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ii



iii

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. A. Aydın Selçuk
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ABSTRACT

ASYMPTOTICALLY OPTIMAL ASSIGNMENTS IN
ORDINAL EVALUATIONS OF PROPOSALS

Abdullah Atmaca

M.S. in Computer Engineering

Supervisors: Prof. Dr. Cevdet Aykanat and Prof. Dr. A. Yavuz Oruç

August, 2009

In ordinal evaluations of proposals in peer review systems, a set of proposals

is assigned to a fixed set of referees so as to maximize the number of pairwise

comparisons of proposals under certain referee capacity and proposal subject

constraints. The following two related problems are considered: (1) Assuming

that each referee has a capacity to review k out of n proposals, 2 ≤ k ≤ n,

determine the minimum number of referees needed to ensure that each pair of

proposals is reviewed by at least one referee, (2) Find an assignment that meets

the lower bound determined in (1). It is easy to see that one referee is both

necessary and sufficient when k = n, and n(n-1)/2 referees are both necessary

and sufficient when k = 2. It is shown that 6 referees are both necessary and

sufficient when k = n/2. Furthermore it is shown that 11 referees are necessary

and 12 are sufficient when k = n/3, and 18 referees are necessary and 20 referees

are sufficient when k = n/4. A more general lower bound of n(n-1)/k(k -1)

referees is also given for any k, 2 ≤ k ≤ n, and an assignment asymptotically

matching this lower bound within a factor of 2 is presented. These results are not

only theoretically interesting but they also provide practical methods for efficient

assignments of proposals to referees.

Keywords: Asymptotically optimal assignment, panel assignment problem, peer

review, proposal evaluation.
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ÖZET

ORDİNAL SIRALAMA YÖNTEMİYLE YAPILAN
PROJE ÖNERİSİ DEĞERLENDİRMELERİNDE

ASİMTOTİK OLARAK OPTİMUM ATAMA
YÖNTEMLERİ

Abdullah Atmaca

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Prof. Dr. Cevdet Aykanat ve Prof. Dr. A. Yavuz Oruç

Ağustos, 2009

Hakem değerlendirmelerinin ordinal sıralama yöntemiyle yapılanlarında, belirli

bir grup öneri, maksimum sayıda ikili kıyaslama elde etmek için sabit sayıda

hakeme, belirli hakem kapasitesi ve öneri konu kısıtları altında atanır. Aşağıda

belirtilen iki ilgili problem üzerinde çalışıldı: (1) Her bir hakemin n tane öneri

içinden en fazla k tane okuyabilmesi varsayımı altında, öyle ki 2 ≤ k ≤ n, tüm

öneri çiftlerinin en az bir hakem tarafından okunmasını garanti edebilmek için

en az sayıda gereken hakem sayısının hesaplanması, (2) (1)’de hesaplanan en az

sayıda hakem sayısına denk gelen atama yapısının bulunması. k = n durumunda

1 hakemin hem gerekli hem de yeterli olduğu ve k = 2 durumunda n(n-1)/2

hakemin hem gerekli hem de yeterli olduğu kolaylıkla görülmektedir. k = n/2

durumunda 6 tane hakemin hem gerekli hem de yeterli olduğu gösterilmiştir.

Ayrıca k = n/3 durumunda 11 hakemin gerekli ve 12 hakemin yeterli olduğu ve k

= n/4 durumunda 18 hakemin gerekli ve 20 hakemin yeterli olduğu gösterilmiştir.

Herhangi bir k, 2 ≤ k ≤ n değeri için daha genel bir alt sınır hakem sayısı n(n-

1)/k(k -1) olarak sunulmuştur ve bu alt sınıra en fazla iki katına kadar asimptotik

olarak denk gelen bir atama yapısı sunulmuştur. Bu sonuçlar sadece teorik olarak

ilgi çekici olmakla kalmayıp, önerilerin hakemlere etkin bir şekilde atanmaları için

pratik yöntemler de sağlamaktadır.

Anahtar sözcükler : Asimtotik optimum atama yöntemleri, panel oluşturma prob-

lemleri, hakem değerlendirmeleri, öneri değerlendirmesi.
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Chapter 1

Introduction

A sizeable portion of current academic research is funded through various agen-

cies with specific interests in different areas of research. Each year funding orga-

nizations such as the Scientific and Technological Research Council of Turkey

(TÜBİTAK), Turkish State Planning Organization (DPT), European Science

Foundation (ESF), National Science Foundation (NSF) spend billions of dollars

to support research projects. Table 1.1 shows the funding figures in billions of US

Dollars for research projects in various countries, including the funding amounts

expended by European Union (EU) and Organisation for Economic Co-operation

and Development (OECD). Table 1.2 lists the number of projects submitted, num-

ber of projects supported and academic R&D expenditures for operative projects

in a given year for TÜBİTAK, one of the major funding agencies for academic

and industrial research. As we can see from Table 1.2, TÜBİTAK has increased

its funding for research more than 20 times from 2000 to 2007. During the same

period, the number of proposals has increased by a factor of 5.82 and the number

of funded projects has increased only by a factor of 3.81. Since the ratio of the

supported projects to submitted projects has been steadily declining, identifying

high quality projects to support becomes very important for funding agencies in

order to have the highest return for the funds invested.

1
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2000 2001 2002 2003 2004 2005 2006 2007 2008
OECD total 607.8 643.2 658.4 682.4 714.7 769.7 829.4 * *
United States 268.5 278 277.1 290.1 301.2 323.9 348.8 368.2 *
EU27 total 183.9 196.3 205.9 210.4 217.8 229.8 247.9 * *
Japan 98.6 103.9 108.3 112.3 117.6 128.5 138.7 * *
China * * * * * 70.9 * 105.1 *
Germany 52.1 54.4 56.6 59.4 61.4 64.1 68.6 71.5 *
France * 35.8 38.1 36.9 * 39.2 41.2 43.2 *
United Kingdom 28.3 29.6 31.1 31.6 32.4 34.6 36.8 * *
Canada 16.6 19 19.1 20 21.5 22.7 23.3 23.9 *
Russian Federation * * * * * 18.1 * 23.3 *
Italy 15.2 16.8 17.3 17.3 17.5 17.9 19.7 * *
Spain 7.8 8.3 9.8 10.9 11.7 13.3 15.6 * *
Australia 7.9 * 9.8 * 11.6 * 14.9 * *
Sweden * 10.3 * 10.3 10.4 * 11.7 12.1 *
Netherlands 8.5 8.8 8.8 9 9.6 9.9 10.4 11.1 *
Turkey 2.8 3 3 2.8 3.5 4.6 5.1 * *
Denmark * 3.7 4.1 4.2 4.3 4.4 4.6 4.9 *
Norway * 2.6 2.7 2.9 3 3.3 3.6 * *
Billion US dollars, current prices and PPPs(Purchasing Power Parity)
Source: http://stats.oecd.org (* Data is not available.)

Table 1.1: Gross domestic expenditure on R&D.

2000 2001 2002 2003 2004 2005 2006 2007
Submitted Projects 896 1069 1117 831 1688 4007 3933 4731
Supported Projects 328 407 517 329 472 1453 1300 1250
Expenditure for
Operative Projects
(TL in millions)

7.225 7.842 9.342 5.836 9.518 71.22 148.014 162.032

Source: http://www.tubitak.gov.tr/home.do?ot=1&sid=357

Table 1.2: Academic Projects and Expenditure for Operative Projects.

1.1 Identification of High Quality Proposals

Challenges confronted by funding agencies in identifying high quality proposals

are well-documented in the literature, see, for example, [4], [1], [14], [19], [11], [6].

In order to rank proposals, the funding process typically starts with a call for

proposals (CFP) to the relevant community. Proposals are then submitted ac-

cording to guidelines stated in the CFP. These proposals are sent out for a peer

review that serves as the core of the entire process [7].

Broadly speaking, the two most challenging problems in peer review are: the
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assignment of proposals to referees and ranking and selection of proposals. A

common practice for the first problem and used by program directors who work

in funding agencies is to first partition a set of proposals into a number of groups

of proposals according to their subjects areas and then find a sufficient num-

ber of experts to assemble a panel for each group of proposals. For the second

problem, the ranking and selection of proposals typically rely on cardinal (quan-

titative) or ordinal (preference)-based comparisons [17], [8], [10]. Recently, Cook

et al. [7] demonstrated that cardinal comparisons such as using average scores of

proposals can be unreliable especially when referees’ scores are not normalized.

They suggested that quantifying the intrinsic values of proposals may be diffi-

cult, and therefore it is more practical to rely on ordinal rankings. Also, some

researchers, especially those working in social sciences and decision-analysis ar-

eas, have recently started to ask questions on the reliability of the peer review

systems that rely on cardinal ranking. Several studies raised questions about

the validity and possible existence of various biases in such peer review processes

(e.g., Cicchetti [6], Hodgson [12], Campanario [21], Jayasinghe [22]). They found

low degrees of agreement among referees and various kinds of biases. Other stud-

ies (e.g., [20]) focused on the criteria that guide the referees’ work and reported

on a common language—a certain set of criteria (e.g., intellectual merit, broader

impact, feasibility, etc) that referees tend to use to evaluate research quality.

However, as emphasized by Langfeldt [15], these criteria are often interpreted

differently by various referees. Techniques that generate ordinal rankings on the

basis of pairwise evaluations may provide some solutions to these difficulties be-

cause they are more straightforward and require less effort from the reviewers.

