductors have been the

focus of the attention of the semiconductor physics society because it has a wide

range technological applications. Especially III-nitrite semiconductors attract

attention for gallium nitride’s applications in optoelectronics. Among III-nitrite

semiconductors, InN has been of of interest in recent years.

InN preserved its mysteries for decades. Like InSb, the band gap of InN ex-

hibits an anomalous behaviour. This effect first was observed in InN by Trainor

and Rose [11] in 1974 and between 1985-86 it was intensively studied by Tans-

ley and Foley for InN films growth by RF sputtering [12]. The increase in the

absorption edge was empirically fitted as

Em
g = Eg + 2.1 × 10−8n1/3 eV,

where Em
g is the measured apparent band gap and n is the carrier concentration

in cm−3. They stated that band gap of the InN, Eg = 1.9 eV. This value had been

commonly accepted for 15 years. In 2002, Wu and his colleagues characterised

wurtzite InN grown by molecular beam epitaxy. By using optical absorption,

photoluminescence and photomodulated reflectance techniques, they reported the

unusual value of band gap of InN as 0.7 and 0.8 eV [13]. So the accepted value

1.9 eV is revised to 0.7 eV after 15 years!

This major band gap revision stems from the challenges in the growth of

InN; the unintentionally doped (as grown) samples turn out to be highly n-doped

[14]. So because of this unintentional n-type doping Burstein Moss effect occurs

naturally. This revised band gap of InN is of interest since it has compatible

value with the telecommunication wavelength at 1.55 µm which corresponds to

0.8 eV.

1.4 Modulator Applications

The main aim of the electro-optic devices is to alter the optical properties of the

medium with an applied voltage. This applied voltage leads us a controllable
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system over the device and in particular it changes the permittivity tensor and

so the refractive index. With this change, the parameters of the waveguide such

as phase, amplitude, frequency can be modulated. Therefore, understanding the

response of the medium due to the applied field is crucial to the design electro-

optic devices.

An electro-optic modulator is a device which is widely used in semiconduc-

tor physics. Basically, for the construction of the modulator, an electro-optic

medium is sandwiched between a pair of electrodes which can be also modelled

as a capacitor. The working principle is based on the electrically induced change

in the refractive index or birefringence. These devices are generally designed for a

single wavelength for the optimum performance. We can classify an electro-optic

modulator into two types depending on the direction of applied voltage relative

to the propagation direction of the light: transverse modulator for the propor-

tional direction of the applied voltage and longitudinal modulator for the parallel

configuration [15]. Phase modulators, polarization modulators and the amplitude

modulators are the main types of the electro-optic modulators.

1.5 Plan of the Thesis

In the following chapters we will give a brief review of electro-optic and electro-

absorption effects followed by essential technical preliminaries to compute the

optical response of InN. Finally, including relevant effects such as band gap renor-

malization and free-carrier (plasma) refractive index contributions, we will try to

explore the response of InN for a high photoexcitation introducing electon-hole

pairs with densities ∼ 1018 − 1020 cm−3 which has great potential for the imple-

mentation of semiconductor lasers as well as optical modulators.



Chapter 2

Electro-Optic and

Electro-Absorption Effects

When we apply a low frequency or steady electric field to a material, the optical

properties of the material changes in response to this field. The applied electric

field reorients the electronic orbitals, ions, and permanent dipoles in the material

which induces an electric polarization. This induced polarization modifies the

refractive index of the material. Such changes in the refractive index of the

material in response to an electric field is called the electro-optic effect. On the

other hand, the applied field can also change the absorption edge of the both bulk

materials and quantum confined systems. These modifications in the band gap

of the materials are known as electro-absorption effects. However, it should be

mentioned that the changes in the refractive index and the absorption coefficient

are intimately related to each other through the Kramers-Kronig relation. The

physical reason behind it is the causality principle. More on this will be given in

the following chapters. The purpose of this chapter is to give an overview of the

electro-optic and electro-absorption effects.

6
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2.1 Electro-Optic Effects

In materials without an inversion symmetry also called antisymmetric (such as

bulk Group III-V compounds), the change in the refractive index is linearly pro-

portional with the applied electric field. This effect is known linear electro-optic

effect or Pockels Effect. However, if the material has an inversion symmetry (such

as bulk Group IV compounds) the Pockels effect trivially vanishes and the electric

field quadratically changes the refractive index which is known as Kerr Effect.

Kerr Effect is masked by the much larger Pockels effect in antisymmetric mate-

rials. The refractive index change of the electro-optic medium is typically small.

However if the wave propagates through this medium for a distance exceeding its

wavelength, the phase of the wave can be modified significantly. One of the main

motivation for changing the refractive index through the applied electric field is

to design electrically controllable optical devices [16]. More details are provided

below.

2.2 Pockels Effect

If we apply an electric field to the antisymmetric crystal in a general direction, the

dielectric impermeability (1/n2)i changes linearly depending on the the electric

field. By using the 6 × 3 electro-optic tensor r, we can evaluate the changes in

the coefficients,

∆(
1

n2
)i =

3∑

j=1

rijEj i = 1, . . . , 6 ; j = 1, 2, 3 = x, y, z,

where rij is the ij th element of the linear electro-optic tensor [17].

Now we define a wave propagating in the x3 direction and we apply an electric

field along the x1 direction. The electro-optic tensor for this configuration is

described by the following equation,

(
1

n2
1

+ r11E1)x
2
1 + (

1

n2
2

+ r21E1)x
2
2 + 2r61E1x1x2 = 0.
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Since the term containing r61 is responsible for the refractive index change in the

x1 direction, we can ignore this term for a moment.

1

(n1 + ∆n1)2
= (

1

n2
1

+ r11E1),

For the electric fields lower than 20 kV/cm, O[∆n] ≈ 10−4 so ∆n1 & n1. For

this approximation we can expand the formula as

1

(n1 + ∆n1)2
≈ 1

n2
1

− 2∆n1

n3
1

= (
1

n2
1

+ r11E1).

V

x1

x2
x3

Figure 2.1: Basic illustration of an passing light though the electro-optic medium
which is modulated by an external voltage.

The corresponding index change along the x1 direction is,

∆n1 ≈ −n3
1r11E1

2
.

Making the same assumption we can get the index change along x2 direction as,

∆n2 ≈ −n3
2r21E1

2
.

A polarized light wave propagating along the x3 direction can be decomposed into

two component: one along the x2 direction and the other along the x1 direction.

We can define these waves as follows

E(x2) = A2 exp [i (ωt− k0n2x3)] , E(x1) = A1 exp [i(ωt − k0n1x3)] ,
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k0 is the wave number in free space. When the light covers a distance L in the

electro-optic medium, a relative phase shift is observed between these orthogo-

nal polarized components and this shift depends on ni (i = 1 or 2). After the

propagation with a distance L in the x3 direction in the crystal, the phase shift

is,

∆φ1 = −k0L [n2 − (n2 + ∆n2)] = −k0n3
2r21E1L

2
,

∆φ2 = −k0L [n1 − (n1 + ∆n1)] = −k0n3
1r11E1L

2
.

