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ABSTRACT

FUNCTION AND SECRET SHARING EXTENSIONS
FOR BLAKLEY AND ASMUTH-BLOOM SECRET

SHARING SCHEMES

İlker Nadi Bozkurt

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Ali Aydın Selçuk

August, 2009

Threshold cryptography deals with situations where the authority to initiate or

perform cryptographic operations is distributed amongst a group of individuals.

Usually in these situations a secret sharing scheme is used to distribute shares

of a highly sensitive secret, such as the private key of a bank, to the involved

individuals so that only when a sufficient number of them can reconstruct the

secret but smaller coalitions cannot. The secret sharing problem was introduced

independently by Blakley and Shamir in 1979. They proposed two different so-

lutions. Both secret sharing schemes (SSS) are examples of linear secret sharing.

Many extensions and solutions based on these secret sharing schemes have ap-

peared in the literature, most of them using Shamir SSS. In this thesis, we apply

these ideas to Blakley secret sharing scheme.

Many of the standard operations of single-user cryptography have counter-

parts in threshold cryptography. Function sharing deals with the problem of

distribution of the computation of a function (such as decryption or signature)

among several parties. The necessary values for the computation are distributed

to the participants using a secret sharing scheme. Several function sharing

schemes have been proposed in the literature with most of them using Shamir

secret sharing as the underlying SSS. In this work, we investigate how function

sharing can be achieved using linear secret sharing schemes in general and give

solutions of threshold RSA signature, threshold Paillier decryption and threshold

DSS signature operations. The threshold RSA scheme we propose is a generaliza-

tion of Shoup’s Shamir-based scheme. It is similarly robust and provably secure

under the static adversary model.

In threshold cryptography the authorization of groups of people are decided
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simply according to their size. There are also general access structures in which

any group can be designed as authorized. Multipartite access structures consti-

tute an example of general access structures in which members of a subset are

equivalent to each other and can be interchanged. Multipartite access structures

can be used to represent any access structure since all access structures are mul-

tipartite. To investigate secret sharing schemes using these access structures,

we used Mignotte and Asmuth-Bloom secret sharing schemes which are based

on the Chinese remainder theorem (CRT). The question we tried to asnwer was

whether one can find a Mignotte or Asmuth-Bloom sequence for an arbitrary

access structure. For this purpose, we adapted an algorithm that appeared in the

literature to generate these sequences. We also proposed a new SSS which solves

the mentioned problem by generating more than one sequence.

Keywords: secret sharing, threshold cryptography, function sharing, multipartite

access structures.



ÖZET

BLAKLEY VE ASMUTH-BLOOM ANAHTAR
PAYLAŞTIRMA YÖNTEMLERİ İÇİN FONKSİYON VE

ANAHTAR PAYLAŞTIRMA EKLENTİLERİ

İlker Nadi Bozkurt

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Ali Aydın Selçuk

Ağustos, 2009

Eşik kriptografisi, kriptografik bir işlemin gerçekleştirilebilmesi için gerekli

olan yetkinin birden çok kullanıcı arasında paylaştırılması gereken durum-

larla ilgilenir. Böyle durumlarda genellikle, bir bankanın gizli kriptografik

anahtarı gibi çok gizli bir bilgi, bir anahtar paylaşım yöntemi kullanarak, belli

sayıda katılımcının gizli bilgiye ulaşabileceği; ancak daha az sayıdaki grupların

ulaşamayacağı şekilde bir grup insan arasında paylaştırılır. Anahtar paylaşım

problemi ve ilk çözümleri 1979 yılında birbirlerinden bağımsız biçimde Shamir ve

Blakley tarafından sunulmuştur. Birbirinden farklı olan bu iki anahtar paylaşım

yöntemi de lineer bir anahtar paylaşımı yöntemidir. Literatürde anahtar paylaşım

yöntemlerine birçok eklenti yapılmış ve bu yöntemlere dayanan birçok çözüm yer

almıştır. Literatürdeki pek çok eklenti temel olarak Shamir anahtar paylaşım

yöntemini kullanmıştır. Bu çalışmada Shamir anahtar paylaşım yöntemi için

önerilmiş olan bazı eklentilerin Blakley anahtar paylaşım yöntemine nasıl uygu-

lanabilecekleri gösterilmiştir.

Standart tek kullanıcılı pek çok kriptografik işlemin eşik kriptografisinde

karşılığı vardır. Fonksiyon paylaştırılması problemi, kriptografik bir operasyonun

(örneğin şifre çözme veya nitelikli imza atma) hesaplanmasının farklı katılımcılar

arasında paylaştırılması ile ilgilidir. Hesaplama için gerekli değerler, uygun bir

anahtar paylaşım yöntemi kullanarak taraflara dağıtılır. Daha önce literatürde,

pek çoğu Shamir’in anahtar paylaşımını kullanan bir çok fonksiyon paylaşım

yöntemi yer almıştır. Bu çalışmada, lineer anahtar paylaşım yöntemleri kul-

lanarak fonksiyon paylaşımının nasıl yapılabileceği incelenmiş ve RSA imzası

oluşturma, Pailier şifre çözme ve Sayısal İmza Standardı (DSS) imzası oluşturma

için çözümler sunulmuştur. Bu çalışmada önerilen eşik RSA yöntemi Shoup’un
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Shamir anahtar paylaşımı temelli yönteminin bir genellemesidir. Bu yöntem, ben-

zer bir şekilde sağlam ve sabit düşman modelinde kanıtlanabilir şekilde güvenlidir.

Eşik kriptografisinde grupların yetkilendirilmesi basitçe sadece grubun

büyüklüğü göz önüne alınarak yapılır. Bundan başka, istenen herhangi bir

grubun yetkilendirilebildiği genel erişim yapıları vardır. Kullanıcıların gruplara

ayrıldığı ve grup içindeki kullanıcıların birbirlerinin dengi olduğu çok bölümlü

erişim yapıları genel erişim yapılarının bir örneğini oluştururlar. Bu erişim yapısı

herhangi bir erişim yapısını göstermek için kullanılabilir, çünkü bütün erişim

yapıları çok bölümlüdür. Bu erişim yapılarını kullanarak anahtar paylaşımı prob-

lemini incelemek için Çin kalan teoremine dayanan Mignotte ve Asmuth-Bloom

anahtar paylaşım yöntemleri kullanıldı. Cevaplamaya çalıştığımız soru herhangi

bir erişim yapısı için Mignotte veya Asmuth-Bloom dizilerinin bulunup buluna-

mayacağıdır. Bu amaç için literatürde yer alan bir yöntem uyarlanarak bu diziler

oluşturulmuştur. Buna ek olarak, bahsedilen problemi birden çok dizi oluşturarak

çözen yeni bir anahtar paylaşım yöntemi önerilmiştir.

Anahtar sözcükler : eşik kriptografisi, anahtar paylaşım yöntemleri, fonksiyon

paylaşımı, çok kısımlı erişim yapıları.
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Chapter 1

Introduction

1.1 Secret Sharing Schemes

The secure storage of the private keys of a cryptosystem is an important problem.

Possession of a highly sensitive key by an individual may not be desirable as the

key can easily be lost or as the individual may not be fully trusted. Giving

copies of the key to more than one individual increases the risk of compromise.

A solution to this problem is to give shares of the key to several individuals,

forcing them to cooperate to find the secret key. This not only reduces the risk of

losing the key but also makes compromising the key more difficult. In threshold

cryptography, secret sharing deals with this problem, namely, sharing a highly

sensitive secret among a group of n users such that only when a sufficient number

t of them come together can the secret be reconstructed. More formally, in a

secret sharing scheme there is one dealer and n players. The dealer gives a secret

to the players, but only when some specific conditions are fulfilled. The dealer

accomplishes this by giving each player a share in such a way that any group of t

(for threshold) or more players can together reconstruct the secret but no group

of fewer than t players can. Such a system is called a (t, n)-threshold scheme

(sometimes it is written as an (n, t)-threshold scheme).

The problem of secret sharing and the first solutions were introduced in 1979

1
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Figure 1.1: Shamir secret sharing scheme

independently by Shamir [48] and Blakley [3]. The approaches of Shamir and

Blakley to solving the secret sharing problem were quite different, but the essential

notion is the same in both cases. Other secret sharing schemes soon appeared

in the literature. Mignotte [40] and Asmuth-Bloom [1] secret sharing schemes

are based on Chinese remainder theorem (CRT). They solve exactly the same

problem with Shamir and Blakley SSS but the approach is entirely different.

Shamir’s and Blakley’s solutions are also different but their secret sharing schemes

are members of the family of linear secret sharing schemes [32]. We will explain

in detail Shamir, Blakley and linear secret sharing schemes in this introductory

chapter. We will explain Mignotte and Asmuth-Bloom secret sharing schemes in

Chapter 4.

1.1.1 Shamir Secret Sharing Scheme

Shamir’s solution to the secret sharing problem is based on polynomial interpo-

lation over a finite field GF (q) (Galois field of prime order q). Figure 1.1 shows

the basic idea. Given t points in the two dimensional plane, (xi, yi), i = 1, 2, . . . , t

there is a unique polynomial f(x) of degree t − 1, for which f(xi) = yi for all i.
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If the secret is taken to be an element d ∈ GF (q), it can be partitioned into n

shares as follows. A polynomial f(x) =
∑t−1

i=0 aix
i, is generated such that a0 is set

to the secret value d and the coefficients a1 to at−1 are assigned random values

from the Galois field GF (q). The value di = f(i) is given to user i.

When t out of n users come together, they can construct the polynomial using

Lagrange interpolation. Without loss of generality assume players 1, 2, . . . , t want

to obtain the secret d. They compute d as follows:

d =
t∑
i=1

(di ·
∏
j 6=i

xj
xj − xi

). (1.1)

1.1.2 Blakley Secret Sharing Scheme

Blakley secret sharing scheme has a different approach based on hyperplane ge-

ometry: To implement a (t, n) threshold scheme, each of the n users is given a

hyperplane equation in a t dimensional space over a finite field GF (q) such that

each hyperplane passes through a certain point. The intersection point of the

hyperplanes is the secret. When t users come together, they can solve the system

of equations to find the secret.

Figure 1.2 shows an example realization of Blakley SSS. Here t = 2, so each

hyperlane equation is actually a line equation in the 2-dimensional space.

Blakley proposed choosing the hyperplanes that pass through the secret point

randomly. If q is sufficiently large and t is not large, then the probability that any

t of the hyperplanes intersect in some point other than the secret point is close to

zero [3]. Thus generally it is possible to find the secret from any t of the n shares.

However, it may not be possible to find the intersection point in some cases. In

this case the resulting matrix is singular, i.e. the determinant is zero. The prob-

ability that a randomly chosen t× t matrix with elements chosen from the finite

field GF (q) is nonsingular can be computed by
(

1− 1
q

)(
1− 1

q2

)
. . .
(

1− 1
qt

)
[36].

This follows from the fact that the first column can be anything but the zero vec-

tor, the second column can be anything but the multiples of the first column,

and in general the k-th column can be any vector not in the linear span of the
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d

Figure 1.2: Blakley secret sharing scheme for t = 2

first k− 1 columns. When the prime q is large, this probability is high enough to

insure that the matrix will be invertible.

1.1.3 Linear Secret Sharing Schemes

Both Shamir and Blakley are linear threshold secret sharing schemes: As

Karnin et al. [32] observed, Shamir SSS is a subclass of a broader class of linear

secret sharing schemes. The polynomial share computation can be represented

as a matrix multiplication by using a Vandermonde matrix. Similarly, the secret

and the shares of the Blakley SSS can be represented as a linear system Ax = y

where the matrix A and the vector y are obtained from the hyperplane equations.

More formally, a linear (t, n) threshold secret sharing scheme (LSSS) can be

defined as follows: Let F be a finite field and let A be a full-rank public n × t
matrix with entries chosen from F . Let x = (x1, x2, . . . , xt)

T be a secret vector

from F t. Let aij denote the entry at the ith row and jth column of the matrix

A.
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1.1.3.1 Dealing Phase

The dealer chooses a secret vector x ∈ F t where the first entry x1 is set to the

secret value and the values of the other coordinates are set randomly from the

field F . The ith user will get a his share yi ∈ F ,

yi = ai1x1 + ai2x2 + . . .+ aitxt. (1.2)

For a (t, n) threshold scheme there will be n such shares, and hence we will have

an n× t linear system

Ax = y. (1.3)

The dealer then sends the secret value of yi to user i for 1 ≤ i ≤ n and makes

the matrix A public.

1.1.3.2 Share Combining Phase

Share combining step is simply finding the solution of a linear system of equations.