As noted in Cook [7], comparing proposals is easier than evaluating their intrin-

sic merits. Cook also pointed out that cardinal rankings may lead to incorrect

conclusions because of the uncalibrated scoring practices of referees. For example

consider three reviewers A, B, C and three proposals X, Y, Z, where the scores

of the referees are indicated in Table 1.3. Taking the averages of the reviewers’

scores clearly suggests that the proposals must be ranked as Y > Z > X, where

> means “is better than”. On the other hand, if we inspect the scores a little

more carefully, the ordinal ranking gives a consistent ranking. That is, X > Y

(By referee A) and Y > Z (By referee B) and X > Z (By referee C ) imply that
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X > Y > Z. Obviously the calibration of reviewers’ scores is needed and ordinal

ranking ensures this by the transitivity of ranking assuming that all reviewers are

equally reliable regardless of their scoring habits.

Referee/Proposal X Y Z Characterization
A 6 4 Average
B 10 9 Generous
C 4 3 Frugal
Average 5 7 6

Table 1.3: Cardinal evaluation of a set of three proposals {X,Y,Z} by a set of
three referees {A,B,C}.

Ordinal and cardinal strengths of preferences have also been advocated in [16]

as natural extensions of ordinal comparison models. Also Cook [7] introduced

a set covering integer programming approach to obtain as many comparisons as

possible between the proposals reviewed by a fixed set of referees using ordinal

ranking strategy. In [9] a branch-and-bound algorithm was introduced to mini-

mize the number of disagreements among referees based on pairwise comparisons

of proposals. More recently, Chen [5] presented a maximum consensus algorithm

based on complete rankings of a set of proposals by a set of referees, and Iyer [13],

Ahn [3], Sarabando [18] presented dominance-based ordinal ranking and selection

algorithms.

The general consensus among these studies is that ordinal ranking is more

reliable than cardinal ranking and its variations. Therefore, we will use ordinal

ranking in the remainder of the thesis.

1.2 Optimal Assignments

This thesis is concerned with the assignment aspect of ordinal evaluations of

proposals. In an ordinal ranking, limited coupling of proposals to referees divides

proposals into disjoint clusters and makes it impossible to compare proposals

between clusters. For example, suppose that 6 proposals are to be assigned to

3 referees under the following incidence (matching) relation with the constraint
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that no referee can be assigned more than 3 proposals:

Referee 1 can review Proposals 1, 2, 3, 4

Referee 2 can review Proposals 2, 3, 4, 5

Referee 3 can review Proposals 1, 4, 5, 6

It is obvious that it is impossible to cover all 6 × 5/2 = 15 possible pairs of

proposals under the capacity constraint of 3 proposals per referee. It is still

desirable to determine which three proposals should be assigned to each referee

so that the number of pairs of proposals covered between the three referees is

maximized. In this example, assigning proposals 1,2,3 to referee 1, proposals

3,4,5 to referee 2, and proposals 1,5,6 to referee 3 gives a maximum of 9 pairs of

proposals.

As the example illustrates, the underlying assumption of the approach de-

scribed in [7] is that both proposals and referees are fixed a priori together with

an incidence relation to specify which proposals can potentially be assigned to

which referees. In contrast, we consider assignment problems in this work with

only two parameters of interest: (1) the number of proposals, n, and (2) the ca-

pacity of each referee, k, 2 ≤ k ≤ n, i.e., the maximum number of proposals that

can be reviewed by each referee. With these two parameters, we consider two

related problems: (1) determine the minimum number of referees to ensure that

each pair of proposals is reviewed by at least one referee, (2) find an assignment

of a set of n proposals to the minimum number of referees determined so that

all pairs of proposals are covered. Our interest in these problems is motivated

by the fact that referees are generally selected to meet the evaluation needs of a

set of proposals rather than randomly assembled together. Thus, unlike in the

assignment problems considered in [7] and [9], minimizing the number of referees

is the main objective in the assignments of proposals to referees in our work. We

consider the assignments of proposals to referees both with and without referee

specialties. In the first case, referees may be viewed interchangeable in terms of

their expertise. This assumption generally holds for those proposal evaluation

processes in which a small set of proposals with identical topics is considered, or

for those in which a large set of proposals is pre-screened to identify a small set

of proposals for a second stage of a more intense peer review. In the second case,
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referees with specialties are allowed. This applies to peer review panels in which

experts with a multitude of evaluation (research) specialties compare proposals

with a multitude of subjects.

1.3 Contributions and Outline of the Thesis

This thesis makes the following contributions:

(1) It derives a generic lower bound of n(n − 1)/k(k − 1) on the number of

referees to cover all pairs of n proposals for any referee capacity, k.

(2) Lower bounds on the number of referees needed to cover all pairs of pro-

posals for referee capasities of n/2, n/3 and n/4.

(3) It presents an optimal assignment of proposals to referees where the referee

capacity is n/2 and asymptotically optimal assignment for referee capacities of

n/3 and n/4.

(4) It extends the assignments in (3) to arbitrary capacity case with two

asymptotically optimal designs. More specifically, the referee complexity of one

of those designs tends to n(2n− k)/k2. The second design makes use of balanced

incomplete block designs and uses n
k

(
n
k

+ 1
)

referees with a capacity of k to cover

all pairs of n proposals.

The rest of the thesis is organized as follows. In Chapter 2, we present the

mathematical facts that will be used in the thesis. In Chapter 3, we derive our

lower bounds. In Chapter 4, assignments that match these lower bounds are

presented. These results are extended to distinguishable referees in Chapter 5

and we conclude the thesis in Chapter 6.



Chapter 2

Combinatorial Designs

In this chapter, we present a set of mathematical facts that are related to block

designs and Latin squares, and pertinent to establishing the main results of the

thesis in Chapters 3 and 4.

2.1 Block Designs

A block design is a pair (P ,B) where P = {p1, p2, ..., pv} is a set of v elements

called points and B = {B1, B2, ..., Bb} is a collection of b subsets of P , called

blocks. We will denote the blocks in block designs using a parenthesis notation.

For example, if P = {1, 2, 3, 4, 5, 6}, then {(1,3,5), (2,4,5,6)} is a block design

with the two blocks (1,3,5) and (2,4,5,6).

A block design is called balanced if all blocks are of equal size and the pairs of

points occur in all of the blocks an equal number of times. It is called incomplete

if the number of elements in every block is less than v. Let λ, k, and r be positive

integers, where v > k ≥ 2. A block design is called a (v, b, r, k, λ)-balanced and

incomplete block design (BIBD) if (1) all blocks have k points, (2) each point

appears in exactly r blocks and (3) each pair of points appears in exactly λ

blocks. It is easy to see that vr = bk since each of the v points in P appears r

times in all the blocks and the union of the blocks as a multiset contains exactly

bk elements. It can further be shown that λ(v − 1) = r(k − 1). Solving for b and

7
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r in terms of λ and k, we have

b =
v(v − 1)λ

k(k − 1)

r =
(v − 1)λ

(k − 1)

(2.1)

and thus a (v, b, r, k, λ)-BIBD design is often referred to as a (v, k, λ)-BIBD design

as will be done in this thesis.

Proposition 1 Let P = {1,2,3,4,5,6,7,8,9}. The following is a (9,3,1)-BIBD

design: {(1, 2, 3), (4, 5, 6), (7, 8, 9), (1, 4, 7), (1, 5, 8), (1, 6, 9), (2, 4, 9), (2,

5, 7), (2, 6, 8), (3, 4, 8), (3, 5, 9), (3, 6, 7)}.

Proof The proof immediately follows from a direct inspection of the blocks.

Remark 1 By Equation 2.1, b = (9*8)/(3*2) = 12 and r = 8/2 = 4 and hence

we have 12 blocks of 4 points each as the design gives.

Proposition 2 Let P = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,16}. The following is

a (16,4,1)-design with 20 blocks each having 4 points :

{(1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16),

(1, 5, 9, 13), (1, 6, 11, 16), (1, 7, 12, 14), (1, 8, 10, 15),

(2, 6, 10, 14), (2, 5, 12, 15), (2, 8, 11, 13), (2, 7, 9, 16),

(3, 7, 11, 15), (3, 5, 10, 16), (1, 6, 12, 13), (3, 8, 9, 14),

(4, 8, 12, 16), (4, 5, 11, 14), (4, 7, 10, 13), (4, 6, 9, 15)}

Proof Again, the proof immediately follows from a direct inspection of the

blocks.
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2.2 Orthogonal Latin Squares

The following facts about orthogonal Latin squares will also be useful in the

sequel [23].

A Latin square of order n is an n × n matrix in which each row and each

column is a permutation of a set of n symbols. Two Latin squares L1 and L2 are

said to be orthogonal if the matrix obtained by superposing L1 and L2 entry by

entry contains each of the possible n2 ordered pairs exactly once. For example, the

Latin squares in Figure 2.1 are orthogonal. A set of Latin squares {L1, L2, ..., Lt}
are said to be mutually orthogonal if each pair of Latin squares is orthogonal,

i.e., Li and Lj are orthogonal whenever i 6= j. We call such a set of Latin squares

mutually orthogonal Latin squares or MOLS. It is not too difficult to show that

the maximum number of Latin squares of order n that can be mutually orthogonal

to one another cannot exceed n-1. Such a set of mutually orthogonal Latin squares

is said to be a complete MOLS.

 1 2 3
2 3 1
3 1 2

×
 4 5 6

6 4 5
5 6 4

 =

 (1, 4) (2, 5) (3, 6)
(2, 6) (3, 4) (1, 5)
(3, 5) (1, 6) (2, 4)


Figure 2.1: A 3×3 Latin square example with symbols 1, 2, 3 and 4, 5, 6 with
their superposed matrix.

There are many of methods for constructing a complete set of n-1 MOLS of

order n. The method described in the following theorem is taken from [23].

Theorem 1 If n is a prime power, a complete set of n− 1 MOLS can be found

by taking the nonzero elements a ∈ Fn (the finite field of order n) and setting the

entry in the xth row and yth column in the ath Latin square to fa(x, y) = ax + y

(mod n).

