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ABSTRACT

A Performance Comparison of Polar Codes with

Convolutional Turbo Codes

Üstün Özgür

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Erdal Arıkan

November 2009

Polar codes introduced recently by Arıkan are the first low-complexity codes

achieving symmetric capacity for arbitrary binary-input discrete memoryless

channels (B-DMCs). Although being theoretically significant, their practical sig-

nificance is an issue that has not yet been fully explored. Previous studies have

compared polar codes with Reed-Muller codes, where it was found that polar

codes can outperform them. In this thesis, to investigate how polar codes per-

form against state-of-the-art forward error correction (FEC) codes used in prac-

tice, we implement a IEEE 802.16 based link-level Worldwide Interoperability

for Microwave Access (WiMAX) simulator which incorporates several WiMAX

FEC options, and polar codes. IEEE 802.16 standards family define standards

for current and next generation broadband wireless access, which will make high

data rate multimedia applications in mobile environments a reality. Next genera-

tion broadband access standard, pursued by the IEEE 802.16 Task Group m is a

work in progress, and requires even more sophisticated error correction schemes

so that higher throughput, better QOS, higher mobilities, wider ranges and lower

latencies are supported. We perform performance comparison simulations with
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the convolutional turbo codes (CTC) configurations defined in IEEE 802.16e to

see how much of a performance gap exists between polar codes and CTCs. The

main findings of the thesis are that, although the polar codes achieve capacity

for specific conditions, as expected, for the code lengths and channel conditions

we have simulated, the performance of them cannot compete with that of the

CTCs with equivalent rates and lengths. It remains a task to see whether po-

lar codes can achieve similar performances with CTCs when used as component

codes in other configurations and aid in the advancement of new communication

technologies.

Keywords: WirelessMAN, WirelessMAN-OFDMA, IEEE 802.16e, IEEE

802.16m, physical layer technologies, polar codes, convolutional turbo codes,

WiMAX, WirelessMAN-OFDMA Simulator, MIMO, Reed-Muller Codes, Per-

formance Comparison
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ÖZET

KUTUPLAŞMA KODLARININ EVRİŞİMLİ TURBO KODLAR

İLE BAŞARIM KARŞILAŞTIRMASI

Üstün Özgür

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Erdal Arıkan

Kasım 2009

Yakın bir tarihte Arıkan tarafından tanıtılan, ikili ayrık hafızasız kanallar için

simetrik kapasiteye ulaştığı kanıtlanan ilk ileri hata düzeltme yöntemi olan ku-

tuplaşma kodlarının teorik önemi gösterilmiş olsa da, pratikte bu kodların önemi

daha tam olarak araştırılmış durumda bulunmamaktadır. Önceki çalışmalar

kutuplaşma kodlarının Reed-Muller kodlarından daha yüksek performans or-

taya koyduğunu göstermektedir. Bu tezde, kutuplaşma kodlarının en gelişmiş

ileri hata düzeltme kodları karşısında nasıl bir başarım gösterdiğini incelemek

amacıyla IEEE 802.16e PHY (fiziksel) seviye belirlemesi (spesifikasyonu) tabanlı

ve WiMAX onaylamasıyla (sertifikasyonuyla) uyumlu bir bağlantı seviyesi ben-

zetici (simulatör) gerçekleştirilmiştir ve bu benzetici içerisine WiMAX ileri hata

düzeltme kodları ve kutuplaşma kodları entegre edilmiştir. IEEE 802.16 stan-

dartları ailesi güncel ve sonraki nesil genişbant kablosuz erişim için standart-

lar tanımlayarak, yüksek veri hızı gerektiren çokluortam uygulamalarının mobil

ortamlarda kullanımını olanaklı kılmayı amaçlamaktadır. IEEE 802.16 Görev

Grubu m tarafından geliştirilmekte olan sonraki nesil genişbant erişim standardı

daha yüksek aktarım hızı, daha iyi servis kalitesi (QoS), daha yüksek mobilite,
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data geniş alan ve daha düşük gecikme desteği amaçladığı için hata düzeltme

yöntemlerinde önceki standartlara göre daha gelişmiş tasarımlar gerektirmekte-

dir. Tezde kutuplaşma kodlarının IEEE 802.16e standardı dahilinde tanımlanan

CTC düzenleşimleriyle başarım karşılaştırması yapıldı. Tezin genel sonuçları şu

şekilde özetlenebilir: Kutuplaşma kodları her ne kadar bahsedilen koşullarda ka-

pasiteye ulaşsa da bu kodların başarımı, benzetimi yapılan kod uzunluk ve oran-

larında ve benzetim ortamlarında, CTC kodlarının başarımıyla yarışamadı. Ku-

tuplaşma kodlarının öğe kodlar olarak yeni kod düzenleşimlerinde kullanılması

durumunda nasıl bir başarım göstereceği ve yeni iletişim teknolojilerine nasıl

katkı sağlayabileceği gelecek çalışmaların konusunu oluşturacaktır.

Anahtar Kelimeler: WirelessMAN, WirelessMAN-OFDMA, IEEE 802.16e, IEEE

802.16m, fiziksel seviye teknolojileri, kutuplaşma kodları, evrişimli turbo kod-

lar,WiMAX, WirelessMAN-OFDMA Benzeticisi, MIMO, Reed-Muller Kodları,

Başarım Karşılaştırması
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Chapter 1

INTRODUCTION

Polar codes, recently introduced by Arıkan in [2] are the first low-complexity

codes that theoretically achieve symmetric capacity of binary-input discrete

memoryless channels (B-DMCs), however its practical value has not been inves-

tigated yet. It is known that under certain conditions and decoding schemes, it

outperforms Reed-Muller codes[3], however its performance advantage suggested

that in its current state, it would not compete with state-of-the-art capacity

achieving forward error correction (FEC) codes like convolutional turbo codes

(CTCs) since CTCs outperform Reed-Muller codes by a wide margin, while the

performance difference between the polar codes and the Reed-Muller codes are

not that high. In this thesis, we mainly investigate how apart are the perfor-

mance curves for polar codes so that we get an idea on how much polar codes

should be improved from their current state to be useful in practical systems.

To test the codes in a realistic environment, we decided to test the codes in a

Worldwide Interoperability for Microwave Access (WiMAX) simulator, since it

is an important standard for next generation broadband internet access.

Broadband internet access has become an indispensable part of our lives.

With its mass adoption, the Internet has become the most important tool in
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managing our lives: it has changed the way we work, the way we socialize, the

way we communicate. Another important technology that has changed the way

we live is that the mobile devices, cellular phones and laptop computers are now

ubiquitous. The next paradigm shift in human evolution will happen when these

two technologies fully merge; just like the biological evolution has provided us

the basic communication tools, our sociological evolution has brought us more

and more communication skills and it paves the way for a global human society.

Although there are alternatives to broadband wireless access (BWA) at the

moment, the mission of obtaining true BWA has still not been met. By true

BWA, we mean that users will have access to data rates that can meet the de-

mands of multimedia applications. The need for high data-rate multimedia appli-

cations is very important, since without those applications, the devices through

which we access the Internet will still be perceived as agents between us and the

Internet. It will be when the devices provide such a realistic environment that

its very presence will be forgotten that we will be seamlessly interacting online,

every part of lives will be accompanied by a constant connection to the Internet

superhighway; a future where every device we use is constantly online.

Of the current options, WiFi simply does not have the coverage to provide

such a seamless connection everywhere, and pre-3G cellular technologies fail to

provide any useful data rates. With the now becoming popular 3G technologies

everywhere, and the emerging 4G technologies, broadband wireless access will

be taken to a new level.

IEEE 802.16 standards enter the scene of networking as the perfect solution

for providing BWA solutions. For 3G networks, Mobile WiMAX standard based

on this family’s 2005e standard has been selected as an option, and its next-

generation incarnation, IEEE 802.16m aims to satisfy the requirements of the

next wave of high speed multimedia supporting wireless standards, the IMT-

Advanced, i.e. 4G.
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IEEE 802.16 and WiMAX standards do not only provide another option for

BWA; but they even serve to a better cause. In under-developed and developing

countries where even cellular and PSTN technologies have not been deployed,

they will serve those countries as the sole Internet connection, and this will be

a huge step forward in bringing the whole humanity the same set of tools and

opportunities. Although the adoption seems at danger in developed countries due

to the dominance of cellular operators which see LTE as the natural evolution

path; WiMAX, with its open nature, will and should be the choice for other

markets.

In this thesis, we implement a IEEE 802.16e simulator in MATLAB to per-

form simulations in which we test the proposed options under different conditions.

This standard has been finalized and its latest revisions have been merged into

one document in IEEE 802.16-2009. The next step the IEEE 802.16 Techni-

cal Working Group will take is IEEE 802.16m, in which even higher data rate

applications with better quality of service (QoS) support will be provided.

Our main aim in this thesis was to provide new contributions to the ongoing

standardization effort by seeing whether a newly proposed forward error correct-

ing (FEC) technique introduced by Arıkan, polar codes, can be a usable FEC

option as it is the first FEC scheme that achieves the symmetric capacity under

conditions that will be explained in the relevant sections.

Chapter 2 presents the IEEE 802.16 family of standards and how the WiMAX

certification was based upon them. It gives an overview of the history and future

of these standards and introduces IEEE 802.16d, 802.16e and 802.16m.

In Chapter 3, we give a detailed description of the IEEE 802.16e simulator we

have implemented. Since the options presented in IEEE 802.16 are various, we

give detailed information regarding the choices, simplifications and assumptions

we have used.

3



Chapter 4 gives information on polar codes; their construction and integra-

tion into the IEEE 802.16 simulation chain. Additionally, we present how we

form polar code configurations that match the Convolutional Turbo Code (CTC)

configurations defined in the standard.

In Chapter 5, we give our results on comparing the polar codes and CTC

schemes under different channel conditions and antenna settings.

Chapter 6 concludes, summarizing our results; and in Appendix, we give

extra information regarding the supported modulation and coding schemes, a

user guide on the simulator, and our results on optimization of the simulator

using C files integrated into MATLAB.
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Chapter 2

IEEE 802.16 FAMILY OF

STANDARDS AND WiMAX

IEEE 802 family of standards are a standards family of IEEE that focuses on

various networking technologies such as personal, local and metropolitan area

networks, namely PANS, LANs and MANs. These standards are maintained by

several working groups each focusing on a different selection of standards under

the direction of IEEE 802 LAN/MAN Standards Committee.

Of these family of standards, the most well-known ones are the 802.3 stan-

dard, which standardizes the Ethernet technology, and standard families 802.11

on Wireless LANs and 802.15 on Wireless PANs, upon which respectively the

WiFi certification and Bluetooth protocols are based.

IEEE 802.16, another subset of the IEEE 802 family, is itself a family of

standards developed by the 802.16 Working Group. Its main aim is to develop

wireless broadband standards for metropolitan area sized networks; hence its

alternative name, “WirelessMAN”.
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Within the working group for 802.16, there are several task groups each de-

veloping a different 802.16 standard on a different topic. Some of these have

completed their tasks, and some are still active. As of August 2009, the Wire-

lessMAN website lists four active task groups, namely “License-Exempt Task

Group”, “ Relay Task Group”, “Task Group m (TGm)” and the “Maintenance

Task Group”. These groups are working on standards 802.16h, 802.16j, 802.16m

and 802.16-2004 respectively, either working on drafts or amendments.

2.1 History and Future of IEEE 802.16 Stan-

dards and WiMAX

2.1.1 Notable IEEE 802.16 Standards

The IEEE 802.16 Working Group was founded in 1999, and has since created

several different standards for wireless MANs. The standards were aimed at

fixed deployment scenarios initially, and the major product of that period was

the standard 802.16-2004 (16d) published in 2004, a culmination of the pre-

vious standards that far, supporting various frequency profiles (2-11 GHz and

10-66 GHz). [4]

A year later, this standard was amended by the work of ‘Task Group e’ in or-

der to support mobile scenarios, and the new standard, accepted in 2005, which

included corrections to, omissions from and amendments to 802.16-2004[5] was

published as 802.16e-2005[6], in early 2006. This amendment is also known as

“Mobile WirelessMAN”, although one should note that fixed communication sup-

port still exists when the standards 2004 and 2005 are considered in conjunction

[7].
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Further amendments published as 802.16f and 802.16g, along with 802.16e-

2005 and 802.16d-2004, and fixes have been finally merged into one document and

recently published as 802.16-Rev2-2009, which supersedes previous standards.

2.1.2 WiMAX Certification

The IEEE 802.16 standards are responsible for specifying only the PHY and

MAC layers of the air interface between a subscriber station and a base station;

and as such, other issues for the system to be viable as a practical alternative,

such as the end-to-end specification which determines the network architecture

are not included.

Furthermore, probably for sake of completeness or political reasons (to ap-

pease the proponents of various techniques) , the IEEE 802.16 standards include

several optional choices for different building blocks, but the implementation of

all of these is cumbersome for vendors, and a common subset of choices has to

be selected.

Therefore, akin to the relationship between the 802.11 family of standards and

the WiFi certification which is based on that family, the need for certification of

products based on 802.16 standards has resulted in the emergence of WiMAX cer-

tification, which is controlled by the industry led, non-profit “WiMAX Forum”.

WiMAX Forum was established in 2003 with the mission to promote WiMAX as

a technology based on air interface specifications as a subset of the IEEE 802.16

family of standards, complemented with a set of network specifications. Tasks

within WiMAX are carried by its own working groups.

WiMAX stands for “Worldwide Interoperability for Microwave Access” and

as its name implies, its main focus is on maintaining the conformance and in-

teroperability of products so that vendor lock-in is prohibited and products of

different vendors operate in harmony within a WiMAX ecosystem. The technical
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working group states on the WiMAX Forum website that its main goal “is to

develop technical product specifications and certification test suites for the air

interface based on the OFDMA PHY, complementary to the IEEE 802.16 stan-

dards, primarily for the purpose of interoperability and certification of Mobile

Stations, Subscriber Stations and Base Stations conforming to the IEEE 802.16

standards.”.

Since there is more than one 802.16 standard, correspondingly, there are sev-

eral WiMAX certifications. Fixed WiMAX is the one based on 802.16d-2004;

and mobile WiMAX is the one based on 802.16e-2005. More precisely, the cer-

tification based on 802.16e-2005, complemented with Network Profile 1 is called

the Mobile WiMAX release 1 certification; and similarly, the certification based

on 802.16Rev2-2009, is called the Mobile WiMAX release 1.5 certification.

As of October 2007, The ITU Radiocommunication Assembly recognizes Mo-

bile WiMAX to be in the set of radio interface options for the IMT-2000 stan-

dards. These standards are also called 3G standards, and aim to determine the

specifications for mobile telecommunication systems requiring high-speed (broad-

band) data rates.

2.1.3 Roadmap of IEEE 802.16 and WiMAX

The next generation of IEEE 802.16, 802.16m is currently being developed by

the Task Group m. This standard is being prepared as an amendment to the

previous standards, and therefore the previous standards will remain fixed and

new contributions will be appended as additional chapters.

