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ABSTRACT

UNSUPERVISED DETECTION OF COMPOUND
STRUCTURES USING IMAGE SEGMENTATION AND

GRAPH-BASED TEXTURE ANALYSIS

Daniya Zamalieva

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. Selim Aksoy

August, 2009

The common goal of object-based image analysis techniques in the literature

is to partition the images into homogeneous regions and classify these regions.

However, such homogeneous regions often correspond to very small details in very

high spatial resolution images obtained from the new generation sensors. One

interesting way of enabling the high-level understanding of the image content is

to identify the image regions that are intrinsically heterogeneous. These image

regions are comprised of primitive objects of many diverse types, and can also be

referred to as compound structures. The detection of compound structures can

be posed as a generalized segmentation or generalized texture detection problem,

where the elements of interest are primitive objects instead of traditional case of

pixels. Traditional segmentation methods extract regions with similar spectral

content and texture models assume specific scale and orientation. Hence, they

cannot handle the complexity of compound structures that consist of multiple

regions with different spectral content and arbitrary scale and orientation.

In this thesis, we present an unsupervised method for discovering compound

image structures that are comprised of simpler primitive objects. An initial seg-

mentation step produces image regions with homogeneous spectral content. Then,

the segmentation is translated into a relational graph structure whose nodes cor-

respond to the regions and the edges represent the relationships between these

regions. We assume that the region objects that appear together frequently can

be considered as strongly related. This relation is modeled using the transition

frequencies between neighboring regions, and the significant relations are found as

the modes of a probability distribution estimated using the features of these tran-

sitions. Furthermore, we expect that subgraphs that consist of groups of strongly

related regions correspond to compound structures. Therefore, we employ two

iii



iv

different procedures to discover the subgraphs in the constructed graph. During

the first procedure the graph is discretized and a graph-based knowledge discov-

ery algorithm is applied to find the repeating subgraphs. Even though a single

subgraph does not exclusively correspond to a particular compound structure,

different subgraphs constitute parts of different compound structures. Hence,

we discover compound structures by clustering the histograms of the subgraph

instances with sliding image windows. The second procedure involves graph seg-

mentation by using normalized cuts. Since the distribution of significant relations

within resulting subgraphs gives an idea about the nature of corresponding com-

pound structure, the subgraphs are further grouped by clustering the histograms

of the most significant relations.

The proposed method was tested using an Ikonos image. Experiments show

that the discovered image areas correspond to different high-level structures with

heterogeneous content such as dense residential areas with high buildings, dense

and sparse residential areas with low height buildings and fields.

Keywords: Image segmentation, object detection, texture analysis, graph-based

analysis.



ÖZET

BİLEŞİK YAPILARIN GÖRÜNTÜ BÖLÜTLEME VE

ÇİZGE TABANLI DOKU ANALİZİ İLE ÖĞRETİCİSİZ
BULUNMASI

Daniya Zamalieva

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Y. Doç. Dr. Selim Aksoy

August, 2009

Literatürdeki nesnesel görüntü analizi tekniklerinin ortak amacı görüntü türdeş

bölgelere bölütlemek ve bunları sınıflandırmaktır. Fakat bu türdeş bölgeler,

yeni nesil algılayıcılardan elde edilen yüksek uzamsal çözünürlüklü görüntülerde

çok küçük detaylara karşılık gelmektedir. Görüntü içeriǧini üst düzeyde an-

lamamızı saǧlayan dikkate deǧer bir yöntem içsel olarak heterojen bölgelerin

tanımlanmasıdır. Farklı tip temel nesnelerin birleşmesinden oluşan bu tür imge

bölgeleri bileşik yapılar olarak da adlandırılır. Bileşik yapıların saptanması, pik-

seller yerine temel nesneler kullanan genellenmiş bölütleme veya doku analizi

problemi olarak görülebilir. Geleneksel bölütleme yöntemleri benzer spektral

içerikli bölgeleri bulurken, doku bulma teknikleri ise belirli bir ölçek ve yönelim

gerektirir. Bundan dolayı bu iki teknik de deǧişik spektral içerik ve gelişigüzel

ölçek ve yönelimli bileşik yapıların karmaşıklıǧıyla başa çıkamamaktadır.

Bu tez çalışmasında temel nesnelerden oluşan bileşik görüntü yapılarının bu-

lunmasını saǧlayan öǧreticisiz bir yöntem önerilmektedir. İlk bölütleme adımı ho-

mojen spektral içerikli görüntü bölgeleri üretir. Sonrasında bölütleme sonuçları,

düǧümleri bölgeler ve kenarları bölgeler arasındaki ilişkiler olan bir ilişkisel çizgeye

aktarılır. Birlikte sıkça görülen bölgeler çok ilgili olarak deǧerlendirilir. Bu

ilişki komşu bölgelerdeki geçişlerin sıklıǧına baǧlı olarak modellenir ve önemli

ilişkiler, geçişlerin öznitelikleri kullanılarak oluşturulan olasılık daǧılımındaki

yerel enbüyük olarak bulunur. Ayrıca çok ilgili bölgeler içeren altçizgeler de

bileşik yapılara karşılık gelmektedir. Bu yüzden kurulan çizgedeki altçizgeleri

ortaya çıkarmak için iki farklı yöntem kullanılmaktadır. İlk yöntemde çizge

ayrıklaştırılır ve tekrar eden altçizgeler çizge bazlı bilgi çıkarma algoritmasıyla

bulunur. Tek başına bir altçizge belirli bir bileşik yapıya karşılık gelmese bile

farklı altçizgeler bir bileşik yapının parçaları olabilir. Bundan dolayı bileşik
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yapılar, altçizgeler histogramlarının kayar imge pencereleri ile gruplandırılmaları

sayesinde bulunur. İkinci yöntem düzgelenmiş kesitler algoritmasıyla çizge

bölütlemesi içerir. Önemli ilişkilerin altçizgelerdeki daǧılımı bize bileşik yapılar

hakkında bir fikir vereceǧinden, altçizgeler en önemli ilişkiler histogramı ile tekrar

gruplandırılır.

Önerilen yöntem Ikonos görüntülerinde test edilmiştir. Deneyler sonucunda

bulunan bölgelerin yüksel yoǧunluklu yerleşim alanı, düşük yoǧunluklu yerleşim

alanı ve arazi gibi heterojen içerikli farklı üst düzey yapılara karşılık geldiǧi

görülmüştür.

Anahtar sözcükler : Görüntü bölütleme, nesne sezimi, doku analizi, çizge tabanlı

analiz.
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Chapter 1

Introduction

1.1 Overview

Constant increase in the amount of available high-resolution remotely sensed

data is subsequently causing the demand for applications that aim automatic

information extraction. A lot of effort has been spent on pixel-based analysis

techniques [18]; however, several studies have shown that most of them are not

competent enough to show high performance on this kind of data. To address

this problem, the field of object-based image analysis has arisen in recent years

[6].

The common goal of object-based image analysis techniques in the literature

is to partition the images into homogeneous regions and classify these regions.

However, such homogeneous regions often correspond to very small details in very

high spatial resolution images obtained from the new generation sensors. One

interesting way of enabling the high-level understanding of the image content is

to identify the image regions that are intrinsically heterogeneous. These image

regions are comprised of primitive objects of many diverse types, and can also be

referred to as compound structures.

The compound structures generally correspond to high-level structures such as
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CHAPTER 1. INTRODUCTION 2

sparse and dense urban areas, forests, industrial and agricultural areas (see Fig-

ure 1.1). Thus, the identification of compound structures provides high level of

abstraction beyond object-level analysis. In contrast to primitive objects (build-

ings, roads, etc.), the compound structures are able to capture more of the image

content, and subsequently better summarize the scene. For high-level informa-

tion extraction tasks, such as automated annotation of geospatial images, this is

an inevitable and necessary step due to complexity and variability of object-level

representation. Compound structures can also be used as contextual information

for other detection or retrieval tasks.

However, the delineation of compound structures is a challenging task and

most of the challenge originates from the nature of the compound structures.

Since they are characterized by a mixture of primitives of several types, there is

no limitation on the number or type of primitives within the compound struc-

tures and the amount of variation among the instances of the same type. While

several segmentation algorithms have been proposed to partition images into ho-

mogeneous regions, the detection of meaningful regions that are internally het-

erogeneous is not a well-explored task. Hence, in order to obtain the compound

structures further exploration must be performed.

A number of methods have been proposed for detection of compound struc-

tures of predefined types. These methods generally rely on a particular charac-

teristics of a given compound structure type. For example, methods that aim

detection [27] or classification [32, 11] of urban areas depend either on detection

of buildings or their specific properties. For example, Stasolla and Gamba [27]

proposed a procedure for extraction of human settlements from high-resolution

synthetic aperture radar (SAR) images that uses the bright response production

property of buildings. Dogrusoz and Aksoy performed classification of settlement

areas as organized and unorganized by first detecting the buildings and then us-

ing them as primitives in both statistical [2] and structural [11] texture models.

