
DYNAMIC THRESHOLD-BASED ALGORITHMS FOR

COMMUNICATION NETWORKS

a thesis

submitted to the department of electrical and

electronics engineering

and the institute of engineering and sciences

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Mehmet Altan Toksöz

August 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52925372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Nail Akar(Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ezhan Karaşan

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. İbrahim Körpeoğlu

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Baray
Director of Institute of Engineering and Sciences

ii



ABSTRACT

DYNAMIC THRESHOLD-BASED ALGORITHMS FOR

COMMUNICATION NETWORKS

Mehmet Altan Toksöz

M.S. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Nail Akar

August 2009

A need to use dynamic thresholds arises in various communication networking

scenarios under varying traffic conditions. In this thesis, we propose novel dy-

namic threshold-based algorithms for two different networking problems, namely

the problem of burst assembly in Optical Burst Switching (OBS) networks and

of bandwidth reservation in connection-oriented networks. Regarding the first

problem, we present dynamic threshold-based burst assembly algorithms that at-

tempt to minimize the average burst assembly delay due to burstification process

while taking the burst rate constraints into consideration. Using synthetic and

real traffic traces, we show that the proposed algorithms perform significantly

better than the conventional timer-based schemes. In the second problem, we

propose a model-free adaptive hysteresis algorithm for dynamic bandwidth reser-

vation in a connection-oriented network subject to update frequency constraints.

The simulation results in various traffic scenarios show that the proposed tech-

nique considerably outperforms the existing schemes without requiring any prior

traffic information.

Keywords: Burst assembly algorithms, optical burst switching, dynamic band-

width reservation, adaptive hysteresis

iii



iv



ÖZET

İLETİŞİM AĞLARİ İÇİN DİNAMİK EŞİK-TABANLI

ALGORİTMALAR

Mehmet Altan Toksöz

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Nail Akar

Ağustos 2009

Eşikleme mekanizmaları iletişim ağlarının çeşitli alanlarında kullanılmaktadır.

Bu tezde, iletişim ağlarının iki temel probleminde kolayca uygulanabilen çeşitli

dinamik eşikleme algoritmaları önerildi. Bunlar Optik Çoğuşum Anahtarlama

(OBS) ağlarında çoğuşum birleştirme ve bağlantı odaklı ağlarda bant genişliği

rezervasyonudur. İlk problemle ilgili olarak, çoğuşum birleştirme işleminden

dolayı oluşan ortalama çoğuşum birleştirme gecikmesini minimuma indirmeye

çalışan aynı zamanda çoğuşum oluşturma frekansı kısıtlamalarını hesaba katan

iki tane dinamik çoğuşum birleştirme algoritması sunuldu. Sentetik ve gerçek

trafik izleri kullanılarak, önerilen algoritmaların performansının geleneksel al-

goritmalarınkinden daha iyi olduğu gösterildi. İkinci problemde, güncelleme

frekansına uyan bağlantı-tabanlı ağlarda dinamik bant genişliği rezervasyonu için

modele gereksinimi olmayan ve telefon görüşme bazlı uyarlanabilir histerez algo-

ritması önerildi. Çeşitli trafik senaryolarında, önerilen tekniğin herhangi bir ön

trafik bilgisi gerektirmeden geleneksel metotlardan daha iyi çalıştığı simülasyon

sonuçlarıyla gösterildi.

Anahtar Kelimeler: Çoğuşum birleştirme algoritmaları, optik çoğuşum anahtar-

lama, dinamik band genişliği rezervasyonu, uyarlanabilir histerez

iv



v



ACKNOWLEDGMENTS

I am sincerely grateful to Assoc. Prof. Dr. Nail Akar for his supervision,

guidance, insights and support throughout the development of this work. His

broad vision and profound experiences in engineering has been an invaluable

source of inspiration for me.

I would like to thank to the members of my thesis jury, Assoc. Prof. Dr.

Ezhan Karaşan and Asst. Prof. Dr. İbrahim Körpeoğlu for reviewing this

dissertation and providing helpful feedback.

I would like to especially thank to my family for their help and supports to

my whole life.

Many thanks to Alper Kabasakal, Fazlı Kaybal, Osman Günay, Vahdettin

Taş, Ahmet E. Sezgin, Ahmet Güngör, Ömür Arslan, Osman Gürlevik, Fırat

Karataş, Mehmet Köseoğlu and Mehmet Akif Yazıcı for their kind friendship.

Financial support of The Scientific and Technological Research Council of

Turkey (TUBITAK) for the Graduate Study Scholarship Program(2210) is grate-

fully acknowledged.

This work is also supported in part by The Scientific and Technological Re-

search Council of Turkey (TUBITAK) under project No. EEEAG106E046.

v



Contents

1 INTRODUCTION 1

1.1 Introduction to the Burst Assembly Problem . . . . . . . . . . . . 1

1.2 Introduction to the Dynamic Bandwidth Reservation Problem . . 2

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 OBS BURST ASSEMBLY ALGORITHMS SUBJECT to

BURST RATE CONSTRAINTS 4

2.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . 4

2.2 Burst Assembly Algorithms . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Timer-based Min-Length Burst Assembly . . . . . . . . . . 9

2.2.2 Timer-based Min-Max-Length Burst Assembly . . . . . . . 10

2.2.3 Fixed Threshold-based Burst Assembly . . . . . . . . . . . 10

2.3 Proposed Burst Assembly Algorithms . . . . . . . . . . . . . . . . 13

2.3.1 Packet-based Dynamic-Threshold Algorithm for Burst As-

sembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vi



2.3.2 Byte-based Dynamic Threshold Algorithm for Burst As-

sembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Synthetic Traffic . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Assembled Burst Statistics . . . . . . . . . . . . . . . . . . 24

2.4.3 Real Traffic Traces . . . . . . . . . . . . . . . . . . . . . . 27

2.4.4 Loss Performance . . . . . . . . . . . . . . . . . . . . . . . 30

3 ADAPTIVE HYSTERESIS for DYNAMIC BANDWIDTH

RESERVATION 34

3.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . 34

3.2 Synchronous Dynamic Bandwidth Reservation . . . . . . . . . . 38

3.3 Model-Based Optimal Solution . . . . . . . . . . . . . . . . . . . 39

3.3.1 The Data-transformation Method . . . . . . . . . . . . . . 40

3.3.2 Relative Value Iteration Algorithm . . . . . . . . . . . . . 40

3.3.3 Formulation with the Dynamic Bandwidth Allocation

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Adaptive Hysteresis for DBR . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Algorithm for Single-Class Case . . . . . . . . . . . . . . . 43

3.4.2 Algorithm for Multi-Class Case . . . . . . . . . . . . . . . 44

3.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 47

vii



3.5.1 Single-Class Case with Stationary Poisson Voice Traffic . . 47

3.5.2 Multi-Class Case with Stationary Poisson Voice Traffic . . 55

3.5.3 Non-Stationary Poisson Voice Traffic Case . . . . . . . . . 58

3.5.4 Single-Class Case with Self-Similar Internet Data Traffic . 61

4 CONCLUSIONS 66

viii



List of Figures

1.1 A Generic Virtual Path . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 An OBS Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Structure of an Edge Node . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Average packet delay of the three assembly algorithms as a func-

tion of arrival rate λ . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Average burst rate obtained using the three assembly algorithms

as a function of arrival rate λ . . . . . . . . . . . . . . . . . . . . 19

2.5 Average packet and byte delays (DP and DB) for the two algo-

rithms dyn-threshold-packet and dyn-threshold-byte as a function

of arrival rate λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 State diagram of the input traffic modeled with two-state MMPP 21

2.7 A twenty-second snapshot of the dynamic thresholds of the dyn-

threshold-byte algorithm with respect to time for different values

of κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Inter-Burst Time and Burst Length Distribution in Stationary

Poisson Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ix



2.9 Inter-Burst Time and Burst Length Distribution in Two-state

MMPP Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.10 Average byte delay for the cases a) β = 1000 b) β = 2000 c)

β = 3000 using various algorithms for the trace from Sample Point

B (2006) whose one-minute snapshot is given in d) . . . . . . . . . 29

2.11 Average byte delay for the cases a) β = 1000 b) β = 2000 c)

β = 3000 using various algorithms for the trace from Sample Point

F (2008) whose two-minute snapshot is given in d) . . . . . . . . . 30

2.12 Burst assembly scenario to study the probability of loss . . . . . . 32

2.13 Probability of loss as a function of the number of access network n 32

2.14 Topology 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.15 Loss Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Bandwidth Reservation Mechanisms . . . . . . . . . . . . . . . . . 35

3.2 A binary control system using static hysteresis . . . . . . . . . . . 44

3.3 Average Reserved Bandwidth . . . . . . . . . . . . . . . . . . . . 48

3.4 Gain with respect to SVC . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Reserved Bandwidth by Adaptive Hysteresis for Different Values

of β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 The evolution of number of ongoing calls N(t) and the reservation

R(t) as a function of t for a sample scenario for which Cm = Bm =

10, N(0) = 5, R(0) = 6, B(0) = 2 and β = 1/4 updates/min. . . . 51

3.7 Convergence to β . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

x



3.8 Average Reserved Bandwidth . . . . . . . . . . . . . . . . . . . . 53

3.9 Gain with respect to SVC . . . . . . . . . . . . . . . . . . . . . . 53

3.10 Gains with respect to SVC by varying Bm . . . . . . . . . . . . . 54

3.11 Gains with respect to SVC by varying Cm . . . . . . . . . . . . . 55

3.12 Loss probability for any VP in the physical link . . . . . . . . . . 57

3.13 Gains with respect to SVC by varying n . . . . . . . . . . . . . . 58

3.14 A 5-node wide area network topology . . . . . . . . . . . . . . . . 59

3.15 λ(t) between the nodes 2 and 3 . . . . . . . . . . . . . . . . . . . 59

3.16 Average Reserved Bandwidth . . . . . . . . . . . . . . . . . . . . 60

3.17 Gain with respect to SVC . . . . . . . . . . . . . . . . . . . . . . 61

3.18 Gains with respect to Cm by varying Bm and β . . . . . . . . . . 62

3.19 Bandwidth reservation with β = 0.3 . . . . . . . . . . . . . . . . . 63

3.20 Bandwidth reservation with β = 1 . . . . . . . . . . . . . . . . . . 64

3.21 Bandwidth reservation with β = 0.3 . . . . . . . . . . . . . . . . . 65

3.22 Bandwidth reservation with β = 1 . . . . . . . . . . . . . . . . . . 65

xi



List of Tables

2.1 Packet Size Distribution from [1] . . . . . . . . . . . . . . . . . . 18

2.2 The values b∗i and β∗
i , i = 1, 2 and DP using the fixed-threshold,

optimum, and dyn-threshold-packet algorithms as a function of γ . 23

2.3 The values b∗i and β∗
i , i = 1, 2 and DB using the dyn-threshold-byte

algorithm as a function of κ . . . . . . . . . . . . . . . . . . . . . 24

2.4 SCV Test for Burst Length . . . . . . . . . . . . . . . . . . . . . . 26

2.5 SCV Test for Inter-Burst Time . . . . . . . . . . . . . . . . . . . 27

3.1 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . 63

xii



Dedicated to my parents, my sister, and my brother. . .



Chapter 1

INTRODUCTION

1.1 Introduction to the Burst Assembly Prob-

lem

Optical Burst Switching (OBS) has been receiving increasing attention as an

alternative transport architecture for the next-generation optical Internet in

academia and also in industry [2],[3],[4]. There are several features of OBS that

make it a viable technology. Firstly, in OBS, data travels through the network

in the form of relatively long bursts and all-optically. A number of client pack-

ets are assembled into a data burst at the edge of an OBS network while the

followings are taken into consideration: (i) increasing burst lengths helps relax

optical switching-speed requirements, (ii) reducing burst lengths also reduces de-

lays stemming from burst assembly. A second principle of OBS is the separation

of the control and data planes where the data plane is all-optical but the control

plane can be optical-electronic in the sense that control packets are processed

electronically at the core nodes. Once a data burst is formed at the edge device,

the ingress node prepares a control message on behalf of the data burst and

transmits it in the form of a Burst Control Packet (BCP) over the control plane

1



towards the egress node. The BCP carries information about the data burst,

such as its length, destination, arrival time, etc. A receipt of a BCP by a core

node initiates a configuration of the node by means of reserving resources for

the burst when available. On the other hand, the data burst is transmitted over

the data plane after an offset time which has to be at least as long as the sum

of the per-hop processing times that the corresponding BCP will encounter. In

a typical OBS network with no buffers, the end-to-end delay of a single packet

is then written as the sum of the offset time and the burst assembly delay, the

latter forming the scope of our study. In this part of the thesis, we propose dy-

namic threshold-based burst assembly algorithms that attempt to minimize the

average burst assembly delay due to burstification process while taking the burst

rate constraints into consideration. The proposed algorithms minimize either the

average packet or byte delay and their performance are comparatively studied

against timer- and size-based conventional burst assembly mechanisms. Using

synthetic and real traffic traces, we show that the proposed algorithms perform

significantly better than the existing schemes.

