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ABSTRACT

SLOW LIGHT IN GERMANIUM NANOCRYSTALS

Ümit Keleş

M.S. in Physics

Advisor: Assoc. Prof. Dr. Ceyhun Bulutay

August, 2009

The phenomena of quantum coherence has been applied with great success in

the atomic systems. For optoelectronic applications the interest is inherently di-

rected towards the semiconductor heterostructures. Large number of works have

proposed and analyzed the atomic quantum coherence effects in the semiconduc-

tors. In this respect, nanocrystals (NCs) are very promising structures for seeking

the quantum coherence phenomena due to their atomic-like electronic structure.

Furthermore, their robust structure, integrability and larger excitonic lifetimes

with respect to atomic systems makes them more promising candidates for the

technological applications.

Within an atomistic pseudopotential electronic structure framework, the opti-

cal Bloch equations (OBEs) originating from atomic coherence theory are derived

and solved numerically for Ge NCs. The results are interpreted in the context of

coherent population oscillations (CPO). Narrow dips are observed in the absorp-

tion profiles which corresponds to high dispersions within a transparency window

and produce slow light. A systematic study of the size-scaling of slow-down fac-

tor with respect to NC diameter and controllable slow light by applying external

Stark field are provided. The results indicate that Ge NCs can be used to generate

optically and electrically controllable slow light.

The many-body Coulomb interactions which underlie the quantum coherence

and dephasing are of central importance in semiconductor quantum confined sys-

tems. The effects of many-body interactions on the optical response of Ge NCs

have been analyzed. The semiconductor optical Bloch equations (SBEs) are de-

rived in a semiclassical approach and the Coulomb correlations are included at

the level of Hartree-Fock approximation.
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ÖZET

GERMANYUM NANOÖRGÜLERDE YAVAŞ IŞIK

Ümit Keleş

Fizik, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Ceyhun Bulutay

Ağustos, 2009

Kuantum uyumluluğu temelli olgular atomik sistemlerde başarıyla uygu-

lanmıştır. Teknolojik uygulamalar için ilgi yarıiletken malzemelere de

kaydırılmıştır. Yarıiletkenlerde atomik kuantum uyumluluğu benzeri etkileri

araştıran pek çok çalışma yapılmıştır. Bu bağlamda, nanoörgüler (NÖ’ler) atomik

benzeri elektronik yapıları ile kuantum uyumluluğu etkilerinin gözlemlenmesi

için gelecek vadeden malzemelerdir. Ayrıca, atomik sistemlere kıyasla is-

tikrarlı yapıları, bütünleşebilirlik ve daha uzun uyarılmış kalabilme süreleri, bu

malzemeleri teknolojik uygulamalar için daha uygun hale getirmektedir.

Uyguladığımız atomik görünür potansiyel temelli elektronik yapı hesabı dahi-

linde, atomik uyumluluk kuramına dayanan optik Bloch denklemleri türetilmiş

ve germanyum (Ge) NÖ’leri için sayısal yöntemlerle çözülmüştür. Sonuçlar,

uyumlu yoğunluk salınımları olgusu kapsamında değerlendirilmiştir. Soğurma

görüngesindeki dar çukurluklar aynı bölgede yüksek dağılımlı geçirgenlik

oluşturarak yavaş ışık gözlemlenmesini sag̃lamıştır. Yavaşlama oranının,

NÖ çapına ve uygulanan dış Stark elektrik alanına bağlılığı incelenmiştir.

Sonuçlarımız, Ge NÖ’lerinde optik ve elektriksel olarak kontrol edilebilecek yavaş

ışık oluşturulabileceğini göstermiştir.

Kuantum uyumluluğunun ve uyarılmış durum sönümlülüğünün alt yapısını

oluşturan çok parçacık Coulomb etkileşimleri, kuantum sınırlandırılmış sistem-

lerde ana öneme sahiptir. Çok parçacık etkileşimlerinin Ge NÖ’lerin optik tep-

kileri üzerindeki etkisi araştırılmıştır. Bu amaçla yarıiletken Bloch denklem-

leri türetilmiş ve Coulomb etkileri Hatree-Fock yaklaşımı kapsamında dahil

edilmiştir.

Anahtar sözcükler : Nanoörgüleri, Yoğunluk Dizey Çözümlemesi, Optik Bloch

Denklemleri, Yavaş Işık, İkinci Nicemleme, Yarıiletken Bloch Denklemleri.
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Chapter 1

Introduction

Nanocrystals (NCs) are nanometer-scale semiconductor crystals where the car-

riers are spatially confined in all three dimensions. The quantum confinement

effects breaks up the continuous density of states within the conduction and va-

lence bands into discrete quantized states and leads to the discrete energy levels

with sharp optical absorption spectra; similar to those of atoms and molecules. By

these similarities, NCs are usually regarded as artificial solid-state atoms [1, 2, 3].

These similarities triggered numerous works to investigate the atomic-like

properties in NCs. As expected atomic-like emission and absorption spectra

of NCs observed in the early 1990s [4, 5, 6]. However, besides the atomic-like

electronic and optical properties, NCs have several application advantages over

the atomic systems. Since NCs are mesoscopic systems consisting of 103 to 106

individual atoms and molecules, there is a possibility of engineering the compo-

sition, size and shape of NCs. As such, one can control the energy levels and

optical properties of NCs. The robust structure of NCs at room temperature

is also a significant advantage over the atomic systems which can be captured

only for the short durations via complicated cooling and trapping techniques [1].

Moreover, crystalline effects such as carrier-carrier and carrier-phonon interac-

tions bring new properties to NCs which are not available in atomic systems.

These advantages can be employed for technological applications, provided that

we understand the fundamental physics of the electronic and optical properties

1



CHAPTER 1. INTRODUCTION 2

associated with NCs.

In this thesis, we follow the trail of some fundamental atomic quantum co-

herence effects on germanium (Ge) NCs. Besides their fundamental interest the

quantum coherence phenomena are important for the applications such as the

quantum computation [1] and slow light [7]. Our emphasis here is on the gener-

ation of slow light in Ge NCs.

Ge NCs embedded in silica exhibit atomic-like states which are very conve-

nient for the coherent control schemes. However, a more fundamental reason

for our consideration of Ge NCs is due to their lowest unoccupied molecular or-

bital (LUMO) level widely separated from the higher-lying states by more than

250 meV for NCs smaller than 2 nm; this property is unique and it is not the case

for instance for silicon NCs [8]. Hence, this advantageous electronic structure of

Ge NCs offers an ideal setting for exploring the quantum optical effects.

Figure 1.1: Energy spectra of germanium NCs of four different diameters em-
bedded in a wide bandgap matrix computed with our atomistic pseudopotential
approach; band edges of the bulk Ge is also marked as a reference [8].

In this computational expedition, aiming for a realistic account, the electronic

structure and optical dipole matrix elements are computed using an atomistic

pseudopotential approach; this is particularly challenging for a system containing
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about several thousand atoms [9]. Figure 1.1 shows the evolution of the electronic

states as the size of the Ge NCs varies; the widely-separated LUMO level for small

diameters can be observed [8].

The velocity at which an optical pulse propagates through a material is given

by the group velocity and expressed as,

νg =
c

n + ω dn
dω

(1.1)

where c is the group velocity of the light in vacuum, ω is the angular velocity of

the pulse and n is the refractive index of the material [7]. As Eq. (1.1) indicates

the group velocity depends not only on the refractive index, but also on the

refractive index dispersion (i.e. dn
dω

). Usually the dispersion is so small then the

group velocity is equal to c
n
. Nevertheless, the group velocity can be reduced to

very small limits by exploiting the refractive index dispersion value.

Slow light is important both for fundamental understanding of quantum coher-

ence effects and promising for new applications in quantum information and infor-

mation processing such as all-optical networks, controllable optical data buffers,

and optical data storage and memories. However, for such applications main aim

is not just slowing the light but more essentially generating a tunable time delay

by controlling the group velocity. The capacity of an optical buffer in an opto-

electronic devise is directly proportional to the variability of the group velocity

[10].

When an electromagnetic field is slowed down in a medium, its energy density

increases. Since the nonlinear effects depend on the local energy density, the

spatial compression of optical energy can be used to enhance the nonlinear optical

effects. By this way, the nonlinear effects can be observed at much more lower

applied powers than usually required [11].

The key to produce slow light is to give a mechanism which can lead to a

transparency window in the absorption spectra. However, although, the medium

is highly transparent, there is still a strong dispersion to produce slow light. Any

mechanism that burns a hole in the absorption and gives rapid spectral variation

of refractive index can produce slow light [12].



CHAPTER 1. INTRODUCTION 4

In 1992, Harris et al. [13] estimated that the electromagnetically induced

transparency (EIT) can be used to generate slow light. EIT is a quantum in-

terference effect fundamentally based on the coherent population trapping in a

three level system. Experimental observation of this mechanism to slow the light

was reported by Hau et al. [14]. They reported a group velocity of about 17 m/s

in a Bose-Einstein condensate. Using EIT many groups observed slow light in

different material systems [15, 16, 17].

For possible applications interest is eventually directed towards the room tem-

perature solid materials. The problem with EIT in those systems is large dephas-

ing rates compared with gases that broaden spectral features and preclude strong

dispersion required for the production of slow light.

Bigelow et al. [18] suggested a new mechanism, the coherent population oscil-

lation (CPO) to produce slow light in a solid state material at room temperature.

Unlike EIT, this new mechanism relies on a two-level system for the propaga-

tion material. They observed a group velocity of about 57 m/s in a ruby crystal

at room temperature. Following their work, several other groups applied CPO

mechanism to produce tunable slow light in semiconductor quantum wells and

dots [19, 20, 32, 22].

CPO can be observed when a strong pump field and weak probe field with

slightly different frequencies interact within a saturable absorber material. In this

process the ground state population is induced to oscillate at the beat frequency

between the pump and probe fields. When the beat frequency is smaller than or

approximately equal to the inverse population relaxation time T−1
1 , the oscillation

can lead to a sharp decrease of the absorption of the probe field and so a rapid

frequency variation of the refractive index experienced by the probe field. Since

such a rapid variation means dn
dω

> 0, by Eq. (1.1), gives rise to small group

velocities for the probe field.

The advantage of CPO over EIT is the former required long population relax-

ation times whereas the latter requires long dephasing times. In solid materials

carrier-carrier and carrier-phonon scatterings give rise to very small dephasing

times. Hence CPO is more adequate to implement slow light in the solid state
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mediums. Actually we are going to see that short dephasing times are very crucial

to generate the population oscillations.

In this Thesis, we use CPO to generate a transparency window within the

absorption profile.

An analysis based on the atomic quantum theories does not give a complete

description of semiconductor behavior, since the many-body interactions between

the carriers are neglected. For a more realistic calculation the semiconductor

effects should be included in a consistent manner. The inclusion of the many body

effects into the atomic quantum coherence theory can be accomplished using the

semiconductor Bloch equations [23]. The choice of nanocrystals becomes more

meaningful in this sense since with their atomic-like properties NCs are best

structures for the transition from atomic systems to semiconductors.

Due to the carrier-carrier scatterings, the redistribution of populations and

the renormalization of energy levels are expected. Such contributions will modify

the spectral shape and magnitude of quantum coherence effects [24]. When the

many-body interactions are included to the calculations, the dephasing processes

become significantly faster due to carrier-carrier and carrier-phonon collisions.

Hence in order to maintain the coherence effects, higher coupling fields are re-

quired.

The main result of Coulomb interaction is the carrier-carrier scattering. If the

external driving fields do not vary much in the typical carrier-carrier scattering

time of less then picoseconds, the scatterings just drives the electron and hole dis-

tributions within each band to Fermi-Dirac distributions. Hence, carrier-carrier

interactions can be included to the calculations by the effective rate approxima-

tions which describe in which rate the population distributions converge to the

quasi-Fermi-Dirac distributions [25].
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1.1 This Work

The organization of this Thesis is as follows:

In the following chapter we introduce the density matrix formalism of light-

matter interaction and derive the optical Bloch equations for a multi-level system.

The dephasing processes are included phenomenologically in terms of the relax-

ation and dephasing times. Next, we discuss the two-level approximation and

present the analytical and numerical solution methods for the two-level OBEs.

In Chapter 3, we briefly describe our electronic structure calculations called

linear combination of bulk bands (LCBB). Next, we illustrate that dephasing and

relaxation times are very crucial inputs for the solutions of OBEs and thus we

discuss the range of these values for Ge NCs. While solving OBEs for Ge NCs,

we explain the hole burning phenomena and represent our results for slow light

production in Ge NCs. We give the size-scaling of slow-down factor with respect

to NC diameter and Stark effect.