Unsalan and Boyer [32] suggested contructing graph where photometric straight

line segments extracted from grayscale images are assigned to vertices and their

spatial relationships are encoded by edges. They introduced a set of measures

based on various properties of the graph and used these measures for classification
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(a)

(b)

Figure 1.1: An Ikonos image of Antalya with 3551 × 3128 pixel size and 4 m
spatial resolution, and some compound structures of interest: dense and sparse
residential areas with different building size and fields.
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of scenes as rural, residential and urban assuming that impact of human activity

causes emergence of straight and smoothly curved contours and their spatial den-

sity and regularity increases with increasing development. One other example is

the method proposed for the detection of harbors and golf courses [5], that relies

on characteristic texture properties, namely on spatially recurrent patterns that

are formed by boats and water in a harbor and trees and grass in golf courses.

Clearly, to provide the detection of compound structures regardless of their

types, a generic unsupervised method that does not rely on particular properties

of a certain compound structure type must be presented. This can be posed

as a generalized segmentation problem because the goal is the delineation of re-

gions of interest. However, traditional segmentation methods extract regions with

uniform spectral content and cannot be used for detection of intrinsically hetero-

geneous regions. On the other hand, this is is also a generalized texture detection

problem, because compound structures consist of spatial arrangements of image

primitives. Traditional methods for texture detection that include co-occurrence

matrix [22], Fourier transform [11, 5], and the autocorrelation functions [27] re-

quire the selection of specific scale and orientation which are not stable for com-

pound structures. Standart texture models can perform well for detection or

classification of compound structures when the image resolution is low, so that

the level of detail is reduced. For example, the study presented in [17] performs

the classification of built areas according to their density in low resolution (10 me-

ter) SPOT panchromatic remote sensing images by employing algorithms based

on occurrence frequency and co-occurrence matrices. However, when image res-

olution is very high, the complexity of compound structures cannot be handled

by traditional texture models.

In this work, we focus on a general property of compound structures that is

shared by all the compound structure types: the stong coupling between primi-

tives. It is intuitive that the primitives that comprise compound structures are

strongly related to each other. It can be assumed that the degree of this relation-

ship is directly proportional to their transition frequency. For example, in case of

forest, there is a high co-occurrence of tree crowns and their shadows. The similar

assumption is used by [14] to provide a multiscale segmentation maps. However,
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their approach is dependent on preliminary clustering of primitives. Opposed

to this, we aim to avoid the clustering of primitives or any label assignment,

since it is a challenging problem and the errors at this step strongly affect the

further analysis. To address this problem, we develop a procedure for transition

frequency calculation without a preceeding transition or region type assignment.

In this thesis, we propose a generic unsupervised method for discovering inter-

esting and significant compound objects regardless of their types. The method

translates image segmentation into a relational graph, and applies two graph-

based knowledge discovery algorithms to find the interesting and repeating sub-

structures that may correspond to compound objects. The first step is image seg-

mentation where the resulting regions correspond to primitive objects that have

relatively uniform spectral content. The next step is the translation of this seg-

mentation into a relational graph structure where the nodes represent the regions

and the edges represent the relationships between these regions. We assume that

the region objects that appear together frequently can be considered as strongly

related. This relation is modeled using the transition frequencies between neigh-

boring regions. Each transition is represented by a point in a multi-dimensional

space. This space is modeled by a non-parametric probability distribution, and

the local maxima found from the density function are assumed to correspond to

the most frequently occurring and hence the most significant and important tran-

sitions. Finally, a graph whose edges encode this frequent spatial co-occurrence

information is constructed, and subgraph analysis algorithms are used to dis-

cover substructures that often correspond to groups of region objects that occur

together in high-level compound structures. The overview of the proposed frame-

work is given in Figure 1.2.

1.2 Summary of Contributions

In this work, unlike the conventional object-based image analysis approach of

finding homogeneous regions, we present an unsupervised method toward discov-

ering compound image structures that are intrinsically heterogeneous. Opposed
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Segmentationimage

Spatial Co-occurrence

Space Construction

segmented image

spatial co-occurrence space

Mode Discovery Graph Construction

Graph Discretization

Subdue

Histogram Clustering

N-cuts

Histogram Clustering

discretized graph

subgraphs

compound structures compound structures

weighted graphmodes

compound 

structure 

boundaries

Figure 1.2: Overview of the proposed framework.
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to the methods that aim to discover the compound structures of predefined types

and rely on particular characteristics of a given compound structure type, we

provide a generic method for discovering the compound structures regardless of

their types.

Our main contribution is the proposed spatial co-occurrence model that de-

fines a feature space where each point corresponds to an inter-region transition

so that features of the regions are encoded in the transition. The transitions that

are similar in terms of their features are located close to each other in the spatial

co-occurrence space. This enables the encoding of region features together with

transition frequency. While similar transitions are pooled together to form dense

clusters, seldom transitions are located sparsely. This model provides tolerance

to small variations and noise in the region features. Furthermore, it can be easily

extended with additional region features. Given this model, we propose that the

significance of the particular transition can be found by using non-parametric

probability density estimation. Note that our model does not depend on pre-

liminary classification of regions or user-defined number of clusters. Complete

description of spatial co-occurrence model is presented in Chapter 4.

One other contribution is the discovery of significant transitions in spatial

co-occurrence space using non-parametric clustering and mode seeking. We state

that points that corresponds to accumulations in the space can be considered

as transitions of the same type. We suggest that local maxima (modes) of the

probability density can be considered as centroids for these transition types and

can be located by a mode seeking algorithm. This enables us to avoid assumptions

about the cluster number and cluster shape and still obtain an implicit clustering

of the space by assigning each transition to the closest mode. We also suggest

algorithms for stabilizing the modes by mode merging and elimination based on

symmetry. More information about mode discovery and the postprocessing steps

is provided in Chapter 5.

Another contribution is the construction of a graph with vertices correspond-

ing to primitive regions and the edges encoding the relationship degree between

them. By analyzing the edge weights, we cluster the graph to find subgraphs,
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so that they are composed of vertices with corresponding edges that have high

weights modeling frequent spatial co-occurrence. Furthermore, the subgraphs also

contain neighborhood information among multiple region objects. Therefore, the

subgraph nodes correspond to the region objects that occur together in a high-

level compound structure. The details of graph construction and clustering are

given in Section 6.1.

Finally, different from common approach of using histograms of primitives,

we employ histograms of substucture instances (in Subdue case) and transitions

(in normalized cuts case). Classic histograms that count the frequency of oc-

currence of objects/regions within a window ignore their spatial arrangements.

In our case, the spatial arrangement is taken into account because it is encoded

in subgraphs/transitions. Also encoding subgraphs/transitions in histograms re-

sults in more compact and more effective representations by significantly reducing

the dimensionality of the histograms and consequently the computational cost of

operations on them. More information on histogram construction and clustering

is presented in Section 6.2 and Section 6.3.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 summarizes the related

work present in literature. In Chapter 3, the details of segmentation and feature

extraction are given. Chapter 4 provides the description of the proposed spatial

co-occurrence model. It also presents the details of probability density estimation.

Next, Chapter 5 discusses the mode discovery in spatial co-occurrence space and

postprosessing steps that aim elimination of redundant modes. In Chapter 6,

we explain how we construct and cluster the graph to discover subgraphs that

correspond to compound structures. We describe the used data set and provide

experimental results in Chapter 7. Finally, Chapter 8 summarizes the work and

discusses further research directions.



Chapter 2

Literature Review

In comparison to single object detection (such as buildings, roads, etc.), the

studies that aim to detect compound objects are not encountered frequently in

literature. Most of the state-of-the-art techniques aim the detection of compound

structures of predefined types. The most common application is the detection and

classification of built-up areas. The identification of precise location of built-up

areas and assessment of settlement features is important for territorial planning

and human security and safety decision process. Most of the methods proposed

for detection or classification of built-up areas rely on particular characteristics

of primitives that consitute them, namely buildings. For example, Stasolla and

Gamba [27] proposed a procedure for extraction of human settlements from high-

resolution synthetic aperture radar (SAR) images. They suggested that built-up

areas can be considered as agglomerates of high intensity values since buildings

usually produce bright responses in SAR images. They employed spatial indexes

and mathematical morphology for detection of settlement’s borders. Unsalan

and Boyer [32] suggested constructing a graph where photometric straight line

segments extracted from grayscale images are assigned to vertices and their spatial

relationships are encoded by edges. They introduced a set of measures based on

various properties of the graph and used these measures for classification of scenes

as rural, residential and urban. This method relies on the fact that impact of

human activity causes emergence of straight and smoothly curved contours and
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their spatial density and regularity increases with increasing development.