1.2 Introduction to the Dynamic Bandwidth

Reservation Problem

In order to solve the problem of frequently setting up and tearing down a huge

number of connections in large networks, a number of connection-oriented net-

work technologies have been deployed like Asynchronous Transfer Mode (ATM)

[5], Multiprotocol Label Switching (MPLS) [6], or a single aggregate Resource

ReserVation Protocol (RSVP) reservation [7]. In these technologies, connections

belonging to the same class can be grouped on a virtual tunnel to be treated in

the same way as a group (Fig. 1.1). In ATM, the bandwidth of the physical link

is logically divided into separate Virtual Paths (VPs) by using the Virtual Path

2



Figure 1.1: A Generic Virtual Path

Identifier (VPI) of the corresponding path. Also each VP in a link is divided into

Virtual Circuits (VCs) by the Virtual Channel Identifier (VCI) of each VC. The

bandwidth of a VP can be dynamically adjusted by controlling the number of

VCs included in that VP. MPLS technology presents efficient engineering gran-

ularity by configurable virtual tunnels which are called Label Switched Paths

(LSPs). By MPLS Traffic Engineering (MPLS TE), the capacity of these LSPs

can be adjusted without tearing down and reestablishing the current connection.

1.3 Outline

In Chapter 2, we first give the basics of an OBS network. Then, we describe the

burst assembly process and summarize the conventional as well as the proposed

burst assembly algorithms. Both by analysis and simulations, we compare the

performances of these various algorithms. Chapter 3 addresses the problem of

dynamic bandwidth reservation. First, we describe the problem and present a

number of scenarios in which this problem arises. We then present a number of

existing schemes for this purpose as well as our proposed technique. At the end of

this chapter, we present numerical examples to validate the proposed approach.

Finally, Chapter 4 concludes this thesis.

3



Chapter 2

OBS BURST ASSEMBLY

ALGORITHMS SUBJECT to

BURST RATE CONSTRAINTS

2.1 Motivation and Related Work

An OBS network basically contains two kinds of nodes namely edge and core

nodes as shown in Fig. 2.1. The burst assembly process is performed in the ingress

edge nodes by receiving the incoming IP packets from an outside access network

into bursts by aggregating them (Fig. 2.2). When a burst data packet (BDP)

is created, first a burst control packet (BCP), which contains the knowledge of

burst arrival time, burst length, and routing information, is sent out. Between

a BDP and BCP, there is an offset time which is used by the intermediate node

to configure the switch for wavelength allocation.

Various burst assembly algorithms have been proposed to aggregate a number

of client packets (such as IP packets) into data bursts. Typically, an ingress node

maintains per-destination queues to store client packets awaiting burstification

4



Figure 2.1: An OBS Network

Figure 2.2: Structure of an Edge Node

that are destined for a specific destination. Multiple instances of a burst assembly

algorithm are run for each of these queues which decide when the packets in the

queue should be aggregated into a burst and sent out. Other variations are also

possible in which multiple queues are maintained for each destination, one for

each QoS-class and different burst assembly algorithms may be run for each of

these queues. Such scenarios are left outside the scope of our study.

Four classes of burst assembly algorithms are available in the literature,

namely timer-based, size-based, hybrid (timer- and size-based), and dynamic

threshold-based algorithms. In timer-based burst assembly [8], a timer is started

5



once a client packet arrives at an empty burst assembly buffer. This timer ex-

pires after T (in units of seconds) by which time all packets awaiting in the burst

assembly buffer are aggregated into a burst and sent out. The timer parameter T

is chosen as the largest allowable delay due to burstification. Moreover, a lower

burst length parameter Bmin (in units of bytes) is used along with timers to keep

the load on the control channel at reasonable levels. For this purpose, padding

is used if the number of bytes awaiting in the buffer upon timer expiration is less

than Bmin. The second class of algorithms are size-based and when the assembly

buffer size reaches or exceeds a size parameter B then all packets in the buffer are

aggregated into a burst [9]. Clearly, B should be set to a value larger than the

lower limit Bmin. However, these two classes of burst assembly algorithms have

their problems of their own. Size-based algorithms suffer from excessive delays

especially when the traffic load is light. On the other hand, under heavy traffic

load, timer-based algorithms experience a longer average delay than size-based

algorithms. The third class of algorithms, namely hybrid timer- and size-based

algorithms, keep track of the assembly buffer occupancy, as well as the time since

the arrival of the first packet into the assembly buffer. A representative algo-

rithm in this class is proposed in [10] in which an upper burst length limit Bmax

(in units of bytes) is imposed on the pure timer-based scheme. In this proposal,

if the buffer occupancy is to exceed Bmax before the timer expires, a portion of

the awaiting packets are aggregated into a burst immediately without having to

wait for the timer to expire. The final class of algorithms are based on the use of

dynamic thresholds, where either the timer parameter T or the size parameter

B or both are adjusted dynamically [11],[12]. Recently, various methods using

dynamic thresholds have been proposed in [13],[14],[15].

The statistical characteristics of input IP traffic and the generated burst traf-

fic significantly affects performance of an optic network [10], [9], [8], [16]. It has

been shown that today’s IP traffic is statistically self-similar [17]. Several works

have been done to investigate if the self-similarity or long range dependency of

6



input ip traffic can really affects the performance of the core of an optic network

after the assembly process [8], [18], [19]. Reference [8] claims that assembly al-

gorithms reduces the self-similarity of the input IP traffic and it increases the

performance. On the other hand, [16] and [18] report that the long range depen-

dency is not reduced after assembly process. However, long range dependency in

the assembled traffic does not have any impact on burst loss performance at the

core nodes. Only short range characteristics smooth the traffic which increase

the loss performance. Several other studies have supported the results in [16]

and [18].

The assumptions we have for the burst assembly problem studied in this

chapter are given below:

a) We focus on burst assembly algorithms whose average burst generation

rates (both short- and long-term rates) are upper bounded by a desired

burst rate parameter called β (in units of bursts/sec). We have two main

goals with this approach. Firstly, β determines the frequency of BCPs

traveling on the control channel and by adjusting β, one can control the

control plane load in the system and thus limit BCP queueing delays due to

processing. Secondly, a fair comparison of two burst assembly algorithms

is only meaningful when their average burst rates are the same since al-

gorithms with higher burst generation rates are to naturally outperform

others in terms of burstification delays.

b) We impose lower and upper burst length limits Bmin and Bmax in units of

bytes as in [10].

c) Given the above two constraints, our goal is to devise a burst assembly

scheme that minimizes

• the average packet delay DP which is defined as the average of all

packet delays in the assembly buffer, or

7



• the average byte delay DB which is defined as the weighted average of

all packet delays where the weights are taken to be packet lengths in

units of bytes. A burst assembly algorithm that attempts to minimize

DB needs to keep track of packet lengths as well.

d) Finally, we seek a model-free algorithm which is also simple to implement.

If the traffic statistics were known, one can obtain an analytical solution

as in [20] but generally burstifiers do not have a good understanding of

the statistical properties of the traffic streams they need to process. More-

over, traffic is generally unpredictable which leads us to use traffic-adaptive

assembly algorithms.

In our study, we mainly focus on the reduction of the delays DP and DB

that are caused by the assembly process and we develop two dynamic threshold-

based algorithms that attempt to minimize one of these two delay parameters

under a burst rate constraint β. We then compare our results to those obtained

with conventional timer-based schemes under realistic traffic and packet length

distribution scenarios. The remainder of this chapter is organized as follows. In

Section 2.2, we present an overview of existing timer-based and size-based algo-

rithms. The two algorithms we propose are presented in Section 2.3. Section 2.4

provides numerical results concerning the performance evaluation of existing and

proposed algorithms under different traffic scenarios.

2.2 Burst Assembly Algorithms

In this section, we will first present three conventional burst assembly algorithms,

the first two being timer-based, and the third one being size-based. We will then

present the two algorithms we propose.

8



2.2.1 Timer-based Min-Length Burst Assembly

This basic algorithm is given as Algorithm 1. It is called Timer-based Min-Length

Burst Assembly algorithm, or in short timer-min since the algorithm is timer-

based and also the minimum burst length limit is enforced. In this algorithm, the

inter-burst time is fixed to the timer threshold T which will be set to 1/β. The

worst case delay then equals T and assuming packet arrivals for burst i occur

uniformly in the interval ((i−1)T, iT ), the average packet delay is T/2 = 1/(2β).

This algorithm does not employ an upper limit Bmax on burst lengths. The next

algorithm attempts to modify the current one by imposing an upper burst length

limit.

Algorithm 1 timer-min
PARAMETERS:
t: time counter
T : assembly time window
i: burst index
pi(t): data accumulated for the i-th burst at time t (bytes)
Bmin: lower burst length limit (bytes)

THE ALGORITHM

t ⇐ 0 {start the time counter at t = 0}
if t = T then

if pi(t) ≥ Bmin then
pi(t) ⇐ 0 {send pi(t) as burst i immediately}
i ⇐ i + 1 {increase burst counter}
t ⇐ 0 {reset time counter}

else
pi(t) ⇐ Bmin {increase the data size to Bmin with padding}
pi(t) ⇐ 0 {send pi(t) as burst i immediately}
i ⇐ i + 1 {increase burst counter}
t ⇐ 0 {reset time counter}

end if
end if

9



2.2.2 Timer-based Min-Max-Length Burst Assembly

This modified algorithm is given as Algorithm 2. It is called Timer-based Min-

Max-Length Burst Assembly algorithm, or in short timer-min-max, since the

upper burst length limit Bmax is also imposed. In this algorithm, when the

data accumulated for the i-th burst at time t, denoted by pi(t), at the epoch

of timer expiration exceeds Bmax then a maximum number of packets whose

packet length sum does not exceed Bmax is sent out as burst i. The remaining

packets in the burst assembly buffer wait for the next opportunity. In both

timer-based algorithms, a decision to assemble is made synchronously without

paying attention to the assembly buffer content. Worst case delays are bounded

when Bmax → ∞ and the burst rate requirement β is inherently taken care of

by setting T = 1/β. One of the main goals of this study is to explore alternative

methods that would potentially benefit from asynchronous burst assembly in

terms of either average packet or byte delays.

2.2.3 Fixed Threshold-based Burst Assembly

Assume that the average packet arrival rate to the assembly buffer is known and

is denoted by λ. Let us assume b = λ/β is an integer. We can then use a burst

assembly algorithm that generates a burst every time b packets are accumulated

in the buffer. This strategy ensures a burst generation rate of β. This assembly

method will be referred to as fixed-threshold. It is then crucial to know whether

this policy is optimal. Let us assume renewal inter-packet arrival times with mean

α. Let us use an arbitrary probabilistic policy that assembles when bi packets

are present with probability pi, 1 ≤ i ≤ N . To enforce a β burst generation rate,

we should have
∑N

i=1 bipi = b. An arbitrary packet will then belong to a burst

with length bi with probability
bipi

b
, 1 ≤ i ≤ N . The average packet delay then

10



Algorithm 2 timer-min-max
PARAMETERS:
t: time counter
T : assembly time window
i: burst index
pi(t): data accumulated for the i-th burst at time t (bytes)
Bmin: lower burst length limit (bytes)
Bmax: upper burst length limit (bytes)

THE ALGORITHM

t ⇐ 0 {start the time counter at t = 0}
if t = T then

if pi(t) < Bmin then
pi(t) ⇐ Bmin {increase the data size to b with padding}
pi(t) ⇐ 0 {send pi(t) as burst i immediately}
i ⇐ i + 1 {increase burst counter}
t ⇐ 0 {reset time counter}

else if pi(t) ≥ Bmin and pi(t) < Bmax then
pi(t) ⇐ 0 {send pi(t) as burst i immediately}
i ⇐ i + 1 {increase burst counter}
t ⇐ 0 {reset time counter}

else
pi(t) ⇐ pi(t) − Bmax {send subtracted pi(t) as burst i immediately}
i ⇐ i + 1 {increase burst counter}
t ⇐ 0 {reset time counter}

end if
end if

11



becomes

DP =
α

2b

N
∑

i=1

pibi(bi − 1) (2.1)

It is obvious that the average delay is minimized with a deterministic policy

N = 1 that generates a burst every time b packets are accumulated in the buffer.

In this case

DP =
α(b − 1)

2
(2.2)

which provides an expression for the optimum average packet delay. For instance,

if λ is 50000 packets/second and β is 1000 bursts/second, then an optimal burst

assembly policy will be to wait for 50 packets to arrive for burst assembly. It is

very likely that the value b = λ/β may not be an integer. Say the value b is in

the form x + y where x is the integer part of b and y is the fractional part where

0 < y < 1. The optimal policy in this case is one which assembles packets when

x packets are accumulated with probability 1 − y, or when x + 1 packets are

accumulated with probability y. There are several drawbacks of this dynamic

threshold-based burst assembly mechanism described above:

• The method is very sensitive to the average packet arrival rate λ; a devi-

ation of the estimate from the actual value will lead to burst generation

rates that differ from β.