In parallel to the efforts of the Task Group m, the Mobile WiMAX release 2.0

certification is being prepared based on this new standard. As WiMAX has been

recognized as a 3G technology, the aim of the WiMAX forum is to make the next
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generation of WiMAX (also called WiMAX2) to be a part of the IMT-Advanced

standards, better known in public as 4G.[8]

The key enhancements targeted in IEEE 802.16m are given in [9] as follows:

• Doubling relative throughput of a data only system compared to

WirelessMAN-OFDMA, support of data rates of several hundreds of Mbit/s

• Doubling relative sector throughput and increasing VoIP capacity by a

factor of 1.5

• Mobility support at speeds as high as 350 km/h

• Improved cell coverage, upto a radius of 100 km

• Increased spectral efficiency, decreased latencies

2.2 PHY LAYER OF WirelessMAN-OFDMA

IEEE 802.16-2009 standard specifies the air interface for broadband wireless ac-

cess systems via three different physical layer (PHY) specifications aiming differ-

ent operational conditions; namely WirelessMAN-Single Carrier(SC) PHY spec-

ification, WirelessMAN-OFDM PHY and finally WirelessMAN-OFDMA PHY.

Of these, the single carrier case is focused on higher frequencies of range 10-66

GHz; while the latter two focus on the frequency band below 11 GHz, aiming

communication in non line-of-sight situations.

In this thesis, we are concerned with the WirelessMAN-OFDMA PHY speci-

fication upon which WiMAX Forum has based the Mobile WiMAX certification.

This PHY mode was first introduced by the IEEE 802.16e-2005 amendment to

the preliminary IEEE 802.16-2004 standard; and the final state has been reached

in the IEEE 802.16-2009 standard which supersedes both.
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Major technologies involved in the operation of the WirelessMAN-OFDMA

mode are the OFDMA technology and relevant subchannelization schemes,

Space-Time Coding supporting various MIMO configurations, and several chan-

nel encoding schemes which make use of different Forward Error Correcting

(FEC) codes.

Via OFDMA support, the mode supports multiple users whose data is spread

across the time and frequency dimensions. This provides frequency diversity in

addition to multi-user support. The capacity of the system is increased through

the usage of different antenna configurations which are defined by the STC

schemes; and based on the operational modes, adaptive antenna selection might

be employed. Finally, as the system supports multiple modulation and coding

schemes (MCs), more suitable schemes which increase reliability and/or rate

might be chosen via link-adaptation, also called adaptive modulation and coding

(AMC).

2.2.1 OFDMA Support in WirelessMAN-OFDMA

To understand OFDMA as introduced [10], one should first consider the OFDM

modulation. As transmission rate increases in a wireless communication system,

two fundamental problems arise: intersymbol interference and multipath fading.

Intersymbol interference occurs as subsequent symbols are affected by each

other, causing ‘temporal spreading and consequent overlap of individual pulses

to the degree that the receiver cannot reliably distinguish between changes of

state, i.e. , between individual signal elements’ as explained in the definition of

the term in Federal Standard 1037C.

Multipath fading occurs when transmission occurs via two or more different

paths which arrive at the receiver at distinct time instants. In such a case, the
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part of a symbol carried on a path with a significant delay might interfere with

symbols at other time instants.

To mitigate this problem, the data rate should be decreased, however given

the current demands, this data rate decrease should be done in such as a way

that the total data rate is preserved. One such approach to solving this problem

is separating the signal into multiple parallel parts which are transmitted simul-

taneously at a slow rate. In order to be able to distinctly send and receive these

signals, they are allocated orthogonal parts of the frequency spectrum, and each

of these parts, the smallest unit on which allocation occurs is called a subcarrier.

Under perfect synchronization, and given that the coherence time is high

enough, each of these subcarriers now experience slow-fading, and the channels

experienced can be modeled as single path (single tap) channels.

Each FFT component in an OFDM symbol is mapped to a subcarrier. By a

coarse definition, a group of subcarriers is called a subchannel and burst forma-

tion is accomplished through packing these subchannels in a burst, following a

predefined algorithm. This procedure basically assures that the subcarriers allo-

cated to a burst are non-contiguous, and therefore a higher frequency diversity

is achieved.

WirelessMAN-OFDMA PHY supports various FFT sizes and consequently

various OFDM configurations. Specifically, FFT sizes of 2048, 1024, 512 and 128

are supported so that the system operates under different channel bandwidths.

The multi-user access extension was first introduced in [10]. In this mode,

after the subcarriers are segregated via OFDM, different users access the system

through sets of subcarriers.

11



There are three types of subcarriers; data subcarriers carry data, null subcar-

riers are used in guard bands and the DC component; and the pilot subcarriers

are used to estimate channel conditions and synchronization purposes.

Once each data subcarrier is assigned (along with its sister subcarriers in the

same subchannel) to owners and filled with data from its owner, the resultant

OFDMA waveform is converted to time-domain via an IFFT. The resulting time

waveform is prepended by a cyclic prefix which comprises of a ratio of the wave-

form from the end. The main contribution of this operation is immunity against

multipath interference and synchronization problems.

2.2.1.1 Subchannelization

How subcarriers are packed into subchannels, and how these subchannels are

used to form burst determines the subchannelization strategy. There are several

different subchannelization schemes in WirelessMAN-OFDMA, namely PUSC,

FUSC, TUSC and AMC.

Similar to other system parameters, most of these choices are optional and

only PUSC is mandatory. As such, our simulator only implemented the PUSC

scheme, however for completeness, other schemes will be introduced below as

well. The introduction will be followed by a detailed explanation of the PUSC

scheme we have implemented and some visual aids are given to gain further

insight as to how the subchannels are formed.

Partial Usage of Subcarriers (PUSC)

PUSC subchannelization scheme stands for Partial Usage of Subcarriers.

In this scheme, the cell is divided into different sectors, and the available

subchannels are divided into segments. As a result, only a part of the

available subcarriers can be used, hence the name partial. How segments

are formed is actually based on the frequency reuse scheme, so if a segment
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covers the whole frequency range, PUSC might cover the whole frequency

range, albeit the subchannelization still occurs according to the partial

pattern.

We divide the subcarriers into clusters of 14 adjacent subcarriers. Then, we

renumber the physical clusters to logical clusters. Next, we map the pilots

and take them out. Then, we create six major groups consisting of 24 or

16 clusters (for an FFT size of 2048). Then, from each major group, we

select the subcarriers for each subchannel. See Figure 2.1 for some sample

subchannels.

Full Usage of Subcarriers (FUSC)

FUSC subchannelization scheme stands for Full Usage of Subcarriers. In

this scheme, all the subcarriers are available for usage. We group the sub-

carriers so that there are N groups where N is the number of subcarriers we

want in a subchannel, i.e. 48. Then, from each group, we pick a subcarrier

for each subchannel. See Figure 2.2 for some sample subchannels.

Tile Usage of Subcarriers (TUSC)

Tiles are used in TUSC instead of the clusters in PUSC. More information

is given in the standard.

AMC

Subcarriers are distributed to subchannels in adjacent sets.

More information regarding the subcarrier permutation types, with examples,

are given in [11].

2.2.1.2 Burst Construction and Burst Profile Selection

Now that we have covered how subchannels are formed from subcarriers, we can

go on to explain how these subchannels are allocated to users. The allocation of

13
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subchannels occurs via supersets of subchannels called bursts. In WirelessMAN-

OFDMA, a burst is defined as the region of the total OFDMA frame reserved

for a particular user.

For example, if a user is allocated subchannels 10-20 over the OFDM symbols

5-15, that rectangle constitutes the burst allocated for that user. The allocation

is not necessarily a single rectangle, but might be a combination of several rect-

angles.

A user might transmit more than one burst in a frame, however only one user

can transmit at a given burst region. A data region, or a partition are equivalent

terms for defining a burst.

The coding and modulation scheme in the burst is constant throughout the

burst, and this selection is called the ‘burst profile’. As such, a burst is com-

posed of an integer multiple of FEC blocks each coded by the same coder and

constellation mapped by the same mapper.

A burst profile in WirelessMAN-OFDMA is determined by two parameters:

The choice of Forward Error Correcting (FEC) code, and the choice of constel-

lation mapping.

FEC Code Choices Choosing a FEC code requires deciding on three FEC

parameters: The type of FEC, the rate of FEC, and the length of the data

vector to be encoded.

Types of FEC supported in WirelessMAN-OFDMA compromise convolu-

tional coding, which is mandatory, and three other optional FEC types,

namely Convolutional Turbo Codes (CTC), Low-density Parity Check

Codes (LDPC), and Block Turbo Codes (BTC).

Each of these support various rates and payload lengths, which are given

in tables in Appendix B.
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Constellation Mapping Choices The choices for constellation mapping are

restricted to three, QPSK, 16-QAM and 64-QAM. Of these, QPSK is the

mandatory one, and the support for others is optional. All mappings obey

the Gray mapping criteria, and the constellation for each are given in Figure

2.2.2.4.

2.2.1.3 Burst Zone

Multiple bursts form a burst zone via stacking the downlink (DL) bursts together

and the UL bursts together with Transmit Transition Gap (TTG) and Receive

Transition Gap (RTG) in between the stacks. Bursts are combined with the

preamble, Downlink MAP (DL-MAP) , frame control header (FCH) and Uplink

Map (UL-MAP), the ranging subchannel to make up a burst zone. The subchan-

nelization is fixed within a burst zone, similar to the fixation of burst profiles

within bursts; and there is a mandatory burst zone using PUSC.

The discussion above applies to TDD frames which we are concerned with

in this thesis; also supported in WiMAX 1.0. As the latest 802.16 standard

supports FDD operation as well, WiMAX is poised to support FDD systems in

the future; however that issue is beyond the scope of this thesis.

2.2.1.4 Data Mapping Through Slots

Once a user is allocated a burst, we already know the subchannels in that burst.

Through subchannelization, we also know the subcarriers within each subchan-

nel; therefore the set of subcarriers a user is assigned is known. Assume for the

moment that the user has full-buffer data, and her data has already been encoded

and modulated into (baseband) symbols.
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Data mapping at those points occurs through another allocation unit called

slots. A slot is defined as a set of subchannels based on the subchannelization

scheme. For the mandatory scheme of DL-PUSC, a slot is defined as a subchannel

over two OFDM symbols.

Since the slot is defined as the smallest data allocation unit, the data mapping

follows this simple rule: Fill the slots one by one, selecting them first by increasing

the subchannel index and then by increasing the OFDM symbol index. The catch

here is that since a slot itself spans more than one OFDM symbol in the DL-

PUSC case, allocation is performed as below:

1. Determine the slot to be filled. It is the left-most slot, i.e. it should have

the lowest subchannel index and if there is a tie there, it should have the

lowest OFDM index.

2. Fill the first subchannel inside the first OFDM symbol within that slot.

Then, continue by filling the subchannel in the next OFDM symbol.

3. Once the slot is filled, proceed to the next slot, starting from step 1.

One final remark that should be made about slots is that since the encoded

and modulated blocks will be mapped to the time-frequency matrix slot by slot,

a single slot results in low-length blocks. To overcome this, which degrades per-

formance, slot concatenation is defined that merges a number of slots according

to the MCs selected inside the burst.

For illustration purposes, assume that a user is allocated the first 8 subchan-

nels across 22 OFDMA symbols through the DL-PUSC scheme for an FFT size

of 1024. A slot is defined as one subchannel over two OFDMA symbols in PUSC.

Therefore, the user is assigned a total of 22 ∗ 8/2 = 88 slots. Assume that the

MCS chosen is rate-1/2 CTC with QPSK modulation.
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The largest encoded and modulated payload length is 432 symbols for this

burst profile; so we need at least 432 subcarriers for each FEC block. The maxi-

mum allowed concatenation number is 10, therefore, initially, the slot concatena-

tion tries to create as many code mappings as possible through concatenations

of 10 slots. Once it creates 7 of such blocks consisting of 10 slots, there are 18

slots remaining, which it uses as 2 blocks of 9 slots. So, the major logic behind

the algorithm is create as much as longest possible slots, while at the same time

trying to create longer slot configurations from the remaining slots. The exact

formulation is given in IEEE 802.16-Rev2[1].

2.2.2 Channel Encoding

Channel encoding comprises the following steps in sequential order: Randomizer,

FEC encoding, bit-interleaving and modulation. The input is the raw data from

the user, and the output of the procedure is the data to be mapped via the

OFDMA allocation.

2.2.2.1 Randomization

This step is restarted for each FEC block. The data is serialized, then XOR’ed

with a pseudorandom bit sequence. The pseudorandom bit stream is generated

using a seed of [0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1] and effect of randomization on

a sequence of raw data is shown in Figure 2.3.

2.2.2.2 FEC Coding

Four FEC choices are provided, and each choice comes with a set of supported

configurations for constellation size and FEC rate. A selection of constellation

size and FEC rate constitutes a burst profile selection. Besides the burst profile
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selection, another degree of freedom for code construction is the code length. For

a given rate and constellation choice, each code provides different code lengths

that fit into the concatenated slots explained in previous sections. So, while a

burst has a fixed burst profile, even though we know that a code C with a FEC

rate R is chosen there along with either QPSK, 16-QAM or 64-QAM, the code

length depends on the allocated data region size. Longer code lengths are favored

for better performance.

We omit details regarding the encoding and decoding of these well-known

codes since they are discussed extensively in the literature. For a brief overview

of all the FEC schemes in IEEE 802.16e, [12] presents a concise introduction and

a performance comparison of these codes.

In the next subsections, we give information regarding the rates of these FEC

options.

2.2.2.2.1 Convolutional Encoding Convolutional encoding is the only

mandatory FEC coding scheme. Set of supported rates is {1/2, 2/3, 3/4} al-

though the latter two are obtained via puncturing of codes with rate 1/2. Gen-

erator polynomials for outputs of coding, X and Y are given as G1 = 171OCT

and G2 = 133OCT, of whose graphical interpretation is given in Figure 2.4. A

complete list of supported convolutional code configurations is given in Appendix

B.

Convolutional codes are mandatory in WiMAX as well.

2.2.2.2.2 Block Turbo Codes These codes are optional codes and not used

in WiMAX. BTC is a two dimensional code making use as component codes

binary extended Hamming codes.
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8.4.9.2.1 Convolutional coding (CC)

Each FEC block is encoded by the binary convolutional encoder, which shall have native rate of 1/2, a 

constraint length equal to K = 7, and shall use the following generator polynomials codes to derive its two 

code bits:

(126)

The generator is depicted in Figure 299.

The puncturing patterns and serialization order that shall be used to realize different code rates are defined in 

Table 518. In the table, “1” means a transmitted bit and “0” denotes a removed bit, whereas X and Y are in 

reference to Figure 299.

Table 517—Encoding slot concatenation for different allocations and modulations

Modulation
and rate

j

QPSK-1/2 j = 6

QPSK-3/4 j = 4

16-QAM-1/2 j = 3

16-QAM-3/4 j = 2

64-QAM-1/2 j = 2

64-QAM-2/3 j = 1

64-QAM-3/4 j = 1

G1 171OCT FOR X=

G2 133OCT FOR Y=

1 bit
delay

1 bit
delay

1 bit
delay

1 bit
delay

1 bit
delay

Data in 1 bit
delay

X output

Y output

Figure 299—Convolutional encoder of rate 1/2

Figure 2.4: Block diagram depicting the encoding process for Convolutional En-
coder (courtesy of [1])

2.2.2.2.3 CTCs Convolutional turbo codes are high-performance capacity

achieving codes. These codes are optional in IEEE 802.16-2009, but are manda-

tory in WiMAX. These make use of a slot concatenation rule different from

that of convolutional codes, and 8 different burst profiles are supported, namely

QPSK with rates {1/2, 3/4}, 16-QAM with rates {1/2, 3/4} and 64-QAM with

rates {1/2, 2/3, 3/4, 5/6}. Along with different number of code lengths for each

profile, the total number of possible CTC code configuration is 32 and the list is

given in the Appendix B.