Proof The proof basically follows from the fact that every nonzero element a in

a finite field is invertible.
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Example 1 For n = 3, we compute the Latin squares as follows1:

f1(1, 1) = 2 f1(1, 2) = 3 f1(1, 3) = 1

f1(2, 1) = 3 f1(2, 2) = 1 f1(2, 3) = 2 ⇒
f1(3, 1) = 1 f1(3, 2) = 2 f1(3, 3) = 3

L1 =


2 3 1

3 1 2

1 2 3


f2(1, 1) = 3 f2(1, 2) = 1 f2(1, 3) = 2

f2(2, 1) = 2 f2(2, 2) = 3 f2(2, 3) = 1 ⇒
f2(3, 1) = 1 f2(3, 2) = 2 f2(3, 3) = 3

L2 =


3 1 2

2 3 1

1 2 3



The following results will be useful in the sequel.

Corollary 1 The intersection of any two columns in any given row or the inter-

section of any two rows in any given column in the n×n matrix which is obtained

by superposing a complete set of MOLS is empty.

Proof The entries in any column or any row of an n×n Latin square is a permu-

tation of the n symbols it uses. Therefore the intersections of the juxtapositions

of the symbols across the rows or columns of the Latin squares in the MOLS must

be empty.

Corollary 2 For any prime power n, there exists a (n2, n, 1)-BIBD.

Proof By Theorem 1, we can construct a complete set of n−1 MOLS using n−1

Latin squares of order n, Li, 1 ≤ i ≤ n − 1. Let Ui = {(i − 1)n + 1, (i − 1)n +

2, ..., (i − 1)n + n} denote the set of symbols used in Li, 1 ≤ i ≤ n − 1, and let

M = L1×L2× ...×Ln−1 denote the n×n matrix obtained by the superposition of

n−1 Latin squares. Let Un = {(n−1)n+1, (n−1)n+2, ..., (n−1)n+n}. Clearly

Un ∩ Ui = ∅ for i = 1, 2, ..., n − 1 and suppose that the matrix M is modified

by concatenating (n − 1)n + i to all its columns in row i, 1 ≤ i ≤ n. Denote

this new matrix by Ma. By Corollary 1, the intersection of any two rows in any

given column must be empty. Furthermore, the intersection of any two columns

1Note that 0 ≡ 3 (mod 3)
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in any given row cannot have more than one symbol in common. It follows that

the possible pairs of symbols which can be formed from the entries in each row

and each column of matrix Ma must all be different.

Let the entries of matrix Ma be the blocks of a block design. By the con-

struction of M , each symbol in the U1 ∪ U2 ∪ ... ∪ Un−1 must appear exactly n

times among these blocks. Since each symbol in Un is inserted into the columns

of a distinct row, the symbols in Un must also appear exactly n times among the

blocks.

Now to complete this to a (n2, n, 1)-BIBD, it suffices to add Ui, 1 ≤ i ≤ n

as blocks to this block design and note that (a) that this block design consists

of n2 + n blocks each of which comprising n symbols, (b) each symbol appears

exactly in n + 1 blocks, (c) each pair of symbols appears in exactly one block.

Remark 2 We note that the equation n2
(

n
2

)
+ n

(
n
2

)
=
(

n2

2

)
represents the fact

that the set of all pairs of n2 symbols is obtained by the union of set of all pairs

all symbols in all the blocks of Ma plus the set of all pairs of symbols generated

by Ui, 1 ≤ i ≤ n.

We further note that

b =
v(v − 1)λ

k(k − 1)
=
n2(n2 − 1)λ

n(n− 1)
= n(n+ 1)

r =
(v − 1)λ

(k − 1)
=

(n2 − 1)λ

(n− 1)
= n+ 1

(2.2)

Example 2 Let n = 5. The following four Latin squares form a complete set of

MOLS of order 5.

L1 =


1 2 3 4 5

2 3 5 1 4

3 5 4 2 1

4 1 2 5 3

5 4 1 3 2

 L2 =


6 7 8 9 10

8 10 9 7 6

9 6 7 10 8

10 9 6 8 7

7 8 10 6 9
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L3 =


11 12 13 14 15

14 11 12 15 13

15 14 11 13 12

12 13 15 11 14

13 15 14 12 11

 L4 =


16 17 18 19 20

20 19 16 18 17

17 18 20 16 19

18 20 19 17 16

19 16 17 20 18


The matrices M and Ma are constructed as follows:

M =


(1, 6, 11, 16) (2, 7, 12, 17) (3, 8, 13, 18) (4, 9, 14, 19) (5, 10, 15, 20)

(2, 8, 14, 20) (3, 10, 11, 19) (5, 9, 12, 16) (1, 7, 15, 18) (4, 6, 13, 17)

(3, 9, 15, 17) (5, 6, 14, 18) (4, 7, 11, 20) (2, 10, 13, 16) (1, 8, 12, 19)

(4, 10, 12, 18) (1, 9, 13, 20) (2, 6, 15, 19) (5, 8, 11, 17) (3, 7, 14, 16)

(5, 7, 13, 19) (4, 8, 15, 16) (1, 10, 14, 17) (3, 6, 12, 20) (2, 9, 11, 18)



Ma =


(1, 6, 11, 16, 21) (2, 7, 12, 17, 21) (3, 8, 13, 18, 21) (4, 9, 14, 19, 21) (5, 10, 15, 20, 21)

(2, 8, 14, 20, 22) (3, 10, 11, 19, 22) (5, 9, 12, 16, 22) (1, 7, 15, 18, 22) (4, 6, 13, 17, 22)

(3, 9, 15, 17, 23) (5, 6, 14, 18, 23) (4, 7, 11, 20, 23) (2, 10, 13, 16, 23) (1, 8, 12, 19, 23)

(4, 10, 12, 18, 24) (1, 9, 13, 20, 24) (2, 6, 15, 19, 24) (5, 8, 11, 17, 24) (3, 7, 14, 16, 24)

(5, 7, 13, 19, 25) (4, 8, 15, 16, 25) (1, 10, 14, 17, 25) (3, 6, 12, 20, 25) (2, 9, 11, 18, 25)


We obtain the blocks of the (25,5,1)-BIBD by combining the entries of Ma

with the set U1 = {1, 2, 3, 4, 5}, U2 = {6, 7, 8, 9, 10}, U3 = {11, 12, 13, 14, 15}, U4 =

{16, 17, 18, 19, 20}, U5 = {21, 22, 23, 24, 25} as

{(1, 2, 3, 4, 5) (6, 7, 8, 9, 10) (11, 12, 13, 14, 15) (16, 17, 18, 19, 20) (21, 22, 23, 24, 25)

(1, 6, 11, 16, 21) (2, 7, 12, 17, 21) (3, 8, 13, 18, 21) (4, 9, 14, 19, 21) (5, 10, 15, 20, 21)

(2, 8, 14, 20, 22) (3, 10, 11, 19, 22) (5, 9, 12, 16, 22) (1, 7, 15, 18, 22) (4, 6, 13, 17, 22)

(3, 9, 15, 17, 23) (5, 6, 14, 18, 23) (4, 7, 11, 20, 23) (2, 10, 13, 16, 23) (1, 8, 12, 19, 23)

(4, 10, 12, 18, 24) (1, 9, 13, 20, 24) (2, 6, 15, 19, 24) (5, 8, 11, 17, 24) (3, 7, 14, 16, 24)

(5, 7, 13, 19, 25) (4, 8, 15, 16, 25) (1, 10, 14, 17, 25) (3, 6, 12, 20, 25) (2, 9, 11, 18, 25)}

As mentioned in Remark 2, this BIBD construction satisfies the equation:

25

(
5

2

)
+ 5

(
5

2

)
= 300 =

(
25

2

)



Chapter 3

Lower Bounds

Let P = {p1, p2,..., pn} be a set of proposals, n ≥ 2, and let R = {r1, r2,...,
rm} be a set of referees. The referees in R are said to cover all n(n-1)/2 pairs

of n proposals if each pair of proposals is reviewed by at least one referee in R.

Suppose that each referee is willing to review k proposals, where k, 2 ≤ k ≤ n.

Then, for all n(n-1)/2 pairs of proposals to be covered by the m referees, the

following inequality must clearly hold:

m

(
k

2

)
≥
(
n

2

)
, k ≥ 2

Simplifying this inequality gives the following lower bound on the number of

referees:

m =

⌈
n(n− 1)

k(k − 1)

⌉
, k ≥ 2 (3.1)

In particular, when k = 2, that is, when each referee reviews 2 proposals, a

minimum of n(n-1)/2 referees is required, and when k = n, one referee is required.

Other constraints can be derived from this inequality.

Referee Capacity Minimum Number of Referees(m)
Equation 3.1 n = 2 n = 4 n = 8 n = 16 n = 32 n →∞

k = n, n ≥ 2 m ≥ 1 k =2, m ≥ 1 k = 4, m ≥ 1 k = 8, m ≥ 1 k= 16, m ≥ 1 k =32, m ≥ 1 m → 1

k = n/2, n ≥ 4 m ≥
⌈

4(n−1)
(n−2)

⌉
N/A k = 2, m ≥ 6 k = 4, m ≥ 5 k = 8, m ≥ 5 k =16, m ≥ 5 m → 5

k = n/3, n ≥ 6 m ≥
⌈

9(n−1)
(n−3)

⌉
N/A N/A k = 3, m ≥ 15 k = 6, m ≥ 11 k =12, m ≥ 10 m → 10

k = n/4, n ≥ 8 m ≥
⌈

16(n−1)
(n−4)

⌉
N/A N/A k = 2, m ≥ 28 k = 4, m ≥ 20 k = 8, m ≥ 18 m → 17

Table 3.1: Minimum numbers of referees with specified capacities for n proposals.