Suppose that a coalition S = {i1, . . . , it} of users come together. They form a

matrix AS using their equations and solve

ASx = yS , (1.4)

where yS is the vector of the secret shares of the users. The secret is found as the

first coordinate of the solution.

Most of the proposed secret sharing schemes are linear (the exceptions

Mignotte and Asmuth-Bloom secret sharing schemes will be examined in Chapter

4), but the concept of an LSSS was first considered in its full generality by Karch-

mer and Wigderson [31] who introduced the notion of Monotone Span Programs.

Definition 1. A Monotone Span Program M is a triple (K,M,ψ), where K

is a finite field, M is a matrix (with n rows and m ≤ n columns) over K, and

ψ : {1, . . . ,m} → {1, . . . , n} is a surjective (onto) function. The size of M is the

number of rows (m).
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ψ labels each row with a number from 1, . . . , n corresponding to a player, so

we can think each player as being the owner of one or more rows.

MSP’s and LSSS’s are in natural 1-1 correspondence as mentioned by Karch-

mer and Wigderson.

1.2 Properties of Secret Sharing Schemes

An important concept related to secret sharing schemes is information rate which

compares the sizes of the shares to the size of the secret. It is introduced by

Brickell [6] and is defined as follows:

ρ =
log2(|dshares|)

log2(|d|)
. (1.5)

Obviously having a high information rate is a desirable feature in secret shar-

ing schemes. Secret sharing schemes with information rate equal to 1 are called

ideal by Brickell.

Another important concept is perfectness. A secret sharing scheme is said to

be perfect, when coalitions of size less than the threshold cannot obtain additional

information about the secret compared to someone who does not have any shares

or information about the secret. That is, until there are t players in the coalition,

all values of the secret should be equally likely.

Shamir’s scheme is perfect and ideal. The size of the shares is equal to the

size of the secret. So, it is ideal. Also, for a given polynomial of degree t− 1 and

t− 1 points on the polynomial, we can choose any point to be on the polynomial

and for each different point, the value of the polynomial at 0 will differ. So all

values are equally likely to be secret. Hence, Shamir’s scheme is also perfect.

Blakley’s secret sharing scheme is not ideal. Every user is given a hyperplane

equation, instead of a number the same size as the secret, lowering the informa-

tion rate below to 1. If we take the secret as the intersection point itself, then

the scheme is not perfect. Because each hyperplane equation narrows down the
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possibilities and when there are t− 1 hyperplane equations it is guaranteed that

the secret point lies in the intersection of all t − 1 hyperplanes, which is a line.

However, by choosing the secret as one of the coordinates (we choose the first

coordinate), Blakley’s scheme can be made perfect.

1.3 Extensions to Secret Sharing

In this section we will discuss several extensions to secret sharing schemes and

cover the secret sharing literature that dealt with these extensions. In the next

chapter, Blakley secret sharing will be enhanced with some of these extensions.

The presented secret sharing schemes solve the problem of making the secret

available to sufficiently large coalitions. But the coalitions can actually recover

the secret only if the following two conditions are met:

1. The dealer is honest and distributes consistent shares to each user

2. The users who participate in the secret recovery phase are honest and send

correct shares.

Obviously if an adversary corrupts the dealer and/or some participants, he

can prevent the successful recovery of the secret. Moreover, if he can find corrupt

enough users he may be able to destroy the secret. For example, if n = 2t − 1

and the adversary corrupts more than t− 1 participants, then the secret is lost.

Verifiability extension deals with these problems. In a verifiable secret sharing

scheme, the users are able to verify that their shares are consistent.

The case of a possible dishonest dealer has been discussed for the first time by

Chor, Goldwasser, Micali, and Awerbuch [8], who introduced the notion of verifi-

able secret sharing schemes in which every user can verify that he has received a

valid share. After Chor et al. more efficient non-interactive verifiable secret shar-

ing schemes were proposed by Feldman [17] and Pedersen [45]. The security of
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the Feldman’s scheme depends on the hardness of the discrete logarithm problem

whereas Pedersen’s scheme is information theoretically secure.

The problem of cheating in the reconstruction phase has been discussed by

McEliece and Sarwate [38], and later on, by Tompa and Wool [50]. As Schoen-

makers has remarked in [47], verifiable secret sharing can also be seen as a solution

for the problem of cheating — the shares presented in the reconstruction phase

may be verified with respect to the distribution phase.

A further extension to secret sharing is public verifiability. In a publicly

verifiable secret sharing scheme, the users are able to verify that distributed

shares are consistent with each other. This property is included in the seminal

paper of Chor et al. on verifiable secret sharing schemes. However, both Feldman

and Pedersen’s schemes do not support public verifiability.

As described above, the secrecy of the secret is protected if less than t players

are corrupted. However, if the secret sharing scheme and therefore the secret is

long lived, an adversary may corrupt enough players in this long time period.

To prevent this problem, proactive secret sharing schemes are proposed. In [25],

Herzberg et al. proposed a proactive secret sharing scheme where the shares

are renewed periodically without changing the secret. Because of the proactivity

property, an adversary has to corrupt t users in a specific time period (share

update period) e.g., a day, a week or a month.

1.4 Function Sharing Schemes

A shortcoming of secret sharing schemes is the need to reveal the secret shares

during the reconstruction phase. The system would be more secure if the subject

function can be computed without revealing the secret shares or reconstructing

the secret. This is known as the function sharing problem. A function sharing

scheme (FSS) requires distributing the function’s computation according to the

underlying SSS such that each part of the computation can be carried out by a

different user and then the partial results can be combined to yield the function’s
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value without disclosing the individual secrets.

FSSs are typically used to distribute the private key operations in a public

key cryptosystem (i.e. the decryption and signature operations) among several

parties. Sharing a private key operation in a threshold fashion requires first

choosing a suitable SSS to share the private key. Then the subject function

must be arranged according to this SSS such that combining the partial results

from any t parties will yield the operation’s result correctly. This is usually a

challenging task and requires some ingenious techniques.

Function sharing problem is formally introduced by Desmedt and Frankel in

1989 [12]. They also proposed non-interactive and practical threshold function

sharing schemes for ElGamal encryption scheme. The solutions they proposed

were based on Shamir and Blakley SSS.

After Desmedt and Frankel’s work, the function sharing problem for RSA

public-key cryptosystem was investigated by several researchers where Shamir

SSS was the main tool. The additive nature of the Lagrange’s interpolation

formula used in the combining phase of Shamir’s scheme makes it an attractive

choice for function sharing, but it also provides several challenges. One of the

most significant challenges is the computation of inverses in Zφ(N) for the division

operations in Lagrange’s formula, while φ (N) should not be known by the users.

There are two main difficulties in this respect:

1. An inverse x−1 will not exist modulo φ (N) if gcd (x, φ(N)) 6= 1.

2. Even when x−1 exists it should not be computable by a user, since that

would enable computing φ (N).

The first solution to this problem was proposed by Desmedt and Frankel [12],

which solved the problem by making the dealer compute all potentially needed

inverses at the setup time and distribute them to users along with the shares. A

more elegant solution was found three years later by DeSantis et al. [46]. They

carried the arithmetic into a cyclomatic extension of Z, which enabled computing

inverses without knowing φ(N). Finally, an ingenious solution was given by
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Shoup [49] where he removed the need of taking inverses in Lagrange interpolation

altogether.

Shoup’s practical RSA scheme has inspired similar works on different cryp-

tosystems. Fouque et al. [18] proposed a similar Shamir-based threshold solution

for the Paillier cryptosystem and used it in e-voting and lottery protocols. Later,

Lysyanskaya and Peikert [37] improved this work and obtained a threshold Pail-

lier encryption scheme secure under the adaptive adversary model. The threshold

RSA signatures we present in Chapter 3 are also inspired by Shoup’s work.

Although using Shamir SSS for sharing the ElGamal signature and decryp-

tion functions has its own unique problems, the computation of inverses in the

exponent is relatively easier than that in RSA since all of the operations are done

modulo p where p is a public prime and hence φ(p) = p − 1 is also public. As

mentioned above, Desmedt and Frankel solved the function sharing problem in

1989 for the ElGamal decryption function. However, an ElGamal based threshold

signature was not proposed until 1996. In [22], Gennaro et al. proposed the first

efficient threshold scheme for the Digital Signature Standard (DSS).

Since functions sharing schemes are based on secret sharing schemes, the

extensions on secret sharing schemes can also be defined for function sharing

schemes. For example, the robustness extension is similar to the verifiability

extension for SSSs. We say that a function sharing scheme is robust if it can

withstand participation of corrupt users in the function evaluation phase. The

general approach to achieve robustness in function sharing schemes is sending

more information along with the partial result. In that approach, each user in

the coalition sends a proof of correctness of his partial result. In robust FSS

schemes, a valid proof of correctness cannot be generated by a user unless he has

the correct share and he provides the correct partial. Gennaro et al. proposed a

robust threshold RSA scheme [21] and a robust DSS signature scheme [22, 23].

The threshold RSA signature we describe in Chapter 3 is also a robust FSS.

In summary, several solutions for sharing the RSA, ElGamal, and Paillier

private key operations have been proposed in the literature [11–14, 18, 34, 37,

46, 49]. Almost all of these schemes have been based on the Shamir SSS with the
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exceptions being [34] based on Asmuth-Bloom and [12] giving a Blakley based

ElGamal.

1.5 Secret Sharing in General Access Structures

The (authorized) access structure of a secret sharing scheme is the set of all

groups which are designed to reconstruct the secret. We will denote the access

structure of a secret sharing scheme with Γ. The elements of the access structure

are referred to as authorized groups (sets) and the rest are called unauthorized

groups (sets). The set of all unauthorized groups is called the adversary structure.

The adversary structure will be denoted by Γ.

In (t, n) threshold systems, the groups of people who can recover the secret,

i.e. the access structure, are decided simply according to the cardinality of the

group. So the definition of (t, n) threshold access structures can be given as

follows:

Γ = {A ∈ P({1, 2, . . . , n}) : |A| ≥ t}. (1.6)

The adversary structure is obviously:

Γ = {A ∈ P({1, 2, . . . , n}) : |A| < t}. (1.7)

Threshold access structures may be inadequate in some situations. In prac-

tice, there may be situations in which every authorized subset has to contain

participants from a certain subset or in which an authorized subset of players

cannot contain a certain subset of players. Some researchers investigated this

problem, i.e. constructing secret sharing methods that allow more general access

structures than threshold ones. In general access structures, any group can be

designed as authorized i.e. eligible for recovering the secret.

Ito, Saito and Nishizeki did the first work on secret sharing schemes with

general access structures [29]. They remarked that any access structure has to

satisfy the following condition:

(∀B ∈ P({1, 2, . . . , n}))((∃A ∈ Γ)(A ⊆ B)⇒ B ∈ Γ). (1.8)
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Intuitively, this means if a group can recover the secret, so can a larger group

(containing the group that can recover the secret). Such access structures are

called monotone access structures by Benaloh and Leichter in [2]. We will be in-

terested only in monotone access structures. This monotonicity property implies

a dual property for the adversary structure:

(∀B ∈ P({1, 2, . . . , n}))((∃A ∈ Γ)(B ⊆ A)⇒ B ∈ Γ). (1.9)

This means that if a group of players cannot recover the secret, neither can a

smaller group.

In [29], Ito et al. proposed a multiple assignment method in which one or

more shares of the (t, n) threshold scheme are allocated to each member. Ito et

al. proved that, by distributing one or more shares to each member, it is possible

to implement any form of access structure. However, with their method each

of the n participants may have to hold on the order of 2n shares in the worst

case. The paper of Benaloh and Leichter [2] give a far simpler and more efficient

method of developing a secret sharing scheme for any monotone access structure.

The idea that they utilized is to translate the access structure into a monotone

formula. Each variable in the formula is associated with a participant of the

secret sharing scheme, and the value of the formula is true if and only if the set

of variables which are true corresponds to a subset of the players that is in the

access structure. This formula is then used as a template to describe how a secret

is to be divided into shares.

Multipartite access structures constitute an example of general access struc-

tures in which members of certain groups are equivalent to each other and can be

interchanged without changing the authorization of the group. Multipartite ac-

cess structures were introduced in [43]. In the same work, the authors completely

characterized ideal bipartite structures. Furthermore, the information rate of

non-ideal structures is bounded and studied. Multipartite access structures can

be considered general access structures since they can be used to represent any

access structure as shown by [24]. We will describe multipartite access structures

in detail in Chapter 4.



