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ABSTRACT 
 
 

INTEGRATED SCHEDULING OF PRODUCTION AND LOGISTICS 

OPERATIONS OF A MULTI-PLANT MANUFACTURER SERVING A 

SINGLE CUSTOMER AREA 
Merve Çelen 

M.S. in Industrial Engineering 

Supervisor: Asst. Prof. Dr. Mehmet Rüştü Taner 

July, 2009 

 

Increasing market competition forces manufacturers to continuously reduce their leadtimes by 

minimizing the total time spent in both production and distribution. Some studies in the 

relevant literature indicate that scheduling production and logistics operations in a coordinated 

manner leads to improved results. This thesis studies the problem of scheduling production 

and distribution operations of a manufacturer serving a single customer area from multiple 

identical production plants dispersed at different geographical locations.  The products are 

transported to the customer area by a single capacitated truck. The setting is inspired by the 

operations of a leading soft drink manufacturer, and the objective is set in line with their 

needs as the minimization of the total completion time of the jobs. The completion time of a 

job is defined as the time it reaches at the customer area. We consider both this general 

problem and four special cases motivated by common practical applications.  We prove that 

both the main problem and three of its special cases are NP-hard at least in the ordinary sense. 

We develop mixed integer programming (MIP) models for all these problems and propose a 

pseudo-polynomial dynamic programming mechanism for the remaining special case.  Since 

the MIP models are able to provide optimal solutions only for small instances in a reasonable 

amount of time, heuristics are also proposed to solve larger instances. Fast lower bounds are 

developed to facilitate the performance assessment of these heuristics in medium and large 

instances. Evidence from extensive computational experimentation suggests that the proposed 

heuristics are both efficient and effective.  

 

Keywords: Multi-plant scheduling, distribution, complexity, integer programming, heuristic 
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ÖZET 

 

TEK MÜŞTERİ BÖLGESİNE HİZMET VEREN ÇOK TESİSLİ BİR 

İMALATÇININ ÜRETİM ÇİZELGELEME VE LOJİSTİK 

FAALİYETLERİNİN BÜTÜNLEŞİK PLANLAMASI  
 

 

Merve Çelen 

Endüstri Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Yrd. Doç. Dr. Mehmet Rüştü Taner 

Temmuz, 2009 

 

 

Yükselen pazar rekabeti imalatçıları üretim ve dağıtımda geçen toplam süreyi en küçülterek 

tedarik sürelerini sürekli olarak azaltmaya zorlamaktadır. İlgili literatürdeki bazı çalışmalar 

üretim ve dağıtım işlemlerinin bağlantılı bir şekilde çizelgelenmesinin daha iyi sonuçlar 

verdiğini göstermektedir. Bu tezde farklı coğrafik yerseçimlerindeki özdeş tesislerden tek 

müşteri bölgesine hizmet veren bir imalatçının üretim ve dağıtım işlemlerinin çizelgelenmesi 

çalışılmaktadır. Ürünler müşteri bölgesine taşıma kapasitesi belirli bir araç tarafından 

taşınmaktadır. Problemin tanımı ileri gelen bir alkolsüz içecek imalatçısının çalışmalarından 

esinlenilmiş ve amaç fonksiyonu onların ihtiyaçlarıyla uyumlu olacak şekilde işlerin bitiş 

zamanlarının toplamının en küçültülmesi olarak belirlenmiştir. Bir işin bitiş zamanı o işin 

müşteri bölgesine ulaştığı zaman olarak tanımlanmıştır. Hem genel problem hem de onun 

pratik uygulamalarda sıklıkla karşılaşılan dört özel durumu ele alınmıştır. Hem esas 

problemin hem de onun üç özel durumunun NP-zor olduğu kanıtlanmıştır. Tüm bu problemler 

için karışık tamsayılı programlama (KTP) modelleri geliştirilmiş ve geri kalan özel durum 

için sözde-polinom bir dinamik programlama mekanizması önerilmiştir. KTP modelleri eniyi 

sonuçları makul sürelerde sadece küçük örnekler için verebildiğinden büyük örnekleri 

çözebilmek için sezgisel yöntemler önerilmiştir. Sezgisel yöntemlerin orta ve büyük 

örneklerdeki performans değerlendirmesini kolaylaştırmak amacıyla hızlı alt sınırlar 



 v

geliştirilmiştir. Yapılan kapsamlı deneyler önerilen sezgisel yöntemlerin verimli ve etkili 

olduğunu göstermiştir.  

 

Anahtar sözcükler: Çok tesisli çizelgeleme, dağıtım, karmaşıklık, tamsayı programlama, 

sezgisel yöntemler 
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Chapter 1 

 

INTRODUCTION 
 

 

 The main focus of scheduling is the allocation of limited resources to tasks over time 

with the objective of optimizing with respect to one or more performance measures. Recent 

developments in scheduling have focused on extending various classical models to address 

real-life problems more closely. In today’s competitive business world, as the concept of on-

time delivery of jobs has become more crucial for customer satisfaction, effective scheduling 

of production resources, achieving reduction in inventory levels and shortening lead times 

have gained much criticality. 

 

 Many studies in scheduling literature have concentrated on how to effectively 

schedule production operations within the confines of a single production facility. However, 

from the perspective of minimizing the total cost in a supply chain, companies usually 

acknowledge that the cost of a product is not only determined with the amount of factory 

resources used to convert the raw material into a finished product, but also with the amount 

of resources used to deliver the product to the customer. Hence, concentrating only on 

scheduling of production operations within plants may not be sufficient to obtain the desired 

low levels in the production and logistics costs of the supply chain. From another perspective 

to increase customer satisfaction, the order lead times should also be minimized. This requies 

the time spent both in the production of the product and in its distribution to be minimized  

 

 The importance of the coordination between production and distribution operations 

have been studied in Chandra and Fisher (1994), Ertogral et al. (1998), and Fumero and 
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Vercellis (1999). It has been shown that integrated scheduling of production and distribution 

operations perform substantially better than unsynchronized scheduling of these operations. 

Hence, it is important for the companies to recognize that a reduction in total cost of the 

supply chain and an increase in customer satisfaction can be realized through integrated 

scheduling of production and distribution operations. 

 

 In the relevant literature there have been various studies that concentrate on the 

integration of production and distribution operations. However, most of those studies have 

considered a single production plant with different machine configurations. To the best of our 

knowledge, there are only two studies in the relevant literature that try to address the problem 

with decentralized plant locations, the studies of Chen and Pundoor (2006) and Li and Ou 

(2007). In these works, the products have a very short selling season, and are transported 

from the plants to a warehouse via a third-party carrier and it is assumed that a transporter 

would be available at each facility whenever one is required. However, as experienced by a 

leading soft drink manufacturer in Turkey, third-party carriers may cause high distribution 

costs and long lead times. Because of increasing demand the prices of the trucks supplied by 

these third-party carriers are increasing while the availability of the trucks is decreasing. 

Therefore, aforementioned soft drink manufacturer has considered building its own fleet. 

 

 In order to address the problems faced by the soft drink manufacturer, in this thesis, 

we study the problem of integrated scheduling of production and distribution operations of a 

manufacturer with multiple production plants at different locations serving a single customer 

area via a single capacitated truck. Assuming that a truck is assigned to each warehouse and 

that truck is used to transport the products from the plants to that warehouse, our work can 

also be used to find a good solution for a larger system with decentralized plants and multiple 

warehouses.  

 

 As in the problem studied in Qi (2008), in order to satisfy unexpected customer 

demand on time, some companies may choose outsourcing from other plants at different 
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locations. Assuming that the outsourcing company has a single capacitated truck, proposed 

methods in this thesis can be used to address the problem of outsourcing.  

 

The rest of this thesis is organized as follows. The next chapter gives a summary of 

the relevant literature in the area of integrated scheduling of production and distribution 

operations. Chapter 3 gives a precise explanation of the problem setting and necessary 

notations. In Chapter 4, dynamic programming algorithms for the problem where the 

assignments of the jobs to the plants are known are provided. In addition to that, heuristic and 

exact algorithms and lower bound generation methods for the three special cases and the 

original problem are explained in detail. Following that, in Chapter 5, the experimental 

design to test the performance of the proposed methods and the numerical results obtained in 

the generated test problems are given. A general conclusion of the study is presented in 

Chapter 6.    
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Chapter 2 

 

LITERATURE REVIEW 
 

 

There are many studies in the literature which consider the integration of production 

and distribution operations. We study the problem with m identical plants at different 

locations serving a single customer area. We consider a single truck with finite capacity to 

transport the jobs from the plants to the customer area. To give the related literature, we will 

first review the papers according to their fleet types in the Section 2.1. Then in Section 2.2, 

we will continue with the review of the literature based on the machine configuration and 

customer area properties.  

 

2.1. Studies with Different Fleet Types 
 

The fleet types considered in the scheduling literature can mainly be grouped based 

on two aspects: the number of trucks in the fleet and the capacity of the trucks. Most of the 

studies up to date assume a fleet consisting of infinitely many trucks, a few of which 

integrate a capacity constraint for the trucks.  

 

The first papers in scheduling research that focuses on problems where the 

completion time of a job is defined as the time the job reaches the customer, mainly consider 

a fleet of infinitely many trucks. They do not consider a capacity constraint for the trucks. 

Although this assumption of infinite capacity simplifies the problem, it is not realistic. Potts 

(1980), Hall and Shmoys (1989), Zdrzalka (1991, 1995) and Woeginger (1994, 1998) are the 
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first ones to use this assumption. They assume that whenever a job finishes its production, 

there is always a truck available to immediately deliver the job to the customer in jq  time 

where jq  denotes the time required to transport job j from the machine/plant to the customer. 

Hence the time a job reaches the customer is the process completion time of that job at the 

plant plus the transportation time of that job.  

 

In the studies of Cheng et al. (1996), Cheng and Gordon (1994), Cheng et al. (1997) 

and Wang and Cheng (2000), the delivery time of a batch is defined as the completion time 

of the last job in that batch. Here, the transportation is assumed to be instantaneous. 

However, the objective functions to minimize contain a term for delivery cost and delivery 

cost depends on the number of deliveries made to transport all the jobs from the plant to the 

customer. Hall and Potts (2003) make the same instantaneous transportation assumption in 

their paper that studies scheduling problems in a supply chain where a supplier makes 

deliveries to several manufacturers. Also these manufacturers make deliveries to customers. 

Again in the study of Qi (2006), the transportation from the facility to the customer is 

assumed to be instantaneous. However, for the transportation between facilities at different 

locations, infinitely many trucks are used and a transshipment time is required.  

 

The study of Hall and Potts (2005) also investigates the condition where there are 

infinitely many trucks. However, they also consider the case when there is only one truck. 

They combine these two different truck constraints by defining a parameter T which denotes 

the minimum time between any two consecutive deliveries. If there are a sufficient number 

of trucks, T is defined as the time it takes to load a truck; else if there is a single truck, it is 

defined as the travel time to and from the customers plus the loading time.  

 

 The papers of Pundoor and Chen (2005) and Chen and Vairaktarakis (2005) consider 

the case with a fleet of infinitely many trucks. However, their fleet choice is more realistic 

when compared with the aforementioned ones since they take the capacity constraint into 

account. In Chen and Vairaktarakis (2005), it is assumed that distribution operations are 
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carried out by third-party carriers and thus an unlimited number of vehicles are available. But 

due to limited vehicle capacity, each truck can carry up to a certain number of jobs. The same 

third-party carrier assumption with vehicle capacities also holds in the study of Li and 

Vairaktarakis (2007). 

 

 Chang and Lee (2004) study a more difficult problem by considering a single and 

capacitated truck. They define the completion time of a sequence as the time when the 

vehicle finishes delivering the last batch to the customer site(s) and returns to the machine(s). 

The reason for this definition is that to have a cyclic pattern they have to wait for the truck to 

return to the machine. An interesting point to mention about their study is that they assume 

each job might occupy a different amount of physical space in the truck. Li et al. (2005) also 

incorporate the same single and capacitated truck idea in their study. However, their capacity 

constraint is defined so that the truck can also behave as uncapacitated. They define the 

capacity of the truck to be K and they add that K can also be equal to the number of jobs, i.e. 

n, which means an unlimited capacity. 

 

 Although it may seem that third-party carrier assumption is reasonable, it should also 

be taken into account that to decrease transportation cost, many manufacturing companies 

prefer to build their own fleet. Since the number of trucks in such a fleet will be limited, the 

assumption of infinitely many trucks becomes unreasonable. It is also for sure that for a more 

realistic assumption, each truck will have a capacity constraint. From this perspective, Lee 

and Chen (2001) can be considered as a milestone in the literature relevant to the integration 

of production and distribution. They study two classes of transportation: within the facility 

and from the facility to the customer. For both transportation classes, they consider various 

types of fleet. The types of fleet they assume in their study can be listed as follows: 

 

• Single truck which can carry only one job at a time 

• Single truck which can carry more than one but fewer than n jobs 

• Single truck which can carry n/2 jobs 
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• Multiple but limited number of trucks, each can carry more than one but fewer than n 

jobs 

 

 Although single truck case has been studied before, Lee and Chen (2001) is the first 

to consider multiple trucks.  

 

 As mentioned in Chapter 1 for the soft drink manufacturer, using third-party carriers 

may cause high distribution costs and long leadtimes. To reduce the distribution costs and 

leadtimes, it is a reasonable alternative for the companies to have their own fleet instead of 

using third-party carriers. It is logical for large companies to assign a truck to each of their 

warehouses and each warehouse would be responsible from using its own truck to have their 

products delivered to them from the plants. In this context, in our problem, having a single 

truck with a finite capacity is realistic. Also, for a small company which uses outsourcing 

from plants at different locations, having a single capacitated truck to gather the products 

from other plants is logical. 

 

2.2. Studies with Different Machine Configuration and Customer 

Area Properties 
 

 In the literature relevant to simultaneous scheduling of production and distribution, 

there have been various studies considering different types of machine configurations and 

different structures for the customer location, e.g.. a single customer area or multiple 

customer areas. For the machine configuration part, there are many papers that study single 

machine, parallel machines or a series of flow shop machines. So it would be beneficial to 

group the relevant literature according to their combinations of machine configuration and 

customer area. In such a case, four main groups may occur:  

 

• Single machine and single customer area 
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• Single machine and multiple customer areas 

• Multiple machines and single customer area 

• Multiple machines and multiple customer areas 

 

We will review the studies in each group in the same order as they are stated above. 

 

2.2.1. Single Machine and Single Customer Area 
 

 Most of the papers, especially the earliest ones, in the relevant literature consider this 

case in their studies. The reason for this is that single machine scheduling is relatively easier 

than multiple machine scheduling. Also sending the jobs to a single customer area eliminates 

routing issues and hence the problem becomes easier. Some of the papers in this area 

consider batching, which means that each batch will consist of a pre-specified amount of 

jobs. We will first review the studies which do not consider a batch concept as defined above. 

 

 The first paper that considers the scheduling of the production on a single machine 

and delivery of the finished products to a single customer is the study of Potts (1980). In his 

paper, Potts tries to find a sequence for the jobs, each of which has a release date ( ir ), a 

nonnegative processing time ( ip ) and a delivery time ( iq ). The objective is to minimize the 

time by which all jobs are delivered. One of the interesting points in this study is the 

symmetric form of the original problem created by defining due dates for each job i by 

assigning id  = K - iq  where K is a constant. This forms a modified problem in which due 

dates replace the delivery times. Hence, minimizing the makespan in the symmetric form is 

equivalent to minimizing maximum lateness with respect to the due dates. This problem was 

shown to be NP-hard by Lenstra et al. (1977) and Potts develops a heuristic that is 

guaranteed to produce a solution within 50% of the optimum.  
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 Hall and Shmoys (1989) also consider release times, processing times and delivery 

times for the jobs. With a similar modification of the problem as in Potts (1980), they convert 

the makespan problem into a maximum lateness problem. They denote the problem as 

max1 jr L  using the notation of Graham et al. (1979) and they provide a polynomial time 

approximation scheme for this problem. For the special case, where jr  = 0, they use the 

Jackson’s Rule to solve the problem optimally in polynomial time. They also investigate the 

case where precedence constraints between jobs are involved. They provide a (4/3)-

approximation algorithm for max1 ,  jr prec L . Hall and Shmoys (1992) give a detailed 

explanation of their (4/3)-approximation scheme and provide two polynomial approximation 

schemes for the problem max1 jr L . Woeginger (1994) considers similar job properties but 

with the exception that he does not take release times into account. For the single machine 

case, Woeginger modifies the problem as in Potts (1980) and transforms it into max1 L . It is 

stated that sequencing the jobs in non-increasing delivery times, i.e. sequencing the jobs 

according to earliest due date rule, yields an optimum schedule in O(n log n) time. The 

author also claims that no algorithm that is asymptotically faster than O(n log n) can 

construct an optimum schedule for this problem.  

 

 Lee and Chen (2001) consider two different objectives in their study: minimizing the 

time by which the last job reaches the customer and minimizing the total flow time. The main 

importance of their study is that they assume a limited number of trucks with finite capacity 

and hence there is not a delivery time assigned to each job. In fact the delivery time for each 

job is determined by the distance of the machine to the customer. For the objective of 

minimizing the makespan, the paper shows that this single machine problem with multiple 

trucks can easily be converted to a parallel machine problem where each truck is treated as a 

machine. The modified problem is denoted as max,  j jPv r p p C≡  where v  is the number of 

trucks, p is the time to travel from the machine to the customer and turn back to the machine. 

It is stated that this problem can be solved optimally in polynomial time. For the total flow 



 10

time case, a polynomial time dynamic programming algorithm is presented. Later Li et al. 

(2005) present a more efficient dynamic programming algorithm for this case. Chang and 

Lee (2004) consider a similar problem but with a single truck condition. It is shown that 

minimizing the makespan subject to these constraints is NP-hard in the strong sense. The 

authors provide a heuristic for the problem which produces solutions with an error bound of 

5/3. 

 

 Hall and Potts (2005) again study the single plant and single customer area setting 

with finitely many capacitated trucks, but also in order to minimize the number of trips 

required to deliver all the jobs, the authors include the transportation cost into their objective 

functions. Their study considers a constraint T, which denotes the minimum time interval 

between two consecutive deliveries which was explained in more detail in Section 2.1. For 

the problems1 jT Dy C+∑ , max1 T Dy L+ , and 1 jT Dy U+∑ , where D denotes the 

delivery cost for each trip and y denotes the number of trips, polynomial time algorithms are 

provided to find an optimal schedule whereas for the problems 1 j jT Dy w U+∑  and 

1 jDy T+∑  pseudopolynomial algorithms are presented. The study also shows that 

recognition versions of problems 1 j jDy w C+∑  and 1 j jT Dy w C+∑  are unary NP-

complete. Chen and Vairaktarakis (2005) also incorporate distribution cost into their 

objective functions but differently from Hall and Potts (2005) infinitely many capacitated 

trucks are considered. The objective is to minimize total distribution cost and mean (or 

maximum) delivery time simultaneously and polynomial time algorithms are provided for 

these problems. 

 

 In Li and Ou’s (2005) work, a single capacitated truck is used to carry unprocessed 

jobs from the warehouse to the plant and processed jobs from the plant to the warehouse. The 

study aims to minimize the makespan and polynomial time algorithms for some special cases 

and a heuristic for the general problem are proposed.  
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 Although Qi (2006) considers two machines at different locations, since each machine 

serves to its own customer area, it is more suitable to review this study in this section. The 

reason for the authors to mention the locations of the plants is that whenever the demand in 

one of the processing facilities, named facility 1, exceeds its capacity the other facility’s, 

named facility 2, capacity may be used and the jobs processed there should be transferred to 

facility 1 again. Then the jobs are delivered from facility 1 to its customer. Both batch 

transshipment and item transshipment are considered under different objective functions and 

algorithms (mostly dynamic programming) are developed for them. 

 

 The notion of batching starts with Zdrzalka (1991). In this study, a unit setup time 

associated with switching from jobs in one batch to those in another is inserted. Three 

polynomial time heuristics so as to minimize the time by which the last batch reaches the 

customer are proposed. Zdrzalka (1995) generalizes the problem to sequence independent 

setup times and provides two approximation algorithms with the worst-case performance 

ratio of 3/2. In Woeginger (1998), a polynomial-time approximation scheme is provided for 

the problem in Zdrzalka (1995). In addition to that, it is shown that finding a polynomial-

time approximation algorithm with constant worst-case ratio is not possible for a variant of 

the problem where sequence-dependent setup times are involved. Setup times are involved 

also in the study of Cheng et al. (1997). The authors assume that there is a constant setup 

time between two consecutive batches. The objective is to find a number B of batches and a 

sequence so as to minimize the sum of the total weighted job earliness and mean batch 

delivery time. They prove that the problem is NP-hard in the strong sense. It is stated that 

even for the case where the number of batches has a fixed upper bound, the problem is NP-

hard in the ordinary sense and a dynamic programming algorithm which solves this problem 

in pseudopolynomial time is provided. For this upper bound case, it is shown that the 

complexity does not change even if the setup times are equal to zero. Also the authors prove 

when B has a fixed lower bound the problem remains strongly NP-hard. For the special cases 

where all the weights are equal or all the processing times are equal, polynomial time 

algorithms are derived. Finally, a heuristic approach is presented for the general problem. 
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 Cheng and Gordon (1994) again consider the batching concept on a single machine 

scheduling environment. The objective is to minimize the total distribution cost that mainly 

depends on the number of batch deliveries. The authors provide a dynamic programming 

approach which yields two pseudopolynomial algorithms when the number of batches has a 

fixed upper bound. In this study the authors also consider a special case where the processing 

times of the jobs in the same batch are assumed to be equal. A polynomial algorithm for this 

special case is presented.  

 

2.2.2. Single Machine and Multiple Customer Areas 
 

 There are not many studies that fall into this category. The main reason for this is that 

routing decisions may be involved when there are multiple customers at different locations.. 

Also the properties of the batches are again determined according to these routing decisions. 

Although we consider identical plants at different locations and a single customer area in our 

study, this case has considerable importance for our research. In order to get an intuition for 

our study, it is possible to think the reverse of this multiple customer areas case. 

 

 Considering multiple customer areas is a relatively new concept and the study of 

Chang and Lee (2004) is among the first papers in this area. Two customer areas are 

considered and the finished products are delivered with a single and capacitated vehicle 

allowing milkrun. The distances from the machine to each customer are prespecified. The 

objective is to minimize the time by which all the jobs reach their customers. All jobs 

delivered in one shipment are called as a batch and it is stated that if the assignment of the 

jobs to the batches is known, the problem can easily be converted to a two-machine flow 

shop problem with the objective of minimizing the makespan where the vehicle is seen as the 

second machine. For this special case Johnson’s rule solves the problem optimally. However, 

the original problem is shown to be NP-hard in the strong sense. A heuristic is provided that 

yields solutions with a worst case error bound of 7/4.  
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 Pundoor and Chen (2005) consider the case with m customers positioned at different 

locations. It is assumed that only direct shipping from the supplier to the customer is used, 

i.e. no milkrun. Therefore, only the jobs associated to the same customer can be delivered 

together in a shipment. A combined objective function which considers both the maximum 

tardiness and the total distribution cost is used. It is shown that for arbitrary number of 

customers, the problem is NP-hard even for the special case where the processing times and 

due dates are agreeable (i.e. if i jp p≤  then i jd d≤ ). A fast heuristic which is capable to 

generate near optimal solutions is provided. One of the most important properties of this 

study is that they have showed that using the integrated production-distribution approach is 

more advantageous when compared to the approach of optimizing production and 

distribution sequentially with little or no integration.  

 

 The study of Chen and Vairaktarakis (2005) is important as it considers all the 

machine configuration and customer area cases. In this section, we will only review the 

single machine and multiple customer case. They allow milkrun in their study and determine 

the distances of the customers to the processing facility according to the milkrun routes. 

Their objective is to minimize total distribution cost and mean (or maximum) delivery time 

simultaneously and they provide efficient dynamic programming algorithms to solve these 

problems optimally. 

 

 Li et al. (2005) is one of the studies we base our research on. This study considers m 

customers at different locations and aims to minimize the total flow time. First, the problem 

is proven to be NP-hard in the strong sense. For the case where milkrun is allowed, first a 

pseudopolynomial dynamic programming algorithm for two-customers is provided and then 

generalized to multiple customers. Another dynamic programming algorithm for the case 

with only direct shipments is presented. The authors conclude that the computational 

complexity is lowered when the deliveries are restricted to direct shipments. 
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2.2.3. Multiple Machines and Single Customer Area 
 

 This is the second most widely studied case after single machine and single customer 

area. In this section, we consider mainly two types of problems. The first type is with a single 

production plant that has different machine configurations such as parallel machines, flow 

shops, and job shops. The second type considers multiple production plants dispersed at 

different geographic points where each plant can be viewed as a single machine. The 

problem studied in this thesis is among the second type. In our research we consider m 

identical machines at different locations and a single customer area. Delivery to the customer 

can be made from all of the plants via a single truck with a certain capacity. To the best of 

our knowledge, no one has studied this problem before. In our problem only direct shipments 

are allowed. Most of the studies in the relevant literature consider direct shipments. The 

studies that consider milkruns will be mentioned both in this and the following section. 

 

 Most of the work issuing multiple machines and a single customer area address the 

problems where the machines are located at the same location, i.e. parallel or flow-shop 

machines. The studies with parallel machines can be regarded as special cases of our problem 

where the distances between the machines are negligible and products of different machines 

can be transported on the same shipment.  

 

 Hall and Shmoys (1989) consider two multiple machine problems in their study. In 

the first one, their objective is to minimize maximum lateness of jobs with respect to release 

dates and delivery times in a parallel machine environment. They provide a polynomial 

approximation scheme for the case without precedence constraints and a 2-approximation 

algorithm for the case considering precedence. A two-machine flow shop environment is 

considered for the second problem. They have specified the special case where all release 

dates equal zero and stated that Johnson’s rule solves the problem optimally. Then as in the 

parallel machine case, they provide a polynomial approximation scheme for the general 

problem. Woeginger (1994) showed that even for the case without release dates the problem 
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is NP-hard when the objective is to minimize the makespan. Two heuristics with the best one 

having a worst-case performance guarantee of 2 2 ( 1)m− +  are provided. 

 

 In the study of Wang and Cheng (2000), it is shown that parallel machines problem 

with the objective of minimizing total flow time and delivery cost is NP-hard in the strong 

sense and a dynamic programming algorithm is provided to solve it. Also polynomial time 

algorithms to solve the special cases where the job assignments to machines are given or the 

processing times are equal. Chen and Vairaktarakis (2005) has the objective of minimizing 

mean/maximum delivery time and total distribution cost and proves the problems to be NP-

hard. The study also provides polynomial algorithms for the special cases where they 

consider only the total distribution cost.  

 

 As in the single machine and single customer case, Hall and Potts (2005) consider a 

constraint T that denotes the minimum time interval between two consecutive deliveries. It is 

shown that the recognition versions of the problems 2 jP Dy C+∑ and 2 jP T Dy C+∑  

are binary NP-complete ( Dy denotes the delivery cost). Pseudopolynomial algorithms are 

provided for the problems max max2 ,  2 ,  P Dy L P T Dy L+ + 2 j jP Dy w U+∑  and 

2 j jP T Dy w U+∑ . Chang and Lee (2004) also study the two parallel machines problem but 

with a single and capacitated truck and with the objective of minimizing the makespan. A 

heuristic with a worst-case performance ratio bound of 2 is presented in this study. 

 

 Lee and Chen (2001) study a two-machine flow shop environment with delivering 

products to a single customer area with the objective of minimizing the makespan. This study 

is different in the way that it considers both the transportation inside a manufacturing facility 

(type-1 transportation) and the transportation between the facility and the customer (type-2 

transportation). It is shown that type-1 transportation problems, where there exists a single 

truck that can carry only one job at a time or more than three jobs, are strongly NP-hard. A 

dynamic programming algorithm that solves the problem in polynomial time is provided for 
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the case where the processing times of all jobs are equal for the same machine. For type-2 

transportation where jobs are first processed on a two-machine flow shop, then delivered to 

the customer by a single truck, the problem is shown to be strongly NP-hard when the truck 

can carry only one or more than four jobs at a time and they provide a heuristic for this 

problem. 

 

 Although most of the studies in the literature discussed in this section consider the 

problems with multiple machines at the same plant, there are also a few papers that address 

the problems with plants at different locations. These studies are very important for our 

research since they use the same machine and customer settings with our problem. However, 

since all of these studies consider infinitely many trucks, our research remains to be the first 

study in this machine and customer setting that takes the truck availability into account. Chen 

and Pundoor (2006) deserve particular attention since this is the first study to consider 

decentralized machines in this context. The authors define a problem where the products are 

produced on plants at different locations, and transported to a single warehouse assuming that 

there is a truck available at each plant at any time. Assigning a certain cost for each delivery 

trip, the aim of the study is to minimize four different objective functions in this problem 

setting:     

  

• Problem 1: Minimizing a weighted sum of the total lead time and total cost 

• Problem 2: Minimizing the total cost subject to the constraint that the total lead time 

is no longer than a given threshold 

• Problem 3: Minimizing a weighted sum of the maximum lead time and total cost 

• Problem 4: Minimizing the total cost subject to the constraint that the maximum lead 

time is no longer than a given threshold 

 

 All these four problems are shown to be NP-hard, and heuristics for those problems 

are developed in their study. Also, polynomial time exact algorithms are presented for some 

special cases. Li and Ou (2007) study a similar problem to the one in Chen and Pundoor 
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(2006); with the distinction of considering jobs with multiple tasks where each task of a job 

must be processed by a specific machine.  

 

 Both Chen and Pundoor (2006)’s and Li and Ou (2007)’s works are designed for 

time-sensitive products that have a large variety, a short life cycle, and are sold in a very 

short selling season. In this setting, using third-party carriers and hence assuming infinitely 

many trucks is logical. However, the work in our study is generally designed for companies 

using their own fleet or for small companies that might require outsourcing. Therefore, 

assuming infinitely many trucks would not be a logical assumption in our setting. On the 

other hand, having a single truck and taking truck availability into account is a more realistic 

assumption for our research setting.  

 

  

2.2.4. Multiple Machines and Multiple Customer Areas  
 

 As the number of multi-facility companies increase, the need for the realistic models 

that consider multiple machines also increase. When it is assumed that shipments to the 

customers are made directly from the facilities without using a warehouse, it is reasonable to 

consider multiple customer areas. One of the studies that consider this case is the paper of 

Chen and Vairaktarakis (2005). They consider parallel machines to process the jobs and 

delivery of the products to the customers at different locations allowing milkrun. The 

problems under the objective of minimizing total distribution cost and mean/maximum 

delivery time are shown to be NP-hard and heuristics are provided for these problems. 

 

 The second and to our knowledge the last paper that considers this case is Li and 

Vairaktarakis (2007). The authors study an integrated production and distribution scheduling 

system where the jobs are processed on two flow shop machines which are located at the 

same facility and their output bundled together for delivery. The objective is to minimize the 

total delivery cost and the customers’ waiting costs that depend on the arrival times of the 
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jobs at the customers. Both direct shipments and milkruns are considered. A polynomial time 

approximation scheme is provided for the special case with the objective of minimizing total 

flow time. For the original problem, heuristics with constant worst-case error bounds are 

presented. 

 

 Figures 2.1 and 2.2 show the classification for the literature presented in this chapter. 
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FLEET TYPE 

 

 

Instantaneous 

Delivery 
 

Infinitely many, 

Infinite capacity 

Infinitely many, 

Finite capacity 
 

Single, 

Finite capacity 

Finitely many, 

Finite capacity 

Cheng and Gordon (1994)  
 Potts (1980) Hall and Potts (2005)   Lee and Chen (2001) Lee and Chen (2001) 

Cheng et al. (1996)  Hall and Shmoys (1989) Pundoor and Chen (2005)  Chang and Lee (2004)  
Cheng et al. (1997)  Zdrzalka (1991, 1995) Chen and Vairaktarakis   Li et al. (2005)  
Wang and Cheng (2000)  Woeginger (1994, 1998) (2005)    
Hall and Potts (2003)   Li and Vairaktarakis (2007)    
Qi (2006)       

 

 

 

Figure 2.1: Literature classification for fleet type 

 

 

 

 

 



 20

MACHINE/PLANT CONFIGURATION AND CUSTOMER AREA PROPERTIES 

 

 

 

Figure 2.2: Literature classification for machine/plant configuration and customer area properties 

Single Machine/Plant, 

Single Customer Area 

 Single Machine/Plant, 

Multiple Customer Areas 

 Multiple Machines/Plants, 

Single Customer Area 

 Multiple Machines/Plants, 

Multiple Customer Areas 

Potts (1980)  Chang and Lee (2004)  Hall and Shmoys (1989)  Chen and Vairaktarakis (2005) 
Hall and Shmoys (1989)  Pundoor and Chen (2005)  Woeginger (1994)  Li and Vairaktarakis (2007) 
Zdrzalka (1991, 1995)  Chen and Vairaktarakis (2005)  Wang and Cheng (2000)   
Hall and Shmoys (1992)  Li et al. (2005)  Chen and Vairaktarakis (2005)   
Cheng and Gordon (1994)    Hall and Potts (2005)   
Woeginger (1994, 1998)    Chang and Lee (2004)   
Cheng et al. (1997)    Lee and Chen (2001)   
Lee and Chen (2001)    Chen and Pundoor (2006)   
Li et al. (2005)    Li and Ou (2007)   
Chang and Lee (2004)       
Hall and Potts (2005)       
Chen and Vairaktarakis (2005)       
Li and Ou (2005)       
Qi (2006)       
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Chapter 3 

 

PROBLEM DESCRIPTION AND 

NOTATION 
 

 

 In this thesis, we work on a problem that considers simultaneous scheduling of 

production and transportation operations of a multi-plant manufacturer. The plants are 

located at different geographical points. The products produced in these plants are distributed 

to a single customer area using a single capacitated truck. Here the customer area may denote 

a single warehouse as well as multiple customers that are in close proximity to each other.  

 

 Consider a set of n jobs, { }1, 2,...,N n= , each of which is to be processed in exactly 

one of the m  plants, { }1, 2,...,M m= , positioned at different locations. We assume that 

plants are identical (there is a dedicated production line in each plant for the customer area), 

and every plant can process all jobs. It takes jp  units of processing time to produce job j , 

j N∈ , on any of the plants. Job j  is denoted as jJ . Each job needs to be processed on only 

one of the plants without interruption. Preemption is not allowed. Each finished job should be 

transported from the plant on which it is produced to the customer. A job cannot be 

transported unless it has completed its processing in the plant. The distance of plant i , 

i M∈ , to the customer is denoted as id  and given in time units. Hence, in other words, it 

takes the transporter id  units of time to go from plant i  to the customer. It is assumed that 

the travel time from a plant to the customer is equal to the travel time from the customer to 

that plant. Distribution of finished jobs from the plants to the customer is done by a single 



 22

truck which can carry up to K  jobs. Loading and unloading times are assumed to be 

negligible. Only direct shipments are allowed. To the best of our knowledge, in practice, 

companies with multiple plants try to allocate those plants so that they will be able to serve 

as many warehouses as possible. Since they do not require the plants to be in close proximity 

of each other, it can be assumed that those plants may be distant to each other. Therefore, our 

assumption of direct shipments is reasonable. Initially, the truck is assumed to be located at 

the customer area and for convenience each shipment (i.e. each visit of the truck to a plant) 

will be called a trip. A simple representation of plant locations and their distances to the 

customer area can be seen in Figure 3.1 for an example with 4 plants.  

 

 

Figure 3.1: A representation of plant locations and distances to the customer area 

 

Without loss of generality, throughout this thesis, the plants are named according to 

their distances to the customer area. The plant with the smallest distance is called Plant 1, the 

one with second smallest distance is called Plant 2, and so on. Again without loss of 

generality, jobs are named according to their processing times. The job with the smallest 

2d
 

          Customer 

Plant 4 

Plant 1 

Plant 3 

1d  

Plant 2 

3d  

4d
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processing time is referred to as job 1, the one with second smallest processing time is called 

job 2, and so on. Hence, 1 2 .... md d d≤ ≤ ≤  and 1 2 .... np p p≤ ≤ ≤ . 

 

 For job j , produced on plant i , to be transported from that plant to the customer at 

time t , there are two conditions to be satisfied:  

 

• Job j  needs to have completed its processing on or before time t , 

• The truck should arrive at plant i  on or before time t  and should still be there at 

time t . 

 

 As common in the relevant literature on integrated scheduling of production and 

distribution operations, the completion time of job j  is determined as the time that job 

reaches the customer. In our study, the objective is to minimize the total completion time of 

all jobs. A solution constitutes the following: 

 

o Assignment of the jobs to the plants 

o Scheduling of production of jobs at each plant 

o The route and schedule of the truck 

o Assignment of the jobs to the trips 

 

 Suppose that jobs are assigned to a plant set M ′ , M M′ ⊆ . The route of the truck is 

the order truck visits the plants in M ′ . For example, if the truck visits first Plant 2, then Plant 

1, and then Plant 2 again, the route of the truck is Plant 2 – Plant 1 – Plant 2. Determining the 

schedule of the truck means determining the time truck leaves each plant on its route. 

 

 In this study, we consider a single planning horizon and we aim to send the jobs to the 

customer as soon as possible within this planning horizon. Viewing the customer area as a 

warehouse, the length of this planning horizon depends on the demand amount of the 

warehouse.   
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 In Chen (2008), MP  notation is used for multiple decentralized plants. Denoting the 

completion time of job j N∈  as jC , and using the three-field notation as in Lee and Chen 

(2001), our problem can be denoted as 1 1, 1 jMP v K C→ = ≥ ∑ . Here  1MP →  means 

from multiple plants to a single customer area, and 1, 1v K= ≥  means using a single truck 

with a capacity of K . The following theorem holds for our problem. 

 

 Theorem 1. There exists an optimal schedule that satisfies the following conditions 

for each plant: 

(i)    If iJ  is processed earlier than kJ , then iJ  leaves the plant no later than kJ . 

(ii)  Jobs are processed in non-decreasing order of processing times in each plant. 

(iii) There exists no idle time between job processing in any given plant. 

(iv) The transporter either leaves the plant immediately as it arrives or at the 

completion time of a job. 

 

Proof: 

(i) Suppose that there exists an optimal schedule in which iJ  is processed earlier 

than kJ  but leaves the plant after kJ . While having the same transportation schedule, if we 

interchange the processing positions of these jobs at the plant such that kJ  is processed earlier 

than iJ , the total completion time will not change. If we apply the same interchange 

procedure to all necessary job pairs, we will have a transportation sequence which is the 

same with the processing sequence. 

 

(ii) Consider an optimal schedule where jobs are not processed in non-decreasing 

order of processing times (SPT order). Then there exists at least two adjacent jobs iJ  and kJ  

where iJ  is processed before kJ  and i kp p> . If  iJ  and kJ  are transported on the same trip, 

then interchanging the processing positions of these jobs at the plant will not increase total 

completion time. However, if iJ  and kJ  are not transported on the same trip, interchanging 
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the positions of these jobs may decrease the total completion time by decreasing the start 

times of the trips on which these jobs are transported.  

 

(iii) If there exists idle time between job processing, we can move the jobs 

succeeding the idle period earlier without increasing the total completion time. 

 

(iv) Suppose the vehicle leaves the plant neither as soon as it arrives there nor at 

the completion time of processing of a job. Then we can move subsequent trips earlier to 

either the arrival time of the truck at the plant or to the process completion time of the most 

recently loaded job and in this way decrease the total completion time.■ 

 

 The following section aims to more precisely convey the parameters given in a 

problem instance as well as the structure of a desirable solution by considering a numerical 

instance.  

 

3.1. Sample Problem 
 

 Suppose that we have 10 jobs to be processed at a subset of 3 plants, and to be 

transported with a truck that carries at most 4 jobs in a trip. First, the plants are sorted in non-

increasing order of their distances to the customer and reindexed, and the same procedure is 

applied for the jobs with respect to their processing times. After sorting, the distances of the 

plants can be listed as { } { }1 2 3, , 26,30,37d d d d= =  whereas the processing times of the jobs 

can be listed as { }1 2 3 4 5 6 7 8 9 10, , , , , , , , ,p p p p p p p p p p p= { }6,6,10,11, 22, 25, 27, 29,33,34= . 

As can be seen in Figure 3.2, the optimal solution to this problem assigns jobs 

{ }1 2 3 4 6 9 10, , , , , ,J J J J J J J  to Plant 1, and the rest to Plant 2. As have been stated in Theorem 

1, the jobs are processed according to SPT rule at each plant. 
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 Trip 1: At time 0, the truck leaves the customer and goes to Plant 1 and arrives at that 

plant at time 1 26d = . Jobs { }1 2 3 4, , ,J J J J  are transported on the first trip and since 

1 2 3 4 133 26p p p p d+ + + = > = , truck waits for the completion of the processing of 4J , and 

leaves the plant at time 33. Truck arrives at the customer at time 33 26 59+ = . Hence the 

completion time for jobs { }1 2 3 4, , ,J J J J  is 59.  

 Trip 2: On the second trip truck goes to Plant2, and arrives there at time 59 30 89+ = . 

It takes jobs { }5 7 8, ,J J J  and since 5 7 8 78 89p p p+ + = < , the truck will leave Plant 2 as soon 

as it arrives and will turn back to the customer at time 89 30 119+ = . This means that the 

completion time for jobs { }5 7 8, ,J J J  is 119.  

 

 Trip 3: Truck makes the third trip to Plant 1 again and it arrives at Plant 1 at time 

119 26 145+ = . Since 1 2 3 4 6 9 10 125 145p p p p p p p+ + + + + + = < , truck leaves Plant 1 as 

soon as it arrives there and transports jobs { }6 9 10, ,J J J . The truck turns back to the customer 

at time 145 26 171+ =  and hence the completion time for jobs { }6 9 10, ,J J J  is 171. 

 

 Instead of summing individual completion times of the jobs, it is possible to calculate 

the total completion time by summing the contributions of each trip, where the contribution 

of a trip is calculated by the multiplication of the number of jobs transported on that trip and 

the arrival time of the truck to the customer at the end of that trip. Therefore, total completion 

time can also be shown as 4 56 3 119 3 171 1106jC = ⋅ + ⋅ + ⋅ =∑ . Here the coefficients 

{ }4,3,3  are the number of jobs transported on and the multipliers { }56,119,171 are the 

completion times of trip 1, trip 2 and trip 3, respectively.  

 

  It should be noted that, in the optimal solution of this sample problem, Plant 3 is not 

used and all the jobs are produced on Plant 1 and Plant 2. The reason for this situation is that 

Plant 3 is further than other plants and since it is possible to produce all the jobs in closer 

plants, it is not logical to use Plant 3. However, this may not be the case for each instance. 
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Especially for the instances which have larger processing times when compared to this 

problem, it may be better to produce also in Plant 3. 

 

 
 

Figure 3.2: Gantt chart for the optimal solution of sample problem with 10 jobs and 3 plants 
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Chapter 4 

 

METHODOLOGY 
 

 

 In Chapter 3, the problem studied in this thesis was defined. In this chapter, we 

present the constructive heuristics and exact methods to solve this problem. To facilitate the 

assessment of heuristics, we develop fast lower bounds. In order to be able to provide a good 

understanding of the methods proposed we will follow a path from simpler cases referred to 

as special cases, to the main problem. The first special case we investigate will be the 

problem where we assume the assignments of the jobs to the plants are given. A dynamic 

programming algorithm will be presented for this problem. Then we will study the problem 

where we have the constraint of sending the truck fully loaded in its all trips, which we prefer 

to name as Fully Loaded Trips Problem. A special case of this problem, where it is known 

that last trip will be partially loaded, will be explained and the methods to generate exact 

solutions, heuristic methods to obtain near optimal solutions for both problems will be 

presented. Since these problems are NP-hard, for which proofs will be provided, it is hard to 

obtain exact solutions in a reasonable amount of time. Therefore, we have also generated 

lower bounds to measure the efficiency of our heuristic methods. The main problem, referred 

to as General Problem, occurs when we do not have the fully loaded trucks constraint. Exact 

solution methods, heuristic algorithms and lower bounds will be presented for both this main 

problem and its special case, where the truck leaves the plants it visits on each trip as soon as 

it arrives there. 
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4.1. Job Assignments Given Problem 
 

 In this problem, we assume that the assignments of the jobs to the plants are given so 

that we know which job will be processed on which plant. Therefore, the only question we 

need to answer is which route the truck should follow and which jobs it should take from the 

plant it visits. The truck leaves the plant either as soon as it arrives there or at the completion 

time of the last job transported on that trip. Hence, if which jobs to be transported on a trip is 

determined, then it can be determined whether the truck leaves the plant immediately or not. 

This case is mostly applicable when there are eligibility conditions so that each job can be 

produced only on a certain plant set.  

 

 In some cases, the distances of the plants to the customer may be equal or close to 

each other. Then for such problems, it is possible to assume that the distances of each plant to 

the customer are equal. In such a case, the following dynamic programming algorithm may 

be applied. 

 

4.1.1. Plants at Equal Distances 
 

 First, we need to give some relevant notation: 

• in :  number of jobs assigned to plant i , 1,...,i m=  such that  
1

m

i
i

n n
=

=∑  

• i
jC : the completion time of the thj  job at plant i  

• d : the distance from a plant to the customer 

 

 The truck will leave the customer at time 0  and will go to a plant. Since all plants 

have the same d  distance to the customer, the truck will be at some plant at time d . As 

stated in Theorem 1(iv), it will leave the plant either immediately or will wait until the 

completion of all jobs transported on that trip. Then it will return to the customer in d  units 

of time. It will leave the customer again as soon as it arrives to the customer and start a new 
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trip. Therefore, there can only be a finite number of time points the truck can depart from the 

customer, i.e. the time points a trip can start. Let T  be the set of possible departure times of 

the truck from the customer. Then each departure time t , t T∈ , can be obtained using the 

following formula: 

 

1 2

1 2
1 2( ) ( ) ...... ( ) 2

m

m
j j j mC a d C a d C a d q d+ ⋅ + + ⋅ + + + ⋅ + ⋅ ⋅  

 

where 0 0iC =  for 1,...,i m= ; 0,1,....,i ij n=  for 1,...,i m= ; 0,1ia =  for 1,...,i m= and 

0,1,2,....,iq n=  for 1,...,i m= . 

 

 Let 1 2( , ,...., , )mf i i i t  denote the minimum possible total completion time of the jobs 

{ } { } { }1 1 1 2 2 21 1 1, ,...., , , ,...., ,...., , ,....,
m m mi i n i i n i i nJ J J J J J J J J+ + + given that the truck departs the 

customer at time t  to complete the transportation of those jobs, where t T∈ , 1 11,...,i n= , 

2 21,...,i n= , …, 1,...,m mi n=  . In other words, since some of these jobs have been already 

transported to the costumer in the previous trips, the transportation of the jobs 

{ } { } { }1 1 1 2 2 21 1 1, ,...., , , ,...., ,...., , ,....,
m m mi i n i i n i i nJ J J J J J J J J+ + +  will be completed once the trip 

with starting time t  is over. 

 

  If we denote ih  to be the number of jobs transported from plant i  to the customer on 

the trip starting at time t , we can write the recursive function as follows: 

 

{ }
{ }

{ }

1 1 1

2 2 2

1 1 1 1 2 10 min( 1, )

2 2 1 2 2 20 min( 1, )

1 2

1 1 20 min( 1, )

min ( , ,...., , ) ,

min ( , ,...., , ) ,

( , ,...., , ) min .
.

min ( , ,...., , )
m m m

mh n i K

mh n i K

m

m m m mh n i K

h A f i h i i A

h A f i i h i A

f i i i t

h A f i h i i A

≤ ≤ − +

≤ ≤ − +

≤ ≤ − +

⎧ ⎫⋅ + +
⎪ ⎪
⎪ ⎪⋅ + +
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⋅ + +⎪ ⎪⎩ ⎭
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where 1max( , )
k k

k
k i hA t d C d+ −⎡ ⎤= + +⎣ ⎦  for 1,....,k m= . The boundary condition is 

1 2( 1, 1,...., 1, ) 0mf n n n t+ + + =  for all t T∈ , such that 
1

n

j
j

t p m d
=

≥ + ⋅∑ , and the objective is 

(1,1,....,1,0)f .  

 

 Lemma 4.1: The overall complexity of the dynamic programming for the problem 

with known job assignments and plants at equal distances to the customer is 2 2(2 )m mO n + . 

 

 Proof: Using the formula 
1 2

1 2
1 2( ) ( ) ...... ( ) 2

m

m
j j j mC a d C a d C a d q d+ ⋅ + + ⋅ + + + ⋅ + ⋅ ⋅  we 

can obtain each departure time. Each ij  can have ( 1)in + , each ia  can have two and q  can 

have ( 1)in +  different values. Hence there are 1 2( 1) 2 ( 1) 2 ..... ( 1) 2 ( 1)mn n n n+ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ +  

possible departure times. Therefore, 1(2 )m mT O n += . In the recursive formulation, the 

number of possible 1 2( , ,...., , )mi i i t  combinations is 
1

( 1)
m

i
i

T n
=

⋅ +∏ , meaning there are 

2 1( ) (2 )m m mO n T O n +=  states to evaluate. When m  is fixed, it takes ( )O n  time to evaluate 

each 1 2( , ,...., , )mf i i i t  and hence the overall complexity is 2 2(2 )m mO n + . Since in real life m  

does not grow exponentially and usually is a small number, this algorithm works in 

polynomial time when m  is fixed. 