Table 3.1 lists the capacities of referees versus minimum numbers of referees

for various values of n. It is obvious that when k = n, and n ≥ 2, one referee

13
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will also suffice, and hence m = 1 is always achievable. For even n and k = n/2,

the table shows that m tends to 5 as n →∞. However, for n = 4, Equation 3.1

implies that m = 6. We strengthen the lower bound to 6 for other values of n as

follows.

Theorem 2 For all even n = 2k ≥ 4, if each referee is assigned k proposals, at

least 6 referees are needed to cover all pairs of n proposals.

Proof For n = 4, k = 2, each referee is assigned two proposals, and can therefore

cover only one pair. Since there are 6 pairs of proposals in all, 6 referees are clearly

necessary. For any even n ≥ 6, without loss of generality, suppose that the first 2

referees are assigned k proposals as shown below with u proposals shared between

them, where u is an integer between 0 and k, and the shaded areas represent the

sets of proposals assigned to the two referees:

Figure 3.1: The assignment of proposals to the first two referees.

Then we have the following sets of pairs of proposals that remain to be covered:

A× C = {(a, c) : a ∈ A, c ∈ C}
A×D = {(a, d) : a ∈ A, d ∈ D}
B ×D = {(b, d) : b ∈ B, d ∈ D}
C ×D = {(c, d) : c ∈ C, d ∈ D}
D ×D = {(d1, d2) : d1, d2 ∈ D, d1 < d2}

(3.2)

If u = 0 then B and D vanish, and |A| = |C| = k so that the number of additional

pairs of proposals that remain to be covered is given by k2. Furthermore, in order

to cover these k2 pairs of proposals, each additional referee must be assigned at
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least one proposal from each of A and C. Therefore, the number of additional

referees cannot be less than ⌈
k2

w(k − w)

⌉

where w denotes the number of proposals in A and k−w denotes the number of

proposals in C. Since the denominator is maximized when w = k/2, the number

of additional referees cannot be less than 4 implying that 6 referees are necessary

in this case.

On the other hand, if u = k then A and C vanish, and |B| = |D| = k so that

the number of additional pairs of proposals to be covered is given by k2+k(k-1)/2.

But since each new referee can cover at most k(k-1)/2 proposals, we need at least⌈
k2 + k(k − 1)/2

k(k − 1)/2

⌉
=

⌈
3k2 − k
k2 − k

⌉
≥ 4, for k > 1

more referees1. Therefore, at least 6 referees are needed to cover all pairs of n

proposals in this case as well.

To complete the proof, suppose that 1 ≤ u < k. In this case, we must cover

the pairs of proposals in all the sets stated above. In particular, we must cover

the pairs of proposals in the sets A× C, A×D, B ×D, and C ×D. This leads

to the assignment pattern for the subsequent referees as follows:

Figure 3.2: The assignment of proposals to the third referee.

1 3k2−k
k2−k > 3 for all k > 1 . Therefore,

⌈
3k2−k
k2−k

⌉
≥ 4, for k > 1.
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Therefore, the number of additional referees cannot be less than⌈
(k − u)(k − u+ u) + (u+ k − u)u

wy + wz + xz + yz

⌉
=

⌈
k2

wy + wz + xz + yz

⌉

where w, x, y, z are the numbers of proposals assigned to a new referee from

the subsets, A, B, C, and D, respectively. It can be shown that, under the

constraint w+ x+ y+ z = k, the denominator of this expression has a maximum

at w = y = z = k/3, and x = 0 and is given by k2/3 (See Lemma 1). However,

unless u = 0, the value of x cannot be zero for all additional referees as this will

leave out one or more pairs of proposals one of which belongs to B. Therefore,

the maximum number of pairs generated by at least one of the additional referees

must be less than k2/3, and hence the number of additional referees cannot be less

than 4. Adding these to the first two referees shows that 6 referees are necessary

in this case as well and this completes the proof.

Corollary 3 For all odd n = 2k+1 ≥ 5, suppose that each of the half of the

referees is assigned k+1 proposals, and each of the other half of the referees is

assigned k proposals. Then at least 6 referees are needed to cover all pairs of n

proposals.

Proof Let n = 2k+1, where k ≥ 2. Consider any 2k of the n proposals, and

let p be the proposal that is left out. By Theorem 2, at least 6 referees must be

used, with each assigned to k proposals, to cover all 2k(2k-1)/2 = k(2k-1) pairs

of these 2k proposals. This leaves

(2k + 1)2k/2− k(2k − 1) = k{(2k + 1)− (2k − 1)} = 2k

pairs of proposals still to be covered. Suppose that one of the referees is removed

and proposal p is assigned to 3 of the remaining 5 referees each, in addition to their

k proposals which they had been originally assigned. Now, with one of the referees

removed, at least one pair of proposals among the first 2k proposals, previously

covered by the 6 referees must clearly be left uncovered. Otherwise, 5 referees

would have been sufficient to cover the original 2k proposals. Therefore at least

2k+1 pairs of proposals must be covered by the 3 referees whose assignments have
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been increased by one proposal. However, with one new proposal, i.e., proposal

p, these three referees can collectively increase the number of pairs of proposals

by at most 2k since the three referees were assigned their k proposals from the

original set of 2k proposals prior to the assignment of proposal p. But, this is less

than the 2k+1 pairs of proposals still to be covered and the statement follows.

These results can be extended to assignments where each referee can review

k = n/3 proposals. For n = 6 (k = 2) and n = 9 (k = 3), it is easily verified

that 15 and 12 referees are required. For all n = 3k ≥ 12, where k is a positive

even integer, we can improve the lower bound of 10 referees in Table 3.1 to 11 as

follows:

Theorem 3 For all n = 3k ≥ 12, and even k, if each referee is assigned k pro-

posals then at least 11 referees are needed to cover all pairs of n proposals2.

Proof The proof proceeds as in the proof of Theorem 2 with the following mod-

ified diagram. The only change in the set up is that the cardinality of D is now

k + u and k = n/3.

Figure 3.3: The assignments of proposals to the referees for capacity, k = n/3.

As before, if u = 0 then B vanishes, A, C, and D contain k proposals each

without any overlap with one another. Hence, the number of pairs of proposals

2The statement can be extended to odd n using a similar argument as in Corollary 3.
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that remains to be covered is given by 3k2 + k(k-1)/2. Just considering the first

term, the number of additional referees cannot be less than⌈
3k2

wy + wz + yz

⌉
,

where 0 < w, y, z < k are the numbers of proposals in sets A, C, and D, and w + y

+ z = k. It can be shown that wy+wz+yz is maximized when w = y = z = k/3.

Therefore, the minimum value of the expression above is given by
3k2

k2

9
+
k2

9
+
k2

9

 = 9

proving that the total number of referees cannot be less than 11 in this case.

On the other hand, if u = k then A and C vanish, and |B| = k, |D| = 2k so

that the number of proposals that remains to be covered is given by 2k2+2k(2k-

1)/2 = 4k2-k. But since each new referee can cover at most k(k-1)/2 proposals,

we need at least ⌈
4k2 − k

k(k − 1)/2

⌉
=

⌈
8k2 − 2k

k2 − k

⌉
≥ 9

more referees3 . Adding these to the first two referees, at least 11 referees are

needed to cover all pairs of n proposals, in this case as well.

Finally, suppose that 1 ≤ u < k. As in Theorem 2, we must cover the pairs

of proposals in all the sets described in Equation 3.2. In particular, the number

of pairs in the first four sets must be covered, where A, B, C, and D are defined

as in Figure 3.3. The number of these pairs of proposals is given by

(k − u)(k − u+ k + u) + (u+ k − u)(k + u) = 3k2 − ku

With the distribution of k proposals of each additional referee into the sets A,

B, C, and D as shown in Figure 3.3, the number of pairs of proposals covered by

each additional referee is given by wy + wz + xz + yz. Furthermore, as shown

in Lemma 1, wy + wz + xz + yz is maximized when x = 0, and w = y for any

3 8k2−2k
k2−k > 8 for all k > 1. Therefore,

⌈
8k2−k
k2−k

⌉
≥ 9, for k > 1.
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given z. Therefore, the maximum number of pairs of proposals covered by each

such referee is given by

wy + wz + xz + yz = w2 + wz + wz = w2 + 2wz

where w + y + z = k, or z = k - w - y = k - 2w. Replacing z by k -2w in the above

equation, the maximum number of pairs of proposals that can be generated by

any additional referee becomes

w2 + 2w(k − 2w) = 2kw − 3w2.

Let a denote the minimum number of additional referees to cover the missing

3k2-ku pairs of proposals, and let wi denote the number of proposals assigned to

the i th referee, 1 ≤ i ≤ a under this maximality constraint. Then the maximum

number of pairs of proposals covered by a referees is given by

a∑
i=1

2kwi − 3w2
i

Therefore, to cover the missing 3k2-ku pairs, the following inequality must hold:

a∑
i=1

2kwi − 3w2
i ≥ 3k2 − ku

Dividing both sides of the inequality by k2 and rewriting the argument of the

sum on the left, we get

a∑
i=1

2
wi

k
− 3

w2
i

k2
=

a∑
i=1

wi

k

(
2− 3

wi

k

)
≥ 3− u

k

It is easy to verify that the argument of the sum is maximized if

wi

k
= 2− 3

wi

k
or wi =

k

2

Therefore,
a∑

i=1

1

4
≥ 3− u

k
or a ≥ 12− 4

u

k

Given that ⌈
12− 4

u

k

⌉
≥ 9 if u < k

the number of additional referees cannot be less than 9, leading to a lower bound

of 11 referees in this case as well.
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The next theorem extends these results to referees with a capacity of n/4 for

n proposals:

Theorem 4 For all n = 4k ≥ 16, if each referee is assigned k proposals then at

least 18 referees must be used to cover all pairs of n proposals.