In Chapter 4, we develop an analysis which explains the semiconductor quan-

tum coherence phenomena in Ge nanocrystals. Due to the strong many-body ef-

fects, some deviations from the results of atomic coherence theory are inevitable.

In that part, we treat the light-matter interaction in terms of second quantized

electron-hole formulation. The semiconductor Bloch equations are introduced to

investigate quantum coherence phenomena in semiconductors. The carrier-carrier

and carrier-phonon interactions are included in the context of Hartree-Fock ap-

proximation. The collision effects beyond that approximation are added in terms

of effective relaxation rates.

Chapter 5 contains the conclusion which gives aa brief discussion of all the

preceding chapters and results of SBEs are expected as a future work.



Chapter 2

Optical Bloch Equations

In the present chapter we derive the density matrix formulation of the light-

matter interaction. We consider the interaction for a multi-level system. After

deriving the general formalism, we are going to concentrate on the physics of

two-level scheme. A two-level approximation is useful when the two-levels of the

interest to the medium are in resonance nearly with the applied fields whereas all

the other levels are significantly detuned.

2.1 General Formalism

Quantum mechanically, one can specify the dynamic state of a single particle

in terms of its state function. Similarly the dynamics of a quantum mechanical

system can be specified in terms of a pure state function. On the other hand, in

order to describe the state of a macroscopic medium containing many particles we

need the complete knowledge of states of all the particles in the medium. In such

a case we can apply the statistical mechanics in order to calculate the averaged

expectation values of observable medium quantities. That is, we consider the

probability distribution function Pi over all the possible states |ψi〉 of the system.

Then the expectation value of some physical quantity represented by the operator

7
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Ô is averaged over the all possible states and given by

〈Ô〉 =
∑

i

Pi〈ψi|Ô|ψi〉 , (2.1)

where |ψi〉 is a state of the complete set of orthonormal quantum states of many-

particle system. The right hand side of Eq. (2.1) can be written in the matrix

representation using an arbitrary complete basis set |n〉,

〈Ô〉 =
∑
n,m

∑

i

Pi〈ψi|n〉〈n|Ô|m〉〈m|ψi〉 . (2.2)

Rearranging terms

〈Ô〉 =
∑
n,m

[∑

i

Pi〈m|ψi〉〈ψi|n〉
]
〈n|Ô|m〉 , (2.3)

which can be written as

〈Ô〉 =
∑
n,m

〈m|ρ̂|n〉〈n|Ô|m〉 , (2.4)

where we defined the element of a matrix, called the density matrix

ρmn = 〈m|ρ̂|n〉 =
∑

i

Pi〈m|ψi〉〈ψi|n〉 , (2.5)

and the corresponding density operator is

ρ̂ ≡ ∑

i

Pi|ψi〉〈ψi| . (2.6)

Then Eq.(2.4) will be

〈Ô〉 =
∑
m

〈m|ρ̂Ô|m〉 = tr(ρ̂Ô) , (2.7)

where we used tr, trace that is the sum of the diagonal elements and invariant to

any unitary transformation of the representation. Hence the expectation value

is independent of any specific representation. Let us here make a remark that

as long as our equations are linear, we can effectively replace the operators in

equations by their expectation values, i.e., ρ̂nm → 〈ρ̂nm〉 ≡ ρnm. This can be

performed by taking the expectation values of both sides of equations. Hence

we drop the hats of operators, since their meanings can be understood from the

content.
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The elements of density matrix have significant physical interpretations. Con-

sider for example, our multi-level system of light-matter interaction. The diagonal

matrix elements are real by Eq. (2.5),

ρnn =
∑

i

Pi|〈n|ψi〉|2 , (2.8)

where the probability, that a particle in the state |ψi〉 will be found in the level

|n〉 is averaged over all the states occupied by the particles of the medium. Hence

this value corresponds to the population distribution on the level |n〉.

On the other hand, the off-diagonal elements ρnm are the averages of the

product of the expansion coefficients 〈n|ψi〉 and 〈m|ψi〉, and they have a complex

conjugate property

ρnm =
∑

i

Pi〈n|ψi〉〈ψi|m〉 =
∑

i

P∗i 〈m|ψi〉∗〈ψi|n〉∗ = ρ∗mn . (2.9)

Since the expansion coefficients are complex in general, we can write them as

amplitudes and phases

ρnm =
∑

i

Pi

[
|〈n|ψi〉||〈ψi|m〉|ei(φn−φm)

]
. (2.10)

If neither of the expansion coefficients is equal to zero, then whether the off-

diagonal elements vanish or not will depend on whether the relative phase factor

(φn − φm) averages to zero or not. If the wave functions are incoherent with

randomly distributed relative phases, then the off-diagonal elements average to

zero. So the off-diagonal element ρnm is a measure of the coherence between the

levels n and m, in the sense that it will be nonzero if the system is in a coherent

superposition of energy eigenstates |n〉 and |m〉.

We can understand the significance of coherence considering the macroscopic

electric polarization of a medium via induced dipole moment. The macroscopic

polarization is given as

~P = N〈~µ〉 , (2.11)

in terms of the expectation value of dipole moment µ where N is the dipole

number density of the medium. The dipole matrix elements are

~µnm = ~µ∗mn = −e〈n|r̂|m〉 , (2.12)
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where −e is the electron charge and r̂ is the position operator for the electron.

By the assumption that the wave functions corresponding to states |n〉 and |m〉
have definite parity, the diagonal elements 〈n|r̂|n〉 vanish as a consequence of

symmetry considerations. It also means that the medium has no permanent

dipole. Consider for the sake of clarity the expectation value of dipole moment

for a two-level system, 〈~µ〉 = tr(ρ~µ) where ρ~µ is represented as

〈~µ〉 = tr(ρ~µ) = tr





 ρ11 ρ12

ρ21 ρ22





 0 ~µ12

~µ21 0





 = tr





 ρ12~µ21 ρ11~µ12

ρ22~µ21 ρ21~µ12





 ,

(2.13)

thus the expectation value of dipole moment is

〈~µ〉 = tr(ρ~µ) = ρ12~µ21 + ρ21~µ12 . (2.14)

Hence, we observe that the expectation value of the dipole moment depends on

the off-diagonal elements of the density matrix. That is, the off-diagonal elements

are a measure of the macroscopic polarization of the medium. This illustrates the

importance of off-diagonal elements since from the polarization we can switch to

other macroscopic properties of the medium [24].

For future reference, combining Eqs. (2.11) and (2.14), we obtain the macro-

scopic polarization in terms of dipole moments and density matrices,

~P (t) = N [ρ12(t)~µ21 + ρ21(t)~µ12] , (2.15)

where N is again the density of dipole moments. On the other hand, the linear

polarization in the frequency domain is related to the complex susceptibility of

the medium by

~Pi(ω) = εbχij(ω)~Ej(ω) (2.16)

where the subscripts i and j indicate the Cartesian components and εb is the

host material dielectric constant [39]. In an anisotropic medium, χ is a tensor.

However, in the homogeneously spherical NCs it turns out just a scalar quantity.

After a Fourier transformation, the macroscopic polarization given in Eq.

(2.15) can also be written in the frequency domain. This gives rise to the relation

[39],

~P (ω) = εbχ̃(ω)~E(ω) = N [ρ12(ω)~µ21 + ρ21(ω)~µ12] , (2.17)
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from which we can extract the susceptibility,

χ̃(ω) =
N [ρ12(ω)~µ21 + ρ21(ω)~µ12]

εb
~E(ω)

. (2.18)

The propagation of an electromagnetic field in a dispersive medium can be

characterized by the frequency dependent complex susceptibility, χ = χ′+iχ′′. We

assume small field amplitudes so that the medium displays only linear response.

The imaginary part of the susceptibility, χ′′ gives the absorption of the medium

whereas the real part, χ′ corresponds to the dispersion of the medium [27]. We

will return to these discussions when we are ready to solve density matrices in

the frequency domain.

Hence in summary, the diagonal elements of density matrix give the relative

populations of energy levels and the off-diagonal elements, in our case, takes part

in the calculation of polarization. The dynamics of the multi-level system, thus

the evolution of populations and polarization over time can be described by the

time dependence of the density matrix.

From the definition of ρ, we can observe that it can evolve in time by two

reasons. One is the time dependence of the probability function Pi(t) of the state

|ψi〉. Other is the time-dependence of the state function |ψi〉, itself. Thus we can

write the time evolution of ρ by using its definition given by Eq. (2.6),

d

dt
ρ =

∑

i

[(
∂

∂t
|ψi(t)〉

)
Pi〈ψi|+ |ψi〉

(
∂

∂t
Pi(t)

)
〈ψi|+ |ψi〉Pi

(
∂

∂t
〈ψi(t)|

)]
.

(2.19)

Assume that our system has no relaxation process or no random forces, i.e., all

the particles experience the the same forces. So all the particles in the medium

can be described by the same Hamiltonian. That is in the absence of relaxation

processes, the probability of each state conserved and the probability distribution

function Pi does not change explicitly with time,

∂

∂t
Pi = 0 . (2.20)

Since we stated that all the particles have the same Hamiltonian, then by the

Schrödinger Equation

∂

∂t
|ψi(t)〉 = − i

h̄
H|ψi(t)〉 and

∂

∂t
〈ψi(t)| = i

h̄
〈ψi(t)|H . (2.21)
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Inserting Eqs. (2.20) and (2.21) into (2.19) we obtain the equation of motion for

ρ̂ in the absence of relaxation processes,

ρ̇ = − i

h̄
[H, ρ] . (2.22)

This equation is known as the Liouville equation which describes the time evolu-

tion of density operator.

So far we excluded the relaxation processes which are always present in real

media. The randomizing forces corresponding to the relaxation processes (such

as collisions between particles) act differently on each particle. Since there is

no way of calculating exactly these random forces, they may be approximated

phenomenologically. We expect a general form of

ρ̇ = − i

h̄
[H, ρ] +

(
∂ρ

∂t

)

rel

, (2.23)

where the term (∂ρ/∂t)rel reflects the relaxation effects since our condition of Eq.

(2.20) is not valid any more. The relaxation can be included to the formalism in

several ways. Rigorously one can introduce the master equation which contains

system-reservoir interactions, then solve the corresponding equations of motions

[37, 38]. Nevertheless, the reasoning of that method indicates that the relaxation

processes can be described quite well by adding phenomenological damping terms

to the density matrix equation,

ρ̇nm = − i

h̄
[H, ρ]nm − γnm

(
ρnm − ρ(eq)

nm

)
, (2.24)

which means if the medium is not too far from thermal equilibrium, ρnm relaxes to

its equilibrium value ρnm at rate γnm. When the system is in thermal equilibrium

the excited states may contain population, i.e., ρ(eq)
nm can be nonzero. However,

the thermal excitation is expected to be an incoherent process so that cannot

produce any coherent superposition of states. Thus the off-diagonal elements

average to zero, ρ(eq)
nm = 0 for n 6= m. Since γnm is a decay rate, we can also write

γnm = γmn.

Alternatively, in a different approach, for the diagonal elements we may allow

population decays from higher levels to lower levels. Assuming above discussion
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still describes the off-diagonal elements, we write the density matrix equations,

ρ̇nm = − i

h̄
[H, ρ]nm +

∑

Em>En

Γnmρmm −
∑

En>Em

Γmnρnn , (2.25)

where Γnm is the rate of population decay from level |m〉 to level |n〉, and Γnm is

the damping rate of γnm coherence. The diagonal and off-diagonal damping rates

are related in a way

γnm =
1

2
(Γn + Γm) + γ(pro)

nm , (2.26)

where Γn and Γm are the total decay rates of population out of levels |n〉 and

|m〉, respectively, i.e.,

Γn =
∑

En>E′n

Γn′n , (2.27)

and γ(pro)
nm is the proper dephasing rate which collects the dephasing processes

that are not related with the population transfer such as collisions.

We can relate above relaxation rates with relaxation times which are more

explicit for us. Following the first approach to the relaxation processes, in the

language of quantum optics, the diagonal relaxation rates corresponds to popu-

lation relaxation time of level |n〉, γ−1
nn = Tnn. The off-diagonal relaxation rates

correspond to polarization dephasing time, γ−1
nm = Tnm. Its name originates from

Eqs. (2.11-2.14) since dipole moment dephases in this characteristic time. In a

two-level system Tnn and Tnm are usually denoted as T1 and T2 or for a multi-level

system (T1)nn and (T2)nm, respectively. T1 and T2 terminology originates from

the magnetic resonance phenomena in which literature T1-time is referred to as

longitudinal relaxation time and T2-time is referred to as transverse relaxation

time [40].