 

 

4.1.2. Plants at Different Distances 
 

 In this case, we will assume that plants do not have the same distances to the 

customer. Let id  be the distance from plant i  to the customer where 1,...,i m= . The set of 

the possible departure times of the truck from the customer can be found using the following 

formula:  
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1 2

1 2
1 1 2 2 1 1 2 2( ) ( ) ...... ( ) 2 2 .... 2

m

m
j j j m m m mC a d C a d C a d q d q d q d+ ⋅ + + ⋅ + + + ⋅ + ⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅  

  

where ia , ij , 
i

i
jC  are as described in the previous case and 0,1,2,....,i iq n=  for 1,...,i m= .  

 

 The recursive function generated for the problem in the previous section, i.e. the 

problem with equal distance plants, can be used for this problem with a slight modification of 

kA  values such that 1max( , )
k k

k
k k i h kA t d C d+ −⎡ ⎤= + +⎣ ⎦  for 1,....,k m= . The boundary condition 

and the objective are the same as in the equal distance problem in Section 4.1.1.  

 

 Lemma 4.2: The overall complexity of the dynamic programming algorithm for the 

problem with known job assignments and plants at different distances to the customer is 
3 1(2 )m mO n + . 

 

 Proof: There are 1 2 1 2( 1) 2 ( 1) 2 ..... ( 1) 2 ( 1) ( 1) ..... ( 1)m mn n n n n n+ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ +  

possible departure times.  Hence, 2(2 )m mT O n= . In the recursive function, the number of 

possible 1 2( , ,...., , )mi i i t  combinations is 
1

( 1)
m

i
i

T n
=

⋅ +∏  and therefore there are 

3( ) (2 )m m mO n T O n= states to evaluate. It takes ( )O n  time to evaluate each state. Therefore, 

overall complexity is 3 1(2 )m mO n + . When m  is fixed, this problem can be solved in 

polynomial time. 
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4.2. Fully Loaded Trips Problem 
 

 One of our motivations in studying the problem of 1 1, 1 jMP v K C→ = ≥ ∑  is that it 

is a problem faced by the soft drink manufacturer mentioned in Chapter 1. This manufacturer 

is producing physically sensitive products and wants to transport them with less damage. For 

example, glass bottles may be broken when scattered around in the truck and the cans may be 

damaged when shaken. The easiest solution preferred by this soft drink manufacturer in the 

transportation of these products is sending the trucks full so that the damage to the products 

will be minimized. Also, companies feel they utilize truck capacity better when they send the 

trucks fully loaded. Hence, we found it beneficial to study the special case of our problem 

where we have the constraint of sending the truck fully loaded, i.e. loading K  jobs, in all 

trips. However, since the number of jobs may not be divisible by the capacity of the truck, we 

may end up with a partially loaded trip. Here, the truck being partially loaded means that it 

would transport fewer than K  jobs on that trip. In the main problem, we are required to 

answer how many jobs will be transported on a trip and which jobs will constitute the jobs 

being transported. In fully loaded trips problem, instead of answering how many jobs to be 

transported on each trip, we need to determine which trip will be partially loaded. 

 

 Last Trip Partial Problem, is a special case of fully loaded trips problem. In this 

problem, as the name implies, the only partially loaded trip will be the last one. Clearly, a 

partially loaded trip will be required only if the number of jobs, n , is not divisible by the 

truck capacity K . 

 

Before continuing with the solution methods for the problem having the last trip 

partial, we will first prove that the problem with fully loaded trips, except one if a partially 

loaded trip is required, is NP-hard in the ordinary sense in Theorem 2. In Corollary 2 it will 

be shown that Last Trip Partial Problem is also NP-hard in ordinary sense. 
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4.2.1. NP-Hardness Proofs for the Fully Loaded Trips Problem and Its 

Special Case Last Trip Partial Problem 

  

 In this section, to provide clarity, we denote the problem with fully loaded trips, and 

one partial trip if needed, as 1 1, 1, jMP v K FullTrips C→ = ≥ ∑ . Its special case where the 

last trip is partial, if a partially loaded trip is required, is denoted as 

1 1, 1, jMP v K LastPartial C→ = ≥ ∑ . To prove the NP-hardness of the problems in this 

chapter, we use well known PARTITION problem defined as follows: 

 

 Given a finite set A  and a size ( )s a +∈Z  for each a A∈ , is there a subset A A′ ⊆  

such that ( ) ( )
a A a A A

s a s a
′ ′∈ ∈ −

=∑ ∑ ? 

 

 

 Theorem 2: Problem 2 1 1, 1, jP v K FullTrips C→ = ≥ ∑ is NP-hard. 

 

 Proof:  Given an instance of the PARTITION problem, { }1 2 2, ,...., hA a a a= , we 

construct the following instance of our problem. 

 

 Number of jobs 4n h= , and jobs set { } { }2 1 2 2,2 3,...., 4N H h h h h= ∪ + ∪ + +  where 

{ }1,2,...., 2H h=  

 Number of plants 2m =  

 Truck capacity 2K h=  

 Processing times ( )j jp s a=  for j H∈ ,  2 1 2h j
j H

p p B+
∈

= =∑ ,  

       0jp =  for { }2 2,2 3,...., 4j h h h= + +  
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 Plant distances  1 2 2

j
j H

p
d d d B∈= = = =

∑
 

 Threshold on total completion time 12C Bh=  

 

 →  If there is a solution to the PARTITION instance, we show that there is a schedule 

for the above constructed instance with a total completion time of no more than C . Let G  be 

a subset of H  that solves the PARTITION instance. Since 2H h= , G K< . Produce 

K G−  of the jobs with zero processing time and all jobs in G  on Plant 1. Schedule these 

jobs in non-decreasing order of processing times (SPT order) on Plant 1, as stated in 

Theorem 1(ii). Assign the rest of the jobs to Plant 2 and schedule them in SPT order. Hence, 

the K  jobs assigned to Plant 1 will complete their processing at time 
2

j
j H

p
B ∈=

∑
 and the 

other K  jobs, assigned to Plant 2, will complete their processing at time 

3
2

j
j H

j
j H

p
B p ∈

∈

= +
∑

∑ . Truck will leave the customer at time 0  and will arrive at Plant 1 at 

time d . Since d B= , it will take all K  jobs assigned to that plant and will return to the 

customer at time 2d . Then truck will leave the customer and arrive to Plant 2 at time 

3 3d B= . Again since all K  jobs have already been processed, truck will take them and 

arrive at the customer at time 4d . Hence, total completion time will be 

2 4 6 12Kd Kd Kd Bh+ = = . 

 

 ←  If there exists a schedule with total completion time of no more than C , then there 

must be a solution to PARTITION instance. Since there are 2K  jobs, it is for sure that there 

will be two trips. Consider two cases: 

 

 Case 1: Both trips visit the same plant. In this case all of the jobs will be processed at 

one of the plants in SPT order. Truck arrives at the plant at time d  and up to that time all of 

1K −  jobs with zero processing time will have been processed. Then depending on, 
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min jj H
p p

∈
= , truck will leave plant at time d d′ ≥ . It will arrive at the customer at time d d′ +  

and will go back to the plant at time 2d d′ + . Since the completion time of all jobs is 

2 4 4j
j H

p B d
∈

= =∑  and 2d d′ < , truck will leave plant at time 4d  and will arrive at the 

customer at time 5d . Hence, total completion time is going to be 

( ) 5 7K d d Kd BK C′ + + ≥ > . Since total completion time of this case is greater than C , the 

truck should not visit the same plant in both trips. 

 

 Case 2: One of the trips is to Plant 1 while the other is to Plant 2. Since Case 1 is 

shown to yield a total completion time greater than C , this case is the only possible case. 

Assuming without loss of generality that the first trip is to Plant 1, one of the questions is on 

which plant 2 1hJ + , i.e. the job with processing time of 2d , will be produced. If 2 1hJ +  is 

produced at Plant 1, at best, the jobs with zero processing time will be produced there and the 

truck will leave Plant 1 at time 2d , arriving at the customer at time 3d . On its second trip, 

truck will arrive at Plant 2 at time 4d  and will return to the customer at time 5d . Hence, 

total completion time will be at least 3 5 8Kd Kd BK C+ = > . Therefore, 2 1hJ +  will be 

assigned to the plant to which second trip is made.  

 

 Assuming without loss of generality that the first trip is to Plant 1, let M  denote the 

set of jobs that are assigned to Plant 1 such that M H⊆ . Even if the truck leaves the plant as 

soon as it arrives there on each trip, total completion time will be C . Since we want to obtain 

a schedule with total completion time of no more than C , it is required that K  jobs are 

produced on each plant on or before the time truck arrives at that plant. Hence, we require 

j
j M

p d B
∈

≤ =∑  and 2 1
\

3j h
j H M

p p d+
∈

+ ≤∑ . The latter can be re-expressed as 
\

j
j H M

p d B
∈

≤ =∑ . 

Since 2j
j H

p B
∈

=∑ , we have 
\

j j
j M j H M

p p B
∈ ∈

= =∑ ∑ . Therefore, we have a solution to the 

PARTITION instance if there exists a schedule with a total completion time of no more than 

C .■ 
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 The following corollary immediately follows. 

 

 Corollary 1: 1 1, 1, jMP v K FullTrips C→ = ≥ ∑  is NP-hard. 

  

 Corollary 2: Problem 2 1 1, 1, jP v K LastPartial C→ = ≥ ∑  is NP-hard. 

 Proof: Since Theorem 2 does not involve a partial trip the proof is valid also for this 

special case. 

 

 The problem 1 1, 1, jMP v K LastPartial C→ = ≥ ∑  is also NP-hard since the 

problem 2 1 1, 1, jP v K LastPartial C→ = ≥ ∑  is shown to be NP-hard. 

 

 

4.2.2. Last Trip Partial Problem  
 

 In this section we consider a problem that involves the constraint that the only 

partially loaded trip, when required, can be the last one. The need to decide which trip will be 

partially loaded increases the complexity of the problem. Thus, this constraint makes the 

problem easier. Managers in real life may also find it intuitive to send more jobs on the 

earlier trips and fewer jobs on the last trip when they wish to minimize the total completion 

time. With this motivation, an exact method to solve this problem will be given in the next 

section. Since the problem is NP-hard, it will be difficult to obtain optimum solutions in a 

reasonable amount of time and hence fast heuristic algorithms will also be proposed. Finally, 

a lower bound will be derived to facilitate the quality assessment of the heuristic algorithms. 
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4.2.2.1. Exact Solution Method for Last Trip Partial Problem 

 

Parameters: 

n : number of jobs 

jp :  processing time of job j , for 1, 2,....,j n=  

id :  distance between plant i  and the customer, for 1,2,....,i m=  

K : truck capacity 

q′ : number of trips required to transport all jobs,  nq
K
⎡ ⎤′ = ⎢ ⎥⎢ ⎥

 

q : number of fully loaded trips required, nq
K
⎢ ⎥= ⎢ ⎥⎣ ⎦

 

 

 Note that if a partially loaded trip is not required, it will be that q q′ = , otherwise 

1q q′ = + . 

 

Assumptions: 

We assume without loss of generality that jobs are indexed in non-decreasing order of their 

processing times. That is, 1 2 .... np p p≤ ≤ ≤ .  

 

Decision Variables: 

 

1,  if job  is assigned to plant 
  for  1, 2,....,   and  1, 2,....,

0,  otherwise                            ij

j i
X i m j n

⎧
= = =⎨
⎩

 

 

1,  if job  is transported on trip 
   for   1, 2,....,   and  1,2,....,

0,  otherwise                                jk

j k
Y j n k q

⎧ ′= = =⎨
⎩
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1,  if plant  is visited on trip 

   for   1, 2,....,   and  1,2,....,
0,  otherwise                           ik

i k
W i m k q

⎧ ′= = =⎨
⎩

 

 

jC  = process completion time of job j  at the plant it is assigned to,  1, 2,....,j n=  

 

kQ  = time truck reaches the customer at the end of the thk  trip,  1, 2,....,k q′=  

 

  

Mixed Integer Programming Model (MIP-1) 

 

(1)  ( )
1

minimize     
q

k q
k

K Q n q K Q ′
=

⋅ + − ⋅ ⋅∑  

  subject to  

 

(2)  
1

 = 1,            1, 2,..,
m

ij
i

X j n
=

=∑  

(3)   
1

= 1,           1, 2,..,
q

jk
k

Y j n
′

=

=∑  

(4)  
1

 ,          1,..,
n

jk
j

Y K k q
=

= =∑  

(5)  ( )1
1

n

j q
j

Y n q K+
=

= − ⋅∑         

(6)  1,           1,..,  ,     1,..,  ,    1,..,ik ij jkW X Y i m j n k q′≥ + − = = =  

(7)  
m

1
1,           1,..,ik

i
W k q

=

′= =∑  
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(8)  1
1

( ) (1 ) ,          1,..,  ,     1,..,
j

il l j ij
l

X p C X M i m j n
=

⋅ ≤ + − ⋅ = =∑  

(9)  1 1
1

2 ( )
m

i i
i

Q W d
=

≥ ⋅ ⋅∑  

(10)  1
1

2 ( ),           2,...,
m

k k ik i
i

Q Q W d k q−
=

′≥ + ⋅ ⋅ =∑  

(11)  ( )1 (2 ) ,      1,...,  ,    1,...,  ,   1,...,i ij jk k j iM d X Y Q C d i m j n k q′+ ⋅ − − + ≥ + = = =  

(12)      ,            1,...,     jC is nonnegative real number j n=  

(13)      ,           1,...,     kQ is nonnegative real number k q′=  

(14)  { }0,1 ,           1,...,  ,     1,...,     ijX i m j n∈ = =  

(15)  { }0,1 ,           1,...,  ,     1,...,     jkY j n k q′∈ = =  

(16)  { }0,1 ,           1,...,  ,     1,...,     ikW i m k q′∈ = =  

 

 Since only the last truck will be partially loaded, the critical information in 

determining the objective value is the times the truck arrives at the customer after each trip.  

The objective function shown in (1) formulates the total completion time as a function of 

these truck arrival times. Constraint set (2) ensures that each job is assigned to exactly one 

plant. Similarly, constraint set (3) ensures the assignment of each job to exactly one trip. 

Constraint set (4) enforces the condition that K  jobs be transported on the first q  trips and 

constraint (5) forces ( )n qK−  jobs to be assigned on the last trip. In constraint (5) if q′  was 

used instead of ( 1)q + , when no partially loaded trip is required, this constraint would try to 

assign 0 jobs to the last trip. Hence our model would not work since all jobs would not be 

transported. Constraint set (6) implies that if job j  is transported on trip k , then the plant at 

which job j  is produced should be visited on trip k . Constraint set (7) ensures that on each 

trip only one plant is visited therefore only direct shipments from each plant to the customer 

are permissible. Constraint set (8) requires a thorough explanation. According to Theorem 
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1(ii), all jobs assigned to each given plant are processed in SPT order. Since jobs are indexed 

in SPT order, the only jobs that affect the completion time of job j  are the jobs with smaller 

indices at the same plant. Therefore, the completion time of job j  is the summation of the 

processing times of these jobs and that of job j . 1M  in constraint set (8) is a large integer 

and its value is determined to be the sum of processing times of all jobs, i.e. 1
1

n

j
j

M p
=

= ∑ . 

Constraint (9) states that the truck cannot leave the plant it visits on its first trip before 

arriving there. Constraint set (10) ensures the same condition as in constraint (9) but for the 

trips other than the first one.  In constraint set (11), instead of the term ( )2 ij jkX Y− − , we can 

use ( )1 ikW− . This constraint set ensures that on any trip, if job j  is transported on that trip, 

the truck cannot leave the plant job j  is processed at before the completion of that job. Here, 

if a job is not transported on the thk  trip, the constraint becomes redundant. However, for 

each job transported on the thk  trip, this constraint must be satisfied.  

 

 

4.2.2.2. Heuristic Methods for Last Trip Partial Problem 

 

 Preliminary computations indicate that the MIP model developed for the problem 

with last trip partially loaded is not able to provide results in a reasonable amount of time. 

Thus, we develop two fast heuristic methods to obtain near optimal solutions for this 

problem. Although the name of this problem is Last Partial Case, our heuristics are designed 

to handle situations where the number of jobs is divisible by the truck capacity, i.e. no 

partially loaded trip is required. Therefore, whenever we use the term ( )n qK−  in order to 

represent the number of jobs in the partially loaded trip, it should be kept in mind that its 

value may be zero when a partially loaded trip is not required.  
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 Heuristic 1 (LPH1): 

 

 There are two main principles supporting the mechanism of this procedure. We 

believe that the algorithm will present better intuitive appeal after a description of these two 

principles. 

 

 Principle 1 (Batch the Jobs): One of the main ideas underlying Heuristic 1 is that on 

each plant assigned jobs will be processed in SPT order. Therefore, all jobs are sorted in SPT 

order and then grouped into full batches of K  jobs, and the partial batch with ( )n qK−  jobs. 

A grouping example with a partially loaded trip is as shown below.  

 

1 2 1 2 2 1 2

1 2 ( 1)

, ,..., , , ,..., ,.........., , ,....,K K K K qK qK n

Batch Batch Batch q

J J J J J J J J J+ + + +

+
14243 1442443 144424443

 

 

In Heuristic 1, first Batch 1 will be assigned to a plant and that plant will be visited on the 

first trip. Then Batch 2 will be assigned to a plant and transported on the second trip and this 

will continue until all the batches are assigned to a plant and transported. 

 

 For ease of notation, as mentioned in Chapter 3, lp  will be used to denote the 

processing time of lJ . 

 

 Principle 2 (Choose Potential Plants): Initially none of the batches is assigned to any 

plant. We need to choose a plant to assign Batch 1. The processing of the jobs in Batch 1 

takes 
1

K

j
j

p
=
∑  time. If Batch 1 is assigned to Plant 1, the first trip will end at time 

1 1
1

max ,
K

j
j

p d d
=

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑ . If it is assigned to a farther plant i , the first trip will end at time 

1
max ,

K

j i i
j

p d d
=

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑ . Since 1id d≥ , 1 1

1 1
max , max ,

K K

j i i j
j j

p d d p d d
= =

⎛ ⎞ ⎛ ⎞
+ ≥ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ . Therefore, to 
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minimize the completion time of the first trip, the truck should visit Plant 1 on the first trip. 

For the second trip, we know that Batch 1 is assigned to Plant 1 and no batches have been 

assigned yet to farther plants. With a similar calculation to the one made for the first trip, it is 

obvious that among the plants in the set {Plant 2, Plant 3, …, Plant m }, it is better to assign 

Batch 2 to Plant 2. Therefore, instead of thinking every plant as an alternative, only Plant 1 

and Plant 2 are considered as alternatives for assigning Batch 2. To choose one of them, the 

completion time of the second trip is calculated for both alternatives. The alternative that 

gives a smaller trip completion time is chosen to assign Batch 2. Here, the calculation of trip 

completion times can be shown as follows: if Batch 2 is assigned to Plant 1, the completion 

time of the second trip is 
2

1 1 1
1 1

max ,max , 2
K K

j j
j j

p p d d d
= =

⎛ ⎞⎛ ⎞
+ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ . The latter term in the 

maximum is the time truck arrives at Plant 1 after the first trip. If Batch 2 is assigned to Plant 

2, the completion time of the second trip is 
2

1 1 2 2
1 1

max ,max ,
K K

j j
j K j

p p d d d d
= + =

⎛ ⎞⎛ ⎞
+ + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ . 

Suppose that Plant 2 was chosen. Then for the third trip, among plant set {Plant 3, …, Plant 

m }, Plant 3 will be chosen as a potential plant. And between Plants 1 and 2, Plant 1 will be 

chosen since the sum of the processing times of the jobs already assigned to Plant 1 is 

smaller than that of those assigned to Plant 2. Hence, the potential plants for the third trip 

will be Plants 1 and 3. The plant having the smaller trip completion time will be chosen and 

this procedure will continue until all batches are assigned to some plant. So we can 

generalize this procedure as follows: 

 

 To assign Batch k, among the plants having the same number of batches that have 

already been assigned to them, the plant having the smallest distance will be chosen and 

marked as a potential plant. Among all potential plants, the plant giving the smallest possible 

trip completion time is chosen to assign Batch k.  

 

 Having clarified main ideas used, Heuristic 1 can be outlined as follows: 

 



 44

 Step 0) Index jobs in non-decreasing order of processing times and plants in non-

decreasing order of distances to the customer area. Set total completion time to 0. Go to step 

1. 

 Step 1) Assign the first batch and make the first trip to Plant 1. Update the total 

completion time. If all jobs are assigned to a plant, stop. Otherwise, go to Step 2. 
 

 Step 2) Determine the potential plants. Go to step 3. 
 

 Step 3) For the first unassigned batch, calculate possible trip completion times of the 

potential plants. Go to step 4. 
 

 Step 4) Choose the plant with the smallest possible trip completion time. Go to step 5. 
 

 Step 5) Assign the first unassigned batch to this plant. Update the total completion 

time. If there exists any unassigned batch, go to Step 2. Otherwise, stop and return the total 

completion time. 

 

 As can be seen in the pseudocode given in Appendix B.1, Heuristic 1 runs in 
2 2( )O m n mn+  time. This is polynomial when m  is fixed. 

 

 Batching the jobs before determining the route of the truck as in Heuristic 1 makes 

the solution methodology easy to apply in real life. However, we had the intuition that having 

the flexibility of rearranging the batches, as opposed to the fixed batches in Heuristic 1, may 

provide us with better results in terms of total completion time. Therefore, we develop 

another heuristic called Heuristic 2. 

 

  Heuristic 2 (LPH2): 

 

 In this method, fixed batches do not exist. Assuming trip k  visits plant i , and it is 

required to transport K  jobs, if we can produce K  jobs on plant i  until the truck arrives 

there, we choose the batch with largest processing time to be assigned to that plant. The 
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procedure that chooses the batch with largest processing time is called batch sliding. The 

intuition of batch sliding comes from the two-dimensional bin packing problem. Each trip in 

our problem is similar to a bin. First dimension is the number of jobs that needs to be 

transported on that trip and the second dimension is the available processing time of the plant 

to which the trip is made. The available processing time of a plant is the time at which the 

truck arrives at that plant less the time the last job at that plant completes its processing. The 

main idea here is to use the jobs that can fill as much of the second dimension as possible 

while using the first dimension completely. This means, among the batches that can fill the 

first dimension and without exceeding the second dimension, we should choose the batch 

with the largest processing time, where the processing time of a batch is the sum of the 

processing times of the jobs in that batch. Since batch sliding is also used in some of the 

methods for other cases, we first illustrate it on an example and then give a step-by-step 

algorithm. 

 

 Example 4.1: 

 

 Suppose on the first trip the truck visits Plant i  and 2K = .  The distance of Plant i  to 

the customer is 24id = . We have a total of 10 jobs with processing times 

{ }1 2 3 4 5 6 7 8 9 10, , , , , , , , ,p p p p p p p p p p p= { }5,6,8,8,10,11,14,14,15,15= . Truck arrives at 

Plant i  at time 24 .  

 

• Choose the two jobs with smallest processing times. We can show this batch 

choice as { }5 , 6 ,8,8,10,11,14,14,15,15 . Since5 6 11 24+ = < , we can produce two jobs until 

the truck arrives there. Therefore, we can apply batch sliding.  

• Sliding the batch one step we will have { }5, 6 , 8 ,8,10,11,14,14,15,15  and 

since 6 8 14 24+ = < , we will continue sliding until we find the two-size batch with largest 

processing time that does not violate 24 unit limit.  
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• For this trip our batch choice will be { }5,6,8,8, 10 , 11 ,14,14,15,15  with a 

processing time of 21. This batch will be assigned to and transported from Plant i .  

 

 Now suppose that we have the following conditions: the truck will visit a plant with 

an available processing time of 23 and 2K = . The job set is 5,6,8,8, 10 , 11{ },14,14,15,15  

where the jobs with processing times 10 and 11 are already assigned to some plant.  

  

• Choose the two jobs with the smallest processing times, shown as 

5 , 6 ,8,8, 10 , 11{ },14,14,15,15 . Since 5 6 11 23+ = < , we can produce two jobs until the 

truck arrives there. Therefore, we can apply batch sliding. 

• Sliding the batch as in the previous example we will obtain the following 

batch choice 5,6,8, 8 , 10 , 11{ }, 14 ,14,15,15  with a processing time of 8 14 22+ = . 

 

 Algorithm Batch Sliding can be summarized as follows: 

 

 Step 0) Set 1j = . Go to step 1. 

 

 Step 1) Calculate the sum of processing times of the first K  unassigned jobs starting 

with the job at thj position. Go to step 2. 

 

 Step 2) If the sum in step 1 is less than or equal to the available processing time of the 

plant, increment j  and go to step 1. Otherwise, stop and return the batch starting with the job 

at ( 1)thj − position. 

 

 

 We can outline Heuristic 2 as follows: 
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 Step 0) Index jobs in non-decreasing order of processing times and plants in non-

decreasing order of distances to the customer area. Set total completion time to 0. Set 1i = , 

0k =  and nq
K
⎢ ⎥= ⎢ ⎥⎣ ⎦

. Go to step 1. 

 

 Step 1) Calculate the sum of processing times of the first K  unassigned jobs. If the 

sum is less than or equal to the available processing time of plant 1, apply Algorithm Batch 

Sliding and go to step 6. Otherwise, go to step 2. 

 

 Step 2) Assign the first K  unassigned jobs to plant 1, update total completion time 

and increment k . If  k q< , go to step 3. Otherwise, go to step 7. 
 

 Step 3) Calculate the sum of processing times of the first K  unassigned jobs. If the 

sum is less than or equal to the available processing time of plant i , apply Algorithm Batch 

Sliding  and go to step 6. Otherwise, go to step 4. 
 

 Step 4) If i m< , increment i  and go to step 1. Otherwise, go to step 5. 
  

 Step 5) Calculate possible trip completion times with respect to the sum of processing 

times found in step 1. Choose the plant with smallest trip completion time and assign the first 

K  unassigned jobs to that plant. Update total completion time, set 1i =  and increment k . If  

k q< , go to step 3. Otherwise, go to step 7. 
 

 Step 6) Assign the batch found by the Batch Sliding Algorithm applied in step 1 to 

plant i , set 1i = , update total completion time and increment k . If  k q< , go to step 3. 

Otherwise, go to step 7. 
 

 Step 7) If a partially loaded trip is not required, return the total completion time and 

stop. Otherwise, go to step 8. 

 Step 8) Calculate the sum of processing times of all unassigned jobs. Calculate 

possible trip completion times with respect to this sum. Choose the plant with smallest trip 
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completion time and assign all unassigned jobs to that plant. Update and return the total 

completion time, and stop. 

 

 The pesudocodes of the batch sliding algorithm and Heuristic 2 are given in Appendix 

B.2. Batch sliding algorithm runs in 2( )O n  time and Heuristic 2 runs in 3( )O mn  time. 

 

 

4.2.2.3. Lower Bound for Last Trip Partial Problem (Lower Bound 1) 

 

 Although the MIP model presented in Section 4.2.2.1 may give optimal solutions in a 

reasonable amount of time for small instances, obtaining a result for larger instances requires 

long CPU times. Therefore, in order to be able to measure the performance of our heuristic 

methods even with large instances, we develop a lower bound, named as Lower Bound 1. 

The calculation of the lower bound for this case is mainly based on two parts: the time truck 

arrives at the customer after a trip and the number of jobs transported in that trip. In this case, 

the second part is known so the problem here is to determine the first part. Since we do not 

know the route of the truck, in order to be able to calculate a valid lower bound, all plants are 

assumed to have the same distance d  to the customer, where min ii
d d= . On the first trip, 

truck will arrive at a plant at time d  and will leave the plant either as soon as it arrives or at 

the completion time of the thK  job. Therefore, we can say the truck leaves the plant on its 

first trip at time 
1

max ,
K

j
j

p d
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ . On the second trip, the truck visits another plant and to find 

a valid lower bound, we assume that when it arrives at the plant on its second trip, there are 

K  jobs already produced. 

 

  If the plants have the same distance to the customer, the truck visits a different plant 

in each one of the first m  trips. So in the ( 1)thm +  trip, it makes a second visit to a plant, 

meaning that some jobs have already been assigned to and produced at that plant. Since we 
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know that only the last trip may be partially loaded, there will be at least K  jobs already 

assigned to the plant to which the ( 1)thm +  trip is made. Therefore, if not completed already 

until the truck arrives at that plant, the truck has to wait for the completion of 2 thK  job. 

Hence, for the 1st ,  ( 1)thm + , (2 1)thm + , …and so on trips, the departure time of the truck 

from the plant should be recalculated according to the jobs that have already been assigned to 

that plant. To clarify, we can divide the trips into rounds and since there are m  plants, there 

will be m  trips in each round. The first m  trips will be in round1, the second m  trips will be 

in round2, and so on. Since n
K
⎡ ⎤
⎢ ⎥⎢ ⎥

 trips are required to transport all jobs, there will be 

/n m
K

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥

 rounds. In Table 4.1, for each trip on the first three rounds, the calculation of the 

arrival time of that trip to the customer is given.  

 

 

Table 4.1: Sample calculation of completion times of the trips for Lower Bound 1 

 

 Trip 1 Trip 2 … Trip m  

Round1 1
1

max ,
K

j
j

L d p d d
=

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
∑  

1 3L d+  … 
1 1 (2 1)B L m d= + −  

Round2 
2

2 1
1

max ,
K

j
j

L d p B d d
=

⎛ ⎞
+ = + +⎜ ⎟

⎝ ⎠
∑

2 3L d+  … 
2 2 (2 1)B L m d= + −

Round3 
3

3 2
1

max ,
K

j
j

L d p B d d
=

⎛ ⎞
+ = + +⎜ ⎟

⎝ ⎠
∑  

3 3L d+  … 
3 3 (2 1)B L m d= + −
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 As can be seen in Table 4.1, the completion time of a trip is composed of two terms: 

vL , where 1,2,..., /nv m
K

⎡ ⎤⎡ ⎤= ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥
, and rd , where 1,2,...., 2 1r m= − . The term vL  will be 

called LeaveTime, and the term rd  will be called TravelTime.  

 

 

 Keeping the calculation procedures shown in Table 4.1 in mind, the algorithm of 

Lower Bound 1 can be outlined as follows: 

 

 Step 0) Index jobs in non-decreasing order of processing times and plants in non-

decreasing order of distances to the customer area. Set total completion time to 0, 1k =  and 

LeaveTime = 0. Set nq
K
⎢ ⎥= ⎢ ⎥⎣ ⎦

 and nq
K
⎡ ⎤′ = ⎢ ⎥⎢ ⎥

 

 

 Step 1) Calculate TravelTime for each trip. 
 

 Step 2) If { }1, 1, 2 1,....k m m∈ + + , go to step 3. Otherwise, go to step 4. 

 

 Step 3) Update LeaveTime and go to step 4. 

 

 Step 4) Calculate completion time of the trip by summing LeaveTime computed in 

step 3 and TravelTime of that trip. Increment k . If k q′≤ , go to step 2. Otherwise, go to step 

5. 

 Step 5) If a partially loaded trip is not required, go to step 6. Otherwise, go to step 7. 
 

 Step 6) Sum the completion times of each trip and multiply it with K . Set the total 

completion time to this value. Return the total completion time and stop. 
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 Step 7) Sum the completion times of the first q  trips and multiply it with K . Multiply 

the completion time of the ( )thq′  trip with ( )n qK−  and add to this sum. Set the total 

completion time to the value found. Return the total completion time and stop. 

 

 The pseudocode of the algorithm of Lower Bound 1 is given in Appendix A.1. This 

algorithm runs in 2( )O n mn+ time. 

 

 We also generated a two-stage lower bound where the plants are at the same location 

(with the distance of the closest plant) and parallel. The jobs are first assigned to the plants in 

SPT order and then transferred to the customer. However, this lower bound was 

outperformed by Lower Bound 1 in our preliminary tests.  

 

4.2.3. Exact Solution Method for Fully Loaded Trips Problem 
 

 In this problem it is not known which trip will be partially loaded; hence, the number 

of jobs transported in each trip is a variable. Therefore, trying to calculate the total 

completion time by multiplying the completion time of each trip with the number of jobs 

transported on that trip would cause nonlinearity. Thus, the total completion time will be 

calculated by summing up the completion times of all jobs, where the completion time of a 

job is defined as the time it reaches at the customer. 

  

Parameters: 

maxd : max ii
d   

 

Assumptions: 

We assume without loss of generality that jobs are indexed in non-decreasing order of their 

processing times. That is, 1 2 .... np p p≤ ≤ ≤ .  
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Decision Variables: 

 

1,  if job  is assigned to plant 
  for  1, 2,....,   and  1, 2,....,

0,  otherwise                            ij

j i
X i m j n

⎧
= = =⎨
⎩

 

 

1,  if job  is transported on trip 
   for   1, 2,....,   and  1, 2,....,

0,  otherwise                                jk

j k
Y j n k q

⎧ ′= = =⎨
⎩

     

 

1,  if plant  is visited on trip 
   for   1, 2,....,   and  1,2,....,

0,  otherwise                           ik

i k
W i m k q

⎧ ′= = =⎨
⎩

 

 

1,  if the truck is fully loaded on trip 
   for   1, 2,....,

0,  otherwise                                       k

k
F k q

⎧ ′= =⎨
⎩

 

 

jC  = process completion time of job j  at the plant it is assigned to,  1, 2,....,j n=  

 

kQ  = time truck reaches the customer at the end of the thk  trip,  1, 2,....,k q′=  

 

jT  = completion time of job j , i.e. the time that job reaches the customer,  1, 2,....,j n=  

  

 

Mixed Integer Programming Model (MIP-2) 

(17)  
1

minimize     
n

j
j

T
=
∑  

  subject to  
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(2), (3), (6) – (16) 

 

 (18)  (1 ),          1,..,  ,    1,..,j k k jkT Q M Y j n k q′≥ − − = =  

 

 (19)  
1

 ,          1,..,
n

jk
j

Y K k q
=

′≤ =∑  

 (20)  [ ]
1

1 ,          1,..,
n

jk k
j

K Y F K k q
=

′− ≤ − ⋅ =∑  

(21)  
1

1
q

k
k

F q
′

=

′= −∑     

(22)       ,           1,...,     jT is nonnegative real number j n=  

(23)  { }0,1 ,           1,...,    kF k q′∈ =  

 

 Constraint set (18) ensures that if job j  is transported on trip k , its completion time 

cannot be smaller than the completion time of trip k , i.e. the time the truck reaches at the 

customer at the end of the thk  trip. kM  in constraint set (18) is a large integer and its value is 

determined to be max
1

2 ,
n

j
j

k p d
=

⎛ ⎞
⋅ +⎜ ⎟
⎝ ⎠
∑   for 1,...,k q′= . Constraint set (19) implies that on each 

trip, at most K  jobs can be transported. Constraint set (20) and constraint (21) work together. 

When there is a partially loaded trip, its kF  value is forced to be 0 by constraint set (20), 

while constraint (21) ensures that there can be exactly one partially loaded trip. If a partially 

loaded trip is not required, constraint (21) will again assign the value of 0 to one of the kF  

values. However, since having an kF  value equal to 0 in constraint set (20), does not prevent 

the trip from being fully loaded, we will still have all trips fully loaded.  
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4.2.4. Heuristic Methods for Fully Loaded Trips Problem 
 

 The two heuristic methods proposed for this problem are generalizations of the 

heuristics developed for the problem with the constraint that the partial trip, if required, will 

be the last one.  

 

 Heuristic 3 (FTH1): 

 

 This method is a generalization of Heuristic 1. The main idea is to calculate the total 

completion times of q′  alternatives, where nq
K
⎡ ⎤′ = ⎢ ⎥⎢ ⎥

 and thk  alternative assumes that thk  

trip is partially loaded. Among these alternatives, the one yielding the smallest total 

completion time is chosen. The completion time of each alternative can be calculated by 

using a slightly modified version of Heuristic 1. A detailed pseudocode of Heuristic 3 is 

given in Appendix B.3. This heuristic runs in 3( )O mn  time which is polynomial when m  is 

fixed. 

 

 In this method the two principles introduced for Heuristic 1, batching the jobs and 

choosing the potential plants, are used. Below is an example showing how to batch the jobs 

for different alternatives supposing that a partially loaded trip is required. 

 

1st Trip Partial: 1 2 1 2 1 2

1(  ) 2

, ,..., , , ,..., ,.........., , ,....,n qK n qK n qK n qK K n K n K n

BatchqBatch size n qK Batch

J J J J J J J J J− − + − + − + − + − +

′−
1444244431442443 14444244443

 

 

2nd Trip Partial: 1 2 1 2 1 2

1 2(  )

, ,..., , , ,..., ,.........., , ,....,K K K n qK K n K n K n

Batch BatchqBatch size n qK

J J J J J J J J J+ + − + − + − +

′−
14243 144424443144424443

 

…………. 

( )thq′  Trip Partial: 1 2 1 2 2 1 2

1 2 (  )

, ,..., , , ,..., ,.........., , ,....,K K K K qK qK n

Batch Batch Batchq size n qK

J J J J J J J J J+ + + +

′ −
14243 1442443 144424443
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 Heuristic 4 (FTH2): 

 

 This heuristic is a generalization of Heuristic 2. The batch sliding mechanism 

introduced for Heuristic 2 is also implemented in Heuristic 4. As in Heuristic 3, q′  

alternatives are compared to each other and the one with the smallest total completion time is 

chosen. The completion time of each alternative can be calculated by using a slightly 

modified version of Heuristic 2. This algorithm runs in 4( )O mn  time and its pseudocode can 

be found in Appendix B.4. 

 

 

4.2.5. Lower Bounds for Fully Loaded Trips Problem (Lower Bounds 2, 3 

and 4) 
 

 In order to be able to assess the performance of proposed heuristics in large instances, 

we develop two fast lower bounds, referred to as Lower Bound 2 and Lower Bound 3. In our 

preliminary studies, we tried solving the MIP model developed for this problem with equal 

distances d , where min ii
d d= , in order to obtain a lower bound. However, even with small 

instances, it takes considerable amount of CPU time to obtain optimal solutions. 

 

 Lower Bound 2: 

 

In this problem at most one trip is partially loaded. It is required to have a total of q′  

trips, where nq
K
⎡ ⎤′ = ⎢ ⎥⎢ ⎥

, to transport all jobs. q  of these trips will be fully loaded, where 

nq
K
⎢ ⎥= ⎢ ⎥⎣ ⎦

. The number of jobs to be carried on the partial trip is ( )n qK− .  

 

The total completion time of a trip consists of two elements: the number of jobs 

transported in that trip and the time the truck arrives at the customer at the end of that trip.  
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Number of jobs transported on the trips: We consider as if whenever the truck arrives at a 

plant, there will be K  jobs already produced at that plant. Hence, for the first q  trips we 

suppose that K  jobs are transported on that trip and ( )n qK−  jobs are transported on the last 

trip.  

 

Trip completion times: This method simplifies the problem by setting the distance from each 

plant to the customer equal to the smallest such distance. Denote this identical distance 

between a plant and the customer location by d . While determining the number of jobs 

transported on the trips we supposed that the first trip will carry K  jobs. However, in reality, 

the first trip may be the one that is partially loaded. Hence, in our lower bound calculations, 

if we state that the truck waits for the completion time of the thK  job in the first trip, the 

lower bound obtained would not be valid. In order to alleviate this issue and obtain a valid 

lower bound, we suppose that the truck leaves the plant visited in the first trip either as soon 

as it arrives or at the completion time of the ( )thn qK−  job. Trip completion times and the 

number of jobs carried on those trips can be calculated as shown in Table 4.2.  

 

Hence, if a partially loaded trip is not required, the lower bound is obtained using the 

following formula: 

[ ] [ ] 23 .... (2 1)nK A d K A d K A d n A K d q
K

⎡ ⎤⋅ + + ⋅ + + + ⋅ + ⋅ − = ⋅ + ⋅ ⋅⎢ ⎥⎣ ⎦
  

where 
1

max ,
K

j
j

A p d
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ . 

 

 If a partially loaded trip is required, the lower bound can be found using the following 

formula: 

  [ ] [ ] [ ] [ ]3 .... (2 1) ( ) (2 1)K B d K B d K B q d n qK B q d⋅ + + ⋅ + + + ⋅ + − + − ⋅ + +   

2 ( ) (2 1)n B K d q n q K q d= ⋅ + ⋅ ⋅ + − ⋅ ⋅ + ⋅  where 
1

max ,
n qK

j
j

B p d
−

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ . 
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Table 4.2 : Trip Completion Times and Number of Jobs Carried in Lower Bound 2 

 

 Partially Loaded Trip Not 

Required 
Partially Loaded Trip Required 

 

Trip Arrival Time 

Number 

of Jobs 

Carried 

Trip Arrival Time 

Number 

of Jobs 

Carried 

Trip 1 
1

max ,
K

j
j

A d p d d
=

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
∑ K  

1
max ,

n qK

j
j

B d p d d
−

=

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
∑  K  

Trip2 3A d+  K  3B d+  K  
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Trip q  (2 1)A q d+ −  K  (2 1)B q d+ −  K  

Trip q′  --- --- (2 1)B q d+ +  n qK−  

 

 

 Lower Bound 2 may be very loose when the processing times of the jobs are large so 

that the truck may not be filled (at the time it arrives at a plant) in all trips. To address this 

situation, we develop Lower Bound 3 as an alternative procedure. 

 

 Lower Bound 3: 

 

 Once again, the total completion time of a trip is mainly based on two parts: the time 

the truck arrives at the customer at the end of that trip and the number of jobs transported in 

that trip.  

Number of jobs transported on the trips: To obtain a valid lower bound, we consider as if the 

truck carries K  jobs in its first q  trips and ( )n qK−  jobs on the last trip as explained in 

Lower Bound 2.  
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Trip completion times: Here, in the calculation of trip completion times, we follow the same 

updating mechanism used in the first trips of the rounds in Lower Bound 1. We assume the 

plants have the same distance d , where min ii
d d= , to the customer area. Since the plants 

have the same distance, the truck visits a different plant in each one of the first m  trips. So in 

the ( 1)thm +  trip, it makes a second visit to a plant, meaning that some jobs have already been 

assigned to and produced at that plant. There will be at least ( )n qK−  jobs already assigned 

to the plant to which the ( 1)thm +  trip is made. Therefore, if not completed already until the 

truck arrives at that plant, the truck has to wait for the completion of the ( )thn qK K− +  job. 

Hence, for the1st ,  ( 1)thm + , (2 1)thm + , …and so on trips, the departure time of the truck 

from the plant should be recalculated according to the jobs that have already been assigned to 

that plant.  

 

 In Table 4.3, the completion times of all the trips until the end of round 3 are given. 

The completion times of the trips for other rounds can be calculated by following the 

procedure shown in this table.  

 

Table 4.3 : Trip Completion Times for Lower Bound 3 

 

  Trip 1 Trip 2 … Trip m  

Round1 1
1

max ,
n qK

j
j

L d p d d
−

=

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
∑  

1 3L d+   
1 1 (2 1)B L m d= + −  

Round2 2 1
1

max ,
n qK K

j
j

L d p B d d
− +

=

⎛ ⎞
+ = + +⎜ ⎟

⎝ ⎠
∑

2 3L d+   
2 2 (2 1)B L m d= + −

Round3 
2

3 2
1

max ,
n qK K

j
j

L d p B d d
− +

=

⎛ ⎞
+ = + +⎜ ⎟

⎝ ⎠
∑  

3 3L d+   
3 3 (2 1)B L m d= + −
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 Lower Bound 3 uses the same step-by-step procedure with Lower Bound 1. However, 

in step 3, updating LeaveTime is done according to the calculation methods shown in Table 

4.3, instead of Table 4.1. The pseudocode of the algorithm of Lower Bound 3 is given in 

Appendix A.2. This algorithm runs in 2( )O mn n+ time. 

  

 In Lower Bound 3, as mentioned above, the departure time of the first trip from the 

plant is 
1

max ,
n qK

j
j

p d
−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ . Hence, as ( )n qK−  gets smaller, the departure time of the first trip 

may get smaller. Especially for the problems considering jobs with large processing times, 

this may cause the lower bound to be loose. To overcome this problem we develop an 

alternative lower bound procedure. 

 

 Lower Bound 4: 

 

 In this lower bound generation method, our aim is to eliminate the partially loaded 

trip. In order to do this, from the job set, we delete the last ( )n qK−  jobs. Then we apply 

exactly the same procedure as the one used in Lower Bound 3. But since we deleted the last 

( )n qK−  jobs, there will occur only fully loaded trips and the first trip leaves the plant at 

time 
1

max ,
K

j
j

p d
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ . 

 

 

 

4.3. General Problem 
 

 In the previous problems, we considered a constraint such that the truck will have a 

full load in all trips, except one. The problem considered in this section is more general in the 

sense that it does not involve any such constraint. As explained in Section 4.2, fully loaded 

trips constraint may be preferred by the companies producing physically sensitive products. 
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The solution to this more general problem may be applied by the companies that produce less 

sensitive products with more durable packages so that product would not be harmed when 

shaken or scattered around in the truck. 

 

In most applications, when the truck arrives at a plant, it takes the products ready for 

delivery and turns back to the customer. This is due to the dispatcher’s false belief that doing 

so would result in a better completion time performance on the average. In order to address 

this common practical application, we study the problem where the truck leaves the plant 

immediately. Before continuing with the proposed methods to solve this problem, we will 

first prove in Theorem 4 that the main problem defined in Chapter 3 is at least NP-hard in the 

ordinary sense. In Corollary 2, it will be shown that the problem with no wait constraint is at 

least NP-hard in the ordinary sense. 

 

 

4.3.1. NP-Hardness Proofs for the General Problem and the Problem with 

No Wait Constraint 
 

 Lee and Chen (2001), show that the problem 2 1 1, 1 jP v K C→ = ≥ ∑  is NP-hard. 

Although this problem is different from ours, their proof shows that our problem is NP-hard. 

However, we believe that our proof is more intuitive and easier to understand in the context 

of the main problem studied in this thesis.  

 

 Theorem 3: Problem 2 1 1, 1 jP v K C→ = ≥ ∑  is NP-hard. 

  

 Proof: Given an instance of the PARTITION problem, we construct the following 

instance of our problem. 

 Number of jobs 4n h= , and jobs set { } { }2 1 2 2, 2 3,...., 4N H h h h h= ∪ + ∪ + +  where 

{ }1, 2,..., 2H h=  



 61

 Number of plants 2m =  

 Truck capacity 2K h=  

 Processing times ( )j jp s a=  for j H∈ ,  2 1 2h j
j H

p p B+
∈

= =∑ ,  

       0jp =  for { }2 2, 2 3,...., 4j h h h= + +  

 Plant distances  1 2 2

j
j H

p
d d d B∈= = = =

∑
 

 Threshold on total completion time 12C Bh=  

  

 We first prove that the total completion time will always be greater than C  if more 

than two trips are used. It is obvious that at least two trips are required to transport all jobs. If 

exactly two trips are used, K  jobs will be transported in each trip. Assume that in the first 

trip, instead of sending K  jobs, 1K X−  jobs were sent, and in the second trip, 2K X−  jobs 

were sent, where 1 2 0X X+ >  and 1 2,X X ∈ . Assuming 1Y  jobs were transported in the 

third trip, 2Y  jobs in the fourth trip, and QY  jobs in the ( 2)ndQ +  trip, such that 

1 2
1

Q

l
l

Y X X
=

= +∑  and 
1 2l lY Y≥  for every 1 2l l<  (i.e. on later trips fewer jobs will be sent), we 

will obtain a total completion time as follows: 

1 2 1 22( ) 4( ) 6 8 .... 2 ( 2)j QC K X d K X d Y d Y d Y Q d≥ − + − + + + + +∑  

1 2 1 26 2 4 6 ( .... )QKd dX dX d Y Y Y≥ − − + + + +  

1 26 4 2dK dX dX C= + + >  

  

 Since using more than two trips results in a total completion time greater than C , 

exactly two trips must be used to transport all the jobs. Therefore, proof of Theorem 2 can be 

used to prove the NP-hardness of this problem.■  

 

 The following corollary immediately follows. 
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 Corollary 3: The problem 1 1, 1 jMP v K C→ = ≥ ∑  is NP-hard. 

 Proof: Since 2 1 1, 1 jP v K C→ = ≥ ∑  is NP-hard, 1 1, 1 jMP v K C→ = ≥ ∑  is also 

NP-hard. 

  

 In this section, along with the general problem, we consider one of its special cases, 

the problem with no wait constraint. This problem can be denoted as 

1 1, 1, jMP v K NoWait C→ = ≥ ∑ .  