• When the packet arrival process is a non-renewal process, using a fixed

threshold of b packets for burst assembly would generate bursts at a long-

term rate of β but over relatively shorter terms, the burst rate constraints

can be violated leading to occasional problems on the control plane. For

this scenario, a need arises to employ a dynamic-threshold algorithm to

keep track of changes in the arrival process so as to maintain the short-

term burst rate averages at a desired rate of β as well. This situation

appears to worsen with non-stationary traffic.

• When b packets are accumulated, most of these packets can turn out to be

relatively large packets making the total length exceed Bmax. It appears to

12



be very difficult to enforce in this algorithm the upper limit Bmax which is

in units of bytes. The lower limit can be enforced by padding.

• Since the algorithm keeps track of only the number of packets and not

their lengths, this algorithm can not differentiate between packet and byte

delays. If the focus is the minimization of the byte delays, then we should

resort to a modified algorithm.

Although a fixed-threshold-based burst assembly algorithm has nice theo-

retical properties, we still seek a method that is model-free, which is simple to

implement, and which keeps track of bytes for the purposes of enforcing the lower

and upper bandwidth limits as well as the minimization of average byte delay in

addition to average packet delay.

2.3 Proposed Burst Assembly Algorithms

The proposed algorithms we propose do not require any prior information such

as the average packet arrival rate or average bit rate. Another strength of the

proposed algorithms is their simplicity as compared to other dynamic-threshold

algorithms. Next, we present these two algorithms.

2.3.1 Packet-based Dynamic-Threshold Algorithm for

Burst Assembly

This algorithm (given as Algorithm 3) is an entirely packet-based algorithm and

it is referred to as dyn-threshold-packet in short. In this algorithm, we keep track

of the packet count in the assembly buffer and we aim to minimize the average

packet delay due to burstification. The lower and upper burst length limits are

given in units of packets and they are denoted by Lmin and Lmax, respectively.

13



We also maintain a counter called bucket to indicate the dynamic threshold used

in our burst assembly algorithm. Each time a packet, say packet k, arrives at

the assembly buffer, the bucket is decremented by β times the inter-arrival time

between packets k − 1 and k. A decision for burst assembly is made only when

the current packet count exceeds the bucket value. When an assembly decision

is made, the bucket is incremented by one. To enforce lower and upper burst

length limits, the bucket is allowed to take values in the interval [Lmin, Lmax−1].

We have also added an expiration time Tmax for a burst to meet the worst case

delay requirement. Even if the conditions for a burst are not met in low traffic

load, the expiration time mechanism would force the generation of the burst.

2.3.2 Byte-based Dynamic Threshold Algorithm for

Burst Assembly

This algorithm (given as Algorithm 4) is a byte-based algorithm and it is referred

to as dyn-threshold-byte in short. In this algorithm, we keep track of the byte

count in the assembly buffer and we aim to minimize the average byte delay due

to burstification. The reason for this is that client packet lengths are variable;

short and long packets are to be treated differently since they contribute differ-

ently to the overall byte delay. The lower and upper burst length limits are given

in units of bytes and they are denoted by Bmin and Bmax, respectively. Simi-

lar to the dyn-threshold-packet algorithm, we maintain a bucket to indicate the

dynamic threshold used in our burst assembly algorithm. Each time a packet,

say packet k, arrives at the assembly buffer, the bucket is decremented by an

amount in direct proportion with the inter-arrival time between packets k − 1

and k with the constant of proportionality set to κβ. A decision for burst assem-

bly is made only when the current byte count exceeds the bucket value. When an

assembly decision is made, the bucket is incremented by κ. The parameter κ is

the learning parameter of the system. A large value of κ indicates an algorithm

14



Algorithm 3 dyn-threshold-packet
PARAMETERS:
i: packet index
j: burst index
β: desired burst rate (bursts/sec)
L(i, j): data accumulated for the j-th burst at the arrival epoch of i-th packet
(in units of packets)
Lmin: lower burst length limit (in units of packets)
Lmax: upper burst length limit (in units of packets)
bucket: dynamic threshold
t: time counter
Tmax: burst expiration time
ti: inter-arrival time between (i − 1)st and ith packets

THE ALGORITHM

if L(i, j) = 1 then
t ⇐ 0{if the assembler queue contains 1 packet, start the time counter}

end if
bucket ⇐ bucket − tiβ {leak the bucket}
bucket ⇐ max (Lmin, bucket){enforce lower burst length limit}
if L(i, j) ≥ bucket then

L(i, j) ⇐ 0 {send L(i, j) as burst j immediately}
bucket ⇐ min (bucket + 1, Lmax − 1) {update bucket and enforce upper
burst length limit}
j ⇐ j + 1 {increase burst counter}
t ⇐ 0 {reset time counter}

else if t ≥ Tmax then
L(i, j) ⇐ Lmin {increase the data size to Lmin with padding}
L(i, j) ⇐ 0 {send L(i, j) as burst j immediately}
j ⇐ j + 1 {increase burst counter}
t ⇐ 0 {reset time counter}

end if

15



that rapidly tracks changes in incoming traffic. However, when κ is large, it is

possible to occasionally deviate from the desired burst rate β. The parameter

κ should be chosen by taking into consideration of these two effects. Unless

otherwise stated, we use κ = 1000 in our numerical examples. To enforce lower

and upper burst length limits, the bucket is allowed to take values in the interval

[Bmin, Bmax−Pmax] where Pmax denotes the length of the maximum-sized packet.

The expiration time Tmax is again used.

Algorithm 4 dyn-threshold-byte
PARAMETERS:
i: packet index
j: burst index
β: burst rate (bursts/sec)
D(i, j): data accumulated for the j-th burst at the arrival of i-th packet (bytes)
Bmin: lower burst length limit (bytes)
Bmax: upper burst length limit (bytes)
Pmax: maximum packet length (bytes)
κ: learning parameter
bucket: dynamic threshold
t: time counter
Tmax: burst expiration time
ti: inter-packet time between (i − 1)st and ith packets

THE ALGORITHM

if D(i, j) contains 1 packet then
t ⇐ 0{start the time counter}

end if
bucket ⇐ bucket − tiβκ{leak the bucket}
bucket ⇐ max (Bmin, bucket){enforce lower burst length limit}
if D(i, j) ≥ bucket then

D(i, j) ⇐ 0 {send D(i, j) as burst j immediately}
bucket ⇐ min (bucket + κ, Bmax − Pmax){update bucket and enforce upper
burst length limit}
j ⇐ j + 1 {increase burst counter}
t ⇐ 0 {reset time counter}

else if t ≥ Tmax then
D(i, j) ⇐ Bmin {increase the data size to Bmin with padding}
D(i, j) ⇐ 0 {send D(i, j) as burst j immediately}
j ⇐ j + 1 {increase burst counter}
t ⇐ 0 {reset time counter}

end if

16



2.4 Numerical Results

We will present our numerical results basically for two different types of traffic

scenarios (i) synthetic traffic (ii) real traffic traces. We will use synthetic traffic

mainly to show several theoretical properties of the burst assembly algorithms

mentioned above.

2.4.1 Synthetic Traffic

We study in this section two synthetic traffic models, the first one being the

Poisson traffic model, and the second one being the MMPP (Markov Modulated

Poisson Process) model [21]. MMPP is not a renewal process but instead a

Markov renewal process in which the successive inter-arrival times depend on

each other. MMPP-based traffic models capture auto-correlation and they are

quite common in the modeling of Internet traffic [22].

Poisson Traffic Scenario

We first assume that the input packet traffic is stationary Poisson with arrival

rate λ (in units of packets/sec). Under the burst rate constraint dictated by β,

we can calculate the threshold and average packet delay for the threshold-based

algorithms, and the average packet delay for the timer-based algorithms. As

stated before, under these assumptions, the fixed threshold which minimizes the

average packet delay for the fixed-threshold algorithm is given by b = λ/β. Recall

that the average packet delay of fixed-threshold is given by DP = (b− 1)/(2λ) =

1/(2β)− 1/(2λ). On the other hand, the average packet delay for the timer-min

algorithm is 1/(2β) as we mentioned earlier. The term 1/(2λ) is the reduction

in packet delays using a size-based algorithm that has a-priori information on λ.

17



Table 2.1: Packet Size Distribution from [1]
Size Range (bytes) # Packets Probability

32-64 2171017 0.2955
64-128 2519797 0.2621
128-256 574504 0.0598
256-512 297002 0.0309
512-1024 251686 0.0262
1024-2048 3800020 0.3953

In order to verify the results obtained above and to compare them against the

algorithms we propose, we have designed a simulation scenario as given below:

• Packet arrival process is stationary Poisson with rate λ that is varied from

5000 to 50000.

• Desired burst rate β is set to 1000.

• Packet size distribution is taken from Table 2.1 which uses the traffic traces

from [1]. To clarify, the first row of Table 2.1 suggests that 29.55 % of all

the packets have lengths (in units of bytes) in the interval [32, 64) and

2171017 such packets are observed. For convenience, in our simulations,

we assume that with probability 0.2955, an incoming packet has a discrete

uniform distribution in the interval [32, 64), with probability 0.2621, it has

a discrete uniform distribution in the interval [64, 128), and so on. We

believe that our synthetic method of generating packet lengths matches

quite well with real traffic traces. Unless otherwise stated, this packet size

distribution method will be used throughout the numerical examples used

in this paper.

• Simulation length is 1000 seconds.

• Lower and upper burst length limits are not enforced.

Fig. 2.3 compares the average packet delay of the three algorithms timer-min,

fixed-threshold, and dyn-threshold-packet as a function of the arrival rate λ. As

18



λ → ∞, the average packet delay of fixed-threshold approaches to that of timer-

min validating the closed-form expressions stated before. The average packet

delay obtained by dyn-threshold-packet follows very closely the curve of fixed-

threshold for all arrival rates. Note that dyn-threshold-packet does not assume

an a-priori knowledge of the arrival rate λ as fixed-threshold. In Fig. 2.4, we also

observe that dyn-threshold-packet achieves a burst rate which is very close to β

validating the burst rate conformance of bucket-based algorithms.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

400

420

440

460

480

500

520

λ (packets/s)

av
er

ag
e 

pa
ck

et
 d

el
ay

 (µ
se

c)

β = 1000 bursts/s

dyn−threshold−packet

fixed−threshold

timer−min

Figure 2.3: Average packet delay of the three assembly algorithms as a function
of arrival rate λ

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

999

999.5

1000

1000.5

1001

λ (packets/s)

av
er

ag
e 

bu
rs

t r
at

e 
(b

ur
st

s/
s)

β = 1000 bursts/s

dyn−threshold−packet

fixed−threshold

timer−min

Figure 2.4: Average burst rate obtained using the three assembly algorithms as
a function of arrival rate λ

We propose dyn-threshold-byte for the purpose of reducing average byte delays

instead of packet delays. Average packet and byte delays (DP and DB) for

19



the two algorithms dyn-threshold-packet and dyn-threshold-byte as a function of

arrival rate λ are given in Fig. 2.5 which shows that the algorithm dyn-threshold-

packet generates identical byte and packet delays since this algorithm is not

aware of packet lengths. On the other hand, the length-aware algorithm dyn-

threshold-byte substantially reduces DB. We are led to believe that one should

use dyn-threshold-byte if the minimization of byte delays are sought.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

340

360

380

400

420

440

460

480

500

λ (packets/s)

av
er

ag
e 

pa
ck

et
 o

r 
by

te
 d

el
ay

 (µ
se

c)
β = 1000 bursts/s

dyn−threshold−packet D
P

dyn−threshold−packet D
B

dyn−threshold−byte D
B

dyn−threshold−byte D
P

Figure 2.5: Average packet and byte delays (DP and DB) for the two algorithms
dyn-threshold-packet and dyn-threshold-byte as a function of arrival rate λ

MMPP Traffic Scenario

We experiment a non-renewal inter-arrival scenario using synthetic traffic. For

this purpose, we use a two-state MMPP to model client packet arrivals to the

assembly buffer as shown in Fig 2.6. In this model, λi, i = 1, 2 denotes the

arrival rate at state i. The average state holding time in state i is denoted by

Ti. Therefore, the transition rate from state 1 to state 2 (from state 2 to state

1) in Fig. 2.6 is 1/T1 (1/T2). The average packet arrival rate is denoted by

λ = (λ1T1 + λ2T2)/(T1 + T2).