This calculation is done for the steady electric field. For the sinusoidally varying

time dependent electric field E1, the phase shift between these components also

vary sinusoidally. As a result phase modulation will occur [15].

2.3 Kerr Effect

In 1876 John Kerr (1824-1907) stated that under the influence of the electric field,

isotropic materials show uniaxial behaviour. The uniaxial materials show two

different refractive indices for the propagation direction (extraordinary index ne)

and normal to the propagation direction (ordinary index no). As a result of this

index difference for these directions, a birefringence is observed. This phenomena

is named as the Kerr effect. This effect is distinguished from the preceding

Pockels effect with a quadratic electric field dependence [15]. Impermeability

tensor (1/n2) is defined as the the inverse dielectric constant. The changes in the

refractive index according to the applied electric field is evaluated by using the

6 × 6 impermeability tensor ρ. To simplify the calculations, we use a coordinate

system along the principal axes. So all the terms of the tensor become zero except

the diagonal terms

ρ11 = ρ22 = ρ33 = ρ.

The applied electric field is in the z direction E1 = E2 = 0, E3 = E. The refractive

index parallel to the electric field in terms of ρ and the refractive index of the
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isotropic medium n is defined as

1

n2 ‖
=

1

n2
e

=
1

n2
+ ρE2.

Since the electric field is applied in one direction, the refractive index of the

ordinary axis does not change and remains the same

1

n2 ⊥
=

1

n2
o

=
1

n2
.

As a result, the presence of the electric field changes the property of the isotropic

medium and the medium shows uniaxial crystal behaviour with an optical axis

parallel to the electric field. Again we assume that the change in the refractive

index n0 is small compared to ne, so that we can use the binomial expansion to

write
1

n2
e

=
1

(n0 + ∆n0)2
=

1

n2
0

− 2∆n0

n3
0

=
1

n2
0

+ ρE2.

Refractive index difference between the ordinary and extraordinary axes can be

measured by means of the induced birefringence and it is experimentally expressed

as

∆n = KE2λ,

where K is called the Kerr constant. When the polarized light passes through

the Kerr medium a phase difference between the ordinary and extraordinary axes

occurs which is formulated as

Γ = 2π
∆nL

λ
= 2πKE2L.

By putting k0 and ∆n instead of 2π
λ and (ne − no), we can reformulate the above

expression.

Γ = k0(ne − n0)L

= k0(n0 + ∆n0 − n0)L

=
2π

λ
∆n0L

=
π

λ
n3

0ρE
2.
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By matching the theoretical and experimental expressions we can extract the

Kerr constant as

K =
n3

0ρ

2λ
.

As a special case, to get a phase shift of Γ = π for a medium with thickness d

and length L half wave voltage is defined [15] as

Vλ
2

=
d√

2KL
.

Electro-Absorption Effects

Absorption of the incident light near the band gap of the photonic material has a

significant advantage to modulate the light. By externally applied electric field,

the absorption characteristics of both bulk semiconductors and multi quantum

well structures (MQW) can be changed. These modifications of the absorption

spectra due to electric field also effect the refractive index of the material through

the Kramers-Kronig relation. Also the interaction of the electrons and holes with

the optical field contributes the refractive index change named as the plasma

contribution. According to the Drude model, the change in the carrier population

induce the refractive index change as follows,

∆n ≈ −Nxe2λ2

8π2ε0nc2m∗
x

,

where Nx and m∗
x are the excitonic (i.e., electron-hole) concentration and the

excitonic effective masses, respectively [17]. Empirically, for a density of 1019

cm−3 in electron-hole doping for fused silica at a wavelength 1.55 µm, we are

expecting a change in the refractive index ∆n ∼ 0.0149. The refractive index

of fused-silica for the given wavelength is n = 1.444. So plasma effect has a

non-negligible of a per cent contribution to the refractive index change.
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2.4 Quantum Confined Stark Effect

As it is known, the applied electric field causes a change in both wave function

and energy state of the quantum systems. The perturbation theory predicts a

shift in the ground energy called Stark effect that triggers the excitation of the

electrons from valence band to the conduction band. The quantum structures

E=0 E=0

  Energy

Figure 2.2: In the presence of the electric field, band gap of the material is reduced
which enables in tunnelling of the electron to the conduction band.

involve alternating layers of GaAs and AlGaAs with a thickness of the order of

100 nm. These layers form the quantum wells where each well shows quantum

mechanical size effects. Applied electric field perturbs the states and pushes them

to get closer. As a result the exciton resonances shift to lower photon energies, in

other words longer wavelengths, hence introduces a red shift. This red shift results

with the new absorption peaks associated with the formation of the exciton and

enables forbidden transitions. In these structures, the separation of the excited

electron with the hole is expected to be larger than the thickness of the layer,

however the thin well walls of the structure impose a constrain to the exciton

structures to bring them closer.
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This constrain restrict the movement of the exciton and this restriction is

called quantum confinement. The benefit of the confinement systems is the asso-

ciated absorption peaks which would otherwise not be easily observed in the bulk

systems [18]. Although the electric field brings the states closer, it applies force

on electrons and holes in opposite directions which weakens the binding of the

exciton. But we can still observe well defined excitonic states. Compared to the

bulk systems, under such higher electric fields, exciton resonances can be remain

in the confinement systems without excessive broadening [27]. By choosing the

appropriate frequency of the light for the applied electric field, the absorption of

the electro-optic medium can be changed which is the basis of an optical modula-

tor [18]. The application of this effect to the bulk systems can be questioned. The

following reason may answer this question. The contribution of the electric field

is taken as a perturbation to the solution of the eigenstates of the system. To get

significant shift in the eigenstates of the system, the electric field energy eEaB

in terms of the effective Bohr radius, electron charge and electric field should be

comparable with the absorption edge energy, eEaB ≥ ∆. This equation needs

a field of the order of 106 V/m for different material parameters. However such

strong fields of this order broaden even destroy the exciton resonances. One of the

reason beside this broadening is the field ionization of the exciton, penetration of

the electron through the finite Coulomb barrier at finite fields. The other reason

is the impact ionization. Free carriers in the medium can gain high energies in the

presence of electric field. The hitting of this high energetic carriers to the exciton

may result with ionization of the exciton or broadening of the excitonic resonance

[19]. By confining the electron-hole system, one can overcome this problem for

the following reasons:

• since the electrons and holes have opposite electric charges, in the presence

of the electric field they feel repulsive electric force. This force pushes them

to opposite sides of the layers that reduce the energy of the electron-hole

pair resulting with a red shift.

• the walls of the quantum well prevent the electron and hole from tunnelling

out of the layers. For the strong confinement, it is important that, the well

width should be narrow compared to the exciton size [27].
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Stark effect modifies the excitonic resonances and this modification yields change

in the refractive index through the Kramers-Kronig relation. As a result we can

achieve Pockels or Kerr like effect to modulate the light.