Chapter 2

Extensions to Blakley Secret

Sharing Scheme

The secret sharing schemes given in the introductory chapter presents solutions

to the secret sharing problem. However, several extensions to these schemes

are possible and, moreover these extensions are necessary for a SSS to be used

effectively in practical examples. In this chapter, we will discuss some extensions

for secret sharing schemes that appeared in literature. Most of the extensions are

given for Shamir SSS. Here, we will enhance Blakley’s secret sharing scheme with

these extensions. In [27] and [33], how Asmuth Bloom secret sharing scheme [1]

can be enhanced with these properties is discussed. Before moving on to these

extensions, it is useful to discuss a particular property of secret sharing schemes,

namely homomorphism, which will be used in several ways, not only in these

secret sharing extensions but also in function sharing schemes.

13
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2.1 Homomorphic Properties of Blakley Secret

Sharing

Homomorphism is a concept related to functions. A function f is said to be (⊕,⊗)

homomorphic, if f satisfies f(x ⊕ y) = f(x) ⊗ f(y) for operations ⊗ and ⊕. A

secret sharing scheme is a function which maps secrets to the distributed shares,

so we can talk about homomorphism in the context of secret sharing schemes.

The definition of homomorphism for a secret sharing scheme was given in [9].

Definition 2. Let ⊕ and ⊗ be binary functions on elements of the secret domain

S and of the share domain T , respectively. We say that a (t, n) threshold scheme

has the (⊕,⊗)-homomorphism property (or is (⊕,⊗)-homomorphic) if for all S,

whenever

d = FS(di1 , . . . , dit)

and

d
′
= FS(d

′

i1
, . . . , d

′

it),

then

d⊕ d′ = FS(di1 ⊗ d
′

i1
, . . . , dit ⊗ d

′

it),

where d and d
′

denote shared secrets, di⊗ d
′
i are shares of user i for secrets d and

d
′

respectively, S is the coalition and FS is the function used by coalition S for

recovering the secret from their shares.

Homomorphism property implies that the composition of the shares are the

shares of the composition. For a secret sharing scheme homomorphism is a useful

property, and in some cases it is also a necessary property. For example, the

threshold Digital Signature Standard (DSS) signature scheme given in Chapter 3

requires that the underlying linear SSS is (×,×)-homomorphic. Another example

is related to joint random secret sharing. The joint random secret sharing schemes

given in this chapter make use of the (+,+)-homomorphism properties of Shamir

and Blakley secret sharing schemes. We also use (+,+)-homomorphism property

for proactivity property.
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We are interested in using 3 operations with Blakley SSS for homomorphism:

multiplication by a scalar, addition and multiplication. Multiplication by a scalar

and addition are linear operations and Blakley SSS is a linear SSS. It is no

surprise that these operations provide homomorphism property without changing

the threshold. Multiplication on the other hand is not a linear operation and

increases the threshold (to t2).

First, we show that Blakley SSS is (+,+)-homomorphic. Let A be an (n× t)
matrix, x1, x2 be column vectors of length t and y1, y2 be column vectors of length

n. First elements of x1 and x2 contain the secret values s1 and s2 respectively, i.e.

if we denote ith element of a vector v with v[i], then s1 = x1[1] and s2 = x2[1].

The elements of y1 and y2 hold the shares corresponding to the secrets s1 and s2.

Then, Ax1 = y1 and Ax2 = y2 implies

A(x1 + x2) = y1 + y2 (2.1)

The above equation means that by summing the shares they have for the

secrets s1 and s2, the players can find shares for the secret s1 + s2. The resulting

secret sharing scheme is (t, n) as the original secret sharing schemes.

Multiplication by a scalar case is also easy to show. Let A again be an (n× t)
matrix, x be a column vector of length t, y be a column vector of length n and c

be a scalar value.

Ax = y ⇒ A(cx) = cy. (2.2)

So, when every user multiplies his share di of a secret d with a scalar c, they

obtain a share of the secret cd. The new secret is also (t, n) as the original one.

Now, we show that Blakley SSS is (×,×)-homomorphic. This problem is

investigated by Cramer, Damgard and Maurer [10] in the context of Monotone

Span Programs (MSP) (see Section 1.1.3). Cramer et al. defined multiplicative

MSPs and showed it is possible to find an algorithm to convert any MSP to a

multiplicative MSP of size at most twice the original MSP. We will not phrase

the definition of multiplicative MSPs here but they are merely the equivalent
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of (×,×)-homomorphic LSSSs. Cramer et al. showed the existence of such al-

gorithms but it was Nikov et al. [42] who showed the full characterization of

multiplicative MSPs. They proved that using two (different) MSPs to compute

their resulting MSP is more efficient than building a multiplicative MSP. We will

follow Nikov et al.’s approach for (×,×)-homomorphism.

To show Blakley SSS is (×,×)-homomorphic, let’s first define the diamond

� operation for vectors and matrices from Nikov et al. [42]. Here, we give the

definition as given in Nikov et al.’s paper which because of working with monotone

span programs, players are allowed to have more than one row. Diamond �
operation is defined in terms of Kronecker product. For definition and some

properties of Kronecker product the reader may consult [51]. In the following, ⊗
is used to denote the Kronecker product operator, which is the common usage, in

contrast to the above usage as a symbol for an operator in general. For vectors,

the diamond � operation is defined as:

x � y = (x1 ⊗ y1, . . . , xn ⊗ yn),

where the subvector xi consists of elements of x belonging to player i. If each of

the n players have k entries, then length of x and y is kn, whereas the length of

x�y is k2n. When each player has one element, then x�y is just the element-wise

multiplication of x and y. For matrices the definition is parallel to the vector case.

Let Ak denote the matrix composed of rows of player k in matrix A. Then, the

definition of � operation for matrices is as follows:

A �B =


A1 ⊗B1

A2 ⊗B2

...

At ⊗Bt

 .

Now let A be the public matrix in Blakley SSS, y1 be the share vector of secret

s1, and y2 be the share vector of secret s2, i.e.

Ax1 = y1 (2.3)

Ax2 = y2, (2.4)
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where first coordinates of x1 and x2 are s1 and s2 respectively. Then according

to Lemma 3 in [42], y = y1 � y2 is the share vector of secret s1s2 corresponding

to matrix A � A, i.e.

(A � A)(x1 ⊗ x2) = y1 � y2. (2.5)

The first coordinate of (x1 ⊗ x2) is s1s2 as desired. Obviously, if A is an n × t
matrix, then A � A is an n× t2 matrix and to be able to recover the new secret,

which is the multiplication of the original secrets, a coalition of at least t2 players

is needed. Hence, we can talk about (×,×)-homomorphism only if n ≥ t2.

2.2 Joint Random Secret Sharing

In this section, we present joint random secret sharing in which certain secret

sharing schemes can be configured without the presence of a dealer. In this

context, Jackson, Martin and O’Keefe [30] made the distinction of implicit and

explicit secrets. By their definition, an explicit secret is a fixed value that is

predetermined by factors outside the secret sharing scheme design. On the other

hand, a secret is said to be implicit if it does not take a predetermined value.

The secret sharing scheme has to protect the secret, but it can take any value

from a specified domain. In the case of dealer free secret sharing schemes, the

secret will be considered implicit.

For threshold access structures, dealer-free secret sharing was first discussed

by Meadows [39]. In Meadows’ scheme, the first t users generate their own shares

randomly. However, to generate the shares of the remaining n− t players, a black

box is required. This black box is trusted with all the shares and the value of

the implicit secret so it plays the role of a mutually trusted authority as Jackson

et al. observed [30]. So the presented scheme is not really a dealer-free secret

sharing scheme. However, it is the first paper discussing the concept of secret

sharing without a dealer.

Ingemarsson and Simmons proposed an elegant scheme for dealer-free thresh-

old secret sharing in [28]. In this scheme, the ith user first chooses an arbitrary
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element di that will be the share of some secret d with respect to a unanimous

secret sharing scheme of rank n (defined in the next paragraph) and then the

element di is shared among the rest of users.

As it has been remarked in [30], joint random secret sharing can be achieved

using a unanimous (n, n)-threshold scheme (unanimous consent structure of rank

n). Let m ≥ 2 be a fixed positive integer.

• Every participant chooses his share di as a random number from Zm;

• The secret d is generated (and can be reconstructed) as d =
∑n

i=1 di mod

m.

In the same paper, Jackson, Martin, and O’Keefe have remarked that any

(⊗,⊕)-homomorphic secret sharing scheme can be used to construct a dealer-free

secret sharing scheme.

• The ith participant chooses an element di and constructs, using a (⊗,⊕)-

homomorphic secret sharing scheme, the shares di1, . . . , din corresponding

to the secret di and securely distributes dij to the jth participant, for all

1 ≤ j ≤ n, j 6= i;

• The secret d will be d =
∑n

i=1 di;

• Each participant computes his share as di =
∑n

j=1 dji, 1 ≤ i ≤ n.

Since Blakley secret sharing scheme is (+,+)-homomorphic, joint random

secret sharing using Blakley SSS can be done as follows:

• The first player generates and broadcasts a full rank n× t matrix A.

• Each player i chooses di randomly as a secret and shares it using the matrix

A. That is, player i sends yij to player j for j 6= i.

• Player j sums the shares it receives to construct his share : yj =
∑n

i=1 yij.

yj’s are shares of the secret d =
∑n

i=1 di.
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2.3 Verifiable Secret Sharing

The secret sharing schemes presented in the introductory chapter assume that

the parties involved behave honestly. In this section, we discuss some solutions

for the case in which the dealer or some users may behave maliciously.

2.3.1 Feldman’s Scheme

The scheme of Chor, Goldwasser, Micali, and Awerbuch [8] has a great dis-

advantage - it is interactive, i.e., some interaction between users is required

in order to verify the consistency of the shares. Moreover, the communica-

tion complexity in their scheme is exponential. Feldman [17] has proposed a

non-interactive scheme for achieving verifiability in Shamir’s threshold secret

sharing scheme. The main idea is to use a homomorphic one-way function f

which satisfies f(x+ y) = f(x) · f(y) and to broadcast f(a0), . . . , f(ak−1), where

P (x) = a0 +a1x+ . . .+ak−1x
k−1 is the polynomial used in Shamir’s scheme. The

consistency of the share di = P (i) can be tested by verifying that

f(di)
?
= f(a0)f(a1)i . . . f(ak−1)i

k−1

. (2.6)

Indeed, by the homomorphic property of the function f ,

f(a0 + a1i+ . . .+ ak−1i
k−1) = f(a0)f(a1)i . . . f(ak−1)i

k−1

. (2.7)

A good candidate for the function f is f : Zq → Zp, f(x) = gx mod p, where

p and q are odd primes such that q|(p− 1), and g ∈ Z∗p an element of order q. In

this case we obtain the following scheme:

• The prime numbers p and q are generated such that q|(p− 1), and g ∈ Z∗p
an element of order q. All these numbers are public;

• The dealer generates the polynomial P (x) = a0 + a1x+ . . .+ ak−1x
k−1 over

Zq such that a0 = d and makes gi = gai mod p public, for all 0 ≤ i ≤ k− 1;
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• The dealer securely distributes the share di = P (i) to the ith user, for all

1 ≤ i ≤ n;

• Each user can verify the correctness of the received share di by testing

gdi mod p
?
=

k−1∏
j=0

gi
j

j mod p.

2.3.2 Feldman’s Scheme with Blakley

Blakley’s SSS can be enhanced with verifiability property. Applying Feldman’s

idea for Shamir’s SSS to Blakley’s SSS we can obtain a verifiable Blakley SSS.

During dealing phase of Blakley’s SSS, the ith user will get his share di ∈ F ,

di = ai1x1 + ai2x2 + . . .+ aitxt. (2.8)

as a hyperplane equation. As in Feldman’s extension to Shamr SSS we use a

homomorphic one-way function f which satisfies f(x + y) = f(x) · f(y). For

verification, the values of f(x1), f(x2), . . . , f(xt) are broadcasted by the dealer.

The consistency of the share di can be checked by verifying that

f(di)
?
=

t∏
j=1

f(xj)
aij . (2.9)

This easily follows from the homomorphic property of function f , since

f(yi) = f

(
t∑

j=1

aijxj

)
=

t∏
j=1

f(xj)
aij (2.10)

Note that f(x+ y) = f(x)f(y) implies f(xy) = (f(x))y = (f(y))x.

Again the function f can be chosen as f : Zq → Zp, f(x) = gx mod p, where

p and q are odd primes such that q|(p − 1), and g ∈ Z∗p an element of order q.