 

 Corollary 4: Problem 2 1 1, 1, jP v K NoWait C→ = ≥ ∑  with no wait constraint is 

NP-hard. 

 Proof: 

 Since the truck does not wait in Theorem 4, it is easy to see that the proof of Theorem 

4 is also valid for this problem. 

 

 

4.3.2. The Problem with No Wait Constraint 
 

 As mentioned before, in this problem, we have the no wait constraint such that when 

the truck arrives at a plant, it takes the jobs already produced there without violating the 

capacity constraint and leaves the plant as soon as it arrives there.  

 

 

4.3.2.1. Exact Solution Method for the Problem with No Wait Constraint 

 

 In this problem, since we do not know how many trips are necessary to transport all 

jobs, we try to cover the worst case, i.e. the case each job is transported on separate trips, by 

having n  trips. Therefore, we have 1,2,...,k n=  trips. 
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Assumptions: 

We assume without loss of generality that jobs are indexed in non-decreasing order of their 

processing times. That is, 1 2 .... np p p≤ ≤ ≤ . 

 

Decision Variables: 

 

1,  if job  is assigned to plant 
  for  1, 2,....,   and  1, 2,....,

0,  otherwise                            ij

j i
X i m j n

⎧
= = =⎨
⎩

 

 

 
1,  if job  is transported on trip 

   for   1, 2,....,   and  1, 2,....,
0,  otherwise                                jk

j k
Y j n k n

⎧
= = =⎨
⎩

 

 

1,  if plant  is visited on trip 
   for   1, 2,....,   and  1, 2,....,

0,  otherwise                           ik

i k
W i m k n

⎧
= = =⎨
⎩

 

 

jC  = process completion time of job j  at the plant it is assigned to,  1, 2,....,j n=  

 

jT  = time job j  reaches the customer,  1,2,....,j n=  

 

kQ  = time truck reaches the customer at the end of the thk  trip,  1, 2,....,k n=  

 

 

Mixed Integer Programming Model (MIP-3) 

 

(17)  
1

minimize     
n

j
j

T
=
∑  

  subject to  
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(2), (3), (8), (12), (14), (22) 

 

(18.2)  (1 ),          1,..,  ,    1,..,j k k jkT Q M Y j n k n≥ − − = =  

(19.2)  
1

 ,          1,..,
n

jk
j

Y K k n
=

≤ =∑  

(6.2)  1,           1,..,  ,     1,..,  ,    1,..,ik ij jkW X Y i m j n k n≥ + − = = =  

(7.2)  
m

1
1,           1,..,ik

i
W k n

=

≤ =∑  

(9.2)  1 1
1

2 ( )
m

i i
i

Q W d
=

= ⋅ ⋅∑  

(10.2)  1
1

2 ( ),           2,...,
m

k k ik i
i

Q Q W d k n−
=

≥ + ⋅ ⋅ =∑  

(11.2)  ( ) ( )1 1
1

(2 ) ,      1,...,  ,    1,...,  ,
m

i ij jk k vk v j
v

M d X Y Q W d C i m j n−
=

+ ⋅ − − + + ⋅ ≥ = =∑  

            1,...,k n=  

(13.2)      ,           1,...,     kQ is nonnegative real number k n=  

(15.2)  { }0,1 ,           1,...,  ,     1,...,     jkY j n k n∈ = =  

(16.2)  { }0,1 ,           1,...,  ,     1,...,     ikW i m k n∈ = =  

 

 

 Most of the constraints of the form ( .2a ) are the modifications of the constraints of 

the form ( a ) with a difference in just the condition for the trip number, k . In constraint set 

(7.2), the equality form of constraint set (7) is changed into an inequality since we have 

0ikW =  for the trips that may not be used. Conversely in constraint (9.2), the inequality form 

of constraint (9) is changed into equality because we know that the truck does not wait at the 

plant and leaves immediately as it arrives there. Since in this constraint only the first trip is 

considered, the trip is completed at time 2 id , if the truck visits plant i . The model will still 

be valid if the inequality in constraint set (10.2) is changed into equality. Although not 
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intuitive, preliminary tests indicated that having equality in this constraint results in larger 

CPU times. Thus, we use inequality. Constraint set (11.2) ensures that if a job is going to be 

transported in a trip, it should complete its processing on or before the truck arrives at the 

plant at which it is processed.  

 

 In addition to the above constraints, we also have the following valid inequality: 

( 1)
1 1

,          2,..,
m m

ik i k
i i

W W k n−
= =

≤ =∑ ∑  

This inequality implies that if trip k  is not used, then trip 1k +  will not be used. Actually, 

this inequality adds a cut to our model. 

 

 

4.3.2.2. Heuristic Methods for the Problem with No Wait Constraint 

 

 Our preliminary tests show that it is not possible to obtain optimal solutions in a 

reasonable amount of time using the MIP model presented in Section 4.3.2.1. Therefore, we 

develop two heuristic methods to generate near optimal solutions for this problem. 

 

 

 Heuristic 5 (NWH1): 

 

 Since our objective is to minimize the total completion time, we want to transport 

more jobs in the beginning of the schedule. However, it is important not to increase the 

completion times of the trips excessively while trying to increase the number of jobs 

transported. For example, by visiting a farther plant in a trip, it is possible to transport more 

jobs in that and subsequent trips, but this may also increase the completion times of these 

trips. Therefore, there is a tradeoff between the number of jobs transported and the 

completion times of the trips. The main idea of this method arises from the desire to balance 

this tradeoff.  
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 First, we define the gain of going to a farther plant as the additional number of jobs 

that can be transported by going to that farther plant instead of a closer plant. The number of 

jobs to be transported from a plant is determined by taking the minimum of the number of 

jobs that can be produced in the available processing time of that plant and the capacity of 

the truck. As mentioned in Heuristic 2 in Section 4.2.2.2, the available processing time of a 

plant is the time at which the truck arrives at that plant minus the time the last job assigned to 

that plant completes its processing.  

 

 Secondly, we define the loss as the delay in the completion time of the trip by going 

to a farther plant instead of going to the closest plant. Although the gain is subject to change 

depending on the processing times of the jobs that have not been transported yet, the loss is 

constant for each plant. We can calculate the loss of going to plant i  instead of the closest 

plant as 2( )id d− , where min ii
d d= . 

 

 In this method, we try to balance the tradeoff between gain and loss, by visiting a 

farther plant only if the gain of this trip justifies the loss. The gain-loss justification 

mechanism depends on two conditions: 

1. The gain, denoted as g , should be larger than the loss divided by p , where 

1

1 n

j
j

p p
n =

= ⋅∑ . In mathematical representation that is, 2( )id dg
p
−

> . 

2. The gain should be greater than or equal to 1. 

  

 If both of the above conditions are satisfied, then Heuristic 5 lets the truck visit a 

farther plant instead of the closest one.  

 

 In the first condition, the ratio 2( )id d
p
−  is determined as a result of preliminary 

experiments. We expressed the ratio as 2( )
4

ia d d
p

⋅ −
⋅

, and tested its performance on some test 
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problems for different a  values, where 1,2,...,8a = . 4a =  is found to perform better than 

the others from the perspective of minimizing the total completion time. 

 

 In this method, in each trip of the truck, the unassigned jobs with smallest processing 

times will be assigned to a plant and transported. This means, the batch sliding mechanism 

explained in Heuristic 2 is not implemented.  

 

 Following the discussions above, Heuristic 5 can be summarized as follows: 

 

 Step 0) Index jobs in non-decreasing order of processing times and plants in non-

decreasing order of distances to the customer area. Set total completion time to 0, 

0numSent = . Calculate p . For each plant i , set [ ] 0numJobs i = . 

 

 Step 1) Set 1i =  and calculate the number of jobs that can be produced in the 

available processing time of plant i . If the value found is greater than or equal to K , set 

[ ]numJobs i K=  and go to step 2. Otherwise, go to step 3. 

 

 Step 2) Assign the first [ ]numJobs i  unassigned jobs to plant i . Increase numSent  by 

[ ]numJobs i . Update the total completion time. If numSent n< , go to step 1. Otherwise, 

return the total completion time and stop. 
 

 Step 3) Increment i  and calculate the number of jobs that can be produced in the 

available processing time of plant i . If the value found is greater than or equal to K , set 

[ ]numJobs i K= and go to step 4. Otherwise, go to step 4 without changing the value of 

[ ]numJobs i . 

 

 Step 4) If [ ]numJobs i  satisfies gain-loss justification conditions, go to step 2. 

Otherwise, go to step 5. 
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 Step 5) If i m< , go to step 3. Otherwise, set 1i =  and go to step 2. 

 

 Heuristic 5 runs in 2( )O mn  time and its detailed pseudocode can be found in 

Appendix B.5. 

 

 

 Heuristic 6 (NWH2): 

  

In this method, we employ the batch sliding mechanism introduced in Heuristic 2. 

The main idea is as follows: when the truck makes a visit to a plant, the number of jobs it can 

produce in the available processing time of that plant, called numJobs , is calculated. Then, 

procedure batch sliding is applied to select the batch with largest processing time among the 

batches having numJobs  jobs. The difference between Heuristic 5 and this heuristic is in 

step 2. In this method, in step 2, instead of directly assigning the first [ ]numJobs i  unassigned 

jobs to Plant i , the batch determined as a result of batch sliding is assigned to plant i . The 

pseudocode of this algorithm is given in Appendix B.6. This algorithm runs in 3( )O mn  time. 

 

 

4.3.2.3. Lower Bound for the Problem with No Wait Constraint (Lower Bound 5) 

 

 As mentioned before, in this problem we assume that the truck will leave the plant 

immediately after it arrives there and take the jobs ready there. Therefore, the departure time 

of the truck from a plant is determined if the arrival time of it to that plant is known. 

However, the arrival time of the truck to a plant depends on the route of the truck and the 

route is not known. 

 

 In this method, the total completion time is again composed of two parts: trip 

completion times and the number of jobs transported on each trip. Since the route of the truck 

is not known, to find a valid lower bound, we will treat as if the thk  trip is completed at time 
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2k d⋅ ,  where min ii
d d= . Determining the completion time of each trip, the problem now is 

to find out how many jobs will be transported on each trip.  

 

 Since we set the trip completion times to their respective minimums, in order to find a 

valid lower bound, we should set the number of jobs to be transported on each trip to their 

respective maximums. That means, maximum number of jobs are transported in minimum 

time. For this purpose, this method tries to determine at most how many jobs can be loaded 

to the truck in each trip and hence how many trips would the truck make in order to transport 

all jobs.  

 

 Although explained in Section 4.2.2.3, it is better to remind the concept of rounds. 

The trips are grouped into rounds and since there are m  plants, there exist m  trips in each 

round. In other words, a round is completed when each plant is visited once.  

 

 On the first trip of the first round, the maximum number of jobs would be transported 

if the farthermost plant is visited. Since it takes the truck md  units of time to go there, at most 

1l  jobs can be produced until the arrival of the truck, where 
1 1 1

1 1

l l

j m j
j j

p d p
+

= =

≤ <∑ ∑ . In order not 

to violate capacity constraints, at most ( )1min ,l K  jobs can be transported. Then on the 

second trip, we can transport the greatest number of jobs from Plant 1m − . The truck arrives 

there at time 12 m md d −+ . At most 2l  jobs can be produced until the arrival of the truck, where 

2 2 1

1
1 1

2
l l

j m m j
j j

p d d p
+

−
= =

≤ + <∑ ∑ , and at most ( )2min ,l K  number of jobs are transported. 

Calculation goes on like this until the thm  trip. On the thm  trip, the truck arrives at the plant 

at time 1 2 12 2 .... 2m mt d d d d−= + + + +  and at most ml  jobs can be produced until that time, 

where 
1

1 1

m ml l

j j
j j

p t p
+

= =

≤ <∑ ∑ .  
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 On the second round, i.e. the round starting with ( 1)thm +  trip, on each plant visited, 

there will be some jobs already assigned to and produced at that plant. Since our policy is to 

calculate the maximum number of jobs that can be transported on each trip, we want to find 

the maximum number of jobs that can be produced on each plant until the truck arrives there. 

Therefore, for each plant, we suppose the minimum number of jobs have already been 

produced there. For the trips between ( 1)thm +  and (2 )thm , this minimum number of jobs is 

equal to minl , where 
min min 1

1
1 1

l l

j j
j j

p d p
+

= =

≤ <∑ ∑ . However, among these produced jobs, ( )minmin ,l K  

number of jobs have been already transported. Then, for the ( 1)thm +  trip, to transport the 

maximum number of jobs, the truck goes again to the farthermost plant. It arrives there at 

time 1 2 1(2 2 .... 2 2 )m m md d d d d−+ + + + + . Hence, on that plant, at most 1ml +  jobs can be 

produced, where 
1 1 1

1 2 1
1 1

(2 2 .... 2 2 )
m ml l

j m m m j
j j

p d d d d d p
+ + +

−
= =

≤ + + + + + <∑ ∑ . However, at least 

( )minmin ,l K  of them have been already transported. So there are ( )( )1 minmin ,ml l K+ −  jobs 

produced and ready for transportation, and ( )1 minmin( min , , )ml l K K+ −  of them are 

transported on this trip. The calculations are similar for the following trips including the 

(2 )thm trip.  

 

 On the first trip of the third round, i.e. (2 1)thm +  trip, the value of minl  is updated. 

Now, we suppose that we have already made two trips to the closest plant, therefore, on the 

second trip to that plant, the truck arrives there at the earliest at time 13d . Hence, for the trips 

between the (2 1)thm +  and the (3 )thm , minl  is updated so that 
min min 1

1
1 1

3
l l

j j
j j

p d p
+

= =

≤ <∑ ∑ . And the 

number of jobs that have already been transported is ( )minmin , 2l K . Therefore, on (2 1)thm +  

trip, at most ( )2 1 minmin( min , 2 , )ml l K K+ −  jobs can be transported. This updating mechanism 

is repeated on the first trip of each round. 
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 We can summarize the notations and calculations used above as follows. Suppose on 

the thk  trip, the truck arrives at the plant it visits at time t . Denote kl  to be the number of 

jobs that can be produced on that plant until time t . Assume that the truck’s previous visit to 

that plant was on time mint . Denote minl  to be the number of jobs already produced on that 

plant, i.e. the number of jobs produced until time mint . Assuming that trip k  is on the thT  

round, we can express the number of jobs to be transported on trip k  as 

( )minmin( min , ( 1) , )kl l T K K− − ⋅ . Note that for the trips in the first round min 0l = .  

 

 Keeping the calculations shown in Table 4.4 in mind, the algorithm for Lower Bound 

5 can be summarized as follows: 
 

 Step 0) Index jobs in non-decreasing order of processing times and plants in non-

decreasing order of distances to the customer area. Initialize noJobs  array. Set 1k =  and 

0numSent = . 
 

 Step 1) Calculate t  and mint  for trip k  as shown in Table 4.4. Calculate kl  and minl  

with respect to t  and mint  values. 

 

 Step 2) Set [ ] ( )minmin( min , , )knoJobs k l l K K= − . If [ ]noJobs k n numSent≤ − , go to 

step 3. Otherwise, go to step 4. 
 

 Step 3) Increase numSent  by [ ]noJobs k . If numSent n< , increment k  and go to 

step 1. Otherwise, i.e. if numSent n= , go to step 5. 
 

 Step 4) Set [ ]noJobs k n numSent= − . Go to step 5.  

 Step 5) Set the total completion time to [ ]
1

(2 ) [ ]
k

k
k d noJobs k

′=

′ ′∑ . Return the total 

completion time and stop. 
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Table 4.4: t  and mint  calculation for Lower Bound 5 

 

 Trip Number t  value mint  value 

1 1 mA d=  0 

2 2 12 m mA d d −= +  0 

…. … … 

Round 

1 

m  1 2 12 2 .... 2m m mA d d d d−= + + + + 0 

1m +  1 2 12( .... )m md d d A−+ + + +  1d  

2m +  1 2 22( .... )m md d d A−+ + + +  1d  

… … … 

Round 

2 

2m  1 22( .... )m m md d d A−+ + + +  1d  

2 1m +  1 2 14( .... )m md d d A−+ + + +  13d  

2 2m +  1 2 24( .... )m md d d A−+ + + +  13d  

… … … 

Round 

3 

3m  1 24( .... )m m md d d A−+ + + +  13d  

 

 

 This lower bound generation algorithm runs in 2 2( )O m n+  time and a pseudocode of 

it is given in Appendix A.3. 

 

 

4.3.3. Exact Solution Method for the General Problem 
 

 Exact solution method for this problem, is very similar to MIP-3. Only two 

constraints are different. Instead of constraint (9.2) of MIP-3, this method has constraint (9). 

And instead of (11.2), this method has constraint (11.3) which has the same inequality with 

constraint (11) but different domain for k . 
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Assumptions: 

We assume without loss of generality that jobs are indexed in non-decreasing order of their 

processing times. That is, 1 2 .... np p p≤ ≤ ≤ . 

 

Decision Variables: 

 

1,  if job  is assigned to plant 
  for  1, 2,....,   and  1, 2,....,

0,  otherwise                            ij

j i
X i m j n

⎧
= = =⎨
⎩

 

 

1,  if job  is transported on trip 
   for   1, 2,....,   and  1, 2,....,

0,  otherwise                                jk

j k
Y j n k n

⎧
= = =⎨
⎩

 

 

1,  if plant  is visited on trip 
   for   1, 2,....,   and  1, 2,....,

0,  otherwise                           ik

i k
W i m k n

⎧
= = =⎨
⎩

 

 

jC  = process completion time of job j  on the plant it is assigned to,  1, 2,....,j n=  

 

jT  = time job j  reaches the customer,  1,2,....,j n=   

  

kQ  = time truck reaches the customer at the end of thk  trip,  1, 2,....,k n=  

 

Mixed Integer Programming Model (MIP-4) 

 

(17)  
1

minimize     
n

j
j

T
=
∑  

  subject to  

 

 (2), (3), (6.2), (7.2), (8), (9), (10.2), (12), (13.2), (14), (15.2), (16.2), (18.2), (19.2), (22) 
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(11.3)  ( )1 (2 ) ,      1,...,  ,    1,...,  ,i ij jk k j iM d X Y Q C d i m j n+ ⋅ − − + ≥ + = =  

              1,...,k n=  

  

 In addition to the constraints above, we have the valid inequality given in Section 

4.3.2.1. 

 

4.3.4. Heuristic Method for the General Problem 
 

 In the previous sections of this chapter, we presented heuristics developed for the 

special cases of this problem that are observed in common practical applications. All these 

heuristics can be used to obtain a solution for this main problem. However, we develop one 

more heuristic method, Heuristic 7, specially designed for this general problem. 

 

 In Theorem 1(iv), it is stated that the truck leaves a plant either as soon as it arrives 

there or waits for the completion of a job. The question here is, if the truck waits at the plant, 

how much it should wait. In other words, assuming A  jobs have already been produced until 

the truck arrives at a plant, for how many more job completions should the truck wait. 

Although we could not prove it analytically, we believe that in most cases whenever the truck 

arrives at a plant, it follows one of the three following options: 

 

1. Leaves the plant immediately 

2. Waits for one more job 

3. Waits until the truck is fully loaded 

 

The second option means that truck will wait for the completion of the job that has already 

started its processing, but not completed, at the time the truck arrives to the plant. 
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 We study the third option in Section 4.2. Although we study the first option in Section 

4.3.2, since first and second options are closely related to each other, we develop Heuristic 7 

to address these two options.  

 

 There are three main concepts used in this method. The first concept is the batch 

sliding mechanism, explained before. The second concept is the gain-loss justification, 

introduced in the problem with a no wait constraint. The third concept is named as ratio-to-

wait. This concept can best be explained on an example. Suppose that the processing of job j  

has already started but not completed until the arrival of the truck.. If the percentage of job 

j ’s completed part is greater than or equal to ratio-to-wait, then the truck waits for the 

completion of job j , otherwise it leaves the plant immediately. Here, it is obvious that, when 

ratio-to-wait is equal to 1, the truck never waits for a job, i.e. the problem with no wait 

constraint. Our preliminary tests indicate that there exists no common ratio-to-wait value that 

performs well for all parameter settings. Therefore, in Heuristic 7, we let ratio-to-wait be 

equal to r , where 0.1,0.2,....,1r = , and among these r  values, choose the one yielding the 

smallest total completion time. 

 

 Following the discussions above, Heuristic 7 can be summarized as follows:  

 

 Step 0) Index jobs in non-decreasing order of processing times and plants in non-

decreasing order of distances to the customer area. Set totCompTime to 0, 0numSent = . 

Calculate p . Set ratio-to-wait = 0.1. For each plant i , set [ ] 0numJobs i = , 0prodNum = . 

Set bestCompTime to a very large value. 
 

 Step 1) Set 1i = . Determine the indexes and calculate the number of jobs that can be 

completely produced in the available processing time of plant i . Set prodNum  to this value. 

Decrease available processing time by the sum of processing times of these jobs. If within 

updated available processing time, ratio-to-wait of the next job can be completed, increment 

prodNum . If prodNum K≥ , set [ ]numJobs i K=  and go to step 2. Otherwise, go to step 4. 
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 Step 2) Apply batch sliding with batch size [ ]numJobs i . Assign the resulting batch to 

plant i . Increase numSent  by [ ]numJobs i . Update totCompTime. If numSent n< , go to step 

1. Otherwise, update totCompTime, if necessary update bestCompTime, and go to step 3. 
 

 Step 3) If ratio-to-wait < 1, reset everything except bestCompTime, increase ratio-to-

wait by 0.1 and go to step 1. Otherwise, return bestCompTime and stop. 
  

 Step 4) Increment i  and calculate the number of jobs that can be produced in plant i  

as explained in step 1. If value found is greater than or equal to K , set [ ]numJobs i K= and 

go to step 5. Otherwise, go to step 5 without changing the value of [ ]numJobs i . 

 

 Step 5) If [ ]numJobs i  satisfies gain-loss justification conditions, go to step 2. 

Otherwise, go to step 6. 
 

 Step 6) If i m< , go to step 4. Otherwise, set 1i =  and go to step 2. 

 

 A detailed pseudocode of this algorithm can be found in Appendix B.7. This heuristic 

runs in 3( )O mn  time. 

 

 

4.3.5. Lower Bound for the General Problem (Lower Bound 6) 
 

 In this problem, we do not have any constraint that can let us obtain a tighter lower 

bound as in the previous problems. Therefore, for this problem, we calculate the lower bound 

analytically.  

 

It is supposed that each plant has an equal distance min ii
d d=  to the customer. In any 

of the trips, it is not known whether the truck leaves the plant immediately or waits for the 

completion of a job. In order to find a valid lower bound, we need to suppose it leaves the 
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plant immediately. The only exception to this assumption is the first trip. In the first trip, the 

truck takes at least one job, i.e. the job with the smallest processing time ( 1J ), and leaves the 

plant either at the process completion time of 1J  or as soon as it arrives at the plant. Since the 

route of the truck is not known, the number of jobs to be produced until the arrival time of 

the truck in the following trips is not known. However, to make the lower bound valid, we 

assume in each trip, the truck finds K  jobs already produced.  

 

Then, with the assumptions above, the total completion time can be expressed with 

the following formulation: 

 

[ ] [ ] [ ] [ ]3 .... (2 1) ( ) (2 1)K A d K A d K A q d n qK A q d⋅ + + ⋅ + + + ⋅ + − + − ⋅ + +  

2( ) (2 1)n A n qK q d K d q= ⋅ + − ⋅ + ⋅ + ⋅ ⋅  

 where  { }1max ,A p d=  and nq
K
⎢ ⎥= ⎢ ⎥⎣ ⎦

. 
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Chapter 5 

 

EXPERIMENTAL DESIGN AND 

NUMERICAL RESULTS 
 

 

 In this chapter, we perform experimentation and give numerical results for the 

methods presented in Chapter 4. In Section 5.1, the parameter settings of the test problems 

are presented. The results obtained by applying our methods on these test problems are given 

in Section 5.2. 

 

  

5.1. Experimental Design 
 

 We consider five parameters and each combination of these parameters defines a 

different problem. These parameters are: number of plants, m ; number of jobs, n ; the 

capacity of the truck, K ; processing times of the jobs, jp , where 1,2,....,j n= ; and the 

distances of the plants to the customer, id , where 1,2,....,i m= . Although our problems are 

difficult to solve even with two plants, we wanted to observe their performance in under a 

more general setting. Therefore, the number of plants, m , is set to 3. 

 

 In the choices of parameters n  and K , two possible cases related to the physical sizes 

of the products are considered. In the first case, the company may be producing products 

with large physical volumes like household appliances. In the second case, the company 

produces products with small physical sizes. In such a case, the products are batched together 
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in the form of a unitized load, such as a unitized load or a box, before transported. To be able 

to cover both cases, a job is either a large volume product or a unitized load of small volume 

products. Following these discussions, the values set for n  and K  are given in Table 5.1. For 

the soft drink manufacturer mentioned in Chapter 1, 1512 products constitute a palette. In 

such a case, 55 jobs correspond to 83160 products and this number is usually far more than 

the customer demands. Hence, having at most 55 jobs is sufficient to cover even the 

situations with palettes with fewer products.  

 

Table 5.1: Parameter settings for number of jobs and truck capacity 

 

Parameters Values 

n  10, 25, 40, 55 

K  2, 4, 6, 8 

 

 

 It is not reasonable to set the processing times of the jobs and distances of the plants 

to a single value as done in n  and K . Instead, ranges for them, i.e. [ minp , maxp ] and 

[ mind , maxd ], should be determined. While determining these ranges, it was taken into 

consideration that a job is either a large volume product or a unitized load. 

 

 The range ( rangeD ) and mean ( meanD ) of plant distances are two main factors that may 

affect the performance of the proposed methods. rangeD  is defined as ( )max mind d−  while 

meanD  is defined as ( )max min 2d d+ . In order to be able to determine the effect of these 

factors, plant distances used in the test problems are generated from the following three 

ranges:  

 

• Plant Distance Range 1 : rangeD = 6 , meanD = 25   

• Plant Distance Range 2 : rangeD = 6 , meanD = 35 
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• Plant Distance Range 3 : rangeD = 26 , meanD = 35 

 

 To determine the effect of range ( rangeP ) of processing times on the performance of 

the proposed methods, processing times are first grouped into two as small and large ranges. 

For the assessment of the effect of mean ( meanP ), small range group is divided into three 

subgroups as small, medium and large mean. Processing times used in the test problems are 

generated from the following four ranges: 

 

• Processing Time Range 1 : rangeP = 10 , meanP = 6   

• Processing Time Range 2 : rangeP = 10 , meanP = 10 

• Processing Time Range 3 : rangeP = 10 , meanP = 30 

• Processing Time Range 4 : rangeP = 34 , meanP = 18 

 

Hence, as seen in Table 5.2, there are twelve ([ minp , maxp ], [ mind , maxd ]) combinations from 

which the processing times and plant distances are generated by using a uniform distribution. 

For each of these 12 combinations, there exist 16 different ( n , K ) pairs. Therefore, a total of 

192 test problems are created and for each of these problems 5 instances are generated 

randomly. 

  

 All heuristics and lower bound algorithms are coded in C++  and run on a PC with a 

1.8 GHz AMD Turion 64 processor and 512 MB memory (recall that these procedures run in 

polynomial time). The exact methods are solved by calling the MIP solver of GAMS on a 

computer with 3.73 GHz, 2 Dual-Core Intel Hyperthreading Xeon CPU processor and 24 GB 

shared memory. 
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Table 5.2 : Parameter settings for processing times and plant distances 

 

[ ]1,11jp ∈ ,  [ ]22, 28id ∈ [ ]25,35jp ∈ ,  [ ]22, 28id ∈

[ ]1,11jp ∈ ,  [ ]32,38id ∈  [ ]25,35jp ∈ ,  [ ]32,38id ∈
Processing 

Time Range 1 
[ ]1,11jp ∈ ,  [ ]22, 48id ∈

Processing 

Time Range 3
[ ]25,35jp ∈ ,  [ ]22, 48id ∈

[ ]5,15jp ∈ ,  [ ]22, 28id ∈ [ ]1,35jp ∈ ,  [ ]22, 28id ∈  

[ ]5,15jp ∈ ,  [ ]32,38id ∈ [ ]1,35jp ∈ ,  [ ]32,38id ∈  
Processing 

Time Range 2 
[ ]5,15jp ∈ ,  [ ]22, 48id ∈

Processing 

Time Range 4
[ ]1,35jp ∈ ,  [ ]22, 48id ∈  

 

 

 

5.2. Numerical Results 
 

 In this section, the results of the proposed methods for the problems studied are given 

in the order they are presented in Chapter 4. For each problem, the results are grouped 

according to their processing time ranges. The impacts of the number of jobs, truck capacity, 

and plant distance range will be given under these groups.  

 

 To assess the performance of the proposed heuristics, firstly the percentage gaps 

between the total completion times obtained by the heuristics and the corresponding lower 

bounds, named as LB gap, are calculated by using the following formula: 

 

( )   
 100

 
Heuristic Value Lower Bound Value

LB Gap
Lower Bound Value

−
= ⋅  

 

If the calculated gaps are large, optimal solutions are found for instances with small number 

of jobs. By comparing the heuristic results of these instances with the optimal results, we 
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attempted to determine the cause of the large heuristic-lower bound gap: poor performance of 

the heuristic or loose lower bound. The percentage gaps between heuristic results and optimal 

results, named as optimality gap, are calculated by the following formula: 

 

( )  
 100

 
Heuristic Value Optimal Value

Optimality Gap
Optimal Value

−
= ⋅  

 

 In the tables in Appendix C, D, E and F, average and maximum LB gap and 

optimality gap values are also given. These values are calculated by taking the average or 

maximum of the results of 5 random instances for each problem.  

 

 

5.2.1. Numerical Results and Discussions for Last Trip Partial Problem 

  
 As explained in Chapter 4, one exact algorithm, MIP-1, two heuristic algorithms, 

Heuristics 1 and 2, and one lower bound generation algorithm are developed for this 

problem. The results obtained by the proposed methods are given in Appendix C. 

 

 Processing Time Range 1:  

 

 In this range, both heuristics yield the same or very close total completion times and 

these values are optimal at least for 67 of 80 tests. For the rest, the gap between the heuristic 

results and lower bound is very small (see Tables C.1, C.2 and C.3 in Appendix C for 

details). For all plant distance ranges in this group, LB gap values are 0% when there are 10 

jobs to be produced and distributed. For other number of jobs values ( 25,40,55n = ), LB 

gaps are shown in Figures 5.1 and 5.2 for Heuristic 1 and Heuristic 2, respectively.  
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Figure 5.1: Numerical results for Heuristic 1 for 25,40,55n =  where [ ]1,11jp ∈  
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Figure 5.2: Numerical results for Heuristic 2 for 25,40,55n =  where [ ]1,11jp ∈  

  

 By comparing Figures 5.1 and 5.2 it can be seen that Heuristic 1 performs better than 

Heuristic 2 in this processing time range. Although there are six data to be shown in the 

plots, for some ( , )n K  pairs, there are less than six bars. This means that LB gap was zero for 
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these parameter values. Since the mean of the processing times is small when compared to 

the mean of plant distances, the truck can make fully loaded trips only by visiting closer 

plants. As the capacity of the truck increases, the first trip becomes problematic because there 

may not be K  jobs produced until the truck arrives to the first plant visited. As the mean of 

the plant distances increases, the probability that K  jobs would be produced until the arrival 

of the truck to the first visited plant increases. Hence, LB gap decreases. This can be 

observed by comparing the 1st and 3rd bar columns for each ( , )n K  pair, in Figures 5.1 and 

5.2. The impact of a change in the range of plant distances can be seen by comparing the 3rd 

and 5th bar columns for each ( , )n K  pair, in Figures 5.1 and 5.2. As the range increases, 

although the mean remains the same, the distance of the closest plant to the customer 

decreases. This decreases the probability of producing K  jobs until the arrival of the truck on 

the first trip. Hence, LB gap increases. 

 

 

 Processing Time Range 2: 

 

 This range has larger processing times than the previous one. Because of this increase 

in processing times, it is not possible to send the truck fully loaded by always visiting the 

closest plant. Especially, when the truck capacity is large, i.e. 6K =  or 8 , in the proposed 

heuristics the truck may have to visit the second closest plant on the second or a later trip. 

Since the lower bound is calculated by considering that each plant has the same distance to 

the customer, i.e. the distance of the closest plant, the usage of a farther plant causes LB gap 

to be greater than zero. For 10 jobs, the LB and optimality gaps are shown in Figures 5.3 and 

5.4 for Heuristic 1 and Heuristic 2, respectively. As can be seen in these figures, Heuristic 1 

yields optimal results for this processing time range. For more than 10 jobs, since obtaining 

the optimal result takes a long time, exact algorithm is used only for the instances with LB 

gap larger than 10%. Maximum LB gap is less than 6% and hence only the LB gaps are given 

for problems with more than 10 jobs. Detailed test results for this processing time range can 

be found in Tables C.4, C.5 and C.6 in Appendix C.  
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Figure 5.3: Numerical results for Heuristic 1 for 10n =  where [ ]5,15jp ∈  
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Figure 5.4: Numerical results for Heuristic 2 for 10n =  where [ ]5,15jp ∈  

 

 As seen by comparing 1st and 3rd bar columns for each ( , )n K  pair in Figures 5.5 and 

5.6, an increase in the mean of the plant distance range decreases LB gap because of the 
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reasons explained in Processing Time Range 1. As the range of the plant distances increases, 

the distance difference between the closest plant and the second closest plant increases. 

Hence, when the second closest plant is visited, the deviation from the lower bound will be 

larger for the instances that have larger difference between the closest and farthermost plant, 

i.e. larger plant distance range.  
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Figure 5.5: Numerical results for Heuristic 1 for 25,40,55n =  where [ ]5,15jp ∈  

 

 It should be noted that, for this processing time range, Heuristic 2 outperforms 

Heuristic 1 in most of the instances. The reason for this performance difference is inherent in 

the ways these heuristics make the choices of jobs to assign to a selected plant.  When the 

truck visits the second closest plant, Heuristic 2 assigns the K -size batch with greatest 

processing time to this plant, and is left with the jobs having smaller processing times. 

Hence, the truck would be able to transport K  jobs from the closest plant on its next trip. 

However, since Heuristic 1 assigns the first unassigned K  jobs to the second closest plant, it 

is left with jobs having larger processing times. Then the truck cannot transport K  jobs from 

the closest plant in its next trip and hence needs to make the trip to a farther plant and this 

causes a delay in trip completion times.  
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Figure 5.6: Numerical results for Heuristic 2 for 25,40,55n =  where [ ]5,15jp ∈  

 

 

 Processing Time Range 3: 

 

 The processing times used in this range are so large that even if the truck capacity is 

set to the smallest value, i.e. 2K = , it is not possible to fill the truck by visiting the closest 

plant in every trip. Therefore, the truck requires visiting farther plants and, as explained 

above, this causes a deviation from the lower bound yielding LB gaps larger than 0. In 

Figures 5.7 and 5.8, it can be seen that LB gaps are very small for 10 jobs. For more than 10 

jobs, all average LB gaps are smaller than 10% as can be seen in Figures 5.9 and 5.10. The 

test results for this range are given in Tables C.7, C.8 and C.9 in Appendix C. 

  

 Here, one important point to mention is that the LB gaps in this range are higher than 

the gaps of previous ranges. The reason for this is the increase in the processing times. As 

processing times increase, the probability that the truck finds K  jobs already produced 

whenever it arrives to a plant decreases. However, the lower bound is calculated based on the 

assumption that the truck finds K  jobs. Therefore, lower bound is not tight in this range as it 

is in the previous ranges. 
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Figure 5.7: Numerical results for Heuristic 1 for 10n =  where [ ]25,35jp ∈  
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Figure 5.8: Numerical results for Heuristic 2 for 10n =  where [ ]25,35jp ∈  
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Figure 5.9: Numerical results for Heuristic 1 for 25, 40,55n =  where [ ]25,35jp ∈  
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Figure 5.10: Numerical results for Heuristic 2 for 25,40,55n =  where [ ]25,35jp ∈  
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 In general, as explained for the previous ranges, an increase in the mean of the plant 

distances causes a decrease in average LB gap. However, in Figure 5.10 for ( )25, 6n K= =  

and ( )40, 6n K= = , it is observed that an increase in the mean plant distance causes an 

increase in average LB gap. The reason for this unexpected situation can be explained as 

follows. In these problems, since the processing times are large, farther plants are also 

visited. When the closest plant is visited after visiting farther plants, for the problems with 

[ ]32,38id ∈ ,  the truck finds K  jobs already produced and the updating mechanism in the 

lower bound generation does not work. However, for the problems with [ ]22, 28id ∈ , the 

truck does not find K  jobs produced as it arrives to the closest plant and the updating 

mechanism in the lower bound works and hence LB gap is smaller. 

 

 

 Processing Time Range 4: 

 

 This is the processing time range that has the largest LB gap values. Since the range 

of the processing times is large, updating mechanism in the lower bound generation method 

may not work and hence obtained lower bounds may be looser than the previous ranges. As 

can be seen in Figures 5.11 and 5.12, LB gaps around 20% exist for 10 jobs. However, the 

maximum optimality gap is smaller than 2.5%. In Figures 5.13 and 5.14, for the problem 

with ( )25, 8n K= = , high LB gap values are observed. For these instances with LB gap value 

greater than 10%, exact methods could not yield the optimal solution in a short time. By 

increasing the resource limit to 50000 seconds, we obtained the optimal solution except for 3 

of the instances (see Tables C.10, C.11 and C.12 in Appendix C for details). As seen in 

Tables 5.3 and 5.4, proposed heuristics yield close to optimal results.  



 91

Table 5.3 : LB and optimality gaps for Heuristics 1 and 2 for ( )25, 8n K= =  and 

[ ]22, 28id ∈  

LB Gap (%) Optimality Gap (%) n  K  
Heuristic 1 Heuristic 2 Heuristic 1 Heuristic 2

39.98 39.98 1.10 1.10 
29.67 29.67 0.76 0.76 
41.89 41.89 1.58 1.58 
17.94 17.94 0.77 0.77 

25 8 

17.72 17.72 0.35 0.35 

 

 

Table 5.4 : LB and optimality gaps for Heuristics 1 and 2 for ( )25, 8n K= =  and 

[ ]22, 48id ∈  

LB Gap (%) Optimality Gap (%) n  K  
Heuristic 1 Heuristic 2 Heuristic 1 Heuristic 2

12.64 12.64 0.40 0.40 
20.59 20.59 0.73 0.73 25 8 
33.31 33.84 1.40 1.80 
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Figure 5.11: Numerical results for Heuristic 1 for 10n =  where [ ]1,35jp ∈  
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Figure 5.12: Numerical results for Heuristic 2 for 10n =  where [ ]1,35jp ∈  
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Figure 5.13: Numerical results for Heuristic 1 for 25,40,55n =  where [ ]1,35jp ∈  
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Figure 5.14: Numerical results for Heuristic 2 for 25,40,55n =  where [ ]1,35jp ∈  

 
 As in the previous processing time ranges, in this range, average LB gap decreases as 

the mean of the plant distance range increases. An increase in the range, increases average 

LB gap.  

 

 

5.2.2. Numerical Results and Discussions for Fully Loaded Trips Problem 
 

 In this case, although we develop three different lower bound generation methods, in 

the results we use only two of them since Lower Bound 2 always yields worse results. It is 

not possible to say that Lower Bound 3 outperforms Lower bound 4 or the opposite. 

Therefore, for each instance we choose the one yielding larger lower bound value between 

these two methods. The lower bound values obtained and other test results for this problem is 

given in Appendix D. 
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 Processing Time Range 1: 

 

 In this range, the gap between the heuristic result and the lower bound is small in 

general. The only problematic case is the problem with 10n =  and 8K = . For this problem, 

for all plant distance ranges, LB gap is large, however, as shown in Figure 5.15 for 10 jobs, 

proposed heuristics generate near optimal solutions. Here, only the figure for Heuristic 3 is 

given because the results of Heuristics 3 and 4 are the same for 10 jobs.  
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Figure 5.15: Numerical results for Heuristic 3 for 10n =  where [ ]1,11jp ∈  

 

 Since the heuristics can provide near optimal solutions, the reason for large LB gaps 

is the poor performance of the lower bound. The reason for this performance is inherent in 

the calculation of completion time of the first trip. Since it is not known which trip would be 

partially loaded, we suppose in the lower bound that the first trip is partially loaded and 

calculate the departure time of the truck from the first visited plant accordingly. However, in 

order to obtain a valid lower bound, we calculate the lower bound as if the truck transports 

K  jobs in its first trip with this departure time. When the truck capacity is large, it is not 

possible to send the first truck fully loaded from the closest plant and this causes the lower 

bound to be loose. As seen in Figures 5.16 and 5.17, when more than 10 jobs require 
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transportation, this effect of the first trip vanishes because of the updating mechanism on the 

first trips of each round. This is the reason for small LB gaps with large number of jobs. 
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Figure 5.16: Numerical results for Heuristic 3 for 25,40,55n =  where [ ]1,11jp ∈  

 

 As seen by comparing the 3rd and 5th column bars for each ( , )n K  pair in Figures 5.16 

and 5.19, LB gap decreases as mean of the plant distance range increases. As plant distances 

increases, the probability that the truck leaves a plant immediately and fully loaded increases. 

Since this is what we suppose in the calculations of the lower bound, the decrease in the LB 

gap with the increase in distance range is in compliance with our expectations. In fact, this 

situation holds not only for this range but for all processing time ranges. Therefore, we can 

conclude that for the full truck case, as the mean of the plant distance range increases, LB 

gap decreases.   
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Figure 5.17: Numerical results for Heuristic 4 for 25,40,55n =  where [ ]1,11jp ∈  

 

 Since the processing times are small and it is possible to send the truck fully loaded 

without causing it to wait at a plant, sending only the last truck partially loaded is better from 

the perspective of obtaining smaller total completion times. This result can be observed by 

comparing Table D.1 with C.1; Table D.2 with C.2 and Table D.3 with C.3.  

  

 

 Processing Time Range 2: 

 

 In this range, since the processing times are larger than range 1, sending the last truck 

partially loaded is better only if the capacity of the truck is small. As truck capacity increases, 

it gets harder to fill the truck in the first trips and hence waiting at a plant for the truck to be 

fully loaded in the first trips causes a delay in the trip completion times of the following trips. 

Also, while generating the lower bound, since it was assumed that the truck can be fully 

loaded as soon as it arrives to a plant, as the truck capacity increases and the probability of 

filling the truck in the first trips decreases, LB gap increases. In Figures 5.18 and 5.19, for 10 

jobs, it is shown that LB gaps can be very large due to poor performance of the lower bounds 
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because of the reason mentioned above. The maximum optimality gap obtained by Heuristic 

4 is 5.86%, seen in the distance range [22,28]. 
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Figure 5.18: Numerical results for Heuristic 3 for 10n =  where [ ]5,15jp ∈  
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Figure 5.19: Numerical results for Heuristic 4 for 10n =  where [ ]5,15jp ∈  

  

 As can be seen both from Figures 5.18 and 5.19, and from Figures 5.20 and 5.21, 

increasing the mean of the plant distance range decreases LB gaps. The reason for this result 

was explained in Processing Time Range 1. 
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Figure 5.20: Numerical results for Heuristic 3 for 25,40,55n =  where [ ]5,15jp ∈  
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Figure 5.21: Numerical results for Heuristic 4 for 25,40,55n =  where [ ]5,15jp ∈  

 

 For 25 jobs, we solved MIP-2 for the instances that have LB gaps either larger or 

close to 10%. However, even in 50000 seconds we could not obtain the optimal solution for 

those problems. In Tables D.4 and D.5 in Appendix D, the best integer values found at the 

end of 50000 seconds are given in the optimal results column with a (*) mark.  
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 Processing Time Range 3: 

 

 The increase in processing times in this range causes an increase in LB gap values. As 

explained in the results for the problem with only last trip partially loaded, in this processing 

time range, it is not possible to fill the truck in each trip as is supposed in the lower bound 

generation. Hence, lower bound values are much smaller when compared to the optimal 

results. Therefore, large LB gaps will be observed as seen in Figures 5.22, 5.23, 5.24 and 

5.25. The results for this range are given in Tables D.4, D.5 and D.6 in Appendix D.  

 

 In Figures 5.22 and 5.23, it is shown for 10 jobs that proposed heuristics yield optimal 

or near-optimal results. For 25 jobs, we tried obtaining the optimal results for the instances 

with LB gap values larger than 10% but could not get the results even in 13.89 hours (50000 

seconds).  
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Figure 5.22: Numerical results for Heuristic 3 for 10n =  where [ ]25,35jp ∈  
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Figure 5.23: Numerical results for Heuristic 4 for 10n =  where [ ]25,35jp ∈  
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Figure 5.24: Numerical results for Heuristic 3 for 25,40,55n =  where [ ]25,35jp ∈  
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Figure 5.25: Numerical results for Heuristic 4 for 25,40,55n =  where [ ]25,35jp ∈  

 

 Although can be observed by comparing Table D.5 with A.5; Table D.6 with C.6 and 

Table D.7 with C.7, it is possible to say intuitively that, sending the first trips fully loaded 

and the last trip partially loaded would not yield good results in terms of smaller total 

completion times. Since the processing times are large, for the trips in the beginning of the 

schedule, the truck will need to wait for the completion of a job at a plant in order to become 

fully loaded. And this will delay the following trips most of the time unnecessarily.  

 

 

 Processing Time Range 4: 

 

 In this range for 10 jobs optimality gap can be as high as 15.71% as seen in Figures 

5.26 and 5.27. The reason for this is that in our heuristics, if the truck requires taking l  jobs 

from a plant and it can find that amount of jobs already produced as it arrives to that plant, it 

leaves that plant immediately. However, with this processing time range, in the optimal 

solution, even if the truck finds l  jobs already produced as it arrives to a plant; it waits for 

the completion time of l  largest jobs. Hence, in the following trip, the truck can be fully 

loaded by either immediately leaving the plant or after waiting a small amount of time. For 
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example, in the second instance of the problem with 10n =  and 8K = ,  we have 

{ }3,5,10,11,19, 21,31,31,34,34p =  and { }24,25, 28d = . Both of our heuristic methods 

choose sending the last trip partial and transports jobs with processing times 

{ }3,5,10,11,19, 21,31,31  from the closest plant on the first trip and the rest from the second 

plant on the second trip. However, in the optimal solution, jobs with processing times 

{ }34,34 are assigned to the second plant but they are transported on the first trip. After 

transporting these jobs, the truck goes to the closest plant and waits for the completion time 

of the remaining eight jobs and transports them. Hence, both in our methods and in the 

optimal solution, the completion time of the first eight jobs are the same. But the completion 

time of the last two jobs in the optimal solution is much smaller than the completion time 

found by our proposed heuristics.    
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Figure 5.26: Numerical results for Heuristic 3 for 10n =  where [ ]1,35jp ∈  
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Figure 5.27: Numerical results for Heuristic 4 for 10n =  where [ ]1,35jp ∈  

 

 As observed in Figures 5.28 and 5.29, an increase in the number of jobs causes a 

decrease in LB gaps because the effect of the first trip decreases. 
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Figure 5.28: Numerical results for Heuristic 3 for 25,40,55n =  where [ ]1,35jp ∈  
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Figure 5.29: Numerical results for Heuristic 4 for 25,40,55n =  where [ ]1,35jp ∈  

 

 

 

5.2.3. Numerical Results and Discussions for the Problem with No Wait 

Constraint 
 

 As explained in detail in Chapter 4, in this problem, the truck does not wait for the 

completion time of a job at a plant. It leaves the plants it visits on any trip as soon as it 

arrives there. One important point to mention for this problem is that for all processing time 

ranges LB gap increases or remains the same as the capacity of the truck increases (this 

pattern can be seen in the result tables in Appendix E). This result follows from the fact that 

lower bound decreases with increasing capacity. As the capacity increases, the maximum 

number of jobs that can be transported on each trip increases and hence the number of jobs 

that can be transported in the trips more to the beginning of the schedule increases. This may 

cause a decrease in the number of required trips. Therefore, the value of the lower bound 

decreases. 
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 Processing Time Range 1: 

  

 In this range, Heuristics 5 and 6 yield the same total completion times. For all plant 

distance ranges and ( , )n K  pairs LB gap values are very close to 0. The only exception is 

observed for distance range [22,48] and ( 10, 8)n K= = . But as seen in Figure 5.30, proposed 

heuristics yield the optimal results even for this exception.  

 

 In Figure 5.31, it can be observed that average LB gaps are very small. In addition to 

that, an increase in the mean of the plant distance range causes a decrease in average LB 

gaps. Actually, in this problem for all processing time ranges, an increase in the mean of the 

distance range causes a decrease in the average LB gap. This result has two possible reasons. 