CTC encoder, with its constituent encoders are given in Figure 2.5. As seen

from the figure, there are three paths: The top two paths are for the systematic

transaction, i.e. the input is fed to the output intact. In the third path, however,

the input first passes through a constituent encoder. The input to this block

is determined as a combination of the original channel input paths A and B,

through interleaving and switching. Inside this encoder, one can see that the

bits fed first are the natural ordered input bits. For the second case of inputs,

interleaved bits are used. The outputs are collected to generate subpackets in the
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— For the W parity bit: 0x9, equivalently 1 + D3

First, the encoder (after initialization by the circulation state Sc1, see 8.4.9.2.3.3) is fed the sequence in the 

natural order (position 1) with the incremental address i = 0 .. N–1. This first encoding is called C1 encoding. 

Then the encoder (after initialization by the circulation state Sc2, see 8.4.9.2.3.3) is fed by the interleaved 

sequence (switch in position 2) with incremental address j = 0, … N–1. This second encoding is called C2

encoding.

The order in which the encoded bit shall be fed into the subpacket generation block (8.4.9.2.3.4) is

A, B, Y1, Y2, W1, W2 = 

Note that the interleaver (8.4.9.3) shall not be used when using CTC.

The encoding block size shall depend on the number of slots allocated and the modulation specified for the 

current transmission. Concatenation of a number of slots shall be performed in order to make larger blocks 

of coding where it is possible, with the limitation of not exceeding the largest supported block size for the 

applied modulation and coding. Table 525 specifies the concatenation of slots for different allocations and 

modulations. The concatenation rule shall not be used when using IR HARQ.

For any modulation and FEC rate, given an allocation of n slots, the following parameters are defined:

j is parameter dependent on the modulation and FEC rate

n is floor(number of allocated slots * STC rate/(repetition factor * number of STC layers))

k is floor(n/j)

CTC
Interleaver 2

1 Constituent 
encoder

A

B

C1

C2

Y1W1

Y2W2

+ S1 + S2 + S3

Parity part

Constituent encoder

Figure 301—CTC encoder

switch
Systematic part

+

+

A

B

A0 A1 ! AN 1– B0 B1 ! BN 1– Y1 0" Y1 1" ! Y1 N 1–" Y2 0" Y2 1" ! Y2 N 1–"" " " " " " " " " " " " " " "

W1 0" W1 1" ! W1 N 1–" W2 0" W2 1" ! W2 N 1–"" " " " " " "

Figure 2.5: CTC Encoder Diagram(courtesy of [1])

following order: A,B, Y1, Y2,W1,W2. Interested reader might find detailed infor-

mation about this process in the final version of the IEEE 802.16 standard [1].

2.2.2.2.4 LDPC Similar to CTCs, LDPC codes also achieve capacity prac-

tically.

Rates {1/2, 2/3, 3/4, 5/6} are supported for each constellation choice, so there

are 12 different LDPC burst profiles.

Numerous block lengths are supported for each profile, the whole list is given

in the Appendix B.
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2.2.2.3 Interleaving

After the data is encoded via the FEC, a block is interleaved via a two-stage

block permutation. Neighbor subcarriers are separated via the first operation

and is independent of modulation.

The second permutation is modulation dependent, and serves in scattering

neighboring bits to random parts of the constellation.

At the receiver side, reverse permutations are applied in reverse, in order to

retrieve the original sequence.

Since the CTC encoder already has an integral interleaver, interleaver block

is not used for configurations using CTC as FEC choices.

For illustration purposes, observe the transformation of the following encoded

block sequence indices k in second column in Table 2.1. mk refers to the index

of that bit after the first permutation and is defined by the operation:

mk = (Ncbps/d)k mod (d) + floor(k/d)k = 0, 1, . . . , Ncbps − 1 d = 16 (2.1)

where Ncpc is the compression gain obtained by modulation mapping and equal

to 2, 4, 6 for QPSK, 16-QAM and 64-QAM respectively and Ncbps is the code

block length input to interleaving process.

Similarly, observe how the second permutation defined by the equation below,

interleaves those bits in Table 2.1, where s = Ncpc/2 :

jk = s · floor(mk/s) + (mk +Ncbps − floor(d ·mk/Ncbps)) mod (s) (2.2)
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Table 2.1: The Effect of Interleaving Steps on the Index Number for a Code
Length of 192 in a 64-QAM Setting

k mk jk
0 0 0
1 12 14
2 24 25
3 36 36
4 48 50
5 60 61
6 72 72
7 84 86
8 96 97
9 108 108

10 120 122
11 132 133
12 144 144
13 156 158
14 168 169
15 180 180
16 1 1
17 13 12
18 25 26
19 37 37
20 49 48
21 61 62
22 73 73
23 85 84
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Figure 2.6: Constellations for Different Mappings (Numbers signify the decimal
notation of bit sequences, added by 1)

2.2.2.4 Modulation

Constellation mapping using Gray-mapped QPSK, 16-QAM are mandatory while

64-QAM support is optional. The average symbol power is normalized by mul-

tiplying the constellation by an appropriate scaling factor.

The figures below show the constellations for QPSK, 16-QAM and 64-QAM.

Once the data is constellation mapped, it is further multiplied by a factor of

2 · (1/2−wk) where wk is a pseudo-random bit sequence defined according to [1,
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Section 8.4.9.1.4.1]. Pilot carriers are modulated in a different fashion, boosted

2.5dB compared to the data subcarriers. Interested reader may find further detail

in [1, Section 8.4.9.1.4.1].

2.2.3 Multiple Input Multiple Output : MIMO

As channel capacity using single antennas were approached with capacity achiev-

ing codes such as LDPC and CTC, improvements in data rate increase needed to

be done in a different fashion. The single input single output (SISO) scheme was

no longer sufficient. It was shown that the exploitation of multiple antennas at

the transmitter and/or receiver side resulted in linear capacity increases with the

minimum of the number of transmit and receive antennas [13]. As a result, much

of the telecommunications research in the last decade concentrated on Multiple

Input Multiple Output (MIMO) concepts, and this technology was immediately

applied to real life problems.

WirelessMAN-OFDMA is also one of the newest telecommunications stan-

dards of almost all making use newer MIMO technologies. It supports various

MIMO schemes, all of them optional. Of particular note is the 2x1 Alamouti

scheme [14]. IEEE 802.16m also defines a MIMO 2x2 option which we have

implemented in our simulator as well.

For these MIMO schemes, we use the method first proposed by Alamouti

in [14]. Two different schemes have been used: 2 by 1, for which there are

two transmit antennas and 1 receive antenna; and 2 by 2 for which there are 2

transmit and 2 receive antennas.

Although we did not do simulations with 2x1 MIMO scheme, but only 2x2,

it is more appropriate to first introduce this basic case.
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For the 2x1 MIMO scheme based on Alamouti’s paper, assume the fading co-

efficients between the first transmit antenna and the receive antenna are denoted

by h0 where h0 = α0e
jθ0 and similarly the fading coefficients between the second

transmit antenna and the receive antenna are denoted by h1 where h1 = α0e
jθ0 .

We assume the fading coefficients are constant over two OFDMA symbols,

therefore we make the corresponding changes in our channel models.

The symbol transmitted from the first transmit antenna is denoted by s0 at

the first OFDMA symbol period (for each subcarrier) and by s1 for the second

transmit antenna. In the next OFDMA symbol, −s∗1 is transmitted from the

first antenna, while s∗0 is transmitted from the second antenna.

After noise in the form of AWGN is added to the received signals at the first

and second time instances, we get the following equations:

r0 = h0so + h1s1 + n0 (2.3)

r1 = −h0s
∗
1 + h1s

∗
0 + n1 (2.4)

Next, we perform the Alamouti combining scheme to decouple the two symbol

estimates, such that

s̃0 = (α2
0 + α2

1)s0 + h∗0n0 + h1n
∗
1 (2.5)

s̃1 = (α2
0 + α2

1)s1 − h∗0n1 ∗+h∗1n0 (2.6)

Now that we have separated the two estimates, ordinary maximum likelihood

detection is performed, with proper normalization, which will be explained after

introducing the 2x2 case.

For the two transmit-two receive antenna case, the methodology is similar,

and done as outlined again in [14].

Instead of h0 and h1, this time, we have h0 for the coefficients between trans-

mit antenna 1 and receive antenna 1, h1 for the coefficients between transmit
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antenna 2 and receive antenna 1, h2 for the coefficients between transmit an-

tenna 1 and receive antenna 2 and finally h3 for the coefficients between the

transmit antenna 2 and receive antenna 2.

The received symbols in that case are the following:

r0 = h0s0 + h1s1 + n0 (2.7)

r1 = −h0s
∗
1 + h1s

∗
0 + n1 (2.8)

r2 = h2s0 + h3s1 + n2 (2.9)

r3 = −h2s
∗
1 + h3s

∗
0 + n3 (2.10)

The combiner in this scheme results in:

s̃0 = h∗0r0 + h1r
∗
1 + h∗2r2 + h3r

∗
3 (2.11)

s̃1 = h∗1r0 − h0r
∗
1 + h∗3r2 − h2r

∗
3 (2.12)

This time, the final decoupled estimates are given as:

s̃0 = (α2
0 + α2

1 + α2
2 + α2

3)s0 + h∗0n0 + h1n
∗
1 + h∗2n2 + h3n

∗
3 (2.13)

s̃1 = (α2
0 + α2

1 + α2
2 + α2

3)s1 − h0n
∗
1 + h∗1n0 − h2n

∗
3 + h∗3n2 (2.14)

Again, once these estimates are gained, we feed them into the maximum

likelihood decoder as usual.

The caveat in both these cases is that we first normalize the two estimates

by the square root of the term before the sent signal, for example for the 2x1

case, the sum of magnitude squared of h0 and magnitude squared of h1. This

is crucial in order to keep the SNR reported to the decoder the same as before.

Accordingly, however the fading coefficients are now not equal to the first term

ahead of s0 and s1, but divided by the same number.

One other important issue is that, since the total energy transmitted should

be kept constant, we send signals with half the total energy allocated from both
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antennas. This, in turn, can be equivalently represented by a division of the fad-

ing coefficients by a factor of
√

2 (Actually, the SNR value perceived is multiplied

by a factor of the same amount).

The case is similar for the two by two case, in which we first normalize the

decoupled estimates by the square root of the term in front of the original signals,

and change the fading coefficients to reflect this change, finally dividing the fading

coefficients by a factor of
√

2 in order to keep the SNR levels accurate.
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Chapter 3

POLAR CODES

Polar coding is a recently introduced coding scheme by Arıkan that constructs the

first known codes that theoretically achieve channel capacity with low-complexity

under certain constraints. Specifically, the method achieves the symmetric ca-

pacity of binary-input discrete memoryless channels (B-DMC), and given the

channel is symmetric, the achieved symmetric capacity is equal to the channel

capacity.

3.1 Preliminaries

The notation in this chapter follows strictly the notation presented in the Prelim-

inaries section of [2]. To summarize the notation there, a B-DMC is represented

by W : X → Y with W (y|x) denoting the probability of receiving y ∈ Y , given

that x ∈ X is sent. If the channel is used subsequently N times, WN denotes

this extension.

The symmetric capacity is denoted by I(W ) as an indicator on the up-

perbound for rate, defined as equal to
∑

y∈Y
∑

x∈X
1
2
W (y|x) log W (y|x)

1
2
W (y|0)+ 1

2
W (y|1)

and the Bhattacharyya parameter is denoted by Z(W ) and defined as Z(W ) =
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Figure 3.1: Raw Channel and Initial Transformation to Form Size-2 Superchannel
(from [2])

∑
y∈Y

√
W (y|0)W (y|1), useful as an upperbound on the MAP decision error of

a generic single transmission, single detection scenario.

The symmetric capacity becomes equivalent to the channel capacity de-

fined by Shannon if the channel under consideration is a symmetric channel.

A symmetric channel satisfies the following properties: The output alphabet

should have a reversible permutation π such that π−1 = π and W (y|1) =

W (π(y)|0),∀y ∈ Y .

3.2 Overview

The scheme makes use of the fact that given N independent channels, it is pos-

sible to construct N different (perceived) channels which exhibit a polarization

effect such that their symmetric capacities approach the poles of capacity limits,

i.e. either go to 0 or 1. In those cases, the channel becomes completely unreliable

(pure noise) or very reliable (pure information). Arıkan names this phenomenon

“channel polarization”.

Once we understand this polarization behavior, the problem of coding making

use of it boils down to two main issues. The first issue is whether we can find

a code encoding scheme that produces such polarized channels. Once we find
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such channels, the second issue, encoding at a given rate, becomes simple. We

basically make use of the channels whose symmetric capacity approaches 1, and

send fixed data through the noisy channels.

The first issue, producing polarized channels is a two-step process. Given N

binary-input (possibly similar) channels, we first synthesize via a method called

“channel combining” one superchannel whose input is a vector of length N . The

output of this channel, which acts like an envelope is the same length as its input,

a vector of length N .

Consequently, we analyze, i.e. decompose the superchannel into N distinct

and dissimilar binary-input channels through the “channel splitting” process.

These output channels are in fact imaginary channels that are perceived by their

input bits, and are not binary channels in the ordinary sense that a given input

produces an output of same size (one bit). Therefore they are unlike the binary-

input, same-length output as input channels we had used as ingredients.

The output of a single polarized channel is the Cartesian product of the whole

output set of the superchannel, and the input set of the other single polarized

channels that consists of channels with indices smaller than the current channel,

i.e. the inputs to the upper single channels. So, the output of a single channel

consists of ordered pairs that connect outputs to previous inputs.

After we polarize the raw channels through these two methods, the second

issue emerges: Which channels should we use at a certain rate? This step is called

“code construction” since it is at this point we determine which channels will be

used to transmit information and which channels will serve for redundancy. The

intuitive approach to this question is selecting the channels according to either

their capacities or their error probabilities. One should simply select the channels

with the highest capacity or the channels with the lowest error probabilities.
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More precisely, we are concerned with the symmetric capacities and the Bhat-

tacharyya parameters of the channels, which are denoted by I(W ) and Z(W )

respectively. It turns out that, as expected, using these two are completely

equivalent since the highest “rate” sustained by a channel is correlated by its

“reliability”. It is shown in [2] that the sum of the Bhattacharyya parameters

of the channels on which we send information gives a bound on the probability

of block error under successive cancellation decoding, and hence their usage is

favored for channel sorting.

3.3 Channel Transformation

As mentioned above, we need a transform to produce N polar channels out of

N raw channels. The first step, channel combining is a recursive process in

which one begins with a single channel, and creates superchannels of increasing

size, at each step combining the two most recently generated superchannels.