Putting up everything together, we obtain the following scheme:



CHAPTER 2. EXTENSIONS TO BLAKLEY SSS 21

• The dealer securely distributes the share di to the ith user as in equation

2.8, for all 1 ≤ i ≤ n;

• The prime numbers p and q are generated such that q|(p− 1), and g ∈ Z∗p
an element of order q. All these numbers are public;

• The dealer broadcasts fi = gxi mod p, for all 1 ≤ i ≤ t;

• Each user can verify the correctness of the received share di by testing

gdi mod p
?
=

t∏
j=1

f
aij

j mod p.

2.3.3 Pedersen’s Scheme

Feldmans scheme has the limitation that f(d) is broadcasted and, thus, the

privacy of the secret depends on a computational assumption, on the hardness

of inverting function f in particular. Pedersen [45] has proposed the following

non-interactive and information-theoretically secure verifiable variant of Shamir’s

threshold secret sharing scheme for sharing a secret d:

• The primes p and q, and integers g and h are generated such that q|(p− 1),

and g, h ∈ Z∗p are elements of order q. All these numbers are public;

• The dealer chooses r ∈ Zq randomly

• The dealer generates the polynomials P (x) = d+P1x+ . . .++Pk−1x
t−1 and

Q(x) = r + Q1x + . . . + Qk−1x
t−1 over Zq and broadcasts fi = f(Pi, Qi) =

gPihQi mod p, for all 1 ≤ i ≤ t− 1;

• The dealer also broadcasts f0 = f(d, r) = gdhr mod p

• The dealer securely distributes di = (P (i), Q(i)) to the ith user, for all

1 ≤ i ≤ n
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• Each user can verify the correctness of the received share di = (si, ti) by

testing

gsihti mod p
?
=

t−1∏
j=0

f i
j

j mod p.

So, with Pedersen’s verifiable secret sharing scheme the security of the scheme

do not depend on a computational assumption, since the power of the secret value

is masked with another value. This approach however has its own limitation. If

the dealer can solve the discrete logarithm problem, he can distribute incorrect

shares.

2.3.4 Pedersen’s Scheme with Blakley

We can apply Pedersen’s idea to Blakley’s SSS similar to Feldman’s case and

enhance Blakley’s SSS with verifiability property in another way.

Pedersen generates an additional polynomial in Shamir’s SSS to add verifiabil-

ity. For Blakley’s SSS, we can do the same thing by choosing a random point and

distribute shares of this random point. To avoid problems of Feldman’s verifiable

SSS, a bivariate homomorphic function f is chosen.

So, during the dealing phase , the ith user will get his share yi ∈ F ,

yi = ai1x1 + ai2x2 + . . .+ aitxt (2.11)

of the secret point and wi ∈ F ,

wi = ai1r1 + ai2r2 + . . .+ aitrt (2.12)

of the randomly chosen point r = (r1, r2, . . . , rt). Unlike Feldman’s verifiable

SSS, we use a bivariate one-way function f which is homomorphic in the follow-

ing sense: f(x1 + x2, y1 + y2) = f(x1, y1)f(x2, y2). For verification, the values of

f(x1, r1), f(x2, r2), . . . , f(xt, rt) are broadcasted by the dealer. Here the fact that

the value of the function of f depends not only on the coordinates of the secret
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point but also the coordinates of the random point, makes this scheme informa-

tion theoretically secure as opposed to Feldman’s scheme. A suitable choice for

function f is

f(x, y) = gxhy mod p,

where the choice of the parameters g, h, p and q are the same as in the previous

section. The whole protocol is as follows:

• The dealer securely distributes the share yi to the ith user as in equation

(2.11), and share ri as in equation (2.12) for all 1 ≤ i ≤ n;

• The prime numbers p and q are generated such that q|(p−1), and g, h ∈ Z∗p
are elements of order q. All these numbers are public;

• The dealer broadcasts fi = gxihri mod p, for all 1 ≤ i ≤ t;

• Each user can verify the correctness of the received share yi by testing

gyihri mod p
?
=

t∏
j=1

f
aij

j mod p.

2.4 Proactive Secret Sharing

Secret sharing schemes assume long lived shares. However, over a long period

of time, the protection provided by a secret sharing scheme may be insufficient.

The security in a system that is exposed to attacks and break-ins might become

exhausted; several faults may occur:

• Secrets can be revealed

• Shares can gradually be corrupted/compromised

• Hardware failures may occur, resulting in losing shares.
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The goal of proactive security scheme is to prevent the adversary from learning the

secret or from destroying it. In particular any group of t non-faulty shareholders

should be able to reconstruct the secret whenever it is necessary.

The core properties of a proactive secret sharing scheme is as follows:

• It renews existing shares without changing the secret, so that previous ex-

posures of shares will not damage the secret.

• It recover lost or corrupted shares without compromising the secrecy of the

shares.

In this thesis we will content ourselves with renewing the shares.

After an update/renewal of the shares without changing the secret, all of the

non-updated shares the attacker has accumulated become useless. An attacker

can only recover the secret if he can find enough non-updated shares to reach

the threshold. This situation should not happen because the players should have

deleted their old shares. Additionally, an attacker cannot recover any information

about the original secret from the update information, because they contain only

random information.

2.4.1 Share Renewal with Dealer

Papers that deal with proactivity didn’t assume the existence of a dealer. Since

the share renewal idea is the same regardless of dealer’s presence, we give the

following for giving the basic idea of share renewal with the help of a dealer.

2.4.1.1 Share Renewal with Shamir SSS

If the dealer is still in place, share renewal is easy: For Shamir secret sharing

scheme, the dealer generates a new random polynomial with constant term 0 and

calculates for each remaining player a new ordered pair, where the x-coordinates
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of the old and new pairs are the same. Each player then adds the old and new

y-coordinates to each other and keeps the result as the new y-coordinate of the

secret.

2.4.1.2 Share Renewal with Blakley SSS

We know that Blakley SSS is (+,+)-homomorphic. Thus, we can apply the same

sharing zero idea to Blakley SSS: The dealer creates a random vector x, with its

first coordinate set to 0. Then, he shares this secret point using the same matrix

that is used to share the original secret and sends the new shares to the players.

The players add their old and new shares and obtain a new share for the original

secret.

2.4.2 Share Renewal without Dealer

If the dealer does not exist at the time of the update, the players have to generate

the updates themselves. Since there is no dealer, the players take turns being the

dealer and each player shares the (non)secret 0. Assuming the nonexistence of

the dealer is more realistic, as the dealer may not be as long lived as the secrets

are. The protocols given below are described by Herzberg et al. [25] for Shamir

SSS.

2.4.2.1 Against Passive Attackers

With Shamir SSS, each player generates a random polynomial of degree t − 1

passing through (0, 0). Then he sends the shares of this polynomial to other

players. Each player, sums his non-updated share with the shares he received

from other players and his share of his polynomial. Since each update polynomial

passes from (0, 0), then after the update the new polynomial passes from the

original secret point.
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With Blakley SSS, we use the above approach. Each player generates a ran-

dom point with first coordinate set to zero. Then he sends the shares of this

point to every other player. Players finds their updated shares by summing all

the received shares with the non-updated share.

2.4.2.2 Against Active Attackers

The above share-renewal protocols will not work if there is an active attacker

among the players. An active attacker can destroy the secret in the above schemes,

by sharing a polynomial not passing from (0, 0) in Shamir SSS and by sharing a

secret point with a non-zero first coordinate in Blakley SSS. Also, he can prevent

inconsistent shares to destroy the secret. To prevent this situation, we need verifi-

ability. In the Verifiable Secret Sharing Section, it is shown that how verifiability

can be achieved with Shamir and Blakley secret sharing schemes.

The above protocols are modified as follows. Each player shares 0 verifiably.

When a player receives a share from another player, he first checks the consistency

of the received share. If the share is found to be inconsistent or the share is not

a share of the secret 0, the player accuses the sender of the share and notifies

other players. If no accusations occur, the players sum their received updates

with their old shares to obtain their updated shares.

Below we give with Blakley SSS and Feldman’s VSS how share renewal can

be achieved. We assume that the matrix A is public. Assume f is a function

chosen as f : Zq → Zp, f(x) = gx mod p, where p and q are odd primes such that

q|(p− 1), and g ∈ Z∗p an element of order q. Let d denote the secret, d
(k)
i denote

the share of player i after update k. Let yi be the share vector of player i. Let

v[j] denote the jth element of vector v.

• Each player i plays the role of the dealer.

• Player i generates a random point ri = (ri1, ri2, . . . , rit) where ri1 = 0 and

computes

Ari = yi. (2.13)
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• Player i broadcasts fij = grij mod p for 1 ≤ j ≤ t and sends yi[j] to player

j.

• If a player j is not blamed as a corrupt dealer each player i has a share yj[i]

from player j.

• Let U be the set of uncorrupt players.

• Each player i updates his own share by performing

d
(k)
i = d

(k−1)
i +

∑
j∈U

yj[i]. (2.14)

• The new verification values are set

f
(k)
i = f

(k−1)
i

∏
j∈U

fij (2.15)

for all 1 ≤ i ≤ t.



Chapter 3

Threshold RSA Signatures with

Linear Secret Sharing Schemes

3.1 Introduction

In this chapter, we show how to generalize Shoup’s ideas [49] to do function shar-

ing with any linear SSS, and we give a robust threshold RSA signature scheme.

A linear SSS, where the solution is based on solving a linear system, naturally

requires computing inverses for reconstructing the secret. We show how to utilize

such a system for function sharing while avoiding computation of inverses modulo

φ(N) completely, where N is the RSA modulus.

We also discuss how this approach can be applied to other public key cryp-

tosystems and show an example on the Paillier decryption function.

3.2 Sharing RSA Signature Computation

In this section, we describe our threshold RSA signature scheme which works

with any linear SSS in general.

28
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3.2.1 Setup

In the RSA setup phase, the RSA primes p and q are chosen as p = 2p′ + 1 and

q = 2q′ + 1, where p′ and q′ are large primes. The RSA modulus is computed as

N = pq. Let m = p′q′. The public key e is chosen as a prime number, details of

which will be explained in the next section. After choosing e, the private key d

is computed such that ed ≡ 1 (mod m). Then the dealer shares the private key

d among n users using a linear threshold SSS described in Section 1.1.3.

The dealer also chooses v as a generator of QN , where QN is the subgroup of

squares in Z∗N . He computes and broadcasts

vi = vyi ∈ QN , (3.1)

for 1 ≤ i ≤ n, which are the verification keys to be used in the proofs of correctness

of the partial signatures, where yi is the secret share of user i.

3.2.2 Signing

Let H(.) be a hash function mapping input messages to Z∗N and let w = H(M) ∈
Z∗N be the hashed message to be signed. Assume a coalition S of size t wants to

obtain the signature s = wd mod N .

3.2.2.1 Generating partial signatures

Let S = {i1, . . . , it} be the coalition of t users, forming the linear system

ASx = yS .

Let cij be the ij-th cofactor of matrix AS and let CS be the adjugate matrix,

CS =


c11 c21 . . . ct1

c12 c22 . . . ct2
...

...
. . .

...

c1t c2t . . . ctt

 .
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If we denote the determinant of AS by ∆S we have,

ASCS = CSAS = ∆SIt, (3.2)

where It denotes the t× t identity matrix.

For our scheme, each user i ∈ S computes his partial signature as

si = w2ci1yi mod N. (3.3)

3.2.2.2 Verifying partial signatures

Each user computes and publishes a proof of correctness for the verification of

his partial signature. The proof of correctness of the partial signature of user i is

a proof that the discrete logarithm of s2
i to the base

s̃i = w4ci1 mod N (3.4)

is the same as the discrete logarithm of vi to the base v. To prove this, a protocol

by Shoup [49] which is a non-interactive version of Chaum and Pedersen’s [7]

interactive protocol is used:

Let L(n) be the bit-length of n. Let H ′ be a hash function, whose output is

an L1-bit integer, where L1 is a secondary security parameter. To construct the

proof of correctness, user i chooses a random number r ∈ {0, 1, . . . , 2L(N)+2L1−1},
computes

v′ = vr mod N,

s′ = s̃ri mod N,

D = H ′(v, s̃i, vi, s
2
i , v
′, s′),

σ = yiD + r.

Then user i publishes his proof of correctness as (σ,D).

To verify this proof of correctness, one checks whether
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D
?
= H ′(v, s̃, vi, s

2
i , v

σv−Di , s̃σi s
−2D
i ).

3.2.2.3 Combining partial signatures

To combine the partial signatures, we simply compute

s =
∏
i∈S

si mod N. (3.5)

Note that, by equation (3.2), we have

s = wd δ mod N, (3.6)

where

δ = 2 ∆S . (3.7)

Given that e is a prime number relatively prime to ∆S , it is easy to compute

the signature s = wd mod N from s. Take

s = sawb mod N, (3.8)

where a and b are integers such that

δa+ eb = 1, (3.9)

which can be obtained by the extended Euclidean algorithm on δ and e.