The first reason is that when the mean plant distance is large, for processing time ranges with 

small means, jobs are produced only by using the closer plants and the truck usually makes 

fully loaded trips in compliance with the schedule in the lower bound. The second reason is 

that for processing times with large means, since the heuristic method may require the usage 

of farther plants even for the first trip, the schedule generated by the heuristic and the lower 

bound will be similar and hence LB gap will decrease. 
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Figure 5.30: Numerical results for Heuristic 5 for 10n =  where [ ]1,11jp ∈  
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Figure 5.31: Numerical results for Heuristic 5 for 25,40,55n =  where [ ]1,11jp ∈   

 

 

 Processing Time Range 2: 

 

 In this processing time range, for 10 jobs, it is seen in Figure 5.32 that there exists 

some instances with LB gap values larger than 10%. The results obtained by solving MIP-3 

show that proposed heuristics generate optimal or near-optimal solutions for this problem. 

This implies the poor performance of Lower Bound 5. One possible reason for this 

performance of the lower bound is that trip completion times are calculated as if each trip is 

made to the closest plant. Despite this assumption, to be able to obtain a valid lower bound, 

the number of jobs on the first trip is calculated as if the first trip is made to the farthermost 

plant. In our heuristic methods, in the first trip, truck may choose to visit the farthermost 

plant and hence the number of jobs transported in the first trip would be the same in the 

heuristic method and the lower bound. However, in the heuristic methods, completion time of 

the first trip is calculated based on the distance of the farthermost plant instead of the closest 

plant. Hence, Lower Bound 5 yields a smaller total completion time than the heuristic 

methods. 
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Figure 5.32:  Numerical results for Heuristic 5 for 10n =  where [ ]5,15jp ∈  

 

 

 Figures 5.33 and 5.34 show the comparison of the average LB gaps for different plant 

distance ranges. As can be seen in these figures, an increase in the mean of the plant 

distances causes a decrease in average LB gaps. The reasons for this result were explained in 

Processing Time Range 1. 

 

 In the CPU times column of Table E.4 in Appendix E, it is possible to see some 

recurring values. The reason for this is as follows. The first instance of the problem with 

( )10, 8n K= =  is solved optimally. In the optimal solution it was seen that in the first trip 4 

jobs and in the second trip 6 jobs were carried. Although the truck capacity is 8, maximum 6 

jobs were carried on each trip. Hence, the optimal solution for the first instance of the 

problem with ( )10, 6n K= =  is the same as the optimal solution of the problem with 

( )10, 8n K= =  since all the parameters except the truck capacity are the same. Therefore, the 

CPU time obtained in solving the first instance of the problem with ( )10, 8n K= =  is applied 
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to the first instance of the problem with ( )10, 6n K= = . This procedure is used for all 

applicable instances in the problem with no wait constraint and in the general problem. 

0

1

2

3

4

5

6

7

8

9

n=25, K=2 n=25, K=4 n=25, K=6 n=25, K=8 n=40, K=2 n=40, K=4 n=40, K=6 n=40, K=8 n=55, K=2 n=55, K=4 n=55, K=6 n=55, K=8
Problem

Gap
(%)

Avg. LB Gap (d 22_28) Avg. LB Gap (d 32_38) Avg. LB Gap (d 22_48)
 

Figure 5.33: Numerical results for Heuristic 5 for 25,40,55n =  where [ ]5,15jp ∈   
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Figure 5.34: Numerical results for Heuristic 6 for 25,40,55n =  where [ ]5,15jp ∈   
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 As seen in Figures 5.33 and 5.34, an increase in the range of plant distances causes an 

increase in average LB gaps. This result is in compliance with our expectations because in 

Lower Bound 5, the number of jobs transported in each trip is calculated as if the truck is 

visiting farther plants but the completion times of the trips are calculated as if the truck is 

visiting the closest plant. As the difference between the closest and farthermost plant 

increases, lower bound becomes loose and hence LB gap increases. This result holds for each 

processing time range.  

 

 

 Processing Time Range 3: 

 

 In this range, we observe LB gap values larger than 10%. In order to determine the 

cause of these large gaps, we tried to obtain the optimal solution for the problems with 

10n = . However, in 5 hours, we could not get the optimal results. Therefore, in order to be 

able to prove the performance of the proposed heuristic methods, we increased the resource 

limit to 41.67 hours (i.e. 150000 seconds). Even with this resource limit, we could not obtain 

the optimal solution for some instances. Therefore, instead of giving a bar chart showing the 

average gaps, we give the LB and optimality gaps for the instances for which the optimal 

solutions could be obtained in Tables 5.5, 5.6 and 5.7. In Tables E.7, E.8 and E.9 in 

Appendix E, the best integer solutions obtained in 150000 seconds are given with a (*) mark. 

 

 In Figures 5.35 and 5.36, comparisons of the LB gaps for different distance ranges are 

given for Heuristic 5 and Heuristic 6, respectively.  
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Table 5.5: LB and optimality gaps for Heuristic 5 and Heuristic 6 for 10n =  and 

[ ]22, 28id ∈  

  LB Gap (%) Optimality Gap (%) 
n  K  Heuristic 5 Heuristic 6 Heuristic 5 Heuristic 6

8.40 2.14 6.14 0.00 
16.20 16.20 8.50 8.50 
9.02 9.02 0.00 0.00 
9.69 9.69 6.50 6.50 

10 4 

8.40 8.40 --- --- 
12.57 6.07 6.14 0.00 
16.20 16.20 8.50 8.50 
9.02 9.02 0.00 0.00 
9.69 9.69 6.50 6.50 

10 6 

8.40 8.40 --- --- 
12.57 6.07 6.14 0.00 
16.20 16.20 8.50 8.50 
9.02 9.02 0.00 0.00 
9.69 9.69 6.50 6.50 

10 8 

8.40 8.40 --- --- 

 

 

Table 5.6: LB and optimality gaps for Heuristic 5 and Heuristic 6 for 10n =  and 

[ ]32,38id ∈  

  LB Gap (%) Optimality Gap (%) 
n  K  Heuristic 5 Heuristic 6 Heuristic 5 Heuristic 6

1.62 1.62 0.00 0.00 
12.38 8.21 6.50 2.56 
13.26 9.09 6.53 2.61 
9.03 1.62 7.29 0.00 

10 6 

9.03 4.86 7.90 3.78 
1.62 1.62 0.00 0.00 
12.38 8.21 6.50 2.56 
13.26 9.09 6.53 2.61 
9.03 1.62 7.29 0.00 

10 8 

9.03 4.86 7.90 3.78 
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Table 5.7: LB and optimality gaps for Heuristic 5 and Heuristic 6 for 10n =  and 

[ ]22, 48id ∈  

  LB Gap (%) Optimality Gap (%) 
n  K  Heuristic 5 Heuristic 6 Heuristic 5 Heuristic 6

1.80 1.80 --- ---  
12.26 11.48 0.69 0.00 
14.29 14.29 0.00 0.00 
3.89 3.89 --- ---  

10 4 

0.00 0.00 0.00 0.00 
1.88 1.88 0.00 0.00 
24.06 24.06 --- --- 
19.05 19.05 0.00 0.00 
4.05 4.05 0.00 0.00 

10 6 

0.00 0.00 0.00 0.00 
1.88 1.88 0.00 0.00 
24.06 24.06 --- --- 
19.05 19.05 0.00 0.00 
4.05 4.05 0.00 0.00 

10 8 

0.00 0.00 0.00 0.00 
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Figure 5.35: Numerical results for Heuristic 5 for 25,40,55n =  where [ ]25,35jp ∈  
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Figure 5.36: Numerical results for Heuristic 6 for 25,40,55n =  where [ ]25,35jp ∈  

 

 

 Processing Time Range 4: 

 

 Since the range of the processing times is large, Lower Bound 5 may not yield tight 

lower bounds. That is because in the lower bound, while calculating the number of jobs to be 

carried on each trip, the processing times of the smallest jobs are used. However, in the 

proposed heuristics, as the jobs with smaller processing times are assigned to some plant, the 

jobs having larger processing times are left and hence the number of jobs to be transported on 

each trip decreases. This deviation from the lower bound causes LB gaps to be large. In 

Figures 5.37 and 5.38, it can be seen for 10 jobs that proposed heuristics yield either optimal 

or near-optimal results. 

 

 In Figures 5.39 and 5.40, it is observed that as the number of jobs to be transported 

increases, average LB gap decreases. This is related to the large range of processing times. 

As the number of jobs increases, the number of jobs with smaller processing times also 

increases. When there are more jobs with smaller processing times, more jobs complete 
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processing earlier and are transported in the beginning of the schedule.  Therefore, the 

number of jobs transported in the first trips increases, decreasing the LB gap. 
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Figure 5.37: Numerical results for Heuristic 5 for 10n =  where [ ]1,35jp ∈  
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Figure 5.38: Numerical results for Heuristic 6 for 10n =  where [ ]1,35jp ∈  
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Figure 5.39: Numerical results for Heuristic 5 for 25,40,55n =  where [ ]1,35jp ∈  
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Figure 5.40: Numerical results for Heuristic 6 for 25,40,55n =  where [ ]1,35jp ∈  

 

  

 



 115

5.2.4. Numerical Results and Discussions for the General Problem 
 

As mentioned in Chapter 4, while generating the lower bound for this problem, it was 

supposed that the truck leaves the first visited plant either as soon as it arrives there or at the 

process completion time of the first job. For the rest of the trips, completion times were 

calculated as if the truck always visits the closest plant and leaves it immediately and fully 

loaded. As truck capacity increases, the number of jobs transported in each trip increases and 

hence more jobs complete their transportation in earlier trips. Also, the number of trips 

required to transport all jobs, i.e. n
K
⎡ ⎤
⎢ ⎥⎢ ⎥

 may decrease. Therefore, as truck capacity increases, 

the lower bound for the total completion time decreases. This drawback of Lower Bound 6 

causes the LB gap to increase as the capacity of the truck increases. Also, as the mean of the 

processing times increases, the possibility of producing K  jobs until the arrival of the truck 

decreases. Hence, LB gap increases. 

 

In this problem, as the mean of the plant distance range increases, LB gap decreases. 

As explained in Sections 5.2.1 and 5.2.2, as the mean distance increases, it becomes more 

probable that the truck leaves the plant either immediately or after waiting a small amount of 

time and fully loaded. Since this is the condition Lower Bound 6 is based on, LB gap 

becomes smaller. The effect of an increase in the range of plant distances is not as obvious as 

the effect of an increase in the mean. If the distance of the closest plant in range [22,48] is 

smaller than the one in range [32,38], obtained LB gap is larger. Conversely, if larger, 

obtained LB gap is smaller.  

 

As mentioned in Chapter 4, since all the problems in the previous sections are special 

cases of this problem, all methods developed for them can be used to obtain a solution for the 

main problem. However, in this section, we only investigate the performance of Heuristic 7. 

The test results with Heuristic 7 can be seen in Appendix F. 
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Processing Time Range 1: 

 

Since the processing times of the jobs are small when compared to the plant 

distances, in general, all jobs are produced in the closest plant and the truck finds K  jobs 

already produced when it arrives at the plant. However, when the capacity of the truck 

increases, it may not be able to transport K  jobs on the first trip by leaving the plant 

immediately. If the truck waits at the plant for the completion of a job in order to transport 

more jobs, the completion times of subsequent trips may be delayed. If it leaves the plant 

immediately by transporting fewer jobs, the number of jobs transported on the later trips 

increases. Any of these cases will result in LB gaps greater than 0. In Figure 5.41, average LB 

gap larger than 10% is observed for 10n =  and 8K = . As seen in this figure, Heuristic 7 

generates the optimal solution. 

 

0

2

4

6

8

10

12

14

16

K = 2 K = 4 K = 6 K = 8
Truck Capacity

Gap
(%)

Avg LB Gap (d 22_28) Avg Optimality Gap (d 22_28) Avg LB Gap (d 32_38)
Avg Optimality Gap (d 32_38) Avg LB Gap (d 22_48) Avg Optimality Gap (d 22_48)  

Figure 5.41: Numerical results for Heuristic 7 for 10n =  where [ ]1,11jp ∈  

 

As explained in the previous paragraph, the main reason for large LB gaps is not 

being able to transport K  jobs on the first trip from the closest plant. However, as n  

increases, the number of trips required to transport all jobs increases and hence the effect of 
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the first trip decreases. Therefore, for the same K  value, as n  increases, LB gap decreases. 

This effect of the increase in the number of jobs can be observed in Figure 5.42. 
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Figure 5.42: Numerical results for Heuristic 7 for 25,40,55n =  where [ ]1,11jp ∈  

  

Also, it should be noted that for this processing time range, Heuristic 7 performs 

better than the heuristics proposed for the previous problems. 

 

 

Processing Time Range 2: 

 

In this range, since maxp < mind , in the calculation of the lower bound, the truck is 

supposed to leave the first plant as soon as it arrives there. Hence, the lower bound values 

found for this range are the same with the ones found for processing time range 1. However, 

since the processing times for range 2 are larger, the probability of transporting K  jobs on 

the first trip is smaller. Therefore, observed LB gaps are larger when compared to the 

previous range (at most 43.40%). In Figure 5.43, it is shown for 10  jobs that Heuristic 7 

generates optimal or near optimal results with at most 0.89% optimality gap.  
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Figure 5.43: Numerical results for Heuristic 7 for 10n =  where [ ]5,15jp ∈  

Not being able to transport K  jobs on the first trip without waiting for the completion 

of a job at the plant is the cause for the deviation from the lower bound. Hence, as n  

increases, for the following trips, truck may be able to transport K  jobs without waiting at 

the plant and deviation from the lower bound will decrease. This can be observed in Figure 

5.44. 
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Figure 5.44: Numerical results for Heuristic 7 for 25,40,55n =  where [ ]5,15jp ∈  
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 Processing Time Range 3:  

  

 The largest processing time values are observed in this range and hence, the 

probability of sending the truck fully loaded without waiting at a plant is smallest. Therefore, 

LB gaps observed in this range are largest (as high as 146.42%). As explained for the 

previous ranges, an increase in n  decreases LB gap and hence largest gaps occur for 10  jobs. 

To show that our heuristic methods yield optimal or near optimal solutions for these largest 

gap instances, we solve MIP-4 to obtain optimal solutions. However, even in 55.55 hours 

(200000 sec), we could not obtain the optimal solution for some instances (the best integer 

values obtained in 200000 seconds are given with a (*) mark in Table F.7). Hence, instead of 

bar charts showing average LB and optimality gaps, the percentage gaps are given in Tables 

5.8, 5.9 and 5.10 for 10 jobs. In these tables, it can be seen that proposed heuristic yields 

optimal or near-optimal results.  

 

Table 5.8: LB and optimality gaps for Heuristic 7 for 10n =  and [ ]22, 28id ∈  

  LB Gap (%) Optimality Gap 
n  K  Heuristic 7 Heuristic 7 

17.56 0.77 
17.79 --- 
17.71 --- 
17.82 0.00 

10 2 

16.67 --- 
53.21 0.00 
65.22 4.03 
59.67 0.00 
56.09 1.11 

10 4 

56.09 1.18 
96.98 0.00 

111.73 4.03 
103.92 0.00 
100.69 1.11 

10 6 

100.69 1.18 
129.81 0.00 
146.42 4.03 
136.71 0.00 
134.13 1.11 

10 8 

134.13 1.18 
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Table 5.9: LB and optimality gaps for Heuristic 7 for 10n =  and [ ]32,38id ∈  

  LB Gap (%) Optimality Gap (%) 
n  K  Heuristic 7 Heuristic 7 

6.94 0.00 
8.33 0.00 
9.09 0.00 
7.87 0.00 

10 2 

6.94 0.00 
35.03 0.00 
37.42 0.00 
38.72 0.00 
36.57 0.00 

10 4 

33.80 0.00 
73.61 0.00 
76.68 0.00 
82.68 2.43 
74.21 0.00 

10 6 

72.02 0.00 
102.55 0.00 
106.13 0.00 
113.13 2.43 
103.24 0.00 

10 8 

100.69 0.00 

 

Table 5.10: LB and optimality gaps for Heuristic 7 for 10n =  and [ ]22, 48id ∈  

  LB Gap (%) Optimality Gap 
n  K  Heuristic 7 Heuristic 7 

4.58 0.00 
11.51 0.00 
16.07 0.00 
7.21 0.00 

10 2 

5.13 0.00 
32.08 0.00 
47.67 0.00 
58.33 0.88 
39.04 0.00 

10 4 

30.77 0.00 
70.54 1.49 
89.86 0.00 

103.57 0.88 
78.38 0.00 

10 6 

68.13 0.00 
98.96 1.49 

121.51 0.00 
137.50 0.88 
108.11 0.00 

10 8 

96.15 0.00 
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 In Figure 5.45, the LB gaps for different plant distance ranges are given. Since the 

processing times are large, lower bound is very loose as it supposes the truck makes all trips 

to the closest plant and leaves the plant fully loaded.  
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Figure 5.45: Numerical results for Heuristic 7 for 25,40,55n =  where [ ]25,35jp ∈  

 

 

Processing Time Range 4: 

 

Since the jobs in the beginning of the job sequence have small processing times, the 

number of jobs transported on the first trips is greater and hence LB gaps are smaller when 

compared to processing time range 3. Also, since the jobs at the end of the job sequence have 

larger processing times, the truck may have to visit a farther plant and hence LB gaps are 

larger when compared to the first two ranges.   

 

 As the number of jobs increases, LB gap decreases. Hence, the largest gaps are 

observed for 10 jobs. The maximum LB gap obtained is 74.52 % and the maximum 

optimality gap obtained is 2.53%. The percentage gaps for 10 jobs are shown in Figure 5.46 

for different plant distance ranges. 
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Figure 5.46: Numerical results for Heuristic 7 for 10n =  where [ ]1,35jp ∈  
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Figure 5.47: Numerical results for Heuristic 7 for 25,40,55n =  where [ ]1,35jp ∈  

 

 In Figure 5.47, average LB gaps of different plant distance ranges are given. The 

effects of increases in the mean and range of plant distances are explained in the beginning of 

this section.  



 123

5.2.5. Comparison of Proposed Methods 
 

 The special cases of the general problem are selected from common practical 

applications. There are two main strategies used in these applications: 

 

1. Send the trucks fully loaded (one partial trip may occur as explained before) 

2. The truck leaves the plant as soon as it arrives there 

 

 The first strategy includes Last Trip Partial Problem and Fully Loaded Trips Problem. 

The second strategy is addressed by No Wait Problem. Especially in the example of the 

leading soft drink manufacturer these two strategies have been applied for a long time. Any 

change in these strategies may complicate the operations and also requires education of the 

personnel. Hence, most of the companies do not want to replace these existing strategies with 

new ones. Therefore, in order to be able to suggest one of these simple strategies for the 

general problem, we assess the performance of the proposed heuristics on the general 

problem.  

 

 To determine the quality of proposed methods on the general problem, we compare 

the results of the proposed methods for special cases and the results for the general problem 

with respect to two aspects: 

 

1. The optimal results 

2. The heuristic results 

 

Comparisons of the optimal results are done only for 10 jobs since it was not possible to 

obtain optimal solutions for larger problems even in 50000 seconds. The percentage gap 

between the optimal result of the special case and optimal result of the general problem is 

calculated as follows: 
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         100
    

Optimal Solution of Special Case Optimal Solution of General ProblemOpt Gap
Optimal Solution of General Problem

−
= ⋅  

 

For each special case, the average opt gaps are calculated and the one yielding the smallest 

average is chosen.  

 

 To compare the heuristic results, for each special case, the best (i.e. the smallest) 

heuristic value is chosen. These chosen values are then compared to the heuristic results 

obtained by Heuristic 7. The percentage gap is calculated as follows:  

 

          100
    

Best Heuristic Value of Special Case Heuristic Value of General ProblemHR Gap
Heuristic Value of General Problem

−
= ⋅

 

HR gaps are determined for 10,25,40,55n =  and average HR gap is calculated for each 

special case. The problem yielding the smallest HR gap is chosen. In compliance with our 

expectations, the problem chosen as a result of optimal solution comparison is the same as 

the problem chosen as a result of heuristic solution comparison. The problems yielding the 

best average gaps are listed in Table 5.11 for each processing time and plant distance range. 

 

 It is obvious that the total completion times obtained by the heuristics proposed for 

fully loaded trips problem will always be better than or the same as the ones obtained by the 

heuristics for last trip partial problem. However, since the policy of sending the last trip 

partial is easier, we choose that policy when its results are the same with fully loaded trips 

problem. 

 

 For processing time range [ ]25,35 , as explained in Section 5.2.3 and 5.2.4, we could 

not obtain the optimal results for some of the instances even with 10 jobs. Hence an average 

opt gap is not given for this problem. 
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Table 5.11: Performance assessment of the methods of special cases for the general problem  

 

 Chosen Problem Avg. Opt. Gap (%) Avg. HR Gap (%) 

[ ]1,11jp ∈ , [ ]22, 28id ∈  No Wait  0.67 0.19 

[ ]1,11jp ∈ , [ ]32,38id ∈  Last Trip Partial 0.28 0.07 

[ ]1,11jp ∈ , [ ]22, 48id ∈  Last Trip Partial 0.32 0.08 

[ ]5,15jp ∈ , [ ]22, 28id ∈  Full Loaded Trips 2.86 1.13 

[ ]5,15jp ∈ , [ ]32,38id ∈  No Wait 0.88 0.71 

[ ]5,15jp ∈ , [ ]22, 48id ∈  No Wait 1.12 0.75 

[ ]25,35jp ∈ , [ ]22, 28id ∈  No Wait --- 1.17 

[ ]25,35jp ∈ , [ ]32,38id ∈  No Wait --- 2.21 

[ ]25,35jp ∈ , [ ]22, 48id ∈  No Wait --- 2.55 

[ ]1,35jp ∈ , [ ]22, 28id ∈  No Wait 1.15 0.96 

[ ]1,35jp ∈ , [ ]32,38id ∈  No Wait 1.79 0.89 

[ ]1,35jp ∈ , [ ]22, 48id ∈  No Wait 1.20 0.70 

  

 

 In Table 5.11 it can be seen that when the processing times are small compared to the 

plant distances, sending the truck fully loaded yields smallest gaps. However, as the 

processing times increase, waiting for the truck to be fully loaded becomes disadvantageous. 

Hence, leaving the plant immediately yields smallest gaps. 
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Chapter 6 
 

CONCLUSION 
 

 

 In this thesis, we studied the problem of integrated scheduling of production and 

distribution operations of a manufacturer serving a single customer area from multiple 

identical production plants at different geographical points. The products are transported 

from the plants to the customer area by a single capacitated truck. The objective is to 

minimize the total completion time of the jobs. The completion time of a job is defined as the 

time it reaches at the customer area.  

 

 We considered both this general problem and four special cases motivated by 

common practical applications.  The first special case considers a setting where the 

assignment of the jobs to the plants is given. A pseudo-polynomial dynamic programming is 

proposed for that problem.  

 

 The soft drink manufacturer that motivates our problem and many other companies 

tend to be under the impression that they utilize truck capacity better when they send the 

trucks fully loaded. In addition to that, fully loaded trucks are preferred in some applications 

to prevent the damage to the products that may be caused when they are shaken or scattered 

around in the truck. To address this preference, the second special case considers the problem 

where the truck is fully loaded in each trip except the last one. The last trip may be partially 

loaded if the number of jobs demanded by the customer is not divisible by the truck capacity. 

The third special case again has the constraint of trips’ being fully loaded; however, it is not 
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known in this problem which trip would be partially loaded. In the fourth special case, we 

suppose that the truck does not wait at the plant for the completion of a job. Instead, it takes 

the jobs that are already produced and leaves the plant immediately.  

 

 We proved that both the main problem and the last three special cases are NP-hard at 

least in the ordinary sense. We developed mixed integer programming (MIP) models for all 

these problems. Since the MIP models are able to provide optimal solutions only for small 

instances in a reasonable amount of time, we propose constructive heuristics to solve larger 

instances. For small instances, the optimal solutions obtained by these MIP models can be 

used to measure the quality of the proposed heuristics. However, since it is not possible to get 

optimal solutions for medium and large instances in reasonable CPU times, fast lower bounds 

are developed to facilitate the performance assessment of the heuristics. Based on extensive 

computational experimentation with the test problems generated, we observed that proposed 

heuristics provide optimal or near-optimal results in less than a second.  

 

 As mentioned before, three of the special cases consider two different strategies: 

sending full trucks and not waiting at the plant. Although these strategies are commonly 

applied, they may not yield the best results in terms of reduced total completion times. 

However, as observed in the soft drink company, companies are not willing to change these 

existing strategies. Thus, for different problems we determined which strategy would yield a 

smaller total completions time. It is shown that when the processing times of the jobs are 

small with respect to the plant distances, sending the last trip partial and the rest of the trips 

fully loaded yields the best results on the average. As the ratio of the mean of processing 

times to the mean of plant distances increases, waiting at the plant for the truck to be fully 

loaded becomes disadvantageous. Hence, for large processing times, it is a better strategy if 

the truck leaves the plant as soon as it arrives at there. 

  

 Finding stronger lower bounds for the problems studied in this thesis deserves 

attention as an item for future research. Another item relates to the shipment strategy. In light 

of the motivating practical application, we considered only direct shipments between the 
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plants and the customer area. As future research it would be interesting to consider milkruns 

among the plants. Also the problem of a multi-plant manufacturer serving multiple customer 

areas would be interesting to study. The problem with multiple capacitated trucks may also 

be studied. 
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Appendix A 

 

Pseudocodes of the Lower Bound Generation 

Methods 
 

A.1  Lower Bound 1 
 

Algorithm of Lower Bound 1 

Sort plants in nondecreasing distances and reindex 
Sort jobs in nondecreasing processing times and reindex 
Initialize travelTime and arriveTime arrays 
Set LB :=0, jobSent :=0 
Set d  to closest plant distance 
Set partial := n qK−   

Set reqTrip :=  n
K
⎡ ⎤
⎢ ⎥⎢ ⎥

 

Set minTrip :=  n
K
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Set sumProc to sum of processing times for the first  K  jobs 
//Calculate travelTime for each trip 
for each plant ip  
     for j  from 0 to (reqTrip – i ) (increase by m ) 
          Set travelTime[ i + j ] := (2 i -1) d   
     end for 
end for 
Set leaveTime :=max (sumProc, d ) 
for each trip kt  
     if ( k -1) is divisible by m  and (( k -1) / m ) > 0    // if trip is the first trip of a round 
          Increase jobSent by m K⋅  
          Set numJobs := ( k / m ) K⋅ +  min( K , n -jobSent) 
          Set sumProc1 to sum of processing times for the first numJobs jobs 
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          Set leaveTime :=  max(leaveTime + 2md , sumProc1) 
     end if 
     Set arriveTime[ k ] :=  leaveTime +  travelTime[ k ] 
end for 
for each trip kt  such that k ≠  reqTrip 
     Increase LB by ( K ⋅  arriveTime[ k ] ) 
end for 
if n  is divisible by K  
     Increase LB by ( K ⋅  arriveTime[reqTrip] ) 
end if 
Increase LB by ( partial ⋅  arriveTime[reqTrip]) 
Return LB 
 

 

 

A.2  Lower Bound 3 
 

Algorithm of Lower Bound 3 

Sort jobs and plants and reindex 
Initialize travelTime and arriveTime arrays 
Set LB := 0, jobSent := 0 
Set d  to closest plant distance 
Set partial := n qK−   

Set reqTrip :=  n
K
⎡ ⎤
⎢ ⎥⎢ ⎥

 

Set minTrip :=  n
K
⎢ ⎥
⎢ ⎥⎣ ⎦

 

//calculate travelTime for each trip 
for each plant iPl  
     for j  from 0 to (reqTrip – 1) (increase by m ) 
          Set travelTime[ i + j ] := (2 i -1) d   
     end for 
end for 
if partial > 0 
     Set sumProc to sum of processing times for the first partial jobs 
     Set leaveTime :=max (sumProc, d ) 
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     Set minTrip1 :=  min ( 2m , reqTrip) 
     for each trip kt  such that k ≤  minTrip1 
          if ( k -1) is divisible by m  and (( k -1) / m ) > 0 
               Increase jobSent by ( ( 1)m K− ⋅ + partial ) 
               Set numJobs :=partial + min( K , n -jobSent) 
               Set sumProc1 to sum of processing times for the first numJobs jobs 
               Set leaveTime :=  max(leaveTime + 2md , sumProc1) 
          end if 
          Set arriveTime[ k ] :=  leaveTime +  travelTime[ k ] 
     end for 
     if reqTrip > 2m  
          for each trip kt  such that 2 1m k+ ≤ ≤ reqTrip 
               Calculate arriveTime[ k ]  by Algorithm Arrival Time Calculation  
          end for 
     end if 
else 
     Set sumProc to sum of processing times for the first K  jobs 
     Set leaveTime :=max (sumProc, d ) 
     for each trip kt  
          Calculate arriveTime[ k ]  by Algorithm Arrival Time Calculation 
     end for 
end if 
if partial > 0 
     for each trip kt  such that k ≠  reqTrip 
          Increase LB by ( K ⋅  arriveTime[ k ] ) 
     end for 
     Increase LB by ( partial ⋅arriveTime[reqTrip]) 
else 
     for each trip kt  
          Increase LB by ( K ⋅  arriveTime[ k ] ) 
     end for 
end if 

 
 

 
Algorithm Arrival Time Calculation 
 
Given partial, k , leaveTime and jobSent 
if ( k -1) is divisible by m  and (( k -1) / m ) > 0 
     Increase jobSent by m K⋅  
     Set numJobs := (floor ( k / m )) K⋅  + min( K , n -jobSent) 
     Set sumProc1 to sum of processing times for the first numJobs jobs 
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     Set leaveTime :=  max(leaveTime + 2md , sumProc1) 
end if 
Set arriveTime[ k ] :=  leaveTime +  travelTime[ k ] 
Return arriveTime[ k ] 
 

 

 

A.3  Lower Bound 5 
 

Algorithm of Lower Bound 5 

Sort jobs and plants and reindex       // id  is the distance of plant with index i  
Initialize array A       //this array holds the values named as iA  in Table 4.4 
Initialize array noJobs      //this array holds the number of jobs on each trip 
Set LB := 0, jobSent := 0, trip := 0 
Set d  to closest plant distance 
Set sumDist to the sum of all plant distances 
for each plant iPl  
 Set A[ i ] :=0 
end for 
Set A[1] := d  
//calculate the iA  values given in Table 4.4 
for each plant iPl  except the first plant 
     for j  from m  to ( m +2 – i ) (decrement by 1) 
          Increase  A[ i ] by 2 jd  
     end for 
     Increase A[ i ] by 1m id − +  
end for 
while jobSent n<  
     Increment trip 
     if trip m≤  
          Set Sum:=0 
          Set kl :=0       // This was called as kl  in Table 4.4 
          //calculate kl  value 
          for each job j  
               if Sum + jp  ≤  A[trip] 
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                    Increase Sum by jp  and increment kl  
               else break 
               end if 
          end for 
          Set noJobs[trip] :=min( n - jobSent, min( K , kl )) 
          Increase jobSent by noJobs[trip] 
     else      
          Set Sum:=0 
          Set kl :=0 
          // Determine which trip is the current trip of a round (i.e. 1st, 2nd, 3rd, ..., thm ) and set 
factor to this value 

          Set factor:= trip - 1trip m
m
−⎢ ⎥ ⋅⎢ ⎥⎣ ⎦

 

          Set round:= 1trip
m
−⎢ ⎥

⎢ ⎥⎣ ⎦
      //Here if truck is on its second round, round will be 1 

          for each job j  
               if Sum + jp  ≤  2 tour sumDist⋅ ⋅  + A[factor] 
                    Increase Sum by jp  and increment kl  
               else break 
               end if 
          end for 
          Set Sum2:=0 
          Set minl :=0 
          for each job j  
               if Sum2 + jp  ≤  (2 1)tour d⋅ − ⋅   and minl < tour K⋅  
                    Increase Sum2 by jp  and increment minl  
               else break 
               end if 
          end for 
          Set noJobs[trip] :=min( n - jobSent, min( kl  - minl , K ) 
          Increase jobSent by noJobs[trip] 
     end if 
end while 
for each trip kt        // the number of trips is equal to the value of trip, hence k trip≤  
     Increase LB by 2 k d⋅ ⋅ ⋅  noJobs[trip] 
end for 
Return LB 
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Appendix B 

 

Pseudocodes of the Proposed Heuristics  
 

B.1  Heuristic 1 (LPH1) 

 
Algorithm Heuristic 1 (LPH1) 

Sort plants in nondecreasing distances and reindex 
Sort jobs in nondecreasing processing times and reindex 
Set TCT :=0      // TCT means total completion time 

Set minTrip :=  n
K
⎢ ⎥
⎢ ⎥⎣ ⎦

      // the number of trips that will be fully loaded 

Set partial := n qK−       // the number of jobs in the partially loaded trip 

Set trip:=0      // Denotes which trip is the current one, can be at most n
K
⎡ ⎤
⎢ ⎥⎢ ⎥

 

Initialize arrays AT and LT and set each element of these arrays to 0      // AT stores the time 
each plant becomes available for processing while LT stores the time truck leaves each plant 
 
Initialize array NP and set each element to 0       // holds the number of jobs sent from each 
plant 
 
Set lastP:=0      // Denotes the index of the plant visited on the previous trip  
for the first minTrip number of trips 
     Set Sum:=0 
     for each job lJ  such that 1    ( 1)trip K l trip K⋅ + ≤ ≤ + ⋅  
          Increase Sum  by lp         // lp  is the processing time of job lJ  
     end for 
     if the number of previously assigned jobs of each plant is the same 
          Increase AT [1]  by Sum 
          Set LT [1] :=max (AT [1], LT [lastP] + lastPd  + 1d  )  
          Set lastP :=  1 
          Increment trip 
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          Increase NP [1] by K  
          Increase TCT by [ ]( )lastPK LT lastP d⋅ +  
     else        // potential plant selection will be applied 
          Set selP :=0          
          Determine potential plants 
          Set selP to the plant with smallest contribution 
          Increase AT [selP] by Sum 
          Set LT [selP] :=max (AT [selP], LT [lastP] + lastPd  + selPd ) 
          Set lastP:= selP 
          Increment trip 
          Increase NP [lastP] by K  
          Increase TCT by [ ]( )lastPK LT lastP d⋅ +  
     end if 
end for 
if partial > 0 
     Set Sum:=0 
     for each job lJ  such that minTrip 1    K l n⋅ + ≤ ≤  
          Increase Sum  by lp         // lp  is the processing time of job lJ  
     end for 
     if the number of previously assigned jobs of each plant is the same 
          Increase AT [1]  by Sum 
          Set LT [1] :=max (AT [1], LT [lastP] + lastPd  + 1d  )  
          Set lastP :=  1 
          Increment trip 
          Increase NP [1] by partial 
          Increase TCT by [ ]( )lastPpartial LT lastP d⋅ +  
     else          // potential plant selection will be applied 
          Set selP :=0          
          Determine potential plants 
          Set selP to the plant with smallest contribution 
          Increase AT [selP] by Sum 
          Set LT [selP] :=max (AT [selP], LT [lastP] + lastPd  + selPd ) 
          Set lastP:= selP 
          Increment trip 
          Increase NP [lastP] by partial 
          Increase TCT by [ ]( )lastPpartial LT lastP d⋅ +  
     end if 
end if 
Return TCT 
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Algorithm Potential Plant Determination 
 
Set selP:= 0    // Denotes the plant selected among potential plants 
Set ratio:=NP [1]  K÷    // Since plant 1 will always be the plant with more number of jobs 
Set count:=0 
for r from 0 to ratio 
     Set count2:= 0    // with this counter we ensure that among the plants having the same 
number of previously assigned jobs, only the closest one is chosen 
 
     for each plant iP         // iP  denotes Plant i  
          if NP [ i ] = r K⋅  and count2 < 1 
               Determine iP  as a potential plant    
               Increment count and count2 
          end if 
     end for 
end for 
for each plant iP  
     if iP  is among the potential plants 
          Set contribution of iP  to max (LT [lastP] + lastPd  + id  , AT [ i ] + Sum) + id  
     end if 
end for 
Sort the potential plants in non-decreasing order of contributions      
 

 
B.2  Heuristic 2 (LPH2) 
 

Algorithm Heuristic 2 (LPH2) 

Sort plants in non-decreasing distances and re-index 
Sort jobs in non-decreasing processing times and re-index 
Set TCT := 0      // TCT means total completion time 

Set minTrip :=  n
K
⎢ ⎥
⎢ ⎥⎣ ⎦

      // the number of trips that will be fully loaded 

Set partial := n qK−       // the number of jobs in the partially loaded trip 

Set trip:=0      // Denotes which trip is the current one, can be at most n
K
⎡ ⎤
⎢ ⎥⎢ ⎥
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Initialize arrays AT and LT and set each element of these arrays to 0      // AT stores the time 
each plant becomes available for processing while LT stores the time truck leaves each plant 
 
Set lastP:= 0      // Denotes the index of the plant visited on the previous trip  
Set initSum:=0 
for each job lJ  such that 1    l K≤ ≤  
     Increase initSum by lp         // lp  is the processing time of job lJ  
end for 
if initSum > 1d  
     Increase AT [1] by initSum 
     Set LT [1] := initSum 
     Mark the first K  jobs as assigned and sent 
     Increase TCT  by [ ]( )11K LT d⋅ +  
     Increment trip 
     Set lastP :=  1 
else 
     Set : 1i =  
     Determine the batch to assign by batch sliding 
     Set sumK :=  0 
     for each ij  such that 1    ij K≤ ≤  
          Increase sumK by [ ]batch ijp  
          Mark job ijJ  as assigned and sent 
     end for 
     Increase AT [1] by sumK 
     Set LT [1] := 1d  
     Increase TCT by 12 K d⋅ ⋅  
     Increment trip 
     Set lastP :=  1 
end if 
while trip < minTrip 
     Set batchEmpty :=  true 
     for each plant iP  and batchEmpty = true 
          Set assignP :=  i          
          Determine the batch by batch sliding 
     end for 
     if batchEmpty = false 
          Set sumK :=  0 
          for each ij  such that 1    ij K≤ ≤  
               Increase sumK by [ ]batch ijp  
               Mark job ijJ  as assigned and sent 
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          end for 
          Increase AT [assignP] by sumK 
          Set LT [assignP] :=  LT [lastP] + lastPd  + assignPd  

          Increase TCT by [ ]( )assignPK LT assignP d⋅ +  
          Increment trip 
          Set lastP :=  assignP 
     else 
          Set Sum to the sum of processing times of the first K  unassigned jobs 
          Set cont to a very large value 
          for each plant iP  
               Set contribution of iP  to (AT [ i ] + Sum + id ) 
               if contribution of iP  ≤  cont 
                    Set selP :=  i  
               end if 
          end for 
          Increase AT [selP] by Sum 
          Set LT [selP] :=  AT [selP] 
          Mark the first K  jobs as assigned and sent 
          Increase TCT by [ ]( )selPK LT selP d⋅ +  
          Increment trip 
          Set lastP :=  selP 
     end if 
end while 
if partial > 0 
     Set Sum to the sum of processing times of all unassigned jobs 
     Set cont to a very large value 
     for each plant iP  
          Set contribution of iP  to max (LT [lastP] + lastPd  + id , AT [ i ] + Sum) + id  
          if contribution of iP  ≤  cont 
               Set selP :=  i  
          end if 
     end for 
     Increase AT [selP] by Sum 
     Set LT [selP] :=  max (LT [lastP] + lastPd  + selPd , AT [selP] ) 
     Mark all unassigned jobs as assigned and sent 
     Increase TCT by [ ]( )selPK LT selP d⋅ +  
     Increment trip 
     Set lastP :=  selP 
end if 
Return TCT 
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Algorithm Batch Sliding 
 
for each job lJ  such that 1    1l n K≤ ≤ − +  
     Set sum to the sum of processing times of the first K  unassigned jobs starting with thl  job 
     if sum ≤  LT [lastP] + lastPd + id  - AT [ i ]  
          Set batchEmpty := false 
          for l′  from 1 to K  
               Set batch [ l′ ] to the ( )thl′  unassigned job starting with thl  job 
          end for 
     else break 
     end if 
end for 
Return batch 

 

 

 

 

B.3  Heuristic 3 (FTH1) 

 
Algorithm Heuristic 3 (FTH1) 

Sort plants in nondecreasing distances and reindex 
Sort jobs in nondecreasing processing times and reindex 
Set TCT := 0      // TCT means total completion time 
Set bestCT to a very large value      //holds the best total completion time 

Set minTrip :=  n
K
⎢ ⎥
⎢ ⎥⎣ ⎦

      // the number of trips that will be fully loaded 

Set partial := n qK−       // the number of jobs in the partially loaded trip 
 
if partial =0 
     Apply Heuristic 1 
     Set bestCT to the total completion time found in Heuristic 1 
else  //if a partial batch occurs 
     for p from 0 to minTrip       //p denotes which trip is partial, if the first trip is partial p will 
be 0 
          Set TCT := 0 
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          Set trip:=0      // Denotes which trip is the current one, can be at most n
K
⎡ ⎤
⎢ ⎥⎢ ⎥

 

          Initialize arrays AT and LT and set each element of these arrays to 0      // AT stores the 
time each plant becomes available for processing while LT stores the time truck leaves each 
plant 
          Initialize array NP and set each element to 0       // holds the number of jobs sent from 
each plant 
          Set lastP:=0      // Denotes the index of the plant visited on the previous trip  
          if p = 0      // if the first trip is partial 
               Set Sum to the total processing time of the first partial jobs 
               Increase AT [1]  by Sum 
               Set LT [1] :=max (AT [1], LT [lastP] + lastPd  + 1d  )  
               Set lastP :=  1 
               Increment trip 
               Increase NP [1] by partial 
               Increase TCT by [ ]( )lastPpartial LT lastP d⋅ +  
               for the last minTrip number of trips 
                    Set Sum:=0 
                    for each job lJ  such that 1 ( 1)    partial trip K l partial trip K+ + − ≤ ≤ + ⋅  
                         Increase Sum  by lp        // lp  is the processing time of job lJ  
                    end for 
                    if the number of previously assigned jobs of each plant is the same 
                         Increase AT [1]  by Sum 
                         Set LT [1] :=max (AT [1], LT [lastP] + lastPd  + 1d  )  
                         Set lastP :=  1 
                         Increment trip 
                         Increase NP [1] by K  
                         Increase TCT by [ ]( )lastPK LT lastP d⋅ +  
                    else      // potential plant selection will be applied 
                         Set selP :=0          
                         Determine potential plants 
                         Set selP to the plant with smallest contribution 
                         Increase AT [selP] by Sum 
                         Set LT [selP] :=max (AT [selP], LT [lastP] + lastPd  + selPd ) 
                         Set lastP:= selP 
                         Increment trip 
                         Increase NP [lastP] by K  
                         Increase TCT by [ ]( )lastPK LT lastP d⋅ +  
                    end if 
               end for 
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               if TCT≤ bestCT 
                    Set bestCT:=TCT 
               end if 
          else       // a trip other than the first one is partial 
               for each trip 
                    Set Sum:=0 
                    if trip < p 
                          for each job lJ  such that trip 1    ( 1)K l trip K⋅ + ≤ ≤ +  
                               Increase Sum  by lp        // lp  is the processing time of job lJ  
                          end for 
                     else if trip = p 
                          for each job lJ  such that  p 1    K l p K partial⋅ + ≤ ≤ ⋅ +  
                               Increase Sum  by lp        // lp  is the processing time of job lJ  
                          end for 
                     else  
                           for each job lJ  such that (trip – 1) 1    K partial l trip K partial⋅ + + ≤ ≤ ⋅ +  
                               Increase Sum  by lp        // lp  is the processing time of job lJ  
                          end for 
                     end if 
                     if the number of previously assigned jobs of each plant is the same 
                          Increase AT [1]  by Sum 
                          Set LT [1] :=max (AT [1], LT [lastP] + lastPd  + 1d  )  
                          Set lastP :=  1 
                          Increment trip 
                          if 1trip p− ≠  
                               Increase NP [1] by K  
                               Increase TCT by [ ]( )lastPK LT lastP d⋅ +  
                          else 
                               Increase NP [1] by partial 
                               Increase TCT by [ ]( )lastPpartial LT lastP d⋅ +   
                          end if 
                     else  
                          Set selP :=0          
                          Determine potential plants 
                          Set selP to the plant with smallest contribution 
                          Increase AT [selP] by Sum 
                          Set LT [selP] :=max (AT [selP], LT [lastP] + lastPd  + selPd ) 
                          Set lastP:= selP 
                          Increment trip 
                          if 1trip p− ≠  
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                               Increase NP [lastP] by K  
                               Increase TCT by [ ]( )lastPK LT lastP d⋅ +  
                          else 
                               Increase NP [lastP] by partial 
                               Increase TCT by [ ]( )lastPpartial LT lastP d⋅ +   
                          end if 
                     end if 
              end for 
              if TCT≤ bestCT 
                    Set bestCT:=TCT 
              end if 
         end if  
    end for 
end if 
Return bestCT      
 
 
Algorithm Potential Plant Determination 2 

 
Set selP:= 0       // Denotes the plant selected among potential plants 
Set maxSent:= 0        // Since plant 1 will always be the plant with more number of jobs 
for each plant iP  
     if [ ]NP i ≥  maxSent 
          Set maxSent:= [ ]NP i  
     end if 
end for 
 
Set count:=0 
for r from 0 to maxSent 
     Set count2:= 0     // with this counter we ensure that among the plants having the same 
number of previously assigned jobs, only the closest one is chosen 
     for each plant iP         // iP  denotes Plant i  
          if NP [ i ] = r  and count2 < 1 
               Determine iP  as a potential plant    
               Increment count and count2 
          end if 
     end for 
end for 
for each plant iP  
     if iP  is among the potential plants 
          Set contribution of iP  to max (LT [lastP] + lastPd  + id  , AT [ i ] + Sum) + id  
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     end if 
end for 
Sort the potential plants in non-decreasing order of contributions    
 
 
 
 
 
 
B.4  Heuristic 4 (FTH2) 
 

Algorithm Heuristic 4 (FTH2) 

Sort plants in non-decreasing distances and re-index 
Sort jobs in non-decreasing processing times and re-index 
Set TCT := 0 // TCT means total completion time 
Set bestCT to a very large value   //holds the best total completion time 

Set minTrip :=  n
K
⎢ ⎥
⎢ ⎥⎣ ⎦

 // the number of trips that will be fully loaded 

Set partial := n qK−  // the number of jobs in the partially loaded trip 

Set trip:= 0 // Denotes which trip is the current one, can be at most n
K
⎡ ⎤
⎢ ⎥⎢ ⎥

 

if partial =0 
     Apply Heuristic 2 
     Set bestCT to the total completion time found in Heuristic 2 
else 
     for p from 1 to minTrip+1  // p denotes which trip is partial 
          Set TCT := 0 

          Set trip:=0 // Denotes which trip is the current one, can be at most n
K
⎡ ⎤
⎢ ⎥⎢ ⎥

 

          Initialize arrays AT and LT and set each element of these arrays to 0 // AT stores the 
time each plant becomes available for processing while LT stores the time truck leaves each 
plant 
          Initialize array NP and set each element to 0  // holds the number of jobs sent from 
each plant 
          Set lastP:=0 // Denotes the index of the plant visited on the previous trip  
          Set batchEmpty:= true 
          if p = 1 // if the first trip is partial 
               Set initSum to the total processing time of the first partial jobs 
               if initSum > 1d  
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            Increase AT [1] by initSum 
                    Set LT [1] := initSum 
                    Mark the first partial jobs as assigned and sent 
                    Increase TCT by [ ]( )11partial LT d⋅ +  
                    Increment trip 
                    Set lastP :=  1 
               else 
                    Set : 1i =  
                    Determine the batch to assign by batch sliding 
                    Set sumK :=  0 
                    for each ij  such that 1    ij partial≤ ≤  
                         Increase sumK by [ ]batch ijp  
                         Mark job ijJ  as assigned and sent 
                    end for 
                    Increase AT [1] by sumK 
                    Set LT [1] := 1d  
                    Increase TCT by 12 partial d⋅ ⋅  
                    Increment trip 
                    Set lastP :=  1 
               end if 
               while trip < minTrip+1 
                    Set batchEmpty :=  true 
                    for each plant iP  and batchEmpty = true 
                         Set assignP :=  i          
                         Determine the batch by batch sliding 
                    end for 
                    if batchEmpty = false 
                         Set sumK :=  0 
                         for each ij  such that 1    ij K≤ ≤  
                              Increase sumK by [ ]batch ijp  
                              Mark job ijJ  as assigned and sent 
                         end for 
                         Increase AT [assignP] by sumK 
                         Set LT [assignP] :=  LT [lastP] + lastPd  + assignPd  