Dogrusoz and Aksoy performed classification of building groups as organized

and unorganized by using both statistical [2] and structural [11] texture models

by first detecting the buildings. In [2], they used buildings as textural primitives

and employed co-occurrence-based spatial domain features and Fourier spectrum-

based frequency domain features to model repetiveness and periodicity. In their

later work [11], they constructed a graph whose nodes correspond to buildings

and edges encode neighborhood information obtained through Voronoi tessela-

tion. Then the graph was clustered by thresholding its minimum spanning tree

and the resulting clusters were classified as regular or irregular according to the

distributions of angles between neighboring nodes.

Apart from detection of built-up areas, several attemps have been made for

detection of vineyards and orchards. Generally the proposed methods rely on

the spatial arrangement of these structures. For example, the study presented in

[34], employed Fourier transform based analysis for vineyard identification and

characterization of previuosly delimited plots in 0.25 m spatial resolution images.

Warner and Steinmaus [33] employed the spatial classification for identification of

orchards and vineyards. Autocorrelation was calculated for the cardinal directions

producing four one-dimensional autocorrelograms spaced 45◦ increments. The

classification was performed by analyzing each of the four autocorrelograms for

each pixel. One other example is the recent study by Delenne et al. [9] that

compared two different approaches for vineyard detection. The first approach is

based on directional variations of contrast feature calculated from co-occurrence

matrices. The second approach is based on a local Fourier transform.

It is important to emphasize the frequent exploitation of texture models for

the detection of compound structures [27, 11, 17, 22, 33, 34]. Similarly, the study

illustrated in [5] performs the detection of harbors and golf courses by employ-

ing textural information. It learns the texture-motif model that corresponds to

spatially recurrent patterns of image primitives for each compound object from

a set of training examples and uses the learnt model for object detection. Gabor

filters at different scales and orientations were used to extract features from the
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neighborhood of each pixel and Gaussian mixture-based clustering of pixels was

employed to identify texture elements. Histograms of texture elements within a

sub-window were used for detection of harbors and golf courses.

Multi-resolution analysis can change the amount of details in an image and

may enable application of traditional texture models, for example, co-occurrence

matrices with fixed displacement vectors and fixed window sizes. This can be

useful for detection of compound structures of predefined types for which these

displacement vectors can be defined a priori. However, the application of such

methods is not straightforward for compound structures of different types because

they contain different levels of detail that can emerge in different resolutions. As

an example for the detection of specific compound structures in a particular res-

olution, the method introduced in [17] employs texture measurements to classify

built areas according to their density into three categories: high, medium and

sparse, in low resolution (10 meter) SPOT panchromatic remote sensing images.

The authors developed three algorithms based on occurrence frequency and co-

occurrence matrices. According to the output of the algorithms, built areas were

classified by using supervised classification. Similarly, the method introduced in

[22] performed the detection of built-up areas from satellite images with resolution

approaching the size of buildings. It stated the assumption that the textural con-

trast is high in all directions within the built-up areas. The proposed procedure

was based on fuzzy rule-based composition of anisotropic textural co-occurrence

measures derived from satellite data by using gray-level co-occurrence matrix

constructed for different distances and directions.

There is also a recent study [14] that uses the same assumption that the

compound objects consist of strongly related primitives, as in this thesis. It aims

to provide multiscale segmentation maps for remote sensing images by modeling

transition frequency using Markov chains. Based on the initial segmentation, it

finds the initial classes by first clustering primitives using color information and

then using spatial information. These classes take on the role of states in the

Markov chains. The image is scaned pixelwise along a given direction and the

classes encountered along the path are encoded in Markov chain. During class

merging procedure, the strongly interacting classes are merged first. Since this
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approach is strongly dependent on the length of boundaries between the regions,

in their later work [23] the authors ehnance their model by considering the spatial

distribution similarity of interacting regions besides the degree of their contact.

Note that this method is dependent on preliminary clustering of primitives and

the errors at this step strongly affect further analysis.



Chapter 3

Segmentation and Feature

Extraction

First step in the proposed methodology is to perform segmentation to partition

the image into regions and represent each region by its spectral and scale features.

Details of image segmentation and feature extraction are discussed below.

3.1 Image Segmentation

Image segmentation is the first step in our study and it aims to partition the

image into regions that have relatively uniform spectral content. The choice of

the segmentation algorithm is important because the ensuing region-based anal-

ysis rely on the quality of the segmentation output. We selected the Recursive

Hierarchical Segmentation (RHSEG) algorithm [29], because of high spatial fi-

delity of resulting segmentations and automatic production of hierarchical set of

segmentations.

RHSEG is a computationally efficient recursive approximation of previously

developed HSEG hierarchical image segmentation algorithm [28]. HSEG is a com-

bination of spectral clustering and Hierarchical Step-Wise Optimization (HSWO).
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HSWO is a form of region growing segmentation where each iteration aims to find

best segmentation containing one region less than current segmentation [3, 31].

In contrast to HSWO, HSEG alternates region-growing iterations with spectral-

clustering iterations. The logic behind this is that spatially adjacent regions

merge during region growing iterations while non-spatially adjacent regions are

merged by spectral clustering iterations. The addition of spectral clustering allows

the produced segmentations to capture the spatial detail of images with greater

fidelity and describe images in terms of region classes. Here, region classes are

groups of spatially disjoint region objects and region objects are areas of spatially

connected image pixels that correspond to image primitives.

Different priorities can be given to region growing (merges of spatially adjacent

regions) and spectral clustering (merges of spatially non-adjacent regions). It can

be controlled through the input parameter Swght. This parameter varies from 0.0

to 1.0 and has the following effect according to its value:

• Swght = 0.0, spatially non-adjacent region merges are not allowed,

• 0.0 < Swght < 1.0, spatially adjacent merges are given priority over spatially

non-adjacent merges by a factor of 1.0/Swght,

• Swght = 1.0, merges between spatially adjacent and spatially non-adjacent

regions are given equal priority.

The advantage of combining region growing with spectral clustering can be

demonstrated by comparing an image segmentation result from RHSEG with a

result produced by HSWO. Figure 3.1 shows a 256 × 256 portion of an Ikonos

image in true color, the region mean image from the RHSEG result using Swght

= 0.25, and the region mean image from the HSWO results. RHSEG and HSWO

were both run until the region merging threshold of 10.0 was reached [30].

The output of RHSEG consists of the region class labels map at the finest

level of segmentation detail (hierarchical level 0) and the region classes file that

contains selected information about each region class at each hierarchical level.

This file includes the region merges list feature that consists of the re-numberings
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(a) (b) (c)

Figure 3.1: (a) A 256x256 portion of an Ikonos image in true color. (b) The
region mean image from an RHSEG segmentation with Swght = 0.25. (c) The
region mean image from an HSWO segmentation.

of the region class labels map required to obtain the region class labels map for

the second most detailed level (hierarchical level 1) through the coarsest (last)

level of the segmentation hierarchy from the class label map. By examining this

file, the segmentation at a desired hierarchy level can be obtained. Even though

the whole hierarchy can be useful for object detection [1], it is possible to examine

how the regions change at each level and choose the level of detail at which the

particular regions are delineated. Figure 3.2 presents an example of segmentation

detail varying with the levels in the hierarchy.

3.2 Feature Extraction

After the segmentation is performed, the image can be considered as a collection

of regions. We want to represent each region in terms of a set of features that

represent its content. These features must be able to adequately describe the re-

gion and capture the similarity between regions of the same type and dissimilarity

between regions of different types. We choose to employ spectral and region size

information for representing the regions.

In this case, spectral features are the red (r), green (g) and blue (b) channels

of the image. Since a region generally comprises of a number of pixels, in order to
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(a) Original image in true color (b) scale-1 (64 region classes, 954730
region objects)

(c) scale-4 (30 region classes, 701464
region objects)

(d) scale-6 (15 region classes, 425006
region objects)

(e) scale-8 (9 region classes, 266585 re-
gion objects)

(f) scale-9 (5 region classes, 125125 re-
gion objects)

Figure 3.2: Visual bands of an Ikonos image of Antalya with 4 m spatial reso-
lution, and the corresponding RHSEG results at different levels in the hierarchy.
Default parameter values of RHSEG are used as explained in [21].
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(a) Sample size value distribution
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(b) Sample size value distribution after
normalization

Figure 3.3: Region size normalization with elimination of extreme values by clip-
ping at 1 percent.

extract spectral information we take the arithmetical average of all pixel values

belonging to the given region for each channel.

However, color information alone is not always enough to discriminate between

different region types. Hence, it is reasonable to use the region size information

along with spectral features. Size of the region corresponds to the number of

pixels associated with it.

Since spectral and size feature values have different ranges, feature normaliza-

tion must be performed in order to equalize their ranges. Feature normalization

is required to make feature components have similar effect during region compar-

ison. To achieve this, each feature component is normalized to the [0,1] range by

using linear scaling to unit range as

x̃ =
x − l

u − l
, (3.1)

where l and u are the lower and upper bound for a feature component x and x̃ is

the normalized value.