Proof Let n = 4k, where k ≥ 4 is an integer. The proof proceeds as in the proof

of earlier theorems with the following modified diagram. The only change in the

set up of the proof is that the cardinality of D is now 2k + u and k = n/4.

Figure 3.4: The assignment of proposals to the referees for capacity, k = n/4.

If u = 0 then B vanishes, A and C contain k proposals each and D contains 2k

proposals without any overlap with one another. Hence, the number of proposals

that remains to be covered is given by 5k2+ k(2k-1). To cover the first 5k2 of

these proposals, let w, y, z be the number of proposals assigned to each additional

referee from sets A, C, andD. Therefore, the number of additional referees cannot

be less than ⌈
5k2

wy + wz + yz

⌉
,

where w + y + z = k. As before, the maximum value of wy+wz+yz is maximized

when w = y = z = k/3, and is given by k2/3. Therefore, the minimum value of

the expression above cannot be smaller than
5k2

k2

9
+
k2

9
+
k2

9

 = 15
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However, this assumes that the pairs of proposals generated by cross multiplying

the sets of k/3 proposals from A, C, and D can all be different. But, this is

not possible since if we just consider the sets A and C, and partition each into

subsets of k/3 proposals then the maximum number of non-overlapping pairs of

such subsets cannot exceed 9. Therefore, at least one pair of proposals must be

covered more than once if we were to use more than 9 referees. This implies that

the number of distinct pairs of proposals covered by cross multiplying subsets of

k/3 proposals from each of A, B, and C must be strictly less than k2/3. Therefore,

at least 16 new referees are needed and adding this to the first two referees gives

at least 18 referees.

On the other hand, if u = k then A and C vanish, and |B| = k, |D| = 3k so that

the number of additional pairs of proposals to be covered is given by 3k2+3k(3k-

1)/2 = (15k2-3k)/2. Dividing this by the maximum number of pairs of proposals

that can be covered by a referee gives at least⌈
(15k2 − 3k)/2

k(k − 1)/2

⌉
=

⌈
15k2 − 3k

k2 − k

⌉
≥ 16

new referees4 or a total of 18 referees with the first two referees added.

Finally, suppose that 1 ≤ u < k. Given the distribution of the proposals to the

sets A,B,C, and D as shown in Figure 3.4, the number of pairs of proposals that

remain to be covered is given by(
4k

2

)
−
{

2

(
k

2

)
−
(
u

2

)}
= 7k2 − k + u2/2− u/2

Now arbitrarily divide the set D into three subgroups of D1, D2 and D3 where

the sizes of these subgroups are k, k and u respectively and the sum of their sizes

is k + k + u = 2k + u, the size of the set D. Suppose that the pairs of proposals

within each of the sets D1, D2 and D3 are already covered without using any

new referees. Then, the number of pairs of proposals that remain to be covered

is given by

7k2 − k + u2/2− u/2−
{(

k

2

)
+

(
k

2

)
+

(
u

2

)}
= 6k2

4 15k2−3k
k2−k > 15 for all k > 1. Therefore,

⌈
15k2−3k

k2−k

⌉
≥ 16, for k > 1.
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Now, any additional referee can generate at most wy+wz+ws+wt+xz+xs+

xt+ yz + ys+ yt+ zs+ zt+ st new pairs of proposals, as shown in Figure 3.5.

Figure 3.5: The assignment of proposals to the third referee.

Therefore the number of additional referees cannot be less than⌈
6k2

wy + wz + ws+ wt+ xz + xs+ xt+ yz + ys+ yt+ zs+ zt+ st

⌉

where w, x, y, z, s, and t are the numbers of proposals assigned to a new referee

from the subsets, A, B, C, D1, D2 and D3, respectively. It can be shown that,

under the constraint w+x+y+ z+ s+ t = k, the denominator of this expression

has a maximum at w = y = z = s = t = k/5 and x = 0, and is given by 2k2/5

(See Lemma 2). Hence the number of additional referees cannot be less than

6k2

2k2/5
= 15.

However, this assumes that the pairs of proposals generated by cross multiplying

the sets of k/5 proposals from A, C, D1, D2 and D3 can all be different. But

this is not possible since the number of non-overlapping pairs of subsets of size

k/5 between A and D3 is strictly less than 15. To see this, just note that the

number of non-overlapping pairs of subsets of size k/5 in A is given by k−u
k/5

and

similarly those in D3 is u
k/5

. Therefore, the maximum number of non-overlapping

pairs of subsets of size k/5 is given by (k−u)u
k2/25

= 25(k−u)u
k2 and it is easy to see that

this is always less than 15 for any u, 1 ≤ u < k. It follows that the number of

distinct pairs of proposals covered by cross multiplying subsets of k/5 proposals

from each of A, C, D1, D2 and D3 must be strictly less than 2k2/5 for at least

one of the additional referees. Hence the number of additional referees cannot be
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less than 16. Since we need 16 referees in order to cover 6k2 pairs of proposals,

then we also need at least 16 referees in order to cover 7k2− k+u2/2−u/2 pairs

of proposals. Adding these to the first two referees shows that 18 referees are

necessary in this case as well and this completes the proof.



Chapter 4

Optimal Assignments

In this section, we provide explicit assignments of proposals to referees to cover all

pairs of proposals using 6 referees for n = 2k, 12 referees for n = 3k, and 20 referees

for n = 4k. We further prove that the lower bound of dn(n− 1)/k(k − 1)e referees

is asymptotically optimal within a factor of 2 by giving an actual assignment for

capacity k for all other k, 2 ≤ k ≤ n.

4.1 Referees With Half Capacity

We first present an optimal assignment of n proposals to referees with a capacity

of n/2.

Theorem 5

(a) For any even integer n = 2k ≥ 4, if 4 referees are assigned k proposals

each, one referee is assigned 2 dk/2e proposals and one referee is assigned 2 bk/2c
proposals, then 6 referees are sufficient to cover all pairs of n proposals.

(b) For any odd integer n = 2k+1 ≥ 5, if one half of referees are assigned

dn/2e proposals and the other half of referees are assigned bn/2c proposals then

6 referees are sufficient to cover all pairs of n proposals.

24
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Proof

a) For even n, we give one possible assignment that uses 6 referees below.

Proposals p1, p2, .., pdk/2e pdk/2e+1, .., pk pk+1, .., pk+dk/2e pk+dk/2e+1, .., p2k

Referee r1 k proposals
Referee r2 k proposals
Referee r3 dk/2e proposals dk/2e proposals
Referee r4 dk/2e proposals bk/2c proposals
Referee r5 bk/2c proposals dk/2e proposals
Referee r6 bk/2c proposals bk/2c proposals

Table 4.1: Assignment of n = 2k proposals to 6 referees, each with a capacity
of k.

That this assignment covers all n(n-1)/2 pairs of proposals can be seen as follows.

The first referee covers the k(k -1)/2 pairs of the first k proposals and the second

referee covers the k(k -1)/2 pairs of the second k proposals, and therefore they

are disjoint. The third referee covers dk/2e×dk/2e pairs of proposals and clearly,

these pairs are all different from those covered by the first two referees. Likewise,

the fourth, fifth, and sixth referees, cover dk/2e × bk/2c, bk/2c × dk/2e, bk/2c ×
bk/2c pairs of proposals which are all distinct from one another and those covered

by the first three referees. Hence, the number of pairs covered by the 6 referees

is given by

2k(k − 1)/2 +

⌈
k

2

⌉
×
⌈
k

2

⌉
+

⌈
k

2

⌉
×
⌊
k

2

⌋
+

⌊
k

2

⌋
×
⌈
k

2

⌉
+

⌊
k

2

⌋
×
⌊
k

2

⌋

= k(k − 1) +

⌈
k

2

⌉
×
{⌈

k

2

⌉
+

⌊
k

2

⌋}
+

⌊
k

2

⌋
×
{⌈

k

2

⌉
+

⌊
k

2

⌋}

= k(k − 1) +

{⌈
k

2

⌉
+

⌊
k

2

⌋}
× k

= k(k − 1) + k2 =

(
2k

2

)
=

(
n

2

)

as desired.

b) For odd n = 2k+1, we give the following assignment that also uses 6 referees.
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Proposals p1, p2, .., pd(k+1)/2e pd(k+1)/2e+1, .., pk+1 pk+2, .., pk+1+dk/2e pk+2+dk/2e, .., p2k+1

Referee r1 k+1 proposals
Referee r2 k proposals
Referee r3 d(k + 1)/2e proposals dk/2e proposals
Referee r4 d(k + 1)/2e proposals bk/2c proposals
Referee r5 b(k + 1)/2c proposals dk/2e proposals.
Referee r6 b(k + 1)/2c proposals bk/2c proposals

Table 4.2: Assignment of n proposals to 6 referees, each with a capacity of n/2,
n = 2k+1.

As before, adding all the pairs of proposals contributed by the 6 referees, we

obtain

⇒ (k + 1)k

2
+
k(k − 1)

2
+

⌈
k + 1

2

⌉
×
⌈
k

2

⌉
+

⌈
k + 1

2

⌉
×
⌊
k

2

⌋

+

⌊
k + 1

2

⌋
×
⌈
k

2

⌉
+

⌊
k + 1

2

⌋
×
⌊
k

2

⌋

= k2 +

⌈
k + 1

2

⌉
×
{⌈

k

2

⌉
+

⌊
k

2

⌋}
+

⌊
k + 1

2

⌋
×
{⌈

k

2

⌉
+

⌊
k

2

⌋}

= k2 +

{⌈
k + 1

2

⌉
+

⌊
k + 1

2

⌋}
× k

= k2 + (k + 1)k =

(
2k + 1

2

)
=

(
n

2

)

and the statement follows.