                         Increase TCT by [ ]( )assignPK LT assignP d⋅ +  
                         Increment trip 
                         Set lastP :=  assignP 
                    else 
                         Set Sum to the sum of processing times of the first K  unassigned jobs 
                         Set cont to a very large value 
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                         for each plant iP  
                              Set contribution of iP  to (AT [ i ] + Sum + id ) 
                              if contribution of iP  ≤  cont 
                                   Set selP :=  i  
                              end if 
                         end for 
                         Increase AT [selP] by Sum 
                         Set LT [selP] :=  AT [selP] 
                         Mark the first K  jobs as assigned and sent 
                         Increase TCT by [ ]( )selPK LT selP d⋅ +  
                         Increment trip 
                         Set lastP :=  selP 
                    end if 
               end while 
               if TCT≤ bestCT 
                    Set bestCT:=TCT 
               end if 
          else  // if a trip other than the first one is partial 
               Set initSum to the total processing time of the first K  jobs 
               if initSum > 1d  
            Increase AT [1] by initSum 
                    Set LT [1] := initSum 
                    Mark the first partial jobs as assigned and sent 
                    Increase TCT by [ ]( )11K LT d⋅ +  
                    Increment trip 
                    Set lastP :=  1 
               else 
                    Set : 1i =  
                    Determine the batch to assign by batch sliding 
                    Set sumK :=  0 
                    for each ij  such that 1    ij K≤ ≤  
                         Increase sumK by [ ]batch ijp  
                         Mark job ijJ  as assigned and sent 
                    end for 
                    Increase AT [1] by sumK 
                    Set LT [1] := 1d  
                    Increase TCT by 12 K d⋅ ⋅  
                    Increment trip 
                    Set lastP :=  1 
               end if 
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               while trip +1<p 
                    Set batchEmpty :=  true 
                    for each plant iP  and batchEmpty = true 
                         Set assignP :=  i          
                         Determine the batch by batch sliding 
                    end for 
                    if batchEmpty = false 
                         Set sumK :=  0 
                         for each ij  such that 1    ij K≤ ≤  
                              Increase sumK by [ ]batch ijp  
                              Mark job ijJ  as assigned and sent 
                         end for 
                         Increase AT [assignP] by sumK 
                         Set LT [assignP] :=  LT [lastP] + lastPd  + assignPd  

                         Increase TCT by [ ]( )assignPK LT assignP d⋅ +  
                         Increment trip 
                         Set lastP :=  assignP 
                    else 
                         Set Sum to the sum of processing times of the first K  unassigned jobs 
                         Set cont to a very large value 
                         for each plant iP  
                              Set contribution of iP  to (AT [ i ] + Sum + id ) 
                              if contribution of iP  ≤  cont 
                                   Set selP :=  i  
                              end if 
                         end for 
                         Increase AT [selP] by Sum 
                         Set LT [selP] :=  AT [selP] 
                         Mark the first K  jobs as assigned and sent 
                         Increase TCT by [ ]( )selPK LT selP d⋅ +  
                         Increment trip 
                         Set lastP :=  selP 
                    end if 
               end while 
               if trip+1=p 
                    if trip+1=minTrip+1 //if the last trip is partial 
                         Set Sum to the sum of processing times of all unassigned jobs 
                         Set cont to a very large value 
                         for each plant iP  
                              Set contribution of iP  to max (LT [lastP] + lastPd  + id , AT [ i ] + Sum) + id  
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                              if contribution of iP  ≤  cont 
                                   Set selP :=  i  
                              end if 
                         end for 
                         Increase AT [selP] by Sum 
                         Set LT [selP] :=  max (LT [lastP] + lastPd  + selPd , AT [selP] ) 
                         Mark all unassigned jobs as assigned and sent 
                         Increase TCT by [ ]( )selPK LT selP d⋅ +  
                         Increment trip 
                         Set lastP :=  selP 
                    else 
                         Set batchEmpty :=  true 
                         for each plant iP  and batchEmpty = true 
                              Set assignP :=  i          
                              Determine the batch by batch sliding 
                         end for 
                         if batchEmpty = false 
                              Set sumK :=  0 
                              for each ij  such that 1    ij K≤ ≤  
                                   Increase sumK by [ ]batch ijp  
                                   Mark job ijJ  as assigned and sent 
                              end for 
                              Increase AT [assignP] by sumK 
                              Set LT [assignP] :=  LT [lastP] + lastPd  + assignPd  

                              Increase TCT by [ ]( )assignPK LT assignP d⋅ +  
                              Increment trip 
                              Set lastP :=  assignP 
                         else 
                              Set Sum to the sum of processing times of the first K  unassigned jobs 
                              Set cont to a very large value 
                             for each plant iP  
                                  Set contribution of iP  to (AT [ i ] + Sum + id ) 
                                  if contribution of iP  ≤  cont 
                                       Set selP :=  i  
                                  end if 
                             end for 
                             Increase AT [selP] by Sum 
                             Set LT [selP] :=  AT [selP] 
                             Mark the first K  jobs as assigned and sent 
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                             Increase TCT by [ ]( )selPK LT selP d⋅ +  
                             Increment trip 
                             Set lastP :=  selP 
                        end if 
                   end if 
              end if 
              if p ≠minTrip+1 
                   while trip < minTrip+1 
                        Set batchEmpty :=  true 
                        for each plant iP  and batchEmpty = true 
                              Set assignP :=  i          
                              Determine the batch by batch sliding 
                         end for 
                         if batchEmpty = false 
                              Set sumK :=  0 
                              for each ij  such that 1    ij K≤ ≤  
                                   Increase sumK by [ ]batch ijp  
                                   Mark job ijJ  as assigned and sent 
                             end for 
                             Increase AT [assignP] by sumK 
                             Set LT [assignP] :=  LT [lastP] + lastPd  + assignPd  

                             Increase TCT by [ ]( )assignPK LT assignP d⋅ +  
                             Increment trip 
                             Set lastP :=  assignP 
                         else 
                              Set Sum to the sum of processing times of the first K  unassigned jobs 
                              Set cont to a very large value 
                              for each plant iP  
                                   Set contribution of iP  to (AT [ i ] + Sum + id ) 
                                   if contribution of iP  ≤  cont 
                                        Set selP :=  i  
                                   end if 
                              end for 
                              Increase AT [selP] by Sum 
                              Set LT [selP] :=  AT [selP] 
                              Mark the first K  jobs as assigned and sent 
                              Increase TCT by [ ]( )selPK LT selP d⋅ +  
                              Increment trip 
                              Set lastP :=  selP 
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                         end if 
                    end while 
               end if 
               if TCT≤ bestCT 
                    Set bestCT:=TCT 
               end if 
          end if 
     end for 
end if 
Return bestCT 

 

 

 

B.5  Heuristic 5 (NWH1) 
 

Algorithm Heuristic 5 (NWH1) 

           

Sort plants in nondecreasing distances and reindex 
Sort jobs in nondecreasing processing times and reindex 
Set TCT := 0      // TCT means total completion time 
Set numSent:=0, lastP:=0  
Initialize arrays AT and LT and set each element of these arrays to 0      // AT stores the time 
each plant becomes available for processing while LT stores the time truck leaves each plant 
 
Initialize array NP and set each element to 0       // holds the number of jobs sent from each 
plant 
Set ptotal to the sum of processing times of all jobs 
Set pbar :=  ptotal  n÷    
while numSent < n  
     for each plant iP  
          Set NP [ i ]:=0 
     end for 
     Set sum:= 0 
     for each job lJ  such that 1    numSent l n+ ≤ ≤  
          if AT [1] + sum + lp  ≤  LT [lastP] + lastPd + 1d  and NP [1] < K  
               Increase sum by lp  
 Increment NP [1] 
          else break 
          end if 
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     end for 
     if NP [1] = K  
          Increase numSent by NP [1] 
          Increase AT [1] by sum 
          Set LT [1] :=  LT [lastP] + lastPd + 1d  
          Set lastP := 1 
          Increase TCT by [ ]( )11K LT d⋅ +  
     else 
          Set justified :=  false 
          for each plant iP  except the first plant 
               Set NP [ i ]:= 0 
               Set sum :=  0 
               for each job lJ  such that 1    numSent l n+ ≤ ≤  
                    if AT [ i ] + sum + lp  ≤  LT [lastP] + lastPd + id  and NP [ i ] < K  
                         Increase sum by lp  
           Increment NP [ i ] 
                    else break 
                    end if 
               end for 
               if 12 ( ) /id d pbar⋅ −  < ( NP [ i ] - NP [1] ) and ( NP [ i ] - NP [1] ) ≥  1 
                    Increase numSent by NP [ i ] 
                    Increase AT [ i ] by sum 
                    Set LT [ i ] :=  LT [lastP] + lastPd + id  
                    Set lastP := i  
                    Increase TCT  by [ ] [ ]( )iNP i LT i d⋅ +  
                    Set justified = true 
                    break 
               end if 
          end for 
          if justified = false 
               Increase numSent by NP [1] 
               Increase AT [1] by sum 
               Set LT [1] :=  LT [lastP] + lastPd + 1d  
               Set lastP :=1 
               Increase TCT  by [ ] [ ]( )11 1NP LT d⋅ +  
          end if 
     end if 
end while 
Return TCT 
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B.6  Heuristic 6 (NWH2) 
 

Algorithm Heuristic 6 (NWH2) 

 
Sort plants in nondecreasing distances and reindex 
Sort jobs in nondecreasing processing times and reindex 
Set TCT := 0      // TCT means total completion time 
Set numSent:=0, lastP:=0  
Initialize arrays AT and LT and set each element of these arrays to 0      // AT stores the time 
each plant becomes available for processing while LT stores the time truck leaves each plant 
 
Initialize array NP and set each element to 0       // holds the number of jobs sent from each 
plant 
 
Set ptotal to the sum of processing times of all jobs 
Set pbar :=  ptotal  n÷    
while numSent < n  
     for each plant iP  
          Set NP [ i ]:=0 
     end for 
     Set sum:=0 
     for each job lJ  such that 1    numSent l n+ ≤ ≤  
          if AT [1] + sum + lp  ≤  LT [lastP] + lastPd + 1d  and NP [1] < K  
               Increase sum by lp  
 Increment NP [1] 
          else break 
          end if 
     end for 
     if NP [1] = K  
          Set sum2:= 0 
          Apply batch sliding 
          for each ij  such that 1    ij≤ ≤ NP [1] 
               Increase sum2 by [ ]batch ijp  
               Mark job ijJ  as assigned and sent 
          end for 
          Increase numSent by NP [1] 
          Increase AT [1] by sum2 
          Set LT [1] :=  LT [lastP] + lastPd + 1d  
          Set lastP := 1 



 156

          Increase TCT by [ ]( )11K LT d⋅ +  
     else 
          Set justified :=  false 
          for each plant iP  except the first plant 
               Set NP [ i ]:=0 
               Set sum :=  0 
               for each job lJ  such that 1    numSent l n+ ≤ ≤  
                    if AT [ i ] + sum + lp  ≤  LT [lastP] + lastPd + id  and NP [ i ] < K  
                         Increase sum by lp  
        Increment NP [ i ] 
                    else break 
                    end if 
               end for 
               if 12 ( ) /id d pbar⋅ −  < ( NP [ i ] - NP [1] ) and ( NP [ i ] - NP [1] ) ≥  1 
                    Set sum2:=  0 
                    Apply batch sliding 
                    for each ij  such that 1    ij≤ ≤ NP [ i ] 
                         Increase sum2 by [ ]batch ijp  
                         Mark job ijJ  as assigned and sent 
                    end for 
      Increase numSent by NP [ i ] 
                    Increase AT [ i ] by sum2 
                    Set LT [ i ] :=  LT [lastP] + lastPd + id  
                    Set lastP := i  
                    Increase TCT  by [ ] [ ]( )iNP i LT i d⋅ +  
                    Set justified = true 
                    break 
               end if 
          end for 
          if justified = false 
               Set sum2:=  0 
               Apply batch sliding 
               for each ij  such that 1    ij≤ ≤ NP [1] 
                    Increase sum2 by [ ]batch ijp  
                    Mark job ijJ  as assigned and sent 
               end for 
               Increase numSent by NP [1] 
               Increase AT [1] by sum2 
               Set LT [1] :=  LT [lastP] + lastPd + 1d  
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               Set lastP := 1 
               Increase TCT  by [ ] [ ]( )11 1NP LT d⋅ +  
          end if 
     end if 
end while 
Return TCT 
 

 

 

B.7  Heuristic 7 (GH) 
 

Algorithm Heuristic 7 (GH) 

 
Sort plants in nondecreasing distances and reindex 
Sort jobs in nondecreasing processing times and reindex 
Initialize array NP and set each element to 0       // holds the number of jobs sent from each 
plant 
Set bestCT to a very large value        // Denotes the best completion time 
Set ptotal to the sum of processing times of all jobs 
Set pbar :=  ptotal  n÷    
for each ratio-to-wait such that 0.1 ≤  ratio-to-wait 1≤  (Increase by 0.1) 
     Initialize arrays AT and LT and set each element of these arrays to 0      // AT stores the 
time each plant becomes available for processing while LT stores the time truck leaves each 
plant 
 
     Set TCT := 0      // TCT means total completion time 
     Set numSent:=0, lastP:=0  
     while numSent < n  
          Set batchEmpty :=  true 
          for each plant iP  
               Set NP [ i ]:=0 
          end for 
          Set sum:= 0 
          for each job lJ  such that 1    l n≤ ≤  
               if AT [1] + sum + lp  ≤  LT [lastP] + lastPd + 1d  and NP [1] < K  and lJ  is 
unassigned 
                    Increase sum by lp  
      Increment NP [1] 
               else  
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                    if AT [1] + sum + (ratio-to-wait) lp⋅  ≤  LT [lastP] + lastPd + 1d  and NP [1] < K  
and lJ  is unassigned 
                         Increase sum by lp  
           Increment NP [1] 
                    end if 
               end if 
          end for 
          if NP [1] = K  
               Apply batch sliding 
               if batchEmpty = false 
                    Set sum2:= 0 
      for each ij  such that 1    ij≤ ≤ NP [1] 
                         Increase sum2 by [ ]batch ijp  
                         Mark job ijJ  as assigned and sent 
                    end for 
                    Increase numSent by NP [1] 
                    Increase AT [1] by sum2 
                    Set LT [1] :=  max (AT [1], LT [lastP] + lastPd + 1d )  
                    Set lastP := 1 
                    Increase TCT by [ ]( )11K LT d⋅ +  
               else 
                    Set sum2 to the sum of processing times of the first NP [1] unassigned jobs   
                    Mark the first NP [1] jobs as assigned and sent    
                    Increase AT [1] by sum2 
                    Set LT [1] :=  max (AT [1], LT [lastP] + lastPd + 1d )  
                    Set lastP :=1 
                    Increase TCT by [ ]( )11K LT d⋅ +  
               end if 
          else 
               Set justified :=  false 
               for each plant iP  except the first plant 
                    Set NP [ i ]:=0 
                    Set sum :=  0 
                    for each job lJ  such that 1    numSent l n+ ≤ ≤  
                         if AT [ i ] + sum + lp  ≤  LT [lastP] + lastPd + id  and NP [ i ] < K  and lJ  is 
unassigned 
                              Increase sum by lp  
                    Increment NP [ i ] 
                         else 
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                              if AT [ i ] + sum + (ratio-to-wait) lp⋅  ≤  LT [lastP] + lastPd + id  and NP [ i ] 
< K  and lJ  is unassigned 
                                   Increase sum by lp  
                                   Increment NP [ i ] 
                              end if 
                         end if    
                    end for 
      if 12 ( ) /id d pbar⋅ −  < ( NP [ i ] - NP [1] ) and ( NP [ i ] - NP [1] ) ≥  1 
                         Apply batch sliding 
                         if batchEmpty = false 
                              Set sum2:=0 
               for each ij  such that 1    ij≤ ≤ NP [ i ] 
                                   Increase sum2 by [ ]batch ijp  
                                   Mark job ijJ  as assigned and sent 
                              end for 
                              Increase numSent by NP [ i ] 
                              Increase AT [ i ] by sum2 
                              Set LT [ i ] :=  max (AT [ i ], LT [lastP] + lastPd + id )  
                              Set lastP := i  
                              Increase TCT by [ ] [ ]( )iNP i LT i d⋅ +  
                              Set justified = true 
                              break  
                         else 
                              Set sum2 to the sum of processing times of the first NP [ i ] unassigned 
jobs   
                              Mark the first NP [ i ] jobs as assigned and sent    
                              Increase AT [ i ] by sum2 
                              Set LT [ i ] :=  max (AT [ i ], LT [lastP] + lastPd + id )  
                              Set lastP := i  
                              Increase TCT by [ ] [ ]( )iNP i LT i d⋅ +  
                              Set justified = true 
                              break 
                         end if 
                    end if 
               end for 
               if justified = false 
                    Apply batch sliding 
                    if batchEmpty = false 
                         Set sum2:=0 
          for each ij  such that 1    ij≤ ≤ NP [1] 
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                              Increase sum2 by [ ]batch ijp  
                              Mark job ijJ  as assigned and sent 
                         end for 
                         Increase numSent by NP [1] 
                         Increase AT [1] by sum2 
                         Set LT [1] :=  max (AT [1], LT [lastP] + lastPd + 1d )  
                         Set lastP :=1 
                         Increase TCT by [ ] [ ]( )11 1NP LT d⋅ +  
                    else 
                         Set sum2 to the sum of processing times of the first NP [1] unassigned jobs   
                         Mark the first NP [1] jobs as assigned and sent    
                         Increase AT [1] by sum2 
                         Set LT [1] :=  max (AT [1], LT [lastP] + lastPd + 1d )  
                         Set lastP :=1 
                         Increase TCT by [ ] [ ]( )11 1NP LT d⋅ +  
                    end if 
               end if 
          end if 
     end while 
     if TCT ≤  bestCT 
          Set bestCT :=  TCT 
     end if 
end for 
Return bestCT 
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Appendix C 

 

Numerical Results for Last Trip Partial 

Problem 
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Lower Bound 

Gap (%) 

Average Lower 

Bound Gap (%) 

Maximum Lower 

Bound Gap (%)  K  Ins. 

# 

LastPartialHR1 

(LPHR1) 

LastPartialHR2 

(LPHR2) 

Lower 

Bound 
LPHR1 LPHR2 LPHR1 LPHR2 LPHR1 LPHR2 

1 1560 1560 1560 0.00 0.00 
2 1440 1440 1440 0.00 0.00 
3 1380 1380 1380 0.00 0.00 
4 1560 1560 1560 0.00 0.00 

10 2 

5 1560 1560 1560 0.00 0.00 

0.00 0.00 0.00 0.00 

1 936 936 936 0.00 0.00 
2 864 864 864 0.00 0.00 
3 828 828 828 0.00 0.00 
4 936 936 936 0.00 0.00 

10 4 

5 936 936 936 0.00 0.00 

0.00 0.00 0.00 0.00 

1 728 728 728 0.00 0.00 
2 672 672 672 0.00 0.00 
3 644 644 644 0.00 0.00 
4 728 728 728 0.00 0.00 

10 6 

5 748 748 748 0.00 0.00 

0.00 0.00 0.00 0.00 

1 724 724 724 0.00 0.00 
2 776 776 776 0.00 0.00 
3 672 672 672 0.00 0.00 
4 744 744 744 0.00 0.00 

10 8 

5 814 814 814 0.00 0.00 

0.00 0.00 0.00 0.00 

 

Table C.1 : Computational results for Last Trip Partial Problem where [ ]1,11jp ∈  and [ ]22, 28id ∈  
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Lower Bound 

Gap (%) 

Average Lower 

Bound Gap (%) 

Maximum Lower 

Bound Gap (%) n K  Ins. 

# 

LastPartialHR1 

(LPHR1) 

LastPartialHR2 

(LPHR2) 

Lower 

Bound 
LPHR1 LPHR2 LPHR1 LPHR2 LPHR1 LPHR2 

1 8788 8788 8788 0.00 0.00 
2 8112 8112 8112 0.00 0.00 
3 7774 7774 7774 0.00 0.00 
4 8788 8788 8788 0.00 0.00 

25 2 

5 8788 8788 8788 0.00 0.00 

0.00 0.00 0.00 0.00 

1 4732 4732 4732 0.00 0.00 
2 4368 4368 4368 0.00 0.00 
3 4186 4186 4186 0.00 0.00 
4 4732 4732 4732 0.00 0.00 

25 4 

5 4732 4732 4732 0.00 0.00 

0.00 0.00 0.00 0.00 

1 3380 3380 3380 0.00 0.00 
2 3134 3120 3120 0.45 0.45 
3 2990 2990 2990 0.00 0.00 
4 3380 3380 3380 0.00 0.00 

25 6 

5 3380 3380 3380 0.00 0.00 

0.09 0.09 0.45 0.45 

1 2722 2704 2704 0.67 0.67 
2 2630 2596 2596 1.31 1.31 
3 2410 2392 2392 0.75 0.75 
4 2722 2704 2704 0.67 0.67 

25 8 

5 2704 2704 2704 0.00 0.00 

0.68 0.68 1.31 1.31 

 

Table C.1 (continued): Computational results for Last Trip Partial Problem where [ ]1,11jp ∈  and [ ]22, 28id ∈  
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Lower Bound 

Gap (%) 

Average Lower 

Bound Gap (%) 

Maximum Lower 

Bound Gap (%) n K  Ins. 

# 

LastPartialHR1 

(LPHR1) 

LastPartialHR2 

(LPHR2) 

Lower 

Bound 
LPHR1 LPHR2 LPHR1 LPHR2 LPHR1 LPHR2 

1 21840 21840 21840 0.00 0.00 
2 20160 20160 20160 0.00 0.00 
3 19320 19320 19320 0.00 0.00 
4 21840 21840 21840 0.00 0.00 

40 2 

5 21840 21840 21840 0.00 0.00 

0.00 0.00 0.00 0.00 

1 11440 11440 11440 0.00 0.00 
2 10560 10560 10560 0.00 0.00 
3 10120 10120 10120 0.00 0.00 
4 11440 11440 11440 0.00 0.00 

40 4 

5 11440 11440 11440 0.00 0.00 

0.00 0.00 0.00 0.00 

1 8008 8008 8008 0.00 0.00 
2 7392 7392 7392 0.00 0.00 
3 7084 7084 7084 0.00 0.00 
4 8008 8008 8008 0.00 0.00 

40 6 

5 8008 8008 8008 0.00 0.00 

0.00 0.00 0.00 0.00 

1 6256 6256 6240 0.26 0.26 
2 5792 5792 5760 0.56 0.56 
3 5552 5552 5520 0.58 0.58 
4 6256 6256 6240 0.26 0.26 

40 8 

5 6240 6240 6240 0.00 0.00 

0.33 0.33 0.58 0.58 

 

Table C.1 (continued): Computational results for Last Trip Partial Problem where [ ]1,11jp ∈  and [ ]22, 28id ∈  
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Lower Bound 

Gap (%) 

Average Lower 

Bound Gap (%) 

Maximum Lower 

Bound Gap (%) n K  Ins. 

# 

LastPartialHR1 

(LPHR1) 

LastPartialHR2 

(LPHR2) 

Lower 

Bound 
LPHR1 LPHR2 LPHR1 LPHR2 LPHR1 LPHR2 

1 40768 40768 40768 0.00 0.00 
2 37632 37632 37632 0.00 0.00 
3 36064 36064 36064 0.00 0.00 
4 40768 40768 40768 0.00 0.00 

55 2 

5 40768 40768 40768 0.00 0.00 

0.00 0.00 0.00 0.00 

1 21112 21112 21112 0.00 0.00 
2 19488 19488 19488 0.00 0.00 
3 18676 18676 18676 0.00 0.00 
4 21112 21112 21112 0.00 0.00 

55 4 

5 21112 21112 21112 0.00 0.00 

0.00 0.00 0.00 0.00 

1 14560 14560 14560 0.00 0.00 
2 13440 13440 13440 0.00 0.00 
3 12880 12880 12880 0.00 0.00 
4 14560 14560 14560 0.00 0.00 

55 6 

5 14560 14560 14560 0.00 0.00 

0.00 0.00 0.00 0.00 

1 11298 11298 11284 0.12 0.12 
2 10446 10446 10416 0.29 0.29 
3 9996 9996 9982 0.14 0.14 
4 11298 11298 11284 0.12 0.12 

55 8 

5 11284 11284 11284 0.00 0.00 

0.14 0.14 0.29 0.29 

 

Table C.1 (continued): Computational results for Last Trip Partial Problem where [ ]1,11jp ∈  and [ ]22, 28id ∈  
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Lower Bound 

Gap (%) 

Average Lower 

Bound Gap (%) 

Maximum Lower 

Bound Gap (%) n K  Ins. 

# 

LastPartialHR1 

(LPHR1) 

LastPartialHR2 

(LPHR2) 

Lower 

Bound 
LPHR1 LPHR2 LPHR1 LPHR2 LPHR1 LPHR2 

1 2160 2160 2160 0.00 0.00 
2 2040 2040 2040 0.00 0.00 
3 1980 1980 1980 0.00 0.00 
4 2160 2160 2160 0.00 0.00 

10 2 

5 2160 2160 2160 0.00 0.00 

0.00 0.00 0.00 0.00 

1 1296 1296 1296 0.00 0.00 
2 1224 1224 1224 0.00 0.00 
3 1188 1188 1188 0.00 0.00 
4 1296 1296 1296 0.00 0.00 

10 4 

5 1296 1296 1296 0.00 0.00 

0.00 0.00 0.00 0.00 

1 1008 1008 1008 0.00 0.00 
2 952 952 952 0.00 0.00 
3 924 924 924 0.00 0.00 
4 1008 1008 1008 0.00 0.00 

10 6 

5 1008 1008 1008 0.00 0.00 

0.00 0.00 0.00 0.00 

1 864 864 864 0.00 0.00 
2 916 916 916 0.00 0.00 
3 812 812 812 0.00 0.00 
4 884 884 884 0.00 0.00 

10 8 

5 954 954 954 0.00 0.00 

0.00 0.00 0.00 0.00 

 

Table C.2 : Computational results for Last Trip Partial Problem where [ ]1,11jp ∈  and [ ]32,38id ∈  
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Lower Bound 

Gap (%) 

Average Lower 

Bound Gap (%) 

Maximum Lower 

Bound Gap (%) n K  Ins. 

# 

LastPartialHR1 

(LPHR1) 

LastPartialHR2 

(LPHR2) 

Lower 

Bound 
LPHR1 LPHR2 LPHR1 LPHR2 LPHR1 LPHR2 

1 12168 12168 12168 0.00 0.00 
2 11492 11492 11492 0.00 0.00 
3 11154 11154 11154 0.00 0.00 
4 12168 12168 12168 0.00 0.00 

25 2 

5 12168 12168 12168 0.00 0.00 

0.00 0.00 0.00 0.00 

1 6552 6552 6552 0.00 0.00 
2 6188 6188 6188 0.00 0.00 
3 6006 6006 6006 0.00 0.00 
4 6552 6552 6552 0.00 0.00 

25 4 

5 6552 6552 6552 0.00 0.00 

0.00 0.00 0.00 0.00 

1 4680 4680 4680 0.00 0.00 
2 4420 4420 4420 0.00 0.00 
3 4290 4290 4290 0.00 0.00 
4 4680 4680 4680 0.00 0.00 

25 6 

5 4680 4680 4680 0.00 0.00 

0.00 0.00 0.00 0.00 

1 3744 3744 3744 0.00 0.00 
2 3545 3554 3536 0.25 0.51 
3 3432 3432 3432 0.00 0.00 
4 3744 3744 3744 0.00 0.00 

25 8 

5 3744 3744 3744 0.00 0.00 

0.05 0.10 0.25 0.51 

 

Table C.2 (continued): Computational results for Last Trip Partial Problem where [ ]1,11jp ∈  and [ ]32,38id ∈  
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Lower Bound 

Gap (%) 

Average Lower 

Bound Gap (%) 

Maximum Lower 

Bound Gap (%) n K  Ins. 

# 

LastPartialHR1 

(LPHR1) 

LastPartialHR2 

(LPHR2) 

Lower 

Bound 
LPHR1 LPHR2 LPHR1 LPHR2 LPHR1 LPHR2 

1 30240 30240 30240 0.00 0.00 
2 28560 28560 28560 0.00 0.00 
3 27720 27720 27720 0.00 0.00 
4 30240 30240 30240 0.00 0.00 

40 2 

5 30240 30240 30240 0.00 0.00 

0.00 0.00 0.00 0.00 

1 15840 15840 15840 0.00 0.00 
2 14960 14960 14960 0.00 0.00 
3 14520 14520 14520 0.00 0.00 
4 15840 15840 15840 0.00 0.00 

40 4 

5 15840 15840 15840 0.00 0.00 

0.00 0.00 0.00 0.00 

1 11088 11088 11088 0.00 0.00 
2 10472 10472 10472 0.00 0.00 
3 10164 10164 10164 0.00 0.00 
4 11088 11088 11088 0.00 0.00 

40 6 

5 11088 11088 11088 0.00 0.00 

0.00 0.00 0.00 0.00 

1 8640 8640 8640 0.00 0.00 
2 8160 8160 8160 0.00 0.00 
3 7920 7920 7920 0.00 0.00 
4 8640 8640 8640 0.00 0.00 

40 8 

5 8640 8640 8640 0.00 0.00 

0.00 0.00 0.00 0.00 

 

Table C.2 (continued): Computational results for Last Trip Partial Problem where [ ]1,11jp ∈  and [ ]32,38id ∈  
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Lower Bound 

Gap (%) 

Average Lower 

Bound Gap (%) 

Maximum Lower 

Bound Gap (%) n K  Ins. 

# 

LastPartialHR1 

(LPHR1) 

LastPartialHR2 

(LPHR2) 

Lower 

Bound 
LPHR1 LPHR2 LPHR1 LPHR2 LPHR1 LPHR2 

1 56448 56448 56448 0.00 0.00 
2 53312 53312 53312 0.00 0.00 
3 51744 51744 51744 0.00 0.00 
4 56448 56448 56448 0.00 0.00 

55 2 

5 56448 56448 56448 0.00 0.00 

0.00 0.00 0.00 0.00 

1 29232 29232 29232 0.00 0.00 
2 27608 27608 27608 0.00 0.00 
3 26796 26796 26796 0.00 0.00 
4 29232 29232 29232 0.00 0.00 

55 4 

5 29232 29232 29232 0.00 0.00 

0.00 0.00 0.00 0.00 

1 20160 20160 20160 0.00 0.00 
2 19040 19040 19040 0.00 0.00 
3 18480 18480 18480 0.00 0.00 
4 20160 20160 20160 0.00 0.00 

55 6 

5 20160 20160 20160 0.00 0.00 

0.00 0.00 0.00 0.00 

1 15624 15624 15624 0.00 0.00 
2 14756 14756 14756 0.00 0.00 
3 14322 14322 14322 0.00 0.00 
4 15624 15624 15624 0.00 0.00 

55 8 

5 15624 15624 15624 0.00 0.00 

0.00 0.00 0.00 0.00 

 

Table C.2 (continued): Computational results for Last Trip Partial Problem where [ ]1,11jp ∈  and [ ]32,38id ∈  
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Lower Bound 

Gap (%) 

Average Lower 

Bound Gap (%) 

Maximum Lower 

Bound Gap (%) n K  Ins. 

# 

LastPartialHR1 

(LPHR1) 

LastPartialHR2 

(LPHR2) 

Lower 

Bound 
LPHR1 LPHR2 LPHR1 LPHR2 LPHR1 LPHR2 

1 2400 2400 2400 0.00 0.00 
2 1860 1860 1860 0.00 0.00 
3 1680 1680 1680 0.00 0.00 
4 2220 2220 2220 0.00 0.00 

10 2 

5 2340 2340 2340 0.00 0.00 

0.00 0.00 0.00 0.00 

1 1440 1440 1440 0.00 0.00 
2 1116 1116 1116 0.00 0.00 
3 1008 1008 1008 0.00 0.00 
4 1332 1332 1332 0.00 0.00 

10 4 

5 1404 1404 1404 0.00 0.00 

0.00 0.00 0.00 0.00 

1 1120 1120 1120 0.00 0.00 
2 868 868 868 0.00 0.00 
3 784 784 784 0.00 0.00 
4 1036 1036 1036 0.00 0.00 

10 6 

5 1092 1092 1092 0.00 0.00 

0.00 0.00 0.00 0.00 

1 960 960 960 0.00 0.00 
2 874 874 874 0.00 0.00 
3 742 742 742 0.00 0.00 
4 898 898 898 0.00 0.00 

10 8 

5 996 996 996 0.00 0.00 

0.00 0.00 0.00 0.00 

 

Table C.3 : Computational results for Last Trip Partial Problem where [ ]1,11jp ∈  and [ ]22, 48id ∈  
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Lower Bound 

Gap (%) 

Average Lower 

Bound Gap (%) 

Maximum Lower 

Bound Gap (%) n K  Ins. 

# 

LastPartialHR1 

(LPHR1) 

LastPartialHR2 

(LPHR2) 

Lower 

Bound 
LPHR1 LPHR2 LPHR1 LPHR2 LPHR1 LPHR2 

1 13520 13520 13520 0.00 0.00 
2 10478 10478 10478 0.00 0.00 
3 9464 9464 9464 0.00 0.00 
4 12506 12506 12506 0.00 0.00 

25 2 

5 13182 13182 13182 0.00 0.00 

0.00 0.00 0.00 0.00 

1 7280 7280 7280 0.00 0.00 
2 5642 5642 5642 0.00 0.00 
3 5096 5096 5096 0.00 0.00 
4 6734 6734 6734 0.00 0.00 

25 4 

5 7098 7098 7098 0.00 0.00 

0.00 0.00 0.00 0.00 

1 5200 5200 5200 0.00 0.00 
2 4030 4030 4030 0.00 0.00 
3 3640 3640 3640 0.00 0.00 
4 4810 4810 4810 0.00 0.00 

25 6 

5 5070 5070 5070 0.00 0.00 

0.00 0.00 0.00 0.00 

1 4160 4160 4160 0.00 0.00 
2 3278 3278 3224 1.67 1.67 
3 2912 2912 2912 0.00 0.00 
4 3848 3848 3848 0.00 0.00 

25 8 

5 4056 4056 4056 0.00 0.00 

0.33 0.33 1.67 1.67 

 

Table C.3 (continued): Computational results for Last Trip Partial Problem where [ ]1,11jp ∈  and [ ]22, 48id ∈  
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Lower Bound 

Gap (%) 

Average Lower 

Bound Gap (%) 

Maximum Lower 

Bound Gap (%) n K  Ins. 

# 

LastPartialHR1 

(LPHR1) 

LastPartialHR2 

(LPHR2) 

Lower 

Bound 
LPHR1 LPHR2 LPHR1 LPHR2 LPHR1 LPHR2 

1 33600 33600 33600 0.00 0.00 
2 26040 26040 26040 0.00 0.00 
3 23520 23520 23520 0.00 0.00 
4 31080 31080 31080 0.00 0.00 

40 2 

5 32760 32760 32760 0.00 0.00 

0.00 0.00 0.00 0.00 

1 17600 17600 17600 0.00 0.00 
2 13640 13640 13640 0.00 0.00 
3 12320 12320 12320 0.00 0.00 
4 16280 16280 16280 0.00 0.00 

40 4 

5 17160 17160 17160 0.00 0.00 

0.00 0.00 0.00 0.00 

1 12320 12320 12320 0.00 0.00 
2 9548 9548 9548 0.00 0.00 
3 8624 8624 8624 0.00 0.00 
4 11396 11396 11396 0.00 0.00 

40 6 

5 12012 12012 12012 0.00 0.00 

0.00 0.00 0.00 0.00 

1 9600 9600 9600 0.00 0.00 
2 7440 7440 7440 0.00 0.00 
3 6728 6784 6720 0.12 0.95 
4 8880 8880 8880 0.00 0.00 

40 8 

5 9360 9360 9360 0.00 0.00 

0.02 0.19 0.12 0.95 

 

Table C.3 (continued): Computational results for Last Trip Partial Problem where [ ]1,11jp ∈  and [ ]22, 48id ∈  
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Lower Bound 

Gap (%) 

Average Lower 

Bound Gap (%) 

Maximum Lower 

Bound Gap (%) n K  Ins. 

# 

LastPartialHR1 

(LPHR1) 

LastPartialHR2 

(LPHR2) 

Lower 

Bound 
LPHR1 LPHR2 LPHR1 LPHR2 LPHR1 LPHR2 

1 62720 62720 62720 0.00 0.00 
2 48608 48608 48608 0.00 0.00 
3 43904 43904 43904 0.00 0.00 
4 58016 58016 58016 0.00 0.00 

55 2 

5 61152 61152 61152 0.00 0.00 

0.00 0.00 0.00 0.00 

1 32480 32480 32480 0.00 0.00 
2 25172 25172 25172 0.00 0.00 
3 22736 22736 22736 0.00 0.00 
4 30044 30044 30044 0.00 0.00 

55 4 

5 31668 31668 31668 0.00 0.00 

0.00 0.00 0.00 0.00 

1 22400 22400 22400 0.00 0.00 
2 17360 17360 17360 0.00 0.00 
3 15680 15680 15680 0.00 0.00 
4 20720 20720 20720 0.00 0.00 

55 6 

5 21840 21840 21840 0.00 0.00 

0.00 0.00 0.00 0.00 

1 17360 17360 17360 0.00 0.00 
2 13454 13454 13454 0.00 0.00 
3 12152 12152 12152 0.00 0.00 
4 16058 16058 16058 0.00 0.00 

55 8 

5 16926 16926 16926 0.00 0.00 

0.00 0.00 0.00 0.00 

 

Table C.3 (continued): Computational results for Last Trip Partial Problem where [ ]1,11jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality Gap 

(%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 1560 1560 1560 1560   0.00 0.00 0.00 0.00 
2 1440 1440 1440 1440   0.00 0.00 0.00 0.00 
3 1380 1380 1380 1380   0.00 0.00 0.00 0.00 
4 1560 1560 1560 1560   0.00 0.00 0.00 0.00 

10 2 

5 1560 1560 1560 1560   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 936 936 936 936   0.00 0.00 0.00 0.00 
2 900 906 894 900 0.68 0.67 1.34 0.00 0.67 
3 838 838 838 838   0.00 0.00 0.00 0.00 
4 956 956 956 956   0.00 0.00 0.00 0.00 

10 4 

5 966 966 966 966   0.00 0.00 0.00 0.00 

0.13 0.27 0.67 1.34 0.00 0.13 0.00 0.67 

1 898 898 898 898   0.00 0.00 0.00 0.00 
2 920 920 912 920 0.25 0.88 0.88 0.00 0.00 
3 812 812 804 812 0.25 1.00 1.00 0.00 0.00 
4 938 938 938 938   0.00 0.00 0.00 0.00 

10 6 

5 988 988 988 988   0.00 0.00 0.00 0.00 

0.37 0.37 1.00 1.00 0.00 0.00 0.00 0.00 

1 1044 1044 1044 1044   0.00 0.00 0.00 0.00 
2 1096 1096 1096 1096   0.00 0.00 0.00 0.00 
3 992 992 992 992   0.00 0.00 0.00 0.00 
4 1064 1064 1064 1064   0.00 0.00 0.00 0.00 

10 8 

5 1134 1134 1134 1134   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Table C.4 : Computational results for Last Trip Partial Problem where [ ]5,15jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 8788 8788 8788   0.00 0.00   
2 8112 8112 8112   0.00 0.00   
3 7774 7774 7774   0.00 0.00   
4 8788 8788 8788   0.00 0.00   

25 2 

5 8788 8788 8788   0.00 0.00   

0.00 0.00 0.00 0.00     

1 4732 4732 4732   0.00 0.00   
2 4443 4443 4443   0.00 0.00   
3 4186 4186 4186   0.00 0.00   
4 4732 4732 4732   0.00 0.00   

25 4 

5 4732 4732 4732   0.00 0.00   

0.00 0.00 0.00 0.00     

1 3606 3606 3580   0.73 0.73   
2 3647 3633 3595   1.45 1.06   
3 3266 3266 3240   0.80 0.80   
4 3706 3706 3680   0.71 0.71   

25 6 

5 3705 3705 3705   0.00 0.00   

0.74 0.66 1.45 1.06     

1 3281 3263 3229   1.61 1.05   
2 3502 3502 3396   3.12 3.12   
3 3116 3026 2992   4.14 1.14   
4 3413 3413 3379   1.01 1.01   

25 8 

5 3488 3479 3479   0.26 0.00   

2.03 1.26 4.14 3.12     

 

Table C.4 (continued): Computational results for Last Trip Partial Problem where [ ]5,15jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 21840 21840 21840   0.00 0.00   
2 20160 20160 20160   0.00 0.00   
3 19320 19320 19320   0.00 0.00   
4 21840 21840 21840   0.00 0.00   

40 2 

5 21840 21840 21840   0.00 0.00   

0.00 0.00 0.00 0.00     

1 11440 11440 11440   0.00 0.00   
2 10560 10560 10560   0.00 0.00   
3 10120 10120 10120   0.00 0.00   
4 11440 11440 11440   0.00 0.00   

40 4 

5 11440 11440 11440   0.00 0.00   

0.00 0.00 0.00 0.00     

1 8280 8280 8248   0.39 0.39   
2 7908 7908 7832   0.97 0.97   
3 7520 7520 7444   1.02 1.02   
4 8520 8520 8488   0.38 0.38   

40 6 

5 8408 8408 8408   0.00 0.00   

0.55 0.55 1.02 1.02     

1 7056 7056 6960   1.38 1.38   
2 6952 6896 6800   2.24 1.41   
3 6568 6496 6400   2.63 1.50   
4 7376 7376 7280   1.32 1.32   

40 8 

5 7200 7200 7200   0.00 0.00   

1.51 1.12 2.63 1.50     

 

Table C.4 (continued): Computational results for Last Trip Partial Problem where [ ]5,15jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 40768 40768 40768   0.00 0.00   
2 37632 37632 37632   0.00 0.00   
3 36064 36064 36064   0.00 0.00   
4 40768 40768 40768   0.00 0.00   

55 2 

5 40768 40768 40768   0.00 0.00   

0.00 0.00 0.00 0.00     

1 21112 21112 21112   0.00 0.00   
2 19488 19488 19488   0.00 0.00   
3 18676 18676 18676   0.00 0.00   
4 21112 21112 21112   0.00 0.00   

55 4 

5 21112 21112 21112   0.00 0.00   

0.00 0.00 0.00 0.00     

1 14954 14954 14890   0.43 0.43   
2 14196 14157 14045   1.08 0.80   
3 13408 13408 13320   0.66 0.66   
4 15174 15174 15110   0.42 0.42   

55 6 

5 14945 14945 14945   0.00 0.00   

0.52 0.46 1.08 0.80     

1 12475 12444 12274   1.64 1.39   
2 11977 11977 11791   1.58 1.58   
3 11268 11268 11082   1.68 1.68   
4 12758 12760 12604   1.22 1.24   

55 8 

5 12329 12329 12329   0.00 0.00   

1.22 1.18 1.68 1.68     

 

Table C.4 (continued): Computational results for Last Trip Partial Problem where [ ]5,15jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Average 

LB Gap (%) 

Maximum 

LB Gap (%) n  K  
Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 2400 2400 2400 0.00 0.00 
2 1860 1860 1860 0.00 0.00 
3 1680 1680 1680 0.00 0.00 
4 2220 2220 2220 0.00 0.00 

10 2 

5 2340 2340 2340 0.00 0.00 

0.00 0.00 0.00 0.00 

1 1440 1440 1440 0.00 0.00 
2 1116 1116 1116 0.00 0.00 
3 1008 1008 1008 0.00 0.00 
4 1332 1332 1332 0.00 0.00 

10 4 

5 1404 1404 1404 0.00 0.00 

0.00 0.00 0.00 0.00 

1 1150 1150 1150 0.00 0.00 
2 1038 1038 1038 0.00 0.00 
3 902 902 894 0.00 0.00 
4 1136 1136 1136 0.00 0.00 

10 6 

5 1222 1222 1222 0.00 0.00 

0.00 0.00 0.00 0.00 

1 1240 1240 1240 0.00 0.00 
2 1194 1194 1194 0.00 0.00 
3 1062 1062 1062 0.00 0.00 
4 1218 1218 1218 0.00 0.00 

10 8 

5 1316 1316 1316 0.00 0.00 

0.00 0.00 0.00 0.00 

 

Table C.5 : Computational results for Last Trip Partial Problem where [ ]5,15jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Average 

LB Gap (%) 

Maximum 

LB Gap (%) n  K  
Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 13520 13520 13520 0.00 0.00 
2 10478 10478 10478 0.00 0.00 
3 9464 9464 9464 0.00 0.00 
4 12506 12506 12506 0.00 0.00 

25 2 

5 13182 13182 13182 0.00 0.00 

0.00 0.00 0.00 0.00 

1 7280 7280 7280 0.00 0.00 
2 5642 5642 5642 0.00 0.00 
3 5096 5096 5096 0.00 0.00 
4 6734 6734 6734 0.00 0.00 

25 4 

5 7098 7098 7098 0.00 0.00 

0.00 0.00 0.00 0.00 

1 5200 5200 5200 0.00 0.00 
2 4408 4408 4330 0.30 0.30 
3 3821 3821 3765 0.00 0.00 
4 4835 4835 4835 0.00 0.00 

25 6 

5 5070 5070 5070 0.00 0.00 

0.06 0.06 0.30 0.30 

1 4371 4371 4335 0.85 0.85 
2 4051 4051 3949 0.81 0.81 
3 3523 3523 3387 0.90 0.90 
4 4337 4384 4248 0.82 0.82 

25 8 

5 4506 4506 4506 0.00 0.00 

0.67 0.67 0.90 0.90 

 

Table C.5 (continued): Computational results for Last Trip Partial Problem where [ ]5,15jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Average 

LB Gap (%) 

Maximum 

LB Gap (%) n  K  
Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 33600 33600 33600 0.00 0.00 
2 26040 26040 26040 0.00 0.00 
3 23520 23520 23520 0.00 0.00 
4 31080 31080 31080 0.00 0.00 

40 2 

5 32760 32760 32760 0.00 0.00 

0.00 0.00 0.00 0.00 

1 17600 17600 17600 0.00 0.00 
2 13640 13640 13640 0.00 0.00 
3 12320 12320 12320 0.00 0.00 
4 16280 16280 16280 0.00 0.00 

40 4 

5 17160 17160 17160 0.00 0.00 

0.00 0.00 0.00 0.00 

1 12320 12320 12320 0.00 0.00 
2 9768 9768 9708 0.00 0.00 
3 8912 8912 8784 0.00 0.00 
4 11436 11436 11436 0.00 0.00 

40 6 

5 12012 12012 12012 0.00 0.00 

0.00 0.00 0.00 0.00 

1 9792 9792 9760 0.36 0.36 
2 8488 8440 8200 0.73 0.55 
3 7816 7784 7400 0.76 0.57 
4 9608 9608 9480 0.34 0.34 

40 8 

5 9800 9800 9800 0.00 0.00 

0.44 0.36 0.76 0.57 

 

Table C.5 (continued): Computational results for Last Trip Partial Problem where [ ]5,15jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Average 

LB Gap (%) 

Maximum 

LB Gap (%) n  K  
Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 62720 62720 62720 0.00 0.00 
2 48608 48608 48608 0.00 0.00 
3 43904 43904 43904 0.00 0.00 
4 58016 58016 58016 0.00 0.00 

55 2 

5 61152 61152 61152 0.00 0.00 

0.00 0.00 0.00 0.00 

1 32480 32480 32480 0.00 0.00 
2 25172 25172 25172 0.00 0.00 
3 22736 22736 22736 0.00 0.00 
4 30044 30044 30044 0.00 0.00 

55 4 

5 31668 31668 31668 0.00 0.00 

0.00 0.00 0.00 0.00 

1 22400 22400 22400 0.00 0.00 
2 17658 17658 17580 0.00 0.00 
3 15949 15949 15845 0.00 0.00 
4 20720 20720 20720 0.00 0.00 

55 6 

5 21840 21840 21840 0.00 0.00 

0.00 0.00 0.00 0.00 

1 17640 17640 17580 0.29 0.29 
2 15001 14864 14444 0.59 0.49 
3 13657 13409 12977 0.40 0.31 
4 16985 16957 16773 0.28 0.28 

55 8 

5 17256 17256 17256 0.00 0.00 

0.31 0.27 0.59 0.49 

 

Table C.5 (continued): Computational results for Last Trip Partial Problem where [ ]5,15jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 2400 2400 2400 2400   0.00 0.00 0.00 0.00 
2 1860 1860 1860 1860   0.00 0.00 0.00 0.00 
3 1680 1680 1680 1680   0.00 0.00 0.00 0.00 
4 2220 2220 2220 2220   0.00 0.00 0.00 0.00 

10 2 

5 2340 2340 2340 2340   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1440 1440 1440 1440   0.00 0.00 0.00 0.00 
2 1116 1116 1116 1116   0.00 0.00 0.00 0.00 
3 1008 1008 1008 1008   0.00 0.00 0.00 0.00 
4 1332 1332 1332 1332   0.00 0.00 0.00 0.00 

10 4 

5 1404 1404 1404 1404   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1150 1150 1150 1150   0.00 0.00 0.00 0.00 
2 1038 1038 1038 1038   0.00 0.00 0.00 0.00 
3 902 902 894 902 0.10 0.89 0.89 0.00 0.00 
4 1136 1136 1136 1136   0.00 0.00 0.00 0.00 