3.3 Solution of the Linear System

In a linear SSS, the private key is found by the solution of the linear system

ASx = yS . However, this system may not have a unique solution over Zφ(N). If

gcd(∆S , φ(N)) > 1, the matrix AS will not have an inverse modulo φ(N), and

the linear system will have many different solutions. Interestingly, our threshold

signature scheme computes the correct signature in this case as well.
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When gcd(∆S , φ(N)) > 1 and the linear system yields many different solutions

for d, note that the value ∆Sd is a fixed number for all these possible solutions,

and is equal to

∆Sd = Σi2ci1yi.

Hence, the incomplete signature

s = wΣi2ci1yi mod N

= w2∆Sd mod N

is the same for every solution of the system ASx = yS .

Then the signature s is obtained from s as

s = sawb mod N,

where a and b are the integer solutions of 2∆Sa+ eb = 1. Hence, the signature s

is wd mod N for the right d value, computed according to the public key e.

3.4 Choosing e

The choice of e is critical in the setup phase because the solution depends on e

and ∆S being relatively prime. To achieve this, we can either choose a special

matrix whose determinant is known to be relatively prime to e, or choose e as a

sufficiently large prime according to t and n so that the probability that ∆S is

divisible by e will be negligible for any coalition S.

3.4.1 Choosing e probabilistically

We can use a probabilistic approach for choosing e. The chosen value will depend

on the value of t and n.

We want to calculate the probability that determinant of none of AS matrices
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will be divisible by e. We have

P

(
determinant of none

of AS is divisible by e

)
= 1− P

(
determinant of at least

one of AS is divisible by e

)
. (3.10)

We also have

P

(
determinant of at least one

of AS is divisible by e

)
= P

(⋃
S

|AS | is divisible by e

)
. (3.11)

For coalitions having common players, the events in the right hand side of equa-

tion (3.11) are not independent. We can use union bound (Boole’s inequality) to

bound the right hand side of equation of (3.11).

P

(⋃
S

|AS | is divisible by e

)
≤
∑
S

P (|AS | is divisible by e) (3.12)

The probability that a certain random integer is divisible by a prime number e

is 1/e. In a (t, n) threshold scheme, there are
(
n
t

)
different possible coalitions S

of size t. By combining these facts with equations (3.10),(3.11) and inequality

(3.12), we obtain

P

(
determinant of none

of AS is divisible by e

)
≥ 1−

(
n
t

)
e
. (3.13)

If we take e�
(
n
t

)
, we have

P

(
determinant of none

of AS is divisible by e

)
≈ 1. (3.14)

For example, if we take (t, n) = (10, 20) and take a 50 bit length prime e,

the probability of any of the determinants not being relatively prime to e will

be negligible. If we want to be certain about this, the dealer can check all
(
n
t

)
determinants against e and choose another one if any of the determinants is not

relatively prime to e. This is time consuming but will be done only once as a

precomputation step by the dealer.
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3.4.2 Bounding the determinant

Let amax denote the maximum value in the matrix A. Then t! · atmax is clearly an

upper bound on |AS |. We want

φ(N) > e >
t! · atmax

2
> |AS | (3.15)

From this we obtain
t

√
2e

t!
> amax (3.16)

For example if we take e as a 100 bit number and work with (t, n) = (10, 20) we

find that amax should have about 8 bits. With 28 = 256 possible values for the

values of the matrix A we can find plenty of n × t matrices of rank t. With a

slight increase in size of e, the value of amax and the number of different matrices

to choose from can be increased considerably.

3.4.3 Choosing a Vandermonde matrix as the coefficient

matrix

A simple choice for the matrix A that enables us to guarantee that e will be

relatively prime to the determinant of the coefficient matrix is to choose the rows

of the matrix A as the rows of a Vandermonde matrix. Note that this is exactly

the case for Shamir secret sharing. Then AS will have the following form for a

coalition S of size t:

AS =


1 a1 a2

1 . . . at−1
1

1 a2 a2
2 . . . at−1

2
...

...
...

. . .
...

1 at a2
t . . . at−1

t


The determinant of the Vandermonde matrix is nonzero, provided that no two

rows are identical, and is given by the following formula:

|AS | =
t∏

i,j=1,i<j

(ai − aj) (3.17)
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Without loss of generality take (a1, a2, . . . , an) = (n, n− 1, . . . , 1). Obviously,

t∏
i,j=1,i<j

(ai − aj) |
n∏

i,j=1,i<j

(ai − aj).

We also have,
n∏

i,j=1,i<j

(ai − aj) = 1α12α2 . . . (n− 1)αn−1 (3.18)

for some α1, α2, . . . , αn−1. Hence by choosing e as a prime greater than or equal

to n we can guarantee that the determinant of any AS will be relatively prime to

e.

3.5 Security Analysis

Now we will prove that the proposed threshold RSA signature scheme is secure

provided that the standard RSA signature is secure. We assume a static adversary

model in the sense that the adversary controls exactly t−1 users and chooses them

at the beginning of the attack. The adversary obtains all secret information of the

corrupted users along with the public parameters of the system. She can control

the actions of the corrupted users, asking for partial signatures of messages of her

choice but cannot corrupt any other user in due course.

First we will analyze the proof of correctness. Then using this analysis we

will prove that the proposed threshold signature scheme is secure.

3.5.1 Analysis of the Proof of Correctness

For generating and verifying the proof of correctness, the following properties

hold:

3.5.1.1 Completeness

If the ith user is honest then the proof succeeds since
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vσv−Di = vyiDvrv−Di = vr = v′

and

s̃σi s
−2D
i = w4ci1(yiD+r)w−4ci1yiD = sr = s′.

3.5.1.2 Soundness

To prove the soundness of the proof of correctness, we have to show that the

adversary cannot construct a valid proof of correctness for an incorrect share,

except with negligible probability. Let (σ,D) be a valid proof of correctness for

a message w and partial signature si. We have D = H ′(v, s̃i, vi, s
2
i , v
′, s′), where

s̃i = w4ci1 , v′ = vσv−Di , s′ = s̃σi s
−2D
i .

Obviously s̃i, vi, s
2
i , v

′ and s′ all lie in Qn and we know that v is a generator of

Qn. So we have

s̃i = vα, vi = vyi , s2
i = vβ, v

′
= vγ, s′ = vµ,

for some integers α, β, γ, µ. From this we have,

σ −Dyi ≡ γ (mod m) (3.19)

σα−Dβ ≡ µ (mod m). (3.20)

From equations (3.19) and (3.20) we get,

D(β − yiα) ≡ αγ − µ (mod m). (3.21)

A share is correct, if and only if,

β ≡ yiα (mod m). (3.22)

If (3.22) does not hold, then it does not hold either mod p′ or mod q′ and so

(3.21) uniquely determines D mod p′ or D mod q′. But the distribution of D is

uniform in the random oracle model, so this happens with negligible probability.
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3.5.1.3 Zero Knowledge Simulatability

To prove zero knowledge simulatability, we will use the random oracle model for

the hash function and construct a simple simulator that simulates the adversary’s

view without knowing the value yi. When an uncorrupted user wants to create

a proof (σ,D) for a message w and partial signature si, the simulator chooses

D ∈ {0, . . . , 2L1 − 1} and σ ∈ {0, . . . , 2L(N)+2L1 − 1} at random and defines the

value of the random oracle at (v, s̃i, vi, s
2
i , v

σv−Di , s̃σi s
−2D
i ) to be D. Note that,

the value of the random oracle is not defined at this point with all but negligible

probability. When the adversary queries the oracle, if the value of the oracle was

already set the simulator returns that value, otherwise it returns a random value.

It is obvious that the output of this simulator is statistically indistinguishable

from real output.

3.5.2 Security of the Proposed Signature Scheme

To reduce the problem of the security of the proposed threshold signature scheme

to that of the standard RSA signature, the following proof constructs another

simulator.

Theorem 1. In the random oracle model for H ′, the proposed threshold signature

scheme is a secure threshold signature scheme (robust and non-forgeable) under

the static adversary model given that the standard RSA signature scheme is secure.

Proof. We will simulate the threshold protocol with no information on the secret

where the output of the simulator is indistinguishable in the adversary’s view.

Afterwards, we will show that the secrecy of the private key d is not disrupted

by the values obtained by the adversary. Thus, if the threshold RSA scheme is

not secure, i.e. an adversary who controls t− 1 users can forge signatures in the

threshold scheme, one can use this simulator to forge a signature in the standard

RSA signature scheme.

Let i1, . . . , it−1 be the set of corrupted players. To simulate the adversary’s
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view, we simply choose the yij values belonging to the set of corrupted players at

random from the set {0, . . . , bN/4c−1}. The corrupted players’ secret key shares

are random numbers in the set {0, . . . ,m− 1}. Once these values are chosen, the

values yi for the uncorrupted players are completely determined modulo m, but

cannot easily be computed. However, given w, s ∈ Z∗N with se = w, we can easily

compute sit for an uncorrupted user it as

sit = w2ct1yit = s2∆Sw−2
∑t−1

j=1 cj1yij . (3.23)

Note the dependence of ∆S and cj1 values on the coalition {i1, . . . , it−1, it}.

Using this technique, we can generate the values v, v1, . . . , vn, and also gener-

ate any share si of a signature, given the standard RSA signature. These values

produced by the simulator and the proof of correctness given in this section are

computationally indistinguishable from the real ones. Hence, the threshold RSA

signature scheme based on a linear SSS is secure given that the standard RSA

signature scheme is secure.

3.6 Application to Other Public Key Cryp-

tosystems

So far, we investigated only how to share the RSA signature function by using

a linear SSS. The same approach can also be used to share the RSA decryption

function since the signature and decryption functions are mostly identical. Be-

sides RSA, the proposed approach can also be used to share other public key

cryptosystems (PKC) where the private key is used in the exponent, such as the

ElGamal [16], Naccache-Stern [41] and the Paillier [44] decryption functions.

Below, as an example, we describe how our approach can be utilized for sharing

the Paillier decryption and DSS signature functions. The Paillier decryption

scheme works along the same lines as Fouque et al.’s extension [18] of Shoup’s

work to the Paillier cryptosystem. They used this threshold Paillier cryptosystem

in e-voting and lottery schemes. Later, Lysanskaya and Peikert [37] improved
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this work and obtained a threshold Paillier encryption scheme secure under the

adaptive security model. Besides these Shamir based Paillier threshold systems,

a provably secure threshold Paillier cryptosystem based on Asmuth-Bloom SSS

was given in [34].

3.6.1 The Paillier Cryptosystem

The Paillier PKC is based on the properties of Carmichael function over ZN2

where N is an RSA composite. Security of the cryptosystem is based on the

intractability of computing discrete logarithms in ZN2 without the Carmichael

number λ(N).

3.6.1.1 Key Generation

Let N = pq where p and q are large prime integers. Let g be an arbitrary element

from ZN2 such that its order is a multiple of N . Let λ = (p− 1)(q − 1)/2 denote

the the Carmichael function for N . The public and private keys are (N, g) and

λ, respectively.

3.6.1.2 Encryption

Let w be the message to be encrypted. Choose a random r ∈ ZN2 and compute

the ciphertext as

s = gwrN mod N2.

3.6.1.3 Decryption

The plaintext is obtained by

w =
L(sλ mod ZN2)

L(gλ mod ZN2)
mod N

where L(x) = (x− 1)/N for x ≡ 1 (mod N).
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Paillier proved that this scheme is semantically secure under the assumption

that it is hard to detect whether a given random element in ZN2 is an N -residue.

The cryptosystem possesses the following homomorphic properties:

E(w1 + w2) = E(w1).E(w2)

E(k.w) = E(w)k.

3.6.2 Sharing the Paillier Decryption Function

Since λ(N) must be kept secret, the inverse computation problem is similar to

the one we encountered while sharing the RSA signature function. Our threshold

Paillier scheme is given below:

3.6.2.1 Key Generation

In the Paillier setup phase, choose two safe primes p = 2p′ + 1 and q = 2q′ + 1,

where p′ and q′ are large primes and gcd (N,ϕ(N)) = 1 for N = pq. Let m = p′q′.

Let β ∈R Z∗N and (a, b) ∈R ZN × Z∗N . Compute

g = (1 +N)a × bN mod N2.

Share the private key d = βm among n users with modulo Nm by using the

linear SSS. Let

θ = L
(
gβm

)
= aβm mod N.