Due to energetic considerations, it is always easier to change the phase rather

than altering the populations in a relaxation process so that T2 is always shorter

than corresponding T1. The difference in relaxation times, their values and their

comparison with other system parameters give rise to important physical conse-

quences as we are going to see in the following sections.
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2.2 Multi-Level System

So far we introduced the general idea of density matrix equation. Now we can

specify this equation for the light-matter interaction problems. Let us rewrite the

density matrix equation of motion that we are supposed to solve,

ρ̇nm = − i

h̄
[H, ρ]nm −

ρnm − ρ(eq)
nm

Tnm

. (2.28)

First, consider the absence of external perturbation and relaxation processes. In

such a case the density matrix equation gets the form

ρ̇nm = − i

h̄
[Ho, ρ]nm . (2.29)

Since there is no perturbation, we can assume that the time-independent

Schrodinger equation

Ho|n〉 = En|n〉 , (2.30)

can be solved. For our multi-level system this will give the interaction-free ener-

gies of levels, i.e., En = h̄ωn. Thus we can write

ρ̇nm = − i

h̄
[Ho, ρ]nm = − i

h̄
(Hoρ− ρHo)nm = − i

h̄

∑

j

(Ho,njρjm − ρnjHo,jm)

= − i

h̄

∑

j

(Enδnjρjm − ρnjδjmEm) = − i

h̄
(Enρnm − Emρnm) = −iωnmρnm ,

where we defined the transition frequency ωnm ≡ (En − Em)/h̄.

Next, if we subject the medium to a time-dependent external perturbation,

the total Hamiltonian will be

H = Ho + V(t) , (2.31)

where the operator V(t) represents the perturbation and Ho is the unperturbed

Hamiltonian. Then the density matrix equation is

ρ̇nm = − i

h̄
[H, ρ]nm = − i

h̄
[Ho, ρ]nm −

i

h̄
[V , ρ]nm , (2.32)

where we can write

[V , ρ]nm = (Vρ− ρV)nm =
∑

j

(Vnjρjm − ρnjVjm) . (2.33)
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For the interaction of electromagnetic radiation with an optical medium, we

can specify the perturbation using the electric dipole approximation,

V(t) = −~µ · ~E(t) , (2.34)

where ~µ is the electric dipole moment. In this approximation it is assumed that

the wavelength of the electromagnetic field is much larger than the size of medium.

So the amplitude of the field does not vary across the medium. This allows us to

write ~E(z, t) → ~E(t). We also ignore the effects of magnetic field [41]. Following

Eq. (2.12), the matrix representation of interaction potential is given as

Vnm = V∗mn = −~µnm · ~E(t) . (2.35)

For the electromagnetic field, we are going to use a pump-probe scheme. In

pump-probe experiments, a strong pump field and a weak probe field excites the

medium simultaneously [42]. The frequency of the probe field is going to be

scanned around the frequency of the pump field. Working within the framework

of semiclassical laser theory, we treat the applied fields classically and the medium

quantum mechanically. So we write the total bichromatic field as

~E(t) = ~Ese
−iωst + ~Epe

−iωpt + ~E∗s eiωst + ~E∗peiωpt , (2.36)

where Ei are complex amplitudes, ωi is the frequency and the subscripts s and p

identify the strong pump and weak probe fields.

Finally including the relaxation times we can write the general form of density

matrix equation of motion for the optical medium coupling to electromagnetic

fields,

ρ̇nm = −iωnmρnm − ρnm − ρ(eq)
nm

Tnm

+
i

h̄

∑

j

(
~µnj · ~E(t)ρjm − ρnj~µjm · ~E(t)

)
. (2.37)

We can further specify n and m values, and solve the resulting density matrix

equations. Let us consider the two-level model.
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|2>

|1>

probe

pump

Figure 2.1: Two-level model

2.3 Two-Level System

We consider a two-level system. The lower level is denoted |1〉 and the upper

level |2〉 as illustrated in Fig. 2.1. In Eq. (2.37) we run n and m values over 1

and 2 to obtain the density matrix equations of the system,

ρ̇21 = −iω21ρ21 − ρ21

(T2)21

+
i

h̄

(
~µ21 · ~E(t)ρ11 − ρ22~µ21 · ~E(t)

)
, (2.38)

ρ̇11 = −ρ11 − ρ
(eq)
11

(T1)11

+
i

h̄

(
~µ12 · ~E(t)ρ21 − ρ12~µ21 · ~E(t)

)
, (2.39)

ρ̇22 = −ρ22 − ρ
(eq)
22

(T1)22

+
i

h̄

(
~µ21 · ~E(t)ρ12 − ρ21~µ12 · ~E(t)

)
, (2.40)

where we used the results of previous part such that ρ(eq)
nm = 0 for n 6= m and

µnn = 0 by the parity of wave functions. Due to the relation ρ12 = ρ∗21 that we

showed in Eq. (2.9), no separate equation is required for ρ12.

In a closed two-level system, the total population ρ22 + ρ11 is conserved. This

means that a decrease in one population should cause an increase in the other

population, or vice versa. This gives rise to ρ̇22 + ρ̇11 = 0 and since Tnm = Tmn we

can write (T1)22 = (T1)11 ≡ T1. By the same reason, for the coherence dephasing

times we have (T2)21 = (T2)12 ≡ T2.

Since Eq. (2.38) depends on the populations ρ22 and ρ11 by their difference

ρ22−ρ11, it may be useful to write the equations of motions in terms of population
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difference ρ22 − ρ11. Subtracting Eq. (2.39) from Eq. (2.40) we obtain

ρ̇22 − ρ̇11 = −(ρ22 − ρ11)− (ρ22 − ρ11)
(eq)

T1

+
2i

h̄

(
~µ21 · ~E(t)ρ12 − ρ21~µ12 · ~E(t)

)
.

(2.41)

For the electric field we use Eq. (2.36), thus we obtain the optical Bloch

equations (OBEs) for a two-level system,

ρ̇21 = −
(
iω21 +

1

T2

)
ρ21− i

h̄
−→µ 21·

[
~Ese

−iωst + ~Epe
−iωpt + ~E∗s eiωst + ~E∗peiωpt

]
(ρ22 − ρ11) ,

(2.42)

(ρ̇22 − ρ̇11) = −(ρ22 − ρ11)− (ρ22 − ρ11)
(eq)

T1

+
2i

h̄
~µ21 ·

[
~Ese

−iωst + ~Epe
−iωpt + ~E∗s eiωst + ~E∗peiωpt

]
ρ12

− 2i

h̄
~µ12 ·

[
~Ese

−iωst + ~Epe
−iωpt + ~E∗s eiωst + ~E∗peiωpt

]
ρ21 . (2.43)

Now we are supposed to solve these coupled equation in order to understand

the response of the two-level system to the pump-probe fields. The usual way

of solution is applying an analytic method which was extensively discussed in

the classical paper [27] and also can be found in [26],[11] and [7]. We solved

the density matrix equations numerically without their approximations. Their

solutions are valid for the steady state with the approximation of treating the

strong field Es correctly to all orders while treating the weak field Ep to only first

order. Under this assumption they observe by inspection that the solution of Eqs.

(2.42-2.43) for ρ22(t)− ρ11(t) will have the form,

ρ22(t)− ρ11(t) = (ρ22 − ρ11)
(0) + (ρ22 − ρ11)

(δ)e−iδt + (ρ22 − ρ11)
(−δ)eiδt , (2.44)

where δ ≡ ωs−ωp is the beat frequency. This equation illustrates that the popu-

lation difference of two levels has components oscillating with the beat frequency.

This oscillatory behavior of populations is called the coherent population oscilla-

tions (CPO). To observe the oscillations the population relaxation rate γ1 = 1/T1

should be larger compared with the beat frequency, δ.

In steady state solution [7, 11, 27] the transition element of density matrix ρ21

exhibits harmonic oscillations with frequency components at nωs +mωp, where n
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and m are integers. With the above approximation that the probe field Ep is weak

and treated only to first order whereas the pump field Es is strong and treated to

all orders, it is also observed by inspection of Eqs. (2.42-2.43) that the solution

for ρ21(t) oscillates dominantly at three frequencies: ωs, ωp, and 2ωs − ωp. Thus

the steady state solution for ρ21(t) can be expressed as following Ref. [27],

ρ21(t) = ρ21(ωs)e
−iωst + ρ21(ωp)e

−iωpt + ρ21(2ωs − ωp)e
−i(2ωs−ωp)t , (2.45)

where ρ21(ωi) are called Fourier amplitudes and defined as

ρ21(ωs) =
Ωs(ρ22 − ρ11)

dc

2(ωs − ω21 + i/T2)
, (2.46)

ρ21(ωp) =
Ωp(ρ22 − ρ11)

dc

2D(ωp)

[ (
ωp − ωs +

i

T1

) (
ωp − 2ωs + ω21 +

i

T2

)

− Ω2
s(ωp − ωs)

2(ωs − ω21 − i/T2)

]
,

ρ21(2ωs − ωp) =
Ω2

sΩp(ρ22 − ρ11)
dc(ωp − ωs + 2i/T2)

4D(ωp)(ωs − ω21 − i/T2)
, (2.47)

where Ωi = 2|Ei||µ21|/h̄ is the on-resonance Rabi frequency for the electric field

of amplitude 2Ei and (ρ22−ρ11)
dc the steady-state saturated population inversion

induced by the pump field Es is defined as

(ρ22 − ρ11)
dc =

[1 + (ωs − ω21)
2T 2

2 ] (ρ22 − ρ11)
0

1 + (ωs − ω21)2T 2
2 + Ω2

sT1T2

, (2.48)

and the so called cubic function, D(ωp) is

D(ωp) = (ωp−ωs+i/T1)(ωp−ω21+i/T2)(ωp−2ωs+ω21+i/T2)−Ω2
s(ωp−ωs+i/T2) .

(2.49)

The physical meanings of Fourier amplitudes are important. The final one

ρ21(2ωs − ωp) gives rise to generation of a field with frequency ω = 2ωs − ωp.

If a wave with this frequency already exist in the medium than it may be ampli-

fied. Similarly ρ21(ωs) and ρ21(ωp) give rise to absorption or amplification of the

pump and probe fields, respectively. For our purposes the amplitude ρ21(ωp) is

the crucial term.

In the mathematical language, the density matrix Eqs. (2.42-2.43) are coupled

first-order differential equations which can be solved numerically with several
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different methods to obtain ρ21(t) and ρ22(t) − ρ11(t) [28]. We preferred the

fourth order Runge-Kutta method [28]. The relaxation times are on the orders

of nanoseconds for Ge NCs. For such relaxation times, time steps on the order

of 10 ps produce proper results. In order to obtain smooth absorption curves, we

observe the system up to 50 µs time range.

Since we are mainly interested with ρ21(ωp), we should switch from ρ21(t) to

ρ21(ω). This can be done by Fourier transformation of ρ21 from time space to

frequency space. We get the Fourier transform as

ρ21(ω) =
1

2π

∫ ∞

−∞
ρ21(t)e

iωtdt . (2.50)

Nonetheless, for our purposes we do not need the whole spectrum of ω for ρ21

since we are interested just in ρ21(ωp). Thus we can set ω = ωp in Eq. (2.50) to

get

ρ21(ωp) =
1

2π

∫ ∞

−∞
ρ21(t)e

iωptdt . (2.51)

This was the theoretical discussion of Fourier transformation, but computation-

ally of course we can not run (−∞, +∞) interval. Since the response starts at

t = 0, we have ρ21(t < 0) = 0. That brings the lower limit of integration from

−∞ to zero. For the upper limit, we should cut the integration at a sufficiently

long time t = T . This is physically meaningful because our system of light-matter

interaction converges to a steady state rapidly. Following the theory of Fourier

transformation since our limits of integration changed from (−∞, +∞) to (0, T ),

we should also change the 1/2π coefficient of integration by 1/T , thus finally we

get

ρ21(ωp) =
1

T

∫ T

0
ρ21(t)e

iωptdt . (2.52)

Although, the OBEs given in Eqs. (2.42) and (2.43) can be solved while

in those forms, the rapid oscillatory behavior of exponential parts increases the

calculation time. In order to simplify the calculations, we see from Eq. (2.42)

that the nondriven (i.e., E(t)) behavior of ρ21 is ρ21(t) = ρ21(0)e−(iω21+1/T2)t so

that, for ωp ≈ ω21, it is useful to introduce some slowly varying variables σ21 and

σ12 as

ρ21(t) = σ21(t)e
−iωpt
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ρ12(t) = ρ∗21(t) = σ12(t)e
iωpt , (2.53)

inserting these new variables into OBEs, we get:

σ̇21 = −
[
i(ω21 − ωp) +

1

T2

]
σ21 − i

h̄
~µ21 ·

[
~Ese

−i(ωs−ωp)t + ~Ep

]
(ρ22 − ρ11) , (2.54)

(ρ̇22 − ρ̇11) = − (ρ22 − ρ11)− (ρ22 − ρ11)
(eq)

T1

+
2i

h̄
~µ21 ·

[
~Ese

−i(ωs−ωp)t + ~Ep

]
σ12

− 2i

h̄
~µ12 ·

[
~E∗s ei(ωs−ωp)t + ~E∗p

]
σ21 , (2.55)

where we eliminated terms with time dependence e±i(ωs+ωp)t and e±i2ωpt, since

they oscillate rapidly and their contribution averages to zero in a short time

compared to that of observation. This approximation is called the rotating wave

approximation (RWA). Although, such an implementation lengthen the analytical

derivations, it reduces the computation times on the order of more than 105.