10 6 

5 1222 1222 1222 1222   0.00 0.00 0.00 0.00 

0.18 0.18 0.89 0.89 0.00 0.00 0.00 0.00 

1 1240 1240 1240 1240   0.00 0.00 0.00 0.00 
2 1194 1194 1194 1194   0.00 0.00 0.00 0.00 
3 1062 1062 1062 1062   0.00 0.00 0.00 0.00 
4 1218 1218 1218 1218   0.00 0.00 0.00 0.00 

10 8 

5 1316 1316 1316 1316   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Table C.6 : Computational results for Last Trip Partial Problem where [ ]5,15jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 13520 13520 13520   0.00 0.00   
2 10478 10478 10478   0.00 0.00   
3 9464 9464 9464   0.00 0.00   
4 12506 12506 12506   0.00 0.00   

25 2 

5 13182 13182 13182   0.00 0.00   

0.00 0.00 0.00 0.00     

1 7280 7280 7280   0.00 0.00   
2 5642 5642 5642   0.00 0.00   
3 5096 5096 5096   0.00 0.00   
4 6734 6734 6734   0.00 0.00   

25 4 

5 7098 7098 7098   0.00 0.00   

0.00 0.00 0.00 0.00     

1 5200 5200 5200   0.00 0.00   
2 4408 4408 4330   1.80 1.80   
3 3821 3821 3765   1.49 1.49   
4 4835 4835 4835   0.00 0.00   

25 6 

5 5070 5070 5070   0.00 0.00   

0.66 0.66 1.80 1.80     

1 4371 4371 4335   0.83 0.83   
2 4051 4051 3949   2.58 2.58   
3 3523 3523 3387   4.02 4.02   
4 4337 4384 4248   2.10 3.20   

25 8 

5 4506 4506 4506   0.00 0.00   

1.90 2.13 4.02 4.02     

 

Table C.6 (continued): Computational results for Last Trip Partial Problem where [ ]5,15jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 33600 33600 33600   0.00 0.00   
2 26040 26040 26040   0.00 0.00   
3 23520 23520 23520   0.00 0.00   
4 31080 31080 31080   0.00 0.00   

40 2 

5 32760 32760 32760   0.00 0.00   

0.00 0.00 0.00 0.00     

1 17600 17600 17600   0.00 0.00   
2 13640 13640 13640   0.00 0.00   
3 12320 12320 12320   0.00 0.00   
4 16280 16280 16280   0.00 0.00   

40 4 

5 17160 17160 17160   0.00 0.00   

0.00 0.00 0.00 0.00     

1 12320 12320 12320   0.00 0.00   
2 9768 9768 9708   0.62 0.62   
3 8912 8912 8784   1.46 1.46   
4 11436 11436 11436   0.00 0.00   

40 6 

5 12012 12012 12012   0.00 0.00   

0.42 0.42 1.46 1.46     

1 9792 9792 9760   0.33 0.33   
2 8488 8440 8200   3.51 2.93   
3 7816 7784 7400   5.62 5.19   
4 9608 9608 9480   1.35 1.35   

40 8 

5 9800 9800 9800   0.00 0.00   

2.16 1.96 5.62 5.19     

 

Table C.6 (continued): Computational results for Last Trip Partial Problem where [ ]5,15jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 62720 62720 62720   0.00 0.00   
2 48608 48608 48608   0.00 0.00   
3 43904 43904 43904   0.00 0.00   
4 58016 58016 58016   0.00 0.00   

55 2 

5 61152 61152 61152   0.00 0.00   

0.00 0.00 0.00 0.00     

1 32480 32480 32480   0.00 0.00   
2 25172 25172 25172   0.00 0.00   
3 22736 22736 22736   0.00 0.00   
4 30044 30044 30044   0.00 0.00   

55 4 

5 31668 31668 31668   0.00 0.00   

0.00 0.00 0.00 0.00     

1 22400 22400 22400   0.00 0.00   
2 17658 17658 17580   0.44 0.44   
3 15949 15949 15845   0.66 0.66   
4 20720 20720 20720   0.00 0.00   

55 6 

5 21840 21840 21840   0.00 0.00   

0.22 0.22 0.66 0.66     

1 17640 17640 17580   0.34 0.34   
2 15001 14864 14444   3.86 2.91   
3 13657 13409 12977   5.24 3.33   
4 16985 16957 16773   1.26 1.10   

55 8 

5 17256 17256 17256   0.00 0.00   

2.14 1.54 5.24 3.33     

 

Table C.6 (continued): Computational results for Last Trip Partial Problem where [ ]5,15jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 1838 1826 1810 1820 4.24 1.55 0.88 0.99 0.33 
2 1730 1726 1710 1724 2.35 1.17 0.94 0.35 0.12 
3 1680 1676 1660 1674 2.66 1.20 0.96 0.36 0.12 
4 1846 1846 1830 1840 3.73 0.87 0.87 0.33 0.33 

10 2 

5 1810 1810 1810 1810 13.43 0.00 0.00 0.00 0.00 

0.96 0.73 1.55 0.96 0.40 0.18 0.99 0.33 

1 1738 1738 1726 1736 4.05 0.70 0.70 0.12 0.12 
2 1706 1706 1694 1704 2.38 0.71 0.71 0.12 0.12 
3 1650 1650 1638 1648 4.75 0.73 0.73 0.12 0.12 
4 1768 1768 1756 1766 3.42 0.68 0.68 0.11 0.11 

10 4 

5 1766 1766 1766 1766 1.79 0.00 0.00 0.00 0.00 

0.56 0.56 0.73 0.73 0.09 0.09 0.12 0.12 

1 2106 2106 2098 2106 0.57 0.38 0.38 0.00 0.00 
2 2120 2120 2112 2120 0.71 0.38 0.38 0.00 0.00 
3 2012 2012 2004 2012 0.63 0.40 0.40 0.00 0.00 
4 2146 2146 2138 2146 0.69 0.37 0.37 0.00 0.00 

10 6 

5 2188 2188 2188 2188 0.61 0.00 0.00 0.00 0.00 

0.31 0.31 0.40 0.40 0.00 0.00 0.00 0.00 

1 2648 2648 2644 2648 0.14 0.15 0.15 0.00 0.00 
2 2700 2700 2696 2700 0.17 0.15 0.15 0.00 0.00 
3 2596 2596 2592 2596 0.20 0.15 0.15 0.00 0.00 
4 2668 2668 2664 2668 0.16 0.15 0.15 0.00 0.00 

10 8 

5 2734 2734 2734 2734 0.16 0.00 0.00 0.00 0.00 

0.12 0.12 0.15 0.15 0.00 0.00 0.00 0.00 

 

Table C.7 : Computational results for Last Trip Partial Problem where [ ]25,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 9451 9444 9388   0.67 0.60   
2 8876 8885 8787   1.01 1.12   
3 8527 8543 8449   0.92 1.11   
4 9528 9498 9438   0.95 0.64   

25 2 

5 9413 9413 9413   0.00 0.00   

0.71 0.69 1.01 1.12     

1 6726 6718 6632   1.42 1.30   
2 6679 6639 6443   3.66 3.04   
3 6416 6366 6136   4.56 3.75   
4 6776 6776 6682   1.41 1.41   

25 4 

5 6716 6716 6682   0.51 0.51   

2.31 2.00 4.56 3.75     

1 6952 6693 6657   4.43 0.54   
2 7115 6905 6833   4.13 1.05   
3 6807 6520 6436   5.76 1.31   
4 7031 6807 6771   3.84 0.53   

25 6 

5 7032 6864 6852   2.63 0.18   

4.16 0.72 5.76 1.31     

1 7281 7281 7229   0.72 0.72   
2 7502 7502 7396   1.43 1.43   
3 7116 7116 6992   1.77 1.77   
4 7431 7431 7379   0.70 0.70   

25 8 

5 7497 7497 7479   0.24 0.24   

0.97 0.97 1.77 1.77     

 

Table C.7 (continued): Computational results for Last Trip Partial Problem where [ ]25,35jp ∈  and [ ]22, 28id ∈  

 

 

 



 188

LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 22922 22916 22800   0.54 0.51   
2 21404 21404 21200   0.96 0.96   
3 20588 20632 20400   0.92 1.14   
4 23180 23028 22880   1.31 0.65   

40 2 

5 22800 22800 22800   0.00 0.00   

0.75 0.65 1.31 1.14     

1 14664 14616 14400   1.83 1.50   
2 14192 14192 13680   3.74 3.74   
3 13800 13800 13200   4.55 4.55   
4 14800 14792 14560   1.65 1.59   

40 4 

5 14568 14552 14480   0.61 0.50   

2.48 2.38 4.55 4.55     

1 13686 13368 13114   4.36 1.94   
2 13696 13386 13138   4.25 1.89   
3 13362 13154 12794   4.44 2.81   
4 13904 13552 13464   3.27 0.65   

40 6 

5 13922 13538 13494   3.17 0.33   

3.90 1.52 4.44 2.81     

1 15072 14616 14384   4.78 1.61   
2 15328 14840 14496   5.74 2.37   
3 14960 14528 14208   5.29 2.25   
4 15312 14912 14736   3.91 1.19   

40 8 

5 15280 14968 14832   3.02 0.92   

4.55 1.67 5.74 2.37     

 

Table C.7 (continued): Computational results for Last Trip Partial Problem where [ ]25,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 42268 42320 42088   0.43 0.55   
2 39366 39438 39062   0.78 0.96   
3 37900 37953 37549   0.93 1.08   
4 42652 42454 42198   1.08 0.61   

55 2 

5 42088 42088 42088   0.00 0.00   

0.64 0.64 1.08 1.08     

1 25614 25592 25182   1.72 1.63   
2 24726 24678 23778   3.99 3.79   
3 24349 24023 22911   6.28 4.85   
4 25928 25828 25402   2.07 1.68   

55 4 

5 25369 25353 25237   0.52 0.46   

2.91 2.48 6.28 4.85     

1 23065 22384 21774   5.93 2.80   
2 22971 22360 21878   5.00 2.20   
3 22506 21758 21080   6.76 3.22   
4 23042 22472 22141   4.07 1.49   

55 6 

5 23120 22445 21959   5.29 2.21   

5.41 2.39 6.76 3.22     

1 24614 23749 23287   5.70 1.98   
2 24590 23884 23425   4.97 1.96   
3 23893 23251 22603   5.71 2.87   
4 24844 23980 23651   5.04 1.39   

55 8 

5 24560 23798 23456   4.71 1.46   

5.23 1.93 5.71 2.87     

 

Table C.7 (continued): Computational results for Last Trip Partial Problem where [ ]25,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 2310 2310 2310 2310  0.00 0.00 0.00 0.00 
2 2210 2210 2210 2210  0.00 0.00 0.00 0.00 
3 2160 2160 2160 2160  0.00 0.00 0.00 0.00 
4 2330 2330 2330 2330  0.00 0.00 0.00 0.00 

10 2 

5 2310 2310 2310 2310  0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1998 1998 1986 1996 2.48 0.60 0.60 0.10 0.10 
2 1966 1966 1954 1964 6.03 0.61 0.61 0.10 0.10 
3 1910 1910 1898 1908 6.45 0.63 0.63 0.10 0.10 
4 2028 2028 2016 2026 6.87 0.60 0.60 0.10 0.10 

10 4 

5 2026 2026 2026 2026  0.00 0.00 0.00 0.00 

0.49 0.49 0.63 0.63 0.08 0.08 0.10 0.10 

1 2286 2286 2278 2286 0.34 0.35 0.35 0.00 0.00 
2 2300 2300 2292 2300 0.64 0.35 0.35 0.00 0.00 
3 2192 2192 2184 2192 0.62 0.37 0.37 0.00 0.00 
4 2326 2326 2318 2326 0.58 0.35 0.35 0.00 0.00 

10 6 

5 2368 2368 2368 2368  0.00 0.00 0.00 0.00 

0.28 0.28 0.37 0.37 0.00 0.00 0.00 0.00 

1 2784 2784 2784 2784  0.00 0.00 0.00 0.00 
2 2840 2840 2836 2840 0.19 0.14 0.14 0.00 0.00 
3 2736 2736 2732 2736 0.16 0.15 0.15 0.00 0.00 
4 2804 2804 2804 2804  0.00 0.00 0.00 0.00 

10 8 

5 2874 2874 2874 2874  0.00 0.00 0.00 0.00 

0.06 0.06 0.15 0.15 0.00 0.00 0.00 0.00 

 

Table C.8 : Computational results for Last Trip Partial Problem where [ ]25,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 12518 12518 12518   0.00 0.00   
2 11917 11917 11917   0.00 0.00   
3 11579 11579 11579   0.00 0.00   
4 12568 12568 12568   0.00 0.00   

25 2 

5 12543 12543 12543   0.00 0.00   

0.00 0.00 0.00 0.00     

1 8280 8270 8202   0.95 0.83   
2 8091 8091 8013   0.97 0.97   
3 7784 7784 7706   1.01 1.01   
4 8330 8320 8252   0.95 0.82   

25 4 

5 8252 8252 8252   0.00 0.00   

0.78 0.73 1.01 1.01     

1 7694 7694 7630   0.84 0.84   
2 7787 7787 7645   1.86 1.86   
3 7458 7458 7290   2.30 2.30   
4 7794 7794 7730   0.83 0.83   

25 6 

5 7781 7781 7755   0.34 0.34   

1.23 1.23 2.30 2.30     

1 8071 8071 8019   0.65 0.65   
2 8292 8292 8186   1.29 1.29   
3 7906 7906 7782   1.59 1.59   
4 8221 8221 8169   0.64 0.64   

25 8 

5 8287 8287 8269   0.22 0.22   

0.88 0.88 1.59 1.59     

 

Table C.8 (continued): Computational results for Last Trip Partial Problem where [ ]25,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 30800 30800 30800   0.00 0.00   
2 29200 29200 29200   0.00 0.00   
3 28400 28400 28400   0.00 0.00   
4 30880 30880 30880   0.00 0.00   

40 2 

5 30800 30800 30800   0.00 0.00   

0.00 0.00 0.00 0.00     

1 18624 18584 18400   1.22 1.00   
2 17880 17872 17680   1.13 1.09   
3 17400 17392 17200   1.16 1.12   
4 18736 18744 18560   0.95 0.99   

40 4 

5 18480 18480 18480   0.00 0.00   

0.89 0.84 1.22 1.12     

1 15904 15892 15728   1.12 1.04   
2 15716 15716 15312   2.64 2.64   
3 15404 15404 14924   3.22 3.22   
4 16144 16132 15968   1.10 1.03   

40 6 

5 15964 15944 15888   0.48 0.35   

1.71 1.66 3.22 3.22     

1 16112 15496 15424   4.46 0.47   
2 16368 15752 15536   5.36 1.39   
3 16000 15464 15248   4.93 1.42   
4 16352 15840 15776   3.65 0.41   

40 8 

5 16320 15904 15872   2.82 0.20   

4.24 0.78 5.36 1.42     

 

Table C.8 (continued): Computational results for Last Trip Partial Problem where [ ]25,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 57218 57218 57218   0.00 0.00   
2 54192 54192 54192   0.00 0.00   
3 52679 52679 52679   0.00 0.00   
4 57328 57328 57328   0.00 0.00   

55 2 

5 57218 57218 57218   0.00 0.00   

0.00 0.00 0.00 0.00     

1 33068 33086 32752   0.96 1.02   
2 31688 31712 31348   1.08 1.16   
3 30821 30845 30481   1.12 1.19   
4 33323 33306 32972   1.06 1.01   

55 4 

5 32807 32807 32807   0.00 0.00   

0.85 0.88 1.12 1.19     

1 26875 26850 26540   1.26 1.17   
2 26481 26425 25695   3.06 2.84   
3 25978 25836 24970   4.04 3.47   
4 27070 27070 26760   1.16 1.16   

55 6 

5 26738 26707 26595   0.54 0.42   

2.01 1.81 4.04 3.47     

1 26124 25181 24895   4.94 1.15   
2 26100 25280 24970   4.53 1.24   
3 25403 24759 24113   5.35 2.68   
4 26354 25442 25287   4.22 0.61   

55 8 

5 26070 25128 25043   4.10 0.34   

4.63 1.20 5.35 2.68     

 

Table C.8 (continued): Computational results for Last Trip Partial Problem where [ ]25,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 2510 2510 2510 2510   0.00 0.00 0.00 0.00 
2 2072 2072 2060 2072 5.77 0.58 0.58 0.00 0.00 
3 1958 1942 1910 1942 4.06 2.51 1.68 0.82 0.00 
4 2380 2380 2380 2380   0.00 0.00 0.00 0.00 

10 2 

5 2460 2460 2460 2460   0.00 0.00 0.00 0.00 

0.62 0.45 2.51 1.68 0.16 0.00 0.82 0.00 

1 2114 2114 2090 2110 5.59 1.15 1.15 0.19 0.19 
2 1912 1912 1876 1906 3.14 1.92 1.92 0.31 0.31 
3 1816 1816 1768 1808 1.53 2.71 2.71 0.44 0.44 
4 2090 2090 2042 2082 2.93 2.35 2.35 0.38 0.38 

10 4 

5 2104 2104 2104 2104   0.00 0.00 0.00 0.00 

1.63 1.63 2.71 2.71 0.27 0.27 0.44 0.44 

1 2366 2366 2350 2366 0.73 0.68 0.68 0.00 0.00 
2 2262 2262 2238 2262 0.63 1.07 1.07 0.00 0.00 
3 2126 2126 2094 2126 0.75 1.53 1.53 0.00 0.00 
4 2368 2368 2336 2368 0.69 1.37 1.37 0.00 0.00 

10 6 

5 2422 2422 2422 2422   0.00 0.00 0.00 0.00 

0.93 0.93 1.53 1.53 0.00 0.00 0.00 0.00 

1 2840 2840 2840 2840   0.00 0.00 0.00 0.00 
2 2806 2806 2794 2806 0.19 0.43 0.43 0.00 0.00 
3 2678 2678 2662 2678 0.17 0.60 0.60 0.00 0.00 
4 2818 2818 2818 2818   0.00 0.00 0.00 0.00 

10 8 

5 2916 2916 2916 2916   0.00 0.00 0.00 0.00 

0.21 0.21 0.60 0.60 0.00 0.00 0.00 0.00 

 

Table C.9 : Computational results for Last Trip Partial Problem where [ ]25,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 13770 13770 13770   0.00 0.00   
2 11026 11008 10978   0.44 0.27   
3 10079 10086 10014   0.65 0.72   
4 12881 12881 12881   0.00 0.00   

25 2 

5 13482 13482 13482   0.00 0.00   

0.22 0.20 0.65 0.72     

1 8950 8950 8830   1.36 1.36   
2 7776 7776 7542   3.10 3.10   
3 7251 7233 6921   4.77 4.51   
4 8714 8681 8409   3.63 3.23   

25 4 

5 8723 8723 8723   0.00 0.00   

2.57 2.44 4.77 4.51     

1 8204 8204 8050   1.91 1.91   
2 7834 7834 7330   6.88 6.88   
3 7411 7411 6765   9.55 9.55   
4 8091 8091 7835   3.27 3.27   

25 6 

5 8200 8200 8070   1.61 1.61   

4.64 4.64 9.55 9.55     

1 8457 8457 8335   1.46 1.46   
2 8321 8321 7949   4.68 4.68   
3 7865 7865 7387   6.47 6.47   
4 8456 8456 8248   2.52 2.52   

25 8 

5 8596 8596 8506   1.06 1.06   

3.24 3.24 6.47 6.47     

 

Table C.9 (continued): Computational results for Last Trip Partial Problem where [ ]25,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 34000 34000 34000   0.00 0.00   
2 26800 26800 26800   0.00 0.00   
3 24684 24592 24400   1.16 0.79   
4 31680 31680 31680   0.00 0.00   

40 2 

5 33200 33200 33200   0.00 0.00   

0.23 0.16 1.16 0.79     

1 20304 20288 20000   1.52 1.44   
2 17080 17080 16480   3.64 3.64   
3 16128 16000 15200   6.11 5.26   
4 19696 19632 18960   3.88 3.54   

40 4 

5 19680 19680 19680   0.00 0.00   

3.03 2.78 6.11 5.26     

1 17184 17120 16800   2.29 1.90   
2 15948 15948 14508   9.93 9.93   
3 15428 15428 13584   13.57 13.57   
4 16892 16860 16236   4.04 3.84   

40 6 

5 16972 16972 16692   1.68 1.68   

6.30 6.19 13.57 13.57     

1 16608 16464 16160   2.77 1.88   
2 16328 15752 15224   7.25 3.47   
3 15848 15312 14728   7.60 3.97   
4 16648 16392 15880   4.84 3.22   

40 8 

5 16696 16440 16200   3.06 1.48   

5.11 2.80 7.60 3.97     

 

Table C.9 (continued): Computational results for Last Trip Partial Problem where [ ]25,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 63270 63270 63270   0.00 0.00   
2 49653 49653 49653   0.00 0.00   
3 45404 45322 45114   0.64 0.46   
4 58841 58841 58841   0.00 0.00   

55 2 

5 61757 61757 61757   0.00 0.00   

0.13 0.09 0.64 0.46     

1 36336 36308 35780   1.55 1.48   
2 30211 30193 29077   3.90 3.84   
3 28264 28208 26696   5.87 5.66   
4 34873 34937 33729   3.39 3.58   

55 4 

5 35078 35078 35078   0.00 0.00   

2.94 2.91 5.87 5.66     

1 29409 29158 28560   2.97 2.09   
2 26679 26778 24180   10.33 10.74   
3 25865 25773 22445   15.24 14.83   
4 28505 28457 27265   4.55 4.37   

55 6 

5 28657 28540 28110   1.95 1.53   

7.01 6.71 15.24 14.83     

1 26984 26984 26380   2.29 2.29   
2 26127 25507 24482   6.72 4.19   
3 25288 24642 23358   8.26 5.50   
4 26793 26565 25573   4.77 3.88   

55 8 

5 26658 26596 26056   2.31 2.07   

4.87 3.58 8.26 5.50     

 

Table C.9 (continued): Computational results for Last Trip Partial Problem where [ ]25,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 1560 1560 1560 1560   0.00 0.00 0.00 0.00 
2 1440 1440 1440 1440   0.00 0.00 0.00 0.00 
3 1380 1380 1380 1380   0.00 0.00 0.00 0.00 
4 1560 1560 1560 1560   0.00 0.00 0.00 0.00 

10 2 

5 1560 1560 1560 1560   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 966 966 936 958 0.95 3.21 3.21 0.84 0.84 
2 1070 1070 914 1048 2.12 17.07 17.07 2.10 2.10 
3 900 900 828 880 0.64 8.70 8.70 2.27 2.27 
4 1028 1028 1016 1028 2.83 1.18 1.18 0.00 0.00 

10 4 

5 1090 1090 1066 1090 1.42 2.25 2.25 0.00 0.00 

6.48 6.48 17.07 17.07 1.04 1.04 2.27 2.27 

1 1030 1030 998 1030 0.15 3.21 3.21 0.00 0.00 
2 1178 1178 1122 1178 0.19 4.99 4.99 0.00 0.00 
3 994 994 834 994 0.16 19.18 19.18 0.00 0.00 
4 1136 1136 1128 1136 0.15 0.71 0.71 0.00 0.00 

10 6 

5 1318 1318 1318 1318   0.00 0.00 0.00 0.00 

5.62 5.62 19.18 19.18 0.00 0.00 0.00 0.00 

1 1428 1428 1424 1428 0.15 0.28 0.28 0.00 0.00 
2 1650 1650 1646 1650 0.12 0.24 0.24 0.00 0.00 
3 1336 1336 1332 1336 0.17 0.30 0.30 0.00 0.00 
4 1478 1478 1474 1478 0.10 0.27 0.27 0.00 0.00 

10 8 

5 1704 1704 1704 1704   0.00 0.00 0.00 0.00 

0.22 0.22 0.30 0.30 0.00 0.00 0.00 0.00 

 

Table C.10: Computational results for Last Trip Partial Problem where [ ]1,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 8788 8788 8788    0.00 0.00   
2 8112 8112 8112    0.00 0.00   
3 7774 7774 7774    0.00 0.00   
4 8788 8788 8788    0.00 0.00   

25 2 

5 8788 8788 8788    0.00 0.00   

0.00 0.00 0.00 0.00     

1 4760 4760 4732    0.59 0.59   
2 4610 4601 4493    2.60 2.40   
3 4214 4204 4186    0.67 0.43   
4 4786 4758 4732    1.14 0.55   

25 4 

5 4732 4732 4732    0.00 0.00   

1.00 0.79 2.60 2.40     

1 3660 3612 3380    8.28 6.86   
2 4324 4336 3845 4296(*)  12.46 12.77   
3 3445 3361 2990 3289(*)  15.22 12.41   
4 3867 3757 3705    4.37 1.40   

25 6 

5 3954 3933 3755    5.30 4.74   

9.13 7.64 15.22 12.77     

1 4310 4310 3079 4263 6898.34 39.98 39.98 1.10 1.10 
2 5052 5052 3896 5014(-) 50000.00 29.67 29.67 0.76 0.76 
3 3997 3997 2817 3935 36647.46 41.89 41.89 1.58 1.58 
4 4162 4162 3529 4130 12309.69 17.94 17.94 0.77 0.77 

25 8 

5 4537 4537 3854 4521 11960.39 17.72 17.72 0.35 0.35 

29.44 29.44 41.89 41.89 0.91 0.91 1.58 1.58 

 

Table C.10 (continued): Computational results for Last Trip Partial Problem where [ ]1,35jp ∈  and [ ]22, 28id ∈  

(-): The lower bound obtained by the linear relaxation is 5013.33. Best integer solution obtained is 5014. 
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 21840 21840 21840   0.00 0.00   
2 20160 20160 20160   0.00 0.00   
3 19320 19320 19320   0.00 0.00   
4 21840 21840 21840   0.00 0.00   

40 2 

5 21840 21840 21840   0.00 0.00   

0.00 0.00 0.00 0.00     

1 11488 11488 11440   0.42 0.42   
2 10672 10632 10560   1.06 0.68   
3 10200 10192 10120   0.79 0.71   
4 11496 11488 11440   0.49 0.42   

40 4 

5 11440 11440 11440   0.00 0.00   

0.55 0.45 1.06 0.71     

1 8116 8116 8008   1.35 1.35   
2 8230 8020 7632   7.84 5.08   
3 7674 7464 7084   8.33 5.36   
4 8548 8540 8408   1.67 1.57   

40 6 

5 8358 8212 8168   2.33 0.54   

4.30 2.78 8.33 5.36     

1 7680 7680 6280   22.29 22.29   
2 8640 8656 6800   27.06 27.29   
3 8208 8176 5880   39.59 39.05   
4 8328 8240 7400   12.54 11.35   

40 8 

5 8792 8752 7040   24.89 24.32   

25.27 24.86 39.59 39.05     

 

Table C.10 (continued): Computational results for Last Trip Partial Problem where [ ]1,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 40768 40768 40768   0.00 0.00   
2 37632 37632 37632   0.00 0.00   
3 36064 36064 36064   0.00 0.00   
4 40768 40768 40768   0.00 0.00   

55 2 

5 40768 40768 40768   0.00 0.00   

0.00 0.00 0.00 0.00     

1 21216 21202 21112   0.49 0.43   
2 19654 19640 19488   0.85 0.78   
3 18758 18758 18676   0.44 0.44   
4 21202 21202 21112   0.43 0.43   

55 4 

5 21112 21112 21112   0.00 0.00   

0.44 0.41 0.85 0.78     

1 14774 14736 14560   1.47 1.21   
2 14398 14248 13770   4.56 3.47   
3 13324 13204 12880   3.45 2.52   
4 15104 15004 14780   2.19 1.52   

55 6 

5 14624 14598 14560   0.44 0.26   

2.42 1.79 4.56 3.47     

1 13032 13107 11284   15.49 16.16   
2 13684 13684 11736   16.60 16.60   
3 12172 11772 9982   21.94 17.93   
4 13530 13195 12384   9.25 6.55   

55 8 

5 12881 12881 11449   12.51 12.51   

15.16 13.95 21.94 17.93     

 

Table C.10 (continued): Computational results for Last Trip Partial Problem where [ ]1,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 2160 2160 2160 2160   0.00 0.00 0.00 0.00 
2 2040 2040 2040 2040   0.00 0.00 0.00 0.00 
3 1980 1980 1980 1980   0.00 0.00 0.00 0.00 
4 2160 2160 2160 2160   0.00 0.00 0.00 0.00 

10 2 

5 2160 2160 2160 2160   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1296 1296 1296 1296   0.00 0.00 0.00 0.00 
2 1236 1236 1224 1236 0.45 0.98 0.98 0.00 0.00 
3 1204 1200 1188 1200 0.16 1.35 1.01 0.33 0.00 
4 1308 1308 1296 1308 0.11 0.93 0.93 0.00 0.00 

10 4 

5 1326 1326 1326 1326   0.00 0.00 0.00 0.00 

0.65 0.58 1.35 1.01 0.07 0.00 0.33 0.00 

1 1186 1186 1178 1186 0.16 0.68 0.68 0.00 0.00 
2 1310 1310 1302 1310 0.17 0.61 0.61 0.00 0.00 
3 1094 1094 1014 1094 0.16 7.89 7.89 0.00 0.00 
4 1316 1316 1308 1316 0.14 0.61 0.61 0.00 0.00 

10 6 

5 1498 1498 1498 1498   0.00 0.00 0.00 0.00 

1.96 1.96 7.89 7.89 0.00 0.00 0.00 0.00 

1 1564 1564 1564 1564   0.00 0.00 0.00 0.00 
2 1786 1786 1786 1786   0.00 0.00 0.00 0.00 
3 1476 1476 1472 1476 0.08 0.27 0.27 0.00 0.00 
4 1614 1614 1614 1614   0.00 0.00 0.00 0.00 

10 8 

5 1844 1844 1844 1844   0.00 0.00 0.00 0.00 

0.05 0.05 0.27 0.27 0.00 0.00 0.00 0.00 

 

Table C.11: Computational results for Last Trip Partial Problem where [ ]1,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 12168 12168 12168   0.00 0.00   
2 11492 11492 11492   0.00 0.00   
3 11154 11154 11154   0.00 0.00   
4 12168 12168 12168   0.00 0.00   

25 2 

5 12168 12168 12168   0.00 0.00   

0.00 0.00 0.00 0.00     

1 6562 6562 6552   0.15 0.15   
2 6224 6224 6188   0.58 0.58   
3 6016 6016 6006   0.17 0.17   
4 6562 6562 6552   0.15 0.15   

25 4 

5 6552 6552 6552   0.00 0.00   

0.21 0.21 0.58 0.58     

1 4720 4706 4680   0.85 0.56   
2 5037 5037 4895   2.90 2.90   
3 4386 4386 4290   2.24 2.24   
4 4795 4781 4755   0.84 0.55   

25 6 

5 4819 4819 4805   0.29 0.29   

1.43 1.31 2.90 2.90     

1 4580 4580 3869   18.38 18.38   
2 5322 5322 4686   13.57 13.57   
3 4267 4263 3607   18.30 18.19   
4 4488 4488 4319   3.91 3.91   

25 8 

5 4951 4951 4644   6.61 6.61   

12.15 12.13 18.38 18.38     

 

Table C.11 (continued): Computational results for Last Trip Partial Problem where [ ]1,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 30240 30240 30240   0.00 0.00   
2 28560 28560 28560   0.00 0.00   
3 27720 27720 27720   0.00 0.00   
4 30240 30240 30240   0.00 0.00   

40 2 

5 30240 30240 30240   0.00 0.00   

0.00 0.00 0.00 0.00     

1 15848 15848 15840   0.05 0.05   
2 14992 14992 14960   0.21 0.21   
3 14536 14536 14520   0.11 0.11   
4 15848 15848 15840   0.05 0.05   

40 4 

5 15840 15840 15840   0.00 0.00   

0.09 0.09 0.21 0.21     

1 11140 11140 11088   0.47 0.47   
2 10640 10568 10472   1.60 0.92   
3 10248 10228 10164   0.83 0.63   
4 11152 11152 11088   0.58 0.58   

40 6 

5 11108 11088 11088   0.18 0.00   

0.73 0.52 1.60 0.92     

1 9032 8720 8640   4.54 0.93   
2 9504 9224 8800   8.00 4.82   
3 8640 8528 7920   9.09 7.68   
4 9512 9512 9400   1.19 1.19   

40 8 

5 9552 9312 9040   5.66 3.01   

5.70 3.52 9.09 7.68     

 

Table C.11 (continued): Computational results for Last Trip Partial Problem where [ ]1,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 56448 56448 56448   0.00 0.00   
2 53312 53312 53312   0.00 0.00   
3 51744 51744 51744   0.00 0.00   
4 56448 56448 56448   0.00 0.00   

55 2 

5 56448 56448 56448   0.00 0.00   

0.00 0.00 0.00 0.00     

1 29254 29254 29232   0.08 0.08   
2 27652 27652 27608   0.16 0.16   
3 26810 26810 26796   0.05 0.05   
4 29246 29246 29232   0.05 0.05   

55 4 

5 29232 29232 29232   0.00 0.00   

0.07 0.07 0.16 0.16     

1 20286 20274 20160   0.63 0.57   
2 19246 19190 19040   1.08 0.79   
3 18570 18556 18480   0.49 0.41   
4 20274 20274 20160   0.57 0.57   

55 6 

5 20160 20160 20160   0.00 0.00   

0.55 0.47 1.08 0.79     

1 15808 15778 15624   1.18 0.99   
2 16027 15880 15526   3.23 2.28   
3 14659 14596 14322   2.35 1.91   
4 16374 16374 16174   1.24 1.24   

55 8 

5 15700 15670 15624   0.49 0.29   

1.70 1.34 3.23 2.28     

 

Table C.11 (continued): Computational results for Last Trip Partial Problem where [ ]1,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 2400 2400 2400 2400   0.00 0.00 0.00 0.00 
2 1860 1860 1860 1860   0.00 0.00 0.00 0.00 
3 1680 1680 1680 1680   0.00 0.00 0.00 0.00 
4 2220 2220 2220 2220   0.00 0.00 0.00 0.00 

10 2 

5 2340 2340 2340 2340   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1440 1440 1440 1440   0.00 0.00 0.00 0.00 
2 1188 1296 1116 1188 0.45 6.45 16.13 0.00 9.09 
3 1056 1056 1008 1056 0.06 4.76 4.76 0.00 0.00 
4 1332 1332 1332 1332   0.00 0.00 0.00 0.00 

10 4 

5 1404 1404 1404 1404   0.00 0.00 0.00 0.00 

2.24 4.18 6.45 16.13 0.00 1.82 0.00 9.09 

1 1266 1266 1250 1266 0.25 1.28 1.28 0.00 0.00 
2 1272 1272 1248 1272 0.26 1.92 1.92 0.00 0.00 
3 1056 1056 924 1056 0.11 14.29 14.29 0.00 0.00 
4 1358 1358 1326 1358 0.18 2.41 2.41 0.00 0.00 

10 6 

5 1552 1552 1552 1552   0.00 0.00 0.00 0.00 

3.98 3.98 14.29 14.29 0.00 0.00 0.00 0.00 

1 1620 1620 1620 1620   0.00 0.00 0.00 0.00 
2 1756 1756 1744 1756 0.10 0.69 0.69 0.00 0.00 
3 1418 1418 1402 1418 0.15 1.14 1.14 0.00 0.00 
4 1628 1628 1628 1628   0.00 0.00 0.00 0.00 

10 8 

5 1886 1886 1886 1886   0.00 0.00 0.00 0.00 

0.37 0.37 1.14 1.14 0.00 0.00 0.00 0.00 

 

Table C.12: Computational results for Last Trip Partial Problem where [ ]1,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 13520 13520 13520    0.00 0.00   
2 10478 10478 10478    0.00 0.00   
3 9464 9464 9464    0.00 0.00   
4 12506 12506 12506    0.00 0.00   

25 2 

5 13182 13182 13182    0.00 0.00   

0.00 0.00 0.00 0.00     

1 7280 7280 7280    0.00 0.00   
2 5767 5774 5642    2.22 2.34   
3 5136 5136 5096    0.78 0.78   
4 6734 6734 6734    0.00 0.00   

25 4 

5 7098 7098 7098    0.00 0.00   

0.60 0.62 2.22 2.34     

1 5252 5252 5200    1.00 1.00   
2 5280 5084 4580 5045(*)   15.28 11.00   
3 4086 4058 3640 4015 2965.63 12.25 11.48 1.77 1.07 
4 5020 4964 4860    3.29 2.14   

25 6 

5 5120 5120 5120    0.00 0.00   

6.37 5.13 15.28 11.48     

1 4714 4714 4185 4695 12449.50 12.64 12.64 0.40 0.40 
2 5365 5365 4449 5326 27821.13 20.59 20.59 0.73 0.73 
3 4282 4299 3212 4223 8393.50 33.31 33.84 1.40 1.80 
4 4606 4606 4398    4.73 4.73   

25 8 

5 5158 5158 4881    5.68 5.68   

15.39 15.50 33.31 33.84     

 

Table C.12 (continued): Computational results for Last Trip Partial Problem where [ ]1,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 33600 33600 33600   0.00 0.00   
2 26040 26040 26040   0.00 0.00   
3 23520 23520 23520   0.00 0.00   
4 31080 31080 31080   0.00 0.00   

40 2 

5 32760 32760 32760   0.00 0.00   

0.00 0.00 0.00 0.00     

1 17600 17600 17600   0.00 0.00   
2 13840 13784 13640   1.47 1.06   
3 12480 12480 12320   1.30 1.30   
4 16312 16312 16280   0.20 0.20   

40 4 

5 17160 17160 17160   0.00 0.00   

0.59 0.51 1.47 1.30     

1 12400 12384 12320   0.65 0.52   
2 10112 10112 9548   5.91 5.91   
3 9356 9356 8624   8.49 8.49   
4 11652 11652 11396   2.25 2.25   

40 6 

5 12012 12012 12012   0.00 0.00   

3.46 3.43 8.49 8.49     

1 9792 9744 9600   2.00 1.50   
2 9544 9176 8200   16.39 11.90   
3 8600 8776 6880   25.00 27.56   
4 10048 10048 9600   4.67 4.67   

40 8 

5 9944 10040 9640   3.15 4.15   

10.24 9.96 25.00 27.56     

 

Table C.12 (continued): Computational results for Last Trip Partial Problem where [ ]1,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
LPH1 LPH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 LPH1 LPH2 

1 62720 62720 62720   0.00 0.00   
2 48608 48608 48608   0.00 0.00   
3 43904 43904 43904   0.00 0.00   
4 58016 58016 58016   0.00 0.00   

55 2 

5 61152 61152 61152   0.00 0.00   

0.00 0.00 0.00 0.00     

1 32480 32480 32480   0.00 0.00   
2 25370 25352 25172   0.79 0.72   
3 22912 22912 22736   0.77 0.77   
4 30068 30068 30044   0.08 0.08   

55 4 

5 31668 31668 31668   0.00 0.00   

0.33 0.31 0.79 0.77     

1 22580 22552 22400   0.80 0.68   
2 18228 18092 17360   5.00 4.22   
3 16198 16346 15680   3.30 4.25   
4 21266 21120 20720   2.64 1.93   

55 6 

5 21840 21840 21840   0.00 0.00   

2.35 2.21 5.00 4.25     

1 17698 17698 17360   1.95 1.95   
2 15764 15589 14389   9.56 8.34   
3 13712 13394 12152   12.84 10.22   
4 17404 17353 16553   5.14 4.83   

55 8 

5 17076 17076 16926   0.89 0.89   

6.07 5.25 12.84 10.22     

 

Table C.12 (continued): Computational results for Last Trip Partial Problem where [ ]1,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 1560 1560 1560 1560   0.00 0.00 0.00 0.00 
2 1440 1440 1440 1440   0.00 0.00 0.00 0.00 
3 1380 1380 1380 1380   0.00 0.00 0.00 0.00 
4 1560 1560 1560 1560   0.00 0.00 0.00 0.00 

10 2 

5 1560 1560 1560 1560   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 936 936 936 936   0.00 0.00 0.00 0.00 
2 864 864 864 864   0.00 0.00 0.00 0.00 
3 828 828 828 828   0.00 0.00 0.00 0.00 
4 936 936 936 936   0.00 0.00 0.00 0.00 

10 4 

5 936 936 936 936   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 728 728 728 728   0.00 0.00 0.00 0.00 
2 672 672 672 672   0.00 0.00 0.00 0.00 
3 644 644 644 644   0.00 0.00 0.00 0.00 
4 728 728 728 728   0.00 0.00 0.00 0.00 

10 6 

5 748 748 728 748 0.61 2.75 2.75 0.00 0.00 

0.55 0.55 2.75 2.75 0.00 0.00 0.00 0.00 

1 724 724 624 724 0.25 16.03 16.03 0.00 0.00 
2 776 776 576 776 0.20 34.72 34.72 0.00 0.00 
3 672 672 552 672 0.18 21.74 21.74 0.00 0.00 
4 744 744 624 744 0.20 19.23 19.23 0.00 0.00 

10 8 

5 814 814 624 814 0.23 30.45 30.45 0.00 0.00 

24.43 24.43 34.72 34.72 0.00 0.00 0.00 0.00 

 

Table D.1 : Computational results for Fully Loaded Trips Problem where [ ]1,11jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 8788 8788 8788   0.00 0.00   
2 8112 8112 8112   0.00 0.00   
3 7774 7774 7774   0.00 0.00   
4 8788 8788 8788   0.00 0.00   

25 2 

5 8788 8788 8788   0.00 0.00   

0.00 0.00 0.00 0.00     

1 4732 4732 4732   0.00 0.00   
2 4368 4368 4368   0.00 0.00   
3 4186 4186 4186   0.00 0.00   
4 4732 4732 4732   0.00 0.00   

25 4 

5 4732 4732 4732   0.00 0.00   

0.00 0.00 0.00 0.00     

1 3380 3380 3380   0.00 0.00   
2 3134 3134 3120   0.45 0.45   
3 2990 2990 2990   0.00 0.00   
4 3380 3380 3380   0.00 0.00   

25 6 

5 3380 3380 3380   0.00 0.00   

0.09 0.09 0.45 0.45     

1 2722 2722 2704   0.67 0.67   
2 2630 2630 2496   5.37 5.37   
3 2410 2410 2392   0.75 0.75   
4 2722 2722 2704   0.67 0.67   

25 8 

5 2704 2704 2704   0.00 0.00   

1.49 1.49 5.37 5.37     

 

Table D.1 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,11jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 21840 21840 21840   0.00 0.00   
2 20160 20160 20160   0.00 0.00   
3 19320 19320 19320   0.00 0.00   
4 21840 21840 21840   0.00 0.00   

40 2 

5 21840 21840 21840   0.00 0.00   

0.00 0.00 0.00 0.00     

1 11440 11440 11440   0.00 0.00   
2 10560 10560 10560   0.00 0.00   
3 10120 10120 10120   0.00 0.00   
4 11440 11440 11440   0.00 0.00   

40 4 

5 11440 11440 11440   0.00 0.00   

0.00 0.00 0.00 0.00     

1 8008 8008 8008   0.00 0.00   
2 7392 7392 7392   0.00 0.00   
3 7084 7084 7084   0.00 0.00   
4 8008 8008 8008   0.00 0.00   

40 6 

5 8008 8008 8008   0.00 0.00   

0.00 0.00 0.00 0.00     

1 6256 6256 6240   0.26 0.26   
2 5792 5792 5760   0.56 0.56   
3 5552 5552 5520   0.58 0.58   
4 6256 6256 6240   0.26 0.26   

40 8 

5 6240 6240 6240   0.00 0.00   

0.33 0.33 0.58 0.58     

 

Table D.1 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,11jp ∈  and [ ]22, 28id ∈  

 

 

 



 214

LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 40768 40768 40768   0.00 0.00   
2 37632 37632 37632   0.00 0.00   
3 36064 36064 36064   0.00 0.00   
4 40768 40768 40768   0.00 0.00   

55 2 

5 40768 40768 40768   0.00 0.00   

0.00 0.00 0.00 0.00     

1 21112 21112 21112   0.00 0.00   
2 19488 19488 19488   0.00 0.00   
3 18676 18676 18676   0.00 0.00   
4 21112 21112 21112   0.00 0.00   

55 4 

5 21112 21112 21112   0.00 0.00   

0.00 0.00 0.00 0.00     

1 14560 14560 14560   0.00 0.00   
2 13440 13440 13440   0.00 0.00   
3 12880 12880 12880   0.00 0.00   
4 14560 14560 14560   0.00 0.00   

55 6 

5 14560 14560 14560   0.00 0.00   

0.00 0.00 0.00 0.00     

1 11298 11298 11284   0.12 0.12   
2 10446 10446 10416   0.29 0.29   
3 9996 9996 9982   0.14 0.14   
4 11298 11298 11284   0.12 0.12   

55 8 

5 11284 11284 11284   0.00 0.00   

0.14 0.14 0.29 0.29     

 

Table D.1 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,11jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 2160 2160 2160 2160   0.00 0.00 0.00 0.00 
2 2040 2040 2040 2040   0.00 0.00 0.00 0.00 
3 1980 1980 1980 1980   0.00 0.00 0.00 0.00 
4 2160 2160 2160 2160   0.00 0.00 0.00 0.00 

10 2 

5 2160 2160 2160 2160   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1296 1296 1296 1296   0.00 0.00 0.00 0.00 
2 1224 1224 1224 1224   0.00 0.00 0.00 0.00 
3 1188 1188 1188 1188   0.00 0.00 0.00 0.00 
4 1296 1296 1296 1296   0.00 0.00 0.00 0.00 

10 4 

5 1296 1296 1296 1296   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1008 1008 1008 1008   0.00 0.00 0.00 0.00 
2 952 952 952 952   0.00 0.00 0.00 0.00 
3 924 924 924 924   0.00 0.00 0.00 0.00 
4 1008 1008 1008 1008   0.00 0.00 0.00 0.00 

10 6 

5 1008 1008 1008 1008   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 864 864 864 864   0.00 0.00 0.00 0.00 
2 916 916 816 916 0.17 12.25 12.25 0.00 0.00 
3 812 812 792 812 0.15 2.53 2.53 0.00 0.00 
4 884 884 864 884 0.04 2.31 2.31 0.00 0.00 

10 8 

5 954 954 864 954 0.18 10.42 10.42 0.00 0.00 

5.50 5.50 12.25 12.25 0.00 0.00 0.00 0.00 

 

Table D.2: Computational results for Fully Loaded Trips Problem where [ ]1,11jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 12168 12168 12168   0.00 0.00   
2 11492 11492 11492   0.00 0.00   
3 11154 11154 11154   0.00 0.00   
4 12168 12168 12168   0.00 0.00   

25 2 

5 12168 12168 12168   0.00 0.00   

0.00 0.00 0.00 0.00     

1 6552 6552 6552   0.00 0.00   
2 6188 6188 6188   0.00 0.00   
3 6006 6006 6006   0.00 0.00   
4 6552 6552 6552   0.00 0.00   

25 4 

5 6552 6552 6552   0.00 0.00   

0.00 0.00 0.00 0.00     

1 4680 4680 4680   0.00 0.00   
2 4420 4420 4420   0.00 0.00   
3 4290 4290 4290   0.00 0.00   
4 4680 4680 4680   0.00 0.00   

25 6 

5 4680 4680 4680   0.00 0.00   

0.00 0.00 0.00 0.00     

1 3744 3744 3744   0.00 0.00   
2 3545 3554 3536   0.25 0.51   
3 3432 3432 3432   0.00 0.00   
4 3744 3744 3744   0.00 0.00   

25 8 

5 3744 3744 3744   0.00 0.00   

0.05 0.10 0.25 0.51     

 

Table D.2 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,11jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 30240 30240 30240   0.00 0.00   
2 28560 28560 28560   0.00 0.00   
3 27720 27720 27720   0.00 0.00   
4 30240 30240 30240   0.00 0.00   

40 2 

5 30240 30240 30240   0.00 0.00   

0.00 0.00 0.00 0.00     

1 15840 15840 15840   0.00 0.00   
2 14960 14960 14960   0.00 0.00   
3 14520 14520 14520   0.00 0.00   
4 15840 15840 15840   0.00 0.00   

40 4 

5 15840 15840 15840   0.00 0.00   

0.00 0.00 0.00 0.00     

1 11088 11088 11088   0.00 0.00   
2 10472 10472 10472   0.00 0.00   
3 10164 10164 10164   0.00 0.00   
4 11088 11088 11088   0.00 0.00   

40 6 

5 11088 11088 11088   0.00 0.00   

0.00 0.00 0.00 0.00     

1 8640 8640 8640   0.00 0.00   
2 8160 8160 8160   0.00 0.00   
3 7920 7920 7920   0.00 0.00   
4 8640 8640 8640   0.00 0.00   

40 8 

5 8640 8640 8640   0.00 0.00   

0.00 0.00 0.00 0.00     

 