Example 3 Optimal assignments of proposals to referees for n = 5,6,7,8.

a) n = 5, k = 2 b) n = 6, k = 3

r1 p1 p2 p3

r2 p4 p5

r3 p1 p2 p4

r4 p1 p2 p5

r5 p3 p4

r6 p3 p5

r1 p1 p2 p3

r2 p4 p5 p6

r3 p1 p2 p4 p5

r4 p1 p2 p6

r5 p3 p4 p5

r6 p3 p6
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c) n = 7, k = 3 d) n = 8, k = 4

r1 p1 p2 p3 p4

r2 p5 p6 p7

r3 p1 p2 p5 p6

r4 p1 p2 p7

r5 p3 p4 p5 p6

r6 p3 p4 p7

r1 p1 p2 p3 p4

r2 p5 p6 p7 p8

r3 p1 p2 p1 p6

r4 p1 p2 p7 p8

r5 p3 p4 p5 p6

r6 p3 p4 p7 p8

Remark 3 When n and k = n/2 are both even, each referee is assigned exactly

k proposals in Theorem 5 and this conforms to the hypothesis of Theorem 2.

However, when k is odd, this happens only in an average sense. That is, the

average number of proposals assigned to the 6 referees is still k with one of the

referees receiving k+1 proposals and another referee k-1 proposals as in (a) in the

example above. We conjecture that it is impossible to cover all pairs of proposals if

all 6 referees are assigned exactly k proposals. For odd n = 2k + 1, the assignments

of proposals to the 6 referees conforms to the hypothesis of Theorem 2 for both

even and odd k as can be seen in (c) and (d) in the example above. In particular,

when k is even, referees r3 and r4 are assigned k+1 proposals each and r5 and r6

are assigned k proposals each. When k is odd, referees r3 and r5 are assigned k+1

proposals each and r4 and r6 are assigned k proposals each.

We also note that the assignments of the proposals to the 6 referees in The-

orem 5 are not unique. For even n, there exist
(

2k
k

)(
k

k/2

)(
k

k/2

)
such assignments,

where
(

2k
k

)
represents the number of choices for the first two referees, and the last

two terms represent the number of choices for the last four referees. Similarly,

for odd n, there exist
(

2k+1
k+1

)(
k+1
k/2

)(
k

k/2

)
such assignments.

4.2 Referees With One-Third Capacity

These construction can be extended to assignments where each referee can review

k = n/3 proposals.
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Theorem 6 Suppose that n is divisible by 9, and let k = n/3. Then 12 referees

are sufficient to cover all pairs of n proposals.

Proof Let the set of n proposals be partitioned into 9 subsets of k/3 proposals

each and denote them by Gi, 1 ≤ i ≤ 9. Let P = {i : 1 ≤ i ≤ 9} where i denotes

the index of Gi. By Proposition 1, the indices in P form a (9,3,1)-BIBD with

the blocks given in that proposition. Let these blocks be denoted by Bj and let

Bj be assigned to referee j, 1 ≤ j ≤ 12. Since the blocks form a (9,3,1)-BIBD,

each pair of indices i and j in P appear together in blocks. Therefore all possible

pairs of proposals (x,y) where x is in Gi and y is in Gj, 1 ≤ i 6= j ≤ 9 is covered

by one of the referees. This covers(
9

2

)
(
k

3
)2

pairs of proposals and (
n

2

)
−
(

9

2

)
(
k

3
)2 = 9

(
k/3

2

)

remains to be covered. And this corresponds to the pairs of proposals generated

within Gi, 1 ≤ i ≤ 9, given that each Gi appears four times among the blocks of

the design. These pairs of proposals are clearly generated more than once by the

twelve referees and this completes the proof.

Example 4 The assignment below covers all 153 pairs of 18 proposals with 12

referees with each referee assigned 6 proposals. Whether it is possible to use 11

referees to cover all 153 pairs remains an open problem.

4.3 Referees With One Fourth Capacity

The previous two theorems can be extended to n proposals and referees with

capacity n/4.

Theorem 7 Suppose that n is divisible by 16, and let k = n/4. Then 20 referees

are sufficient to cover all pairs of n proposals.
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r1 p1 p2 p3 p4 p5 p6

r2 p7 p8 p9 p10 p11 p12

r3 p13 p14 p15 p16 p17 p18

r4 p1 p2 p7 p8 p13 p14

r5 p3 p4 p9 p10 p13 p14

r6 p5 p6 p11 p12 p13 p14

r7 p1 p2 p9 p10 p15 p16

r8 p3 p4 p11 p12 p15 p16

r9 p5 p6 p7 p8 p15 p16

r10 p1 p2 p11 p12 p17 p18

r11 p3 p4 p7 p8 p17 p18

r12 p5 p6 p9 p10 p17 p18

Table 4.3: Assignment of 18 proposals to 12 referees, each with a capacity of 6.

Proof As in Theorem 6, let the set of n proposals be patitioned into 16 subsets of

k/4 proposals each and denote them by Gi, 1 ≤ i ≤ 16. Let P = {i : 1 ≤ i ≤ 16}
where i denotes the index of Gi. By Proposition 2, the indices in P form a

(16,4,1)-BIBD with the blocks given in that proposition. Let these blocks be

denoted by Bj and let Bj be assigned to referee j, 1 ≤ j ≤ 20. Since the blocks

form a (16,4,1)-BIBD, each pair of indices i and j in P appear together in blocks.

Therefore all possible pairs of proposals (x,y) where x is in Gi and y is in Gj,

1 ≤ i 6= j ≤ 16 is covered by one of the referees. This covers(
16

2

)
(
k

4
)2

pairs of proposals and (
n

2

)
−
(

16

2

)
(
k

4
)2 = 16

(
k/4

2

)

remains to be covered. And this corresponds to the pairs of proposals generated

within Gi, 1 ≤ i ≤ 16, given that each Gi appears five times among the blocks of

the design. This pairs of proposals are clearly generated more than once by the

twenty referees and this completes the proof.

Example 5 The assignment below covers all 496 pairs of 32 proposals with 20

referees with each referee assigned 8 proposals.
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r1 p1 p2 p3 p4 p5 p6 p7 p8

r2 p9 p10 p11 p12 p13 p14 p15 p16

r3 p17 p18 p19 p20 p21 p22 p23 p24

r4 p25 p26 p27 p28 p29 p30 p31 p32

r5 p1 p2 p9 p10 p17 p18 p25 p26

r6 p3 p4 p13 p14 p23 p24 p27 p28

r7 p5 p6 p15 p16 p19 p20 p29 p30

r8 p7 p8 p11 p12 p21 p22 p31 p32

r9 p3 p4 p11 p12 p19 p20 p25 p26

r10 p1 p2 p15 p16 p21 p22 p27 p28

r11 p7 p8 p13 p14 p17 p18 p29 p30

r12 p5 p6 p9 p10 p23 p24 p31 p32

r13 p5 p6 p13 p14 p21 p22 p25 p26

r14 p7 p8 p9 p10 p19 p20 p27 p28

r15 p1 p2 p11 p12 p23 p24 p29 p30

r16 p3 p4 p15 p16 p17 p18 p31 p32

r17 p7 p8 p15 p16 p23 p24 p25 p26

r18 p5 p6 p11 p12 p17 p18 p27 p28

r19 p3 p4 p9 p10 p21 p22 p29 p30

r20 p1 p2 p13 p14 p19 p20 p31 p32

Table 4.4: Assignment of 32 proposals to 20 referees, each with a capacity of 8.

4.4 Arbitrary Capacity Case

The assignments described in Theorems 5, 6, and 7 will work for effectively

for small values of n. In particular, 6-referee assignments in Theorem 5 can

handle up to 20 proposals where each referee may be assigned up to 10 proposals.

However, for larger n, it will be impractical for referees to review n/2, n/3, or

n/4 proposals and the number of proposals assigned to each referee may have to

be decreased as needed. To deal with larger numbers of proposals, we present

another assignment using an asymptotically minimum number of referees. The

following theorem describes this assignment for any even k that divides n. The

theorem is easily extended to odd k as described in the remark that follows the

theorem.

Theorem 8 Let n and k be positive integers, where k is even and divides n. It is

sufficient to have n(2n-k)/k2 referees, each with capacity k to cover all n(n-1)/2

pairs of n proposals.

Proof Divide the set of n proposals into n/k groups, and use a different referee

to review the k proposals in each group. This covers (n/k)
(

k
2

)
pairs with n/k

referees. Now, use four more referees to cover the pairs of proposals between

every two groups of k proposals as shown in Table 4.4 for one such pair of groups.
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This gives

4

(
n/k

2

)
k2

4
=

(
n/k

2

)
k2

more distinct pairs, making the total number of pairs equal to

n

k

(
k

2

)
+

(
n/k

2

)
k2 =

n(k − 1)

2
+
n(n− k)

2
=
n(n− 1)

2
=

(
n

2

)

as desired. Since there are
(

n/k
2

)
such pairs of groups, the number of referees we

need to cover the pairs of proposals generated by these pairs of groups is given

by 4
(

n/k
2

)
. Therefore, the total number of referees to cover all n(n-1)/2 pairs of

proposals is given by

n

k
+ 4

(
n/k

2

)
=
n

k
+ 2

n

k

(
n

k
− 1

)
=
n(2n− k)

k2

and the statement follows.

Corollary 4 The number of referees used in the assignment described in The-

orem 8 is within a factor of 2 of the lower bound given in Equation 3.1 and

therefore is asymptotically optimal.