2.5 Franz-Keldysh Effect

In the previous section, the effect of the applied electric field on the quantum

systems is expressed as Stark effect. Reduction of the band gap by the Stark

effect results in the increasing excitation of the electrons to the conduction band

with the energy h̄ω < Eg. However this work for the quantum confined systems.

Because, if the applied field exceeds the classical ionization energy of the order

of a few times, exciton resonance broadens as a result of ionization [27] as men-

tioned in the previous section. For the bulk semiconductors, Franz and Keldysh

independently proposed another effect of the electric field. The applied field re-

sults in an exponential tail of the wave functions into the forbidden zone of the

semiconductor, and over this tail electrons can tunnel to the conduction band

from the valence band absorbing a photon with a energy h̄ω < Eg [29]. As a

result, overlap between the hole and electron wave functions leads the transition

for the energies smaller than Eg. As the electric field increases, the exponential

tail and amplitudes of the Franz-Keldysh oscillation increases [28].

Fascinating property of the Franz-Keldysh effect is that it renders a single

semiconductor to have an tunable ”band gap”. Recall that Stark effect is observed

in quantum wells which requires expensive fabrication techniques. In contrast

to the Stark effect, Franz-Keldysh effect lets us use bulk semiconductors which

has a simple growth procedure covering a wide range of the wavelengths. Also

insensitivity to the high optical powers make this approach stable. Powers higher

than 250 W/cm2 saturates the Stark effect, on the other hand the Franz-Keldysh

effect remains unperturbed up to powers of 20 kW/cm2. Above this power an

other optical effect named band filling contributes. Response time of the electro-

optic devices are limited by the low saturation intensity which means that higher

intensity results with higher response speed. For the optical modulators this



CHAPTER 2. ELECTRO-OPTIC MEDIA 15

property becomes important for the following reasons:

• optical power as low as mW can saturate the excitons which will diminish

the Stark effect,

• to modulate the light by using the Stark effect we need polarization pre-

serving waveguides.

Although it seems that the usage of the Franz-Keldysh effect is advantageous

compared to the Stark effect, huge power need of the system must also be con-

sidered [20].

2.6 Quantum Confined Pockels Effect

For the case of quantum wells, if the barrier and well materials share common

ion such as InxGa1−xAs-InP at interfaces, the sample shows optically isotropic

medium in the plane perpendicular to the growth direction. Under applied electric

field, this rotational symmetry at the interface is broken and a strong enhance-

ment of quantum confined Pockel effect is observed. Theoretical background of

this symmetry breakdown can be understood by adding an interface term to the

valence band Hamiltonian. This term is invariant of the C2v group and can be

treated as a perturbation in the framework of the classical envelope-function the-

ory. In other words, because of this perturbation, heavy and light hole states are

mixed as a function of applied field at the minizone, and this mixing breaks the

in-plane isotropy [22].

2.7 Burstein-Moss Effect

In 1953, Tanenbaum and Briggs tried to explain the different band gap mea-

surements of indium antimonide (InSb) for different temperatures. There are

divergent band gap values with the increasing temperature and they concluded
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that this results from impurity effects [1]. However this anomalous change in the

absorption edge is explained differently in the same year by Burstein and Moss

independently. They proposed that the explanation of this absorption limit is

based on the small effective mass of electrons rather than impurity effect. Since

the bottom of the conduction band of InSb has sharp curvature and at this region

there exists small density of states. This density of states results with small effec-

tive mass of electrons. As the carrier density increases the difference between the

Fermi energy level EF and the conduction band edge increases rapidly since the

electrons fill the small available states in the conduction band [2]. For the case of

E

k

CBE

VBE

EFC

EFV

Figure 2.3: As the carrier densities increase in both valence band and conduction
band, excitation of an electron to the conduction band requires more energy.

n-type doping, the electron contribution to the conduction band comes from two

different type of sources. One of the sources is the electrical injection of donors

to the semiconductor. The thermal ionization of the donors introduces electrons

to the conduction band. The other means is by photo-injection excitation of an

electron from valence band to the conduction band, absorbing a photon. As the

free carrier concentration increases in the medium they fill the available states
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at the bottom of the conduction band. So the excitation of an electron over the

Fermi level of the conduction band while conserving its momentum (with the

same k value) requires much more energy compared to the band gap Eg of the

intrinsic semiconductor as shown in Fig. 2.3 However, due to the many body

effects, for high densities, band gap narrowing effect can be also observed [23] as

stated in the following Fig. 2.4. More about the band gap renormalization will

be given in the following chapters.

Band-Gap Renormalization

Conduction Band Edge

Valence Band Edge

Figure 2.4: As the carrier densities increase in both valence band and conduction
band, due to the many body effects band gap is renormalized.

2.8 Purcell Effect

Finally, we would like to discuss an effect which is not an electro-optic or electro-

absorption effect, but nevertheless it has recently attracted strong interest in a

similar context. The main physical idea in this effect is the control of the spon-

taneous emission. One of the main phenomena for the creation of light is sponta-

neous emission. In the presence of stimulated emission, spontaneous emission can

be somehow troublesome. Since it can limit the performance of photonic devices

such as lasers, displays, illuminations and so on. For lasers, stimulated light is

coherent, however spontaneous emission (SE) does not contribute to lasing. Since

it does not couple with the laser beam it emerges as noise that is an unwanted
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situation that scientists want to get rid of. Also for the case of the LEDs, the

problem emerges in a different way. Basic working principle of the LEDs is based

on the SE. However, the problem lies under this idea is the only limited ratio of

the light extracted from the device and most of the light is confined inside the

semiconductor. For different situations there are different motivations to inhibit

the SE or to increase the efficiency of SE [24].

By using a cavity, Purcell suggested a method to control the SE rate. Usage

of a cavity leads to a modification of dipole-photon coupling and available pho-

ton modes allow us to fabricate high efficiency LEDs also let us to inhibit the

undesired wavelengths [25].

Now let us first analyse the the working principle of Purcell effect. An emitter

with a wavelength λe, linewidth ∆λe placed in a resonance which has a single

mode with a wavelength λc, linewidth ∆λc and a quality factor Q = λc/∆λc.