In case of spectral features, the lower and upper bounds are well defined since

values for image channels have fixed ranges. However, there are no constraints for

the size features. For example, there are some extremely high values in sample

size value distribution illustrated in Figure 3.3(a). Obviously, the largest region
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size is not a good candidate for the upper bound, since the presence of a few

regions that have very large sizes relative to other regions can drastically affect the

normalization. In order to make the normalization more adequate, we eliminate

extreme values by clipping the tail of the distribution. To define the clipping

location, a certain percantage is set for the number of values to be excluded. The

result of normalization after extreme value elimination is shown in Figure 3.3(b).

After the spectral and size features are extracted and normalized, each region

Ri can be expressed by its feature vector yi = (ri, gi, bi, si).



Chapter 4

Spatial Co-occurrence Model

The detection of compound structures can be posed as a generalized texture

problem. Hence, one way for detection of compound structures is to employ

traditional texture models [4, 10, 17]. Generally, texture models concern features

that are related to periodicity, directionality or randomness. They include the co-

occurrence matrix [15], Fourier transform, and the autocorrelation function [19].

For example, co-occurrence matrices computed at different inter-pixel distances

and at particular orientation can be used to detect coarseness, directionality,

and periodicity at a given orientation [36, 26, 10]. However, this model requires

the selection of specific scale and orientation which are not stable for compound

structures. Nonetheless, we can assume that compound structures consist of

image primitives that are strongly related to each other.

In this work, we model the region relationships using the transition frequencies

between neighboring regions in the image by assuming that the region objects that

appear together frequently in the image can be considered as strongly related.

One way to calculate the inter-region transition frequency is by determining the

types of the regions in a transition and by counting the transitions involving

the same types of region pairs. For example, RHSEG assigns a class label to

each region and these labels can be used for further analysis as in [30], but

they are only based on spectral properties of pixels which are generally noisy in

high resolution. The determination of region type is a challenging classification
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problem, and errors at this step will result in misleading transition types. To avoid

classification and its drawbacks, we propose a spatial co-occurrence model that

enables transition frequency calculation without preceding transition or region

type assignment. This model uses the multi-dimensional space where each point

corresponds to an inter-region transition and enables the incorporation of region

transition frequencies together with region features. This space is modeled by

a non-parametric probability density distribution so that the probability value

for each transition point corresponds to the frequency of its occurrence in the

image. The details of spatial co-occurrence space construction and probability

estimation are discussed below.

4.1 Spatial Co-occurrence Space Construction

Spatial co-occurrence space construction requires the definition for representation

of inter-region transition. We assume that a transition can be fully described

by a region pair between which it occurs. Each transition is defined by the

features of the corresponding regions so that their contents can be incorporated

in the model. In an image with NR regions Ri, i = 1, . . . , NR, the transition Tij

involving the regions Ri and Rj is represented by the concatenation of feature

vectors of the two regions as yij = (yi,yj). Given the region feature vectors with

4 components, the feature vector for a transition corresponds to a point in the

8-dimensional spatial co-occurrence space. For simplicity, we refer to these points

as xk ∈ R
d, k = 1, . . . , NT where d = 8 and NT is the number of transitions.

To construct the spatial co-occurrence space, the transitions between each

pair of neighboring regions are found and the corresponding feature vectors are

extracted. Then, each transition is mapped to a point in the multi-dimensional

space. Algorithm 1 describes the details of this procedure.

We assume that the transitions that involve two similar region pairs fall close

to each other in the spatial co-occurrence space because regions with similar

spectral content and sizes are expected to be similar in terms of their features.
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Algorithm 1 Constructing the spatial co-occurrence space

Regions = {R1, R2, . . . , RNR
}

Adjacent = {}
Transitions = {}
for each R in Regions do

Adjacent = findAdjacentNeighbors(R)
for each Ra in Adjacent do

T = [R, Ra]
x = [y,ya]
Add T to Transitions
Add point y to spatial co-occurrence space

end for

end for

Consequently, the transitions that occur frequently cause the accumulation of

points in the space. The significance of a given transition can be determined

according to its position relative to these dense regions (see Section 4.2 for details).

While similar transitions are pooled together to form dense clusters, seldom

transitions are located sparsely. This model provides tolerance to small variations

and noise in the region features. Furthermore, it can be easily extended with

additional region features.

To be able to provide visual example of spatial co-occurrence space, we use a

simulated segmentation result shown in Figure 4.1, which was used by [30]. This

simulated segmentation combines idealized segmentations of a residential area

(most of the lower left quadrant), an apartment complex (most of the upper left

quadrant), an industrial park (the upper right quadrant) and recreational parks

(inserted in the apartment complex and residential quadrants) with a section

of an actual segmentation of SAR data (lower right quadrant). This segmenta-

tion comprises 1439 regions and 3222 inter-region transitions, so the constructed

spatial co-occurrence space contains 3222 points.

To get the general idea about the spatial co-occurrence space, we apply the

Principal Component Analysis (PCA) [12] to reduce the space dimensionality.

Then the space is visualized (see Figure 4.2(a)) by using the first two principal

components. Although the illustrated space is an approximation to an actual
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Figure 4.1: Simulated image segmentation (see text).

space, the accumulations of points can be observed. Used segmentation contains

regions of exactly same color and size, therefore multiple transitions map to ex-

actly same point in space. These types of accumulations can be better seen in

Figure 4.2(b), where the 2-dimensional histogram of space points is illustrated.

Note that the space is symmetrical due to the duality of transitions (transition

from Ri to Rj implies transition from Rj to Ri).

4.2 Transition Probability Estimation

Once the spatial co-occurrence space is constructed, we aim to investigate the

significance of each transition. Recall our assumption that region objects that

appear together frequently in the image can be considered as strongly related,
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Figure 4.2: Visualization of spatial co-occurrence space constructed by using
simulated image segmentation. (a) Plot of the space by projecting the data onto
the first two principal components obtained by applying PCA. (b) 2-dimensional
histogram of points in (a).

so the most recurrent transitions are the most important ones. Also recall that

similar transitions that occur frequently cause the accumulation of points in the

space. The significance of a particular transition can be determined according to

its location relative to the dense areas in the spatial co-occurrence space. Namely,

we can assign a particular weight to each transition by measuring the likelihood of

the corresponding point in the space. We model the spatial co-occurrence space

by a Parzen window-based non-parametric probability distribution, and the local

maxima (modes) found from the probability density function correspond to the

accumulations of points in the space. Given NT data points xk, k = 1, . . . , NT in

d-dimensional space, the density estimate at point x can be written as

p(x) =
1

NT

NT
∑

k=1

KH(x − xk), (4.1)

where K(x) is a kernel window function and H is a symmetric positive definite

d × d matrix representing the smoothing parameter (also called the bandwidth

matrix). Assuming a Gaussian kernel with a smoothing parameter H = σ2I, the

expression (4.1) yields

p(x) =
1

NT

NT
∑

k=1

1

(2π)d/2|H|1/2
e−

1

2
(x−xk)T H−1(x−xk). (4.2)
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The complexity of this procedure can be decreased by using spatial data struc-

tures.

The points that fall within dense regions in the space would have more neigh-

bours to contribute that results in higher probability values. Points that have

high probabilities and constitute these dense regions stand for the most frequently

occurring and hence the most important transitions.

The choice of the bandwidth matrix is critical because it strongly affects the

smoothness of the resulting density. We want to optimize H so that it is a function

of both NT and the data itself. Different bandwidth selection algorithms were

proposed; however, the ones that have practical use generally aim to estimate

the smoothing parameter for univariate distributions. Therefore, we express the

bandwith matrix as H = σ2I, and reduce our problem to the estimation of σ.

To compute σ, we used a method based on leave-one out maximum likelihood

estimation [13]. In this method, σ is computed as the value that optimized the

product of the estimated densities at the sample points:

arg max
σ

L(σ) =

NT
∏

j=1

F̂j(x) (4.3)

in which

F̂j(x) =

NT
∑

i6=j

1

(σ
√

2π)m
exp

{

− ||x − xi||2
2σ2

}

. (4.4)

Note that the contribution of the sample itself during the estimation of the

density is omited. The optimization of (4.3) is always executed by finding the

zero crossing(s) of its first derivative.



Chapter 5

Mode Discovery in Spatial

Co-occurrence Space

At this step we want to delineate the clusters formed by the accumulations of

the transition points. This will group the transitions and assign each transition

a particular type. However, we do not want to obtain the exact clustering of

the whole space. Instead, we aim to locate the dense regions and find the points

that constitute these regions. We assume that the dense regions in this space

correspond to the most frequently occurring and hence the most significant and

important transitions. One way to discover these dense regions is to use a cluster-

ing algorithm such as EM-based mixture of Gaussians estimation, however, using

this kind of clustering requires the assumption about cluster number and cluster

shape that are not known a priori in our case. On the other hand, dense regions

can be found by locating the modes (local maxima) of the estimated density. One

possible method for locating these modes is the mean-shift algorithm [7]. This

approach is non-parametric and it is very suitable for our method because it is

also based on Parzen density estimation in a multi-dimensional space (similar to

the spatial co-occurrence space proposed in Chapter 4).