Set the public key as (g,N, θ). Choose v as a generator of QN2 , where QN2 is the

cyclic group of squares in ZN2 . Compute the verification keys

vi = vyi ∈ QN2

for 1 ≤ i ≤ n as before.

3.6.2.2 Encryption

Let w be the message to be encrypted. Choose a random r ∈ ZN2 and compute

the ciphertext as s = gwrN mod N2. Let m = p′q′.
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3.6.2.3 Decryption

Let s be the ciphertext to be decrypted and S = {i1, . . . , it} denote a coalition of

t users that will compute the plaintext together. Let AS be the coalition matrix

and CS be the corresponding adjugate matrix, respectively, as in Section 3.2.

Each member i ∈ S computes his partial value as

si = s2ci1yi mod N2

where ci1 is the ith element of the first row of CS . He also generates a proof of

correctness which is used to prove that the discrete logarithm of s2
i to the base

s̃ = w4ci1 is the same as the discrete logarithm of vi to the base v. Note that the

proof is now working on a cyclic group of unknown order mN .

After the partial decryptions are obtained, the combining algorithm computes

the plaintext

w =
L
(∏

i∈S si mod N2
)

2∆Sθ
mod N.

Note that ∏
i∈S

si ≡ s2∆Sβm

≡ g2∆Sβmw

≡ (1 +N)2∆Saβmw

≡ 1 + 2∆SaβmwN

≡ 1 + 2∆SθwN (mod N2).

3.6.3 Digital Signature Standard

The DSS is summarized below:

• Key Generation Phase: Let p and q be large prime numbers where q|p− 1

and g ∈ Z∗p be an element of order q. The private key α ∈R Z∗q is chosen

randomly and the public key β = gα (mod p) is computed.
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• Signing Phase: The signer first chooses a random ephemeral key k ∈R Z∗q
and then computes the signature (r, s) where

r = (gk
−1

mod p) mod q

s = k(w + αr) mod q

for a hashed message w ∈ Zq.

• Verification Phase: The signature (r, s) is verified by checking

r
?
= (gws

−1

βrs
−1

mod p) mod q

where s−1 is computed in Z∗q.

3.6.4 Sharing the DSS Signature Function

To obtain a threshold DSS scheme the dealer first generates the private key α

and shares it among the users by (t, n). To obtain a DSS signature a random

ephemeral key k has to be generated as well. This value will be generated using

Joint Random Secret Sharing described in Chapter 2. Also, we have to use the

(×,×)-homomorphism property of Blakley SSS (or linear SSS more generally)

since the signing equations require the multiplications of the shares. Note that

anyone can forge signatures if he knows k for a valid signature (r, s). Hence, the

signing equations should be computed such that noone obtains k.

3.6.4.1 Key Generation

The parameters of DSS p, q, g, α and β are generated as described in the previous

section. p, q, g and β are made public. The value of α is shared (t, n) using a

linear SSS by the dealer. In the protocol description below, αi denotes the share

of player i for the private key α. The (n× t) matrix A of the LSSS is also made

public by the dealer.
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3.6.4.2 Computing Partial Signatures

Suppose a coalition S of t2 players come together for signing. The players will

run a joint random secret sharing protocol to generate the ephemeral key k. Also,

another random number a is generated running the jrss protocol. Since the dealer

makes the matrix A public in the key generation phase, the players use the same

matrix A in the JRSS protocols used for generating a and k.

The size of the coalition S is t2 because this coalition will be used to recover

a secret v = ak from the shares of the (t, n) shared secrets a and k, and this

requires a coalition of at least t2 players as described in Section 2.1. For other

threshold operations a coalition of S ′ ⊂ S of size t will be sufficient and will be

used. In the following AS′ denotes the matrix consisting of rows of members of

S ′ in the matrix A. Similarly, (A � A)S denotes the matrix consisting of rows of

members of S in the matrix (A � A).

The steps of the partial signature computation are given below:

• Each player runs JRSS protocol twice for generating shares k and a. At the

end, player i holds share ki for joint random secret k and holds share ai for

joint random secret a for all i ∈ S.

• Each player i ∈ S computes vi = aiki. The vi values are the shares of the

secret v = ak. Then v is constructed by the coalition S and v−1 is computed

in Z∗q. Then each player in the coalition S computes

h = gv
−1

mod p. (3.24)

Note that during the reconstruction of v, the matrix (A � A)S is used.

• Each player i ∈ S ′ computes his partial signature of r as

ri = hci1ai mod p, (3.25)

where cij is the ij-th cofactor of the matrix AS′ as described in Section

3.2.2.
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3.6.4.3 Computing r

To combine the partial signatures we simply compute

r =
∏
i∈S′

ri mod p (3.26)

By equation (3.2) we have

r = ha∆S′ mod p (3.27)

r = gk
−1∆S′ mod p (3.28)

The combiner computes ∆−1

S′ in Z∗q. Note that here we take advantage of the fact

that q is public. In the threshold RSA case, φ(N) had to be kept secret, so we

couldn’t compute the inverse this way. After this step r can finally be computed:

r = (r
∆−1

S′ mod p) mod q. (3.29)

After r is computed, it is made public to members of S not in S ′ so that it

can be used during the computation of s which we describe next.

3.6.4.4 Computing s

Remember that s = k(w+αr) mod q. Each member i ∈ S knows the values w, r

and has shares ki and αi for the secrets k and α respectively.

We know that multiplication by a scalar and addition are linearity preserving

operations. So, we can use the homomorphism properties of the LSSSs (described

using Blakley SSS in Chapter 2) for the computation of w + αr. But to be able

to use the homomorphism property, we have to add with a share of w and not

with w itself. Since matrix A is public, generating the shares of w is easy.

The steps of the computation now can be given as follows:

• Each player i ∈ S generates the column vector v = (w, 0, . . . , 0) of length t
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and computes simply the dot product of row i of matrix A and vector v:

wi =
t∑

j=1

Aijvj. (3.30)

• Each player i ∈ S computes (wi + αir) mod q. Note that this value, is a

(t, n) share of the secret value w + αr. Each player i also has the share ki

of the secret k , so by multiplying the secrets

si = ki(wi + αir)

is computed. Here, by the (×,×)-homomorphism property of LSSSs, si is

a (t2, n) share of the secret s = k(w + αr) mod q.

• In the final step, the value s is recovered by the coalition S from the secrets

si. This concludes the computation since the DSS signature (r, s) is found.



Chapter 4

Secret Sharing in General Access

Structures

In this chapter we will be interested in more general access structures than thresh-

old ones, multipartite access structures in particular. To investigate these access

structures we will not use linear secret sharing schemes as Shamir or Blakley SSS.

We will use Mignotte and Asmuth-Bloom secret sharing schemes which are based

on Chinese remainder theorem (CRT) and are very similar to each other. An

interesting question to answer in CRT-based secret sharing schemes is whether

one can find a (generalized) Mignotte or Asmuth-Bloom sequence for an arbitrary

access structure.

Galibus and Matveev [19] extended Mignotte’s work [40] on threshold secret

sharing on integers to work with polynomials. They proved that any access

structure can be realized with their extended modular approach. Their method

works with polynomials and constructs a generalized Mignotte sequence, but

with slight modifications it can also be used to generate generalized Asmuth-

Bloom sequences for integers. We implemented the modified Galibus and Matveev

algorithm to work with integers. However, the method is not suitable for practical

use as we will show.

46
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We propose another more practical method of generating Asmuth-Bloom se-

quences for general (multipartite) access structures. We use the words general and

multipartite interchangeably because every access structure is multipartite [24].

The proposed method increases the number of shares and hence decreases the

information rate but the information rate is significantly better compared to the

modified method of Galibus and Matveev for integers.

The organization of this chapter is as follows: First, we will define multipartite

access structures which is our main focus in this chapter. Then we will describe

Mignotte and Asmuth-Bloom secret sharing schemes and their generalizations.

After that, the method of Galibus and Matveed and its modified version on

integers will be given. After discussing the practical implications of these meth-

ods based on experiments we will present the new splitting based secret sharing

scheme. We will also discuss how function sharing can be done with the new

splitting-based secret sharing scheme. As an example, we will show how RSA

signature computation can be done using the proposed secret sharing scheme.

4.1 Multipartite Access Structures

An interesting type of access structures is the multipartite access structure. Let

P = 1, 2, . . . , n be the set of players that are distributed into different disjoint

classes P1,P2, . . . ,Pk, where k ≥ 2. Every class Pi has ni players, so the total

number of players is n =
∑k

i=1 ni. We say that an access structure is multipartite

when the players in every class play the same role. The formal definition is as

follows :

Definition 3. Let P be a set of players partitioned into P1,P2, . . . ,Pk, i.e.

P =
k⋃
j=1

Pj (4.1)

Pi ∩ Pj = ∅,∀i 6= j. (4.2)

Let σ(S) be a renaming function on a player set S ⊂ P such that each renaming

i 7→ j satisfies i ∈ Pp, j ∈ Pp for 1 ≤ p ≤ k. For an access structure Γ let σ(Γ)
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be defined as:

σ(Γ) =
⋃
S∈Γ

σ(S). (4.3)

An access structure Γ defined on the set of players P is multipartite with respect to

partition P1,P2, . . . ,Pk if σ(Γ) = Γ. In this case, we say that Γ is (P1,P2, . . . ,Pk)-
multipartite or that Γ is k−multipartite.

Of course, any access structure defined on a set of n players is trivially an

n-multipartite access structure, because we can always take P1 = {1}, . . . ,Pn =

{n}. But usually we want to consider the minimum possible number of classes.

This optimal expression of an access structure as a multipartite one is obtained

by taking P1, . . . ,Pk as the equivalence classes of the relation ∼, defined by

i ∼ j ⇔ τij(Γ) = Γ,

where τij(Γ) is the resulting access structure after transposition of players i and

j in Γ. It is easy to prove that Γ is (P1, . . . ,Pk)-multipartite, using the fact that

any permutation can be expressed as a composition of transpositions.

Multipartite access structures can be represented by sets of vectors. Each

vector in the access structure denotes a different group of authorized partic-

ipants and the size of each vector is the number of partitions. For exam-

ple, let n = 12 and s = [|P1| |P2| |P3|] = [4 4 4], where n is the total

number of players and s is a vector showing the sizes of each partition. Let

Γ = {(2, 3, 4), (3, 3, 3)}. For this access structure the adversary structure Γ is

found as Γ = {(1, 5, 5), (5, 2, 5), (5, 5, 2), (2, 3, 3)}. In this case, a group of partic-

ipants is authorized (i.e. belongs to the access structure Γ) if there are at least

2 players from partition X1, at least 3 players from partition X2, and at least

4 players from partition X3; or at least 3 players from partition X1, at least 3

players from partition X2, and at least 3 players from partition X3. Groups of

players not satisfying the given condition are not authorized (i.e. belongs to the

adversary structure Γ).

A matrix can also be used to describe the multipartite access structures. The

number of columns will be equal to the number of partitions of the player set.
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Each row of the matrix denotes a group of authorized players. Let’s denote this

matrix with MΓ. For the above example, obviously we have

MΓ =

(
2 3 4

3 3 3

)
.

4.2 Secret Sharing Schemes based on Chinese

Remainder Theorem

4.2.1 Mignotte Secret Sharing

Mignotte’s threshold secret sharing scheme [40], uses special sequences of integers,

referred to as Mignotte sequences.

Definition 4. Let t and n be integers such that 2 ≤ t ≤ n. A (t, n)-Mignotte

sequence is a sequence of pairwise coprime positive integers m1 < m2 < . . . < mn

such that
∏t−2

i=0 mn−i <
∏t

i=1mi.

The above relation is equivalent with

max1≤i1<...<it−1≤n{mi1 . . .mit−1} < min1≤i1<...<it≤n{mi1 . . .mit}.

Given a publicly known (t, n)-Mignotte sequence, the scheme works as follows:

• The secret d is chosen as a random integer such that β < d < α, where

α =
∏t

i=1 mi and β =
∏t−2

i=0 mn−i

• The shares di are chosen as di = d mod mi, for all 1 ≤ i ≤ n;

• Given t distinct shares di1 , . . . , dit , the secret d is recovered using the stan-

dard Chinese remainder theorem, as the unique solution modulo mi1 . . .mit

of the system

x ≡ di1 mod mi1
...

x ≡ dit mod mit .
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Indeed, the secret d is an integer solution of the above system by the choice

of the shares. Moreover, d lies in Zmi1
...mit

because d < α. On the other

hand, having only t− 1 distinct shares di1 , . . . , dit−1 , we obtain only that

d ≡ x0 mod mi1 . . .mit−1 ,

where x0 is the unique solution modulo mi1 . . .mit−1 of the resulting system.