Since λe & ∆λc, the time need for photon to leave the cavity is much shorter than

the radiative lifetime. So the re-absorption of the emitted light is now negligible

which can be defined as weak coupling regime. Different from the vacuum the

emitter feels a quasi-continuum of modes. By using the Fermi golden rule, the

rate of spontaneous emission is written as

1

τ
=

4π

h̄
ρcav(ω

〈
|(d · (ε(r)|2

〉
,

where (ε(r) is the vacuum electric-field vector at the location (r) of the emitter

and (d is the electric dipole, ρcav(ω) is the density of modes of the cavity at the

emitters frequency. SE rate in the cavity mode, compared to the total SE rate in

a medium, is given by the Purcell factor

Fp =
3Qλ3

c

4π2n3V
,

where n is the refractive index of the medium, Q is the quality factor of the

cavity and V is the volume of the cavity [26]. As a result, the cavity increase the

spontaneous emission of the dipole by tuning the frequency of the emitter.
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The Relevance of This Work to

Semiconductor Lasers

On 6 August 1960, Theodere Mainman published a paper in Nature, about the

first working laser developed at the Hughes Research Laboratory in California

[46]. He pumped silver coated ruby rod with high power flash lamp and the

laser produced a short of flash light. This marked the initiation of a research

area which turns into a billion dollars worth of industry. By the development

of different types of laser such as semiconductor lasers, solid state lasers, gas

lasers, etc, lasers inevitably became part of our lives. If we take into account the

economic impacts of the lasers, the semiconductor lasers stand out. They are now

widely used in areas such as CD players, laser printers, military and bio-medical

applications. Continuously improvement in the performance of the semiconductor

lasers such as low-threshold current, high speed direct current modulation, ultra-

short optical pulse generation, high optical output power, low cost and etc. is

the main reason behind this major surge [47].

19
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3.1 Basic Structure

The working principle of a semiconductor laser basically depends on the recom-

bination of the carriers injected from the p − n junction. Basic schematic of an

semiconductor laser is shown in Fig. 3.1. When we forward bias the junction,

electrons are injected from the n-type doped layer and holes are injected from

the p-type doped layer to the intrinsic (active) region. After the accumulation of

the electrons and the holes in the active region (pumping), electrons and holes

are stimulated to recombine in the active region. Each stimulated electron-hole

recombination results in the emission of a coherent light to the optical field.

n-type

p-type

  Heat sink and 
electrical contact

Metal contact

Lasing

Figure 3.1: Basic structure for the semiconductor laser.

3.2 Photoexcitation and Attainment of Quasi-

Equilibrium

The primary purpose of this thesis is to study the refractive index change due

to equal concentration of electron and holes (n = p). This can be achieved by
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the basic p-n junction drawn in Fig. 3.1 through electrical injection. However,

k

E

Conduction Band Edge

Valence Band Edge

Photoexcitation

Relaxation

a) b)

c)

Undoped Semiconductor

EFC

EFV

New Absorption Edge

New Quasi-Fermi Levelsd)

Figure 3.2: Photoexcitation in semiconductor lasers.

in the case of InN, its p-doping is a major challenge. For this reason, we shall

consider optical injection of equal number of electron and holes. In Fig. 3.2(b)

we show the electron hole generation under a broadband illumination with an

energy highly above the band gap of InN. The carriers then quickly relax to band

edges Fig. 3.2(c) by emitting optical phonons. This results in the attainment of

a new quasi-equilibrium of the excited carriers (see Fig. 3.2(d)). It should be

noted that these electron-hole pairs will radiatively recombine in a duration of

nanoseconds and this non-equilibrium population will be lost. For this reason the
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optical pumping process needs to be kept on, in order to preserve a steady-state

quasi-equilibrium carrier distribution.

3.3 Carrier Distribution

This quasi-equilibrium carrier distribution corresponds to the population inver-

sion which is required so as to amplify an optical radiation of a frequency ν. The

quasi-Fermi energy difference between the electrons and the holes determines the

photon energy. Note that, under equilibrium, Fermi levels of electrons EFc and

Fermi level for the holes EFv equal to the Fermi level of the whole system

EFc = FFv = EF .

However, under optical or electrical injection, the system is driven into non-

equilibrium state. The Fermi levels of the electrons and the holes split and

construct the new quasi Fermi levels of the systems. Under non-equilibrium

conditions, the electron concentration n and the hole concentration p are given

as

n = Nc exp
(
−Ec − EFc

kBT

)
,

p = Nv exp
(
−EFv − Ev

kBT

)
.

Here, under parabolic band assumption the effective density of states for the

electrons Nc and that for the holes Nv are written as,

Nc = 2

(
2πm∗

ekBT

h2

)3/2

,

Nv = 2

(
2πm∗

hkBT

h2

)3/2

,

where kB is the Boltzmann constant and h is Planck’s constant.

The new quasi-Fermi levels become,

EFc = Ec + kBT ln
(

n

Nc

)
,
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EFv = Ev − kBT ln
(

p

Nv

)
,

where Ec is the bottom energy level of the conduction band and Ev is the top of

the valence band.

The distribution function for the electrons having energy E1 in the valence

band is f1 and for the electrons having energy E2 in the conduction band is f2.

By using the quasi-Fermi levels EFc and EFv, we can write f1 and f2 as

f1 =
1

exp [(E1 − EFv)/kBT ] + 1
,

f2 =
1

exp [(E2 − EFc)/kBT ] + 1
.

f1 is given for the occupation of electrons for the valence bands, so the hole

distribution function in the valence band is given by [1-f1] [49].

3.4 Chirp

Up to this point, we assume that the semiconductor laser is very stable and lases

at a single mode. However, during population inversion, the accumulation of

electrons and holes in the active region changes the absorption coefficient of the

semiconductor. Also the new carrier population renormalizes the band gap.

When an electromagnetic pulse propagates through a medium, the bound

electrons of the dielectric display a wavelength dependent response. In general,

the refractive index of the material varies as

1 < nred(λ) < nyellow(λ) < nblue(λ).

The variation of the refractive index results in different group velocities of each

spectral component as

vg(λ) =
c

nλ
,

where c is the speed of light. This phenomenon is named as dispersion. Longer

wavelength component of the pulse has larger group velocity, therefore leading

part of the pulse has low frequency which is called red shifted. However, if the



CHAPTER 3. SEMICONDUCTOR LASERS 24

medium has an anomalously dispersive property so that refractive index changes

as

1 < nblue(λ) < nyellow(λ) < nred(λ),

the leading part of the pulse is now high frequency components which is called

blue shifted. As a result of the dispersion, the instantaneous frequency of the

pulse changes and this change is called chirp. Also nonlinearities in the medium

causes chirp on the pulse. Besides, dispersion and nonlinearities, in semicon-

ductor lasers refractive index change depending on electron and hole population

leads to a chirp which is the main subject matter of this thesis. In this context,

we can distinguish between two different types of chirp. If the instantaneous

frequency has an increasing function, we call it up-chirped pulse. Fig. 3.3 shows

the difference of these types of chirp. In this type, the leading part of the pulse

is blue shifted. On the other hand, if the pulse has time dependent decreasing

instantaneous frequency, it is called down-chirped pulse and the leading part of

the pulse is red shifted. The chirp on the pulse can be removed by propagating

the wave in a suitable dispersive medium.

a) Upchirp b) Downchirp

Figure 3.3: (a) shows the up-chirp with increasing instantaneous frequency, (b)
shows the down-chirp with decreasing instantaneous frequency.
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Further Technical Preliminaries

In this chapter, we provide in depth information on three technical issues which

will be of importance in the rest of the thesis. These are the tetrahedron inte-

gration technique by Lehmann Taut and the discussion of Van Hove singularities

in bulk semiconductors. The common denominator of the both subjects is that

they both take place in the reciprocal lattice. Finally, we provide some theoretical

information on the Kramers-Kronig relations.