Therefore, two independent copies of the initial single channel W give rise to the

first superchannel W2. Two such superchannels are combined to form the second

level superchannel W4. This recursion is generalized such that at level n − 1,

two superchannels of size N/2 such that N = 2n, are combined to obtain the

superchannel of size N .

The initial combination first requires that inputs are paired adjacently. The

geometrically lower input (with the higher index) is mod-2 added to the upper

input to create the input to the raw channel geometrically higher. The lower

input item in the pair is transferred as the input of the second, lower channel.

This is equivalent to multiplying the input pair (as a row vector) with the matrix

F2 = [ 1 0
1 1 ] operating over the binary field GF (2).See Figure 3.1.
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This operation has to be repeated at each channel combining step. One other

step is required for other combination instances: a reverse shuffle operation1

so that the odd indexed terms of the latest operation are stacked at the top

in ascending index order, and the even ordered terms are stacked below those,

again in ascending index order. This operation actually exists in the initial case

as well, however in that case, we already have the odd numbered unit x1 above

the even numbered one, x2 in that case.

Therefore, the algorithm to generate WN , a superchannel of size N is gener-

alized as below:

1. Pair the input bits and apply F2 to each pair.

2. Perform a permutation operation on the N -length output such that the

odd-numbered latest inputs are above even-numbered ones (indexing starts

from 1).

3. The first half is used to create a smaller superchannel of size N/2. Similarly,

the second half is used to create another smaller superchannel of size N/2.

4. To create these channels, return to step 1, and repeat until we reach a

target superchannel of size 1.

Since there are log(N) recursion steps above in Figure 3.2, and N opera-

tions at each step as we have N units, the complexity of the encoding process

is O(N log(N)) and therefore the encoding operation is of low-complexity. A

rigorous proof of this is given in [2].

Channel combining alone is sufficient to encode a given input sequence of

length N , but does not give any information as to what kind of a channel our

1Actually, this step is not required during encoding given an equivalent process is performed

during decoding.
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Figure 3.2: Recursive Construction of the Combined Channel of Size N (from[2])

inputs experience. We need this information in order to determine how to form

the input sequence itself and to see how the polarization effect takes place.

Through channel splitting, we define the new, abstract channels an individual

input bit experiences. It is given formally as:

W
(i)
N (yN1 , u

i−1
1 |ui) =

∑
uN

i+1∈XN−i
1

2N−1WN(yN1 |uN1 )
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3.4 Properties of Polarized Channels

Now that we have defined the precise abstract channel experienced, we can treat

these as ordinary channels, and calculate the symmetric capacity and the Bhat-

tacharyya parameters. Once we calculate and sort the Bhattacharyya parame-

ters, given a code length of N , we select K of the channels through which to

send the information bits such that the ratio K/N matches our target code rate.

Figure 3.3 shows the symmetric capacities of channels as n varies from 0 to 6

where N = 2n determines the encoded block length. The numbers next to points

signify their index in the preencoding stage, and the numbers below them in

italics show their position when the symmetric capacities are sorted in ascending

order.

The difficulty here is that if we use arbitrary raw channels, there is no simple

way to calculate the Bhattacharyya parameters. This constitutes the actual

complexity of polar codes, since the encoding process is not complex, and the

decoding process, dual of encoding is on the complexity order of encoding.

However, if we select a BEC with an erasure probability ε = 0.5 as raw

channels, the computation of the symmetric capacity and the Bhattacharyya

parameters are straightforward and recursive. In fact, this channel type is ideal

to show the effects of polarization.

Below, we present the Bhattacharyya parameters of codes of length 2n for

n ∈ {0, 1, . . . , 10}. We note that the general trend is that the reliabilities of

individual channels increase as their indices increase, however this behaviour is

not observed all the time. Especially in the midrange, the order of reliability

turns out to be rather unpredictable without exact computation.

To gain further insight to the polarization process, consider the following

histogram where the Bhattacharyya parameters are separated into 40 distinct
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Figure 3.3: Polarization of Channels as n : 0→ 6 with Slanted Numbers Signify-
ing the Position with Reverse Sorted Symmetric Capacity – the higher the more
reliable channel
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bins in the interval [0, 1]. Notice how the parameters are accumulated at the

first and last bins as the code length increases. The interpretation here is that

we start with an unreliable single channel for n = 0. For n = 1, we now have

two channels slightly apart. The separation increases as n increases, and we

start to have two sets of more reliable channels or less reliable channels. In

fact, these graphs show that the polarization effect does not prevail for small

code lengths as evidenced by the significance of intermediate bins. The speed at

which those intermediate bins are emptied constitutes the issue of rate of channel

polarization.2

3.5 Polar Coding Revisited: Comparison with

Reed-Muller Codes

We had previously defined the encoding of polar codes as following: Start with

an F2 kernel transformation on pairs proceeded with a permutation, and perform

a recursion, following the same procedure to generate half-length superchannels.

The mapping until the recursion is linear, and it was shown in [2] that the

whole process is therefore linear. So, if the input to the combined channel is the

vector xN1 and the inputs to the raw channels are members of the vector uN1 , the

transformation can be summarized as xN1 = uN1 GN .

This approach forms the equivalent view on the encoding algorithm for polar

codes in [2]: The overall mapping can be summarized by a generator matrix GN ,

which is defined as a matrix of size N and calculated as BNF
⊗n where BN refers

to a bit-reversal process and F⊗n is the nth Kronecker power of the kernel matrix

F = [ 1 0
1 1 ].

2Note that for the last plot, we focus on the 1% region to see how the non-polarized channels

have decreased in size, they are on the order of 0.1 percent
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Polarization of Channels − n = 8
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Polarization of Channels − n = 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

Reliability  (Bhattacharyya param)

P
er

ce
nt

ag
e 

−
 %

 

Polarization of Channels − n = 18
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Polarization of Channels − n = 25
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At this point, we digress from discussion of polar codes to note that Reed-

Muller codes are actually encoded similarly, using a generator matrix of same

number of columns, but reduced row length [3]. While polar coding sets the

unreliable input bits to a fixed value, preserving the full size of the generator

matrix, RM codes remove rows corresponding to the unreliable input bits, not

using them at all. Other than this, the major difference between the two type of

codes lies however in the selection of rows, that is, the encoding operations are

the same, a matrix multiplication; but the code constructions differ.

The motivation behind Reed-Muller code construction is the following: In-

stead of using Bhattacharyya parameters, the selection is done using the Ham-

ming weight of rows. The rows with the heaviest weights possible are chosen,

such as for a (N,K) code, we select rows such that the rows not selected are at

most as heavy as the lightest row selected. It is clear that this selection is not

unique, unlike polar codes where each channel has a distinct metric.

We observe that for some code configurations, there are matching instances

between the two, that is the same set of rows are selected so that their matching

locations carry the information bits. However, we see that as the code length

increases, dissimilarities take hold.

The intuition behind the heavy-weight row-selection of Reed-Muller codes

can be explained through a rather coarse pipeline analogy. Think of the paths

emerging from the transformed channel inputs to the raw channel inputs as drains

emerging from households to the common drains. The nodes at which mod-2

summation occurs can be likened to junctions where two pipes are combined.

First observe the last transformed channel for the Reed-Muller case. This

pipe disseminates its contents through not only its horizontal path, but upwards

to other paths, via diagonal and horizontal means. In fact, once its content is

mixed with another pipe above, if that other pipe itself disseminates its new
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contents to other pipes (which contains remnants of the initial pipe), we observe

that the contents of the first pipe is disseminated even further.

Actually, that pipe simply makes use of the best redundancy possible and in

the N -channel case, its information is spread onto all the upstream paths, and

in turn to all the raw channels. Now, had there been no other contribution from

other pipes, this would actually be equivalent to using the channel N times to

transmit one bit. Even though we know there are contributions, we still get a

reliability in between the original reliability and that of extension N channel.

The intuition that this channel is more reliable – hence polarized towards a

symmetric capacity of 1 – is therefore obvious.

Also observe via this example that the “interference” caused by an input on

other paths only occurs in the upstream direction. An information sent travels

not only via its horizontal path, but it gets mixed up by other input bits which

are nearer to the top; and the output generated via sending it is on not only

the horizontal path, but all the output bins. This gives more insight to the

input-output characteristics of the new channels viewed as a black box.

Next, observe the first transformed channel. The pipe corresponding to this

is polluted with the contents of pipes below, and it still is using only one path.

If the contribution from other pipes is none, we end up with is a channel that

is the same as the old raw channel. Clearly, there are contributions from other

pipes and the channel is at best as reliable as it once was: this pollution makes

the channel even less reliable, hence the channel polarizes towards a symmetric

capacity of 0.

So, what about other locations such that we can obtain a code rate of K/N?

The approach Reed-Muller coding uses here is quite simple: It says that the

number of contributions to a path make it dirtier in a linear fashion, i.e. it simply

calculates how many other contributions are on a horizontal path. If there are
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too many contributions from other pipes, there is too much pollution and this

makes the channel less reliable. Hence, it selects the pipes on which there are

as few nodes as possible. It does not matter how much a contribution pollutes

the channel, it only matters that it pollutes it. In fact, transforming the Trellis

structure such that nodes without addition are mapped to 1s and nodes with

addition are mapped to 0, we select the heaviest rows, that is, the rows with as

less additions as possible, number of zeroes as small as possible.

The approach polar coding uses is more sophisticated. As a general trend,

similarly, it accepts that the more contributions to a path, the dirtier it will

be. However, this is not the actual rule. In a way, one may visualize that polar

coding also calculates not only if a pipe contributes its content to other pipes,

but how it contributes. It therefore takes into account not only the number of

contributions, but also the quality or significance of those contributions. If a

path has more contributions, but the path is resilient against those than paths

with less contributions, polar coding will select that path.

How polar coding determines the significance of contribution we talked about

in the analogy is dependent on the channel used, so polar coding is channel-aware.

In fact, it is this awareness of channel itself in polar coding that should in theory

make this method more suitable for adapting the code according to channel

conditions, a technique known as Adaptive Modulation Coding. Although we

have not yet made any such experiments, the flexibility of polar codes to different

channel conditions combined with its pliant rate adaptation makes it suitable as

an ingredient for future AMC schemes.

3.6 Decoding

There are different decoding mechanisms that might be employed to decode po-

lar codes. The initial decoding algorithm given in [2] was successive-cancellation
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(SC). This method is vital for theoretical proofs, but fails to provide good per-

formance at practical code lengths. Another choice is the Belief-Propagation

(BP) algorithm. This method works via iterations, and gives better performance

than the SC algorithm. One final choice is ML decoding, which is optimal, but

has higher complexity which makes decoding impossible above a certain block

length. As such, polar codes can be decoded through three different mechanisms

suitable for different purposes and situations.

The decoding strategy we use for polar codes is belief propagation since it

has been shown that it performs better than the successive cancellation decoding

scheme, and achieves similar performance to that of ML decoding scheme whose

complexity prohibits its usage in performance demanding applications and at

long FEC lengths. We are using the MATLAB implementation of the decoder

Arıkan has used in his paper [3].
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Chapter 4

PHY LAYER SIMULATOR

We have implemented a WirelessMAN-OFDMA PHY layer link-level simulator

supporting multiple subscribers across a frame using MATLAB. The simulator

is available both via a GUI for ease of use; and script files to automate the

simulation of several configurations in batch. The MATLAB version used in

our development and simulations is 2008b. The GUI requires at least MAT-

LAB R2008a although the command line interface should support even older

versions. We have not made use of fairly new MATLAB technologies like object

oriented programming although the structure is quite modular with functions

neatly separated for each individual operation. Simulating a frame full of DL

and UL bursts depends on the code choice, however usually lasts around 3 sec-

onds for our configuration of a Core 2 Q6600 machine with 8 GB RAM, running

Debian-AMD64.

4.1 Simulation Chain

A block diagram is given below in Figure 4.2. The channel coding step, which

comprises randomization, FEC encoding, interleaving and constellation mapping
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Figure 4.1: Screenshot of the IEEE 802.16-2009 Simulator GUI
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is followed by subcarrier allocation with a PUSC permutation scheme. Inverse

fast Fourier transform (IFFT) is applied on the resulting signals, and after adding

the cyclic prefix, transmission occurs at baseline.

At the receiver, first the cyclic prefix is removed, then fast Fourier transform

(FFT) is applied; and the resulting signal is fed to the demapper which produces

the log likelihood ratio (LLR) values. Subcarrier deallocation occurs, and each

burst is regenerated. Each FEC block in the burst is decoded with the steps of

the encoding process in reverse order.

4.1.1 Simulator Blocks

Encoder These blocks can be separated into three categories:

• Allocation blocks : These blocks are for the burst allocation within

the frame, and subcarrier allocation for each burst. Each subscriber

will be assigned a burst whose subcarrier indexes over OFDM symbols

are determined via these blocks.

• Channel encoding blocks: These compromise the randomization, FEC

encoding, interleaving and mapping blocks.

• Channel and antenna blocks: Channel model blocks and support for

MIMO configurations are given in this block.

Decoder The blocks in the encoder will be presented in reverse order. LLR

demapping will be followed by the explanation of deinterleaving, FEC de-

coding and derandomization blocks.
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Figure 4.2: Block Diagram of the Simulator
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4.1.1.1 FEC

The simulator uses CML Encoded Library[16] as the FEC backend which fea-

tures MEX-files written to speed up simulation; and as such supports the burst

configurations there, i.e. most of the configurations in the standard. Currently

only CTC and LDPC codes in the CML library are made use of, convolutional en-

coding is implemented in MATLAB; and BTC is not supported (though support

for BTC can easily be added).

Besides standard WiMAX codes, polar codes are added as a FEC option.

Key functions within polar code encoding and decoding are written as MEX files

within MATLAB which contribute a speed increase of on average 18 times, see

Table 4.1 to compare the performance improvement using different compilers.

Further information regarding our optimization efforts are given in Appendix A.

Table 4.1: MEX File Performance Improvements Using Different Compilers
Compiler Average Gain (x)

MS 17.7779
LCC 10.7501
Mingw 18.3047
Cygwin-mingw 18.0044

Another issue to consider in integrating polar coding is the code configura-

tions. Due to their recursive nature, polar codes natively support code lengths

of 2n. The rate is determined by selecting a portion of this code length as in-

formation positions, hence rate matching is fairly easy for polar codes if the

denominator of the rate fraction is a power of two. So, rates like 1/2, 3/4 with

code lengths 128, 256 are easy to implement.

We compare polar codes with CTC’s with code length given in Appendix B.

Those code length however are not multiples of 2, therefore in order to compare

the performance of two codes, we have selected the following route: For an (N,K)

CTC code, the equivalent polar code is the given by (N ′, K ′) where N ′ is the
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nearest power of 2 to N , and K ′ is chosen such that the code rate is preserved.

For a list of equivalent polar codes to those defined in the standard, refer to

Appendix B.

Another optimization we have done in the whole simulation chain has been to

make use of parallel for (parfor) blocks in MATLAB to speed up the embarrass-

ingly parallel parts of the chain, i.e. parts which can be carried out independently,

like encoding different FEC blocks in parallel. On the Core 2 Q6600 machine

sporting four cores, this parallelization has resulted in a speed increase of 2. We

suspect that the reason speed increase is not proportional to the increase in the

number of CPUs to be a bottleneck caused by the communication overhead since

the parallelized portions are too small. In the pursuit of these parallelization

efforts, we have made some experiments with using a cluster of computers for

simulations; however found that for our current simulation needs, this is not

necessary at this point.