Therefore, in order to assure a reasonable level of security, (t, n)-Mignotte

sequences with a large factor α−β
β

must be chosen.

Iftene extended Mignotte’s threshold scheme by introducing the generalized

Mignotte sequences whose elements are not necessarily pairwise coprime [26].

Definition 5. Let t and n be integers such that 2 ≤ t ≤ n. The sequence of

integers m1,m2, . . . ,mn is an (t, n) generalized Mignotte sequence if it satisfies

the following condition:

max1≤i1<...<it−1≤n ([mi1mi2 . . .mit−1 ]) < min1≤i1<...<it≤n ([mi1mi2 . . .mit ]), where

[mi1mi2 . . .mit ] denotes the lowest common multiple (lcm) of mi1 ,mi2 , . . . ,mit .

Obviously, every (t, n) Mignotte sequence is a (t, n)-generalized Mignotte se-

quence.

Generalized Mignotte scheme works similar to Mignotte’s scheme by setting

α = min1≤i1<...<it≤n ([mi1mi2 . . .mit ]) and β = max1≤i1<...<it−1≤n ([mi1mi2 . . .mit−1 ]).

For secret recovery, the general variant of the Chinese remainder theorem must

be used.

4.2.2 Asmuth-Bloom Secret Sharing Scheme

The Asmuth-Bloom secret sharing scheme [1] is similar to Mignotte’s secret shar-

ing scheme and also uses a special sequence of coprime integers m0 < m1 < . . . <

mn such that

m0 ·
t−2∏
i=0

mn−i <
t∏
i=1

mi.
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Usually m0 is kept as a secret and m1, . . . ,mn are publicly known. The secret

sharing scheme works as follows:

• The secret d is chosen as a random number from Zm0 .

• y is computed as y = d+A ·m0, where A is an arbitrary integer such that

y ∈ Zm1...mt

• The shares di are computed as di = y mod mi for all 1 ≤ i ≤ n;

• Given t distinct shares di1 , . . . , dit , the secret d can be obtained as d =

x0 mod m0, where x0 is obtained using the standard variant of the Chinese

remainder theorem, as the unique solution modulo mi1 . . .mit of the system

x ≡ di1 mod mi1
...

x ≡ dit mod mit .

In the original Asmuth-Bloom SSS, the authors proposed an iterative process

to solve the above system of equations. We describe a non-interactive and direct

solution method given in [15]. This method is more suitable for function sharing in

the sense that it does not require interaction between parties and has an additive

structure which is convenient for exponentiations; and is used in function sharing

schemes given in [34]. Suppose S is a coalition of t users gathered to construct

the secret d.

1. Let MS\i denote
∏

j∈S,j 6=imj and M
′
S,i be the multiplicative inverse of MS\i

in Zmi
, i.e.

MS\iM
′
S,i ≡ 1 (mod mi).

Then, every user i computes

ui = yiMS\iM
′
S,i mod MS.

2. y is computed as

y =
∑

i∈S ui mod MS.

3. The secret d is computed as

d = y mod m0.
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The same procedure can be used in Mignotte SSS, except for the last step

which is not needed.

Asmuth-Bloom sequences can also be generalized in a similar manner to

Mignotte sequences [27]. The numbers in the sequence are not necessarily prime

and satisfy the following condition:

m0 ·max1≤i1<...<it−1≤n ([mi1mi2 . . .mit−1 ]) < min1≤i1<...<it≤n ([mi1mi2 . . .mit ]).

We conclude this section by explaining 2 crucial properties of (dn/2e, n)

Asmuth-Bloom sequences. We will use these properties later in this chapter

when we are presenting a new splitting-based secret sharing scheme.

Lemma 1. An (dn/2e, n) Asmuth-Bloom sequence is also an (m,n) Asmuth-

Bloom sequence for all m such that 1 < m < dn/2e.

Proof. Let t = dn/2e. Consider the inequality:

t∏
j=1

mj > m0

t−1∏
j=1

mn−j+1 (4.4)

Now for k < t we have to show that

k∏
j=1

mj > m0

k−1∏
j=1

mn−j+1 (4.5)

Comparing inequalities (4.4) and (4.5), we see that same number of numbers

are removed from the products from each side of the inequality (4.4) to obtain

inequality (4.5). But the numbers removed from the left side are strictly less than

the numbers removed from the right side. So, inequality (4.5) holds.

Lemma 2. An (dn/2e, n) Asmuth-Bloom sequence is also a (k, n) Asmuth-Bloom

sequence for all k such that dn/2e < k ≤ n− 1.

Proof. The proof is similar to the proof of the previous lemma. Now for m > t

consider the inequality,
m∏
j=1

mj > m0

m−1∏
j=1

mn−j+1. (4.6)
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Here, the same number of numbers are added to the product in each side of

inequality (4.4) to obtain inequality (4.6). But, since m > t, the numbers inserted

to the left side of the inequality (4.4) are strictly greater than the numbers inserted

to the right side. So, inequality (4.6) holds as well.

4.3 Method of Galibus and Matveev

The method of Galibus and Matveev produces a generalized Mignotte sequence

for an arbitrary access structure for the ring of polynomials.

In the following algorithm, n denotes the total number of players, pi(x) denotes

the polynomial of user i for all 1 ≤ i ≤ n. Γ denotes the access structure.

Algorithm 1 Method of Galibus and Matveev

1: for all maximal unauthorized subset A /∈ Γ do
2: {Define polynomial pri(x) for all i for some r(x)}
3: for all i /∈ A do
4: pri(x) = pi(x) · r(x)
5: end for
6: for all i ∈ A do
7: pri(x) = pi(x) for all i ∈ A
8: end for
9: Find irreducible monic r(x) such that

10: deg[pi(x), i ∈ A] < deg[pri(x), i ∈ C] for all authorized subset C
11: for all i /∈ A do
12: Set pi(x) = pi(x) · r(x).
13: end for
14: end for

Initially each polynomial is set to 1. Then, at each iteration of the algorithm,

a maximal unauthorized subset A /∈ Γ (i.e. there exists no unauthorized subset

B /∈ Γ such that A ⊂ B) is processed. The polynomials (i.e. moduli) of all

participants not belonging to A are multiplied by some irreducible monic r(x) ∈
GF (q)[x], where GF (q)[x] denotes the polynomial ring and GF (q) is the Galois

field of prime order q. r(x) is chosen such that after all multiplications the
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following condition is fulfilled:

deg[pi(x), i ∈ A] < deg[pi(x), i ∈ C],

for any authorized subset C. This condition holds true, as Galibus and Matveev

show, after some other maximal unauthorized subset is chosen and the same

operation is performed for the irreducible monic r2(x) 6= r(x) at a subsequent

iteration of the algorithm. Thus, after repeating the operation for all maximal

unauthorized subsets the realization of the Mignotte sequence for the given access

structure Γ is obtained.

Our modifications to the method of Galibus and Matveev for integers are as

follows: We want our modified algorithm to produce generalized Asmuth-Bloom

sequences instead of generalized Mignotte sequences, so p0 is chosen as a random

prime number of specified bit length in the beginning. Then at each step of the

algorithm the following condition is checked:

p0 · [pi, i ∈ A]) < minC([pi, i ∈ C]), (4.7)

for the current unauthorized subset A and for all authorized subsets. Here C is

an authorized subset (C ∈ Γ), and the lowest common multiple of pis in C are

minimum compared to other authorized subsets. If the condition is not satis-

fied a prime number pc is chosen such that (p0 · [pi, i ∈ A]) < (pi · pc, i ∈ C])

for any authorized subset C. After finding such pc, all moduli not belonging to

participants from A are multiplied with pc. Thus, as in the original algorithm of

Galibus and Matveev, after this operation is repeated for every maximal unau-

thorized subset and the desired sequence (a generalized Asmuth-Bloom sequence

in this case) is generated. The modified version of the algorithm for integers is

given in Algorithm 2.

This algorithm allows us to generate generalized Asmuth-Bloom sequences

for arbitrary access structures. Nevertheless, our experiments indicate that the

algorithm only has theoretical importance. Our experiments with the algorithm

show that the generated numbers are very big and impractical to use even for

very small access structures.
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Algorithm 2 Modified algorithm for integers

1: Generate prime p0 of specified bit length
2: for all maximal unauthorized subset A /∈ Γ do
3: Find M = minC([pi, i ∈ C]) where C ∈ Γ
4: if (p0 · [pi, i ∈ A]) < M then
5: Continue
6: else
7: Find prime pc s.t. p0 · [pi, i ∈ A] < [pi · pc, i ∈ C] for all C ∈ Γ
8: for all i /∈ A do
9: Set pi = pi · pc.

10: end for
11: end if
12: end for

Table 4.1 shows the average and maximum bit lengths of the generated gen-

eralized Asmuth-Bloom sequences for 4 different access structures and for p0 of

length 32, 64, 128, 256 and 512 bits. The top row of the table shows the different

access structures. In each of the access structures, there are 2 partitions. The

vector s shows the sizes of the partitions. Each row of the matrix A shows a

different group of authorized participants. As seen from the table average and

maximum bit lengths increase linearly with bit length of p0. The values with an

* next to them are obtained without waiting for the algorithm to stop and the

shown maximum and average values are the values at the time the algorithm is

stopped. So, their actual values will be higher. Note that, the algorithm used to

generate generalized Asmuth-Bloom sequences is a deterministic algorithm and

obtained average and maximum values are obtained by running the algorithm

just once, not from multiple runs.

Clearly the obtained maximum and average bit lengths indicate that the algo-

rithm is not of practical value. We can say that it only has theoretical importance.

The results obtained when the number of partitions is set to 3 is even worse as

the required number of multiplications increase significantly.
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Bits A = {(2 3)} A = {(2 3),(3 2)} A = {(2 3)} A = {(2 3),(3 2)}
s = (4 4) s = (4 4) s = (5 5) s = (5 5)

32 Max : 652 Max : 7162 Max : 1489 Max : 53631
Avg : 327 Avg : 5612 Avg : 726 Avg : 42558

64 Max : 1324 Max : 14554 Max : 3025 Max : 91729
Avg : 663 Avg : 11404 Avg : 1475 Avg : 73031

128 Max : 2668 Max : 29338 Max : 6097 Max : 219711
Avg : 1336 Avg : 22988 Avg : 2973 Avg : 174350

256 Max : 5356 Max : 58906 Max : 12241 Max : 160455*
Avg: 2679 Avg: 46156 Avg: 5968 Avg: 103670*

512 Max : 10732 Max : 56722 Max : 24529 Max : 214456*
Avg: 5367 Avg: 92492 Avg: 11958 Avg: 202365*

Table 4.1: Maximum and average bit lengths of generalized Asmuth-Bloom se-
quences generated by the modified Galibus and Matveev algorithm

4.4 The New Method Based on Splitting

For generating Mignotte or Asmuth-Bloom sequences for arbitrary access struc-

tures another approach is possible as we will show next. We describe the method

using the multipartite access structures similar to Galibus and Matveev’s method.

Unlike the previously described method of Galibus and Matveev, and its modified

version working on integers, the new method generates more than one sequence.

The idea of the new method is quite simple: For sharing a secret d, for each

row r of the access structure matrix MΓ, we generate dP1 , dP2 , . . . , dPk
such that

dP1 + dP2 + . . .+ dPk
= d mod m0

and share dP1 for participants in partition 1, share dP2 in partition 2 and so on.

So, if there are m rows in the access structure matrix MΓ, each player ends up

with m shares. Obviously, this idea is not specific to any secret sharing scheme.

However, here we focus only on using this method with Asmuth-Bloom secret

sharing scheme. Note that it suffices to generate one Asmuth-Bloom sequence

for each partition. Moreover, if there are partitions with the same size, the same

Asmuth-Bloom sequence can be reused. In the extreme case where all partitions

have the same size, just one Asmuth-Bloom sequence is generated and used in

all partitions. After briefly describing the method, we next formally give the
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algorithm for Asmuth-Bloom secret sharing scheme.

In the following assume there are k partitions of the participants and ni de-

notes the number of participants in partition i. The access structure Γ is a

multipartite access structure and the access structure matrix MΓ consists of m

rows and k columns, which is equal to the number of partitions.

For each partition we generate an Asmuth-Bloom sequence with common m0.