Notice that by the definition of new operator σ, the transform given in Eq.

(2.52) gets a simpler form,

ρ21(ωp) =
1

T

∫ T

0
σ21(t)dt . (2.56)

Above Eqs. (2.54) and (2.55) explicitly manifest that the dynamics of a opti-

cally excited system is determined by population relaxation time T1 and dephasing

time T2. Since the population relaxation also implies the phase relaxation of the

optically excited dipoles, T1 should be related to T2, the decay of interband po-

larization. In the absence of collisional decays, the population lifetime of excited

state, T1 is twice the coherence dephasing time, T2, i.e.,

1

T2

=
1

2T1

, (2.57)

for a two-level system [2, 3]. So this relation holds in the case of pure dephasing

due to the finite lifetime of excited state. In general, different phase destroying

processes are involved in dephasing dynamics giving a sum over different times

Ti,
1

T2

=
1

2T1

+
∑

i

1

Ti

. (2.58)
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These phase destroying processes are the coupling to different types of phonons,

phase destroying scattering between carriers in a interacting many-body system

and scattering at defects or interfaces [2]. It is difficult to determine different

process times but in any case Eq. (2.58) comprises the relation

T2

T1

≤ 2 , (2.59)

which actually sets an upper limit for T2 since population relaxation always leads

to dephasing of coherence.

So far we obtained the optical Bloch equations for a two-level system. In the

next chapter we implement our derivations to the Ge NCs.



Chapter 3

Slow Light in the Optical Bloch

Equations Level

When we consider the OBEs, Eqs. (2.54) and (2.55) derived in the preceding

chapter, we notice that the medium material is described in the equations via the

energy levels, electric dipole moments, and relaxation and dephasing times. In

this chapter, first of all we briefly introduce our electronic structure calculations.

Then we discuss the relaxation and dephasing times for Ge NCs. Finally, we solve

the OBEs for Ge NCs and interpret the results within the context of slow light.

3.1 Electronic Structure Calculations

For the electronic structure calculations of large-scale nanostructure systems

Wang and Zunger developed the linear combinations of bulk bands (LCBB)

method [44]. The method introduces an effective calculation for the single-particle

electronic states of million-atom nanostructure systems. The approach is funda-

mentally based on an empirical pseudopotential Hamiltonian. After calculating

the electronic structure for bulk constituent materials, the wave functions of the

nanostructure is expanded in terms of bulk Bloch states of the constituent mate-

rials. The expansion is performed over the bulk band indices, n and wave vectors,

22
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k defined within the first Brilloin zone of a computational supercell which is pe-

riodic in all three dimensions. This choise economizes the basis size compared to

plane wave type of approaches.

The main advantage of LCBB is very small calculation time of electronic

structure even for million-atom nanostructures. Note that ab initio calculations

are still science fiction for atomic systems containing more than 1000 atoms.

The main ingredients of LCBB are the atomic positions and the atomic pseu-

dopotentials. The method gives the atomistic level wave functions which let us

calculate the Coulomb interaction explicitly. Our bulk electronic structure cal-

culations are based on the empirical pseudopotential method (EPM) which is

also very fast, accurate and easy to implement [45, 46]. Moreover, particularly

unlike ab initio calculations, EPM agrees with the experimental bandgap very

accurately by its construction.

While implementing the LCBB method, we expand the jth state NC wave

function in terms of the linear combinations of bulk Bloch bands of the constituent

core and embedding medium materials,

ψj(~r) =
1√
N

∑

n,~k,σ

Cσ
n,~k,j

ei~k·~ruσ
n,~k

(~r) , (3.1)

where N is the number of primitive cells in the supercell and the superscript σ

indicates the core or embedding medium materials. uσ
n,~k

(~r) is the cell-periodic

part of the Bloch states and can be expanded by the plane wave functions of

reciprocal-lattice vectors {~G} as

uσ
n,~k

(~r) =
1√
V0

∑

~G

Bσ
n~k

(
~G

)
ei ~G·~r , (3.2)

where V0 is the volume of the primitive cell.

Our demand is to determine the expansion coefficients Cσ
n,~k,j

defined in Eq.

(3.1). For that we start by writing the single-particle atomistic pseudopotential

Hamiltonian of the system,

Ĥ = − h̄2∇2

2m
+

∑

σ, ~Rj ,α

W σ
α (~Rj) υσ

α

(
~r − ~Rj − ~dσ

α

)
, (3.3)
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where m is the free electron mass, ~Rj is the position of the primitive cell and

~dσ
α gives the relative coordinate of atom of type (σ, α) within the primitive cell.

The weight function W σ
α (~Rj) takes values 0 or 1 depending on whether an atom

of type α is located at the position ~Rj + ~dσ
α. The screened spherical atomic

pseudopotential υσ
α is determined by reproducing a large variety of empirical

results such as bulk band structures, effective masses, and deformation potentials.

Then the coefficients Cσ
n,~k,j

can be obtained by solving the following eigenvalue

equation [44, 47]:

∑

n,~k,σ

Hn′~k′σ′,n~kσ Cσ
n,~k

= E
∑

n,~k,σ

Sn′~k′σ′,n~kσ Cσ
n,~k

, (3.4)

where

Hn′~k′σ′,n~kσ ≡
〈
n′~k′σ′|T̂ + V̂xtal|n~kσ

〉
,

〈
n′~k′σ′|T̂ |n~kσ

〉
= δ~k′,~k

∑

~G

h̄2

2m

∣∣∣~G + ~k
∣∣∣
2
Bσ′

n′~k′

(
~G

)∗
Bσ

n~k

(
~G

)
,

〈
n′~k′σ′|V̂xtal|n~kσ

〉
=

∑

~G, ~G′
Bσ′

n′~k′

(
~G

)∗
Bσ

n~k

(
~G

)

× ∑

σ′′,α
V σ′′

α

(∣∣∣~G + ~k − ~G′ − ~k′
∣∣∣
2
)

×W σ′′
α

(
~k − ~k′

)
ei(~G+~k− ~G′−~k′)·~dσ′′

α ,

Sn′~k′σ′,n~kσ ≡
〈
n′~k′σ′|n~kσ

〉
.

while implementing this eigenvalue equation we assumed both the constituent core

and embedding medium to have the same lattice constant. They are placed within

a computational supercell which satisfies the periodicity condition W (~Rn1,n2,n3 +

Ni~ai) = W (~Rn1,n2,n3).

In this work, the constituent core material is Ge whereas for the embedding

medium instead of a free-standing NC, we used an artificial wide band-gap mate-

rial which satisfies the Ge/SiO2 band alignment. We set the lattice constant and

crystal structure of the embedding material equal to the diamond Ge to overcome

the actual strain effects.
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Within this method, we obtained the electronic structure and wave functions

for different size Ge NCs (recall Fig. 1.1). Using the wave functions and Eq.

(2.12), we calculated the electric dipole matrix elements. These quantities are

required in order to solve OBEs for Ge NCs. Besides the electronic structure

(i.e., energy levels of states) and electric dipole matrix elements, dephasing and

relaxation times specifies the OBEs for a specific material.

Before presenting our results, we should give further technical preliminaries.

As we are going to see in the Results part, in some cases when the probe field

gets close to pump field its absorption decreases. This sharp dip in the absorption

curve is called as hole burning.

3.2 Hole Burning

Hole burning in homogeneously saturable absorbers is an interesting property.

Indeed at the early times of hole burning, it was commonly believed that the hole

burning was a property of just inhomogeneous broadening [29, 30]. Consider an

inhomogeneous medium with different excitation energies. When a probe field is

applied to this medium with varying frequency, the absorption of the field will

be a classical Lorentzian lineshape which means that the field experiences higher

absorption in the vicinity of resonant transitions. However, if a strong pump

field is applied to this medium in addition to weak probe field, the pump field

will saturate the population differences whose transition frequencies are nearly in

resonance with the pump field (see Fig. 3.1). The transitions at highly detuned

frequencies will be untouched. Now with increasing power of this pump field, a

sharp hole appears in the absorption line of the probe field. This hole is burned

by the pump field in the vicinity of its frequency. The absorption of the probe

field sharply decreases at the frequencies close to that of the pump field since

those transitions are already saturated due to Pauli blocking by the strong pump

field [30, 31, 32].
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Figure 3.1: Saturation of absorption in an inhomogeneous transition.

On the other hand, it is commonly believed that for the homogeneous broad-

ened transition, the increasing strength of pump field will further saturate the

probe field absorption uniformly without changing its shape or linewidth and

cannot have such a hole, see Fig. 3.2. However, the hole burning effect in a

pump-probe experiment for a homogeneously broadened medium was first ob-

served by Soffer and McFarland [33] in 1966 and explained by Schwarz and Tan

[26] in 1967. They and many other authors [34, 35] attributed the origin of such

a hole to the periodic modulation of the ground state population at the beat

frequency δ = ωs − ωp between the pump and probe fields. As we mentioned in

the previous section this phenomenon is called as coherent population oscillation

(CPO). If the beat frequency between the fields is less than or approximately

equal to the inverse of the population relaxation time T−1
1 then the population

can follow the oscillations of optical intensity and the absorption of the probe

field will decrease (see Fig. 3.3). We have T1 here since it is the timescale within

which the population oscillation can follow the beating induced by the fields.

Boyd and Mukamel [34] studied the theory of pump-probe experiment via
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Figure 3.2: Saturation of absorption in a homogeneous transition.

the nonlinear susceptibility χ(3). They showed that the general assumption of

pump-probe experiments that the pump field prepares the system and then a

nonsaturating weak probe field monitors the system is not accurate enough to

calculate the probe field absorption. In the sequential treatment of the fields,

one first calculates the steady state just under the effect of pump field and then

calculates the response of perturbed system to the probe field [36]. However,

they showed that the sequential treatment omits the interference terms between

the two fields which give rise to the hole burning in the probe absorption profile.

They calculated a contribution term to the usual absorption which results in a

dip in the lineshape. Keeping this remark in mind, we solve the density matrix

equations applying both fields simultaneously.

Although one can burn a hole on any region of the absorption spectrum (see

Fig. 3.4), the deepest hole can be burned at the maximum of absorption spectrum.

This means that the location of the spectral hole follows the frequency of pump

field. Hence, the pump field does not need to be frequency locked to any specific

transition. In order to get the maximum efficiency, we set the frequency of pump

field in resonance with the difference between the HOMO-LUMO levels.
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Figure 3.3: This population oscillation becomes significant when the detuning is
smaller than the inverse of population lifetime and gives rise to an absorption dip
on the absorption profile.
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Figure 3.4: The hole burned at the wing of the absorption spectra.
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Figure 3.5: Variation of the refractive index by pump application.

A dip in the absorption spectrum has significant consequences such as satura-

tion spectroscopy [30] and manipulation of the speed of light. Since the absorption

hole has a width of 2T−1
1 , this effect has been employed to measure the population

lifetime in the saturation spectroscopy. The slow light is our next discussion.

3.3 Slow Light

The Kramer-Kronig relations, a consequence of causality condition, relate the

absorption to the real part of the refractive index [7]. By this relation a narrow

dip in the absorption spectrum will lead to a variation of the refractive index

spectrum with a positive slope in the same frequency range, i.e., ∂n
∂ω

> 0 (see

Fig. 3.5). The induced population oscillation gives rise to a new polarization

component thus alters the susceptibility and the refractive index experienced by

the probe field.

The importance of this result can be understood, if we remember the definition
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of group velocity also given in the Chapter 1,

vg =
dω

dk
=

c

n + ω ∂n
∂ω

(3.5)

where c is the speed of light in vacuum and n is the refractive index [7]. As we

mentioned earlier, the large values of the refractive index dispersion can give rise

to very small group velocities.