20



Figure 2.6: State diagram of the input traffic modeled with two-state MMPP

The timer-min algorithm produces DP = 1/(2β) irrespective of incoming

packet traffic characteristics. The fixed-threshold algorithm assumes a-priori in-

formation on average arrival rate λ and generates bursts each time b = λ/β

packets are accumulated assuming integer b. The average packet delay for the

fixed-threshold algorithm can then be written as:

DP =

(

λ

β
− 1

)

1

2λ1

λ1T1 +

(

λ

β
− 1

)

1

2λ2

λ2T2

λ1T1 + λ2T2
(2.3)

Let us now use another scheme called optimum that is aware of the state which

the MMPP is visiting. For the purposes of optimal performance, this scheme

generates bursts in state 1 (in state 2) when b1 = λ1/β (b2 = λ2/β) packets are

accumulated. Here, we again assume b1 and b2 are integers. The burst rate of

the optimum scheme is then equal to β irrespective of which state of MMPP is

being visited. The average packet delay for the optimum scheme is easy to write:

DP =

(

λ1

β
− 1

)

1

2λ1
λ1T1 +

(

λ2

β
− 1

)

1

2λ2
λ2T2

λ1T1 + λ2T2
(2.4)

It is not difficult to show that the two expressions in (2.3) and (2.4) lead to

identical average packet delay DP which can further be simplified to

DP =
1

2β
− 1

2λ
(2.5)

The second term above characterizes the reduction in average packet delay by

using a size-based algorithm as opposed to a timer-based algorithm. Note that

21



this term is identical to that of the Poisson traffic scenario. We therefore con-

clude that the fixed-threshold algorithm provides optimum average packet delay

but it suffers from fluctuations in the burst rate. When the actual traffic rate

exceeds the mean rate, the burst rate of the fixed-threshold method exceeds the

desired burst rate β. Similarly, when the actual rate is lower than the mean rate,

burst rates are lower than β. On the other hand, the optimum scheme produces

optimal DP while maintaining the burst rate at β at all times. However, it is

very hard to implement the optimum scheme since in this scheme, the traffic

model should be entirely available to the burst assembly unit which should also

accurately estimate the instantaneous state of the MMPP. In order to study how

the proposed algorithms compare to these three algorithms, we experiment a

scenario where T1 = γt and T2 = (1 − γ)t where t = 10 seconds, 0 < γ < 1 and

λ1 = 5000 and λ2 = 50000 packets/sec. The lower and upper burst length limits

are not enforced in this experiment. We have tested the algorithms for three

different values of γ = 0.3, 0.5, 0.7 for each algorithm. Let b∗i and β∗
i , i = 1, 2

denote the average threshold value (in units of packets) and average burst gener-

ation rate (in units of bursts/sec) while at state i. We provide b∗i and β∗
i , i = 1, 2

as well as the average packet delay DP using the fixed-threshold, optimum, and

dyn-threshold-packet algorithms as a function of γ in Table 2.2. Note that the

timer-min algorithm average delay is fixed at 500 µs for all examples. In the

fixed-threshold algorithm, the thresholds are fixed irrespective of the state of the

MMPP and therefore the burst rates in each state deviate substantially from the

desired burst rate although the long-term burst rate is kept approximately at β.

The optimum scheme employs two separate burst assembly thresholds depending

on the MMPP state and burst generation rate can therefore be set to β irrespec-

tive of the MMPP state. The average packet delays for these two algorithms

are very close to each other as expected (see expression (2.5)). The proposed

dyn-threshold-packet algorithm performs very close to the optimum method by

22



Table 2.2: The values b∗i and β∗
i , i = 1, 2 and DP using the fixed-threshold,

optimum, and dyn-threshold-packet algorithms as a function of γ

Algorithm γ b∗1 b∗2 β∗
1 β∗

2 DP (µs)

fixed-threshold 0.3 36.10 36.12 138.49 1384.04 486.26

0.5 28.13 28.12 177.74 1777.88 482.29

0.7 21.23 21.22 235.49 2356.44 476.71

optimum 0.3 5 50 1000.53 999.96 486.53

0.5 5 50 999.95 999.86 481.70

0.7 5 50 1000.12 999.69 472.67

dyn-threshold-packet 0.3 5.08 49.69 985.07 1006.20 486.94

0.5 5.04 49.56 991.09 1008.89 482.87

0.7 5.03 49.30 993.67 1014.27 475.46

adjusting properly the assembly thresholds at each state so that the burst gen-

eration rate settles at β and its delay performance is very close to the size-based

algorithms. Despite the difficulty in implementing the optimum method, our

proposed method is model-free and is very easy to implement.

For dyn-threshold-byte algorithm, in order to see the effects of the choice of

the learning parameter κ, we plotted the dynamic thresholds as a function of

time for various values of κ when γ is set to 0.5 in the previous example. As

we see in Fig. 2.7, for κ = 10, the dynamic threshold changes slowly despite

the abrupt change in the traffic and the algorithm comes short of tracking the

thresholds of the optimum scheme. For κ = 10000, on the other hand, change in

traffic is captured but at the expense of large-scale fluctuations in the dynamic

threshold. We also provide Table 2.3 which presents the quantities b∗i , β∗
i , i = 1, 2

and DB using the dyn-threshold-byte algorithm as a function of κ. It is clear that

large-scale fluctuations in the dynamic threshold result in increases in the average

byte delay DB. We conclude that the choice of the learning parameter κ = 1000

is a reasonable choice since in this case κ is large enough to track rapid changes

in traffic and κ is small enough to make sure that fluctuations in the dynamic

thresold are reasonably small. We set κ to 1000 in the remaining numerical

studies of the current article.

23



0 5 10 15 20
−10

0

10

20

30

40

50

60

70

time (sec)

th
re

sh
ol

d 
(K

by
te

)

 

 

κ = 10000

κ = 1000

κ =10

Figure 2.7: A twenty-second snapshot of the dynamic thresholds of the dyn-
threshold-byte algorithm with respect to time for different values of κ

Table 2.3: The values b∗i and β∗
i , i = 1, 2 and DB using the dyn-threshold-byte

algorithm as a function of κ
κ β∗

1 β∗
2 β DB (µs)

1 224.01 1733.19 1002.88 466.72
10 611.88 1364.66 1000.19 467.86
100 935.17 1063.37 1000.00 467.76
1000 992.61 1007.24 1000.00 469.55
10000 999.25 1000.73 1000.00 478.09
30000 999.73 1000.26 1000.00 484.41

2.4.2 Assembled Burst Statistics

In order to investigate the statistical characteristics of output burst traffic, first

we have simulated each algorithm with a stationary Poisson traffic with rate

λ = 30000 packets/second. Then, we have designed a simulation scenario with

two-state MMPP having the following parameters;

• Packet arrival process is two-state MMPP.

• T1 = αt and T2 = (1 − α)t where t = 10 seconds, α = 0.5

• λ1 = 5000 packets/second, λ2 = 50000 packets/second.

24



• Average burst rate (β) is 1000 bursts/second.

• Packet size distribution is taken from Table 2.1.

• Simulation length is 1000 seconds.

• The algorithms are not bounded with Bmax and Bmin.

Short Term Statistics

As pointed out in [10] and [18], for the fixed threshold based algorithms, distri-

bution of the inter-burst time converges to Gaussian distribution. Similarly, in

fixed period timer based algorithms, distribution of the burst length converges to

Gaussian distribution as well. Small variance with Gaussian distribution in short

term is acceptable both for inter-burst time and burst length in a burst assem-

bly queue. Since the proposed algorithm is adaptive and it dynamically changes

its threshold, both inter-burst time and burst length is variable in our case. In

Fig. 2.8 and Fig. 2.9, we see that the distribution of the inter-burst time converges

to Gaussian distribution for stationary Poisson and two-state mmpp traffic. On

the other hand, since the threshold of the proposed method dynamically changes

with the time, the distribution of the burst length is mostly determined by the

shape of the input traffic. We have also calculated the Squared Coefficient of

Variations (SCV) for all algorithms in order to see variances of the burst length

and inter-burst times. In Table 2.4, we see that SCV of the burst length for

dyn-threshold-packet is very close to that of optimum in both traffic scenarios.

Table 2.5 shows the SCV values for the inter-burst times for all algorithms. Here

again we see that SCV for the inter-burst times has similar characteristics in

both dyn-threshold-packet and optimum scheme.

25



0 0.5 1 1.5 2 2.5

x 10
−3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

burst inter−arrival time (seconds)

pr
ob

ab
ili

ty

dyn−threshold−packet  burst inter−arrival time distribution

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

burst length (packets)

pr
ob

ab
ili

ty

dyn−threshold−packet burst length distribution

Figure 2.8: Inter-Burst Time and Burst Length Distribution in Stationary Pois-
son Traffic

Table 2.4: SCV Test for Burst Length
algorithm SCV (two-state MMPP) SCV (stationary Poisson)

dyn-threshold-packet 0.6758 0.0007
optimum 0.6028 0.0000
timer-min 0.8144 0.0333

fixed-threshold 0.2616 0.000

Long Term Statistics

As pointed out and mathematically proved in [16], the long range dependence in

the assembled burst traffic does not affect the loss performance of the bufferless

core network. Thus, the degree of the self-similarity of the assembled traffic

has no effect and could be ignored. To see the effect of the proposed assembler

algorithm, We have used the an input traffic having hurst parameter of 0.87.

After estimating the hurst parameter of the assembled burst traffic, we have

observed that it remains the same as the original value.

26



0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

burst inter−arrival time (seconds)

pr
ob

ab
ili

ty

dyn−threshold−packet burst inter−arrival time distribution

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

burst length (packets)

pr
ob

ab
ili

ty

dyn−threshold−packet − burst length distribution

Figure 2.9: Inter-Burst Time and Burst Length Distribution in Two-state MMPP
Traffic

Table 2.5: SCV Test for Inter-Burst Time
algorithm SCV (two-state MMPP) SCV (stationary Poisson)

dyn-threshold-packet 0.1104 0.0318
optimum 0.1043 0.0333
timer-min 0.0000 0.0000

fixed-threshold 2.0847 0.0333

2.4.3 Real Traffic Traces

In the previous scenarios driven with synthetic traffic, we have shown the basic

properties of various burst assembly methods. However, it is also crucial to study

the delay performance of the proposed algorithms in case of more realistic traffic

scenarios. In this numerical experiment, we focused on only byte delays and not

packet delays. For this purpose, we use two different traces taken from a traffic

data repository maintained by the MAWI (Measurement and Analysis on the

WIDE Internet) Working Group of the WIDE Project [1]. We also scale down the

inter-arrival times in these traces to generate varying incoming bit rates. While

the first trace has a low standard deviation (STD), the latter is quite bursty.

For each traffic trace, we use three different values of β = 1000, 2000, 3000. The

lower and upper burst length limits have been enforced in this experiment, i.e.,

Bmin = 1 Kbytes and Bmax = 70 Kbytes. We have studied the performance of

27



the dyn-threshold-byte algorithm against the timer-min and the timer-min-max

algorithms. The learning parameter κ is set to 1000 for dyn-threshold-byte and

Tmax is set to ∞. We have not tested the fixed-threshold algorithm in this scenario

due to its highly variable burst rates that may not be desirable.

The first trace was obtained from the WIDE backbone at Sample Point B on

Jan 1, 2006 at 14:00:00 for a trans-Pacific line with 100 Mbps link speed [1]. The

original trace has a duration of 899.76 seconds, mean rate = 22.33 Mbps, and

STD = 1.53M. Feeding the trace to the burst assembly unit with varying bit rates

(by scaling down the inter-arrival times), we have simulated the performance of

various burst assembly algorithms. The average byte delays for the three al-

gorithms are given in figures 2.10a-c for three different values of β. Fig. 2.10d

gives a minute-long snapshot of the incoming bit rate (scaled 14 times) as a func-

tion of time. The trace is pretty smooth similar to a Poisson traffic stream and

therefore timer-min and timer-min-max performed very similarly since the prob-

ability that the accumulated number of bytes within a timer expiration period

exceeding Bmax was negligibly small for this smooth traffic. The results clearly

show that the proposed dyn-threshold-byte significantly reduces the average byte

delay compared to timer-based algorithms especially for lower bit rates. The

percentage gain in using our proposed algorithm also increases with β.