We apply the mean-shift procedure to discover the modes in the previously

constructed spatial co-occurrence space. Generally, the number of modes found

25
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mode discovery using mean−shift algorithm

mode elimination based on probability value

mode merging

mode elimination based on symmetry

Spatial co−occurrence space

N   modesM

n modes

n’ modes

n’’ modes

Figure 5.1: Overview of mode discovery and postprocessing steps.

exceeds the actual number of modes due to the drawbacks of the mean-shift algo-

rithm and the nature of spatial co-occurrence space. To overcome this problem,

some of the modes are eliminated based on multiple criteria. Mode discovery

and postprocessing steps are summarized in Figure 5.1 and explained in details

in succeeding subsections.

5.1 Mode Discovery

Given NT data points xk ∈ R
d, k = 1, . . . , NT , we want to find the location of the

local maxima in the probability distribution fitted to the space. Starting from a

randomly selected set of points, the algorithm computes the mean-shift vector at

each point x as

m(x) =

∑NT

k=1 xke−
1

2
D2(x,xk ,H)

∑NT

k=1 e−
1

2
D2(x,xk ,H)

− x (5.1)
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using the Parzen density gradient estimate at that point, and moves along this

vector by iterating until the difference between two successive means is less than

a threshold or the number of iterations reaches a maximum value. The points at

which the algorithm converges are considered as the candidate modes. In (5.1),

D2(x,xk,H) = (x − xk)TH−1(x − xk) (5.2)

is the Mahalanobis distance from x to xk and H is the symmetric positive definite

dxd bandwidth matrix discussed in Section 4.2.

Ideally, the algorithm must be started from every point in the space to capture

all modes. This can also provide implicit assignment to clusters if each point is

assigned to a cluster corresponding to a mode it converged. However, running

the algorithm for each point is computationally very expensive. For this reason

it is more feasible to choose a sufficient number of points starting randomly so

that the whole space is covered.

After the mean-shift algorithm is applied for sufficient number of observations,

the points m1,m2, . . . ,mn of convergence correspond to the candidate modes.

Running the mean-shift algorithm for the example presented in Figure 4.1 starting

from 2000 different points results in n = 375 modes. The modes are shown in red

in Figure 5.2. As expected, the modes are generally located at the peaks of the

density. However, note that generally the number of candidate modes exceeds the

actual number of modes due to the drawbacks of the algorithm and the nature of

spatial co-occurrence space. Hence, postprocessing is required to eliminate some

of the candidates.

5.2 Mode Merging and Elimination

The convergence of the mean-shift algorithm is affected by the termination thresh-

old and the number of maximum iterations allowed. Due to local details in the

spatial co-occurrence space, starting at points that actually belong to the same

mode may result in convergence at slightly different locations. One possible solu-

tion is to decrease the terminating threshold and increase the maximum number



CHAPTER 5. MODE DISCOVERY IN SPATIAL CO-OCCURRENCE SPACE28

−1.5
−1

−0.5
0

0.5
1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5
0

100

200

300

400

500

600

700

Figure 5.2: Original candidate modes discovered from the spatial co-occurrence
space by using the mean-shift algorithm. The space is constructed by using the
simulated image segmentation shown in Figure 4.1.

of iterations. However, while still this does not guarantee the convergence at

exactly same point, it increases the computation time significantly. To eliminate

such noisy convergence, we merge the candidate modes at a distance less than

the bandwidth. We assume that these points correspond to the same mode. To

merge the modes, hierarchical clustering is applied. We calculate the dissimilarity

between the points by using (5.2), therefore the Mahalanobis distance between

mi and mj that are closer than the bandwidth must not exceed 1. This can be

derived by using (5.2). Let mi and mj be two candidate modes in the spatial

co-occurrence space, so that mi = (mi1, . . . , mid)
T and mj = (mj1, . . . , mjd)

T .

The Mahalanobis distance between these two points can be expressed as

D2(mi,mj,H) = (mi −mj)
TH−1(mi −mj)

=
(mi1 − mj1)

2 + . . . + (mid − mjd)2

σ2
.

(5.3)

Since the employed bandwidth matrix is in the form H = σ2I, it can be said

that all points within the hypersphere with radius σ centered at point mj can be

merged with point mj. The following inequality is true for every point mi within
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the hypersphere

(mi1 − mj1)
2 + . . . + (mid − mjd)

2 ≤ σ2, (5.4)

which can be rewritten as

(mi1 − mj1)
2 + . . . + (mid − mjd)

2

σ2
≤ 1. (5.5)

Combining the above equations yields

(mi1 − mj1)
2 + . . . + (mid − mjd)

2

σ2
= D2(mi,mj,H) ≤ 1. (5.6)

It can be observed that when the Mahalanobis distance between two points

is less than or equal to 1, these points lie within the same bandwidth.

We use hierarchical clustering to find groups of points that are closer to each

other than the bandwidth. When the hierarchical clustering tree is cut at the

level corresponding to a Mahalanobis distance of 1, the points within the kernel

bandwidth fall into the same cluster. To control cluster formation involving more

than two points, we employ the complete linkage algorithm. This ensures that

all points in a cluster lie within the bandwidth. Namely, for any cluster C, the

following inequality holds:

max{D2(mi,mj,H)|∀mi,mj ∈ C} ≤ 1. (5.7)

After the clusters are obtained, one mode per cluster is selected by choosing

the point that corresponds to the highest density calculated from (4.2). This

results in n′ modes (n′ < n). Algorithm 2 describes the mode merging procedure.

The resulting set of modes provide an implicit clustering of the spatial co-

occurrence space as any point in this space can be assigned to its closest mode.

However, some clusters are redundant and some correspond to very sparse regions

rather than accumulation of points. These clusters can be eliminated because we

seek for the clusters that correspond to the most significant transitions. Note that

we want to perform the elimination on cluster level rather than on mode level

because applying clustering after eliminating the modes can result in improper
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Algorithm 2 Mode merging

CandidateModes = {m1, m2, . . . , mn}
Distance = {}
ChosenModes = {}
Probs = {}
for each mi in CandidateModes do

for each mj in CandidateModes do

Calculate Distance[i][j] using (5.2)
end for

end for

hct = HierarchicalClustering(Distance).
Cut hct at level where distance is equal to 1 to obtain a clustering set Clusters
= {C1, C2, . . . , Cn′}
for each mi in CandidateModes do

Calculate Probs(i) using (4.2)
end for

for each C in Clusters do

Choose m, m ∈ C with highest value in Probs
Add m to ChosenModes as representative for C

end for

Algorithm 3 Mode elimination based on symmetry

CandidateModes = {m1,m2, . . . ,mn′}, k = 1, . . . , n′

Define Labels as an array of zeros of size n′.
ChosenModes = {}
l = 1;
for each mi in CandidateModes do

if Labels[i] == 0 then

Labels[i] = l
l = l + 1

end if

for each mj in CandidateModes do

Calculate dist1 as a distance between mi(1:d/2) and mj(d/2+1:d) using (5.2)
Calculate dist2 as a distance between mi(d/2+1:d) and mj(1:d/2) using (5.2)
if dist1 ≤ 1 and dist2 ≤ 1 then

Labels[j] = Labels[i]
end if

end for

end for

ChosenInd = unique(Labels)
ChoosenModes = {mi,mi ∈ CandidateModes, i ∈ ChosenInd }
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cluster formation. Namely, transitions of different type can be assigned to the

same cluster and noisy transitions can affect cluster integrity.

Redundant clusters are also present due to to the symmetric nature of the co-

occurrence space. The symmetrical clusters correspond to the same transitions

in terms of involved regions. The cluster symmetry information can be captured

by examining the modes. Since Tij is equivalent to transition Tji and any mode

mk can be represented as

mk = (mk(1:d/2)mk(d/2+1:d)), (5.8)

we compare the corresponding parts of the feature vectors of the candidate modes,

and eliminate one of the modes corresponding to symmetric transitions. During

comparison we follow the logic that is similar to that applied while mode merg-

ing. The corresponding parts of feature vectors are assumed to represent the

same regions if the Mahalanobis distance between them is not greater than 1.

This reduces the number of modes to n′′, n′′ < n′. Algorithm 3 describes the

elimination procedure. Figure 5.3 presents the modes after elimination of the

redundant symmetric modes.