4.1 Brillouin-Zone Integrations

Quite commonly in solid state calculations, one ends up with an integration over

a surface (usually Fermi surface), as in density of states, effective mass tensor or

response functions. Conventional integration routines for calculating the density

of states and similar kind of integral types in the form

∫ dS

|grad∆ε(k)|A(k),

encounter serious complications. In an energy interval, D(ε) is inversely propor-

tional to the square root of the mesh points and increasing in the mesh point leads

to increase of statistical noise. As a result, Gilat and Raubenheimer propose a

25
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different integration routine to solve this problem [40]. They divided whole Bril-

lioun zone into cubes with the same volume. All the reciprocal space is reached

by linear extrapolation of the cube centers. The integration over the constant

energy or frequency surface is now replaced by the cross sections of small areas

between the cubes and the constant surfaces. On the other hand, Lipton and

Jacobs modified this method, and they interpolated the energy points between

the corners of the cubes that reduces the computational load [41]. However,

both of these methods cannot fill the boundary of the reciprocal spaces so these

boundaries need to be coded explicitly.

4.1.1 Lehmann-Taut Method

Lehmann and Taut approached to the problem in a different way and they divided

reciprocal lattice into tetrahedra, as the whole Brillioun zone can be totally divided

into tetrahedra including the boundaries [42]; see Fig. 4.1.

kz∆

kx∆

ky∆

Figure 4.1: Filling of Brillioun zone with tetrahedra.

Wurtzite InN has hexagonal reciprocal structure. Any volume integration over

this Brillioun zone can be reduced to irreducible Brillioun zone (IBZ) by using

the all symmetries of the lattice as shown in Fig 4.2.

Then the IBZ is divided into a mesh of 40×40×40 in both basal plane and

along the z axis shown in Fig. 4.3 and every mesh is then divided into tetrahedra.

Let the energy value at k0 = 0 corner of the tetrahedron be ∆ε0 and for the corners

ki(i = 1, 2, 3) be denoted as ∆εi, respectively. Within the tetrahedron, the energy

values ∆ε(k) can be determined by linear interpolation as

∆ε(k) = ∆ε0 + b · k.
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Figure 4.2: First Brillioun zone of the wurtzite lattice and its IBZ

b is determined by these series of formulas,

rj · ki = δij ; r1 =
k2 × k3

v
; r2 =

k3 × k1

v
; r1 =

k1 × k2

v
,

and

b =
3∑

i=1

(∆εi − ε0) ri

where v is the six times tetrahedron volume. Also the function A(k) is interpo-

lated in a similar way as

a(k) = a0 + a · k.

Now we knit the any kind of the integrand as a spider’s net.

30°
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ky
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π
c
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∆

kz∆
ky∆

kx

Figure 4.3: Meshing on the IBZ



CHAPTER 4. FURTHER TECHNICAL PRELIMINARIES 28

4.1.2 Application to Density of States

The density of states is given by the expression,

g(E) =
∫ dS

grad∆ε(k)
,

dS represents the surface integral over the volume. By a simple derivative, the

denominator turns into form

grad∆ε(k) = grad(∆ε0 + b · k) = k,

since grad∆ε0 = 0. The contribution of one tetrahedron to the density of states

is calculated with an energy ∆ε(k) = ε is

i0(ε) =
∫

∆ε(k)=ε

dS

b
,

and this integral representation turns into simple mathematics calculation such

as

i0(ε) = f(ε).|b|−1.

f(ε) is the intersection of the constant energy surface with the tetrahedron and

these cross sections shown in Fig. 4.4 can be written as the sum of the triangular

areas [42].

f(ε) =






f0 ∆ε0 ≤ ∆ε ≤ ∆ε1

f0 − f1 for ∆ε1 ≤ ∆ε ≤ ∆ε2

f3 ∆ε2 ≤ ∆ε ≤ ∆ε3

where the integrands come out as,

f0|b|−1 = v
2

(ε−∆ε0)2

(∆ε1−∆ε0)(∆ε2−∆ε0)(∆ε3−∆ε0)

f1|b|−1 = v
2

(ε−∆ε1)2

(∆ε1−∆ε0)(∆ε2−∆ε0)(∆ε3−∆ε0)

f3|b|−1 = v
2

(ε−∆ε3)2

(∆ε1−∆ε0)(∆ε2−∆ε0)(∆ε3−∆ε0)
.
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k =0; ∆ε0 0

k  ; ∆ε1 1

k  ; ∆ε2 2

k  ; ∆ε3 3

 f0

 f1

 f3

Figure 4.4: Different intersections of a tetrahedron with three different constant
energy surfaces.

4.1.3 Effective Mass and Dielectric Tensors

In this thesis we need the energy-dependent effective masses. To obtain the

m∗(E), we can define the group velocity of the carrier as

v =
1

h̄
∇kE.

By taking the derivative of the velocity, we get the acceleration,

a = dv
dt = 1

h̄
d
dt∇kE

= 1
h̄∇k

[
∇kE · dk

dt

] .

The acceleration of the free carrier is a result of an external field F and time

dependent wave solution of the carrier requires

F = −h̄(dk/dt).

When we substitute F into the a and from F = m∗a,

a = − 1

h̄2∇k∇kE · F,

m∗ =
h̄2

∂2E/∂k2
,
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we get the energy-dependent effective mass of the carrier [43].

Just like the density of states and energy-dependent effective mass tensor

calculations, we can obtain the imaginary part of the dielectric function using the

tetrahedron integration technique [50]. The corresponding expression is given by

Im
{
εab(ω)

}
=

e2

π

∑

v,c

∫

BZ
dk ra

vc(k)rb
vc(k)ra

vc(k)δ (Ec(k) − Ev(k) − h̄ω) .

4.2 Van Hove Singularities

We have shown the calculation method of density of states by using Lehmann-

Taut method for the type of integral

gn(ε) =
∫

S(ε)

dS

∇kεn(k)
,

which reconciles the density states with the band structure of the semiconductor.

More detailed work is shown in the preceding chapters. At this point, we prefer

to focus on the mathematical meaning. The S(ε) represents a constant energy

surface. If we use for the energy, that of the energy difference between bands n

and n′ as in

εn(k) − εn′(k) = ε0,

and similarly for the gradient

∇ [εn(k) − εn′(k)] = 0,

what we obtain is called joint density of states since it gives the density of pair

of states: one is empty, the other one is occupied with an energy difference ε0.

Hence the joint density of states is represented as [44]

Jnn′ =
∫

εn(k)−εn′ (k)=ε0

dS

∇ [εn(k) − εn′(k)]
.