Proof Dividing the number of referees obtained in Theorem 8 by the lower bound

on the number of referees given in Equation 3.1, we get

n(2n− k)

k2
× k(k − 1)

n(n− 1)
=

(2n− k)

k
× (k − 1)

(n− 1)
<

(2n− k)

(n− 1)
≤ 2, fork ≥ 2

and the statement follows.

Example 6 (Even k): Let n = 6 and k = 2. By Theorem 8, n(2n-k)/k2 = 15

referees are sufficient as illustrated in Table 4.6 below. In this case, the number

of referees used does exactly match the minimum number of referees given in

Equation 3.1.
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Referee r1 p1 p2

Referee r2 p3 p4

Referee r3 p5 p6

Referee r4 p1 p3

Referee r5 p1 p4

Referee r6 p2 p3

Referee r7 p2 p4

Referee r8 p1 p5

Referee r9 p1 p6

Referee r10 p2 p5

Referee r11 p2 p6

Referee r12 p3 p5

Referee r13 p3 p6

Referee r14 p4 p5

Referee r15 p4 p6

Table 4.6: Assignment of n = 6 proposals to n(2n-k)/k 2 referees, each with
capacity k = 2.

Remark 4 For odd k, partition the n proposals into n/k groups of k proposals

each as in Theorem 8 and assign each group to a different referee. Assign k+1

proposals to each of the rest of referees and divide each group of k proposals into

two overlapping groups of (k+1)/2 proposals as in the example below. The rest

of the proof applies as it is.

Example 7 (Odd k): Let n = 6 and k = 3. By Equation 3.1, 5 referees are

necessary and by Theorem 8, n(2n-k)/k2 = 6 referees are sufficient, as shown in

Table 4.7. As seen in the table, the proposals assigned to referees r3, r4, r5, and

r6 overlap. This results in some of the pairs of proposals to be covered more than

once but it does not increase the number of referees in the assignment. However,

it also makes the assignment asymmetric with respect to the number of referees

assigned to the proposals (proposalsp2 and p5 are reviewed by 5 referees whereas

the rest of proposals are reviewed by 3 referees each). This can be avoided by

removing the last referee and reassigning the proposals to remaining referees as

shown in Table 4.8.
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Referee r1 p1 p2 p3

Referee r2 p4 p5 p6

Referee r3 p1 p2 p4 p5

Referee r4 p1 p2 p5 p6

Referee r5 p2 p3 p4 p5

Referee r6 p2 p3 p5 p6

Table 4.7: Assignment of 6 proposals to 6 referees with a capacity of 3.

Referee r1 p1 p2 p3

Referee r2 p4 p5 p6

Referee r3 p1 p3 p4 p5

Referee r4 p1 p2 p5 p6

Referee r5 p2 p3 p4 p6

Table 4.8: Assignment of 6 proposals to 5 referees with a capacity of 3.

Theorem 8 provides asymptotically optimal assignment for referees with arbi-

trary capacity to cover all pairs of n proposals. This assignment can be improved

by using the BIBD-design described in Corollary 2

Theorem 9 Let n and k be positive integers, where n/k is a prime power, and n

divides k2. Then n
k

(
n
k

+ 1
)

referees are sufficient to cover all pairs of n proposals.

Proof As in Theorem 6, let the set of n proposals be patitioned into n2/k2

subsets of k2/n proposals each and denote them by Gi, 1 ≤ i ≤ n2/k2. Let

P = {i : 1 ≤ i ≤ n2/k2} where i denotes the index of Gi. By Corrollary 2, the

indices in P form a (n2/k2,n/k,1)-BIBD with the blocks given in that corollary.

Let these blocks be denoted by Bj and let Bj be assigned to referee j, 1 ≤ j ≤
n2/k2 + n/k. Since the blocks form a (n2/k2,n/k,1)-BIBD, each pair of indices

i and j in P appear together in blocks. Therefore all possible pairs of proposals

(x,y) where x is in Gi and y is in Gj, 1 ≤ i 6= j ≤ n2/k2 is covered by one of the

referees. This covers (
n2/k2

2

)
(
k2

n
)2
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pairs of proposals and(
n

2

)
−
(
n2/k2

2

)
(
k2

n
)2 = n2/k2

(
k2/n

2

)

remains to be covered. And this corresponds to the pairs of proposals generated

within Gi, 1 ≤ i ≤ n2/k2, given that each Gi appears (n/k) + 1 times among

the blocks of the design. This pairs of proposals are clearly generated more than

once by the n
k

(
n
k

+ 1
)

referees and this completes the proof.

Example 8 Let n = 25 and k = 5. Since n/k = 25/5 = 5 is a prime power,

by Theorem 9, n
k

(
n
k

+ 1
)

= 25
5

(
25
5

+ 1
)

= 30 referees are sufficient. The first

five of the 30 referees are assigned pairwise disjoint sets of k = 5 proposals.

The remaining 25 referees are also assigned five proposals each but the proposals

are spread across the n/k = 5 groups of 5 proposals which have been assigned

to the first five referees as shown below. Inspecting the assignments for referees

r6 through r30 shows that no two referees are allocated the same two or more

subgroups of k2/n = 1 proposals. This guarantees that all pairs of proposals that

are not covered by the first 5 referees are covered by the last 25 referees as shown

in Table 4.9.

Corollary 5 The number of referees used in the assignment described in Theo-

rem 9 is asymptotically minimum with respect to the number of referees given in

the lower bound of Equation 3.1 and therefore is asymptotically optimal.

Proof Dividing the number of referees obtained in Theorem 9 by the lower bound

on the number of referees given in Equation 3.1, we get

n

k

(
n

k
+ 1

)
× k(k − 1)

n(n− 1)
=

(n+ k)

k
× (k − 1)

(n− 1)
≈ (n+ k)

n
= 1 +

k

n

and the statement follows.

Corollary 6 The number of referees used in the assignment described in Theo-

rem 9 is optimum with respect to the number of referees if n = k2.
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r1 p1 p2 p3 p4 p5

r2 p6 p7 p8 p9 p10

r3 p11 p12 p13 p14 p15

r4 p16 p17 p18 p19 p20

r5 p21 p22 p23 p24 p25

r6 p1 p6 p11 p16 p21

r7 p1 p9 p13 p20 p22

r8 p1 p7 p15 p19 p23

r9 p1 p10 p12 p18 p24

r10 p1 p8 p14 p17 p25

r11 p2 p7 p12 p17 p22

r12 p2 p10 p14 p16 p23

r13 p2 p8 p11 p20 p24

r14 p2 p6 p13 p19 p25

r15 p2 p9 p15 p18 p21

r16 p3 p8 p13 p18 p23

r17 p3 p6 p15 p17 p24

r18 p3 p9 p12 p16 p25

r19 p3 p7 p14 p20 p21

r20 p3 p10 p11 p19 p22

r21 p4 p9 p14 p19 p24

r22 p4 p7 p11 p18 p25

r23 p4 p10 p13 p17 p21

r24 p4 p8 p15 p16 p22

r25 p4 p6 p12 p20 p23

r26 p5 p10 p15 p20 p25

r27 p5 p8 p12 p19 p21

r28 p5 p6 p14 p18 p22

r29 p5 p9 p11 p17 p23

r30 p5 p7 p13 p16 p24

Table 4.9: Assignment of 25 proposals to 30 referees, each with a capacity of 5.

Proof Proof is similar to the one that is done for Corollary 5. Dividing the

number of referees obtained in Theorem 9 by the lower bound on the number of

referees given in Equation 3.1, we get

n

k

(
n

k
+ 1

)
× k(k − 1)

n(n− 1)
=

(n+ k)

k
× (k − 1)

(n− 1)
, substitute n by k2

k2 + k

k
× k − 1

k2 − 1
= 1

and the statement follows.

Remark 5 The assignment given in Theorem 9 is more efficient than the one

given in Theorem 8 when k < n/2. This can be seen from

n

k

(
n

k
+ 1

)
<
n(2n− k)

k2

n+ k < 2n− k

2k < n

k < n/2.



Chapter 5

Assignments with

Distinguishable Referees

In the assignment problems considered thus far we have not taken into account

the specialties of referees in handling proposals. It is often desirable to assign

proposals to referees who are experts or specialists on the subjects of proposals

they review. The assignment methods in Section 4 can still be applied if the

specialties of referees satisfy certain constraints. In what follows, we describe

some of these extensions.

Corollary 7 Suppose that a set of n proposals can be partitioned into two spe-

cialty areas of n/2 proposals, S1 and S2. Further suppose that, among some 6

referees, (a) one is able to review the proposals in S1 and another is able to review

the proposals in S2, and (b) the other four are each able to review n/4 proposals

in each of S1 and S2. Then all pairs of n proposals can be covered by the 6 refer-

ees with the side condition that each proposal is reviewed by three referees in its

subject area.

Proof It follows directly from Theorem 5 as shown in Table 5.1.

This corollary can be generalized to n/k specialty areas of k proposals and
n
k

+ 4
(

n/k
2

)
referees for any integer k, 2 ≤ k ≤ n that divides n.

36
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Proposals p1, p2, .., pn/4 p(n/4)+1, .., pn/2 p(n/2)+1, .., p3n/4 p(3n/4)+1, .., pn

Referee 1 Specialty S1

Referee 2 Specialty S2

Referee 3 Specialty S1 Specialty S2

Referee 4 Specialty S1 Specialty S2

Referee 5 Specialty S1 Specialty S2

Referee 6 Specialty S1 Specialty S2

Table 5.1: Assignment of proposals to 6 referees with 2 specialties, each with a
capacity of n/2.