Finally, the elimination of clusters that correspond to single points or sparse

regions is important because these clusters generally correspond to noise. Simi-

larly, these clusters can be discovered by examining the modes. The probability

value of each mode is calculated by using the Parzen window-based estimator

described by (4.1). Modes that have probability less than a predefined thresh-

old and the corresponding clusters are eliminated. The modes m1,m2, . . . ,mNM

that are left at this step will be employed in further analysis (Figure 5.4). The

resulting set of modes provide an implicit clustering of the spatial co-occurrence

space as any point in this space can be assigned to its closest mode.

Selected NM modes can be examined in terms of transitions assigned to them.

Figure 5.5 presents 20 modes with the highest probability values discovered from

the spatial co-occurrence space constructed by using the simulated segmenta-

tion result shown in Figure 4.1. It can be observed that mostly the discovered

transitions are the most frequent and most important transitions that character-

ize particular compound structures. Notice that some transitions that involve
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Figure 5.3: Candidate modes after the elimination based on mode symmetry.
One of the modes from each pair of symmetric modes is eliminated.
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Figure 5.4: Finalized modes after all the postprocessing steps.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 5.5: Most significant transitions discovered from the spatial co-occurrence
space constructed by using the simulated segmentation result shown in Figure 4.1.
Regions involved in transitions that were assigned to a given mode are shown in
color.
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regions with similar spectral content (for example, transitions on Figure 5.5(c)

and Figure 5.5(g), Figure 5.5(d) and Figure 5.5(m)) are discriminated because

of the addition of size features. There are also some transitions that correspond

to noise, for example transitions on Figure 5.5(j) and Figure 5.5(n). They are

selected as significant because they outnumber some of the important transitions.

In real images, however, the frequency of noise transitions is very low relative to

important transitions.



Chapter 6

Detection of Compound

Structures

After the spatial co-occurrence space is constructed and the required information

is extracted from it, we want to translate image segmentation into a relational

graph by using this information. Details of graph construction and clustering are

described below.

6.1 Graph Construction

At this step, we aim translation of segmentation into a relational graph struc-

ture. In the constructed graph, nodes represent the image regions and edges

correspond to the relationship degree between these regions. It is common to use

an unweighted graph and let the edges represent only the spatial adjacency [30].

However, by using this approach we may lose the detailed contextual informa-

tion and the results may also suffer from the errors in segmentation (especially

small details in urban areas in very high-resolution imagery such as Ikonos or

Quickbird). An alternative is to set a fixed threshold for distance and connect

the regions that are closer than the threshold with an edge. However, since this

35
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approach is scale dependent, it can often lead to the addition of unrelated neigh-

bors in some cases while still losing some important neighbor information in some

other cases. Moreover, the space proximity is not sufcient to thoroughly capture

the relationship information; therefore, our objective is to concentrate on the

proximity in the relationship as well.

The graph is constructed so that vertices represent regions and there is an edge

between vertices that correspond to adjacent regions. Namely, for each region Ri

there is a corresponding vertex Ri, and for each transition Tij there is an edge

connecting vertices Ri and Rj . To let the edges represent the relationship degree

rather than only region adjacency, we assign a weight wij that is calculated as

probability of transition corresponding to edge Tij by using (4.2).

By analizing the edge weights, the graph is clustered to find the subgraphs,

so that they are composed of vertices with corresponding edges that have high

weights modeling frequent spatial co-occurrence. Furthermore, since the rela-

tional graph encodes the full spatial information in the image, the subgraphs

also contain neighborhood information among multiple region objects. There-

fore, the subgraph nodes correspond to the region objects that occur together in

a high-level compound structure.

The final objective is to find compound structures that correspond to sub-

graphs of the complete scene graph. The subgraphs are discovered by using two

different procedures. These procedures are discussed below in details.

6.2 Detection of Compound Structures using

Subdue

In this work, we use a method that was introduced in [8] and was implemented in

the Subdue system for graph-based knowledge discovery. The input and output

of the system is a directed or an undirected graph with labeled vertices and edges,

where input is the original graph and output is the discovered pattern or learned
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concept. The study presented in [30] applies Subdue to a graph constructed by

using the information conveyed from the RHSEG segmentation output. Namely,

each node is labeled with the region class label of the corresponding region object

and the edges represent whether or not region objects are spatially adjacent. In

our case, the input to the system is an undirected graph with labeled edges. To

assign edge labels, we use NM modes found by using the procedure described in

Chapter 5. Given modes m1, m2, . . . , mNM
, the graph can be extended so that

it reflects the transition type information. Transitions that were assigned to the

same mode can be accepted as relations of the same type. Hence, transition type

can be assigned to each edge according to the cluster label (between 1 and NM).

The edges that correspond to transitions that do not belong to any of the NM

modes are removed from the graph. Furthermore, in the constructed graph, the

nodes are not labeled since we do no perform any classification of the regions

after segmentation, so the relationship information is fully reflected by the edges

and their labels.

Subdue searches for substructures (subgraphs) of the input graph that best

compress this graph. The compression of the graph by a subgraph is defined as

the replacement of this subgraph by a single node in the graph. The compression

ability of a subgraph during the search is computed by the minimum description

length heuristic [8]

Compression =
DL(S) + DL(G|S)

DL(G)
(6.1)

where S is the subgraph being evaluated, DL(S) is the description length of

S, DL(G|S) is the description length of the input graph G after it has been

compressed using S, and DL(G) is the description length of G. The description

length of a graph is computed in terms of the number of bits required to encode

that graph. The best subgraph is the one that minimizes (6.1).

The search is performed iteratively by compressing the graph with the best

subgraph found in each iteration. The output is a list of subgraphs (in terms

of nodes and edges they contain) that represent the discovered patterns together

with all occurrences of each subgraph in the input graph. Figure 6.1 presents 3
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Figure 6.1: Most significant substructures discovered by Subdue.

Figure 6.2: Most significant substructure instances.
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most significant substructures discovered by Subdue for the simulated segmenta-

tion result shown in Figure 4.1. All occurrences of these substructures are shown

in Figure 6.2.

It is important to emphasize that although in the simulated image the sub-

structures discovered by Subdue correspond to compound structures, it can not

always be so in real urban scenes. One reason for this is the fact that the com-

pound structures are highly detailed and generally comprised of thousands of

regions. Moreover, compound structures of the same type vary from one instance

to another. On the other hand, Subdue searches for subgraphs that have exactly

the same structure. This is possible only for small subgraphs that usually do

not cover the whole compound structure. When we change the settings of Sub-

due to allow a slight deviation between subgraphs by enabling inexact subgraph

matches, the run time of algorithm becomes extremely high and the algorithm

does not converge. Therefore, we look for the exact matches and the discov-

ered subgraph instances in complex urban scenes generally constitute parts of

compound structures rather than whole compound structure.

However, generally the subgraph instances occur frequently in certain struc-

tures but rarely in others. Therefore, parts of the image with similar distribution

of subgraph instances correspond to compound structures of the same type. To

identify these image parts, we use the approach similar to that introduced in

[16], where we used spatial relationship histograms to encode image content. In

this case, we use histograms for describing the spatial distribution of subgraph

instances. The square window centered at a pixel x can be represented by a

histogram h(x),

h(x) = [h1(x), h2(x), . . . , hNS
(x)], (6.2)

where hs(x) is the number of recurrences of subgraph S in the window. The

histogram is computed for each pixel of the image using the sliding windows,

where NS is the number of subgraphs. The constructed histograms are clustered

by using the k-means algorithm. The number of desired clusters in this case is

defined manually.
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Note that classic histograms that count the frequency of occurrence of ob-

jects/regions within the window ignore their spatial arrangement. In our case,

the spatial arrangement is taken into account because it is encoded in the sub-

graphs. Also encoding subgraph instances in histograms results in very compact

and very effective representations by significantly reducing the dimensionality

of the histograms and consequently the computational cost of manipulations on

them.

6.3 Detection of Compound Structures using

Normalized Cuts Algorithm

Recall that we construct a graph where vertices correspond to regions and edges

correspond to transitions between them, or in other words, encode the region

adjacency information. In addition, every edge Tij is assigned a weight wij that is

equivalent to transition probabilities and calculated by using (4.2). This extends

the graph so that it encodes not only the spatial adjacency of regions but also

their proximity in the relationship.

Also recall that our proposed idea for finding compound structures was based

on the assumption that compound structures consist of image primitives that

are strongly related to each other. Consequently, if we partition the graph into

K disjoint sets, so that the sum of the weights of the edges within the set is

maximized and the sum of the weights of the edges across the sets is minimized,

these sets will correspond to compound structures.

Given a weighted undirected graph G = {V, E, W}, where V are vertices, E

are edges and W is a symmetric nonnegative matrix representing the edge weights,

the partition of G into two subgraphs A and B can be obtained by removing the

edges connecting A and B, so that A ∪ B = V and A ∩ B = ∅. The degree of

dissimilarity between two subgraphs can be computed as the sum of weights of
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removed edges (also referred to as cut):

cut(A, B) =
∑

u∈A,v∈B

w(u, v). (6.3)

The normalized cut criterion [25] was introduced for the evaluation of the resulting

partition:

Ncut(A, B) =
cut(A, B)

assoc(A, V )
+

cut(A, B)

assoc(B, V )
, (6.4)

where

assoc(A, V ) =
∑

u∈A,t∈V

w(u, t), (6.5)

is the total connection from vertices of A to all vertices in the graph.