The singularities in the integrand are known as Van Hove singularities and oc-

cur when the constant energy surface contains the band points whose gradient

vanishes. However, these singularities are integrable and yields finite values and

contribute to the density of states and the slope of the density of states at these
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Van Hove singularities

D
en

sit
y 

of
 S

ta
te

s

Energy

Figure 4.5: Different types of van Hove singularities. The arrows indicate the
energies where the singularities exist. The circles shows the discontinuities in the
derivative of the density of states .

point diverges [45]. A basic schematic of these singularities in the density of states

is shown in Fig. 4.5.

We can encounter these singularities when,

∇kεn(k) = ∇kεn′(k) = 0,

or more generally for

∇k [εn(k) − εn′(k)] = 0.

The first condition occur at the high symmetry points and the second condition

may occur at any k vector [44].

Now lets go back the physical meaning and importance of these singulari-

ties. For the direct transitions between bands n and n′ which are parallel at a

particular k values with an energy difference εnn′, a different density of states is

responsible [52]. At these points during measurement of the optical properties of

semiconductor, a peak is expected. For our cases, computation of the absorption

of the medium for the photons with an energy h̄ωnn′ = εnn′ we are also expecting
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peaks in the corresponding energies of these singularities. For the calculation of

the imaginary part of the dielectric function at these energies and in their neigh-

bourhood, van Hove singularities dominate the absorption characteristics of the

semiconductor.

4.3 Kramers-Kronig Relation

As a main idea of this chapter we almost gave the technical procedure for our

computational work. As a final step we need to calculate the imaginary and real

part of the dielectric function to conclude the refractive index change for the InN.

Imaginary part of the dielectric function is responsible for the absorption of the

medium and again is stated by the following formula

Im
{
εab(ω)

}
=

e2

π

∑

v,c

∫

BZ
dk ra

vc(k)rb
vc(k)ra

vc(k)δ (Ec(k) − Ev(k) − h̄ω) .

To compute the real part of the function by using the imaginary part we use

the causality principle and the mathematical procedure is given by the Kramers-

Kronig relation. So at this point it is necessary to open a parenthesis to discuss the

Kramers-Kronig relations. These details are taken from the reference [52]. These

relations have great importance since they allow us to evaluate the components of

the dielectric function, conductivity, susceptibility or other optical properties of

the semiconductor, if we know the one of reflection or absorption of the medium.

By involving the causality, derivation between the complex and real part of the

response function can be done. To describe the linear response X̂ of the system

for an arbitrary time t and a position r to a external perturbation in terms of an

external stimulus f̂ at a time t′ and location r′ we use the following formula

X̂(r), t =
∫ ∫ ∞

∞
Ĝ(r, r′, t, t′)f̂(r′, t′)dr′dt′,

where Ĝ(r, r′, t, t′) is the response function. By using the Cauchy’s theorem and

causality we get the relation

Ĝ =
1

iπ
P

∫ ∞

∞

Ĝ(ω′)

ω′ − ωdω′.
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When we divide Ĝ into real and imaginary parts as

Ĝ = G1(ω) + iG2(ω),

and this leads the following relations between the real and imaginary parts of Ĝ

G1(ω) =
1

π
P

∫ ∞

∞

G2(ω′)

ω′ − ω ,

G2(ω) = −1

π
P

∫ ∞

∞

G1(ω′)

ω′ − ω .

For the real part of the dielectric function, the expression is stated in Gaussian

units as

Re {ε(ω)} = 1 +
2

π
P

∫ ∞

0

ω′Im {ε(ω′)}
ω′2 − ω2

dω′.

More information and intermediate steps can be found in the relevant chapter of

the Ref. [52].
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Band Gap Renormalization

Since the invention of the first semiconductor laser, the understanding of the

density dependent optical spectra has attracted attention. Especially many-body

effects of highly dense carriers such as exchange and correlation energy in the

material renormalize the band gap and also affect other optical properties such

as refractive index and the overall optical susceptibility. The spin distribution

of the carriers ultimately affect the charge distribution of the system. Pauli

principle excludes the same spin electrons or holes to be in the same position at

the same time. As a result, electrostatic energy of the system will be reduced

according to the redistribution of the carriers and the energy difference compared

to noninteracting uniformly distributed carriers is called exchange energy [30].

However, this energy deviates from the exact non-relativistic energy of the system.

The difference between these energy is called correlation energy. This Hartree-

Fock energy is an upper bound limit to the non-relativistic exact energy of the

system, which means that the correlation energy is always negative [31].

Increasing in the carrier population strongly influences the Coulomb interac-

tion between the electron-hole (e-h) pairs. In the plasmas, one emerging property

is the screening of the Coulomb potential, and the (e-h) plasma screening of the

Coulomb interaction is given by,

Vs(q, w) = Vq/ε(q, w),

34
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where Vq is the unscreened Coulomb potential and the ε(q, w) is the longitudinal

dielectric function. The dielectric function is usually approximated by Lindhard

formula [33].

ε(q, w) = 1 − Vq
1

V

∑

i=e,h;k

fi,k − fi,k+q

h̄ω + iδ − εi,k+q
,

where εi,k and fi,k are the e-h energies and distribution functions respectively.

The subscripts i and k refer to the band index and wave vectors respectively. If

the carriers are in the equilibrium state, the distribution function is given by the

Fermi distribution

fi,k =
1

exp [(εi,k − µi)β] + 1
,

where µi is the chemical potential, β = 1/kbT .

5.1 Plasmon-Pole Approximation

In 1989 Haug and Koch simplified the Coulomb self-energy calculation by using

the so called plasmon-pole approximation [32]. By using static plasmon-pole

approximation, Lindhard formulation turns into the following simple form,

1

εq
=

[

1 −
ω2

pl

ω2
q

]

,

where ωq is the dispersion of the effective plasmon mode and for 3D systems. The

governing formulas can be written as

Vq = 4πe2

ε0q2 ,

ω2
pl = 4πe2n

ε0µx
=

[
E0
h̄

]2
,

ω2
q = ω2

pl

[
1 + q2

κ2

]
+ C

4

[
h̄q2

2µx

]2
,

where µx is the reduced e − h mass µx = memh/(me + mh), n is the plasma

density, C is a numerical constant, E0 is the Rydberg constant and κ is the

inverse screening length, which can be obtained by the formula

κ2 =
4πe2

ε0

∑

i

∂n

∂µi
.
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The band gap of the material shrinks with the increasing carrier population due

to the many-body exchange and correlation effects. The corresponding the band

gap shift is given by

∆Eg = [Vs(r = 0) − V (r = 0)] − 1
V

∑
q Vs(q)(fe,q + fh,q),

= ∆EgCH + ∆EgSX ,

where ∆EgSX screened exchange correlation and ∆EgCH is the Coulomb hole

contribution. For 3D, ∆EgCH , Coulomb hole contribution is given by

∆EgCH = − 2E0a0κ
[
1 + C1/2

[
E0

h̄ωpl

]
(a0κ)2

]1/2
.

The screened exchange term is integrated numerically. However, there does not

exist a recipe for the value of numerical constant C for an arbitrary material.