On the other hand, if we consider the opposite case, a narrow peak in the

absorption spectrum corresponds to a large negative slope and produce superlu-

minal (vg > c) light propagation [7]. Despite the name superluminal, there is no

contradiction with the second postulate of special relativity since no information

can be sent faster than c, the speed of light in vacuum [48].

Following the definition of group velocity, we can also introduce the slowdown

factor defined as

S =
c

vg

= n + ω
∂n

∂ω
, (3.6)

which is indeed equal to the group index.

The refractive index is defined in terms of the dielectric function ε as,

n =

√√√√
√

Re{ε}2 + Im{ε}2 + Re{ε}
2

, (3.7)

where the dielectric function is given by

ε = εb + LLFEχ. (3.8)

where εb is the inert background dielectric constant which is taken in this work

as εb = 16 of Ge [8]. By LLFE, we include the surface polarization effects, also

called local field effects (LFEs) to our calculations using a simple semiclassical

model [9]. The effect is a result of the dielectric mismatch between the constituent

NC and host matrix which lead to remarkably different optical properties. The

correction factor LLFE for a linear response is given by,

LLFE =
3εh

εNC + 2εh

(3.9)
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NCs Radiative Recombination
Diameter (nm) Lifetimes (ns)
1.11 7.76
1.47 10.48
2.02 16.72
2.55 72.06
3.03 117.3

Table 3.1: The radiative lifetimes for different NCs diameters.

where εh and εNC are the dielectric functions of the host matrix and the NC with

the values εh = 4 and εNC = 16, respectively [8]. The implementation assumes

a static local field correction, otherwise it brings negative absorption regions at

high energies [8].

As an application of slow light in nanocrystals, one can consider the heavy-hole

(HH) exciton or the valence and conduction ground states as a two-level system of

our previous discussions. In principle, as long as the optical transitions between

these two-levels is dipole-allowed, CPO based slow light can be implemented for

this system. We consider the latter, the HOMO and LUMO levels make up our

two level system. We applied the previous theoretical discussions for these levels

of Ge nanocrystals.

3.4 Relaxation and Dephasing Times in Ge NCs

Relaxation and dephasing times are very crucial inputs for the OBEs. In Eq.

(2.55), (ρ22 − ρ11)
(eq) is the equilibrium population inversion of the material in

the thermal equilibrium. Since this is an equilibrium value the slowest relaxation

mechanism determines the lifetime of excited level. In semiconductors, this pro-

cess is the radiative recombination which is in the time range of nanoseconds

[58]. By our group’s previous works [55], the radiative recombination lifetimes

have been calculated. Some of these values are given in Table 3.1.
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3.5 Results

We study the dynamic evolution of the system by solving Eqs. (2.54) and (2.55)

numerically with the initial conditions σ11 = 1, σ22 = 0 and σ21 = σ12 = 0. The

time evolution of the population inversion is shown in Fig. 3.6. The oscillations

in the populations are called the coherent population oscillations.
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Figure 3.6: The coherent population oscillations for different detunings in the
time domain for 1.47 nm diameter NCs with Es = 200 V/m, Ep = 20 V/m, and
T2/T1 = 0.2.

Initially for different parameter sets, we compared our numerical calculations

with the analytical results. Figures 3.7 and 3.8 give examples of comparison for

different arbitrary parameters for both imaginary and real parts of susceptibility,

χ. There is a good agreement between the two solutions. Although, we always

compared our numerical calculations with the analytical results, in the rest we

are going to use our numerical method.

In Eq. (2.59), we derived the relation between T1 and T2. The dephasing pro-

cess is very complicated due to intrinsic many-body effects. Hence, it is difficult
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Figure 3.7: The comparison of numerical calculations with the analytical results
for arbitrary parameters. The absorption response with respect to detuning.
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Figure 3.8: The comparison of numerical calculations with the analytical results
for arbitrary parameters. The dispersive response with respect to detuning.
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Figure 3.9: The absorptive response is given as a function of detuning and for
different T2

T1
. For 1.47 nm diameter NCs, Es = 150 V/m and Ep = 15 V/m.

to calculate dephasing times. In this manner, we prefer to give comparisons of

different T2

T1
ratios by fixing T1 at the radiative recombination time. Figure 3.9

gives the comparison for T2

T1
ratios. The main message of Fig. 3.9 is that the

narrow dip that can produce slow-light is observed when T2

T1
< 0.5.

Figure 3.10 illustrate the effect of the pump field, Es. We observe that by

varying the power of pump field, we can alter the absorption curve. This is

very important to produce controllable slow light. Figure 3.11 more explicitly

illustrates that the slope of change of refractive index first increase with increasing

pump field, then after some level again reduces.

After this first analysis, we can examine the slow light in Ge NCs via the

slowdown factor. Hence, we follow the Eqs. (3.6-3.9) where the complex suscep-

tibility, χ is defined in Eq. (3.10). In the definition of χ, we have N , the density

of dipole moments. For the NCs, this value is the density of NCs. Since each

computational supercell VSC that we described in Part 3.1 contains just one NC,
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Figure 3.10: The imaginary part of susceptibility, χ is given as a function of
detuning and for different Es

Ep
. For 1.47 nm diameter NCs, fixing Ep = 15 V/m.
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Figure 3.11: The real part of susceptibility is given as a function of detuning and
for different Es
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. For 1.47 nm diameter NCs, fixing Ep = 15 V/m.
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Figure 3.12: Slowdown factor versus the pump field intensity. For 1.47 nm diam-
eter NCs, fixing Ep = 15 V/m.

the value of N is equal to 1/VSC . Following Eq. (3.10), we write,

χ̃(ω) =
[ρ12(ω)~µ21 + ρ21(ω)~µ12]

VSCεb
~E(ω)

=
VNC

VSC

[ρ12(ω)~µ21 + ρ21(ω)~µ12]

VNCεb
~E(ω)

. (3.10)

where the filling factor, fv = VNC

VSC
can be defined whih gives the volume filling

ratio of the NC. This value can change between 0.05 to 0.1. For the sake of

generality, this is the form we are presenting our results.

In Figure 3.12, for the 1.47 nm NCs, the slowdown factor, S is given with

respect to the increasing pump field. For this NC, the bandgap is 2.54 nm and

this gap requires the pump field with wavelength 488 nm. Comparison with

respect to different dephasing times are also given in the same plot.

Next, in Fig. 3.13, we consider the nanocrystal with 2.01 nm diameter. The

NC has 1.97 eV bandgap which corresponds to 630 nm wavelength for the coupled

pump field. For this nanocrystal, the HOMO-LUMO transition electric dipole

moments have very small values so that transition is very weak. Although, we

pump the system with very large coupling fields, there is no significant slow
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light effect for this nanocrystals if the pump and probe fields are just coupled to

HOMO-LUMO transition. For bigger NCs, for instance 2.55 nm, although we

tried different transitions beyond HOMO-LUMO, we have not manage to observe

efficient slowdown factors.
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Figure 3.13: Slowdown factor versus the pump field intensity. For 2.01 nm diam-
eter NCs, fixing Es = 3000 V/m.

The slowdown factor also sensitive to the phase difference bewteen the pump

and probe fields. Figure 3.14 illustrates this relation.

In CPO mechanism the absorption dip is determined by the inverse of the

population lifetime. In our calculations this value ranges in nanoseconds. Hence,

slow light produced in Ge NCs allow for operating bandwidths in the MHz-range.

CPO based slow light provides GHz bandwidths, if the lifetime is in the range

of picoseconds. Hence, if other faster recombination mechanisms rather than

radiative recombination are more effective in the population relaxation, then GHz

bandwidth can also be observed in Ge NCs. So actually our results here set a

lower limit to the bandwidth. A GHz value is much higher than those schemes

based on the other coherent control mechanisms in different material systems.
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probe fields.



Chapter 4

Semiconductor Bloch Equations

In the preceding chapter we analyzed the quantum-coherence effects via density

matrix equations. That analysis is based on atomic quantum-coherence the-

ory, where many-body effects are neglected. We just included phenomenological

damping terms for dephasing and relaxation processes. A physically more realistic

analysis should include the many-body Coulomb interactions since these strongly

alter the optical properties of semiconductors. Some consequences of Coulomb

interactions are renormalization of energies, i.e., reduction of band gap with in-

creasing carrier density, redistribution of carriers, and enhancement of interband

transitions by attractive electron-hole interactions. The Coulomb interactions

are also responsible for the dephasing, which breaks the initially coherent exci-

tations into incoherent superpositions. On the other hand, as a consequence of

many-body effect, the plasma screening reduces the Coulomb interaction poten-

tial by the presence of background charge carriers. Thus, one can expect that the

many-body effects will give rise to significant differences from the atomic theory

[24, 25, 53].

In this chapter, we include many-body effects into our calculations to give

a more realistic description. By this way, we also consider electron-hole plasma

effects, band-filling dynamics and carrier-carrier collisions. All these phenomena

can be described by the Semiconductor Bloch Equations (SBEs). There are two

basic formulations to represent the SBEs. These are electron-hole formalism and

39
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exciton-biexciton formalism. The latter formalism can be found in Ref. [24].

Here we apply the electron-hole formalism.

As we did in the preceding chapter, we start with the general formalism and

then discuss the coherent population oscillation mechanism but now for a multi-

level system. By comparing with the results of preceding chapter, one can illus-

trate the contributions of many-body effects.

4.1 General Formalism

The idea of SBEs is based on Bloch’s work on the theory of nuclear spin reso-

nance [40] and Haken’s laser theory [50]. For semiconductors, Haug et al. de-

rived the Bloch equations via nonequilibrium Green’s function techniques [24],

whereas Koch and his colleagues derived these equations using quantum mechan-

ical projection-operator techniques [53]. During the last two decades SBEs have

became a key method in semiconductor optics [54].

In SBEs, it is convenient to exploit the electron-hole representation. By this

way, we avoid of discussing electrons in different states (bands). Instead we

introduce holes as missing electrons in the valence bands. Generally, for semi-

conductors in equilibrium the conduction bands are empty of electrons and the

valence band is totally full of electrons. Then an excited state is the promotion

of an electron from the valance band to conduction band, while leaving an hole

in the valance band.

We define operators for the quasi-particles conduction band electrons (a†, a)

and valence band holes (b†, b) via

a†k,s = a†c,k,s, ak,s = ac,k,s

b−k,−s = a†v,k,s, b†−k,−s = av,k,s

where, for instance, the last relation means that the annihilation of an electron

with momentum k and spin s in the valance band corresponds to the creation

of an hole with the opposite momentum and spin. Within this representation
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we are going to obtain SBEs which are coupled differential equations coupling

polarizations and electron, hole populations.

In order to discuss the optical properties of nanocrystals, we should solve the

equation of motion for the polarization. The Hamiltonian of the problem should

contain the kinetic energies of carriers, the interaction between the carriers and

the external coherent field, and the many-body Coulomb interactions. To get

rid of the complications of the complete theory, we introduce some approxima-

tions allowing us to begin with a tractable treatment which contains the most

significant contributions, then we can gradually inject the missing parts.

The full formulation of many-body electron-hole plasma in the second quan-

tization can be found in Haken’s classical book Quantum Field Theory of Solids

[49]. We just get here the required components.

The total Hamiltonian of an interacting electron-hole plasma in a nanocrystal

structure coupled to external electromagnetic fields is given by

H = Ho +Hc−f +Hc, (4.1)

where Ho and Hc−f are free-carrier contributions and Hc is the Coulomb inter-

action part. For free-carrier parts we assume that the carrier interactions are

sufficiently rapid in comparison to the field transients, and the main effect of

the Coulomb interactions on the carriers is to relax them within the bands to

quasi-equilibrium Fermi-Dirac distributions; whence we treat the interactions as

reservoir interactions establishing intraband quasi-equilibrium carrier distribu-

tions instead of dynamical interactions. This let us write the free-carrier kinetic

energies

Ho =
∑
n

εe
na†nan +

∑
m

εh
mb†mbm, (4.2)

where εs are the free-carrier electron and hole energies. n and m indices denotes

the corresponding energy levels.