4.1.1.2 Subcarrier Allocations

PUSC is used for subcarrier allocations, and currently only the mandatory PUSC

zone is used. The zone is divided into several rectangular bursts, both in DL and

UL. Unless stated otherwise, we use 22 DL OFDM symbols, and 15 UL OFDM

symbols. There are 6 partitions for DL and UL respectively, and each subscriber

is assigned the whole horizontal space, and 1/6th of the subchannels available,

e.g. 5 subchannels for NFFT = 1024. This burst configuration is given below in

Figure 4.3.

Although we have used fixed data regions for subscribers in our simulations,

the geometric allocation of each burst (the OFDMA symbols and logical sub-

channels each burst spans) and burst profiles for each burst (modulation type,
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FEC type, rate) can be defined using a MATLAB GUI. Figure 4.4 shows a sam-

ple burst configuration and resulting plot generated by the GUI. This allocation

step is currently manual.

Figure 4.4: Screenshot of the Burst Allocation GUI

4.1.1.3 Channel Model

Several channel models have been integrated. AWGN Channel, Rayleigh fading

channel and ITU Baseline channels with Pedestrian B, Modified Pedestrian B,

Vehicular A and Modified Vehicular B scenarios are supported. For the Rayleigh

channel, we assume that each OFDM subcarrier is multiplied by an independent

channel coefficient.

The ITU-Baseline channel has been implemented by IASA, and integrated

into our test suite by us. The non-modified channels use 6 taps while the modified

versions use 24 taps.

Tables 4.2 and 4.3 give the power delay profiles and delays of taps associated

with the modified channel versions. These values are used to sample the channel
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Figure 4.5: Manually Configured Burst Allocation

at the system sampling rate, and the output is normalized in order to generate

the modified Pedestrian B and modified Vehicular A channels we are using.

We assume that we already know the SNR value of the AWGN channel so that

demapper works correctly. Similarly, we assume that we have perfect knowledge

of the channel if it is fading, so a zero-forcing equalizer is used in all such cases

as defined in [12], i.e. for a complex channel factor Hi and received symbol Ri,

the symbol input to the demapper is R̃i such that:

R̃i =
Ri

Hi

= Xi +
Ni

Hi

This is perhaps suboptimal in the sense that if the channel response is too

low, it will amplify the additive noise, however this recovery fits our purposes.

For a detailed discussion on channel estimation problems, the interested reader

is encouraged to read [17].
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Figure 4.6: Channel instances for the Modified Pedestrian B Model (left) at
v = 5 km/h and Modified Vehicular A Model (right) at v = 60 km/h

4.2 Simulation Environment

This section will give information on the simulator environment and the chosen

simulation parameters.

4.2.1 Parameters of the Simulator

The following parameters are common for different burst profiles:

The parameters in Table 4.5, and their options are different for each burst

profile:

Note that the FEC information bit length is actually not part of a burst pro-

file, it is chosen according to the space allocated, however in our implementation,

we have neglected the slot concatenation rule, and assumed that the FEC length

is chosen for the burst profile, and the burst is filled such that as much FEC

blocks with the selected code configuration are mapped. Remaining portions of

bursts are filled with zeros.
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Table 4.2: Power Delay Profile for the ITU Modified Pedestrian B Channel
Relative Path Power (db) Delay (s)

-1.1750 0.0000
0 40e-009

-0.1729 70e-009
-0.2113 120e-009
-0.2661 210e-009
-0.3963 250e-009
-4.3200 290e-009
-1.1608 350e-009

-10.4232 780e-009
-5.7138 830e-009
-3.4798 880e-009
-4.1745 920e-009

-10.1101 1.20e-006
-5.6460 1.25e-006

-10.0817 1.31e-006
-9.4109 1.35e-006

-13.9434 2.29e-006
-9.1845 2.35e-006
-5.5766 2.38e-006
-7.6455 2.40e-006

-38.1923 3.70e-006
-22.3097 3.73e-006
-26.0472 3.76e-006
-21.6155 3.87e-006

To make the comparisons easier, we assign different configurations for differ-

ent subscribers, but the channel characteristics (channel type, scenario chosen,

and channel parameters) of the subscribers are actually the same.

4.2.2 Simulation Parameters

In this section, we give information regarding the parameter set chosen to im-

plement the simulator. As mentioned before, IEEE 802.16 standards are full

of choices, making the implementation hard; whereas the WiMAX certification

chooses a subset of the available choices. Our choice selection has been mainly

in the direction of WiMAX Forum’s choices, however in some cases, we have
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Table 4.3: Power Delay Profile for the ITU Modified Vehicular A Channel
Relative Path Power (db) Delay (s)

-3.1031 0.0000
-416.60e-003 50e-009

0.0000 90e-009
-1.0065 130e-009
-1.4083 270e-009
-1.4436 3e-009
-1.5443 390e-009
-4.0437 420e-009

-16.6369 670e-009
-14.3955 750e-009
-4.9259 770e-009

-16.5160 8e-009
-9.2222 1.04e-006

-11.9058 1.06e-006
-10.1378 1.07e-006
-14.1861 1.19e-006
-16.9901 1.67e-006
-13.2515 1.71e-006
-14.8881 1.82e-006
-30.3480 1.84e-006
-19.5257 2.48e-006
-19.0286 2.50e-006
-38.1504 2.54e-006
-20.7436 2.62e-006

Table 4.4: Common parameters for Bursts
NFFT 2048, 1024, 512
Channel Model AWGN, Rayleigh, Modified Pedestrian B or Vehicular A
Cyclic Prefix 1/32, 1/16, 1/8, 1/4

Table 4.5: Individual Parameters for Each Burst

Constellation Mapping QPSK, 16-QAM, 64-QAM
FEC Encoding Convolutional Encoding, CTC, LDPC, Polar codes
FEC Information Bit Length Varies for each FEC type
FEC Rate Varies for each FEC type
Puncturing Pattern/Rate Only available for polar code yet
OFDM symbol start/end Rectangular bursts are supported
Logical subchannel start/end Manually defined
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implemented IEEE 802.16 only options such as LDPC encoding support since

we already had the support via CML.

Some sections of the standard have been omitted for ease of implementation,

and for their being unnecessary for our purposes. Namely, we have done the

following simplifications:

• Frames are composed of only the subscriber bursts, namely we have not

included the preamble, FCH, TTG or RTG. These are mainly used for syn-

chronization and control purposes such as informing the subscriber stations

of the chosen MCs. We already assume perfect knowledge on these.

• Similarly, although the locations for pilot carriers are reserved, we do not

do any operation on the pilot carriers since we already assume that we have

perfect synchronization and perfect channel knowledge.

• Although we are using PUSC, we have given the option of using the full

spectrum range to the subscribers, i.e. we have not dealt with segmentation

since it is more of a system-level topic.

• Although we have implemented FUSC too, since only PUSC is used in real

scenarios, we have omitted integrating it in our simulator.

• Burst profiles are not chosen according to an AMC algorithm, but rather

determined by the user. This is because in a link-level simulator with

a simulation length of 1 frame, this is not meaningful. Our aim rather

has been to see the link-layer performance through the iteration of various

channel conditions of fixed burst profiles.

• Repetition coding is not supported.

• The standard specifies a final randomization step after the constellation

mapping, namely a multiplication via a PRBS as we defined in Sec-

tion 2.2.2.4. We have not implemented that part since the explanation
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in the standard was not too detailed, and the effect of this is negligible

for our purposes; as we already implemented equivalent mechanisms for

randomization and interleaving of both the data bits and subcarriers.

• Of the MIMO schemes, we have implemented 2x1 and 2x2 Alamouti

schemes for DL. For UL, support is optional, and as such, only SISO is

used for simulations even though MIMO option is selected.

• The GUI gives burst profile choices via three different inputs: Namely the

FEC choice, constellation size and FEC length. The command line interface

however eases simulations via a predefined burst configuration selection

which makes comparisons easier. For example, a burst profile of A1 in the

command interface maps to choosing CC as a FEC option, 48 bits as the

FEC length and ratio 1/2. The order of these burst configations are given in

the Appendix B, and simply defining as burst parameters A1,B1,C1,D1,E1

for example gives the user the opportunity to compare different profiles

easily. Since this approach is easier, we have only integrated the polar code

support in the command line interface.

• Cyclic prefix support exists, but is disabled since it does not change per-

formance. Similarly, conversion of the OFDMA waveform to time domain

is not performed, instead the channel parameters are transformed to fre-

quency domain.

• HARQ support does not exist since simulations are run for a single frame.

It is more of a system level issue and we assume full buffer.

4.2.2.1 Primitive and Derived Parameters

Primitive parameters specified in the 802.16e standard and 802.16m EMD doc-

umentation will be introduced in this subsection.
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Table 4.6: Sampling factors for Different Bandwidths

n Bandwidth (Multiple of)

8/7 1.75 MHz
28/25 1.25, 1.5, 2, 2.75 MHz
8/7 None of the above

Previously named 802.16e, WirelessMAN-OFDMA PHY is developed for non-

line of sight (NLOS) operation, unlike its predecessor 802.16d. The specification

supports multiple FFT sizes, starting from 128 point FFT, up to powers of 2

till 2048. The FFT size is modified in order to keep the subcarrier spacing

fixed, which is 10.94 kHz. As a result, the OFDMA in WirelessMAN-OFDMA

is SOFDMA, which stands for Scalable OFDMA.

In WiMAX, FFT size is configured according to the bandwidth allocated. For

a bandwidth of 20 MHz, an FFT size of 2048 is chosen. Similarly, for a bandwidth

of 10 MHz, the FFT size is halved to 1024 points, and for a bandwidth of 5 MHz,

the FFT size is 512. Although WiMAX supports bandwidths multiples of 1.25,

2 or 2.75 MHz, other compatible systems such as the WiBro in South Korea

support bandwidths multiple of 1.75 MHz. In all cases however, the sampling

factor is modified according to Table 4.6 to keep the subcarrier spacing fixed and

the corresponding FFT sizes are chosen in each case.

Once the OFDMA frame at a scheduling instant is filled, it is converted to

time domain via inverse Fourier transform (IFFT). A cyclic prefix is added to

mitigate intersymbol interference, and make circular convolution possible.

The primitive parameters used in the simulations are listed below as:

• Bandwidth (BW): Nominal bandwidth. We assume a bandwidth of 10

MHz in our simulations unless stated otherwise.
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• Number of used subcarriers: 1680 for 2048-FFT, 840 for 1024-FFT. For a

bandwidth of 10 MHz, we use 1024-FFT.

• Sampling factor : This parameter is modified in order to make the subcar-

rier spacing as specified. See Table 4.6.

• Cyclic prefix ratio: This determines the length of the cyclic prefix

added from the end of the signal to the beginning. Supported values for

WirelessMAN-OFDMA are 1/32, 1/16, 1/8 and 1/4.

Based on primitive parameters, various other parameters might be derived.

These include the following:

• FFT Size: This is the smallest power of 2 greater than used subcarriers. It

is an exponent of 2 between 128 and 2048. The FFT size is dependent on

the bandwidth, for example, for 10 Mhz, we use 1024 FFT.

• Sampling frequency (fsampling)

• Subcarrier spacing : This is kept constant for different FFT sizes.

• Cyclic prefix time (Tg)

• OFDMA symbol time (TOFDMA)

• Sampling time

The formulation for the items above are given in [1, Section 8.4.2.4].

Important parameters derived for different FFT sizes are given in Table 4.7.

Tuseful determines the length of OFDM symbol with no cyclic prefix. G is the

cyclic prefix ratio, 1/8 in all cases; Tg is the length of the cyclic prefix interval

and TOFDMA is the length of the OFDMA symbol with cyclic prefix. Overall

maximum data rates are 3.168e+06 bps, 1.584e+07 bps, 3.168e+07 bps and

6.336e+07 bps respectively for NFFT = 128, 512, 1024 and 2048.
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Table 4.7: OFDMA Parameters for Different FFT Sizes

NFFT fsampling (Hz) Subcarrier
Spacing
(Hz)

Tuseful (s) G Tg (s) TOFDMA

(s)
Symbols
per
frame

128 1.400e+06 1.094e+04 9.143e-05 1.250e-01 1.143e-05 1.029e-
04

48

512 5.600e+06 1.094e+04 9.143e-05 1.250e-01 1.143e-05 1.029e-
04

48

1024 1.120e+07 1.094e+04 9.143e-05 1.250e-01 1.143e-05 1.029e-
04

48

2048 2.240e+07 1.094e+04 9.143e-05 1.250e-01 1.143e-05 1.029e-
04

48

4.2.3 Simulation Assumptions

In SISO case, the channel is assumed to be fixed for a OFDM symbol. Therefore,

we neglect intercarrier interference and assume the subscribers experience flat

fading at each subcarrier.

For MIMO, we have implemented both the 2 transmit - 2 receive antenna,

and 2 transmit - 1 receive antenna schemes. WiMAX does not support the 2

transmit - 2 receive scheme, however this functionality is added to compare the

results with those for IEEE 802.16 m and the WiMAGIC project, which uses 2x2

scheme instead of 2x1 scheme.

Although we have implemented MIMO 2x2, in our results section, we only

analyze the 2x2 scheme since it brings a much better performance improvement.

As stated before, the Alamouti scheme requires that the channel is fixed for

two subsequent symbols. Since our simulations involve OFDM symbols, this

requirement translates as the channel being fixed for two subsequent OFDM

symbols.
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4.2.4 Simulation Performance Metrics

In our simulations, our primary performance metric will be BER vs Signal-to-

Noise(SNR) and FER vs SNR performance curves. For comparisons, we perform

inital experiments for each coding scheme with SISO in AWGN channel.

Recall that, as Shannon proved, in an AWGN channel, the rate of reliable data

transmission (also known as the capacity) is upperbounded as in the following

inequality[15]:

RT ≤ W log2

(
1 +

P

NoW

)
η ≤ log2

(
1 +

Eb
No

η

)
where η , RT

W
and called the spectral efficiency and we make use of the following

of primary variables:

• No/2 is the (two-sided) power spectral density of noise per degree of freedom

in Watts/Hz.

• W is the channel bandwidth in Hz.

• P is the average transmitter power (over all degrees of freedom) in Watts.

• RT is the rate of transmission in bits/sec.

and Eb denotes the energy per bit, defined as:

Eb , P/RT

Rearranging the final inequality, with other variable replacements yields:

Eb
No

≥ 2η − 1

η
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This constitutes the Shannon limit on Eb

No
for a given spectral efficiency η,

similar to the Shannon limit on rate, commonly known as capacity. The ques-

tion then becomes one of getting the value of η for a given code configuration

candidate, i.e. a given rate and modulation.

Note that for a modulation and coding scheme (MCS) with coding rate R

(k/n –dimensionless) and 2m-ary signal constellation:

RT = mRD

where D is the number of modulation symbols per second. For 1-dimensional

modulation schemes, such as Pulse Amplitude Modulation (PAM) and Binary

Phase Shift Keying (BPSK), D = 2W . For 2-dimensional modulation such as

Quadrature Phase Shift Keying (QPSK) and Quadrature Amplitude Modulation

(QAM), D = W .