We then study the second trace which was obtained again from the WIDE

backbone at Sample Point F on Sat Jan 5, 2008 at 14:00:00 for a trans-Pacific

line with 150 Mbps link speed [1]. The original trace has a duration of 900.29

seconds, mean rate = 61.56Mbps, and STD = 11.67M. The average byte delays

for the three algorithms are given in figures 2.11a-c for three different values of

β. Fig. 2.11d gives a two minute-long snapshot of the incoming bit rate (scaled 7

times) as a function of time. The trace is not as smooth as the previous one and

is quite bursty. Therefore, when enforcing the upper burst length limit, there

were quite a few occasions at which the accumulated number of bytes within

28



50 100 150 200 250 300 350
400

420

440

460

480

500

520

bit rate (Mbps)

a
v
e

ra
g

e
 b

y
te

 d
e

la
y
 µ

s
)

a) β = 1000 

dyn−threshold−byte

timer−min

timer min−max

50 100 150 200 250 300 350
160

180

200

220

240

260

bit rate (Mbps)

a
v
e

ra
g

e
 b

y
te

 d
e

la
y
 (
µ

s
)

b) β = 2000 

dyn−threshold−byte

timer−min

timer min−max

50 100 150 200 250 300 350
100

110

120

130

140

150

160

170

bit rate (Mbps)

a
v
e

ra
g

e
 b

y
te

 d
e

la
y
 (
µ

s
)

c) β = 3000 

dyn−threshold−byte

timer−min

timer min−max

0 10 20 30 40 50 60
260

280

300

320

340

360

380

b
it
 r

a
te

 (
M

b
p

s
)

time (s)

d) Traffic trace

Figure 2.10: Average byte delay for the cases a) β = 1000 b) β = 2000 c)
β = 3000 using various algorithms for the trace from Sample Point B (2006)
whose one-minute snapshot is given in d)

a timer expiration period exceeded Bmax and some packets had to wait for the

next timer expiration epoch when using timer-min-max. In this case, the timer-

min-max performed very poorly compared to the timer-min algorithm for which

there was no enforcement of Bmax. As expected, this situation is more evident

for relatively lower β. The proposed dyn-threshold-byte is shown to significantly

reduce the average byte delay DB compared to both timer-based algorithms

especially for lower bit rates and higher β. We also note that dyn-threshold-byte

not only reduces DB but also properly enforces the lower and upper burst length

limits.

29



50 100 150 200 250 300
400

500

600

700

800

900

1000

1100

1200

bit rate (Mbps)

a
v
e

ra
g

e
 b

y
te

 d
e

la
y
 (
µ

s
)

a) β = 1000

dyn−threshold−byte

timer−min

timer min−max

50 100 150 200 250 300 350

180

200

220

240

260

280

300

bit rate (Mbps)

a
v
e

ra
g

e
 b

y
te

 d
e

la
y
 (
µ

s
)

b) β = 2000 

dyn−threshold−byte

timer−min

timer min−max

50 100 150 200 250 300 350

130

140

150

160

170

bit rate (Mbps)

a
v
e

ra
g

e
 b

y
te

 d
e

la
y
 (
µ

s
)

c) β = 3000

dyn−threshold−byte

timer−min

timer min−max

0 20 40 60 80 100 120
200

300

400

500

600

700

800

b
it
 r

a
te

 (
M

b
p

s
)

time (s)

d) Traffic trace

Figure 2.11: Average byte delay for the cases a) β = 1000 b) β = 2000 c)
β = 3000 using various algorithms for the trace from Sample Point F (2008)
whose two-minute snapshot is given in d)

2.4.4 Loss Performance

In the previous numerical studies, we have shown the reductions in average packet

or byte delays in the burst assembly buffer using the proposed dynamic-threshold

algorithms while enforcing lower and upper burst length limits. However, it is

also vital to address the traffic statistics of the bursts fed into the OBS network

and their impact on burst loss performance in the OBS network. Recall that the

timer-min or timer-min-max algorithms produce deterministic burst inter-arrival

times with variable burst lengths whereas the fixed-threshold algorithm generates

bursts that have fixed number of packets in them but variable inter-burst times.

The proposed algorithms in this article produce both variable inter-burst times

and burst lengths. In this section, we address the question of whether such

30



modified traffic characteristics have any impact on loss performance in the OBS

network. In order to study the loss performance of the proposed and existing

algorithms in an OBS network, we have chosen the topology given in Fig. 2.12 in

which n access networks feed IP packets into a burst assembly buffer located at an

OBS edge router which is connected to OBS core router using four wavelengths

for data (bandwidth of each wavelength is set to 10 Gbps) and one wavelength for

control. Packet arrivals from each access network is assumed to be Pareto on-off

[23] with Hurst parameter H = 0.8, on-time ton = 5 10−8, off-time toff = 5 10−9

seconds with mean bit rate set to 0.8 Gbps. Packet size distribution is based

on Table 2.1. We set Bmin = 10 Kbytes and Bmax = 70 Kbytes. The size of

the burst header is assumed to be 125 bytes, the offset time is set to 40µs and

simulation run-time is set to 20 seconds. When a burst assembly decision is

to be made by the burst assembly unit and if all the wavelength channels are

occupied after the offset time, this particular burst is assumed to be lost. We

are interested in the probability of loss using various burst assembly methods.

In Fig. 2.12, we increase the number of access networks (denoted by n) from 42

to 46 and we have set β to 3000n. Under these conditions, we have compared

the loss rates of various burst assemblers. Although the measured average burst

size is about 35 Kbytes for each assembly algorithm, we have observed that the

dyn-threshold-byte algorithm significantly reduces the probability of loss in the

bufferless core network as we see in Fig. 2.13. From this example, we conclude

that the proposed algorithms not only reduce average packet or byte delays but

the traffic they generate do not appear to have any adverse impact on the loss

performance in the OBS network.

To see the effects of multiple assemblers, we have chosen another topology in

Fig. 2.14 having n edge nodes and assemblers. In this scenario, we have varied

the number of sources from 20 to 40. Simulation results show that each assembler

method has similar loss performance. See Fig. 2.15. This is because sufficiently

31



Figure 2.12: Burst assembly scenario to study the probability of loss

42 43 44 45 46
10

−4

10
−3

10
−2

10
−1

10
0

number of access networks

pr
ob

ab
ili

ty
 o

f l
os

s

dyn−threshold−byte
timer−min
timer−min−max

Figure 2.13: Probability of loss as a function of the number of access network n

large number of sources having the same statistical characteristics produce an

output which converges to Gaussian distribution by central limit theorem.

32



Figure 2.14: Topology 2

20 25 30 35 40
10

−2

10
−1

10
0

sources

lo
ss

 r
at

e

 

 
dyn−threshold−byte
timer−min
timer−min−max

Figure 2.15: Loss Ratio

33



Chapter 3

ADAPTIVE HYSTERESIS for

DYNAMIC BANDWIDTH

RESERVATION

3.1 Motivation and Related Work

Some basic techniques exist in the literature to perform the reservation of network

resources to a virtual path or tunnel. Consider a scenario in which end-to-end

reservation requests initiated by Public Switched Telephone Network (PSTN)

voice calls arrive at a virtual path to be destined to a particular voice over packet

gateway (Fig. 1.1). One method for reservation is that whenever a bandwidth

need for a call is requested or an existing call is terminated, the bandwidth of

the VP is adjusted simultaneously which provides optimal usage of the available

bandwidth by tracking the actual call traffic. This method is called Switched

Virtual Circuit (SVC). On the other hand, the main drawback of this approach

is too much signalling and message processing burden on the system. Another

simple technique is Permanent Virtual Path (PVP) approach. According to this

34



Figure 3.1: Bandwidth Reservation Mechanisms

approach the reservation is done based on largest bandwidth demand over a

long time demand (24 hours). However, in this case the network bandwidth will

be under utilized. By eliminating those problems, up to now several Dynamic

Bandwidth Allocation (DBR) or Reservation mechanisms have been proposed to

solve the intelligent bandwidth allocation problem of a VP. Fig. 3.1 shows several

reservation mechanisms.

A state dependent dynamic bandwidth control algorithm has been proposed

in [24] for the virtual paths of an ATM network. According to this approach,

upon arrival of a call if there is insufficient bandwidth in the current virtual

path, the bandwidth of that virtual path is increased by a fixed step S. With

the same step S, depending on the virtual path utilization condition, a bandwidth

decrement is carried out. One main contribution of this approach is that with

small sized S and large number of VPs, the transmission efficiency of the current

link is high in terms of processing overhead and bandwidth wastage. On the other

hand, oscillations around a threshold may increase signalling burden and also in

high traffic conditions, a large amount of bandwidth waste occurs due to fixed

size S.Another virtual path allocation policy has been proposed in [25] which

eliminates the potential problems of [24] by applying two thresholds, namely

upper and lower ones. By these thresholds, it introduces the concept hysteresis,

35



by which it reduces the possibility of oscillations. On the other hand, since the

computation of the thresholds require construction of an auxiliary Markov chain

with known arrival rates, it is a model-based policy. Reference [26] proposes

a periodic capacity management policy which assigns virtual path capacities

according to information of the offered traffic intensity and link occupancy based

on capacity assignment tables in order to reduce on-line operations and achieve a

desired call admission rate. In [27], a simple operational rule has been proposed to

assign capacities to virtual paths based on processing and bandwidth utilization

constraints. At link level, an optimal solution is obtained. A similar problem has

been considered in [28]. This approach uses an ARIMA model to forecast the

traffic and does synchronous bandwidth reservations. However, the forecast is

done at packet level, and it does not consider the sessions and flows in application

level. A layered bandwidth allocation scheme has been proposed in [29] using a

cost factor which consists of the linear combination of the reserved bandwidth

on each link. Reference [30] uses a Discrete Kalman Filter to estimate number of

flows in the aggregate traffic in the first step. In the second step, a reservation is

carried out based on deriving the transient probabilities of the possible system

states. Similar to [30], [31] proposes an approximate Kalman-Bucy Filter to

predict the number of active connections for an LSP. Based on this estimation,

solving some optimization problems on-line, the best reservation of bandwidth

and the time interval over which this reserved bandwidth holds are calculated. A

commercially available synchronous approach for dynamic bandwidth allocation

is Auto-Bandwidth allocator by [32]. It automatically adjusts the bandwidth of

an MPLS tunnel based on the local maximum approach. This allocator monitors

the bandwidth periodically with X minutes (default X = 5 min) and keeping track

of the maximum bandwidth over an interval Y hours (default Y = 24 hours),

it re-adjusts the tunnel bandwidth for next Y interval based on the tracked

maximum bandwidth. One main drawback of this approach is when the traffic

load is higher or lower than the allocated bandwidth, a waste of bandwidth

36



and losses may occur. In [33], an adaptive bandwidth allocation technique has

been proposed for wide area networks (WANs) based on static and dynamic

traffic matrices which are calculated by using busy hours and time zones of

the border routers of a WAN. A distributed approach has been proposed in

[34], which suggests the benefits of the dynamic traffic engineering for dynamic

bandwidth reservation. Basically, using dynamic resizing mechanism, the route

of each LSP is optimized periodically in a decentralized manner, which results

in better network utilization. Recently, a trend based bandwidth provisioning

mechanism has been suggested in [35]. It basically uses a slope estimator and

memory moderator unit to estimate the traffic trend to be used to adjust an LSP

bandwidth while reducing the signaling overhead.

In our proposal, we assume that every call has an identical bandwidth for

the voice traffic. The proposed method is model-free and does not require any

traffic model. However, to be able to compare the performance of the proposed

algorithm with those in the existing literature, we assume that individual calls

arrive at the connection oriented network according to a non-stationary Poisson

process with rate λ(t) and call holding times are exponentially distributed with

mean 1/µ. Basically, we have two versions of our proposed algorithm, namely

Adaptive Hysteresis for Single-Class (Single-Virtual Path) Case and Adaptive

Hysteresis for Multi-Class (Multiple-Virtual Path) Case. In the first version, VP

capacity allocation is performed locally with considering the maximum band-

width, Cm, without knowing the allocated bandwidths of the other VPs in the

current physical link. On the other hand, in the Multi-Class version, the dynamic

bandwidth reservation is done locally for every VP in the link with knowing the

bandwidths of the other VPs. For each version we introduce a desired update

rate parameter, β (updates per hour), which is a tradeoff between message pro-

cessing and bandwidth efficiency costs. Our goal is then to allocate and minimize

the reserved bandwidth dynamically subject to that the reserved bandwidth is

larger than the actual traffic bandwidth and the actual average update rate is less

37



than β. We also propose the same method for Internet data traffic. In this case,

each flow in a VP has variable size capacities instead of identical call capacities

and also flow lengths may have different statistical characteristics than those of

voice calls. In this scenario, the events which make the proposed algorithm work

are defined as periodically monitored bandwidth values instead of call arrivals or

departures in the previous scenario.

The rest of this chapter is organized as follows. In Section 3.2, we present the

details of an existing synchronous approach. Section 3.3 presents a model-based

asynchronous approach which gives the optimal solution of the problem by using

Relative Value Iteration (RVI) algorithm. In Section 3.4, we demonstrate two

versions of the proposed method. Finally, Section 3.5 concludes this chapter by

giving the performance evaluation of the proposed and existing techniques.

3.2 Synchronous Dynamic Bandwidth Reserva-

tion

In this approach, the bandwidth update is performed periodically with period

T . At each decision epoch, kT where k = 0, 1, 2, ..., the mechanism chooses the

minimum bandwidth allocation, Rk, based on the number of calls, Nk, and the

utilization factor, ρk = λk/µ where λk is the estimate of the call arrival rate and

µ is the service rate, for which the average blocking probability, P (ρk, R, Nk, T ),

in the current time interval, [kT, (k + 1)T ), stays below the desired blocking

probability, Pb. Here the average blocking probability is in an interval of T is

calculated by the equation P (ρk, R, Nk, T ) = 1/T
∫ T

0
PR|Nk

(t)dt where PR|Nk
(t)

is the probability of finding the system in state R at time t, which can be cal-

culated by numerical transient solutions of continuous-time Markov chains as

demonstrated in [36]. In cases when Rk is larger than the physical link capacity,

Cm, Rk is set to Cm. Finally, one can create lookup tables off-line with indices

38



of Rk and Nk. On the other hand, since the blocking probabilities depend on

the arrival and departure processes, this approach is model-based and has some

drawbacks:

• If the traffic is non-stationary, large lookup tables have to be performed to

estimate the traffic parameters.