The light-matter interaction can be again described by the dipole approxima-

tion, but now within the second quantized formalism,

Hc−f = −~E(t) · ~P (4.3)
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where the interband polarization operator is given by

~P =
∑
n,m

(~µnma†nb
†
m + ~µ∗nmbman) (4.4)

here µnm is the dipole moment element between the corresponding energy levels

|n〉 and |m〉. Then the interband dipole coupling to the light field is

Hc−f = −∑
n,m

(~µnma†nb†m + ~µ∗nmbman) · ~E(t). (4.5)

The last contribution to the total Hamiltonian is Coulomb interaction energy

among the carriers,

Hc =
1

2

∑
n,m,r,s

W rs
nma†ra

†
saman +

1

2

∑
n,m,r,s

W rs
nmb†rb

†
sbmbn −

∑
n,m,r,s

W rs
nma†rb

†
sbman (4.6)

which contains the Coulomb interactions among the electrons, among the holes

and among the electrons and holes, respectively [49]. W rs
nm is the Coulomb inter-

action energy matrix element

W rs
nm =

∫
d3r1d

3r2φ
∗
r(r1)φn(r1)W (r1 − r2)φ

∗
s(r2)φm(r2) (4.7)

where φn(r) is a wavefunction of the nanocrystal. The Coulomb potential is given

by,

W (r1 − r2) =
e2

4πε0εb|r1 − r2| (4.8)

The electric charge and vacuum dielectric constants are denoted by e and ε0,

respectively. For the background host material Ge NCs, the dielectric constant

is εb = 16 [9].

4.2 Multi-Level System

In our treatment of many-body effects, we apply semiclassical light-matter in-

teraction theory. In semiclassical approach the carriers are treated quantum

mechanically whereas the electromagnetic field is treated classically. As a gen-

eralization of Eq. (2.11), the microscopic optical properties are linked to the

macroscopic optical properties via the optical polarization,

~P (t) = Nnx

∑

i,j

pij(t)~µij (4.9)
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where ~µij are the electric dipole moments and pij are the corresponding density

matrix elements [24].

The quantum mechanical operators corresponds to the observables of classical

physics. Since the operators are time-dependent in the Heisenberg picture as the

classical observables, the link between the quantum and classical theories can be

most easily formed within this picture. If we are solving the Schrödinger equation,

ih̄
∂

∂t
Ψ(t) = HΨ(t), (4.10)

then in the Heisenberg picture for the time evolution of the system, we write

Ψ(t) = UHΨH(0) with UH = e−
i
h̄
Ht (4.11)

which manifests that in this picture the time dependence is completely trans-

ferred to the operators from the wave functions. The operators are transformed

according to

AH = U †
HAUH = e

i
h̄
HtAe−

i
h̄
Ht (4.12)

taking the derivatives of both sides with respect to time,

d

dt
AH = − i

h̄
(AHH−HAH) +

∂

∂t
AH = − i

h̄
[A,H] +

∂

∂t
AH (4.13)

This equation is called Heisenberg’s equation of motion which describes the time

evolution of operators in the Heisenberg picture. The term ∂
∂t
AH refers to the

explicit time dependence of operator AH .

Inserting the total Hamiltonian given by Eqs. (4.1) into Eq. (4.13) and by

taking the expectations of both sides, we can derive the equations of motions for

the polarizations and the electron and hole populations within the corresponding

energy levels. For instance, for the interband polarization pβα = 〈bβaα〉 we have

the equation of motion

ih̄
d

dt
bβaα = [bβ, aα,Htot] (4.14)

Initially we ignore the explicit time-dependence of operators which will be con-

sidered later.

In order to proceed the calculations, we should recall some useful identities.

In the second quantization the wave function Ψ(r) can be decomposed into a
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complete othonormal set |n〉 as

Ψ(r) =
∑
n

an|n〉 (4.15)

and correspondingly

Ψ†(r) =
∑
n

a†n〈n| (4.16)

The wave function describing the electrons and holes should obey the Pauli prin-

ciple and so fermionic anti-commutation relations:

Ψ(r)Ψ†(r′) + Ψ†(r′)Ψ(r) = δ(r− r′)

Ψ(r)Ψ(r′) + Ψ(r′)Ψ(r) = 0

Ψ†(r)Ψ†(r′) + Ψ†(r′)Ψ†(r) = 0 (4.17)

Inserting Eqs. (4.15) and (4.16) into these equations, we get the following anti-

commutation relations for the electron operators a and a†:

ana
†
m + a†man = {an, a†m} = δnm

anam + aman = {an, am} = 0

a†na
†
m + a†ma†n = {a†n, a†m} = 0 (4.18)

and the same relations for the hole operators b and b†. We should also use the

following commutation identities for the right hand sides of equation of motions,

[A,BC] = [A,B]C + B[A,C]

[AB,C] = A{B,C} − {A,C}B

combining these two identity for two-by-two commutators we obtain:

[AB, CD] = [AB, C]D + C[AB, D]

= A{B, C}D − {A,C}BD + CA{B, D} − C{A,D}B (4.19)

and for two-by-four commutators we obtain:

[AB, CDEF ] = [AB, CD]EF + CD[AB, EF ]. (4.20)

We can use these identities with the anti-commutation relations Eq. (4.18) to

derive the equations of motions.
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As one should notice or explicitly see in the Appendix part when we insert

Eq. (4.19) in the right hand side of Eq. (4.20), the product of two particle op-

erators are coupling to the products of four particle operators. Similarly, four

operator is in turn coupled to six operator, and so on. This will cause an infinite

hierarchy of coupled differential equations. In order to truncate this hierarchy,

we factorize the higher-order expectation values into products of second-order

averages, pαβ = 〈bβaα〉, ne
α = 〈a†αaα〉 and nh

β = 〈b†βbβ〉. This is done by factorizing

the four-operator expectation values into all possible operator combinations lead-

ing to products of polarizations and/or populations. There are several examples

of factorization in the Appendix. This approach is called the Hatree-Fock fac-

torization since Hartree and Fock made a similar approximation while studying

the many-electron atom. Hartree-Fock approximation contains some Coulomb

effects such as bandgap renormalization and interband Coulomb enhancement;

nevertheless, omits some further renormalization and collision terms. The most

important of them are the screening and connected renormalizations, as well as

electron-electron, electron-hole and hole-hole scattering, and polarization dephas-

ing. We also know that, in addition to the Coulombic interactions included to the

total Hamiltonian, there are other scattering and dephasing mechanisms, such as

carrier-phonon interactions and scattering by impurities and imperfections of the

material [25]. For a more accurate discussion, we should add all these missing

parts while considering the explicit time-dependence of operators.

For the interband electron-hole transitions connecting states |e1〉 and |h1〉,
Eq. (A.3) in the Appendix gives,

∂

∂t
pe1h1 = −iω

(0)
e1h1pe1h1 + iΩe1h1 − i

∑

β

Ωe1βpβh1 − i
∑
α

Ωαh1pαe1

+ i
∑
α

∆e
αe1pαh1 + i

∑

β

∆h
βh1pe1β +

∂pe1h1

∂t

∣∣∣∣
col

. (4.21)

where h̄ω
(0)
αβ = εe

α + εh
β and εe

α and εh
β are single particle electron and hole energy

levels. Similarly, Eqs. (A.6) and (A.9) of Appendix become,

∂

∂t
pe1e2 = −iω

(0)
e1e2pe1e2 + i

∑

β

Ωe2βp∗e1β − i
∑

β

Ω∗
e1βpe2β

+ i
∑
α

∆e
αe2pe1α − i

∑
α

∆e∗
αe1pαe2 +

∂pe1e2

∂t

∣∣∣∣
col

. (4.22)
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and

∂

∂t
ph1h2 = −iω

(0)
h1h2ph1h2 + i

∑
α

Ωαh2p
∗
αh1 − i

∑
α

Ω∗
αh1pαh2

+ i
∑

β

∆h
βh2ph1β − i

∑

β

∆h∗
βh1pβh2 +

∂ph1h2

∂t

∣∣∣∣
col

. (4.23)

where h̄ω
(0)
αα′ = εe

α′−εe
α, h̄ω

(0)
ββ′ = εh

β′−εh
β. These equations are written in a general

form such that, for instance, pe1e2 gives the intraband polarization if e1 6= e2 and

otherwise gives the population distribution pe1e2 = ne1 = 〈a†e1ae1〉 for the level

|e1〉 if e1 = e2.

In order to write these equations compactly, we defined the generalized Rabi

frequency,

h̄Ωαβ = ~µαβ · ~E(t) +
∑

α′,β′
Wαβ

α′β′pα′β′ , (4.24)

and the many-body Coulomb interactions are grouped in the electron and hole

terms ∆e
αe1 and ∆h

βh1, respectively:

h̄∆e
αe1 =

∑

α′,α′′

(
Wα′e1

αα′′ −Wα′e1
α′′α

)
pα′α′′ +

∑

β,β′
W e1β

αβ′ pββ′ (4.25)

h̄∆h
βh1 =

∑

β′,β′′

(
W β′h1

ββ′′ −W β′h1
β′′β

)
pβ′β′′ +

∑

α,α′
Wαh1

α′β pαα′ (4.26)

The Coulomb interactions between valence holes and conduction electrons

reduce the optical transition energy with increasing carrier density. This effect

is called bandgap renormalization. To observe the bandgap renormalization we

separate the e1 and h1 terms from the sums. Thus the bandgap renormalization

is,

ωe1h1 = ω
(0)
e1h1 + ∆e

e1e1 + ∆h
h1h1 (4.27)

since Eq. (4.21) is now in the form of,

∂

∂t
pe1h1 = −iωe1h1pe1h1 + iΩe1h1 − i

∑

β

Ωe1βpβh1 − i
∑
α

Ωαh1pαe1

+ i
∑

α 6=e1

∆e
αe1pαh1 + i

∑

β 6=h1

∆h
βh1pe1β +

∂pe1h1

∂t

∣∣∣∣
col

. (4.28)
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These equations explicitly contains the Hartree-Fock contribution terms

whereas all correlations beyond Hartree-Fock are grouped in the collision con-

tributions and denoted as ∂
∂t
|col. As an improvement to the Hartree-Fock ap-

proximation, we may utilize the next level Coulombic contributions to the carrier

scattering and dephasing which yields the collision terms. We can write this

approximation, for instance, for a two-operator combination ab,

d

dt
〈ab〉 =

d

dt
〈ab〉HF +

(
d

dt
〈ab〉 − d

dt
〈ab〉HF

)

≡ d

dt
〈ab〉HF +

d

dt
〈ab〉col

where HF denotes the Hartree-Fock contribution [25]. In order to get a bet-

ter approximation we should have a satisfactory estimation about the collision

contributions and we should add up that into our calculations.

In semiconductors actual dephasing mechanisms should be considered in the

context of quantum kinetic theory [25]. However, such treatment will be very

complicated and more significantly very expensive in terms of computation time.

In such a treatment, it is very difficult to give comparisons for different system

configurations as we do in Chapter 3. So we prefer an effective rate approximation.

For the nondiagonal density matrix elements, i.e., the polarizations, the colli-

sion effects are approximated by an effective dephasing rate [23],

∂pij

∂t

∣∣∣∣
col

= −γppij

As we mentioned in the introduction part, the main result of carrier-carrier

scattering is to drive the electron and hole distributions within their bands to

Fermi-Dirac distributions. These distributions are called quasi-equilibrium dis-

tributions. Quasi-equilibrium distributions occurs on a time scale longer than the

carrier-carrier scattering time of tens of femtoseconds and shorter with respect to

interband relaxation time of nanoseconds [25].

This rapid carrier equilibration gives rise to Fermi-Dirac distributions for the
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energy level i,

fi =
1

exp

(
εi − µp

j

kBTp

)
+ 1

= fi(µ
p
j , Tp),

where j is e(h) for electrons (holes). µp
j is called the plasma quasi-chemical

potential and Tp is the plasma temperature [23].

To follow the convention let us write for the electron states, pαα = nα. Then

the relaxation process for the diagonal density matrix elements, i.e., the popula-

tion distributions are given by,

∂nα

∂t

∣∣∣∣
col

= −γrnα − γc−c[nα − fα(µp
e, Tp)]− γc−p[nα − fα(µl

e, Tl)]

where the carrier-phonon scatterings are also treated by the quasi-equilibrium

Fermi-Dirac distributions. The µl
i is the lattice quasi-chemical potential and Tl is

the lattice temperature. γr, γc−c and γc−p are the effective recombination, carrier-

carrier and carrier-phonon collision rates, respectively. The same relations hold

for the hole states; just the character e changes with h [23, 25].

γr corresponds to the usual recombination rate which can be taken from Ta-

ble 3.1. γc−c and γc−p terms give in which rate the populations converge to

quasi-equilibrium Fermi-Dirac distributions. For the carrier-carrier dynamics the

dephasing rate γc−c = 8× 1012 s−1 is reported in the literature for Ge NCs [51].

γc−p can roughly be taken in the same order.

While solving the system, at each time step the values of the chemical poten-

tials and temperatures can be calculated from the following relations:

Total electron and hole populations are conserved in carrier-carrier collisions.