Thus,

η =
RT

W
=

2mR

d

where d is the dimension of the modulation scheme (d = 1 for PAM, d = 2 for

QAM).

Hence, for a given code rate R and a chosen modulation order m, one can

calculate η and then calculate the Shannon limit on Eb/No.

In our simulations, we have chosen rates of 1/2 and 3/4 and constellation

sizes of 4 and 16, as a subset of the WiMAX standard. The Shannon limits on

Eb/No for these cases in an AWGN channel are given below:

Rate Modulation η Shannon Limit on Eb/No

1/2 QPSK 1 1.0 (0 dB)
3/4 QPSK 3/2 2.16 (3.35 dB)
1/2 16-QAM 2 3.5 (5.44 dB)
3/4 16-QAM 3 7.67 (8.85 db)

Incidentally, the Shannon limit on Eb/No is the optimal limit a given code can

approach; and is the place at which the code should have a waterfall behaviour.
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So, the expected behaviour of a perfect code would be to be erroneous until this

limit is achieved, and then once this limit is surpasses, immediately correct all

the errors observed.

This is obviously not easily achievable in practice, however one important

observation that can be made about this limit is that, it is actually around this

limit point that codes tend to start performing better, and their downward slope

increases.
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Chapter 5

SIMULATION RESULTS AND

ANALYSIS

In this chapter, we present our simulation results. Our implementation task has

been two fold, namely first to implement a complete, end-to-end IEEE 802.16e

simulator chain; and second to integrate polar codes as a FEC option to see

how this new coding option fares with well-known, state-of-the art FEC options.

Since WiMAX specification has selected only CTC and CC as FEC options,

and since CTC is known to perform better than CC, we have selected to per-

form comparison simulations comparing mainly CTC and polar codes. Some

simulation results, however, compare the coded simulation results with uncoded

simulation results in order to get a reference point. We also investigate how

changing the MIMO scheme changes performance, and the effect of PUSC for

modified Pedestrian B and Vehicular A channels.

The sections simulations are presented, are formed as follows:

1. We start with the SISO cases. For the SISO case, we first consider the

cases for which the modulation is QPSK.
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2. For the SISO case with a modulation of QPSK, we first analyze the cases

for which the rate is 1/2.

3. For those cases, we do simulations for four different channel types: AWGN,

flat-fading Rayleigh, modified Pedestrian B and modified Vehicular A chan-

nels.

4. For each case, we present the Bit Error Rate (BER) vs Eb/No, and Frame

(Code Block) Error Rate (FER) vs Eb/No performance curves.

5. We repeat Step 4 for a code rate of 3/4.

6. We repeat Steps 3-4 for a modulation of 16 QAM.

7. We repeat Steps 2-4 for the MIMO choice of 2x2.

Throughout the simulations, for a given modulation choice and code rate,

we have compared four different configurations: Two CTC code configurations

with different codelengths, and two other polar code configurations with different

codelengths. The code configurations and code lengths therefore only differ for

different rates.

The equivalent polar code lengths for their CTC counterparts are found by

finding the power of two nearest to the CTC code length, since no puncturing

is done and polar codes allow codelengths of powers of two. Therefore, the code

lengths are not identical, but very similar and the code rates are preserved. In

each case, we select the CTC configuration with the longest codelength and

another with a shorter codelength in order to identify the effect of codelength on

the performance.

The code choices employed for QPSK Rate 1/2 and Rate 3/4 cases are given

in Tables 5.1 and 5.2 respectively:
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Table 5.1: Code Configurations for QPSK Modulation and Rate 1/2

Code Type Code
Rate

Information
Length
(bits)

Coded
Block
Length
(bits)

Spectral
Efficiency
(η)

Shannon
Limit on Eb/No

(dB))

CTC 1/2 240 480 1 0
CTC 1/2 480 960 1 0
Polar 1/2 256 512 1 0
Polar 1/2 512 1024 1 0

Table 5.2: Code Configurations for QPSK Modulation and Rate 3/4

Code Type Code
Rate

Information
Length
(bits)

Coded
Block
Length
(bits)

Spectral
Efficiency
(η)

Shannon Limit
on Eb/No (dB)

CTC 3/4 216 288 3/2 0.8599
CTC 3/4 432 576 3/2 0.8599
Polar 3/4 192 256 3/2 0.8599
Polar 3/4 384 512 3/2 0.8599

For the 16 QAM cases, same code configurations as in QPSK cases are used.

The only differences are the spectral efficiency η and Shannon limit on Eb/No for

these cases. These configurations are presented in Tables 5.3-5.4.

Table 5.3: Code Configurations for 16 QAM Modulation and Rate 1/2

Code Type Code
Rate

Information
Length
(bits)

Coded
Block
Length
(bits)

Spectral
Efficiency
(η)

Shannon Limit
on Eb/No (dB)

CTC 1/2 240 480 2 1.7609
CTC 1/2 480 960 2 1.7609
Polar 1/2 256 512 2 1.7609
Polar 1/2 512 1024 2 1.7609

5.1 SISO Results

We first give the simulation results in a SISO setting under various channel

conditions and various code configurations as specified in the WiMAX standard.
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Table 5.4: Code Configurations for 16 QAM Modulation and Rate 3/4

Code Type Code
Rate

Information
Length
(bits)

Coded
Block
Length
(bits)

Spectral
Efficiency
(η)

Shannon Limit
on Eb/No (dB)

CTC 3/4 216 288 3 3.6798
CTC 3/4 432 576 3 3.6798
Polar 3/4 192 256 3 3.6798
Polar 3/4 384 512 3 3.6798

We first give the results with QPSK modulation, and then give the results for

16-QAM modulation.

5.1.1 Results with QPSK Modulation in a SISO Setting

In this subsection, we present the results of the simulations in which QPSK

modulation is used.

We first give the performance results for codes with rates equal to 1/2 in

Figures 5.2–5.9. Then the simulation results with rates equal to 3/4 are plotted

in Figures 5.10–5.19.

For QPSK modulation, for a rate of 1/2, we observe that the performance

gap between CTC and equivalent polar codes is around 2 dB at a FER error rate

of 10−3 in an AWGN channel.

The performance gap is around 3 dB for the same FER error rate in Rayleigh

channel.

For the modified Pedestrian B channel with a v = 5km/h, the performance

gap is similarly around 2-3 dBs.

For the modified Vehicular A channel with a v = 60km/h, the performance

gap is similarly around 3-4 dBs.
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We also observe that since we assume the channel coefficients are constant

in two OFDM symbols for both Pedestrian B and Vehicular A channels, the

performance of codes in these two channels are very similar.

5.1.1.1 Comparison of Codes with Coding Rate = 1/2

In this part, we present the results of our simulations of the same code config-

urations, under different channel conditions, with code rates fixed to 1/2, the

modulation fixed to QPSK and the antenna setting is SISO.

However, first, for reference purposes we start by presenting the results with

uncoded simulation results overlayed on top of coded configuration simulations

in Figure 5.1.

Figures 5.2 through 5.9 present the BER vs Eb/No and FER vs Eb/No curves

for each of the four channels, namely the AWGN channel, Rayleigh channel,

Modified Pedestrian B Channel and finally Modified Vehicular A channel.

Similarly, before presenting the Rayleigh channel results by themselves, we

present the uncoded and coded simulation results under Rayleigh channel in

Figure 5.4 on page 70.

We observe that in all cases in this section, the CTC codes outperform polar

codes by more than a few dBs, and usually the higher the code length, the better

the performance.

For clarity, the coded configuration results of the same simulation are pre-

sented again without the uncoded simulation results, and with the Shannon limit

on Eb/No as a reference point in Figure 5.2.
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AWGN Channel with QPSK Modulation
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Figure 5.6: FER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Rayleigh Channel in a SISO Setting,
with QPSK Modulation
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Figure 5.7: BER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC Codes
at Two Different Code Lengths in Modified Pedestrian B Channel (v = 5km/h)
in a SISO Setting, with QPSK Modulation
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Figure 5.8: FER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC Codes
at Two Different Code Lengths in Modified Pedestrian B Channel (v = 5km/h)
in a SISO Setting, with QPSK Modulation
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Figure 5.9: BER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC Codes
at Two Different Code Lengths in Modified Vehicular A Channel (v = 60km/h)
in a SISO Setting, with QPSK Modulation
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Figure 5.10: FER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Modified Vehicular A Channel (v =
60km/h) in a SISO Setting, with QPSK Modulation
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5.1.1.2 Comparison of Codes with Coding Rate = 3/4

Similar to previous part, we present the results of our simulations of the same

code configurations, under different channel conditions, with code rates fixed to

3/4, the modulation fixed to QPSK and the antenna setting is SISO.

However, first, for reference purposes we start by presenting the results with

uncoded simulation results overlayed on top of coded configuration simulations

in Figure 5.11.

Figures 5.12 through 5.19 present the BER vs Eb/No and FER vs Eb/No

curves for each of the four channels, namely the AWGN channel, Rayleigh chan-

nel, Modified Pedestrian B Channel and finally Modified Vehicular A channel.

The performance results are very similar to that for the rate 1/2 cases. CTCs

outperform polar codes by more than 2-3 dBs for each of the channels.
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Uncoded − 1 (480,480) − 4QAM − AWGN − SISO

Figure 5.11: Comparison of Coded (Rate = 3/4) and Uncoded Schemes Under
AWGN Channel with QPSK Modulation
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Figure 5.12: BER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in an AWGN Channel in a SISO Setting,
with QPSK Modulation
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Figure 5.13: Rate 3/4 Polar and CTC Codes at Two Different Code Lengths in
an AWGN Channel in a SISO Setting, with QPSK Modulation
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Figure 5.14: BER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Rayleigh Channel in a SISO Setting,
with QPSK Modulation
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Figure 5.15: FER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Rayleigh Channel in a SISO Setting,
with QPSK Modulation
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Figure 5.16: BER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Modified Pedestrian B Channel (v =
5km/h) in a SISO Setting, with QPSK Modulation
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Figure 5.17: FER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Modified Pedestrian B Channel (v =
5km/h) in a SISO Setting, with QPSK Modulation
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Figure 5.18: BER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Modified Vehicular A Channel (v =
60km/h) in a SISO Setting, with QPSK Modulation
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Figure 5.19: FER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Modified Vehicular A Channel (v =
60km/h) in a SISO Setting, with QPSK Modulation
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5.1.2 Results with 16-QAM Modulation in a SISO Setting

In this subsection, we present the results of the simulations in which 16-QAM

modulation is used.

For 16-QAM modulation, for a rate of 1/2 for a FER of 10−2, the performance

gap is 2 dB in an AWGN channel.

For 16-QAM modulation, for a rate of 1/2 for a FER of 10−2, the performance

gap is 3 dB in other (fading) channels.

5.1.2.1 Comparison of Codes with Coding Rate = 1/2

In this subsection, we present the results of our simulations for a SISO antenna

configuration, a modulation choice of 16 QAM and FEC code configurations of

rate 1/2.

We observe that the performance curves are shifted to the right with respect to

the QPSK cases, in an amount denoting the difference between the Shannon lim-

its on Eb/N0 cases. Other than that, the performance curves feature resemblance

to their QPSK counterparts, with the CTC code configurations outperforming

their polar equivalents by a few dBs for both BER and FER performances.

5.1.2.2 Comparison of Codes with Coding Rate = 3/4

In this subsection, we present the results of our simulations for a SISO antenna

configuration, a modulation choice of 16 QAM and FEC code configurations of

rate 3/4. Since the spectral efficiency η is highest in these configurations, the

Shannon limit on Eb/No reaches the highest point for our simulations. This is

observed by a shift to the right for all cases. Other than this shift, the results

79



−5 0 5 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER vs. Eb/No

Eb/No (dB)

B
E
R

 

 

Shannon Limit

CTC−0.5 (576,288)−16−QAM−AWGN−SISO

Polar−0.5 (512,256)−16−QAM−AWGN−SISO

CTC−0.5 (960,480)−16−QAM−AWGN−SISO

Polar−0.5 (1024,512)−16−QAM−AWGN−SISO

Figure 5.20: BER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in an AWGN Channel in a SISO Setting,
with 16-QAM Modulation
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Figure 5.21: FER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in an AWGN Channel in a SISO Setting,
with 16-QAM Modulation
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Figure 5.22: BER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Rayleigh Channel in a SISO Setting,
with 16-QAM Modulation
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Figure 5.23: FER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Rayleigh Channel in a SISO Setting,
with 16-QAM Modulation
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Figure 5.24: BER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Modified Pedestrian B Channel (v =
5km/h) in a SISO Setting, with 16-QAM Modulation
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Figure 5.25: FER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Modified Pedestrian B Channel (v =
5km/h) in a SISO Setting, with 16-QAM Modulation
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Figure 5.26: BER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Modified Vehicular A Channel (v =
60km/h) in a SISO Setting, with 16-QAM Modulation
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Figure 5.27: FER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Modified Vehicular A Channel (v =
60km/h) in a SISO Setting, with 16-QAM Modulation
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are pretty much similar to the previous sections, with CTC outperforming the

polar codes in all cases.

Our particular interesting observation might be that, for CTC codes, the

effect of codelength in performance is as expected in almost all cases: The longer

the codelength, the better. For polar codes, however, this is not always the case:

For the AWGN channel, we observe a better performance from the longer code,

as shown in Figure 5.28.

For the Rayleigh channel, this observation is no longer that strong, as shown

in Figure 5.30; where we see that increasing the codelength slightly increases

the BER performance, however yet still slightly decreases the FER performance.

However, overall, we might say that the performances are almost equal.

Finally, for the modified Pedestrian B and Vehicular A channels however, we

see in Figures 5.32 - 5.35 that increasing the codelength with polar codes causes

an observable decrease in code performance. This might be explained by the

wrong selection of frozen bit positions since the selection is done with a BEC

channel assumption, and since the decoding is very sensitive to wrong decisions

on that set, the error propagates from the wrongly selected significant bits to

lower bits, resulting in an overall worse performance for fading channels.
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Figure 5.28: BER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in an AWGN Channel in a SISO Setting,
with 16-QAM Modulation
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Figure 5.29: FER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in an AWGN Channel in a SISO Setting,
with 16-QAM Modulation
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Figure 5.30: BER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in an AWGN Channel in a SISO Setting,
with 16-QAM Modulation
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Figure 5.31: FER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Rayleigh Channel in a SISO Setting,
with 16-QAM Modulation
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Figure 5.32: BER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Modified Pedestrian B Channel (v =
5km/h) in a SISO Setting, with 16-QAM Modulation
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Figure 5.33: FER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Modified Pedestrian B Channel (v =
5km/h) in a SISO Setting, with 16-QAM Modulation
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Figure 5.34: BER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Modified Vehicular A Channel (v =
60km/h) in a SISO Setting, with 16-QAM Modulation
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Figure 5.35: FER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Modified Vehicular A Channel (v =
60km/h) in a SISO Setting, with 16-QAM Modulation
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5.2 MIMO 2x2 Results

In this section, the same simulations as in previous sections are done, except that

we change the antenna configuration to MIMO 2x2. The performance increase

is evident in all cases; and the observations stated in the previous sections hold

true in all the sub-cases we are considering. Therefore, it suffices to say that,

under all scenarios we have simulated with MIMO 2x2 configuration, we have

observed that CTCs outperform polar codes by a few dB margins, and we will

not restate those observations for each individual case.