• Solving large systems could be cumbersome.

• Periodic decision epochs may not be the most effective strategy compared

to the asynchronous approaches.

3.3 Model-Based Optimal Solution

In the previous approach, since the decisions are made only at fixed epochs, the

problem is formulated as the subject of discrete-time Markov decision model.

However, as we declared previously the most effective strategy could be an asyn-

chronous approach. The dynamic bandwidth reservation problem with random

decision epochs could be solved by a semi-Markov decision model [37]. The prob-

lem satisfies the following Markovian properties: the time until the next decision

epoch depends only on the present state, thus the decision made is independent

of the past history of the system. Also, the cost incurred until the next deci-

sion epoch depends on the present state and the action chosen at that state.

Reference [37] proposes a data-transformation method by which a semi-Markov

decision model can be converted to a discrete-time Markov decision model in or-

der to reduce the calculation costs. This transformation technique provides us to

use the recursive Relative Value Iteration (RVI) algorithm for the semi-Markov

decision model. The model and the parameters are given as follows:

• The set of possible states is denoted by I .

39



• For each state i ∈ I, a set A(i) of possible actions is available.

• It is assumed that I and A(i) are finite.

• Pij(a) = the probability that at the next decision epoch the system will be

in state j if action a is chosen in the present state i

• τi(a) = the expected time until the next decision epoch if action a is chosen

in the present state i

• ci(a) = the expected costs incurred until the next decision epoch if action

a is chosen in the present state i

• It is assumed that τi(a) > 0 for all i ∈ I and a ∈ A(i)

3.3.1 The Data-transformation Method

As pointed out in [37], a semi-Markov decision model can be converted to a

discrete-time Markov decision equivalent by assuming the following transforma-

tions:

• I = I

• A(i) = A(i), i ∈ I

• ci(a) = ci(a)/τi(a), i ∈ I and a ∈ A(i)

• P ij =







(τ/τi(a))Pij(a) if j 6= i, i ∈ I and a ∈ A(i)

(τ/τi(a))Pij(a) +[1 − (τ/τi(a))] if j = i, i ∈ I and a ∈ A(i)

3.3.2 Relative Value Iteration Algorithm

Since the discrete-time Markov decision model has the same class of stationary

policies as the original semi-Markov decision model, we can say that a value-

iteration algorithm for the original semi-Markov decision model is implied by

40



the value iteration algorithm for the transformed discrete-time Markov decision

model. The recursive method for the semi-Markov decision model given as fol-

lows:

• Step 0: Choose V0(i) such that 0 ≤ V0(i) ≤ mina{ci(a)/τi(a)} for all i.

Choose a number τ with 0 < τ ≤ mini,aτi(a). Let n := 1

• Step 1: Compute the function Vn(i), i ∈ I from

Vn(i) = min
a∈A(i)

[

ci(a)
τi(a)

+ τ
τi(a)

∑

j∈I Pij(a)Vn−1(j) + (1 − τ
τi(a)

)Vn−1(i)

]

.

Let R(n) be a stationary policy whose actions minimize the right-hand side

of the equation above.

• Step 2: Compute the bounds

mn = min
j∈I

{Vn(j) − Vn−1(j)}, Mn = max
j∈I

{Vn(j) − Vn−1(j)}

The algorithm is stopped with policy R(n) when 0 ≤ (Mn − mn) ≤ εmn,

where ε is a pre-specified accuracy number. Otherwise, go to step 3.

• Step 3: n := n + 1 and go to step 1.

For the choice of τ , if the Markov chains of the semi-Markov decision model

are aperiodic, it is reasonable to take τ = mini,aτi(a); otherwise τ = 1
2
mini,aτi(a).

3.3.3 Formulation with the Dynamic Bandwidth Alloca-

tion Problem

In this model, we assume that the connection oriented network has Cm identical

channels and individual calls arrive at this connection oriented network according

to stationary Poisson process with rate λ. The service time of each individual

call is exponentially distributed with mean 1/µ. We also assume that the call

41



arrival rate, λ is less than the maximum service rate, µCm. A channel can handle

only one call request at any time. When the channels turned on from a to b, a

non-negative switching cost is incurred with the function, K|a − b|. There are

also an operating cost, r, for the channels being turned on and a holding cost,

h, for the calls in progress. Under these assumptions, we re-define the system as

follows:

• The state of the system is described by the pair (N, R) at any time instant,

where N is the number of calls in progress and R is the number of channels

allocated.

• Whenever a bandwidth need for a call is requested or an existing call is

terminated, a decision is made.

• Normally this model has infinite states, but we truncate the model to max-

imum Cm channels since the system has finite capacity.

• State space can be described as I = {(N, R)|0 ≤ N ≤ Cm, 0 ≤ R ≤ Cm}.

• Action space can be described as

A(N, R) =







{R′|R′ = 0, ..., Cm}, 0 ≤ N ≤ Cm − 1, 0 ≤ R ≤ Cm

{Cm}, N = Cm, 0 ≤ R ≤ Cm

Here action R′ in state (N, R) means that the reservation is adjusted from

R to R′ at any decision epoch.

• The time until the next decision epoch can be specified as;

τ(N,R)(R
′) =

1

λ + min(N, R′)µ
, 0 ≤ N ≤ Cm − 1, 0 ≤ R′ ≤ Cm

• The immediate cost is;

c(N,R)(R
′) = K|R−R′|+ hN + rR′

λ + min(N, R′)µ
, 0 ≤ N ≤ Cm−1, 0 ≤ R′ ≤ Cm

42



• Step 1 in the RVI formula becomes;

Vn((N, R)) = min
0≤R′≤Cm

{λ + min(N, R′)µ}K|R − R′|

+hN + rR′ +
λ

λ + Cmµ
Vn−1((N + 1, R′))

+
min(N, R′)µ

λ + Cmµ
Vn−1((N − 1, R′)) + {1 − λ + min(N, R′

λ + Cmµ
}Vn−1((N, R′))}

for the states (N, R) with 0 ≤ N ≤ Cm − 1, 0 ≤ R ≤ Cm. And for states

(Cm, R);

Vn((Cm, R)) =
1

Cmµ
(λ + Cmµ)(Cmµ − λ)K|R − Cm|

+
hλ

Cmµ − λ
+ hCm + rCm +

Cmµ − λ

λ + Cmµ
Vn−1((Cm − 1, Cm))

+
λ(Cmµ − λ)

Cmµ(λ + Cmµ)
Vn−1((Cm, Cm)) + 1 − Cmµ − λ

Cmµ
Vn−1((Cm, R))

3.4 Adaptive Hysteresis for DBR

Fig. 3.2 shows a static hysteresis-based binary control system which has two

actions, namely 0 and 1, a controlled variable x, a threshold parameter Tx on

the controlled variable, and a hysteresis band parameter d. It is clear from the

figure that, when x drops below Tx − d, action 1 is taken and when it exceeds

Tx + d, in this case action 0 is taken. Otherwise no action is taken. For the

DBR problem, we propose an adaptive hysteresis algorithm with hysteresis-based

binary control in which the threshold and band parameters vary within the time.

This is performed by a leaky bucket mechanism. The details are given in the

following section.

3.4.1 Algorithm for Single-Class Case

In this version, we assume that we have a single virtual path with the maximum

allocated capacity Cm and the DBR process is done locally without knowing the

43



Figure 3.2: A binary control system using static hysteresis

bandwidth of the other VPs in the link. Algorithm 5 shows the details of the

proposed method.

3.4.2 Algorithm for Multi-Class Case

In this version, the dynamic bandwidth reservation is done locally for every

VP in a physical link with knowing the allocated bandwidths of the other VPs.

Algorithm 6 shows the details of the proposed method.

44



Algorithm 5 Adaptive Hysteresis for Single-Class Case
PARAMETERS:
i: event (call arrival or departure) index
β: desired update rate(updates/hour)
N(i): number of calls in progress after the i-th event
NL: number of calls when the last update occurred
R(i): reserved bandwidth after the i-th event
RL: reserved bandwidth when the last update occurred
Cm: maximum allocated capacity
bucket: leaky bucket parameter
d: hysteresis band barameter
Bm: maximum leaky bucket size
ti: inter-event time between ith and i − 1th events

THE ALGORITHM

bucket ⇐ bucket − tiβ/3600{leak the bucket}
bucket ⇐ max (0, bucket){guarantee the min bucket size}
d ⇐ Cm

Bm

bucket {adjust the hysteresis band}
if N(i) /∈ {NL − d, NL + d}orN(i) > RL then

if d = 0 then
R(i) ⇐ N(i){make a decision}

else
R(i) ⇐ min (Cm, N(i) + ⌈d⌉){make a decision}

end if
if R(i) 6= RL then

bucket ⇐ min (Bm, bucket + 1){update the bucket}
d ⇐ Cm

Bm

bucket {adjust the hysteresis band}
RL ⇐ R(i) {Update the last reserved bandwidth}
NL ⇐ N(i) {Update the last number of calls}

end if
end if

45



Algorithm 6 Adaptive Hysteresis for Multi-Class Case
PARAMETERS:
n: number of classes.
ij : event (call arrival or departure) index of the j-th class
βj: desired update rate(updates/hour) of the j-th class
N j(ij): number of calls in progress after the i-th event in the j-th class
N j

L: number of calls when the last update occurred in the j-th class
Rj(ij): reserved bandwidth after the i-th event in the j-th class
Rj

L: reserved bandwidth when the last update occurred in the j-th class
Cm: maximum physical link capacity
bucketj : leaky bucket parameter of the j-th class
dj: hysteresis band parameter of the j-th class
Bj

m: maximum leaky bucket size of the j-th class
tji : inter-event time between ijth and ij − 1th of the j-th class

THE ALGORITHM

bucketj ⇐ bucketj − tjiβ
j/3600{leak the bucket}

bucketj ⇐ max (0, bucketj){guarantee the min bucket size}
dj ⇐ Cm

nBj
m

bucketj {adjust the hysteresis band}

if N j(ij) /∈ {N j
L − dj, N j

L + dj}orN j(ij) > Rj
L then

if dj = 0 then
Rj(ij) ⇐ N j(ij){make a decision}

else
Rj(ij) ⇐ min (Cm −

∑n−1
k=0,k 6=j Rk(ik), N j(ij) + ⌈dj⌉){make a decision}

end if
if Rj(ij) 6= Rj

L then
bucketj ⇐ min (Bj

m, bucketj + 1){update the bucket}
dj ⇐ Cm

nBj
m

bucketj {adjust the hysteresis band}

Rj
L ⇐ Rj(ij) {Update the last reserved bandwidth}

N j
L ⇐ N j(ij) {Update the last number of calls}

end if
end if

46



3.5 Performance Evaluation

3.5.1 Single-Class Case with Stationary Poisson Voice

Traffic

We have compared the performances of the adaptive hysteresis (the proposed

method), RVI, and synchronous approach under a stationary Poisson traffic in

terms of reserved bandwidth and the gain with respect to SVC approach. We

note that average reserved bandwidth by PVP and SVC approaches are included

as reference. For each simulation, the traffic parameters and assumptions are

given as follows;

• Maximum physical link capacity Cm = 16 identical channels

• Average service time 1/µ = 180 seconds

• Call blocking probability Pb = 0.01

• The call arrival rate λ = 0.0493055 calls/sec which can be calculated by

Erlang B formula using Cm, Pb, and µ.

• Maximum bucket size Bm = 16 for the proposed approach.

• Average update rate β is varied from 2 to 350 updates/hour for each

method.

• For RVI, we have chosen r such that the average update rate becomes the

same as those of others and also K = 1000, h = 1.

• We have taken the average of 5 simulations each having 107 calls.