To generalize this bipartitioning-based normalized cuts criterion to multi-

class problems, Yu and Shi introduced the multiclass normalized cuts [35]. It

can be also referred to as simultanous K-way normalized cuts and denoted by

ΓK
V = {V1, . . . , Vk}. The goal is to maximize the K-way normalized associations

function:

knassoc(ΓK
V ) =

1

K

K
∑

l=1

linkratio(Vl, Vl), (6.6)

where

linkratio(A, A) =
assoc(A, A)

assoc(A, V )
. (6.7)

The exact maximization of (6.6) is NP-complete, so Yu and Shi [35] developed

an algorithm to find its discrete near-global optima. They first find the global

optima in the relaxed continuous domain as the top K eigenvectors of D− 1

2 WD− 1

2

subject to arbitrary orthogonal transforms. D is defined as a degree matrix

D = Diag(W1N), (6.8)

where Diag forms a diagonal matrix and 1N stands for 1 × N vector of all 1’s.

During the discretization step, they use singular value decomposition and non-

maximum suppression in an iterative procedure to obtain the discrete solution

closest to the continuous optima.
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We use the simultanous K-way normalized cuts algorithm to obtain a partition

{C1, . . . , CK} of graph G. Since the choice of K still remains an open problem,

we assign the best K experimentally by examining the resulting partitions.

After the subgraphs are finalized, we can cluster them according to the distri-

bution of transition types within each subgraph. Recall that the transition type

can be assigned according to the closest mode among the selected NM modes.

Each subgraph C can be represented by a histogram h(C)

h(C) = [h1(C), h2(C), . . . , hNM
(C)], (6.9)

where hi(C) is the number of transitions that were assigned to mode mi within

the subgraph C.

After the corresponding histogram is computed for every subgraph, these his-

tograms are clustered by using the k-means algorithm. The number of desired

clusters is defined experimentally according to the number of different compound

structure types present in the image.



Chapter 7

Experimental Results

In this chapter, we present the results of the experiments conducted for the meth-

ods proposed in this thesis.

7.1 Dataset

The experiments were performed by using the Ikonos image of Antalya, Turkey,

with 4 m spatial resolution and 3551 × 3128 pixel size. The image consists of 4

bands: red, green, blue and near-infrared. We use this image because its content

is diverse, including several types of compound structures such as dense and

sparse residenctial areas with large and small buildings and fields. The image is

presented in Figure 7.4(a).

7.2 Experiments with Subdue

In this section, we present the experiments conducted for substructure discovery

using the Subdue system. Due to the computational limitations of Subdue, we

had to reduce the dataset by using part of the original image, namely the 700×600

pixel size section containing multiple compound structures (Figure 7.1(a)). The

43
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(a) Original image in true color (b) Segmentation in false color (51558 region
objects)

Figure 7.1: Visual bands of an Ikonos image of Antalya with 4 m spatial resolution
and 700×600 pixel size, and the selected RHSEG result. Default parameter values
of RHSEG are used as explained in [21].

third segmentation scale (Figure 7.1(b)) was chosen by visual inspection among

the 11 scales produced by RHSEG. According to this segmentation scale, there

were 51,558 regions and 263,246 transitions present. This resulted in a spatial co-

occurrence space containing 263,246 points. By using these points, the bandwidth

parameter was estimated as σ = 0.0188.

The convergence threshold for the mean-shift algorithm was empirically set

to 10−6 and the maximum number of iterations allowed was 4,000. We ran the

algorithm 1,400 times starting at different sets of randomly selected points. This

resulted in 1,197 unique candidate modes. After mode merging and the elimina-

tion of the symmetric modes, the number of modes was reduced to 271.

95 modes were chosen as significant (NM = 95) by applying a threshold to

the corresponding probability values. The Subdue algorithm was applied to the

constructed graph, and the resulting substructures (subgraphs) were examined.

Some example substructures and the corresponding region groups are shown in

Figure 7.2. Even though a single substructure does not exclusively correspond

to a particular compound structure, we can observe that different substructures

constitute parts of different compound structures. For example, the substructure
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(a) (b)

(c) (d)

Figure 7.2: Example substructures obtained by graph analysis. The regions that
are involved in different substructure instances are shown in red in different sub-
figures.
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(a)

(b)

Figure 7.3: (a) An Ikonos image of Antalya, Turkey and (b) segmentation ob-
tained by clustering the substructure histograms of sliding image windows.
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instances in Figure 7.2(a) mostly constitute the parts of residential areas with

small buildings. Similarly, the instances in 7.2(b) mainly correspond to parts of

an industrial area and a residential area with large buildings, and the instances in

7.2(c) are contained within a forest. Substructure instances in 7.2(d) correspond

to roof tops of high buildings that were initially divided by segmentation.

To delineate the compound structures, we use the first 22 substructures discov-

ered by Subdue, so the constructed histograms contain 22 bins. The histograms

are calculated using 50×50 sliding windows with 5 pixels increments for computa-

tional efficiency. This resulted in 14,300 histograms. The result of clustering the

histograms by using k-means with k = 5 is presented in Figure 7.3(b). Observe

that compound structures of different types are assigned different labels and most

of their boundaries are detected accurately.

7.3 Detection of Compound Structure using

Normalized Cuts Algorithm

In this section, we present the experiments conducted for substructure discovery

using the normalized cuts algorithm. The segmentation is performed by using the

default parameters of RHSEG [21]. Among 11 levels in the produced hierarchy,

the 4th level was chosen for further analysis as the most suitable according to

the level of detail of regions. It is important to note that all 4 images bands were

used for segmentation and 3 bands (red, blue and green) were used for further

analysis. The original image and the corresponding segmentation is presented

in Figure 7.4. This segmentation level contained 30 region classes and 701,464

different region objects.

Color and size features were extracted from each region object. Size values

were normalized after clipping the 0.5 percent of extremely high values. After

that, the region transitions were identified and the spatial co-occurrence space

was constructed. Large number of regions (701,464) lead to a large number of

transitions (3,459,910). This resulted in a spatial co-occurrence space containing
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(a) Original image in true color

(b) RHSEG segmentation result in false color (30 region classes,
701464 region objects)

Figure 7.4: Visual bands of an Ikonos image of Antalya, Turkey, and the selected
RHSEG result. Default parameter values of RHSEG are used as explained in
[21].
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3,459,910 points. To reduce the computational compexity, we used only half

of this space choosing points by random sampling. Therefore, the employed

spatial co-occurrence space consisted of 1,729,955 points. By using these data,

the bandwidth parameter was estimated as σ = 0.017.

The convergence threshold for mean-shift algorithm was empirically set to

2.2204×10−16 and the maximum number of iterations allowed was 4,000. We ran

the algorithm 1,100 times starting at different sets of randomly selected points.

This resulted in 1,098 unique candidate modes. After mode merging and elimi-

nation based on symmetry, the number of modes was reduced to 109.

Ideally, our method requires that the graph is contructed by using the whole

scene. However, the employed image contains very large number of regions, so

manipulations on this graph have very high computational cost. Therefore, we

divided the image into overlapping tiles of size 450 × 400. This resulted in 100

tiles. The graph is constructed for each tile and the normalized cuts algorithm is

applied to each graph. We used the implementation of normalized cuts available

online [24]. Since each tile has a different content, we had to determine different

number of clusters (K) for each graph. Example segmentation can be shown in

Figure 7.5. Note that with larger K, the compound structures of different types

are fully separated. Even though sometimes the desired compound structures can

be divided, they can be merged during further analysis.

After the normalized cuts clustering is applied for each image tile, we obtain

the high-level segmentation of the whole image by merging the tiles. However, the

segmentation of overlapping parts of two adjacent tiles may not always match.

This can be better explained by an example shown in Figure 7.6. In this figure,

the overlapping parts are bordered by white lines. Observe that the segmentation

of these parts does not match exactly and there is no exact solution for merging

the tiles. Hence, for simplicity, we decided to concatenate the tiles without merg-

ing their segmentations and let the substructures with similar content merge as

a result of further analysis. The resulting segmentation of the whole image is

presented in Figure 7.6. This image contains 616 substructures. These substruc-

tures can further be grouped and hence merged by clustering the histograms of
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(a) (b)

(c) (d)

Figure 7.5: (a) Example image tile with (b) the corresponding RHSEG segmen-
tation and segmentation results obtained by the normalized cuts algorithm with
(c) K = 4 (d) K = 13.
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(a) (b)

Figure 7.6: Images with overlapping parts with non-matching segmentation. The
overlapping parts are shown by white lines.

modes.