Thus,

∑
α

nα =
∑
α

fα(µp
e, Tp)

∑

β

nβ =
∑

β

fβ(µp
h, Tp) ,

where the summations α and β are over all electron and hole states, respectively.
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The third relation is the conservation of total electron and hole energies in carrier-

carrier collisions,

∑
α

εαnα +
∑

β

εβnβ =
∑
α

εαfα(µp
e, Tp) +

∑

β

fβ(µp
h, Tp)

where εα and εβ are the energy levels for the electron and hole states, respectively.

For the carrier-phonon collisions, the total electron and hole populations are

again conserved. Hence,

∑
α

nα =
∑
α

fα(µl
e, Tl)

∑

β

nβ =
∑

β

fβ(µl
h, Tl) ,

and Tl is taken as the medium temperature [23, 25].

Hence, we finished to construct the SBEs. Although, SBEs derived so far

can be solved in those forms, it is convenient to introduce new slowly varying

variables as we described in the Chapter 2. With newly defined variables, we can

see how we should apply the rotating wave approximation (RWA) and whence we

significantly reduce the computation time. Since now the solver does not need to

follow very rapidly oscillating terms with very short time step increments.

We see from Eqs. (4.21 - 4.23) that the nondriven [i.e., E(t) = 0] and non-

Columbic [i.e., W kl
ij = 0] behavior of operators are,

ραβ(t) = ραβ(0)e−iωαβt

ρββ′(t) = ρββ′(0)e−iωβ′βt

ραα′(t) = ραα′(0)e−iωα′αt, (4.29)

observing these equations, let us define new slowly varying variables σαβ, σββ′

and σαα′ such that

ραβ(t) = σαβ(t)e−iωαβt

ρββ′(t) = σββ′(t)e
−iωβ′βt

ραα′(t) = σαα′(t)e
−iωα′αt, (4.30)
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Figure 4.1: Comparison of OBEs and SBEs when there is no Coulomb interaction
to check the code implementation.

By inserting these definitions into SBEs, we can again apply the RWA and ignore

the rapidly oscillating exponential terms e±iωt with the frequency ω ≈ 2ωgap.

Now we are ready to solve SBEs. In our calculations we applied the pump

field resonant with HOMO-LUMO transition and the probe field scanned around

the pump field.

While starting many-body calculations, we initially checked our code by com-

paring with the results of OBEs. For a two-level system of HOMO-LUMO levels,

we set the Coulomb interactions equal to zero. Since there are no many-body

effects, we also took the γc−c and γc−p rates equal to zero. Further, we assumed

that the population of excited level relaxes with radiative recombination process

and the polarization dephases with time T2 = T1/2. This means we took same re-

laxation and dephasing times for both OBEs and SBEs. Fig. 4.1 illustrates that

under these assumptions with any arbitrary parameters both solutions exactly

coincide.
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Solving SBEs is not a simple task. Since the carrier-carrier interactions are

very rapid the quantum coherence effects also vanishes very rapidly. Although, in

the atomic treatment the coherence effects observed in microsecond time ranges,

now the effects maintains from tens of femtoseconds to picoseconds. To obtain

stable results and give satisfactory comparisons further work is required.



Chapter 5

Conclusions and Future Work

In this thesis, we studied the coherent population oscillation based slow light in

Ge NCs. Optical Bloch equations are derived and solved numerically considering

a two-level scheme. The key point in our solution was that we have not used

the fundamental approximation of analytical solution and obtained our results

numerically. The numerical results are compared with the available analytical

approach. A good agreement between them is observed. An analysis of outputs

is given briefly and the slow light in Ge NCs is discussed.

Later, the carrier-carrier Coulomb interactions are included to the discussion.

Semiconductor Bloch equations are derived where the carrier-carrier interactions

are included at the level of Hartree-Fock approximation. Further interaction ef-

fects are included in the context of effective rate approximations. Further studies

should be done to explore the many-body effects in the NCs systems.
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Appendix A

Derivations of the Semiconductor

Bloch Equations

The Hamiltonian of an interacting electron-hole plasma in a nanocrystal structure

coupled to a coherent light field is given in the main text by Eq. (4.1). Inserting

that Hamiltonian into the Heisenberg equation Eq. (4.13), we get the equation of

motion for the polarization, pe1h1 = 〈bh1ae1〉 connecting the states |e1〉 and |h1〉,

ih̄
∂

∂t
bh1ae1 = [bh1ae1,H] . (A.1)

The commutation in the right hand side can be calculated explicitly using the

commutation relations given in Eqs. (4.18-4.20),

[bh1ae1, a
†
nan] = [bh1ae1, a

†
n]an + a†n[bh1ae1, an]

= bh1{ae1, a
†
n}an − {bh1, a

†
n}ae1an + a†nbh1{ae1, an} − a†n{bh1, an}ae1

= δe1nbh1an ,

[bh1ae1, b
†
mbm] = −{bh1, b

†
m}ae1bm = −δh1mae1bm ,

[bh1ae1, a
†
nb†m] = bh1{ae1, a

†
n}b†m − a†n{bh1, b

†
m}ae1

= δe1nbh1b
†
m − δh1ma†nae1 ,

[bh1ae1, bman] = 0 ,
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[bh1ae1, a
†
ra
†
s aman] = [bh1ae1, a

†
ra
†
s]aman + a†ra

†
s[bh1ae1, aman]

= bh1{ae1, a
†
r}a†saman + a†rbh1{ae1, a

†
s}aman

= δe1rbh1a
†
saman + δe1sa

†
rbh1aman ,

[bh1ae1, b
†
rb
†
sbmbn] = [bh1ae1, b

†
rb
†
s]bmbn + b†rb

†
s[bh1ae1, bmbn]

= −{bh1, b
†
r}ae1b

†
sbmbn − b†r{bh1, b

†
s}ae1bmbn

= −δh1rae1b
†
sbmbn − δh1sb

†
rae1bm , bn

[bh1ae1, a
†
rb
†
sbman] = [bh1ae1, a

†
rb
†
s]bman + a†rb

†
s[bh1ae1, bman]

= bh1{ae1, a
†
r}b†sbman − a†r{bh1, b

†
s}ae1bman

= δe1rbh1b
†
sbman − δh1sa

†
rae1bman ,

We insert all these commutation terms back into Eq. (A.1) and sum over corre-

sponding indices in order to get rid of Kronecker δ-functions,

ih̄
∂

∂t
bh1ae1 = εe

e1bh1ae1 − εh
h1ae1bh1

− ∑
m

~µe1m · ~E(t)(δmh1 − b†mbh1) +
∑
n

~µnh1 · ~E(t)a†nae1

+
1

2

∑
n,m,s

W e1s
nm bh1a

†
saman +

1

2

∑
n,m,r

W re1
nm a†rbh1aman

− 1

2

∑
n,m,s

W h1s
nm ae1b

†
sbmbn − 1

2

∑
n,m,r

W rh1
nm b†rae1bmbn

− ∑
n,m,s

W e1s
nm bh1b

†
sbman +

∑
n,m,r,s

W rh1
nm a†rae1bman .

If we concentrate on the first Coulomb interaction term, we notice that

∑
n,m,s

W e1s
nm bh1a

†
saman =

∑
n,m,s

W se1
mn bh1a

†
saman =

∑
n,m,r

W re1
nm bh1a

†
ranam

=
∑

n,m,r

W re1
nm a†rbh1aman ,

so its identical to the second term when we arranged dummy indices. In the first

step we used W rs
nm = W sr

mn property of the matrix element whereas in the last

step we used the anti-commutation property in Eq. (4.18). Similarly, the third

and fourth terms are same,

∑
n,m,s

W h1s
nm ae1b

†
sbmbn =

∑
n,m,s

W sh1
mn ae1b

†
sbmbn =

∑
n,m,r

W rh1
nm ae1b

†
sbnbm

=
∑

n,m,r

W rh1
nm b†rae1bmbn ,
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In the second quantization the multi-operator product expressions are written

normal ordered, i.e., the creation operators are on the left of the annihilation

operators. Such an ordering mechanism is crucial since by this way the unphysical

interaction of a carrier by itself is excluded. For the fifth Coulomb interaction

term, we apply the anti-commutation relation in order to obtain the normal

ordering

bh1b
†
sbman = (δsh1 − b†sbh1)bman .

Applying these recipes and also using the anti-commutation relations to sym-

metrize the similar terms, we obtain

ih̄
∂

∂t
bh1ae1 = εe

e1bh1ae1 − εh
h1ae1bh1 − ~µe1h1 · ~E(t) +

∑
m

~µe1m · E(t)b†mbh1

+
∑
n

~µnh1 · ~E(t)a†nae1 +
∑

n,m,r

W re1
nm a†rbh1aman

− ∑
n,m,r

W rh1
nm b†rae1bmbn −

∑
n,m

W e1h1
nm bman

+
∑

n,m,s

W e1s
nm b†sbh1bman +

∑
n,m,r

W rh1
nm a†rae1bman . (A.2)

We can now take the expectation values of both sides which will give us the expec-

tation values of four operator terms. By the Hartree-Fock factorization explained

in the Chapter 4, we can split the expectation value of four operators products

terms in to the products of expectation values of all possible polarizations and/or

populations:

〈a†rbh1aman〉 = −〈a†ram〉〈bh1an〉+ 〈a†ran〉〈bh1am〉
= −prmpnh1 + prnpmh1 ,

〈b†rae1bmbn〉 = 〈b†rbm〉〈bnae1〉 − 〈b†rbn〉〈bmae1〉
= prmpe1n − prnpe1m ,

〈b†sbh1bman〉 = 〈b†sbh1〉〈bman〉 − 〈b†sbm〉〈bh1an〉
= psh1pnm − psmpnh1 ,

〈a†rae1bman〉 = 〈a†rae1〉〈bman〉 − 〈a†ran〉〈bmae1〉
= pre1pnm − prnpe1m ,
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where pnm = bman is the interband polarization, and pnm = a†nam ( pnm =

b†nbm) gives the electron (hole) intraband polarizations if n 6= m and population

distributions if n = m.

Inserting these factorization results back to Eq. (A.2) and by specifying gen-

eral indices with αs for the electron states and βs for the hole states we obtain

the expression:

h̄
∂

∂t
pe1h1 = −i(εe

e1 + εh
h1)pe1h1 + i~µe1h1 · ~E(t)− i

∑

β

~µe1β · ~E(t)pβh1

− i
∑
α

~µαh1 · ~E(t)pαe1 + i
∑

α,α′,α′′
Wα′e1

αα′′ pα′α′′pαh1

− i
∑

α,α′,α′′
Wα′e1

α′′α pα′α′′pαh1 + i
∑

β,β′,β′′
W β′′h1

ββ′ pβ′′β′pe1β

− i
∑

β,β′,β′′
W β′′h1

β′β pβ′′β′pe1β + i
∑

α,β

W e1h1
αβ pαβ

− i
∑

α,β,β′
W e1β

αβ′ pαβ′pβh1 + i
∑

α,β,β′
W e1β′

αβ pβ′βpαh1

− i
∑

α,α′,β
W αh1

α′β pα′βpαe1 + i
∑

α,α′,β
Wα′h1

αβ pα′αpe1β .

Further rearranging similar terms, we get a very general form for the polar-

ization pe1h1,

h̄
∂

∂t
pe1h1 = −i(εe

e1 + εh
h1)pe1h1 + i

[
~µe1h1 · ~E(t) +

∑

α,β

W e1h1
αβ pαβ

]

− i
∑

β

[
~µe1β · ~E(t) +

∑

α,β′
W e1β

αβ′ pαβ′

]
pβh1

− i
∑
α

[
~µαh1 · ~E(t) +

∑

α′,β
Wαh1

α′β pα′β

]
pαe1

+ i
∑
α

[ ∑

α′,α′′
Wα′e1

αα′′ pα′α′′ −
∑

α′,α′′
Wα′e1

α′′α pα′α′′ +
∑

β,β′
W e1β

αβ′ pββ′

]
pαh1

+ i
∑

β

[ ∑

β′,β′′
W β′h1

ββ′′ pβ′β′′ −
∑

β′,β′′
W β′h1

β′′β pβ′β′′ +
∑

α,α′
W αh1

α′β pαα′

]
pe1β .(A.3)

Nextly, we derive the equations of motions for the electron populations and

intraband electron transitions. Calculation steps are very similar. For the gener-

alization consider the operator, a†e1ae2;

ih̄
∂

∂t
a†e1ae2 = [a†e1ae2,H] . (A.4)
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when we insert the system Hamiltonian Eq. (4.1) in the right hand side, we need

to calculate the following terms,

[a†e1ae2, a
†
nan] = a†e1{ae2, a

†
n}an − a†n{a†e1, an}ae2

= δe2na†e1an − δe1na
†
nae2 ,

[a†e1ae2, b
†
mbm] = 0 ,

[a†e1ae2, a
†
nb
†
m] = a†e1{ae2, a

†
n}b†m = δe2na

†
e1b

†
m ,

[a†e1ae2, bman] = −bm{a†e1, an}ae2 = −δe1nbmae2 ,

[a†e1ae2, a
†
ra
†
saman] = [a†e1ae2, a

†
ra
†
s]aman + a†ra

†
s[a

†
e1ae2, aman]

= a†e1{ae2, a
†
r}a†saman + a†ra

†
e1{ae2, a

†
s}aman

− a†ra
†
s{a†e1, am}ae2a

†
n − a†ra

†
sam{a†e1, an}ae2 ,

[a†e1ae2, b
†
rb
†
sbmbn] = 0 ,

[a†e1ae2, a
†
rb
†
sbman] = [a†e1ae2, a

†
rb
†
s]bman + a†rb

†
s[a

†
e1ae2, bman]

= a†e1{ae2, a
†
r}b†sbman − a†rb

†
sbm{a†e1, an}ae2 .