Corollary 8 Suppose that a set of n proposals can be partitioned into n/k subject

areas of k proposals, S1, S2, ..., Sn/k. Suppose also that (a) there exist n/k referees

with n/k different specialties matching the n/k subject areas of these n/k sets

of k proposals and each is able to review k proposals, (b) the remaining 4
(

n/k
2

)
referees can be partitioned into

(
n/k
2

)
groups of 4 referees so that the referees in

each group have two specialties matching the specialties of a distinct pair of sets

of k proposals. Then n/k + 4
(

n/k
2

)
referees are sufficient to cover all pairs of n

proposals.

Proof The proof immediately follows from Theorem 8.

The example below illustrates the corollary.

Example 9 n = 12, k = 4. A possible assignment is shown in Table 5.2 with

the following specialties:

Referee 1: Specialty in p4, p8, p2, p11

Referee 2: Specialty in p7, p3, p5, p10

Referee 3: Specialty in p6, p1, p12, p9

Referee 4: Specialty in p4, p8, p2, p11 and in p7, p3, p5, p10

...

Referee 14: Specialty in p7, p3, p5, p10 and in p6, p1, p12, p9

Referee 15: Specialty in p7, p3, p5, p10 and in p6, p1, p12, p9
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With n = 12, k = 4, Equation 3.1 gives a lower bound of 11 on the number

of referees. This assignment uses four more referees than the minimum number

of referees needed.

Referee 1 p4, p8, p2, p11

Referee 2 p7, p3, p5, p10

Referee 3 p6, p1, p12, p9

Referee 4 p4, p8 p7, p3

Referee 5 p4, p8 p5, p10

Referee 6 p2, p11 p7, p3

Referee 7 p2, p11 p5, p10

Referee 8 p4, p8 p6, p1

Referee 9 p4, p8 p12, p9

Referee 10 p2, p11 p6, p1

Referee 11 p2, p11 p12, p9

Referee 12 p7, p3 p6, p1

Referee 13 p5, p10 p6, p1

Referee 14 p7, p3 p12, p9

Referee 15 p5, p10 p12, p9

Table 5.2: Assignment of 12 proposals to 15 referees satisfying specialty con-
strains.



Chapter 6

Conclusion and Future Work

We have explored the referee complexity of covering all pairs of n proposals. A

lower bound on the referee complexity of covering all pairs of n proposals has been

derived for any n ≥ 2, and this lower bound has been strengthened for referee

capacities, n/2, n/3, and n/4. Explicit assignments which are asymptotically

optimal with respect to the derived lower bounds have been given for proposals

with and without specialty classifications. Table 6.1 lists the number of referees

facilitated by these assignments and their simple extensions for typical panel sizes

used in peer-review systems. The numbers in parentheses denote the minimum

number of referees required by the lower bound in Equation 3.1, except for the

cases when k = n/2, n/3, n/4, n = 20 and k = 15, and n = 30 and k = 20. The

lower bounds for the former cases are derived from Theorems 2, 3, and 4. In the

latter two cases, assigning two referees 15 (or 20) proposals each leaves 10 (or 20)

proposals unpaired as illustrated below for n = 15.

Figure 6.1: Illustration of assigning two referees 15 proposals each leaves 10
proposals unpaired.
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Therefore, at least three referees are needed, and adding a third referee is suf-

ficient to cover the missing pairs of proposals. The upper bounds are derived from

Theorems 5, 6, 7, and 8. The shaded entries indicate the optimal assignments.

The lower and upper bounds on the lower left are both unreasonably large and

this is due to the fact that k is very small compared to n. The upper bounds in

this case are computed using Theorem 8 and both lower and upper bounds tend

to O(n2) as k tends to O(1). On the other hand, as k tends to O(n), the lower

and upper bounds both tend to O(1). In particular, when k = n/2, the lower and

upper bounds become 5 and 6, when k = n/3, they become 10 and 15, and when

k = n/4, they become 17 and 28. Figure 6.2 depicts the lower and upper bounds

based on the formulas n(n-1)/k(k -1) and n(2n-k)/k 2 for n = 50 and 2 ≤ k ≤ 50.

It can be shown that the ratio of the upper bound to the lower bound reaches

a maximum when k =
√

2n for any n. It remains open if the lower and upper

bounds can be made any closer, especially, for values of k in the neighborhood of
√

2n.

Referee capacity( k)
Number of proposals(n) 5 10 15 20

20 20(19) 6(6) 3(3) 1(1)
30 66(44) 12(11) 6(6) 3(3)
40 120(78) 20(18) 10(8) 6(6)
50 190(123) 45(28) 17(12) 10(7)

Table 6.1: Minimum and maximum numbers of referees to cover all pairs of
proposals in typical proposal panels.

Even though our results have been presented for assignments of proposals to

referees, they can directly be applied to other assignment problems with similar

constraints.

The results of this thesis may be extended in a number of directions. One

such direction is to study the referee complexity when the referee capacity ex-

ceeds n/2. Another direction would be to obtain more direct lower and upper

bound for assignments with referee specialty constraints. More precisely, the fol-

lowing variant of Cook et al [7], problem remains to be solved: Consider a set

of m referees with their specialties specified on a set of n proposals by an inci-

dent matrix Mm×n. The original problem addressed in Cook [7] seeks to find an

assignment of referees to proposals so as to cover all pairs of proposals under a
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Figure 6.2: Lower and upper bounds for n = 50 and 2 ≤ k ≤ 50.

capacity constraint of k proposals. An equally interesting problem would be to

determine the minimum number of referees to obtain such an assignment with

the specified capacity constraint of k. In this setting, we wish to minimize the

number of referees without violating the capacity constraints of referees. A more

general version of the problem would be to allow the referees to have different

capacity constraints.
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Appendix

Lemma 1 Let f(w,x,y,z) = wy + wz + xz + yz.

a) Under the constraint w + x + y + z = k, the maximum value of f(w,x,y,z)

occurs at x = 0, w = y = z = k/3 and is equal to k2/3.

b) For any fixed z, and under the constraint w + x + y + z = k, the maximum

value of f(w,x,y,z) occurs when w = y, and x = 0.

Proof

a) Rearranging the terms in f(w, x, y, z), we have f(w, x, y, z) = wy+(w+x+y)z

and since the second term w+ x+ y can be increased arbitrarily by increasing w

and/or y while also increasing the first term, setting x = 0 maximizes the value

of f(w, x, y, z). Now to find the maximum value of the function f(w, 0, y, z) =

wy + wz + yz under the constraint w + y + z = k, it is sufficient to note that

f(w, 0, y, z) is a symmetric function of w, y, and z, and therefore has its maximum

when1 w = y = z = k/3, and f(k/3, 0, k/3, k/3) = k2/3. Given that any value of

x other than 0 makes the product wy less than k2/9, at any global maximum of

f(w, x, y, z), x must be 0. Similarly, since f(w, 0, y, z) is symmetric, any values

of w, y, and z other than k/3 should make f(w, 0, y, z) strictly less than k2/9.

Therefore, f(w, x, y, z) has a unique maximum at x = 0, w = y = z = k/3.

1If k is not evenly divisible by 3, the maximum occurs at either w = (k − 1)/3 + 1, y =
(k − 1)/3, z = (k − 1)/3, or w = (k − 2)/3 + 1, y = (k − 2)/3 + 1, z = (k − 1)/3 up to a
permutation of w, y, and z. Direct substitution of w, y, and z into f(w, 0, y, z) in each case
shows that the maximum is (k2 − 1)/3, and therefore, cannot exceed k2/3.
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b) Using the same argument as in (a), for any w, y, and z, the maximum value

of f(w, x, y, z) must occur when x = 0. Then, for any fixed z, the constraint

equation reduces to w + y = k − z. We can now determine the maximum value

of f(w, 0, y, z) by setting up the Lagrangian,

L(w, y) = f(w, y)− λ(k − z − w − y)

and examining its derivatives with respect to w, y, and λ. This reveals that

f(w, 0, y, z) assumes its maximum when w = y = (k − z)/2.

Lemma 2 Let f(w,x,y,z,s,t) = wy + wz + ws + wt + xz + xs + xt + yz + ys +

yt + zs + zt + st. Under the constraint w + x + y + z + s + t = k, the maximum

value of f(w,x,y,z,s,t) occurs at x = 0, w = y = z = s = t = k/5 and is equal to

2k2/5.

Proof Rearranging the terms in f(w, x, y, z, s, t), we have f(w, x, y, z, s, t) =

wy+ (w+ x+ y)(z+ s+ t) + (s+ t)z+ st and by using the same approach given

in Lemma 1, setting x = 0 maximizes the value of f(w, x, y, z, s, t). Now to find

the maximum value of the function f(w, 0, y, z, s, t) = wy + (w + 0 + y)(z + s +

t) + (s + t)z + st = wy + wz + ws + wt + yz + ys + yt + zs + zt + st under the

constraint w + y + z + s + t = k, it is sufficient to note that f(w, 0, y, z, s, t) is

a symmetric function of w, y, z, s and t, and therefore has its maximum when2

w = y = z = s = t = k/5, and f(k/5, 0, k/5, k/5, k/5, k/5) = 2k2/5.

2If k is not evenly divisible by 5, the maximum occurs at one of the following: w = (k −
1)/5 + 1, y = z = s = t = (k − 1)/5; w = y = (k − 2)/5 + 1, z = s = t = (k − 2)/5;
w = y = z = (k−3)/5+1, s = t = (k−3)/5; w = y = z = s = (k−4)/5+1, t = (k−4)/5 up to
a permutation of w, y, z, s, and t. Direct substitution of w, y, z, s, and t into f(w, 0, y, z, s, t) in
each case shows that the maximum values are (2k2−2)/5, (2k2−3)/5, (2k2−3)/5, (2k2−2)/5
respectively and therefore, cannot exceed 2k2/5.
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