This reduces the applicability of this approximation for in general materials.

5.2 Vashishta-Kalia Model

Vashishta and Kalia (VK model) simplified the exchange and correlation energy

for p-n type materials and showed that the band gap renormalization is indepen-

dent of the band characteristics [34]. However, further studies showed that in

wide-gap semiconductors such as II-VI group elements, VK model deviates from

experimental results [35].

Vashishta and Kalia simply fitted [34] the exchange and the correlation energy

of the semiconductors to the expression

εxc =
a + brs

c + drs + r2
s

,

where
a = −4.8316,

b = −5.0879,

c = 0.0152,

d = 3.0426.
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rs is the dimensionless inter-particle distance, which is defined in terms of carrier

density n, static dielectric constant ε and effective bohr radius a∗
B = h̄2ε/µe2

4π

3
(a∗

Brs)
3 =

1

n
.

What we expect is that VK model would fit to the recent experimental data
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Figure 5.1: The dashed lines are the VK formulation for the band gap renormal-
ization. Solid lines are the formulation of Sernelius approach. The symbol points
are taken from the experimental data in Ref. [36].

for GaN since GaN is an III-V group compound as InN. It was experimentally

shown that for GaN the band gap renormalization is temperature (T ) independent

[36]. This independency makes GaN a good sample to check the validity of the

VK model up to plasma densities for an arbitrary temperature. For GaN we

calculated the density dependent effective masses for both holes and electrons.

As static dielectric constant, 9.5 is used. According to the VK model we get

∆EBGR of GaN as a function of e − h density, n between a range of 1×1018 and

1×1021 as shown in Fig. 5.1. When we compare our calculation with the data

taken from Ref. [36], we observe that VK model deviates from the experimental

data significantly. For further calculations such as the refractive index, VK model

loses its validity at this range of the carrier density for our purposes.
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5.3 Random Phase Approximation

For heavily doped n-type materials, the electron-electron and electron-ion con-

tributions are well estimated by the random phase approximation (RPA). The

contributions are defined by the following formulas

∆Ec−c = −2e2kF

πε0
− e2kTF

2ε0

[

1 − 4

π
arctan

(
kF

kTF

)]

,

∆Ec−i = − 4πe2n

ε0a∗
Bk3

TF

,

where n is the carrier density, ε0 is the static dielectric constant,

kF =
(
3π2n

)1/3
,

is the Fermi wave number,

kTF = 2
√

kF /(πa∗
B),

is the Thomas-Fermi wave number, a∗
B is the effective bohr radius, which uses m∗

e

for the conduction band effective carrier mass. For n-p type of GaN, we modified

the effective carrier mass into reduced effective e-h masses µx. It is first seen in

Fig. 5.1 that the deviation of n-type GaN from n-p type GaN is not significant.

The experimental data in Ref. [36] has good agreement with n-p type GaN and

far away from the VK approximation.

For both n-doped and photoexcited InN we obtain the band gap renormaliza-

tion as shown in Fig. 5.2. Due to lack of photoexcited InN experimental data,

we only compare it with the n-doped InN. Experimental data taken from differ-

ent references is not far away from RPA results. The correlation of both type

InN’s leads us to examine the behaviour of the n-p type InN. VK model again

deviates from the RPA. The data taken from Ref. [39] is for Cubic InN. It is

known that cubic InN has lower band gap compared to wurtzite InN. This can

be the reason for the small deviation from our data. We can conclude that the

difference between n-type material and p-n type material is not significant. Since

the effective masses of the holes are too heavy compared to the conduction band

edge electrons masses, they behave as fixed ions.
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Figure 5.2: Band gap renormalization for different types of InN with different
type of methods.

5.4 Band Tailing Effect

Even though we shall not consider in the remaining part of this thesis, for com-

pleteness , we want to mention the band tailing effect. This phenomenon occurs

especially in heavily p-doped semiconductors. Acceptors and the donors are re-

sponsible for the free carriers in both valence and conduction bands. In this n-p

type of semiconductors, we observe band tailing effect besides the discussed ef-

fects in the preceding sections. We define the band tailing as the perturbative

change of the conduction (Ec) and valance bands (Ev). A new continuum states

is formed above the Ev and the below the Ec and these states have important

consequences for the absorption, radiation processes. And these states tend to

decrease the band gap of the material as correlation and exchange energies have

done since the density of states penetrate into the forbidden gap. The main idea

under this phenomenon is the randomly distribution of the impurities. Gaussian

distribution is the one of the approach. And this tail effect should be considered

during the band gap renormalization calculations [37]. We can define this effect
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with,

G = 2
√
π

4πe2

εRs
(NiR

3
s)

1/2,

where

Rs =
aBe

2
(na3

Be)
−1/6,

is the Thomas-Fermi screening length, aBe is the effective Bohr radius of electron,

Ni = [(1 + K)/(1 − K)] n is the total ionized impurity concentration, K is the

compensation ratio and n is the carrier density. Since the holes have greater

effective mass which results with the smaller Rs, the contribution comes from the

holes can be disregarded. The tail states localized at the minima of the valence

band so the shrinkage of the band gap is than stated as [38]

G∗ = −Ev +
√

2G − kT/2.

As it is not relevant to our work, we do not include these formulations in the rest

of our calculations.



Chapter 6

Refractive Index Change with

Burstein-Moss Effect

Burstein-Moss effect and band gap renormalizations are the two phenomena that

cause a shift in the quasi-Fermi level of the both conduction band and valence

bands. While the Burstein Moss effect increases the Fermi level of the conduction

band, band gap renormalization partially cancels this effect and tries to restore

the original band gap of the semiconductor. Burstein-Moss effect is inversely

proportional with the effective mass of the carriers as mentioned in the relevant

chapter. So it is expected that Burstein-Moss prevails in such semiconductors

that cause a strong blue shift in the absorption edge. Both of these effects do

not only change the absorption edge of the semiconductor but they also change

the optical properties of the medium through the causality principle. Once we

obtain the imaginary part of the dielectric tensor, by using the Kramers-Kronig

relation we can get the real part of the dielectric function.

6.1 Electronic Structures

InN and GaN belong III-IV group semiconductors. Based on Ref. [50] their band

structures are obtained as shown in Fig. 6.1. These calculations are done by

41
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using the pseudopotential method. To give a brief explanation for this method,

we should first look at the structure of the atoms that constitute the semicon-

ductor. The electrons of an atom can be energetically divided into two classes:

the core electrons are strongly bonded to the atom, whereas the valence elec-

trons are loosely bound. Valence electron wave functions are orthogonal to the

those of the core electrons. This necessitates their wave functions to be highly

oscillatory in the core region. So the wave functions of the valence electrons can

be split into a pseudo-wave function (smooth) and an oscillatory part. Since

the valence electrons exposes a repulsive force near the core electrons, one can

approximate the true potential by psuedopotential (weaker effective potential).