The general trend that CTC codes perform better than polar codes continues

for this set of simulations. We observe that with both QPSK and 16-QAM

modulations, and with rates 1/2 and 3/4, the performance gap between CTC

codes and polar codes is in the order of a few dBs.

The effect of increase in performance with increasing codelength is more ob-

servable for the MIMO case, possibly due to the increase in the inherent reliability

of the frozen positions for polar codes due to using two channels instead of one.

5.2.1 Results with QPSK Modulation in a MIMO 2x2

Setting

5.2.1.1 Comparison of Codes with Coding Rate = 1/2

In this subsection, we present the results of our simulations for a MIMO 2x2 an-

tenna configuration, a modulation choice of QPSK and FEC code configurations

of rate 1/2. Figures 5.36 and 5.37 give the results under Rayleigh channel, while

Figures 5.38- 5.41 show the results of simulations under modified Pedestrian B

and Vehicular A channels.
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Figure 5.36: BER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Rayleigh Channel in a MIMO 2x2
Setting, with QPSK Modulation
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Figure 5.37: FER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Rayleigh Channel in a MIMO 2x2
Setting, with QPSK Modulation
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Figure 5.38: BER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Mod. Pedestrian B Channel in a MIMO
2x2 Setting, with QPSK Modulation
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Figure 5.39: FER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Mod. Pedestrian B Channel in a MIMO
2x2 Setting, with QPSK Modulation
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Figure 5.40: BER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Mod. Vehicular A Channel in a MIMO
2x2 Setting, with QPSK Modulation
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Figure 5.41: FER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Mod. Vehicular A Channel in a MIMO
2x2 Setting, with QPSK Modulation
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5.2.1.2 Comparison of Codes with Coding Rate = 3/4

In this subsection, we present the results of our simulations for a MIMO 2x2 an-

tenna configuration, a modulation choice of QPSK and FEC code configurations

of rate 3/4. Figures 5.42 and 5.43 give the results under Rayleigh channel, while

Figures 5.44- 5.47 show the results of simulations under modified Pedestrian B

and Vehicular A channels.
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Figure 5.42: BER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Rayleigh Channel in a MIMO 2x2
Setting, with QPSK Modulation
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Figure 5.43: FER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Rayleigh Channel in a MIMO 2x2
Setting, with QPSK Modulation

−5 0 5 10
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER vs. Eb/No

Eb/No (dB)

B
E
R

 

 

CTC−0.75 (288,216)−QPSK−Mod. Ped B−MIMO−2x2

Polar−0.75 (256,192)−QPSK−Mod. Ped B−MIMO−2x2

CTC−0.75 (576,432)−QPSK−Mod. Ped B−MIMO−2x2

Polar−0.75 (512,384)−QPSK−Mod. Ped B−MIMO−2x2

Figure 5.44: BER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Mod. Pedestrian B Channel in a MIMO
2x2 Setting, with QPSK Modulation
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Figure 5.45: FER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Mod. Pedestrian B Channel in a MIMO
2x2 Setting, with QPSK Modulation
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Figure 5.46: BER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Mod. Vehicular A Channel in a MIMO
2x2 Setting, with QPSK Modulation
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Figure 5.47: FER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Mod. Vehicular A Channel in a MIMO
2x2 Setting, with QPSK Modulation
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5.2.2 Results with 16-QAM Modulation in a MIMO 2x2

Setting

5.2.2.1 Comparison of Codes with Coding Rate = 1/2

In this subsection, we present the results of our simulations for a MIMO 2x2

antenna configuration, a modulation choice of 16 QAM and FEC code config-

urations of rate 1/2. Figures 5.48 and 5.49 give the results under Rayleigh

channel, while Figures 5.50- 5.53 show the results of simulations under modified

Pedestrian B and Vehicular A channels.

The performance gap in these scenarios remains within a few dBs; mostly 1-2

dB’s.
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Figure 5.48: BER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Rayleigh Channel in a MIMO 2x2
Setting, with 16 QAM Modulation
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Figure 5.49: FER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Rayleigh Channel in a MIMO 2x2
Setting, with 16 QAM Modulation
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Figure 5.50: BER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Mod. Pedestrian B Channel in a MIMO
2x2 Setting, with 16 QAM Modulation
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Figure 5.51: FER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Mod. Pedestrian B Channel in a MIMO
2x2 Setting, with 16 QAM Modulation
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Figure 5.52: BER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Mod. Vehicular Channel in a MIMO
2x2 Setting, with 16 QAM Modulation

−4 −2 0 2 4 6 8
10

−4

10
−3

10
−2

10
−1

10
0

FER vs. Eb/No

Eb/No (dB)

F
E
R

 

 

CTC−0.5 (576,288)−16−QAM−Mod. Veh A−MIMO−2x2

Polar−0.5 (512,256)−16−QAM−Mod. Veh A−MIMO−2x2

CTC−0.5 (960,480)−16−QAM−Mod. Veh A−MIMO−2x2

Polar−0.5 (1024,512)−16−QAM−Mod. Veh A−MIMO−2x2

Figure 5.53: FER vs Eb/No Performance Curve for Rate 1/2 Polar and CTC
Codes at Two Different Code Lengths in Mod. Vehicular Channel in a MIMO
2x2 Setting, with 16 QAM Modulation
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5.2.2.2 Comparison of Codes with Coding Rate = 3/4

In this subsection, we present the results of our simulations for a MIMO 2x2

antenna configuration, a modulation choice of 16 QAM and FEC code config-

urations of rate 3/4. Figures 5.54 and 5.55 give the results under Rayleigh

channel, while Figures 5.56- 5.59 show the results of simulations under modified

Pedestrian B and Vehicular A channels.

Again, the performance gap in these scenarios remains within a few dBs;

mostly 1-2 dB’s; possibly making these scenarios the ones in which the perfor-

mance of polar codes is nearest to their CTC counterparts.
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Figure 5.54: BER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Rayleigh Channel in a MIMO 2x2
Setting, with 16 QAM Modulation
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Figure 5.55: FER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Rayleigh Channel in a MIMO 2x2
Setting, with 16 QAM Modulation
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Figure 5.56: BER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Mod. Pedestrian B Channel in a MIMO
2x2 Setting, with 16 QAM Modulation
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Figure 5.57: FER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Mod. Pedestrian B Channel in a MIMO
2x2 Setting, with 16 QAM Modulation
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Figure 5.58: BER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Mod. Vehicular A Channel in a MIMO
2x2 Setting, with 16 QAM Modulation

−8 −6 −4 −2 0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

FER vs. Eb/No

Eb/No (dB)

F
E
R

 

 

CTC−0.75 (192,144)−16−QAM−Mod. Veh A−MIMO−2x2

Polar−0.75 (256,192)−16−QAM−Mod. Veh A−MIMO−2x2

CTC−0.75 (576,432)−16−QAM−Mod. Veh A−MIMO−2x2

Polar−0.75 (512,384)−16−QAM−Mod. Veh A−MIMO−2x2

Figure 5.59: FER vs Eb/No Performance Curve for Rate 3/4 Polar and CTC
Codes at Two Different Code Lengths in Mod. Vehicular A Channel in a MIMO
2x2 Setting, with 16 QAM Modulation
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5.3 Analysis of Performance Gap Between the

Polar Codes and CTCs

Clearly, at their current implementation, polar codes cannot compete with CTC

codes. There are several issues to be considered:

The reason there is a performance gap at low SNR values (the vertical gap

between the CTC and polar plots) can be explained as follows:

First of all, CTC is a systematic code while polar is not. The actual data is

used intact in the CTC code, while the encoder of the polar codes modify the

source values for every value.

For polar codes, since the selection of frozen bits is very important, and the

system is very sensitive to wrong decisions on the choice of that set, deciding on

the wrong set results in an iteration of wrong knowledge from the most reliable

bit to less reliable bits. Therefore, since the estimate for the bit that is assumed

the most reliable is not actually yielding a correct result, the error propagates

and almost all the remaining values at other positions are decoded wrongly.

The selection of frozen bits for polar codes is, as mentioned before, a channel

dependent process. However, the process is only explicitly formulated so far for B-

DMC channels. In our simulations, no matter what the channel we are operating

under, we have constructed polar codes as if the channel was a B-DMC. This

choice obviously made the set of frozen bits unreliable for the channel at hand,

although the formation of the set is straightforward.

On the other hand, CTC does not suffer from this error propagation phe-

nomena as heavily as polar codes, due its systematic nature. As a consequence,

CTC codes usually have two different operating regions: One in which the slope

of the performance curve is low, however still downward (unlike polar codes for
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which the error rate remains steady for an interval), and another waterfall region

in which the slope increases to large negative values (similar to the behavior of

polar codes – although the performance curves are usually more steep for CTC

codes.)

The selection of the frozen bit positions might be improved as mentioned in

[2] through the use of Monte-Carlo simulations. Our scope in this thesis has

essentially been polar codes for which the construction depends on the channel

being assumed B-DMC, however we have made a sample simulation in which the

system is trained through Monte-Carlo simulations to be optimized against an

AWGN channel with an SNR value of 8 dB. We provide sample results for the

simulations with the trained polar codes in Section 5.3.1, where the expected

improvement is visible.

5.3.1 Improvement Through Selection of Frozen Posi-

tions

Although our study in this thesis has involved polar codes as described in [2]

with an assumption of BEC for choosing the frozen bit locations, it turns out

that this approach makes the performance of polar codes significantly worse. As

a sample case showing what achievements can be done if a more appropriate

channel model is used, we present some sample results in which the performance

of polar codes is improved. We perform Monte-Carlo simulation as explained in

[2] in order to determine a new set of frozen positions.

If the frozen position set is chosen according to the channel, polar code shows

improvements as expected (Figure 5.60). For example, under AWGN channel, if

the frozen position set is chosen assuming an AWGN channel with 8 dB SNR for

16-QAM modulation and rate 1/2 with a codelength of 256, we observe that the
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gap between CTC and the original polar code which was optimized for the BEC

channel is halved.
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Sc 1601 − Polar (256,128) 16−QAM AWGN

Sc 1602 − Polar (256,128) 16−QAM AWGN

Sc 1651 − CTC (384,192) 16−QAM AWGN

Figure 5.60: BER vs Eb/No: Improvement of Polar Code under AWGN Channel
Through More Appropriate Frozen Bit Position Selection (Sc 1601 Refers to the
Original Polar Code, Sc 1602 Refers to the Improved Polar Code (with Frozen
Positions Changed to that of an AWGN Channel with 8 dB SNR), Sc 1605 refers
to the reference CTC Code)

Similarly, under Rayleigh channel, there is an improvement even if the channel

is still assumed to be an AWGN channel with an SNR of 8 dB. (Figure 5.62)

These results show that the performance of polar codes could be improved

further, what we have presented in this subsection only scratches the surface,

and presents our early attempts at improving the codes according to channel

conditions. As mentioned before, these are early attempts at making polar codes

more suitable for the channel at hand, and as such should only be considered as

a sample demonstration that improvement is possible. This does not constitute

a direct part in the general flow of the thesis, but is rather given as an insight

for our future work.
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Sc 1601 − Polar (256,128) 16−QAM AWGN
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Figure 5.61: FER vs Eb/No: Improvement of Polar Code under AWGN Channel
Through More Appropriate Frozen Bit Position Selection (Sc 1601 Refers to the
Original Polar Code, Sc 1602 Refers to the Improved Polar Cod (with Frozen
Positions Changed to that of an AWGN Channel with 8 dB SNR), Sc 1605 refers
to the reference CTC Code)
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Sc 1701 − Polar (256,128) 16−QAM Rayleigh

Sc 1704 − Polar (256,128) 16−QAM Rayleigh

Sc 1751 − CTC (384,192) 16−QAM Rayleigh

Figure 5.62: BER vs Eb/No: Improvement of Polar Code under Rayleigh Channel
Through More Appropriate Frozen Bit Position Selection (Sc 1701 Refers to the
Original Polar Code, Sc 1704 Refers to the Improved Polar Code (with Frozen
Positions Changed to that of an AWGN Channel with 8 dB SNR), Sc 1605 refers
to the reference CTC Code)
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Sc 1701 − Polar (256,128) 16−QAM Rayleigh

Sc 1704 − Polar (256,128) 16−QAM Rayleigh

Sc 1751 − CTC (384,192) 16−QAM Rayleigh

Figure 5.63: FER vs Eb/No: Improvement of Polar Code under Rayleigh Channel
More Appropriate Frozen Bit Position Selection (Sc 1701 Refers to the Original
Polar Code, Sc 1704 Refers to the Improved Polar Code (with Frozen Positions
Changed to that of an AWGN Channel with 8 dB SNR), Sc 1605 refers to the
reference CTC Code)
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5.4 Comparison of Similar Scenarios under Dif-

ferent MIMO Schemes and Channel Condi-

tions

In this section, we perform a comparative analysis of similar code configurations

under various conditions in order to see how changing the MIMO scheme or

channel condition affects the performance.

In the first subsection, we analyze the effect of channel while keeping the

code configurations and MIMO scheme fixed, and compare the result of separate

scenarios. (Figures 5.64-5.69)

Conversely, in the second subsection, we analyze the effect of MIMO scheme

while keeping the code configurations and the channel fixed, and plot all the

results on one figure to see the effect. (Figures 5.71- 5.74)

5.4.1 Effect of Channel in Similar Code Configurations

and MIMO Settings

In this subsection, we use the results in previous subsection to see how changing

the channel changes performance. Effectively, we are replotting the results of

selected previous individual simulations on top of each other in order to be able

to compare them within the same context.

In order to investigate the effect of channel, given the same modulation choice

and antenna setting, we change the channel for each configuration in the first

part.

For the SISO configuration (Figures 5.64- 5.67), as expected, AWGN channel

yields the best performance since there is no fading. The flat fading causes by
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the Rayleigh channel results in a further 4-5 dB drop in performance, while the

modified Pedestrian B and Vehicular A channels perform similarly (due to the

assumption that the channels are static over two OFDM symbols), and results in

a further 5 dB decrease in performance. These observations are valid for scenarios

with both QPSK and 16-QAM modulations.