We can insert these results back into Eq. (A.4) and summing over corresponding

Kronecker δ-functions

ih̄
∂

∂t
a†e1ae2 = εe

e2a
†
e1ae2 − εe

e1a
†
e1ae2 −

∑
m

(~µe2ma†e1b
†
m − ~µme1bmae2) · ~E(t)

+
1

2

∑
n,m,s

W e2s
nma†e1a

†
saman +

1

2

∑
n,m,r

W re2
nm a†ra

†
e1aman

− 1

2

∑
n,r,s

W rs
ne1a

†
ra
†
sae2an − 1

2

∑
m,r,s

W rs
e1ma†ra

†
samae2

− ∑
n,m,s

W e2s
nma†e1b

†
sbman +

∑
m,r,s

W rs
e1ma†rb

†
sbmae2 .
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As we did in the polarization part playing with indices to collect the similar

Coulombic terms we get:

ih̄
∂

∂t
a†e1ae2 = εe

e2a
†
e1ae2 − εe

e1a
†
e1ae2 −

∑
m

(~µe2ma†e1b
†
m − ~µme1bmae2) · ~E(t)

+
∑

n,m,s

W e2s
nma†e1a

†
saman −

∑
m,r,s

W rs
e1ma†ra

†
samae2

− ∑
n,m,s

W e2s
nma†e1b

†
sbman +

∑
m,r,s

W rs
e1ma†rb

†
sbmae2 . (A.5)

After taking the expectation values of both sides, we can apply the Hartree-

Fock factorization such that,

〈a†e1a†saman〉 = −〈a†e1am〉〈a†san〉+ 〈a†e1an〉〈a†sam〉
= −pe1mpsn + pe1npsm ,

〈a†ra†samae2〉 = −〈a†ram〉〈a†sae2〉+ 〈a†rae2〉〈a†sam〉
= −prmpse2 + pre2psm ,

〈a†e1b†sbman〉 = 〈(bsae1)
†〉〈bman〉+ 〈a†e1an〉〈b†sbm〉

= p∗e1spnm + pe1npsm ,

〈a†rb†sbmae2〉 = 〈(bsar)
†〉〈bmae2〉+ 〈a†rae2〉〈b†sbm〉

= p∗rspe2m + pre2psm .

Inserting these factorized terms into Eq. (A.5), and using again αs for electron

states and βs for hole states in order to get out of confusion of indices, we end

up with a general equation,

h̄
∂

∂t
pe1e2 = −i (εe

e2 − εe
e1) pe1e2 + i

∑

β

(~µe2βp∗e1β − ~µβe1pe2β) · ~E(t)

+ i
∑

α,α′,α′′
W e2α′

α′′α pα′α′′pe1α − i
∑

α,α′,α′′
W e2α′

αα′′ pα′α′′pe1α

− i
∑

α,α′,α′′
Wα′α

e1α′′pα′α′′pαe2 + i
∑

α,α′,α′′
Wαα′

e1α′′pα′α′′pαe2

+ i
∑

α,β,β′
W e2β

αβ′ pαβ′p
∗
e1β + i

∑

α,β,β′
W e2β

αβ′ pββ′pe1α

− i
∑

α,β,β′
W αβ′

e1β p∗αβ′pe2β − i
∑

α,β,β′
Wαβ

e1β′pββ′pαe2 .
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In order to obtain a similar expression to the interband polarization expression

Eq. (A.3), we rearrange the terms and obtain a general equation for both electron

populations and electron intraband polarizations,

h̄
∂

∂t
pe1e2 = −i (εe

e2 − εe
e1) pe1e2 + i

∑

β

[
~µe2β · ~E(t) +

∑

α,β′
W e2β

αβ′ pαβ′

]
p∗e1β

− i
∑

β

[
~µβe1 · ~E(t) +

∑

α,β′
W αβ′

e1β p∗αβ′

]
pe2β

+ i
∑
α

[ ∑

α′,α′′
W e2α′

α′′α pα′α′′ −
∑

α′,α′′
W e2α′

αα′′ pα′α′′ +
∑

β,β′
W e2β

αβ′ pββ′

]
pe1α

− i
∑
α

[ ∑

α′,α′′
W α′′α

e1α′ pα′′α′ −
∑

α′,α′′
Wαα′′

e1α′ pα′′α′ +
∑

β,β′
W αβ′

e1β pβ′β

]
pαe2 .(A.6)

Derivation of such a general equation makes the derivations shorter. It is

because if we let e1 = e2, then Eq. (A.6) will give the equation of motion for the

electron population of state |e1〉. Otherwise, for e1 6= e2, it will reduce to the

equation of motion for the intraband polarization pe1e2 = 〈a†e1ae2〉 between the

states |e1〉 and |e2〉. However, for the sake of computational implementation we

use the same expression for both populations and polarizations. Otherwise, we

should write two general equations; one for electron populations nei
and one for

electron intraband polarizations peiej
. In total we should have 5 general equation

of motions as peihj
, nei

, peiej
, nhi

, and phihj
. Instead of that we keep 3 equations

of motions peihj
, peiej

, and phihj
and just keep in mind that when i = j the last

two expressions give the electron and hole populations, respectively.

Finally we derive the equations of motions for the hole populations and intra-

band hole transitions. For the generalization we consider the operator, b†h1bh2;

ih̄
∂

∂t
b†h1bh2 = [b†h1bh2,H] , (A.7)

The terms in the right hand side are calculated using Eqs. (4.18-4.20), we get:

[b†h1bh2, a
†
nan] = 0 ,

[b†h1bh2, b
†
mbm] = b†h1{bh2, b

†
m}bm − b†m{b†h1, bm}bh2

= δh2mb†h1bm − δh1mb†mbh2 ,
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[b†h1bh2, a
†
nb
†
m] = a†nb

†
h1{bh2, b

†
m} = δh2ma†nb

†
h1 ,

[b†h1bh2, bman] = −{b†h1, bm}bh2an = −δh1mbh2an ,

[b†h1bh2, a
†
ra
†
saman] = [b†h1bh2, a

†
ra
†
s]aman + a†ra

†
s[b

†
h1bh2, aman] = 0 ,

[b†h1bh2, b
†
rb
†
sbmbn] = [b†h1bh2, b

†
rb
†
s]bmbn + b†rb

†
s[b

†
h1bh2, bmbn]

= b†h1{bh2, b
†
r}b†sbmbn + b†rb

†
h1{bh2, b

†
s}bmbn − b†rb

†
s{b†h1, bm}bh2bm

− b†rb
†
sbm{b†h1, bn}bh2 ,

[b†h1bh2, a
†
rb
†
sbman] = [b†h1bh2, a

†
rb
†
s]bman + a†rb

†
s[b

†
h1bh2, bman]

= a†rb
†
h1{bh2, b

†
s}bman − a†rb

†
s{b†h1, bm}bh2an .

Now we insert all these commutation terms back into Eq. (A.7),

ih̄
∂

∂t
b†h1bh2 = εh

h2b
†
h1bh2 − εh

h1b
†
h1bh2 −

∑
n

(~µnh2a
†
nb†h1 − ~µh1nbh2an) · ~E(t)

+
1

2

∑
n,m,s

W h2s
nm b†h1b

†
sbmbn +

1

2

∑
n,m,r

W rh2
nm b†rb

†
h1bmbn

− 1

2

∑
n,r,s

W rs
nh1b

†
rb
†
sbh2bm − 1

2

∑
m,r,s

W rs
h1mb†rb

†
sbmbh2

− ∑
n,m,r

W rh2
nm a†rb

†
h1bman +

∑
n,r,s

W rs
nh1a

†
rb
†
sbh2an .

As it was in the above discussion, here again the first and second Coulomb

interaction terms are identical after some arrangement. Similarly the third and

fourth ones are same. Summing over corresponding Kronecker delta indices we

obtain,

ih̄
∂

∂t
b†h1bh2 = εh

h2b
†
h1bh2 − εh

h1b
†
h1bh2 −

∑
n

(~µnh2a
†
nb†h1 − ~µh1nbh2an) · ~E(t)

+
∑

n,m,s

W h2s
nm b†h1b

†
sbmbn −

∑
n,r,s

W rs
nh1b

†
rb
†
sbh2bm

− ∑
n,m,r

W rh2
nm a†rb

†
h1bman +

∑
n,r,s

W rs
nh1a

†
rb
†
sbh2an . (A.8)
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After taking the expectation values of both sides, we can apply the factoriza-

tion to four-operator terms,

〈b†h1b
†
sbmbn〉 = −〈b†h1bm〉〈b†sbn〉+ 〈b†h1bn〉〈b†sbm〉

= −ph1mpsn + ph1npsm ,

〈b†rb†sbh2bn〉 = −〈b†rbh2〉〈b†sbn〉+ 〈b†rbn〉〈b†sbh2〉
= −prh2psn + prnpsh2 ,

〈a†rb†h1bman〉 = 〈a†ran〉〈b†h1bm〉+ 〈(bh1ar)
†〉〈bman〉

= prnph1m + p∗rh1pnm ,

〈a†rb†sbh2an〉 = 〈(bsar)
†〉〈bh2an〉+ 〈a†ran〉〈b†sbh2〉

= p∗rspnh2 + prnpsh2 .

Inserting these factorized expression into Eq. (A.8), and switching to αs and

βs for state indices, we obtain a very general relation

h̄
∂

∂t
ph1h2 = −i

(
εh

h2 − εh
h1

)
ph1h2 + i

∑
α

(~µαh2p
∗
αh1 − ~µh1αpαh2) · ~E(t)

+ i
∑

β,β′,β′′
W h2β′′

ββ′ ph1β′pβ′′β − i
∑

β,β′,β′′
W h2β′′

ββ′ ph1βpβ′′β′

− i
∑

β,β′,β′′
W β′β′′

βh1 pβ′h2pβ′′β + i
∑

β,β′,β′′
W β′β′′

βh1 pβ′βpβ′′h2

+ i
∑

α,α′,β
W α′h2

αβ pα′αph1β + i
∑

α,α′,β
W α′h2

αβ p∗α′h1pαβ

− i
∑

α,α′,β
W α′β

αh1p
∗
α′βpαh2 − i

∑

α,α′,β
W α′β

αh1pα′αpβh2 .

Further arranging the terms we obtain the equation of motion for the hole

populations and intraband polarizations:

h̄
∂

∂t
ph1h2 = −i

(
εh

h2 − εh
h1

)
ph1h2 + i

∑
α

[
~µαh2 · ~E(t) +

∑

α′,β
W αh2

α′β pα′β

]
p∗αh1

− i
∑
α

[
~µh1α · ~E(t) +

∑

α′,β
Wα′β

αh1p
∗
α′β

]
pαh2

+ i
∑

β

[ ∑

β′,β′′
W h2β′

β′′β pβ′β′′ −
∑

β′,β′′
W h2β′

ββ′′ pβ′β′′ +
∑

α,α′
W αh2

α′β pαα′

]
ph1β

− i
∑

β

[ ∑

β′,β′′
W ββ′′

β′h1pβ′′β′ −
∑

β′,β′′
W β′′β

β′h1pβ′′β′ +
∑

α,α′
W α′β

αh1pα′α

]
pβh2 . (A.9)
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Now one can specialize this equation. For h1 = h2 the expectation value

〈b†h1bh1〉 will yield the hole population nh1 for the state |h1〉. Instead of that, if we

state that h1 6= h2, the expectation value 〈b†h1bh2〉 gives the intraband transition

ph1h2 between the hole states |h1〉 and |h2〉. However, as we mentioned in the

electron part, we keep the expression in general form for the sake of computational

simplicity and bookkeeping.