Two parameters that can effect the final results are the number of modes (NM)

used in histogram construction and the number of clusters (k) given as input to

k-means algorithm. The number of modes to be used and hence the dimension-

ality of the histograms can be chosen according to the probability of the modes

calculated by using (4.2). The 109 finalized modes were sorted according their

probability value. Figure 7.8 presents the assigned probability values. Observe

that the probability values are very high for the first 5 modes.

As a next step, we want to examine the top 6 modes in terms of transitions

assigned to them. Figure 7.9 presents the whole scene where regions involved

in transitions that were assigned to a given node are shown in red. Observe

that transitions in Figure 7.9(a) correspond to small vegetation primitives, and

transitions assigned to second, fourth and sixth modes correspond to larger vege-

tation primitives. Transitions on Figure 7.9(e) captures the residential areas and

transitions on Figure 7.9(c) covers the sea part. Note that transitions on Figure

7.9(b) and Figure 7.9(f) also contain some water transitions. We assume that

this errors can emerge during the step there we assign transitions to the closest

mode in the space in cases when the closest mode is not close enough to have the
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Figure 7.7: The partition of the whole scene obtained by merging the tiles.
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Figure 7.8: Probability values for each mode calculated by using (4.2).
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same features.

To be able to evaluate the performance of the proposed method, we manually

extracted masks that show the boundaries of dense residential areas with large

buildings, dense residential areas with small buildings, sparse residential areas

and fields. These masks are shown in Figure 7.10 in different color and details

are given in Table 7.1.

Table 7.1: Number of labeled pixels for different area types.

Area Type Number of Labeled Pixels

dense residential areas
1108564

with large buildings
dense residential areas

257927
with small buildings
sparse residential areas 720376
fields 766243

For a given number of modes NM and a given number of clusters k, we want

to evaluate the resulting clustering set according to the ground truth. To choose

the cluster that is the best candidate for the particular groundtruth we employ

one-to-one matching. We construct a bipartite graph, where one set of nodes

corresponds to obtained cluster labels, and the other node set corresponds to

ground truth labels. The match between each two nodes is weighted by the F1

score that can be defined as

F1 =
2 × precision × recall

precision + recall
, (7.1)

where

precision =
# of correctly detected pixels

# of all detected pixels
, (7.2)

and

recall =
# of correctly detected pixels

# of all pixels in the groundtruth
. (7.3)

The best one-to-one matching configuration between nodes of two sets is found

by using Munkres Assignment Algorithm (also known as the Hungarian Algo-

rithm) [20].
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(a) (b)

(c) (d)

(e) (f)

Figure 7.9: Transition assignments for top 6 modes. The regions that are involved
in transitions assigned to different modes are shown in red in different subfigures.
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(a)

(b)

Figure 7.10: (a) Visual bands of an Ikonos image of Antalya, Turkey and (b) the
ground truth extracted from this image. The dense residential areas with large
buildings are shown in dark blue, dense residential areas with small buildings are
shown in light blue, sparse residential areas are shown in yellow and fields in red.
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Figure 7.11: (a) Plot of k versus average F1 scores, precision and recall and (b)
NM versus average F1 scores, precision and recall.

We built 20 sets of histogram for different mode numbers, namely from 1 mode

to 20 modes and obtain partition of each set by using different k values (from 4

to 20). Since the cluster set created by k-means can change with every run of

the algorithm, we perform clustering of each histogram set 10 times and choose

the one with the highest average F1 score. Figure 7.11(a) shows how average

precision, recall and F1 score changes with respect to k. Average measures are

computed by using the clustering results of all 20 histogram sets for a given k.

Observe that as the value of k increases, the average precision increases while

avarage recall decreases. This behavior is caused by evaluation using one-to-one

matching. Here, k can be chosen as 12 for optimal precision and recall.

Next, we want to examine how the performance changes with the change of

number of modes. The plot of number of the modes used in histogram construc-

tion versus average precision, recall and F1 scores is presented in Figure 7.11(b).

Average measures are computed by using the clustering results for all used num-

bers of clusters for a given NM . It can be concluded that the performance does

not change significantly after NM ≥ 5.

The plots in Figure 7.12 show how precision, recall and F1 score changes with

different k according to the particular NM . Observe that the lowest performance

is for NM = 3, and in this case both precision and recall do not exceed 0.4 for all
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Figure 7.12: Plot of k versus F1 scores, precision and recall for (a) NM = 3, (b)
NM = 5, (c) NM = 10, (d) NM = 12.

ks.

Finally, we present some visual results for detection of compound structures.

Figures 7.13 - 7.16 illustrate the detection results for the plots given in Figure

7.12. In each case k that causes the highest performance is chosen.

Observe that in Figure 7.13 the delineation of compound structure is poor.

Also most of the areas are found to be dense residential areas with large buildings.

The results in Figure 7.14 and 7.15 are similar, as expected. Also note that most

of the dense residential areas with large buildings are delineated accurately. By

comparing these result with the result presented in Figure 7.16, we can observe

how precision increases while recall decreases with larger k.
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(a)

(b)

Figure 7.13: (a) The ground truth and (b) the result of compound structure
detection with NM = 3 and k = 10.
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(a)

(b)

Figure 7.14: (a) The ground truth and (b) the result of compound structure
detection with NM = 5 and k = 10.
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(a)

(b)

Figure 7.15: (a) The ground truth and (b) the result of compound structure
detection with NM = 10 and k = 11.
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(a)

(b)

Figure 7.16: (a) The ground truth and (b) the result of compound structure
detection with NM = 12 and k = 13.
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Throughout the experiments, we observed that the quality of the initial seg-

mentation strongly influences the effectiveness of the following graph analysis.

We also observed how the accurracy changes with different number of clusters

and different number of modes and noted that the differentiation between vari-

ous compound structures can be performed when number of used modes is greater

than 4.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we presented an unsupervised method toward discovering com-

pound image structures that were comprised of complex groups of simpler primi-

tive objects. We mentioned the importance of compound structures and discussed

that in contrast to primitive objects (buildings, roads, etc.), the compound struc-

tures were able to capture more of the image content and subsequently better

summarize the scene. We discussed the challenges of detection of compond struc-

tures and stated that the traditional segmentation and texture detection methods

were not able to handle the complexity of compound structures, so there was a

need for generic unsupervised method that can perform detection of compound

structures regardless of their types and without preceeding classification of prim-

itives. We suggested to focus on a general property of compound structures that

is shared by all the compound structure types: the stong coupling between primi-

tives. We assumed that the primitives that comprised compound structures were

strongly related to each other and the degree of this relationship was directly

proportional to their transition frequency. As a result, we developed a procedure

for transition frequency calculation without a preceeding transition or region type

assignment.
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The proposed algorithm consists of four main steps. The initial step is image

segmentation that produces image regions with homogeneous spectral content.

The next step is the construction of spatial co-occurrence space, where each point

corresponds to an inter-region transition. The importance of each transition was

calculated as likelihood of the corresponding point in the space. The forth step

is the identification of most significant relations which were discovered by using

the local maxima (modes) in the probability distribution of points in spatial co-

occurrence space. The last step is the translation of image segmentation into a

relational graph where vertices correspond to regions and edges correspond to

inter-region transitions with weights calculated as probability of the matching

transition, and discovery of compound structures as the subgraphs of this graph.

The substructures were discovered by using two different approaches. One of

them is the graph-based knowledge discovery system Subdue that searches for

repeating subgraphs within the graph. The other approach is clustering of the

graph by using normalized cuts algorithm to obtain subgraphs that consist of

regions that are strongly related to each other.

In experimental work, we evaluated the performances of compound structure

detection using Subdue and normalized cuts algorithm. Visual result provided for

evaluation of the approach using Subdue showed that when the exact match for

subgraphs is employed, the discovered substructures correspond to parts of com-

pound structures. We discussed the trade-off between exact and inexact matches

and used the histograms of subgraph instances to delineate the compound struc-

tures. We also evaluated the performance of compound structure detection using

normalized cuts algorithm. We observed how the accurracy changes with different

number of clusters and different number of modes and noted that the differen-

tiation between various compound structures can be performed when number of

used modes is greater than 4. We compared our results with the ground truth

classes and obtained high recall values. We concluded that our method is capable

of discriminating compound structures of different types successfully.
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8.2 Future Work

Throughout the experiments, we observed that the quality of the initial segmen-

tation strongly influences the effectiveness of the following graph analysis. There-

fore, we aim to improve the segmentation result so that the primitives are detected

in the most accurate way. Besides, we plan to employ additional features such as

shape of primitives and consequenlty extend the spatial co-occurrence space so

that it encodes more information. We believe that this will improve the perfor-

mance of detection of compound structures that generally consist of primitives

of particular shape, for example, residential areas and forests. We also plan to

try either different implementations of normalized cuts algorithm or other graph

clustering algorithms to avoid the division of image into tiles.
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