Table D.2 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,11jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 56448 56448 56448   0.00 0.00   
2 53312 53312 53312   0.00 0.00   
3 51744 51744 51744   0.00 0.00   
4 56448 56448 56448   0.00 0.00   

55 2 

5 56448 56448 56448   0.00 0.00   

0.00 0.00 0.00 0.00     

1 29232 29232 29232   0.00 0.00   
2 27608 27608 27608   0.00 0.00   
3 26796 26796 26796   0.00 0.00   
4 29232 29232 29232   0.00 0.00   

55 4 

5 29232 29232 29232   0.00 0.00   

0.00 0.00 0.00 0.00     

1 20160 20160 20160   0.00 0.00   
2 19040 19040 19040   0.00 0.00   
3 18480 18480 18480   0.00 0.00   
4 20160 20160 20160   0.00 0.00   

55 6 

5 20160 20160 20160   0.00 0.00   

0.00 0.00 0.00 0.00     

1 15624 15624 15624   0.00 0.00   
2 14756 14756 14756   0.00 0.00   
3 14322 14322 14322   0.00 0.00   
4 15624 15624 15624   0.00 0.00   

55 8 

5 15624 15624 15624   0.00 0.00   

0.00 0.00 0.00 0.00     

 

Table D.2 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,11jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 2400 2400 2400 2400   0.00 0.00 0.00 0.00 
2 1860 1860 1860 1860   0.00 0.00 0.00 0.00 
3 1680 1680 1680 1680   0.00 0.00 0.00 0.00 
4 2220 2220 2220 2220   0.00 0.00 0.00 0.00 

10 2 

5 2340 2340 2340 2340   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1440 1440 1440 1440   0.00 0.00 0.00 0.00 
2 1116 1116 1116 1116   0.00 0.00 0.00 0.00 
3 1008 1008 1008 1008   0.00 0.00 0.00 0.00 
4 1332 1332 1332 1332   0.00 0.00 0.00 0.00 

10 4 

5 1404 1404 1404 1404   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1120 1120 1120 1120   0.00 0.00 0.00 0.00 
2 868 868 868 868   0.00 0.00 0.00 0.00 
3 784 784 784 784   0.00 0.00 0.00 0.00 
4 1036 1036 1036 1036   0.00 0.00 0.00 0.00 

10 6 

5 1092 1092 1092 1092   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 960 960 960 960   0.00 0.00 0.00 0.00 
2 874 874 744 874 0.17 17.47 17.47 0.00 0.00 
3 742 742 672 742 0.21 10.42 10.42 0.00 0.00 
4 898 898 888 898 0.10 1.13 1.13 0.00 0.00 

10 8 

5 996 996 936 996 0.13 6.41 6.41 0.00 0.00 

7.09 7.09 17.47 17.47 0.00 0.00 0.00 0.00 

 

Table D.3: Computational results for Fully Loaded Trips Problem where [ ]1,11jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 13520 13520 13520   0.00 0.00   
2 10478 10478 10478   0.00 0.00   
3 9464 9464 9464   0.00 0.00   
4 12506 12506 12506   0.00 0.00   

25 2 

5 13182 13182 13182   0.00 0.00   

0.00 0.00 0.00 0.00     

1 7280 7280 7280   0.00 0.00   
2 5642 5642 5642   0.00 0.00   
3 5096 5096 5096   0.00 0.00   
4 6734 6734 6734   0.00 0.00   

25 4 

5 7098 7098 7098   0.00 0.00   

0.00 0.00 0.00 0.00     

1 5200 5200 5200   0.00 0.00   
2 4030 4030 4030   0.00 0.00   
3 3640 3640 3640   0.00 0.00   
4 4810 4810 4810   0.00 0.00   

25 6 

5 5070 5070 5070   0.00 0.00   

0.00 0.00 0.00 0.00     

1 4160 4160 4160   0.00 0.00   
2 3278 3278 3224   1.67 1.67   
3 2912 2912 2912   0.00 0.00   
4 3848 3848 3848   0.00 0.00   

25 8 

5 4056 4056 4056   0.00 0.00   

0.33 0.33 1.67 1.67     

 

Table D.3 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,11jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 33600 33600 33600   0.00 0.00   
2 26040 26040 26040   0.00 0.00   
3 23520 23520 23520   0.00 0.00   
4 31080 31080 31080   0.00 0.00   

40 2 

5 32760 32760 32760   0.00 0.00   

0.00 0.00 0.00 0.00     

1 17600 17600 17600   0.00 0.00   
2 13640 13640 13640   0.00 0.00   
3 12320 12320 12320   0.00 0.00   
4 16280 16280 16280   0.00 0.00   

40 4 

5 17160 17160 17160   0.00 0.00   

0.00 0.00 0.00 0.00     

1 12320 12320 12320   0.00 0.00   
2 9548 9548 9548   0.00 0.00   
3 8624 8624 8624   0.00 0.00   
4 11396 11396 11396   0.00 0.00   

40 6 

5 12012 12012 12012   0.00 0.00   

0.00 0.00 0.00 0.00     

1 9600 9600 9600   0.00 0.00   
2 7440 7440 7440   0.00 0.00   
3 6728 6784 6720   0.12 0.95   
4 8880 8880 8880   0.00 0.00   

40 8 

5 9360 9360 9360   0.00 0.00   

0.02 0.19 0.12 0.95     

 

Table D.3 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,11jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 62720 62720 62720   0.00 0.00   
2 48608 48608 48608   0.00 0.00   
3 43904 43904 43904   0.00 0.00   
4 58016 58016 58016   0.00 0.00   

55 2 

5 61152 61152 61152   0.00 0.00   

0.00 0.00 0.00 0.00     

1 32480 32480 32480   0.00 0.00   
2 25172 25172 25172   0.00 0.00   
3 22736 22736 22736   0.00 0.00   
4 30044 30044 30044   0.00 0.00   

55 4 

5 31668 31668 31668   0.00 0.00   

0.00 0.00 0.00 0.00     

1 22400 22400 22400   0.00 0.00   
2 17360 17360 17360   0.00 0.00   
3 15680 15680 15680   0.00 0.00   
4 20720 20720 20720   0.00 0.00   

55 6 

5 21840 21840 21840   0.00 0.00   

0.00 0.00 0.00 0.00     

1 17360 17360 17360   0.00 0.00   
2 13454 13454 13454   0.00 0.00   
3 12152 12152 12152   0.00 0.00   
4 16058 16058 16058   0.00 0.00   

55 8 

5 16926 16926 16926   0.00 0.00   

0.00 0.00 0.00 0.00     

 

Table D.3 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,11jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 1560 1560 1560 1560   0.00 0.00 0.00 0.00 
2 1440 1440 1440 1440   0.00 0.00 0.00 0.00 
3 1380 1380 1380 1380   0.00 0.00 0.00 0.00 
4 1560 1560 1560 1560   0.00 0.00 0.00 0.00 

10 2 

5 1560 1560 1560 1560   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 936 936 936 936   0.00 0.00 0.00 0.00 
2 900 906 864 900 16.86 4.17 4.86 0.00 0.67 
3 838 838 828 838 14.64 1.21 1.21 0.00 0.00 
4 956 956 936 956 7.60 2.14 2.14 0.00 0.00 

10 4 

5 966 966 936 966 4.27 3.21 3.21 0.00 0.00 

2.14 2.28 4.17 4.86 0.00 0.13 0.00 4.86 

1 844 844 728 844 1.59 15.93 15.93 0.00 0.00 
2 828 846 702 826 1.08 17.95 20.51 0.24 2.42 
3 770 806 654 766 0.61 17.74 23.24 0.52 5.22 
4 864 864 748 862 1.15 15.51 15.51 0.23 0.23 

10 6 

5 862 862 758 862 1.06 13.72 13.72 0.00 0.00 

16.17 17.78 17.95 23.24 0.20 1.58 0.52 5.22 

1 992 952 752 952 0.29 31.91 26.60 4.20 0.00 
2 1056 976 800 922 0.45 32.00 22.00 14.53 5.86 
3 972 892 720 872 0.36 35.00 23.89 11.47 2.29 
4 1008 952 768 952 0.40 31.25 23.96 5.88 0.00 

10 8 

5 1048 936 824 936 0.26 27.18 13.59 11.97 0.00 

31.47 22.01 35.00 26.60 9.61 1.63 14.53 5.86 

 

Table D.4 : Computational results for Fully Loaded Trips Problem where [ ]5,15jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 8788 8788 8788     0.00 0.00     
2 8112 8112 8112     0.00 0.00     
3 7774 7774 7774     0.00 0.00     
4 8788 8788 8788     0.00 0.00     

25 2 

5 8788 8788 8788     0.00 0.00     

0.00 0.00 0.00 0.00     

1 4732 4732 4732     0.00 0.00     
2 4443 4443 4368     1.72 1.72     
3 4186 4186 4186     0.00 0.00     
4 4732 4732 4732     0.00 0.00     

25 4 

5 4732 4732 4732     0.00 0.00     

0.34 0.34 1.72 1.72     

1 3606 3606 3380     6.69 6.69     
2 3647 3633 3336 3633(*)  9.32 8.90     
3 3266 3266 3000     8.87 8.87     
4 3706 3706 3408     8.74 8.74     

25 6 

5 3705 3705 3432     7.95 7.95     

8.31 8.23 9.32 8.90     

1 3281 3263 3000 3263(*)  9.37 8.77     
2 3502 3502 3168 3430(*)  10.54 10.54     
3 3116 3026 2784 3026(*)  11.93 8.69     
4 3413 3413 3144 3413(*)  8.56 8.56     

25 8 

5 3488 3479 3240 3479(*)  7.65 7.38     

9.61 8.79 11.93 10.54     

 

Table D.4 (continued): Computational results for Fully Loaded Trips Problem where [ ]5,15jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 21840 21840 21840    0.00 0.00     
2 20160 20160 20160    0.00 0.00     
3 19320 19320 19320    0.00 0.00     
4 21840 21840 21840    0.00 0.00     

40 2 

5 21840 21840 21840    0.00 0.00     

0.00 0.00 0.00 0.00     

1 11440 11440 11440    0.00 0.00     
2 10560 10560 10560    0.00 0.00     
3 10120 10120 10120    0.00 0.00     
4 11440 11440 11440    0.00 0.00     

40 4 

5 11440 11440 11440    0.00 0.00     

0.00 0.00 0.00 0.00     

1 8280 8280 8008    3.40 3.40     
2 7908 7908 7392    6.98 6.98     
3 7520 7520 7084    6.15 6.15     
4 8520 8520 8008    6.39 6.39     

40 6 

5 8408 8408 8008    5.00 5.00     

5.58 5.58 6.98 6.98     

1 7056 7056 6960    1.38 1.38     
2 6952 6896 6800    2.24 1.41     
3 6568 6496 6400    2.63 1.50     
4 7376 7376 7280    1.32 1.32     

40 8 

5 7200 7200 7200    0.00 0.00     

1.51 1.12 2.63 1.50     

 

Table D.4 (continued): Computational results for Fully Loaded Trips Problem where [ ]5,15jp ∈  and [ ]22, 28id ∈  

 

 

 



 226

LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 40768 40768 40768    0.00 0.00     
2 37632 37632 37632    0.00 0.00     
3 36064 36064 36064    0.00 0.00     
4 40768 40768 40768    0.00 0.00     

55 2 

5 40768 40768 40768    0.00 0.00     

0.00 0.00 0.00 0.00     

1 21112 21112 21112    0.00 0.00     
2 19488 19488 19488    0.00 0.00     
3 18676 18676 18676    0.00 0.00     
4 21112 21112 21112    0.00 0.00     

55 4 

5 21112 21112 21112    0.00 0.00     

0.00 0.00 0.00 0.00     

1 14954 14954 14560    2.71 2.71     
2 14196 14157 13554    4.74 4.45     
3 13408 13408 12880    4.10 4.10     
4 15174 15174 14580    4.07 4.07     

55 6 

5 14945 14945 14560    2.64 2.64     

3.65 3.59 4.74 4.45     

1 12416 12432 11944    3.95 4.09     
2 11886 11886 11406    4.21 4.21     
3 11236 11220 10752    4.50 4.35     
4 12691 12707 12219    3.86 3.99     

55 8 

5 12311 12311 11999    2.60 2.60     

3.82 3.85 4.50 4.35     

 

Table D.4 (continued): Computational results for Fully Loaded Trips Problem where [ ]5,15jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 2160 2160 2160 2160   0.00 0.00 0.00 0.00 
2 2040 2040 2040 2040   0.00 0.00 0.00 0.00 
3 1980 1980 1980 1980   0.00 0.00 0.00 0.00 
4 2160 2160 2160 2160   0.00 0.00 0.00 0.00 

10 2 

5 2160 2160 2160 2160   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1296 1296 1296 1296   0.00 0.00 0.00 0.00 
2 1224 1224 1224 1224   0.00 0.00 0.00 0.00 
3 1188 1188 1188 1188   0.00 0.00 0.00 0.00 
4 1296 1296 1296 1296   0.00 0.00 0.00 0.00 

10 4 

5 1296 1296 1296 1296   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1078 1078 1008 1078 0.92 6.94 6.94 0.00 0.00 
2 1092 1092 952 1092 1.67 14.71 14.71 0.00 0.00 
3 984 984 924 984 1.17 6.49 6.49 0.00 0.00 
4 1118 1118 1008 1118 0.88 10.91 10.91 0.00 0.00 

10 6 

5 1152 1152 1008 1152 1.01 14.29 14.29 0.00 0.00 

10.67 10.67 14.71 14.71 0.00 0.00 0.00 0.00 

1 1184 1184 864 1184 0.17 37.04 37.04 0.00 0.00 
2 1236 1236 880 1236 0.92 40.45 40.45 0.00 0.00 
3 1132 1132 800 1132 0.25 41.50 41.50 0.00 0.00 
4 1204 1204 864 1204 0.26 39.35 39.35 0.00 0.00 

10 8 

5 1274 1274 904 1274 0.20 40.93 40.93 0.00 0.00 

39.85 39.85 41.50 41.50 0.00 0.00 0.00 0.00 

 

Table D.5: Computational results for Fully Loaded Trips Problem where [ ]5,15jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 12168 12168 12168     0.00 0.00     
2 11492 11492 11492     0.00 0.00     
3 11154 11154 11154     0.00 0.00     
4 12168 12168 12168     0.00 0.00     

25 2 

5 12168 12168 12168     0.00 0.00     

0.00 0.00 0.00 0.00     

1 6552 6552 6552     0.00 0.00     
2 6188 6188 6188     0.00 0.00     
3 6006 6006 6006     0.00 0.00     
4 6552 6552 6552     0.00 0.00     

25 4 

5 6552 6552 6552     0.00 0.00     

0.00 0.00 0.00 0.00     

1 4680 4680 4680     0.00 0.00     
2 4659 4659 4420     5.41 5.41     
3 4290 4290 4290     0.00 0.00     
4 4730 4730 4680     1.07 1.07     

25 6 

5 4755 4755 4680     1.60 1.60     

1.62 1.62 5.41 5.41     

1 4053 4053 3744     8.25 8.25     
2 4220 4220 3888 4220(*)  8.54 8.54     
3 3816 3816 3504 3807(*)  8.90 8.90     
4 4203 4203 3864 4194(*)  8.77 8.77     

25 8 

5 4269 4269 3960 4269(*)  7.80 7.80     

8.45 8.45 8.90 8.90     

 

Table D.5 (continued): Computational results for Fully Loaded Trips Problem where [ ]5,15jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 30240 30240 30240    0.00 0.00     
2 28560 28560 28560    0.00 0.00     
3 27720 27720 27720    0.00 0.00     
4 30240 30240 30240    0.00 0.00     

40 2 

5 30240 30240 30240    0.00 0.00     

0.00 0.00 0.00 0.00     

1 15840 15840 15840    0.00 0.00     
2 14960 14960 14960    0.00 0.00     
3 14520 14520 14520    0.00 0.00     
4 15840 15840 15840    0.00 0.00     

40 4 

5 15840 15840 15840    0.00 0.00     

0.00 0.00 0.00 0.00     

1 11088 11088 11088    0.00 0.00     
2 10512 10512 10472    0.38 0.38     
3 10164 10164 10164    0.00 0.00     
4 11168 11168 11088    0.72 0.72     

40 6 

5 11088 11088 11088    0.00 0.00     

0.22 0.22 0.72 0.72     

1 8992 8992 8960    0.36 0.36     
2 8864 8848 8800    0.73 0.55     
3 8464 8448 8400    0.76 0.57     
4 9312 9312 9280    0.34 0.34     

40 8 

5 9200 9200 9200    0.00 0.00     

0.44 0.36 0.76 0.57     

 

Table D.5 (continued): Computational results for Fully Loaded Trips Problem where [ ]5,15jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 56448 56448 56448    0.00 0.00     
2 53312 53312 53312    0.00 0.00     
3 51744 51744 51744    0.00 0.00     
4 56448 56448 56448    0.00 0.00     

55 2 

5 56448 56448 56448    0.00 0.00     

0.00 0.00 0.00 0.00     

1 29232 29232 29232    0.00 0.00     
2 27608 27608 27608    0.00 0.00     
3 26796 26796 26796    0.00 0.00     
4 29232 29232 29232    0.00 0.00     

55 4 

5 29232 29232 29232    0.00 0.00     

0.00 0.00 0.00 0.00     

1 20160 20160 20160    0.00 0.00     
2 19095 19095 19040    0.29 0.29     
3 18480 18480 18480    0.00 0.00     
4 20160 20160 20160    0.00 0.00     

55 6 

5 20160 20160 20160    0.00 0.00     

0.06 0.06 0.29 0.29     

1 16110 16110 15734    2.39 2.39     
2 15673 15657 15196    3.14 3.03     
3 14932 14918 14542    2.68 2.59     
4 16440 16440 16009    2.69 2.69     

55 8 

5 16119 16119 15789    2.09 2.09     

2.60 2.56 3.14 3.03     

 

Table D.5 (continued): Computational results for Fully Loaded Trips Problem where [ ]5,15jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 2400 2400 2400 2400   0.00 0.00 0.00 0.00 
2 1860 1860 1860 1860   0.00 0.00 0.00 0.00 
3 1680 1680 1680 1680   0.00 0.00 0.00 0.00 
4 2220 2220 2220 2220   0.00 0.00 0.00 0.00 

10 2 

5 2340 2340 2340 2340   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1440 1440 1440 1440   0.00 0.00 0.00 0.00 
2 1116 1116 1116 1116   0.00 0.00 0.00 0.00 
3 1008 1008 1008 1008   0.00 0.00 0.00 0.00 
4 1332 1332 1332 1332   0.00 0.00 0.00 0.00 

10 4 

5 1404 1404 1404 1404   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1150 1150 1120 1150 1.08 2.68 2.68 0.00 0.00 
2 1028 1028 868 1028 1.25 18.43 18.43 0.00 0.00 
3 902 902 784 902 0.70 15.05 15.05 0.00 0.00 
4 1136 1136 1036 1136 0.92 9.65 9.65 0.00 0.00 

10 6 

5 1222 1222 1092 1222 1.29 11.90 11.90 0.00 0.00 

11.54 11.54 18.43 18.43 0.00 0.00 0.00 0.00 

1 1240 1240 960 1240 0.24 29.17 29.17 0.00 0.00 
2 1164 1164 856 1164 0.28 35.98 35.98 0.00 0.00 
3 1062 1062 760 1062 0.23 39.74 39.74 0.00 0.00 
4 1218 1218 888 1218 0.22 37.16 37.16 0.00 0.00 

10 8 

5 1316 1316 936 1316 0.23 40.60 40.60 0.00 0.00 

36.53 36.53 40.60 40.60 0.00 0.00 0.00 0.00 

 

Table D.6: Computational results for Fully Loaded Trips Problem where [ ]5,15jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 13520 13520 13520     0.00 0.00     
2 10478 10478 10478     0.00 0.00     
3 9464 9464 9464     0.00 0.00     
4 12506 12506 12506     0.00 0.00     

25 2 

5 13182 13182 13182     0.00 0.00     

0.00 0.00 0.00 0.00     

1 7280 7280 7280     0.00 0.00     
2 5642 5642 5642     0.00 0.00     
3 5096 5096 5096     0.00 0.00     
4 6734 6734 6734     0.00 0.00     

25 4 

5 7098 7098 7098     0.00 0.00     

0.00 0.00 0.00 0.00     

1 5200 5200 5200     0.00 0.00     
2 4408 4408 4030     9.38 9.38     
3 3821 3821 3640     4.97 4.97     
4 4835 4835 4810     0.52 0.52     

25 6 

5 5070 5070 5070     0.00 0.00     

2.97 2.97 9.38 9.38     

1 4371 4371 4160    5.07 5.07     
2 4051 4051 3672   10.32 10.32     
3 3523 3523 3144   12.05 12.05     
4 4337 4384 3936   10.19 11.38     

25 8 

5 4506 4506 4176   7.90 7.90     

9.11 9.35 12.05 25.65     

 

Table D.6 (continued): Computational results for Fully Loaded Trips Problem where [ ]5,15jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 33600 33600 33600    0.00 0.00     
2 26040 26040 26040    0.00 0.00     
3 23520 23520 23520    0.00 0.00     
4 31080 31080 31080    0.00 0.00     

40 2 

5 32760 32760 32760    0.00 0.00     

0.00 0.00 0.00 0.00     

1 17600 17600 17600    0.00 0.00     
2 13640 13640 13640    0.00 0.00     
3 12320 12320 12320    0.00 0.00     
4 16280 16280 16280    0.00 0.00     

40 4 

5 17160 17160 17160    0.00 0.00     

0.00 0.00 0.00 0.00     

1 12320 12320 12320    0.00 0.00     
2 9768 9768 9548    2.30 2.30     
3 8912 8912 8624    3.34 3.34     
4 11436 11436 11396    0.35 0.35     

40 6 

5 12012 12012 12012    0.00 0.00     

1.20 1.20 3.34 3.34     

1 9792 9792 9760    0.33 0.33     
2 8488 8440 8200    3.51 2.93     
3 7816 7784 7400    5.62 5.19     
4 9608 9608 9480    1.35 1.35     

40 8 

5 9800 9800 9800    0.00 0.00     

2.16 1.96 5.62 5.19     

 

Table D.6 (continued): Computational results for Fully Loaded Trips Problem where [ ]5,15jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 62720 62720 62720    0.00 0.00     
2 48608 48608 48608    0.00 0.00     
3 43904 43904 43904    0.00 0.00     
4 58016 58016 58016    0.00 0.00     

55 2 

5 61152 61152 61152    0.00 0.00     

0.00 0.00 0.00 0.00     

1 32480 32480 32480    0.00 0.00     
2 25172 25172 25172    0.00 0.00     
3 22736 22736 22736    0.00 0.00     
4 30044 30044 30044    0.00 0.00     

55 4 

5 31668 31668 31668    0.00 0.00     

0.00 0.00 0.00 0.00     

1 22400 22400 22400    0.00 0.00     
2 17658 17658 17360    1.72 1.72     
3 15949 15949 15680    1.72 1.72     
4 20720 20720 20720    0.00 0.00     

55 6 

5 21840 21840 21840    0.00 0.00     

0.69 0.69 1.72 1.72     

1 17640 17640 17360    1.61 1.61     
2 14815 14767 14059    5.38 5.04     
3 13409 13409 12647    6.03 6.03     
4 16960 16957 16388    3.49 3.47     

55 8 

5 17256 17256 16926    1.95 1.95     

3.69 3.62 6.03 6.03     

 

Table D.6 (continued): Computational results for Fully Loaded Trips Problem where [ ]5,15jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 1826 1826 1810 1820 784.62 0.88 0.88 0.33 0.33 
2 1730 1726 1710 1724 587.18 1.17 0.94 0.35 0.12 
3 1680 1676 1660 1674 759.24 1.20 0.96 0.36 0.12 
4 1846 1846 1830 1840 458.32 0.87 0.87 0.33 0.33 

10 2 

5 1810 1810 1810 1810   0.00 0.00 0.00 0.00 

0.83 0.73 1.20 0.96 0.27 0.18 0.36 0.33 

1 1482 1482 1256 1452 21.96 17.99 17.99 2.07 2.07 
2 1510 1510 1240 1444 91.09 21.77 21.77 4.57 4.57 
3 1428 1428 1200 1380 40.62 19.00 19.00 3.48 3.48 
4 1502 1502 1280 1472 23.32 17.34 17.34 2.04 2.04 

10 4 

5 1546 1546 1288 1492 31.23 20.03 20.03 3.62 3.62 

19.23 19.23 21.77 21.77 3.15 3.15 4.57 4.57 

1 1826 1826 1518 1792 1.36 20.29 20.29 1.90 1.90 
2 1868 1868 1502 1824 2.17 24.37 24.37 2.41 2.41 
3 1810 1810 1454 1766 1.84 24.48 24.48 2.49 2.49 
4 1844 1844 1548 1812 1.58 19.12 19.12 1.77 1.77 

10 6 

5 1860 1860 1558 1828 1.81 19.38 19.38 1.75 1.75 

21.53 21.53 24.48 24.48 2.06 2.06 2.49 2.49 

1 2322 2322 2032 2220 0.8 14.27 14.27 4.59 4.59 
2 2390 2390 2080 2270 0.66 14.90 14.90 5.29 5.29 
3 2308 2308 2000 2188 0.62 15.40 15.40 5.48 5.48 
4 2342 2342 2048 2240 0.46 14.36 14.36 4.55 4.55 

10 8 

5 2378 2378 2104 2288 0.42 13.02 13.02 3.93 3.93 

14.39 14.39 15.40 15.40 4.77 4.77 5.48 5.48 

 

Table D.7: Computational results for Fully Loaded Trips Problem where [ ]25,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 9451 9444 8788    7.54 7.46     
2 8801 8809 8137    8.16 8.26     
3 8460 8476 7824    8.13 8.33     
4 9486 9476 8788    7.94 7.83     

25 2 

5 9412 9412 8788    7.10 7.10     

7.78 7.80 8.16 8.33     

1 6348 6332 6192    2.52 2.26     
2 6353 6329 6024    5.46 5.06     
3 6048 6024 5736    5.44 5.02     
4 6396 6404 6240    2.50 2.63     

25 4 

5 6380 6348 6240    2.24 1.73     

3.63 3.34 5.46 5.06     

1 6604 6454 6258    5.53 3.13    
2 6799 6715 6420    5.90 4.60     
3 6486 6288 6048    7.24 3.97     
4 6688 6508 6366    5.06 2.23     

25 6 

5 6754 6616 6438    4.91 2.76     

5.73 3.34 7.24 4.60     

1 7020 6996 6840    2.63 2.28     
2 7361 7329 7008    5.04 4.58     
3 6840 6904 6624    3.26 4.23     
4 7124 7124 6984    2.00 2.00     

25 8 

5 7244 7236 7080    2.32 2.20     

3.05 3.06 5.04 4.58     

 

Table D.7 (continued): Computational results for Fully Loaded Trips Problem where [ ]25,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 22922 22916 22800    0.54 0.51     
2 21376 21404 21200    0.83 0.96     
3 20588 20632 20400    0.92 1.14     
4 23008 23028 22880    0.56 0.65     

40 2 

5 22800 22800 22800    0.00 0.00     

0.57 0.65 0.92 1.14     

1 14664 14616 14400    1.83 1.50     
2 14192 14192 13680    3.74 3.74     
3 13800 13800 13200    4.55 4.55     
4 14800 14792 14560    1.65 1.59     

40 4 

5 14568 14552 14480    0.61 0.50     

2.48 2.38 4.55 4.55     

1 12714 12456 11248    13.03 10.74     
2 12996 12708 11288    15.13 12.58     
3 12684 12522 10994    15.37 13.90     
4 12844 12580 11536    11.34 9.05     

40 6 

5 13040 12776 11570    12.71 10.42     

13.52 11.34 15.37 13.90     

1 15072 14616 14384    4.78 1.61     
2 15328 14840 14496    5.74 2.37     
3 14960 14528 14208    5.29 2.25     
4 15312 14912 14736    3.91 1.19     

40 8 

5 15280 14968 14832    3.02 0.92     

4.55 1.67 5.74 2.37     

 

Table D.7 (continued): Computational results for Fully Loaded Trips Problem where [ ]25,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 42268 42320 40768    3.68 3.81     
2 39315 39371 37692    4.31 4.45     
3 37744 37832 36234    4.17 4.41     
4 42390 42436 40768    3.98 4.09     

55 2 

5 42088 42088 40768    3.24 3.24     

3.87 4.00 4.31 4.45     

1 24931 24923 23807    4.72 4.69     
2 23900 23956 22348    6.94 7.20     
3 23298 23286 21536    8.18 8.13     
4 25104 25096 23972    4.72 4.69     

55 4 

5 24635 24619 23807    3.48 3.41     

5.61 5.62 8.18 8.13     

1 22498 21934 21114    6.55 3.88     
2 22507 21985 21222    6.06 3.60     
3 21990 21402 20448    7.54 4.67     
4 22498 22072 21474    4.77 2.78     

55 6 

5 22570 22006 21294    5.99 3.34     

6.18 3.65 7.54 4.67     

1 23884 23356 22201    7.58 5.20     
2 23906 23490 22308    7.16 5.30     
3 23192 22880 21534    7.70 6.25     
4 24055 23447 22534    6.75 4.05     

55 8 

5 23859 23387 22346    6.77 4.66     

7.19 5.09 7.70 6.25     

 

Table D.7 (continued): Computational results for Fully Loaded Trips Problem where [ ]25,35jp ∈  and [ ]22, 28id ∈  

 

 

 



 239

LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 2310 2310 2310 2310  0.00 0.00 0.00 0.00 
2 2210 2210 2210 2210  0.00 0.00 0.00 0.00 
3 2160 2160 2160 2160  0.00 0.00 0.00 0.00 
4 2330 2330 2330 2330  0.00 0.00 0.00 0.00 

10 2 

5 2310 2310 2310 2310  0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1750 1750 1446 1750 35.64 21.02 21.02 0.00 0.00 
2 1682 1682 1394 1682 35.67 20.14 20.14 0.00 0.00 
3 1664 1648 1368 1648 59.81 21.64 20.47 0.97 0.00 
4 1770 1770 1466 1770 33.15 20.74 20.74 0.00 0.00 

10 4 

5 1734 1734 1446 1734 19.95 19.75 19.75 0.00 0.00 

20.66 20.42 21.64 21.02 0.19 0.00 0.97 0.00 

1 1926 1926 1698 1912 1.24 13.43 13.43 0.73 0.73 
2 1968 1968 1682 1944 1.78 17.00 17.00 1.23 1.23 
3 1910 1910 1634 1886 1.55 16.89 16.89 1.27 1.27 
4 1944 1944 1728 1932 1.34 12.50 12.50 0.62 0.62 

10 6 

5 1960 1960 1738 1948 1.13 12.77 12.77 0.62 0.62 

14.52 14.52 17.00 17.00 0.90 0.90 1.27 1.27 

1 2422 2422 1014 2320 0.55 14.68 14.68 4.40 4.40 
2 2490 2490 986 2370 1.02 15.28 15.28 5.06 5.06 
3 2408 2408 972 2288 1.15 15.77 15.77 5.24 5.24 
4 2442 2442 1034 2340 0.91 14.76 14.76 4.36 4.36 

10 8 

5 2478 2478 1014 2388 0.95 13.46 13.46 3.77 3.77 

14.79 14.79 15.77 15.77 4.57 4.57 5.24 5.24 

 

Table D.8: Computational results for Fully Loaded Trips Problem where [ ]25,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 12518 12518 12168    2.88 2.88     
2 11917 11917 11492    3.70 3.70     
3 11579 11579 11154    3.81 3.81     
4 12568 12568 12168    3.29 3.29     

25 2 

5 12543 12543 12168    3.08 3.08     

3.35 3.35 3.81 3.81     

1 7928 7936 6552    3.88 3.98     
2 7676 7604 6188    2.84 1.88     
3 7338 7482 6006    2.26 4.26     
4 7928 7936 6552    3.23 3.33     

25 4 

5 7848 7848 6552    2.19 2.19     

2.88 3.13 3.88 4.26     

1 7308 7284 4680    2.18 1.85     
2 7448 7376 4420    3.79 2.79     
3 7110 7062 4290    3.95 3.25     
4 7404 7380 4680    2.15 1.82     

25 6 

5 7464 7368 4680    2.64 1.32     

2.94 2.20 3.95 3.25     

1 7744 7672 3744    2.43 1.48     
2 8004 7884 3548    3.57 2.02     
3 7562 7514 3435    2.97 2.31     
4 7864 7816 3744    2.08 1.45     

25 8 

5 7984 7888 3744    2.36 1.13     

2.68 1.68 3.57 2.31     

 

Table D.8 (continued): Computational results for Fully Loaded Trips Problem where [ ]25,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 30800 30800 30800    0.00 0.00     
2 29200 29200 29200    0.00 0.00     
3 28400 28400 28400    0.00 0.00     
4 30880 30880 30880    0.00 0.00     

40 2 

5 30800 30800 30800    0.00 0.00     

0.00 0.00 0.00 0.00     

1 18576 18584 18400    0.96 1.00     
2 17880 17872 17680    1.13 1.09     
3 17400 17392 17200    1.16 1.12     
4 18736 18744 18560    0.95 0.99     

40 4 

5 18480 18480 18480    0.00 0.00     

0.84 0.84 1.16 1.12     

1 14704 14692 13648    7.74 7.65     
2 14452 14452 13192    9.55 9.55     
3 14164 14164 12844    10.28 10.28     
4 14864 14852 13808    7.65 7.56     

40 6 

5 14676 14676 13728    6.91 6.91     

8.42 8.39 10.28 10.28     

1 16112 15496 15424    4.46 0.47     
2 16368 15752 15536    5.36 1.39     
3 16000 15464 15248    4.93 1.42     
4 16352 15840 15776    3.65 0.41     

40 8 

5 16320 15904 15872    2.82 0.20     

4.24 0.78 5.36 1.42     

 

Table D.8 (continued): Computational results for Fully Loaded Trips Problem where [ ]25,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 57218 57218 56448    1.36 1.36     
2 54192 54192 53312    1.65 1.65     
3 52679 52679 51744    1.81 1.81     
4 57328 57328 56448    1.56 1.56     

55 2 

5 57218 57218 56448    1.36 1.36     

1.55 1.55 1.81 1.81     

1 32641 32665 31377    4.03 4.10     
2 31154 31178 29918    4.13 4.21     
3 30316 30340 29106    4.16 4.24     
4 32798 32830 31542    3.98 4.08     

55 4 

5 32313 32313 31377    2.98 2.98     

3.86 3.92 4.16 4.24     

1 26112 26082 20350    1.59 1.47     
2 25784 25664 19914    3.58 3.09     
3 25170 25080 19278    4.04 3.67     
4 26328 26286 20483    1.57 1.41     

55 6 

5 26028 25938 20445    1.05 0.70     

2.37 2.07 4.04 3.67     

1 25394 24458 23735    6.99 3.05     
2 25320 24520 23818    6.31 2.95     
3 24702 23894 23044    7.19 3.69     
4 25565 24621 24044    6.33 2.40     

55 8 

5 25369 24529 23856    6.34 2.82     

6.63 2.98 7.19 3.69     

 

Table D.8 (continued): Computational results for Fully Loaded Trips Problem where [ ]25,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 2510 2510 2510 2510   0.00 0.00 0.00 0.00 
2 2072 2072 2060 2072 892.25 0.58 0.58 0.00 0.00 
3 1942 1942 1910 1942 1025.38 1.68 1.68 0.00 0.00 
4 2380 2380 2380 2380   0.00 0.00 0.00 0.00 

10 2 

5 2460 2460 2460 2460   0.00 0.00 0.00 0.00 

0.45 0.45 1.68 1.68 0.00 0.00 0.00 0.00 

1 1902 1902 1550 1902 76.85 22.71 22.71 0.00 0.00 
2 1648 1804 1352 1648 74.13 21.89 33.43 0.00 9.47 
3 1598 1678 1280 1586 37.91 24.84 31.09 0.76 5.80 
4 1852 1852 1492 1852 35.51 24.13 24.13 0.00 0.00 

10 4 

5 1836 1836 1524 1836 19.91 20.47 20.47 0.00 0.00 

22.81 26.37 24.84 33.43 0.15 3.05 0.76 9.47 

1 1972 1972 1770 1966 1.62 11.41 11.41 0.31 0.31 
2 1950 1950 1628 1918 1.65 19.78 19.78 1.67 1.67 
3 1878 1878 1544 1844 1.50 21.63 21.63 1.84 1.84 
4 1972 1972 1746 1960 1.21 12.94 12.94 0.61 0.61 

10 6 

5 1990 1990 1792 1984 1.05 11.05 11.05 0.30 0.30 

15.36 15.36 21.63 21.63 0.95 0.95 1.84 1.84 

1 2470 2470 2144 2362 0.90 15.21 15.21 4.57 4.57 
2 2476 2476 2136 2344 1.12 15.92 15.92 5.63 5.63 
3 2382 2382 2040 2244 0.89 16.76 16.76 6.15 6.15 
4 2476 2476 2136 2356 0.58 15.92 15.92 5.09 5.09 

10 8 

5 2508 2508 2208 2418 0.33 13.59 13.59 3.72 3.72 

15.48 15.48 16.76 16.76 5.03 5.03 6.15 6.15 

 

Table D.9: Computational results for Fully Loaded Trips Problem where [ ]25,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 13770 13770 13520    1.85 1.85     
2 11008 11008 10478    5.06 5.06     
3 10079 10086 9464    6.50 6.57     
4 12881 12881 12506    3.00 3.00     

25 2 

5 13482 13482 13182    2.28 2.28     

3.74 3.75 6.50 6.57     

1 8864 8864 8208    7.99 7.99     
2 7382 7622 7032    4.98 8.39     
3 6896 7208 6456    6.82 11.65     
4 8386 8418 7824    7.18 7.59     

25 4 

5 8502 8502 8112    4.81 4.81     

6.36 8.09 7.99 11.65     

1 7760 7736 7536    2.97 2.65     
2 7490 7418 6888    8.74 7.69     
3 7064 7016 6360    11.07 10.31     
4 7682 7658 7344    4.60 4.28     

25 6 

5 7854 7758 7560    3.89 2.62     

6.25 5.51 11.07 10.31     

1 8096 8024 7848    3.16 2.24     
2 8006 7886 7512    6.58 4.98     
3 7488 7440 6984    7.22 6.53     
4 8058 8010 7776    3.63 3.01     

25 8 

5 8270 8174 8016    3.17 1.97     

4.75 3.75 7.22 6.53     

 

Table D.9 (continued): Computational results for Fully Loaded Trips Problem where [ ]25,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 34000 34000 34000    0.00 0.00     
2 26800 26800 26800    0.00 0.00     
3 24684 24592 24400    1.16 0.79     
4 31680 31680 31680    0.00 0.00     

40 2 

5 33200 33200 33200    0.00 0.00     

0.23 0.16 1.16 0.79     

1 20304 20288 20000    1.52 1.44     
2 17080 17080 16480    3.64 3.64     
3 16128 16000 15200    6.11 5.26     
4 19600 19632 18960    3.38 3.54     

40 4 

5 19680 19680 19680    0.00 0.00     

2.93 2.78 6.11 5.26     

1 16172 16052 14720    9.86 9.05     
2 14716 14716 12468    18.03 18.03     
3 14204 14204 11716    21.24 21.24     
4 15684 15684 14076    11.42 11.42     

40 6 

5 15768 15768 14532    8.51 8.51     

13.81 13.65 21.24 21.24     

1 16608 16464 16160    2.77 1.88     
2 16328 15752 15224    7.25 3.47     
3 15848 15312 14728    7.60 3.97     
4 16648 16392 15880    4.84 3.22     

40 8 

5 16696 16440 16200    3.06 1.48     

5.11 2.80 7.60 3.97     

 

Table D.9 (continued): Computational results for Fully Loaded Trips Problem where [ ]25,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 63270 63270 62720    0.88 0.88     
2 49653 49653 48608    2.15 2.15     
3 45404 45322 43904    3.42 3.23     
4 58841 58841 58016    1.42 1.42     

55 2 

5 61757 61757 61152    0.99 0.99     

1.77 1.73 3.42 3.23     

1 36021 36005 34405    4.70 4.65     
2 29629 29629 27647    7.17 7.17     
3 27657 27737 25321    9.23 9.54     
4 34445 34509 32299    6.64 6.84     

55 4 

5 34662 34662 33648    3.01 3.01     

6.15 6.24 9.23 9.54     

1 28406 28328 27648    2.74 2.46     
2 26276 25964 23436    12.12 10.79     
3 25244 24974 21762    16.00 14.76     
4 27566 27608 26406    4.39 4.55     

55 6 

5 27888 27714 27216    2.47 1.83     

7.54 6.88 16.00 14.76     

1 26246 26054 24950    5.19 4.42     
2 25347 24563 23365    8.48 5.13     
3 24587 23859 22289    10.31 7.04     
4 26004 25556 24291    7.05 5.21     

55 8 

5 25950 25654 24717    4.99 3.79     

7.21 5.12 10.31 7.04     

 

Table D.9 (continued): Computational results for Fully Loaded Trips Problem where [ ]25,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 1560 1560 1560 1560   0.00 0.00 0.00 0.00 
2 1440 1440 1440 1440   0.00 0.00 0.00 0.00 
3 1380 1380 1380 1380   0.00 0.00 0.00 0.00 
4 1560 1560 1560 1560   0.00 0.00 0.00 0.00 

10 2 

5 1560 1560 1560 1560   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 966 966 936 958 9.01 3.21 3.21 0.84 0.84 
2 1034 1034 864 1030 33.52 19.68 19.68 0.39 0.39 
3 900 900 828 880 15.40 8.70 8.70 2.27 2.27 
4 1028 1028 936 1028 9.07 9.83 9.83 0.00 0.00 

10 4 

5 1090 1090 936 1090 11.11 16.45 16.45 0.00 0.00 

11.57 11.57 19.68 19.68 0.70 0.70 2.27 2.27 

1 1030 1030 728 1030 0.90 41.48 41.48 0.00 0.00 
2 1178 1178 722 1178 1.21 63.16 63.16 0.00 0.00 
3 994 994 644 994 1.80 54.35 54.35 0.00 0.00 
4 1136 1136 808 1136 1.13 40.59 40.59 0.00 0.00 

10 6 

5 1304 1304 858 1248 1.01 51.98 51.98 4.49 4.49 

50.31 50.31 63.16 63.16 0.90 0.90 4.49 4.49 

1 1428 1428 1056 1252 0.46 35.23 35.23 14.06 14.06 
2 1650 1650 1240 1426 0.52 33.06 33.06 15.71 15.71 
3 1336 1336 992 1218 0.39 34.68 34.68 9.69 9.69 
4 1478 1478 1096 1320 0.33 34.85 34.85 11.97 11.97 

10 8 

5 1704 1632 1280 1438 0.46 33.13 27.50 18.50 13.49 

34.19 33.06 35.23 35.23 13.98 12.98 18.50 15.71 

 

Table D.10: Computational results for Fully Loaded Trips Problem where [ ]1,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 8788 8788 8788    0.00 0.00     
2 8112 8112 8112    0.00 0.00     
3 7774 7774 7774    0.00 0.00     
4 8788 8788 8788    0.00 0.00     

25 2 

5 8788 8788 8788    0.00 0.00     

0.00 0.00 0.00 0.00     

1 4760 4760 4732    0.59 0.59     
2 4610 4601 4368    5.54 5.33     
3 4214 4204 4186    0.67 0.43     
4 4768 4758 4732    0.76 0.55     

25 4 

5 4732 4732 4732    0.00 0.00     

1.51 1.38 5.54 5.33     

1 3660 3612 3380    8.28 6.86     
2 4324 4336 3576    20.92 21.25     
3 3445 3361 2990    15.22 12.41     
4 3867 3757 3432    12.67 9.47     

25 6 

5 3954 3933 3480    13.62 13.02     

14.14 12.60 20.92 21.25     

1 4282 4167 2856    49.93 45.90     
2 5008 4872 3648    37.28 33.55     
3 3997 3869 2616    52.79 47.90     
4 4162 4162 3288    26.58 26.58     

25 8 

5 4537 4537 3600    26.03 26.03     

38.52 35.99 52.79 47.90     

 

Table D.10 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 21840 21840 21840    0.00 0.00     
2 20160 20160 20160    0.00 0.00     
3 19320 19320 19320    0.00 0.00     
4 21840 21840 21840    0.00 0.00     

40 2 

5 21840 21840 21840    0.00 0.00     

0.00 0.00 0.00 0.00     

1 11488 11488 11440    0.42 0.42     
2 10672 10632 10560    1.06 0.68     
3 10200 10192 10120    0.79 0.71     
4 11496 11488 11440    0.49 0.42     

40 4 

5 11440 11440 11440    0.00 0.00     

0.55 0.45 1.06 0.71     

1 8116 8116 8008    1.35 1.35     
2 8052 8020 7392    8.93 8.50     
3 7674 7460 7084    8.33 5.31     
4 8548 8540 8008    6.74 6.64     

40 6 

5 8244 8212 8008    2.95 2.55     

5.66 4.87 8.93 8.50     

1 7680 7680 6280    22.29 22.29     
2 8640 8656 6800    27.06 27.29     
3 8208 8176 5880    39.59 39.05     
4 8328 8240 7400    12.54 11.35     

40 8 

5 8792 8752 7040    24.89 24.32     

25.27 24.86 39.59 39.05     

 

Table D.10 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 40768 40768 40768    0.00 0.00     
2 37632 37632 37632    0.00 0.00     
3 36064 36064 36064    0.00 0.00     
4 40768 40768 40768    0.00 0.00     

55 2 

5 40768 40768 40768    0.00 0.00     

0.00 0.00 0.00 0.00     

1 21216 21202 21112    0.49 0.43     
2 19654 19640 19488    0.85 0.78     
3 18758 18758 18676    0.44 0.44     
4 21202 21202 21112    0.43 0.43     

55 4 

5 21112 21112 21112    0.00 0.00     

0.44 0.41 0.85 0.78     

1 14851 14736 14560    2.00 1.21     
2 14284 14248 13440    6.28 6.01     
3 13324 13204 12880    3.45 2.52     
4 15030 15004 14560    3.23 3.05     

55 6 

5 14612 14598 14560    0.36 0.26     

3.06 2.61 6.28 6.01     

1 13032 13071 11284    15.49 15.84     
2 13684 13684 11241    21.73 21.73     
3 11893 11772 9982    19.14 17.93     
4 13310 13195 11944    11.44 10.47     

55 8 

5 12881 12881 11284    14.15 14.15     

16.39 16.03 21.73 21.73     

 

Table D.10 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 2160 2160 2160 2160   0.00 0.00 0.00 0.00 
2 2040 2040 2040 2040   0.00 0.00 0.00 0.00 
3 1980 1980 1980 1980   0.00 0.00 0.00 0.00 
4 2160 2160 2160 2160   0.00 0.00 0.00 0.00 

10 2 

5 2160 2160 2160 2160   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1296 1296 1296 1296   0.00 0.00 0.00 0.00 
2 1236 1236 1224 1236 8.61 0.98 0.98 0.00 0.00 
3 1200 1200 1188 1200 8.71 1.01 1.01 0.00 0.00 
4 1308 1308 1296 1308 10.14 0.93 0.93 0.00 0.00 

10 4 

5 1326 1326 1296 1326 4.28 2.31 2.31 0.00 0.00 

1.05 1.05 2.31 2.31 0.00 0.00 0.00 0.00 

1 1186 1186 1008 1186 0.97 17.66 17.66 0.00 0.00 
2 1310 1310 952 1310 1.07 37.61 37.61 0.00 0.00 
3 1094 1094 924 1094 0.81 18.40 18.40 0.00 0.00 
4 1316 1316 1008 1312 0.98 30.56 30.56 0.30 0.30 

10 6 

5 1404 1404 1038 1368 1.03 35.26 35.26 2.63 2.63 

27.90 27.90 37.61 37.61 0.59 0.59 2.63 2.63 

1 1564 1528 1136 1412 0.33 37.68 34.51 10.76 8.22 
2 1786 1768 1320 1544 1.02 35.30 33.94 15.67 14.51 
3 1476 1476 1072 1402 0.87 37.69 37.69 5.28 5.28 
4 1614 1584 1176 1466 0.41 37.24 34.69 10.10 8.05 

10 8 

5 1844 1672 1360 1538 0.32 35.59 22.94 19.90 8.71 

36.70 32.75 37.69 37.69 12.34 8.95 19.90 14.51 

 

Table D.11: Computational results for Fully Loaded Trips Problem where [ ]1,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 12168 12168 12168    0.00 0.00     
2 11492 11492 11492    0.00 0.00     
3 11154 11154 11154    0.00 0.00     
4 12168 12168 12168    0.00 0.00     

25 2 

5 12168 12168 12168    0.00 0.00     

0.00 0.00 0.00 0.00     

1 6562 6562 6552    0.15 0.15     
2 6224 6224 6188    0.58 0.58     
3 6016 6016 6006    0.17 0.17     
4 6562 6562 6552    0.15 0.15     