47



Average Reserved Bandwidth

0 50 100 150 200 250 300 350

8

10

12

14

16

18

20

β (updates/hr)

av
er

ag
e 

re
se

rv
ed

 b
an

dw
id

th

 

 
PVP
adaptive hysteresis
SVC
RVI
synchronous approach

Figure 3.3: Average Reserved Bandwidth

0 50 100 150 200 250 300 350
−5

0

5

10

15

20

25

30

35

40

45

50

β (updates/hr)

G
ai

n 
w

ith
 r

es
pe

ct
 to

 S
V

C

 

 

adaptive hysteresis
RVI
synchronous approach

Figure 3.4: Gain with respect to SVC

In Fig. 3.3, we see the average bandwidth reserved by all methods. For PVP

approach, the reserved bandwidth is always equal to Cm which is 16 for this ex-

ample. For SVC approach, since the switching cost is not considered, it has the

48



minimum reservation which can be calculated by λ(1−Pb)/µ and is particularly

8.785 for this scenario. Between SVC and PVP bounds, all other approaches have

some reservations as a function of β. We observe that the proposed method and

RVI significantly outperform the synchronous approach since they take the ad-

vantage of asynchronous update epochs. When we compare the proposed method

with the RVI approach we see that up to 40 updates/hour, they have nearly

the same performance. After that point, we see that RVI slightly outperforms

the proposed method. On the other hand, we know that RVI and synchronous

approach assume a model to be available and they run only under stationary

Poisson traffic with known arrival and departure rates. However, adaptive hys-

teresis algorithm is model-free and it works without knowing the traffic rate and

process. Fig. 3.4 shows the gains attainable by all methods with respect to SVC

approach. For the synchronous approach, the achievable gains are varied from

0% to 25% with β. Again the proposed method and RVI outperform the syn-

chronous approach in terms of gain. The achievable gains are varied from 5%

to 45% for RVI and from 5% to 40% for adaptive hysteresis. Here we see that

the maximum achieved gain by the proposed method is only 5% less than the

optimum value.

In Fig. 3.5, we see the bandwidth reservation behavior of the proposed method

for different values of beta for 1800 seconds in the current scenario. Note that

the desired update rate β could be considered as available credits for bandwidth

updates. Our observations show that the proposed method in high updates rates,

uses only a portion of the available credits.

49



0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

time (s)

ba
nd

w
id

th

β = 5

 

 

call traffic
reservation

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

time (s)

ba
nd

w
id

th

β = 40

 

 

call traffic
reservation

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

time (s)

ba
nd

w
id

th

β = 100

 

 

call traffic
reservation

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

time (s)

ba
nd

w
id

th

β = 200

 

 

call traffic
reservation

Figure 3.5: Reserved Bandwidth by Adaptive Hysteresis for Different Values of

β

In order to describe how the proposed algorithm works, we construct an

example system that starts at t = 0 and for which Cm = Bm = 10, N(0+) = 5,

R(0+) = 6, B(0+) = 2 and β = 1/4 updates/min [38]. We assume at t = 0+,

50



a bandwidth update has just occurred. Note that with this choice of β we have

15 update opportunities per hour. Instead of a tele-traffic model, we introduce

arrivals and departures at pre-specified instances for this system. The evolution

of N(t), R(t), and the lower and upper hysteresis thresholds are illustrated in

Fig. 3.6.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

time (minutes)

nu
m

be
r 

of
 c

al
ls

 N
(t

) 
an

d 
re

se
rv

at
io

n 
R

(t
) N(t)

R(t)

upper threshold

lower threshold

Figure 3.6: The evolution of number of ongoing calls N(t) and the reservation

R(t) as a function of t for a sample scenario for which Cm = Bm = 10, N(0) = 5,

R(0) = 6, B(0) = 2 and β = 1/4 updates/min.

51



Convergence to Desired Update Rate (β)

10
0

10
1

10
2

10
3

10
4

10

15

20

25

30

35

time (hours)

m
ea

su
re

d 
up

da
te

 r
at

e 
U

(t
)

 

 
adaptive hysteresis
RVI
desired update rate (β)

Figure 3.7: Convergence to β

We define the measured update rate U(t) as a function of t as the average update

rate measured in the interval [0, t].Fig. 3.7 shows the convergence of U(t) to the

desired update rate as t → ∞ for the proposed technique and RVI. We see

that adaptive hysteresis converges faster than RVI. We know that real traffic

conditions have a non-stationary characteristics. Based on this characteristics

we can conclude that adaptive hysteresis can easily adapt the variable traffic

conditions in terms of β.

Comparison with Non-Linear Versions

In the adaptive hysteresis algorithm, when defining the hysteresis band param-

eter d, we have used Cm

Bm
bucket which is the linear version of the band control.

On the other hand, in order to investigate the performances of the non-linear

versions of the band control, we have proposed adaptive hysteresis-square ap-

proach with band Cm

B2
m

bucket2 and adaptive hysteresis-square-root approach with

52



band Cm√
Bm

√
bucket. In Fig. 3.8, we see the performances of the linear and non-

linear versions of the proposed algorithm. Adaptive hysteresis-square approach

performs a little bit better than the linear version. On the other hand, linear

approach significantly outperforms adaptive hysteresis-square-root approach.

0 50 100 150 200 250 300 350

8

10

12

14

16

18

20

β (updates/hr)

av
er

ag
e 

re
se

rv
ed

 b
an

dw
id

th

 

 
PVP
SVC
adaptive hsyteresis
adaptive hsyteresis−sqr
adaptive hsyteresis−sqrt

Figure 3.8: Average Reserved Bandwidth

0 50 100 150 200 250 300 350
−5

0

5

10

15

20

25

30

35

40

45

50

β (updates/hr)

G
ai

n 
w

ith
 r

es
pe

ct
 to

 S
V

C

 

 

adaptive hsyteresis
adaptive hsyteresis−sqr
adaptive hsyteresis−sqrt

Figure 3.9: Gain with respect to SVC

53



Fig. 3.9 shows the gains achievable by all versions with respect to SVC ap-

proach. Up to 100 updates/hour, linear and square versions perform nearly the

same. After that rate, square version exceeds the linear one about 1% percent.

Here we see that the square-root version is 5% outperformed by the others.

Varying Maximum Bucket Size (Bm)

In the same simulation scenario, we have varied maximum bucket size Bm for

several βs in order to see the effects of it to the gain with respect to SVC. Fig. 3.10

shows the attainable gains for several values of β. For each simulation except

β = 2.43, the maximum gains have been obtained when Bm = 16 which is equal

to Cm for the current simulation scenario. As a result, we can say that a suitable

choice of Bm could be Cm for single-class case and Cm/n for multi-class case.

2 4 8 16 32 64
0

5

10

15

20

25

30

35

40

45

50

Bmax

G
ai

n 
w

ith
 r

es
pe

ct
 to

 S
V

C

 

 
β = 2.43
β = 8.32
β = 12.00
β = 20.60
β = 31.97
β = 46.80
β = 63.30
β = 77.90
β = 106.20
β = 169.39
β = 351.40

Figure 3.10: Gains with respect to SVC by varying Bm

54



Varying Maximum Physical Link Capacity (Cm)

In order to study the effect of Cm on the proposed approach, we have designed

three simulation scenarios. For each scenario we have used the same service rate

which is 1/180. On the other hand, for each different Cm in each simulation,

we have chosen different arrival rates such that the loss probabilities to be 0.01

for each scenario. Then we have plotted the gain with respect to SVC for each

scenario as shown in Fig. 3.11. For this example, we see that the maximum

achievable gains for Cm = 8, 16, 32 are 60%, 45%, 30% respectively. From the

figure, it is clear that the systems with low capacity have more significant gains

than the high ones.

10
0

10
1

10
2

10
3

10
4

0

10

20

30

40

50

60

70

β (updates/hr)

G
ai

n 
w

ith
 r

es
pe

ct
 to

 S
V

C

 

 

Cm = 8
Cm = 16
Cm = 32

Figure 3.11: Gains with respect to SVC by varying Cm

3.5.2 Multi-Class Case with Stationary Poisson Voice

Traffic

Up to now, we have investigated the effects and properties of the proposed al-

gorithm in a single VP for a single class stream. However, a physical link can

55



consists of various VPs and traffic classes streaming in those VPs. For this rea-

son, we have designed an experiment which has the following parameters and

assumptions;

• Number of VPs = 6.

• Maximum physical link capacity Cm = 96 identical channels

• Average service time 1/µ = 180 seconds for each class

• Maximum call blocking probability Pb = 0.01 for each class

• The call arrival rate to each class, λ = 0.0493055 calls/sec which can be

calculated by Erlang B formula using Cm, Pb, and µ.

• Maximum bucket size Bm = 16.

• Average update rate β is varied from 2 to 350 updates/hour.

• We have taken the average of 5 simulations each having 2.107 calls.

Loss Reduction

While varying β, we have plotted the loss rates of any VP in the link. Unlike

single stream case for which the loss probability Pb stays the same for each β, the

loss probability for any VP in the link in multi-class case significantly reduces

as β increases. We can see from Fig. 3.12 that the loss probability reduces

approximately from 100 to 10−4 as β increases up to 350.

56



0 50 100 150 200 250 300 350 400
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

β (updates/hr)

av
er

ag
e 

lo
ss

 p
ro

ba
bi

lit
y 

(%
)

Figure 3.12: Loss probability for any VP in the physical link

Varying Number of Paths

In the same example, we have also varied the number of the VPs in order to

see the effects of the variation on the gain. We have studied three choices for

the number of streams n = 3, 6, 12. For each scenario, we have adjusted the

maximum physical capacity accordingly. Fig. 3.13 shows that as n increases the

gain increases as well.

57



10
0

10
1

10
2

10
3

10
4

0

5

10

15

20

25

30

35

β (updates/hour)

G
ai

n 
w

ith
 r

es
pe

ct
 to

 S
V

C

 

 

3 streams
6 streams
12 streams

Figure 3.13: Gains with respect to SVC by varying n

3.5.3 Non-Stationary Poisson Voice Traffic Case

In the previous parts, we have assumed that the call traffic is stationary with

rate λm = maxt λ(t) which is worst case scenario. On the other hand, in re-

alistic networks, the call arrival rate varies over the time. In order to see the

performance of the proposed algorithm in a non-stationary traffic, we have set

up an experiment which has the wide area network (WAN) topology as shown

in fig 3.14. In this topology, we have considered the traffic between the nodes 2

and 3. The activity model has been taken from [33] and λ(t) has been calculated

for 24 hours as shown in fig 3.15.

58



Figure 3.14: A 5-node wide area network topology

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

GMT hours

λ(
t)

 (
ca

lls
/s

)

Figure 3.15: λ(t) between the nodes 2 and 3

59



Under this traffic, we have evaluated the reserved bandwidth and gain with

respect to SVC for a single VP. The other traffic parameters kept the same as

those of the stationary Poisson scenario. In fig 3.16, we can see the reserved

bandwidth in the current traffic scenario. As compared to the stationary case, it

is relatively smaller and closer to SVC. Also, fig 3.17 shows that the maximum

achievable gain varies from 44% to 74% as β increases. Note that the loss prob-

ability stayed about 0.29% for each β. From these results, we can conclude that

the maximum achievable gains in non-stationary traffics significantly increase

with the proposed algorithm.

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

14

16

β (updates/hr)

av
er

ag
e 

re
se

rv
ed

 b
an

dw
id

th

 

 

PVP
adaptive hysteresis
SVC

Figure 3.16: Average Reserved Bandwidth

60



0 50 100 150 200 250 300 350 400
40

45

50

55

60

65

70

75

β (updates/hr)

G
ai

n 
w

ith
 r

es
pe

ct
 to

 S
V

C

Figure 3.17: Gain with respect to SVC

3.5.4 Single-Class Case with Self-Similar Internet Data

Traffic

In the original algorithm, which has been used for the DBR problem in voice

traffic, the system state is defined by the number of calls at any time instant.

On the other hand, in the self-similar Internet traffic, we define the system state

as the current used bandwidth in a path. This bandwidth value is periodically

measured and at the end of each measurement a decision is made. We have

tested the proposed method under several synthetic traces and a one-day trace

taken from a traffic data repository maintained by the MAWI (Measurement and

Analysis on the WIDE Internet) Working Group of the WIDE Project [1]. We

have also compared the results with CISCO’s auto-bandwidth allocator (referred

to as cisco-aba in short) since it is measurement based and used for data traffic

[32]. For the synthetic traffic generation, we have used the following parameters;

• Maximum physical link capacity Cm = 10 Mbps

61



• Simulation length is set to 30 days

• Flow arrival process is Poisson with λ(t) as shown in fig 3.15.

• Flow lengths are pareto distributed with hurst parameter 0.8

• Packet size distribution is taken from Table 2.1 which uses the traffic traces

from [1]

• Monitoring period is set to 300 seconds (5 Minutes)

Under these conditions, we have varied the parameters Bm and β, and ob-

tained the gain with respect to maximum link capacity. Fig. 3.18 shows the

attainable gains for several values of Bm and β. As expected, when we increase

β, the achievable gains increase as well. We have also observed that when Bm is

set to Cm or 5Cm, we can approximately obtain the maximum achievable gains

for each β.