By fitting the experimental data to the pseudopotential factors which is known

as the empirical pseudopotential method, one can mimic the true potential. As

the most of the physical properties of the materials depend on the valence and

conduction electrons, this makes a viable route to calculate optical properties of

the semiconductor [51].

6.2 Brillouin Zone Integration

By using the Lehmann-Taut method, we computed the available density of states

for InN shown in the Fig. 6.2. For this calculation we divide the irreducible

Brillouin zone into a mesh of 40 × 40 × 40 along the basal plane and the c-axis.

For different carrier densities, we fill the available states of the both conduction

band and valence band and we identify the quasi-fermi levels of these bands.

Dramatic change in the fermi level of the bands can be seen in the inset graph 6.2.

Essentially all of the shift comes from the electrons. This is because electrons have

much lighter effective masses compare to the holes. Once we have calculate the

fermi levels, next we renormalize the band gap. These calculations are based on

the random phase approximation and we use reduced excitonic effective masses.

Taking both Moss-Burstein effect and band gap renormalization into account,

the corresponding quantity for the absorption edge is the imaginary part of the



CHAPTER 6. REFRACTIVE INDEX CALCULATION 43

Figure 6.1: Band structure of InN (solid) and GaN (dashed) computed by using
empirical pseudopotential method [50].

optical dielectric tensor which is given in Gaussian units as,

Im
{
εab(ω)

}
=

e2

π

∑

v,c

∫

BZ
dk ra

vc(k)rb
vc(k)ra

vc(k)δ (Ec(k) − Ev(k) − h̄ω) ,

where a, b are the Cartesian indices. ra
vc(k) = pa

vc(k)/ (im0ωvc(k)), where pa
vc(k)

is the momentum matrix element, m0 is the free electron mass, ωvc(k) = ωv(k)−
ωc(k), where h̄ωn(k) = En(k) is the energy of the band n, at the wave vector

k. The Dirac delta term in the integration reduces the volume integration to

the surface integral formed by the k-points that allow direct transitions from the

valence band to the unfilled part of the conduction band with an energy difference

corresponding to the chosen photon energy. The constant energy surface integral

over the irreducible Brillouin zone is taken again by using Lehmann-Taut method.
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p=n=1x1017

p=n=2x1020

p=n=2x1019
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Figure 6.2: Density of states for InN. The inset gives us a view in a narrow energy
range for DOS. Band filling effect is given for different carrier densities.

6.3 Results

The result is shown in the following Fig. 6.3. Here, the prominent behaviour

of the absorption of the medium is the peaks around 0.9 eV. As the carrier

density increases these peaks diverge. This is a result of Van Hove singularities as

mentioned in section 3.4. Now let’ s identify this transition on the band structure

of InN. Figure 6.4 shows the available interband and intraband transitions. As

shown in Fig. 6.4b, absorption of a photon with an energy 0.9 eV results in

the excitation of an electron from band Γv
5 to Γv

6. These peaks dominate the

absorption of the medium in this energy range hence the associated refractive

index change.
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n=p

Figure 6.3: Imaginary part of the dielectric function of InN. The inset shows the
behaviour of the function in a wider energy range.

Having determined the imaginary part of the dielectric function, our next aim

is to compute the real part of the dielectric function. The relationship between

the real part of the dielectric function with the imaginary part is established by

the Kramers-Kronig relation. For our objectives, the corresponding expression

for the real part of the dielectric function is given by the following formula,

Re {ε(ω)} = 1 +
2

π
P

∫ ∞

0

ω′Im {ε(ω′)}
ω′2 − ω2

dω′.

Upper integration limit indicates the knowledge of the imaginary part of the

dielectric function up to very high limits. So the integral is taken up to 60 bands

corresponding energy value is above 30 eV. Beyond this energy we perform the

integral analytically with a 1/ω2 fall off. The result of the integral is shown in

Fig. 6.5.

Now we are able to compute the refractive index change as result of Burstein
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a) Inter-band Transitions b) Intra-band Transitions in Valence Band
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Figure 6.4: A basic illustration for the transitions of electrons by absorbing pho-
tons. a shows interband transitions and b shows intraband transitions.

Moss effect and band gap renormalization. By using the relationship between

the refractive index and dielectric function we can reach the modified refractive

index. The relation is given by the following formula [53],

n =

√√√√
√

Re{ε}2 + Im{ε}2 + Re{ε}
2

.

We should note that this also includes the contribution from the free carriers

(plasma) using the Drude expression which is in the form

∆n ≈ −Nxe2λ2

8π2ε0nc2m∗
x

,

with energy dependent excitonic effective masses. The refractive index change of

n-type and n-p type InN for a photon energy 0.8 eV (or a wavelength 1.55 µm)

is given in the Fig. 6.6.
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n=p

Figure 6.5: Real part of the dielectric function of InN. The inset shows the
behaviour of the function in a wider energy range.
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photoexcited InN

n-doped

Figure 6.6: Carrier density dependent change in the refractive index of n-doped
and photoexcited (n = p) InN for a photon energy 0.8 eV .



Chapter 7

Conclusion

Based on the full band structure of the InN, we explored the filling of the con-

duction band by photo-injection. Increasing photon absorption, increases the

transition from valence band to conduction band and the excited electrons leaves

holes behind in the valence band. So we generate both n and p-type carriers in

InN. This is also the basic underlying principle of semiconductor lasers. Under

photonic pumping we consider carrier concentrations up to about 5×1020 cm−3

so that only the lowest conduction band is filled. Pauli principle excludes the

electrons (as well as holes) to be at the same energy state at the same time, so

electron needs more energy to reach to available states.

As the carrier concentration in both valence and conduction bands increases,

due to many body effects the band gap of the semiconductor shrinks and this

effect is calculated by using RPA. Both these effects affect the absorption edge

shift. However, we neglect excitonic effects in the absorption edge. By adding the

plasma contribution, we reach the overall change in the refractive index for the

wavelength of 1.55 µm since it has technological importance. For both n-doped

and photoexcited InN, band gap renormalizition partially cancels Moss-Burstein

effect. On the other hand, negative plasma contribution become important for

the carrier densities above 1×1019 cm−3. For photoexcited InN, intra-band tran-

sitions caused by the Van Hove singularities somewhat mast this the refractive

index change. As the carrier densities further increases, the opened Γv
5 → Γv

6

49
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transitions negate the Burstein Moss effect and band gap renormalization con-

tribution and at a carrier density 1×1020 cm−3 the negative effect totally turns

into positive as a sum. However after this concentration the plasma contribu-

tion dominates the refractive index change and the obvious difference between

n-doped and photoexcited InN can be seen figure 6.6.

We predict about 9 % change in the refractive index for InN for a carrier density

about 1020 cm−3 and 6 % change for a carrier density of 5 ×1019 cm−3. Also

the linear behaviour of the refractive index change dependent on the carrier con-

centration makes the system more predictable for different densities. This wide

tunability of the refractive index under different densities should be considered

for the InN based semiconductor lasers and also for the application to the optical

modulators, warrants further study.
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