For MIMO 2x2 configuration (Figures 5.71-5.74), we have not simulated the

AWGN channel cases; therefore only comparisons between the Rayleigh fading

and modified Pedestrian B channel (or equivalently the modified Vehicular A

channel) might be done. Here, again, the performance gap is around 5-6 dB’s.
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Figure 5.64: Effect of Channel in Similar Code Configurations in a SISO Setting
with QPSK Modulation: BER vs Eb/No Plot
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Figure 5.65: Effect of Channel in Similar Code Configurations in a SISO Setting
with QPSK Modulation: FER vs Eb/No Plot
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Figure 5.66: Effect of Channel in Similar Code Configurations in a SISO Setting
with 16 QAM Modulation: BER vs Eb/No Plot
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Figure 5.67: Effect of Channel in Similar Code Configurations in a SISO Setting
with 16 QAM Modulation: FER vs Eb/No Plot
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Figure 5.68: Effect of Channel in Similar Code Configurations in a MIMO 2x2
Setting with 16 QAM Modulation: BER vs Eb/No Plot
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Figure 5.69: Effect of Channel in Similar Code Configurations in a MIMO 2x2
Setting with 16 QAM Modulation: FER vs Eb/No Plot
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5.4.2 Effect of MIMO Scheme in Similar Code Configu-

rations and Channels

Similar to previous subsection, our goal is this subsection is to visualize the effect

of different antenna configurations on performance for a fixed channel (Rayleigh

or Modified Vehicular A). Figures 5.71 and 5.72 show the performance curves for

the Rayleigh channel while Figures 5.73 and 5.74 are for the modified Vehicular

A channel. The results for modified Pedestrian B channel are not included since

due to our static channel assumption for two subsequent OFDM symbols, results

for the modified Pedestrian B channel are fairly equivalent to results for the

modified Vehicular A channel.

First, however, in order to form a reference point, we first present the results

of uncoded modulation with different antenna configurations in Figure 5.70.
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Figure 5.70: Performance of Uncoded Modulation Under Rayleigh Channel with
QPSK Modulation for SISO, MIMO 2x1 and MIMO 2x2 Antenna Schemes
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Figure 5.71: Effect of MIMO 2x2 Scheme for Similar Code Configurations in
Rayleigh Channel: BER vs Eb/No Plot
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Figure 5.72: Effect of MIMO 2x2 Scheme for Similar Code Configurations in
Rayleigh Channel: FER vs Eb/No Plot
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Figure 5.73: Effect of MIMO 2x2 Scheme for Similar Code Configurations in
Modified Vehicular A Channel: BER vs Eb/No Plot
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Figure 5.74: Effect of MIMO 2x2 Scheme for Similar Code Configurations in
Modified Vehicular A Channel: FER vs Eb/No Plot
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5.5 Effect of PUSC on Performance

In this section, we investigate the effect of PUSC on performance. Obviously,

PUSC does not bring any performance improvements for the AWGN channel and

Rayleigh channel. Therefore, we have investigated the effect of PUSC in Modified

Pedestrian B channel, since our assumption that the channel is static over two

OFDM symbols causes the performance of the system under Modified Pedestrian

B channel to be very similar to that under Modified Vehicular A channel.

In all cases, we have fixed the code rate to 1/2, and investigated the effect of

PUSC under various modulations and antenna configurations.

Clearly, PUSC results in a performance increase for error rates below 10−1.

This performance increase tends to be on the order of 1-2 dBs in almost all cases.

Figure 5.75 shows the effect of PUSC under QPSK modulation in a SISO

setting. Similarly, in Figure 5.77, we see the effect of PUSC under 16 QAM

modulation for the same antenna configuration.

Figure 5.79 shows the effect of PUSC under QPSK modulation in a MIMO

2x2 setting. Similarly, in Figure 5.81, we see the effect of PUSC under 16 QAM

modulation for the same antenna configuration.
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Figure 5.75: BER vs EbNo Performance of Two Code Configurations with PUSC
Enabled and Disabled; under Mod. Ped B Channel for SISO Scheme with QPSK
Modulation
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Figure 5.76: FER vs EbNo Performance of Two Code Configurations with PUSC
Enabled and Disabled; under Mod. Ped B Channel for SISO Scheme with QPSK
Modulation
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Figure 5.77: BER vs EbNo Performance of Two Code Configurations with
PUSC Enabled and Disabled; under Mod. Ped B Channel for SISO Scheme with
16 QAM Modulation
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Figure 5.78: FER vs EbNo Performance of Two Code Configurations with PUSC
Enabled and Disabled; under Mod. Ped B Channel for SISO Scheme with
16 QAM Modulation
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Figure 5.79: BER vs EbNo Performance of Two Code Configurations with PUSC
Enabled and Disabled; under Mod. Ped B Channel for MIMO 2x2 Scheme with
QPSK Modulation
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Figure 5.80: FER vs EbNo Performance of Two Code Configurations with PUSC
Enabled and Disabled; under Mod. Ped B Channel for MIMO 2x2 Scheme with
QPSK Modulation
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Figure 5.81: BER vs EbNo Performance of Two Code Configurations with PUSC
Enabled and Disabled; under Mod. Ped B Channel for MIMO 2x2 Scheme with
16 QAM Modulation
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Figure 5.82: FER vs EbNo Performance of Two Code Configurations with PUSC
Enabled and Disabled; under Mod. Ped B Channel for MIMO 2x2 Scheme with
16 QAM Modulation
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Chapter 6

CONCLUSION

It has been theoretically shown that polar codes achieve symmetric capacity for

B-DMC’s, however it was a task to see how these codes perform under AWGN

and baseline channels in a WiMAX simulator.

It has been shown that for small blocklengths as specified under IEEE 802.16

standards, the performance of polar codes is worse compared with CTC codes

with same configurations. The low-complexity encoding and decoding of polar

codes do not help in these cases, since the polarization effect does not show itself.

Our tests have involved testing under SISO and and MIMO 2x2 conditions

with channel models ranging from simple AWGN channel to modified pedestrian

B and vehicular A channels of the ITU. Under no setting we have found a polar

code that matches the performance of CTCs. Our instantaneous and perfect

knowledge of channel information made it difficult to observe difference between

the pedestrian and vehicular channels. MIMO 2x2, as expected, outperforms the

SISO antenna scheme by more than a few dBs.

We note that we have assumed that the channels we have combined to gen-

erate polar codes are B-DMCs when in reality, they are channels based either
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on AWGN or baseline channels. Generation of reliability parameters for these

channel conditions should aid code performance.

One other issue to mention about polar codes is that, since the encoding as-

sumes that bits go through the channel immediately after encoding, polar codes,

used as a combined modulation and encoding block might improve performance.

In fact, polar coding theory has recently been generalized to q-ary channels [18]

and work is in progress to extend it to real numbers, under which this vision

might be fulfilled. It might even be suggested that since polar coding operates

on channels, alternatives to OFDMA might be rethought with polar coding in

mind.

Tasks to improve the mentioned issues will be part of our ongoing efforts,

and we believe that such efforts will give us a better understanding in solving

adaptive modulation and coding methods. The awareness of polar codes to

channel conditions, and its full control on the whole chain if it replaces the

modulation steps, and its support of granular rate changes might lead to a more

flexible adaptation scheme.
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APPENDIX A

PERFORMANCE

IMPROVEMENTS USING

MEX FILES

A.1 Summary

On average, the performance gain is about 18 fold. There does not seem to

be much difference between the compilers, though LCC performed significantly

worse w.r.t. others (half the performance.)

Changing N or the number of trials does not have a perceivable effect on the

performance. It should be noted, however that, for small number of trials, since

the compiled C program is loaded into memory for the first time, the performance

is significantly lower wrt those with more samples. This issue, however is not

significant, since the average performance is satisfactory.
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A.2 Results

Below, we provide tables and figures showing averages, holding a variable (com-

piler, N or the number of trials) constant.

Table A.1: Average Gains for Different Compilers
Compiler Average Gain

MS 17.7779
LCC 10.7501
Mingw 18.3047
Cygwin-mingw 18.0044

Table A.2: Average Gain as Polar Code Length N Increases
N Average Gain

256 14.0251
512 16.4667
1024 16.5585
2048 16.749
4096 16.6891
8192 16.3234
16384 16.6529

Table A.3: Average Gain as Trial Number Increases
Trial Number Average Gain

10 14.012
2008 16.6897
4006 16.616
6004 16.63
8002 16.672
10000 16.6358
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Figure A.1: Gain Averages for Different Compilers

2565121024 2048 4096 8192 16384
0

2

4

6

8

10

12

14

16

A
ve

ra
ge

 G
ai

n 
fo

r 
E

ac
h 

N
 V

al
ue

Gain vs N

N

Figure A.2: Gain Averages for Different N Values
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APPENDIX B

ALLOWED BURST PROFILE

CONFIGURATIONS

Tables B.1, B.2 and B.3 display the code configurations for Convolutional Coding,

LDPCs and CTCs respectively. Note that a burst profile below might have more

than one block length choice, so we list them as separate profiles. Columns where

status is denoted by N means corresponding profiles are not supported yet.

For non-shortened polar codes, we choose as block lengths the nearest power

of 2 to the block lengths for the CTC configurations above. Rate is chosen

accordingly, in an approximate manner. For example, if 2/3 is desired, 21/32 is

chosen since the denominator has to be a power of 2.

For shortened polar codes, we select the same configurations as their CTC

counterparts.
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Table B.1: Convolutional Coding

Profile No. Modulation Payload (bits) Payload (bytes) Rate Status1

1 QPSK 6 48 1/2
2 QPSK 9 72 3/4 N
3 QPSK 12 96 1/2
4 QPSK 18 144 1/2
5 QPSK 18 144 3/4 N
6 QPSK 24 192 1/2
7 QPSK 27 216 3/4 N
8 QPSK 30 240 1/2
9 QPSK 36 288 1/2
10 QPSK 36 288 3/4 N
11 16-QAM 12 96 1/2
12 16-QAM 18 144 3/4 N
13 16-QAM 24 192 1/2
14 16-QAM 36 288 1/2
15 16-QAM 36 288 3/4 N
16 64-QAM 18 144 1/2
17 64-QAM 24 192 2/3 N
18 64-QAM 27 216 3/4 N
19 64-QAM 36 288 1/2
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Table B.2: LDPC Block Sizes (n denotes the coded block length)

Profile No Modulation n (bit) n (bytes) Rates
1 QPSK 576 72 1/2, 2/3, 3/4, 5/6
2 QPSK 672 84 1/2, 2/3, 3/4, 5/6
3 QPSK 768 96 1/2, 2/3, 3/4, 5/6
4 QPSK 864 108 1/2, 2/3, 3/4, 5/6
5 QPSK 960 120 1/2, 2/3, 3/4, 5/6
6 QPSK 1056 132 1/2, 2/3, 3/4, 5/6
7 QPSK 1152 144 1/2, 2/3, 3/4, 5/6
8 QPSK 1248 156 1/2, 2/3, 3/4, 5/6
9 QPSK 1344 168 1/2, 2/3, 3/4, 5/6
10 QPSK 1440 180 1/2, 2/3, 3/4, 5/6
11 QPSK 1536 192 1/2, 2/3, 3/4, 5/6
12 QPSK 1632 204 1/2, 2/3, 3/4, 5/6
13 QPSK 1728 216 1/2, 2/3, 3/4, 5/6
14 QPSK 1824 228 1/2, 2/3, 3/4, 5/6
15 QPSK 1920 240 1/2, 2/3, 3/4, 5/6
16 QPSK 2016 252 1/2, 2/3, 3/4, 5/6
17 QPSK 2112 264 1/2, 2/3, 3/4, 5/6
18 QPSK 2208 276 1/2, 2/3, 3/4, 5/6
19 QPSK 2304 288 1/2, 2/3, 3/4, 5/6
20 16-QAM 576 72 1/2, 2/3, 3/4, 5/6
21 16-QAM 768 96 1/2, 2/3, 3/4, 5/6
22 16-QAM 960 120 1/2, 2/3, 3/4, 5/6
23 16-QAM 1248 156 1/2, 2/3, 3/4, 5/6
24 16-QAM 1344 168 1/2, 2/3, 3/4, 5/6
25 16-QAM 1536 192 1/2, 2/3, 3/4, 5/6
26 16-QAM 1728 216 1/2, 2/3, 3/4, 5/6
27 16-QAM 1920 240 1/2, 2/3, 3/4, 5/6
28 16-QAM 2112 264 1/2, 2/3, 3/4, 5/6
29 16-QAM 2304 288 1/2, 2/3, 3/4, 5/6
30 64-QAM 576 72 1/2, 2/3, 3/4, 5/6
31 64-QAM 864 108 1/2, 2/3, 3/4, 5/6
32 64-QAM 1152 144 1/2, 2/3, 3/4, 5/6
33 64-QAM 1440 180 1/2, 2/3, 3/4, 5/6
34 64-QAM 1728 216 1/2, 2/3, 3/4, 5/6
35 64-QAM 2016 252 1/2, 2/3, 3/4, 5/6
36 64-QAM 2304 288 1/2, 2/3, 3/4, 5/6
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Table B.3: CTC channel coding per modulation
Profile
No

Modulation Data
block size
(bytes)

Code
Rate

Data block
size (bits)

Encoded
data
block size
(bytes)

1 QPSK 6 1/2 48 12
2 QPSK 12 1/2 96 24
3 QPSK 18 1/2 144 36
4 QPSK 24 1/2 192 48
5 QPSK 30 1/2 240 60
6 QPSK 36 1/2 288 72
7 QPSK 48 1/2 384 96
8 QPSK 54 1/2 432 108
9 QPSK 60 3/4 480 80
10 QPSK 9 3/4 72 12
11 QPSK 18 3/4 144 24
12 QPSK 27 3/4 216 36
13 QPSK 36 3/4 288 48
14 QPSK 45 3/4 360 60
15 QPSK 54 3/4 432 72
16 16-QAM 12 1/2 96 24
17 16-QAM 24 1/2 192 48
18 16-QAM 36 1/2 288 72
19 16-QAM 48 1/2 384 96
20 16-QAM 60 1/2 480 120
21 16-QAM 18 3/4 144 24
22 16-QAM 36 3/4 288 48
23 16-QAM 54 3/4 432 72
24 64-QAM 18 1/2 144 36
25 64-QAM 36 1/2 288 72
26 64-QAM 54 1/2 432 108
27 64-QAM 24 2/3 192 36
28 64-QAM 48 2/3 384 72
29 64-QAM 27 3/4 216 36
30 64-QAM 54 3/4 432 72
31 64-QAM 30 5/6 240 36
32 64-QAM 60 5/6 480 72
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Table B.4: Equivalent Polar Code Configurations for the CTC Code Configura-
tions Above

Profile
No

Modulation Code Rate Data block size
(bits)

Encoded data
block size (bits)

1 QPSK 1/2 64 128
2 QPSK 1/2 128 256
3 QPSK 1/2 128 256
4 QPSK 1/2 256 512
5 QPSK 1/2 256 512
6 QPSK 1/2 256 512
7 QPSK 1/2 512 1024
8 QPSK 1/2 512 1024
9 QPSK 1/2 512 1024
10 QPSK 3/4 96 128
11 QPSK 3/4 192 256
12 QPSK 3/4 192 256
13 QPSK 3/4 384 512
14 QPSK 3/4 384 512
15 QPSK 3/4 384 512
16 16-QAM 1/2 128 256
17 16-QAM 1/2 256 512
18 16-QAM 1/2 256 512
19 16-QAM 1/2 512 1024
20 16-QAM 1/2 512 1024
21 16-QAM 3/4 192 256
22 16-QAM 3/4 384 512
23 16-QAM 3/4 384 512
24 64-QAM 1/2 128 256
25 64-QAM 1/2 256 512
26 64-QAM 1/2 512 1024
27 64-QAM 2/3 171 256
28 64-QAM 2/3 341 512
29 64-QAM 3/4 192 256
30 64-QAM 3/4 384 512
31 64-QAM 5/6 213 256
32 64-QAM 5/6 427 512
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