5 10 20 50 100 500 1000
55

60

65

70

75

G
ai

n 
w

ith
 r

es
pe

ct
 to

 C
m

ax
 (

%
)

Bmax

 

 

β = 1

β = 2

β = 3

Figure 3.18: Gains with respect to Cm by varying Bm and β

By setting Bm to 5Cm, we have compared the losses (%) and gains (%) of

cisco-aba and adp-hys for different values of β as shown in Table 3.1. As we

62



Table 3.1: Performance Comparison

β loss ( cisco-aba) loss ( adp-hys) gain ( cisco-aba) gain ( adp-hys)

0.300 12.111 0.084 63.023 58.696

1.000 5.218 0.389 69.234 67.257

2.000 2.898 0.600 70.588 69.172

3.000 2.178 0.796 71.260 69.951

see in the table, cisco-aba has a little bit higher gains (about 5% to 1%) than

adp-hys. On the other hand, cisco-aba permits huge loss rates while adp-hys

allows very small losses. For the visualization, we have also 2-day snapshot of

the bandwidth reservations done by cisco-aba and adp-hys for beta set to 0.3

and 1 updates/hour as shown in Fig. 3.19 and Fig. 3.20 respectively.

3.8 4 4.2 4.4 4.6 4.8 5

x 10
5

0

2

4

6

8

10

time (s)

ba
nd

w
id

th
 (

M
bp

s)

 

 

bit rate
reservation (cisco aba)

3.8 4 4.2 4.4 4.6 4.8 5

x 10
5

0

2

4

6

8

10

time (s)

ba
nd

w
id

th
 (

M
bp

s)

 

 

bit rate
reservation (adp hys)

Figure 3.19: Bandwidth reservation with β = 0.3

63



3.8 4 4.2 4.4 4.6 4.8 5

x 10
5

0

2

4

6

8

10

time (s)

ba
nd

w
id

th
 (

M
bp

s)

 

 

bit rate
reservation (cisco aba)

3.8 4 4.2 4.4 4.6 4.8 5

x 10
5

0

2

4

6

8

10

time (s)

ba
nd

w
id

th
 (

M
bp

s)

 

 

bit rate
reservation (adp hys)

Figure 3.20: Bandwidth reservation with β = 1

We have also compared the bandwidth reservations under a real traffic trace

obtained from the WIDE backbone at Sample Point B on May 14, 1999 for US-

Japan link with 10 Mbps link speed [1]. Since the trace is not long enough to

compare the gains and losses, we have only shown the reserved bandwidths in

Fig. 3.21 and Fig. 3.22 done by cisco-aba and adp-hys for beta set to 0.3 and 1

updates/hour respectively.

64



0 1 2 3 4 5 6 7 8

x 10
4

0

2

4

6

8

10

time (s)

ba
nd

wi
dt

h 
(M

bp
s)

 

 

bit rate
reservation (cisco aba)

0 1 2 3 4 5 6 7 8

x 10
4

0

2

4

6

8

10

time (s)

ba
nd

wi
dt

h 
(M

bp
s)

 

 

bit rate
reservation (adp hys)

Figure 3.21: Bandwidth reservation with β = 0.3

0 1 2 3 4 5 6 7 8

x 10
4

0

2

4

6

8

10

time (s)

ba
nd

wi
dt

h 
(M

bp
s)

 

 

bit rate
reservation (cisco aba)

0 1 2 3 4 5 6 7 8

x 10
4

0

2

4

6

8

10

time (s)

ba
nd

wi
dt

h 
(M

bp
s)

 

 

bit rate
reservation (adp hys)

Figure 3.22: Bandwidth reservation with β = 1

65



Chapter 4

CONCLUSIONS

In this thesis, we have studied two problems arising in communication networks.

In the first problem, we have proposed two dynamic-threshold based algorithms

that aim at the reduction of average assembly delays (packet or byte delays) at the

burst assembly buffers located at the edge of an OBS network while conforming

to a desired burst rate. Moreover, enforcement of lower and upper burst length

limits is embedded in these algorithms. The major contribution of this part is

the significant reduction of average assembly delays while keeping the short- and

long-term burst rates close to the desired burst rate by means of dynamically

adjusting the assembly threshold in case of changing traffic conditions. The

benefits of the proposed algorithms are demonstrated with both synthetic traffic

and actual traffic traces. Moreover, the algorithms are model-free and simple to

implement making them viable alternatives for the design and implementation

of burst assembly units in next-generation OBS systems.

In the second problem, we have presented an adaptive hysteresis algorithm for

dynamic bandwidth reservations focusing on the reduction of the reserved band-

width in a connection-oriented network while limiting the average update rate

to a desired update rate in both long and short terms. We have observed that

66



the major contribution of the algorithm is notable bandwidth gains with certain

desired update rates without requiring any traffic model and prior information.

Moreover, using some optimization techniques in which the traffic model is as-

sumed to be known, we have shown that the performance of the proposed scheme

is very close to the optimum. In addition to potential enhancements in band-

width use, the simplicity of the proposed algorithm offers a promising solution

to network administrators for engineering next-generation connection-oriented

networks.

67



Bibliography

[1] K. Cho, K. Mitsuya, and A. Kato, “Traffic data repository main-

tained by the MAWI Working Group of the WIDE Project,

http://mawi.wide.ad.jp/mawi.”

[2] Matisse Networks, http://www.matissenetworks.com/.

[3] C. Qiao and M. Yoo, “Optical burst switching (OBS) - a new paradigm for

an optical Internet,” J. High Speed Networks, vol. 8, no. 1, pp. 69–84, 1999.

[4] S. Verma, H. Chaskar, and R. Ravikanth, “Optical burst switching: a viable

solution for terabit IP backbone,” IEEE Network Mag., vol. 14, no. 6, pp. 48–

53, 2000.

[5] M. de Prycker, Asynchronous transfer mode: Solution for Broadband ISDN.

Prentice Hall PTR, 1995.

[6] B. Davie and Y. Rekhter, MPLS: Technology and Applications. Morgan

Kaufmann Publishers, 2000.

[7] F. Baker, C. Iturralde, F. Le Faucheur, and B. Davie, “Aggregation of RSVP

for IPv4 and IPv6 reservations,” Work in Progress.

[8] A. Ge, F. Callegati, and L. Tamil, “On optical burst switching and self-

similar traffic,” Communications Letters, IEEE, vol. 4, pp. 98–100, Mar

2000.

68



[9] V. M. Vokkarane, K. Haridoss, and J. P. Jue, “Threshold-based burst as-

sembly policies for QoS support in optical burst-switched networks,” in in

Proc. SPIE OptiComm 2002, pp. 125–136, 2002.

[10] X. Yu, Y. Chen, and C. Qiao, “Study of traffic statistics of assembled burst

traffic in optical burst switched networks,” in Proc. Opticomm, pp. 149–159,

2002.

[11] X. Cao, J. Li, Y. Chen, and C. Qiao, “Assembling TCP/IP packets in optical

burst switched networks,” in IEEE GLOBECOM, vol. 3, pp. 2808–2812,

Nov. 2002.

[12] S.-Y. Oh, H. H. Hong, and M. Kang, “A data burst assembly algorithm in

optical burst switching networks,” ETRI Journal, vol. 24, no. 4, pp. 311–322,

2002.

[13] P. Du and S. Abe, “Burst assembly method with traffic shaping for the

optical burst switching network,” in IEEE GLOBECOM, (San Francisco,

CA, USA), 27 2006-Dec. 1 2006.

[14] N. Korkakakis and K. Vlachos, “An adaptive burst assembly scheme for

OBS-GRID networks,” in Communication Systems, Networks and Digital

Signal Processing, 2008. CNSDSP 2008. 6th International Symposium on,

pp. 414–417, July 2008.

[15] J. N. T. Sanghapi, H. Elbiaze, and M. Zhani, “Adaptive burst assembly

mechanism for OBS networks using control channel availability,” in Trans-

parent Optical Networks, 2007. ICTON ’07. 9th International Conference

on, vol. 3, pp. 96–100, July 2007.

[16] X. Yu, Y. Chen, and C. Qiao, “Performance evaluation of optical burst

switching with assembled burst traffic input,” in IEEE Global Telecommu-

nications Conference, 2002. GLOBECOM’02, vol. 3, 2002.

69



[17] W. Leland, M. Taqqu, W. Willinger, D. Wilson, and M. Bellcore, “On

the self-similar nature of Ethernet traffic (extended version),” IEEE/ACM

Transactions on networking, vol. 2, no. 1, pp. 1–15, 1994.

[18] X. Yu, J. Li, X. Cao, Y. Chen, and C. Qiao, “Traffic statistics and perfor-

mance evaluation in optical burst switched networks,” Lightwave Technol-

ogy, Journal of, vol. 22, no. 12, pp. 2722–2738, 2004.

[19] G. Hu, K. Dolzer, and C. Gauger, “Does burst assembly really reduce the

self-similarity?,” in Optical Fiber Communications Conference, 2003. OFC

2003, pp. 124–126, 2003.

[20] J. H. Hong and K. Sohraby, “On the asymptotic analysis of packet aggre-

gation systems,” in Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, 2007. MASCOTS ’07. 15th International Sym-

posium on, pp. 353–359, Oct. 2007.

[21] H. Heffes and D. Lucantoni, “A Markov modulated characterization of pack-

etized voice and date traffic and related statistical multiplexer performance,”

JSAC, vol. 4, no. 6, pp. 856–868, 1986.

[22] L. Muscariello, M. Meillia, M. Meo, M. Marsan, and R. Cigno, “An mmpp-

based hierarchical model of internet traffic,” in Communications, 2004 IEEE

International Conference on, vol. 4, pp. 2143–2147, June 2004.

[23] T. Bohnert and E. Monteiro, “A comment on simulating LRD traffic with

pareto ON/OFF sources,” in Proceedings of the 2005 ACM conference on

Emerging network experiment and technology, pp. 228–229, ACM New York,

NY, USA, 2005.

[24] S. Ohta and K. Sato, “Dynamic bandwidth control of the virtual path in an

asynchronous transfer mode network,” IEEE Transactions on Communica-

tions, vol. 40, no. 7, pp. 1239–1247, 1992.

70



[25] A. Orda, G. Pacifici, and D. Pendarakis, “An adaptive virtual path alloca-

tion policy for broadband networks,” in Proceedings IEEE INFOCOM’96.

Fifteenth Annual Joint Conference of the IEEE Computer Societies. Net-

working the Next Generation, vol. 1, 1996.

[26] U. Mocci, P. Pannunzi, and C. Scoglio, “Adaptive capacity management

of virtual path networks,” in Global Telecommunications Conference, 1996.

GLOBECOM’96.’Communications: The Key to Global Prosperity, vol. 1,

1996.

[27] H. Levy, T. Mendelson, and G. Goren, “Dynamic allocation of resources

to virtual path agents,” IEEE/ACM Transactions on Networking (TON),

vol. 12, no. 4, pp. 746–758, 2004.

[28] B. Krithikaivasan, K. Deka, and D. Medhi, “Adaptive bandwidth provision-

ing envelope based on discrete temporal network measurements,” in INFO-

COM 2004. Twenty-third Annual Joint Conference of the IEEE Computer

and Communications Societies, vol. 3, 2004.

[29] M. Gursoy, J. Hui, N. Moayeri, and R. Yates, “A layered broadband switch-

ing architecture with physical or virtualpath configurations,” IEEE Journal

on Selected Areas in Communications, vol. 9, no. 9, pp. 1416–1426, 1991.

[30] T. Anjali, C. Scoglio, and G. Uhl, “A new scheme for traffic estimation and

resource allocation for bandwidth brokers,” Computer Networks, vol. 41,

no. 6, pp. 761–777, 2003.

[31] T. Anjali, C. Bruni, D. Iacoviello, and C. Scoglio, “Dynamic bandwidth

reservation for label switched paths: An on-line predictive approach,” Com-

puter Communications, vol. 29, no. 16, pp. 3265–3276, 2006.

[32] M. Cisco, “AutoBandwidth Allocator for MPLS Traffic Engineering: A

Unique New Feature of Cisco IOS Software,” White Paper, Cisco Systems.

71



[33] J. Milbrandt, M. Menth, and S. Kopf, “Adaptive bandwidth allocation for

wide area networks,” in COST-279 Management Committee Meeting, An-

talya, Turkey, 2005.

[34] S. Dasgupta, J. de Oliveira, and J. Vasseur, “A new distributed dynamic

bandwidth reservation mechanism to improve resource utilization,” in Pro-

ceedings of IEEE INFOCOM, 2006.

[35] S. Dasgupta, J. de Oliveira, and J. Vasseur, “Trend based bandwidth provi-

sioning: An online approach for traffic engineered tunnels,” Next Generation

Internet Networks, 2008. NGI 2008, pp. 53–60, 2008.

[36] A. Reibman and K. Trivedi, “Numerical transient analysis of Markov mod-

els,” Computers and Operations Research, vol. 15, no. 1, pp. 19–36, 1988.

[37] H. Tijms, A First Course in Stochastic Models. John Wiley and Sons, 2003.

[38] N. Akar, “Model-free adaptive hysteresis for dynamic bandwidth reserva-

tion,” in International Symposium on Modeling, Analysis, and Simulation

of Computer and Telecommunication Systems, 2007. MASCOTS’07. 15th,

pp. 331–336, 2007.

72