More specifically, for partition j we generate an (dnj/2e, nj) Asmuth-Bloom se-

quence. Normally, one would be required to generate an Asmuth-Bloom sequence

for each different pair (aij, nj), where aij denotes the element of MΓ at row i and

column j. However, as we showed in Lemmas 1 and 2, an (dn/2e, n) Asmuth-

Bloom sequence is also an (m,n) Asmuth-Bloom sequence for all m < dn/2e
and also a (k, n) Asmuth-Bloom sequence for all k > dn/2e. So, the generated

(dnj/2e, nj) sequence can be used for each different value of aij for all i.

Algorithm 3 Splitting-Based Secret Sharing Scheme for General Access Struc-
tures based on Asmuth-Bloom SSS

1: for all i such that 1 ≤ i ≤ k do
2: Set t = dni/2e
3: Generate m0 < mi1 < mi2 < . . . < mini

4: such that
∏t

j=1mij > m0

∏t−1
j=1 mini−j+1

5: end for
6: for all row i of matrix MΓ do
7: generate dP1 , dP2 , . . . , dPk

such that dP1 + dP2 + . . .+ dPk
mod m0 = d

8: for all i such that 1 ≤ i ≤ k do
9: Share dPi

in partition i
10: end for
11: end for

Algorithm 4 Sharing of dPi
in partition i

1: Let Mi =
∏ni

j=1mij

2: Choose Ai as a random integer such that 0 ≤ yi ≤Mi

3: where yi = dPi
+ Aim0

4: for all j such that 1 ≤ j ≤ ni do
5: yij = yi mod mij {Generate share of player j of partition i}
6: end for

Note that for each vector in the access structure we have to regenerate the
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sum d =
∑k

j=1Pj mod m0. Otherwise, i.e. if we use the same sum more than

once, unauthorized groups can find the secret by combining their shares given

for different vectors in the access structure. As an example consider a secret

sharing scheme with 10 players. Let the access structure Γ be defined as Γ =

{(5, 3), (3, 5)}. Obviously subsets of (4, 4) are unauthorized, but a group of players

having 4 players from each partition can find S2 from the shares of given for vector

(5, 3) and can find S1 from the shares given for vector (3, 5). Then combining

these would yield the secret. Obviously, this situation has to be avoided.

The main drawback of the proposed secret sharing scheme is the fact that

it reduces the information rate by giving each partition more than one share.

Since, we cannot find one Asmuth-Bloom sequence that suits our needs this is

a price we have to pay. In [20] it is shown that not all access structures can be

realized using pairwise coprime moduli. They call access structures that can be

realized using pairwise coprime moduli as elementary access structures and give

the characterization of these access structures with the help of the monomial cut

concept. On the other hand, the modification of the same authors’ algorithm to

the ring of integers which produces generalized Asmuth-Bloom sequences produce

very big numbers prohibiting the algorithms’ practical value. So, even though the

secret sharing scheme proposed here decreases the information rate, it compares

favorably to its alternatives.

The splitting-based secret sharing scheme suits naturally to be used with

function sharing schemes. In the next subsection we show how RSA signatures

can be computed when the secret is shared using the proposed splitting-based

secret sharing scheme.

4.4.1 Threshold RSA signature scheme with the proposed

secret sharing scheme

In [34], Kaya et al. investigated how threshold cryptography can be conducted

with the Asmuth-Bloom secret sharing scheme and presented function sharing

schemes for RSA, ElGamal and Paillier cryptosystems. Here, we will follow their
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approach for realizing RSA signature computation using the proposed splitting-

based secret sharing scheme as the underlying secret sharing scheme. When an

authorized group of participants come together, participants from each partition

can compute their partial signatures as in [34]. Then each partial signature com-

ing from each partition is multiplied to generate the incomplete signature. The

given method for RSA signature computation in [34] first calculates an incor-

rect signature and then this incorrect signature is corrected by using a procedure

which utilizes the public keys of the system. Here, the required housekeeping is

a little more complicated. The computed partial signatures of each partition will

be incorrect. It is not possible to correct these partial signatures at this step since

there is no information to be used for correction (i.e. no public keys or partial

public keys for each partition). However, we can use the correction procedure

after the partial signatures are combined. In the following we give the steps of

RSA signature computation when the RSA private d is shared using the proposed

splitting-based secret sharing method.

• Setup: In the RSA setup phase, choose the RSA primes p = 2p
′
+ 1 and

q = 2q
′

+ 1 where p
′

and q
′

are also large random primes. N = pq is

computed and the public key e and private key d are chosen from Z∗φ(N)

where ed ≡ 1 (mod φ(N)). Use the above secret sharing scheme for sharing

d with m0 = φ(N) = 4p
′
q
′
. Note that each participant will receive multiple

shares, the number of which is equal to the number of rows of the access

structure matrix.

• Signing: Let w be the hashed message to be signed and suppose the range

of the hash function is Z∗N . Let there be p partitions. Assume a coalition

S consisting of t1 players from partition 1 , . . . , tk players from partition k

wants to obtain the signature s = wd mod N . Let Sp denote the subset of

S having players only from partition p. For this coalition to be authorized

there has to be at least one row r in the access structure matrix such that

r ≥ (t1, . . . , tk). Without loss of generality assume assume r = (t1, . . . , tk),

we can always have this by not considering shares of players coming from

partitions already having enough number of players.
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– Generating partial results :

Each user i ∈ Sj computes

ui = yiM
′
Sj ,i
MSj\i mod MSj

,

si = wui mod N.

– Combining partial results:

The incomplete signature s is obtained by combining the si values in

each partition Pj and then multiplying the results.

s =
∏k

j=1

∏
i∈Pj

si mod N.

– Correction:

Let κj = w−MSj be the corrector of partition j. The incomplete signa-

ture can be corrected by trying

(sκj11 κ
j2
2 . . . κ

jp
p )e = se(κe1)j1(κe2)j2 . . . (κep)

jp
?≡ w (mod N) (4.8)

for

0 ≤ j1 < t1,

0 ≤ j2 < t2,
...

0 ≤ jp < tp.

Then the signature is computed by

s = sκδ11 κ
δ2
2 . . . κδpp , (4.9)

where δ1, . . . , δp denote the values of j1, . . . , jp that satisfy (4.8). For

details of why this correction procedure is needed and why it works,

the reader may consult [34].

• Verification: Verification is the same as the standard RSA signature verifi-

cation.



Chapter 5

Function Sharing

Implementations

In this chapter we describe our implementations of several secret sharing and

function sharing schemes. These implementations are carried out in order to

verify the correctness of the proposed schemes. Also, observing the efficiency in

terms of computation time was our aim.

We implemented the RSA signature computation based on linear secret shar-

ing schemes given in Chapter 3. The basic version of the proposed function

sharing scheme (without robustness feature) appeared in [5]. The robust version

as given in this thesis along with application to other public key cryptosystems

appeared in [4]. We implemented only the basic version, the robust version is

not implemented yet. As a result of the implementation, we observed that the

computation of the cofactors is the most time consuming step of the solution

procedure. Since we only need the first row of the adjugate matrix (transpose of

the cofactor matrix), we didn’t compute all the cofactors in our implementation.

In addition to the function sharing schemes given in Chapter 3, the splitting-

based secret sharing scheme described in Chapter 4 is implemented. Also, the

modified version of Galibus and Matveev algorithm is implemented to get the

average and maximum bit lengths of the generated generalized Asmuth-Bloom
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sequences. The results of our experiments with this algorithm appeared in Chap-

ter 4. As the bit lengths given in Table 4.1 indicate, this algorithm is not practical.

Additionally, several other function sharing schemes that are recently pro-

posed are implemented. The threshold RSA signature computation, threshold

Paillier decryption and threshold ElGamal decryption functions using Asmuth-

Bloom secret sharing scheme was given in [34]. These function sharing schemes

given in [34] are robust. However, we didn’t implement the robustness features

of these schemes. Another function sharing scheme given in [35] shows how

threshold Digital Signature Standard (DSS) signatures can be computed with

Asmuth-Bloom secret sharing scheme as the underlying secret sharing scheme.

This signature scheme is also implemented.

Asmuth-Bloom based function sharing schemes are implemented using Java

programming language. The threshold RSA signature scheme using linear secret

sharing schemes given in Chapter 3 is implemented in Matlab. The splitting-

based secret sharing scheme and modified Galibus and Matveev algorithms are

also implemented in Matlab. In Matlab implementations, Matlab—Java interface

is utilized to be able to use BigInteger class from java.math package.

The developed function sharing schemes share the same modules for secret

sharing. Several command line parameters are defined. These parameters are:

−n for the total number of participants, −t for the threshold value and −S for

the coalition. Upon program start the mode of operation is selected such as RSA

signature with linear SSS, Paillier decryption with Asmuth-Bloom SSS etc.



Chapter 6

Conclusion and Future Work

In this thesis, we investigated some aspects of the secret sharing and function

sharing problems. We focused on Blakley SSS which is a linear SSS. In secret

sharing and function sharing literature, many extensions to and solutions based

on Shamir SSS can be found. After investigating homomorphic properties of

Blakley SSS, we used these properties to extend Blakley secret sharing in various

ways. We examined homomorphic properties of Blakley SSS and used these

properties as building blocks in the extensions to the Blakley SSS. We showed

that how verifiability, proactivity features can be achieved with Blakley SSS.

Another extension was showing how secret sharing without a dealer can be done

with Blakley SSS.

We also showed how some function sharing schemes can be realized when

a linear SSS is used as the underlying secret sharing scheme. We presented a

robust RSA threshold signature scheme based on a linear SSS. The proposed

signature scheme generalizes Shoup’s threshold RSA signature based on Shamir

secret sharing, and is as efficient and practical as Shoup’s scheme.

Besides RSA, we showed that this approach can be extended to other public

key cryptosystems where the private key is used in the exponent. We demon-

strated how Paillier decryption function can be shared by this approach. We also
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showed threshold DSS signature computation using the same approach. Thresh-

old DSS signature computations made use of the mentioned homomorphic prop-

erties of linear secret sharing schemes. ElGamal and Naccache-Stern knapsack

cryptosystems are some other cryptosystems that can benefit from the proposed

solution.

Another secret sharing scheme of our interest was Asmuth-Bloom secret shar-

ing. We investigated ways of finding Asmuth-Bloom sequences for arbitrary access

structures. We modified a method proposed in the literature for this purpose and

implemented it to see it in practice. The numbers produced by this algorithm

turned out to be impractical to use. Because of the impracticality of this algo-

rithm, at the cost of reducing the information rate, we proposed a new method

for enabling Asmuth-Bloom secret sharing for general access structures. The

proposed secret sharing scheme compares favorably to the mentioned modified

algorithm in terms of information rate. Function sharing schemes can be im-

plemented with the proposed secret sharing scheme, and we showed an example

threshold RSA signature computation using the proposed secret sharing scheme.

For future work, obtaining more compact Asmuth-Bloom sequences and hence

improving the information rate can be considered. Also, ways of improving the

efficiency of the proposed function sharing scheme can be investigated. This

can be achieved, for example by finding a way of applying the corrector functions

locally at each partition instead of globally (for the entire coalition S) as proposed.

Another issue to consider can be proposing other function sharing schemes based

on the proposed secret sharing scheme.

Finally, we implemented the proposed secret and function sharing schemes in

addition to some other recently proposed function sharing schemes. The imple-

mentations are not done to be used in real world secret and/or function sharing

schemes, but to show the correctness and measure the efficiency of the proposed

methods.
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Appendix A

Basic Notation

Secret Sharing

n total number of participants

t threshold

k the number of partitions

nj the number of participants in partition j

d the shared secret

dj share of user j for secret d

dPj
the (sub)secret shared in partition j

P the set of all participants

Pj the set of all participants from partition j

S the coalition of users

Sj the coalition of users from partition j

1, 2, . . . , n the (labels of) participants

Γ the authorized access structure

Γ the unauthorized access structure

MΓ access structure matrix in multipartite access structure
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Number Theory

φ(m) the value of Euler’s totient function in m

λ(N) Carmichael function of N

GF (q) Galois field of prime order q

[a1, . . . , an] the least common multiple of the integers a1, . . . , an

gcd(a1, . . . , an) the greatest common divisor of the integers a1, . . . , an

Zm the set {0, 1, . . . ,m− 1}, for some m ≥ 1

Z∗m the set {a ∈ Zm| gcd(a,m) = 1}
a|b a divides b

a−1(modm) multiplicative inverse of a modulo m, for some a ∈ Z∗m
logα β the discrete logarithm of β to the base α



Appendix B

Acronyms

SSS secret sharing scheme

FSS function sharing scheme

LSSS linear secret sharing scheme

VSS verifiable secret sharing

JRSS joint random secret sharing

CRT Chinese remainder theorem

DSS digital signature standard

PKC public key cryptosystem
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