25 4 

5 6552 6552 6552    0.00 0.00     

0.21 0.21 0.58 0.58     

1 4720 4706 4680    0.85 0.56     
2 5037 5037 4536    11.04 11.04     
3 4386 4386 4290    2.24 2.24     
4 4795 4781 4680    2.46 2.16     

25 6 

5 4819 4819 4680    2.97 2.97     

3.91 3.79 11.04 11.04     

1 4580 4580 3744    22.33 22.33     
2 5322 5322 4368    21.84 21.84     
3 4267 4255 3432    24.33 23.98     
4 4488 4488 4008    11.98 11.98     

25 8 

5 4951 4951 4320    14.61 14.61     

19.02 18.95 24.33 23.98     

 

Table D.11 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 30240 30240 30240    0.00 0.00     
2 28560 28560 28560    0.00 0.00     
3 27720 27720 27720    0.00 0.00     
4 30240 30240 30240    0.00 0.00     

40 2 

5 30240 30240 30240    0.00 0.00     

0.00 0.00 0.00 0.00     

1 15848 15848 15840    0.05 0.05     
2 14992 14992 14960    0.21 0.21     
3 14536 14536 14520    0.11 0.11     
4 15848 15848 15840    0.05 0.05     

40 4 

5 15840 15840 15840    0.00 0.00     

0.09 0.09 0.21 0.21     

1 11140 11140 11088    0.47 0.47     
2 10640 10568 10472    1.60 0.92     
3 10248 10228 10164    0.83 0.63     
4 11152 11152 11088    0.58 0.58     

40 6 

5 11088 11088 11088    0.00 0.00     

0.70 0.52 1.60 0.92     

1 9032 8720 8640    4.54 0.93     
2 9504 9224 8800    8.00 4.82     
3 8640 8528 7920    9.09 7.68     
4 9512 9512 9400    1.19 1.19     

40 8 

5 9552 9312 9040    5.66 3.01     

5.70 3.52 9.09 7.68     

 

Table D.11 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 56448 56448 56448    0.00 0.00     
2 53312 53312 53312    0.00 0.00     
3 51744 51744 51744    0.00 0.00     
4 56448 56448 56448    0.00 0.00     

55 2 

5 56448 56448 56448    0.00 0.00     

0.00 0.00 0.00 0.00     

1 29254 29254 29232    0.08 0.08     
2 27652 27652 27608    0.16 0.16     
3 26810 26810 26796    0.05 0.05     
4 29246 29246 29232    0.05 0.05     

55 4 

5 29232 29232 29232    0.00 0.00     

0.07 0.07 0.16 0.16     

1 20286 20274 20160    0.63 0.57     
2 19246 19190 19040    1.08 0.79     
3 18570 18556 18480    0.49 0.41     
4 20274 20274 20160    0.57 0.57     

55 6 

5 20160 20160 20160    0.00 0.00     

0.55 0.47 1.08 0.79     

1 15808 15778 15624    1.18 0.99     
2 15919 15807 15031    5.91 5.16     
3 14659 14596 14322    2.35 1.91     
4 16374 16342 15734    4.07 3.86     

55 8 

5 15670 15670 15624    0.29 0.29     

2.76 2.44 5.91 5.16     

 

Table D.11 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 2400 2400 2400 2400   0.00 0.00 0.00 0.00 
2 1860 1860 1860 1860   0.00 0.00 0.00 0.00 
3 1680 1680 1680 1680   0.00 0.00 0.00 0.00 
4 2220 2220 2220 2220   0.00 0.00 0.00 0.00 

10 2 

5 2340 2340 2340 2340   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1440 1440 1440 1440   0.00 0.00 0.00 0.00 
2 1188 1264 1116 1188 25.37 6.45 13.26 0.00 6.40 
3 1056 1056 1008 1056 14.32 4.76 4.76 0.00 0.00 
4 1332 1332 1332 1332   0.00 0.00 0.00 0.00 

10 4 

5 1404 1404 1404 1404   0.00 0.00 0.00 0.00 

2.24 3.60 6.45 13.26 0.00 1.28 0.00 6.40 

1 1266 1266 1120 1266 0.92 13.04 13.04 0.00 0.00 
2 1272 1272 868 1272 1.34 46.54 46.54 0.00 0.00 
3 1056 1056 784 1056 1.07 34.69 34.69 0.00 0.00 
4 1358 1358 1036 1340 1.04 31.08 31.08 1.34 1.34 

10 6 

5 1434 1434 1092 1406 0.93 31.32 31.32 1.99 1.99 

31.33 31.33 46.54 46.54 0.67 0.67 1.99 1.99 

1 1620 1496 1168 1480 0.78 38.70 28.08 9.46 1.08 
2 1756 1748 1296 1516 0.39 35.49 34.88 15.83 15.30 
3 1418 1418 1032 1358 0.37 37.40 37.40 4.42 4.42 
4 1628 1620 1184 1490 0.50 37.50 36.82 9.26 8.72 

10 8 

5 1886 1652 1384 1568 0.27 36.27 19.36 20.28 5.36 

37.07 31.31 38.70 37.40 11.85 6.98 20.28 15.30 

 

Table D.12: Computational results for Fully Loaded Trips Problem where [ ]1,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 13520 13520 13520    0.00 0.00     
2 10478 10478 10478    0.00 0.00     
3 9464 9464 9464    0.00 0.00     
4 12506 12506 12506    0.00 0.00     

25 2 

5 13182 13182 13182    0.00 0.00     

0.00 0.00 0.00 0.00     

1 7280 7280 7280    0.00 0.00     
2 5767 5774 5642    2.22 2.34     
3 5136 5136 5096    0.78 0.78     
4 6734 6734 6734    0.00 0.00     

25 4 

5 7098 7098 7098    0.00 0.00     

0.60 0.62 2.22 2.34     

1 5252 5252 5200    1.00 1.00     
2 5084 5084 4248    19.68 19.68     
3 4086 4058 3640    12.25 11.48     
4 5020 4964 4810    4.37 3.20     

25 6 

5 5120 5120 5070    0.99 0.99     

7.66 7.27 19.68 19.68     

1 4714 4714 4160    13.32 13.32     
2 5365 5365 4152    29.21 29.21     
3 4279 4299 2976    43.78 44.46     
4 4606 4606 4080    12.89 12.89     

25 8 

5 5158 5158 4536    13.71 13.71     

22.58 22.72 43.78 44.46     

 

Table D.12 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 33600 33600 33600    0.00 0.00     
2 26040 26040 26040    0.00 0.00     
3 23520 23520 23520    0.00 0.00     
4 31080 31080 31080    0.00 0.00     

40 2 

5 32760 32760 32760    0.00 0.00     

0.00 0.00 0.00 0.00     

1 17600 17600 17600    0.00 0.00     
2 13840 13784 13640    1.47 1.06     
3 12480 12480 12320    1.30 1.30     
4 16312 16312 16280    0.20 0.20     

40 4 

5 17160 17160 17160    0.00 0.00     

0.59 0.51 1.47 1.30     

1 12400 12384 12320    0.65 0.52     
2 10112 10112 9548    5.91 5.91     
3 9316 9316 8624    8.02 8.02     
4 11652 11652 11396    2.25 2.25     

40 6 

5 12012 12012 12012    0.00 0.00     

3.37 3.34 8.02 8.02     

1 9792 9744 9600    2.00 1.50     
2 9544 9176 8200    16.39 11.90     
3 8600 8776 6880    25.00 27.56     
4 10048 10048 9600    4.67 4.67     

40 8 

5 9944 10040 9640    3.15 4.15     

10.24 9.96 25.00 27.56     

 

Table D.12 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 
n  K  

Ins. 

# 
FTH1 FTH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 FTH1 FTH2 

1 62720 62720 62720    0.00 0.00     
2 48608 48608 48608    0.00 0.00     
3 43904 43904 43904    0.00 0.00     
4 58016 58016 58016    0.00 0.00     

55 2 

5 61152 61152 61152    0.00 0.00     

0.00 0.00 0.00 0.00     

1 32480 32480 32480    0.00 0.00     
2 25370 25352 25172    0.79 0.72     
3 22912 22912 22736    0.77 0.77     
4 30068 30068 30044    0.08 0.08     

55 4 

5 31668 31668 31668    0.00 0.00     

0.33 0.31 0.79 0.77     

1 22580 22552 22400    0.80 0.68     
2 18228 18092 17360    5.00 4.22     
3 16198 16346 15680    3.30 4.25     
4 21266 21120 20720    2.64 1.93     

55 6 

5 21840 21840 21840    0.00 0.00     

2.35 2.21 5.00 4.25     

1 17698 17698 17360    1.95 1.95     
2 15730 15514 13894    13.21 11.66     
3 13712 13394 12152    12.84 10.22     
4 17357 17197 16113    7.72 6.73     

55 8 

5 17145 17076 16926    1.29 0.89     

7.40 6.29 13.21 11.66     

 

Table D.12 (continued): Computational results for Fully Loaded Trips Problem where [ ]1,35jp ∈  and [ ]22, 48id ∈  
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Appendix E 

 

Numerical Results for No Wait Problem 
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 1560 1560 1560 1560   0.00 0.00 0.00 0.00 
2 1440 1440 1440 1440   0.00 0.00 0.00 0.00 
3 1380 1380 1380 1380   0.00 0.00 0.00 0.00 
4 1560 1560 1560 1560   0.00 0.00 0.00 0.00 

10 2 

5 1560 1560 1560 1560   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 936 936 936 936   0.00 0.00 0.00 0.00 
2 864 864 864 864   0.00 0.00 0.00 0.00 
3 828 828 828 828   0.00 0.00 0.00 0.00 
4 936 936 936 936   0.00 0.00 0.00 0.00 

10 4 

5 936 936 936 936   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 728 728 728 728   0.00 0.00 0.00 0.00 
2 672 672 672 672   0.00 0.00 0.00 0.00 
3 644 644 644 644   0.00 0.00 0.00 0.00 
4 728 728 728 728   0.00 0.00 0.00 0.00 

10 6 

5 780 780 780 780   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 696 696 676 696 67.87 2.96 2.96 0.00 0.00 
2 672 672 672 672   0.00 0.00 0.00 0.00 
3 618 618 598 618 92.17 3.34 3.34 0.00 0.00 
4 728 728 728 728   0.00 0.00 0.00 0.00 

10 8 

5 780 780 780 780   0.00 0.00 0.00 0.00 

1.26 1.26 3.34 3.34 0.00 0.00 0.00 0.00 

 

Table E.1: Computational results for No Wait Problem where [ ]1,11jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 8788 8788 8788   0.00 0.00   
2 8112 8112 8112   0.00 0.00   
3 7774 7774 7774   0.00 0.00   
4 8788 8788 8788   0.00 0.00   

25 2 

5 8788 8788 8788   0.00 0.00   

0.00 0.00 0.00 0.00     

1 4732 4732 4732   0.00 0.00   
2 4368 4368 4368   0.00 0.00   
3 4186 4186 4186   0.00 0.00   
4 4732 4732 4732   0.00 0.00   

25 4 

5 4732 4732 4732   0.00 0.00   

0.00 0.00 0.00 0.00     

1 3380 3380 3380   0.00 0.00   
2 3134 3134 3120   0.45 0.45   
3 2990 2990 2990   0.00 0.00   
4 3380 3380 3380   0.00 0.00   

25 6 

5 3380 3380 3380   0.00 0.00   

0.09 0.09 0.45 0.45     

1 2722 2722 2704   0.67 0.67   
2 2676 2676 2496   7.21 7.21   
3 2410 2410 2392   0.75 0.75   
4 2722 2722 2704   0.67 0.67   

25 8 

5 2704 2704 2704   0.00 0.00   

1.86 1.86 7.21 7.21     

 

Table E.1 (continued): Computational results for No Wait Problem where [ ]1,11jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 21840 21840 21840   0.00 0.00   
2 20160 20160 20160   0.00 0.00   
3 19320 19320 19320   0.00 0.00   
4 21840 21840 21840   0.00 0.00   

40 2 

5 21840 21840 21840   0.00 0.00   

0.00 0.00 0.00 0.00     

1 11440 11440 11440   0.00 0.00   
2 10560 10560 10560   0.00 0.00   
3 10120 10120 10120   0.00 0.00   
4 11440 11440 11440   0.00 0.00   

40 4 

5 11440 11440 11440   0.00 0.00   

0.00 0.00 0.00 0.00     

1 8008 8008 8008   0.00 0.00   
2 7392 7392 7392   0.00 0.00   
3 7084 7084 7084   0.00 0.00   
4 8008 8008 8008   0.00 0.00   

40 6 

5 8008 8008 8008   0.00 0.00   

0.00 0.00 0.00 0.00     

1 6256 6256 6240   0.26 0.26   
2 5792 5792 5760   0.56 0.56   
3 5552 5552 5520   0.58 0.58   
4 6256 6256 6240   0.26 0.26   

40 8 

5 6240 6240 6240   0.00 0.00   

0.33 0.33 0.58 0.58     

 

Table E.1 (continued): Computational results for No Wait Problem where [ ]1,11jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 40768 40768 40768   0.00 0.00   
2 37632 37632 37632   0.00 0.00   
3 36064 36064 36064   0.00 0.00   
4 40768 40768 40768   0.00 0.00   

55 2 

5 40768 40768 40768   0.00 0.00   

0.00 0.00 0.00 0.00     

1 21112 21112 21112   0.00 0.00   
2 19488 19488 19488   0.00 0.00   
3 18676 18676 18676   0.00 0.00   
4 21112 21112 21112   0.00 0.00   

55 4 

5 21112 21112 21112   0.00 0.00   

0.00 0.00 0.00 0.00     

1 14560 14560 14560   0.00 0.00   
2 13440 13440 13440   0.00 0.00   
3 12880 12880 12880   0.00 0.00   
4 14560 14560 14560   0.00 0.00   

55 6 

5 14560 14560 14560   0.00 0.00   

0.00 0.00 0.00 0.00     

1 11298 11298 11284   0.12 0.12   
2 10446 10446 10416   0.29 0.29   
3 9996 9996 9982   0.14 0.14   
4 11298 11298 11284   0.12 0.12   

55 8 

5 11284 11284 11284   0.00 0.00   

0.14 0.14 0.29 0.29     

 

Table E.1 (continued): Computational results for No Wait Problem where [ ]1,11jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 2160 2160 2160 2160  0.00 0.00 0.00 0.00 
2 2040 2040 2040 2040  0.00 0.00 0.00 0.00 
3 1980 1980 1980 1980  0.00 0.00 0.00 0.00 
4 2160 2160 2160 2160  0.00 0.00 0.00 0.00 

10 2 

5 2160 2160 2160 2160  0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1296 1296 1296 1296  0.00 0.00 0.00 0.00 
2 1224 1224 1224 1224  0.00 0.00 0.00 0.00 
3 1188 1188 1188 1188  0.00 0.00 0.00 0.00 
4 1296 1296 1296 1296  0.00 0.00 0.00 0.00 

10 4 

5 1296 1296 1296 1296  0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1008 1008 1008 1008  0.00 0.00 0.00 0.00 
2 952 952 952 952  0.00 0.00 0.00 0.00 
3 924 924 924 924  0.00 0.00 0.00 0.00 
4 1008 1008 1008 1008  0.00 0.00 0.00 0.00 

10 6 

5 1008 1008 1008 1008  0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 864 864 864 864  0.00 0.00 0.00 0.00 
2 884 884 884 884  0.00 0.00 0.00 0.00 
3 858 858 792 858 51.64 8.33 8.33 0.00 0.00 
4 936 936 936 936  0.00 0.00 0.00 0.00 

10 8 

5 936 936 936 936  0.00 0.00 0.00 0.00 

1.67 1.67 8.33 8.33 0.00 0.00 0.00 0.00 

 

Table E.2: Computational results for No Wait Problem where [ ]1,11jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 12168 12168 12168   0.00 0.00   
2 11492 11492 11492   0.00 0.00   
3 11154 11154 11154   0.00 0.00   
4 12168 12168 12168   0.00 0.00   

25 2 

5 12168 12168 12168   0.00 0.00   

0.00 0.00 0.00 0.00     

1 6552 6552 6552   0.00 0.00   
2 6188 6188 6188   0.00 0.00   
3 6006 6006 6006   0.00 0.00   
4 6552 6552 6552   0.00 0.00   

25 4 

5 6552 6552 6552   0.00 0.00   

0.00 0.00 0.00 0.00     

1 4680 4680 4680   0.00 0.00   
2 4420 4420 4420   0.00 0.00   
3 4290 4290 4290   0.00 0.00   
4 4680 4680 4680   0.00 0.00   

25 6 

5 4680 4680 4680   0.00 0.00   

0.00 0.00 0.00 0.00     

1 3744 3744 3744   0.00 0.00   
2 3554 3554 3536   0.51 0.51   
3 3432 3432 3432   0.00 0.00   
4 3744 3744 3744   0.00 0.00   

25 8 

5 3744 3744 3744   0.00 0.00   

0.10 0.10 0.51 0.51     

 

Table E.2 (continued): Computational results for No Wait Problem where [ ]1,11jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 30240 30240 30240   0.00 0.00   
2 28560 28560 28560   0.00 0.00   
3 27720 27720 27720   0.00 0.00   
4 30240 30240 30240   0.00 0.00   

40 2 

5 30240 30240 30240   0.00 0.00   

0.00 0.00 0.00 0.00     

1 15840 15840 15840   0.00 0.00   
2 14960 14960 14960   0.00 0.00   
3 14520 14520 14520   0.00 0.00   
4 15840 15840 15840   0.00 0.00   

40 4 

5 15840 15840 15840   0.00 0.00   

0.00 0.00 0.00 0.00     

1 11088 11088 11088   0.00 0.00   
2 10472 10472 10472   0.00 0.00   
3 10164 10164 10164   0.00 0.00   
4 11088 11088 11088   0.00 0.00   

40 6 

5 11088 11088 11088   0.00 0.00   

0.00 0.00 0.00 0.00     

1 8640 8640 8640   0.00 0.00   
2 8160 8160 8160   0.00 0.00   
3 7920 7920 7920   0.00 0.00   
4 8640 8640 8640   0.00 0.00   

40 8 

5 8640 8640 8640   0.00 0.00   

0.00 0.00 0.00 0.00     

 

Table E.2 (continued): Computational results for No Wait Problem where [ ]1,11jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 56448 56448 56448   0.00 0.00   
2 53312 53312 53312   0.00 0.00   
3 51744 51744 51744   0.00 0.00   
4 56448 56448 56448   0.00 0.00   

55 2 

5 56448 56448 56448   0.00 0.00   

0.00 0.00 0.00 0.00     

1 29232 29232 29232   0.00 0.00   
2 27608 27608 27608   0.00 0.00   
3 26796 26796 26796   0.00 0.00   
4 29232 29232 29232   0.00 0.00   

55 4 

5 29232 29232 29232   0.00 0.00   

0.00 0.00 0.00 0.00     

1 20160 20160 20160   0.00 0.00   
2 19040 19040 19040   0.00 0.00   
3 18480 18480 18480   0.00 0.00   
4 20160 20160 20160   0.00 0.00   

55 6 

5 20160 20160 20160   0.00 0.00   

0.00 0.00 0.00 0.00     

1 15624 15624 15624   0.00 0.00   
2 14756 14756 14756   0.00 0.00   
3 14322 14322 14322   0.00 0.00   
4 15624 15624 15624   0.00 0.00   

55 8 

5 15624 15624 15624   0.00 0.00   

0.00 0.00 0.00 0.00     

 

Table E.2 (continued): Computational results for No Wait Problem where [ ]1,11jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 2400 2400 2400 2400   0.00 0.00 0.00 0.00 
2 1860 1860 1860 1860   0.00 0.00 0.00 0.00 
3 1680 1680 1680 1680   0.00 0.00 0.00 0.00 
4 2220 2220 2220 2220   0.00 0.00 0.00 0.00 

10 2 

5 2340 2340 2340 2340   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1440 1440 1440 1440   0.00 0.00 0.00 0.00 
2 1116 1116 1116 1116   0.00 0.00 0.00 0.00 
3 1008 1008 1008 1008   0.00 0.00 0.00 0.00 
4 1332 1332 1332 1332   0.00 0.00 0.00 0.00 

10 4 

5 1404 1404 1404 1404   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1120 1120 1120 1120   0.00 0.00 0.00 0.00 
2 868 868 868 868   0.00 0.00 0.00 0.00 
3 784 784 784 784   0.00 0.00 0.00 0.00 
4 1036 1036 1036 1036   0.00 0.00 0.00 0.00 

10 6 

5 1092 1092 1092 1092   0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 960 960 960 960   0.00 0.00 0.00 0.00 
2 866 866 744 866 187.97 16.40 16.40 0.00 0.00 
3 728 728 672 728 37.31 8.33 8.33 0.00 0.00 
4 962 962 888 962 169.15 8.33 8.33 0.00 0.00 

10 8 

5 1014 1014 1014 1014   0.00 0.00 0.00 0.00 

6.61 6.61 16.40 16.40 0.00 0.00 0.00 0.00 

 

Table E.3: Computational results for No Wait Problem where [ ]1,11jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 13520 13520 13520   0.00 0.00   
2 10478 10478 10478   0.00 0.00   
3 9464 9464 9464   0.00 0.00   
4 12506 12506 12506   0.00 0.00   

25 2 

5 13182 13182 13182   0.00 0.00   

0.00 0.00 0.00 0.00     

1 7280 7280 7280   0.00 0.00   
2 5642 5642 5642   0.00 0.00   
3 5096 5096 5096   0.00 0.00   
4 6734 6734 6734   0.00 0.00   

25 4 

5 7098 7098 7098   0.00 0.00   

0.00 0.00 0.00 0.00     

1 5200 5200 5200   0.00 0.00   
2 4030 4030 4030   0.00 0.00   
3 3640 3640 3640   0.00 0.00   
4 4810 4810 4810   0.00 0.00   

25 6 

5 5070 5070 5070   0.00 0.00   

0.00 0.00 0.00 0.00     

1 4160 4160 4160   0.00 0.00   
2 3278 3278 3224   1.67 1.67   
3 2912 2912 2912   0.00 0.00   
4 3848 3848 3848   0.00 0.00   

25 8 

5 4056 4056 4056   0.00 0.00   

0.33 0.33 1.67 1.67     

 

Table E.3 (continued): Computational results for No Wait Problem where [ ]1,11jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 33600 33600 33600   0.00 0.00   
2 26040 26040 26040   0.00 0.00   
3 23520 23520 23520   0.00 0.00   
4 31080 31080 31080   0.00 0.00   

40 2 

5 32760 32760 32760   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 17600 17600 17600   0.00 0.00   
2 13640 13640 13640   0.00 0.00   
3 12320 12320 12320   0.00 0.00   
4 16280 16280 16280   0.00 0.00   

40 4 

5 17160 17160 17160   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 12320 12320 12320   0.00 0.00   
2 9548 9548 9548   0.00 0.00   
3 8624 8624 8624   0.00 0.00   
4 11396 11396 11396   0.00 0.00   

40 6 

5 12012 12012 12012   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 9600 9600 9600   0.00 0.00   
2 7440 7440 7440   0.00 0.00   
3 6776 6776 6720   0.83 0.83   
4 8880 8880 8880   0.00 0.00   

40 8 

5 9360 9360 9360   0.00 0.00   

0.17 0.17 0.83 0.83     

 

Table E.3 (continued): Computational results for No Wait Problem where [ ]1,11jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 62720 62720 62720   0.00 0.00   
2 48608 48608 48608   0.00 0.00   
3 43904 43904 43904   0.00 0.00   
4 58016 58016 58016   0.00 0.00   

55 2 

5 61152 61152 61152   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 32480 32480 32480   0.00 0.00   
2 25172 25172 25172   0.00 0.00   
3 22736 22736 22736   0.00 0.00   
4 30044 30044 30044   0.00 0.00   

55 4 

5 31668 31668 31668   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 22400 22400 22400   0.00 0.00   
2 17360 17360 17360   0.00 0.00   
3 15680 15680 15680   0.00 0.00   
4 20720 20720 20720   0.00 0.00   

55 6 

5 21840 21840 21840   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 17360 17360 17360   0.00 0.00   
2 13454 13454 13454   0.00 0.00   
3 12152 12152 12152   0.00 0.00   
4 16058 16058 16058   0.00 0.00   

55 8 

5 16926 16926 16926   0.00 0.00   

0.00 0.00 0.00 0.00     

 

Table E.3 (continued): Computational results for No Wait Problem where [ ]1,11jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 1560 1560 1560 1560   0.00 0.00 0.00 0.00 
2 1440 1440 1440 1440   0.00 0.00 0.00 0.00 
3 1380 1380 1380 1380   0.00 0.00 0.00 0.00 
4 1560 1560 1560 1560   0.00 0.00 0.00 0.00 

10 2 

5 1560 1560 1560 1560   0.00 0.00 0.00 0.00 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

1 936 936 936 936   0.00 0.00 0.00 0.00 
2 944 944 864 944 7270.61 9.26 9.26 0.00 0.00 
3 848 848 828 848 2702.13 2.42 2.42 0.00 0.00 
4 1040 1040 1040 1040   0.00 0.00 0.00 0.00 

10 4 

5 1040 1040 1040 1040   0.00 0.00 0.00 0.00 

2.33 
 

2.33 
 

9.26 
 

9.26 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

1 844 844 832 844 433.45 1.44 1.44 0.00 0.00 
2 848 848 768 848 3067.61 10.42 10.42 0.00 0.00 
3 802 802 736 802 1082.22 8.97 8.97 0.00 0.00 
4 950 950 936 950 2251.22 1.50 1.50 0.00 0.00 

10 6 

5 936 936 936 936   0.00 0.00 0.00 0.00 

4.46 
 

4.46 
 

10.42 
 

10.42 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

1 844 844 832 844 433.45 1.44 1.44 0.00 0.00 
2 848 848 768 848 4770.48 10.42 10.42 0.00 0.00 
3 802 802 736 802 1252.86 8.97 8.97 0.00 0.00 
4 898 898 884 898 2367.39 1.58 1.58 0.00 0.00 

10 8 

5 936 936 884 884 1513.15 5.88 5.88 5.88 5.88 

5.66 5.66 10.42 10.42 1.18 1.18 5.88 5.88 

 

Table E.4: Computational results for No Wait Problem where [ ]5,15jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 8788 8788 8788   0.00 0.00   
2 8112 8112 8112   0.00 0.00   
3 7774 7774 7774   0.00 0.00   
4 8788 8788 8788   0.00 0.00   

25 2 

5 8788 8788 8788   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 4732 4732 4732   0.00 0.00   
2 4568 4568 4368   4.58 4.58   
3 4186 4186 4186   0.00 0.00   
4 4732 4732 4732   0.00 0.00   

25 4 

5 4732 4732 4732   0.00 0.00   

0.92 
 

0.92 
 

4.58 
 

4.58 
 

    

1 3814 3814 3796   0.47 0.47   
2 3722 3734 3504   6.22 6.56   
3 3388 3388 3174   6.74 6.74   
4 3814 3814 3796   0.47 0.47   

25 6 

5 3796 3796 3796   0.00 0.00   

2.78 
 

2.85 
 

6.74 
 

6.74 
 

    

1 3380 3370 3328   1.56 1.26   
2 3298 3298 3072   7.36 7.36   
3 2996 2996 2806   6.77 6.77   
4 3370 3370 3328   1.26 1.26   

25 8 

5 3328 3328 3328   0.00 0.00   

3.39 3.33 7.36 7.36     

 

Table E.4 (continued): Computational results for No Wait Problem where [ ]5,15jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 21840 21840 21840   0.00 0.00   
2 20160 20160 20160   0.00 0.00   
3 19320 19320 19320   0.00 0.00   
4 21840 21840 21840   0.00 0.00   

40 2 

5 21840 21840 21840   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 11440 11440 11440   0.00 0.00   
2 10560 10560 10560   0.00 0.00   
3 10120 10120 10120   0.00 0.00   
4 11440 11440 11440   0.00 0.00   

40 4 

5 11440 11440 11440   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 8354 8354 8320   0.41 0.41   
2 8034 8034 7680   4.61 4.61   
3 7804 7794 7360   6.03 5.90   
4 8668 8668 8632   0.42 0.42   

40 6 

5 8632 8632 8632   0.00 0.00   

2.29 
 

2.27 
 

6.03 
 

5.90 
 

    

1 7128 7112 7020   1.54 1.31   
2 6876 6876 6480   6.11 6.11   
3 6686 6686 6210   7.67 7.67   
4 7376 7392 7280   1.32 1.54   

40 8 

5 7280 7280 7280   0.00 0.00   

3.33 3.33 7.67 7.67     

 

Table E.4 (continued): Computational results for No Wait Problem where [ ]5,15jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 40768 40768 40768   0.00 0.00   
2 37632 37632 37632   0.00 0.00   
3 36064 36064 36064   0.00 0.00   
4 40768 40768 40768   0.00 0.00   

55 2 

5 40768 40768 40768   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 21112 21112 21112   0.00 0.00   
2 19488 19488 19488   0.00 0.00   
3 18676 18676 18676   0.00 0.00   
4 21112 21112 21112   0.00 0.00   

55 4 

5 21112 21112 21112   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 15096 15096 15028   0.45 0.45   
2 14368 14392 13872   3.58 3.75   
3 13792 13780 13294   3.75 3.66   
4 15556 15538 15496   0.39 0.27   

55 6 

5 15138 15138 15028   0.73 0.73   

1.78 
 

1.77 
 

3.75 
 

3.75 
 

    

1 12480 12460 12324   1.27 1.10   
2 11940 11952 11376   4.96 5.06   
3 11386 11386 10902   4.44 4.44   
4 12850 12828 12688   1.28 1.10   

55 8 

5 12434 12434 12324   0.89 0.89   

2.57 2.52 4.96 5.06     

 

Table E.4 (continued): Computational results for No Wait Problem where [ ]5,15jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 2160 2160 2160 2160  0.00 0.00 0.00 0.00 
2 2040 2040 2040 2040  0.00 0.00 0.00 0.00 
3 1980 1980 1980 1980  0.00 0.00 0.00 0.00 
4 2160 2160 2160 2160  0.00 0.00 0.00 0.00 

10 2 

5 2160 2160 2160 2160  0.00 0.00 0.00 0.00 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

1 1296 1296 1296 1296  0.00 0.00 0.00 0.00 
2 1224 1224 1224 1224  0.00 0.00 0.00 0.00 
3 1188 1188 1188 1188  0.00 0.00 0.00 0.00 
4 1296 1296 1296 1296  0.00 0.00 0.00 0.00 

10 4 

5 1296 1296 1296 1296  0.00 0.00 0.00 0.00 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

1 1080 1080 1080 1080  0.00 0.00 0.00 0.00 
2 1100 1100 1020 1100 857.61 7.84 7.84 0.00 0.00 
3 990 990 990 990  0.00 0.00 0.00 0.00 
4 1100 1100 1080 1100 466.39 1.85 1.85 0.00 0.00 

10 6 

5 1152 1152 1152 1152  0.00 0.00 0.00 0.00 

1.94 
 

1.94 
 

7.84 
 

7.84 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

1 1080 1080 1080 1080  0.00 0.00 0.00 0.00 
2 1100 1100 1020 1100 857.61 7.84 7.84 0.00 0.00 
3 990 990 990 990  0.00 0.00 0.00 0.00 
4 1100 1100 1080 1100 466.39 1.85 1.85 0.00 0.00 

10 8 

5 1152 1152 1152 1152  0.00 0.00 0.00 0.00 

1.94 1.94 7.84 7.84 0.00 0.00 0.00 0.00 

 

Table E.5: Computational results for No Wait Problem where [ ]5,15jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 12168 12168 12168   0.00 0.00   
2 11492 11492 11492   0.00 0.00   
3 11154 11154 11154   0.00 0.00   
4 12168 12168 12168   0.00 0.00   

25 2 

5 12168 12168 12168   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 6552 6552 6552   0.00 0.00   
2 6188 6188 6188   0.00 0.00   
3 6006 6006 6006   0.00 0.00   
4 6552 6552 6552   0.00 0.00   

25 4 

5 6552 6552 6552   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 4680 4680 4680   0.00 0.00   
2 4742 4742 4692   1.07 1.07   
3 4290 4290 4290   0.00 0.00   
4 4968 4968 4968   0.00 0.00   

25 6 

5 4968 4968 4968   0.00 0.00   

0.21 
 

0.21 
 

1.07 
 

1.07 
 

    

1 4198 4198 4176   0.53 0.53   
2 4222 4222 4148   1.78 1.78   
3 3850 3850 3828   0.57 0.57   
4 4416 4416 4392   0.55 0.55   

25 8 

5 4392 4392 4392   0.00 0.00   

0.69 0.69 1.78 1.78     

 

Table E.5 (continued): Computational results for No Wait Problem where [ ]5,15jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 30240 30240 30240   0.00 0.00   
2 28560 28560 28560   0.00 0.00   
3 27720 27720 27720   0.00 0.00   
4 30240 30240 30240   0.00 0.00   

40 2 

5 30240 30240 30240   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 15840 15840 15840   0.00 0.00   
2 14960 14960 14960   0.00 0.00   
3 14520 14520 14520   0.00 0.00   
4 15840 15840 15840   0.00 0.00   

40 4 

5 15840 15840 15840   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 11088 11088 11088   0.00 0.00   
2 10552 10552 10472   0.76 0.76   
3 10164 10164 10164   0.00 0.00   
4 11520 11520 11520   0.00 0.00   

40 6 

5 11088 11088 11088   0.00 0.00   

0.15 
 

0.15 
 

0.76 
 

0.76 
 

    

1 9396 9396 9360   0.38 0.38   
2 8956 8956 8840   1.31 1.31   
3 8668 8684 8250   5.07 5.26   
4 9742 9742 9720   0.23 0.23   

40 8 

5 9360 9360 9360   0.00 0.00   

1.40 1.44 5.07 5.26     

 

Table E.5 (continued): Computational results for No Wait Problem where [ ]5,15jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 56448 56448 56448   0.00 0.00   
2 53312 53312 53312   0.00 0.00   
3 51744 51744 51744   0.00 0.00   
4 56448 56448 56448   0.00 0.00   

55 2 

5 56448 56448 56448   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 29232 29232 29232   0.00 0.00   
2 27608 27608 27608   0.00 0.00   
3 26796 26796 26796   0.00 0.00   
4 29232 29232 29232   0.00 0.00   

55 4 

5 29232 29232 29232   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 20160 20160 20160   0.00 0.00   
2 19150 19150 19040   0.58 0.58   
3 18480 18480 18480   0.00 0.00   
4 20160 20160 20160   0.00 0.00   

55 6 

5 20160 20160 20160   0.00 0.00   

0.12 
 

0.12 
 

0.58 
 

0.58 
 

    

1 16610 16610 16560   0.30 0.30   
2 15784 15800 15640   0.92 1.02   
3 15248 15230 14718   3.60 3.48   
4 16610 16610 16560   0.30 0.30   

55 8 

5 16560 16560 16560   0.00 0.00   

1.03 1.02 3.60 3.48     

 

Table E.5 (continued): Computational results for No Wait Problem where [ ]5,15jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 2400 2400 2400 2400   0.00 0.00 0.00 0.00 
2 1860 1860 1860 1860   0.00 0.00 0.00 0.00 
3 1680 1680 1680 1680   0.00 0.00 0.00 0.00 
4 2220 2220 2220 2220   0.00 0.00 0.00 0.00 

10 2 

5 2340 2340 2340 2340   0.00 0.00 0.00 0.00 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

1 1440 1440 1440 1440   0.00 0.00 0.00 0.00 
2 1116 1116 1116 1116   0.00 0.00 0.00 0.00 
3 1008 1008 1008 1008   0.00 0.00 0.00 0.00 
4 1332 1332 1332 1332   0.00 0.00 0.00 0.00 

10 4 

5 1404 1404 1404 1404   0.00 0.00 0.00 0.00 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

1 1180 1180 1120 1180 342.91 5.36 5.36 0.00 0.00 
2 1028 1028 930 1028 2477.41 10.54 10.54 0.00 0.00 
3 920 920 784 920 412.89 17.35 17.35 0.00 0.00 
4 1110 1110 1110 1110   0.00 0.00 0.00 0.00 

10 6 

5 1270 1270 1170 1248 2364.57 8.55 8.55 1.76 1.76 

8.36 
 

8.36 
 

17.35 
 

17.35 
 

0.35 
 

0.35 
 

1.76 
 

1.76 
 

1 1180 1180 1120 1180 342.91 5.36 5.36 0.00 0.00 
2 1028 1028 930 1028 3213.26 10.54 10.54 0.00 0.00 
3 920 920 784 920 310.35 17.35 17.35 0.00 0.00 
4 1110 1110 1110 1110   0.00 0.00 0.00 0.00 

10 8 

5 1270 1270 1170 1248 2364.57 8.55 8.55 1.76 1.76 

8.36 8.36 17.35 17.35 0.35 0.35 1.76 1.76 

 

Table E.6: Computational results for No Wait Problem where [ ]5,15jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 13520 13520 13520   0.00 0.00   
2 10478 10478 10478   0.00 0.00   
3 9464 9464 9464   0.00 0.00   
4 12506 12506 12506   0.00 0.00   

25 2 

5 13182 13182 13182   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 7280 7280 7280   0.00 0.00   
2 5642 5642 5642   0.00 0.00   
3 5096 5096 5096   0.00 0.00   
4 6734 6734 6734   0.00 0.00   

25 4 

5 7098 7098 7098   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 5200 5200 5200   0.00 0.00   
2 4580 4580 4030   13.65 13.65   
3 3928 3928 3640   7.91 7.91   
4 5010 5010 4810   4.16 4.16   

25 6 

5 5070 5070 5070   0.00 0.00   

5.14 
 

5.14 
 

13.65 
 

13.65 
 

    

1 4440 4440 4400   0.91 0.91   
2 4094 4094 3596   13.85 13.85   
3 3576 3576 2912   22.80 22.80   
4 4492 4492 4292   4.66 4.66   

25 8 

5 4524 4524 4524   0.00 0.00   

8.44 8.44 22.80 22.80     

 

Table E.6 (continued): Computational results for No Wait Problem where [ ]5,15jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 33600 33600 33600   0.00 0.00   
2 26040 26040 26040   0.00 0.00   
3 23520 23520 23520   0.00 0.00   
4 31080 31080 31080   0.00 0.00   

40 2 

5 32760 32760 32760   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 17600 17600 17600   0.00 0.00   
2 13640 13640 13640   0.00 0.00   
3 12320 12320 12320   0.00 0.00   
4 16280 16280 16280   0.00 0.00   

40 4 

5 17160 17160 17160   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 12320 12320 12320   0.00 0.00   
2 9986 9986 9548   4.59 4.59   
3 9024 9024 8624   4.64 4.64   
4 11716 11716 11396   2.81 2.81   

40 6 

5 12012 12012 12012   0.00 0.00   

2.41 
 

2.41 
 

4.64 
 

4.64 
 

    

1 10036 10036 10000   0.36 0.36   
2 8598 8532 7750   10.94 10.09   
3 7744 7808 6720   15.24 16.19   
4 9940 9940 9620   3.33 3.33   

40 8 

5 10150 10150 9750   4.10 4.10   

6.79 6.81 15.24 16.19     

 

Table E.6 (continued): Computational results for No Wait Problem where [ ]5,15jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 62720 62720 62720   0.00 0.00   
2 48608 48608 48608   0.00 0.00   
3 43904 43904 43904   0.00 0.00   
4 58016 58016 58016   0.00 0.00   

55 2 

5 61152 61152 61152   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 32480 32480 32480   0.00 0.00   
2 25172 25172 25172   0.00 0.00   
3 22736 22736 22736   0.00 0.00   
4 30044 30044 30044   0.00 0.00   

55 4 

5 31668 31668 31668   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 22400 22400 22400   0.00 0.00   
2 17966 17966 17360   3.49 3.49   
3 16176 16176 15680   3.16 3.16   
4 20720 20720 20720   0.00 0.00   

55 6 

5 21840 21840 21840   0.00 0.00   

1.33 
 

1.33 
 

3.49 
 

3.49 
 

    

1 17904 17904 17840   0.36 0.36   
2 15006 14958 13826   8.53 8.19   
3 13592 13592 12152   11.85 11.85   
4 17156 17156 17020   0.80 0.80   

55 8 

5 17394 17394 17394   0.00 0.00   

4.31 4.24 11.85 11.85     

 

Table E.6 (continued): Computational results for No Wait Problem where [ ]5,15jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 1834 1834 1820    0.77 0.77   
2 1710 1714 1680    1.79 2.02   
3 1716 1720 1610 1716(*)   6.58 6.83   
4 1838 1838 1820    0.99 0.99   

10 2 

5 1820 1820 1820    0.00 0.00   

2.03 
 

2.12 
 

6.58 
 

6.83 
 

    

1 1522 1434 1404 1434 34608.51 8.40 2.14 6.14 0.00 
2 1506 1506 1296 1388 103433.02 16.20 16.20 8.50 8.50 
3 1354 1354 1242 1354 127726.17 9.02 9.02 0.00 0.00 
4 1540 1540 1404 1446 34851.46 9.69 9.69 6.50 6.50 

10 4 

5 1522 1522 1404    8.40 8.40 --- --- 

10.34 
 

9.09 
 

16.20 
 

16.20 
 

    

1 1522 1434 1352 1434 34608.51 12.57 6.07 6.14 0.00 
2 1506 1506 1296 1388 103433.02 16.20 16.20 8.50 8.50 
3 1354 1354 1242 1354 127726.17 9.02 9.02 0.00 0.00 
4 1540 1540 1404 1446 34851.46 9.69 9.69 6.50 6.50 

10 6 

5 1522 1522 1404    8.40 8.40 --- --- 

11.18 
 

9.88 
 

16.20 
 

16.20 
 

    

1 1522 1434 1352 1434 34608.51 12.57 6.07 6.14 0.00 
2 1506 1506 1296 1388 103433.02 16.20 16.20 8.50 8.50 
3 1354 1354 1242 1354 127726.17 9.02 9.02 0.00 0.00 
4 1540 1540 1404 1446 34851.46 9.69 9.69 6.50 6.50 

10 8 

5 1522 1522 1404 1522(*)   8.40 8.40   

11.18 9.88 16.20 16.20     

 

Table E.7: Computational results for No Wait Problem where [ ]25,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 9460 9464 9412   0.51 0.55   
2 8802 8818 8688   1.31 1.50   
3 8628 8640 8326   3.63 3.77   
4 9468 9476 9412   0.59 0.68   

25 2 

5 9412 9412 9412   0.00 0.00   

1.21 
 

1.30 
 

3.63 
 

3.77 
 

    

1 6310 6310 5980   5.52 5.52   
2 6420 6322 5520   16.30 14.53   
3 5820 5770 5290   10.02 9.07   
4 6106 6106 5980   2.11 2.11   

25 4 

5 6184 6022 5980   3.41 0.70   

7.47 
 

6.39 
 

16.30 
 

14.53 
 

    

1 5584 5532 5200   7.38 6.38   
2 5968 5758 4944   20.71 16.46   
3 5520 5444 4600   20.00 18.35   
4 5744 5744 5200   10.46 10.46   

25 6 

5 5838 5672 5304   10.07 6.94   

13.73 
 

11.72 
 

20.71 
 

18.35 
 

    

1 5584 5532 5096   9.58 8.56   
2 5968 5758 4848   23.10 18.77   
3 5520 5444 4508   22.45 20.76   
4 5744 5744 5096   12.72 12.72   

25 8 

5 5838 5672 5252   11.16 8.00   

15.80 13.76 23.10 20.76     

 

Table E.7 (continued): Computational results for No Wait Problem where [ ]25,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 22974 22990 22880   0.41 0.48   
2 21332 21380 21120   1.00 1.23   
3 20780 20832 20240   2.67 2.92   
4 22994 23034 22880   0.50 0.67   

40 2 

5 22880 22880 22880   0.00 0.00   

0.92 
 

1.06 
 

2.67 
 

2.92 
 

    

1 13746 13738 13468   2.06 2.00   
2 13184 13240 12432   6.05 6.50   
3 12914 12914 11914   8.39 8.39   
4 13754 13754 13468   2.12 2.12   

40 4 

5 13714 13572 13468   1.83 0.77   

4.09 
 

3.96 
 

8.39 
 

8.39 
 

    

1 12134 11814 10972   10.59 7.67   
2 12136 12088 10128   19.83 19.35   
3 11964 11578 9706   23.26 19.29   
4 12294 12348 10972   12.05 12.54   

40 6 

5 12298 12298 10972   12.09 12.09   

15.56 
 

14.19 
 

23.26 
 

19.35 
 

    

1 12134 11814 10296   17.85 14.74   
2 12136 12088 9312   30.33 29.81   
3 11964 11578 8924   34.07 29.74   
4 12294 12348 10296   19.41 19.93   

40 8 

5 12298 12298 10296   19.44 19.44   

24.22 22.73 34.07 29.81     

 

Table E.7 (continued): Computational results for No Wait Problem where [ ]25,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 42352 42396 42172   0.43 0.53   
2 39290 39374 38928   0.93 1.15   
3 38108 38216 37306   2.15 2.44   
4 42364 42436 42172   0.46 0.63   

55 2 

5 42172 42172 42172   0.00 0.00   

0.79 
 

0.95 
 

2.15 
 

2.44 
 

    

1 24414 24884 23920   2.07 4.03   
2 23300 23412 22080   5.53 6.03   
3 22822 22758 21160   7.85 7.55   
4 24998 24998 23920   4.51 4.51   

55 4 

5 24620 24628 23920   2.93 2.96   

4.58 
 

5.02 
 

7.85 
 

7.55 
 

    

1 20872 20552 18720   11.50 9.79   
2 20770 20876 17280   20.20 20.81   
3 20318 20018 16560   22.69 20.88   
4 20872 20872 18720   11.50 11.50   

55 6 

5 20820 20768 18720   11.22 10.94   

15.42 
 

14.78 
 

22.69 
 

20.88 
 

    

1 20872 20552 16952   23.12 21.24   
2 20770 20876 15408   34.80 35.49   
3 20318 20018 14766   37.60 35.57   
4 20872 20872 16952   23.12 23.12   

55 8 

5 20820 20768 16952   22.82 22.51   

28.29 27.59 37.60 35.57     

 

Table E.7 (continued): Computational results for No Wait Problem where [ ]25,35jp ∈  and [ ]22, 28id ∈  

 

 

 



 288

LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 2520 2520 2520   0.00 0.00   
2 2380 2380 2380   0.00 0.00   
3 2310 2310 2310   0.00 0.00   
4 2520 2520 2520   0.00 0.00   

10 2 

5 2520 2520 2520   0.00 0.00   

0.00 0.00 0.00 0.00     

1 1818 1818 1800   1.00 1.00   
2 1854 1854 1700 1790(*)   9.06 9.06   
3 1800 1800 1650 1740 104625.72 9.09 9.09 3.45 3.45 
4 1956 1818 1800   8.67 1.00   

10 4 

5 1944 1944 1800 1818 55740.93 8.00 8.00 6.93 6.93 

7.16 5.63 9.09 9.09     

1 1756 1756 1728 1756 27679.80 1.62 1.62 0.00 0.00 
2 1834 1766 1632 1722 59274.44 12.38 8.21 6.50 2.56 
3 1794 1728 1584 1684 70499.34 13.26 9.09 6.53 2.61 
4 1884 1756 1728 1756 64088.75 9.03 1.62 7.29 0.00 

10 6 

5 1884 1812 1728 1746 28243.47 9.03 4.86 7.90 3.78 

9.06 5.08 13.26 9.09 5.65 1.79 7.90 3.78 

1 1756 1756 1728 1756 27679.80 1.62 1.62 0.00 0.00 
2 1834 1766 1632 1722 59274.44 12.38 8.21 6.50 2.56 
3 1794 1728 1584 1684 70499.34 13.26 9.09 6.53 2.61 
4 1884 1756 1728 1756 64088.75 9.03 1.62 7.29 0.00 

10 8 

5 1884 1812 1728 1746 28243.47 9.03 4.86 7.90 3.78 

9.06 5.08 13.26 9.09 5.65 1.79 7.90 3.78 

 

Table E.8: Computational results for No Wait Problem where [ ]25,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 13032 13032 13032   0.00 0.00   
2 12308 12308 12308   0.00 0.00   
3 11946 11946 11946   0.00 0.00   
4 13032 13032 13032   0.00 0.00   

25 2 

5 13032 13032 13032   0.00 0.00   

0.00 0.00 0.00 0.00     

1 7928 7936 7848   1.02 1.12   
2 7920 7920 7412   6.85 6.85   
3 7690 7690 7194   6.89 6.89   
4 7928 7936 7848   1.02 1.12   

25 4 

5 7848 7848 7848   0.00 0.00   

3.16 3.20 6.89 6.89     

1 6800 6800 6696   1.55 1.55   
2 6830 6830 6324   8.00 8.00   
3 6678 6678 6138   8.80 8.80   
4 6800 6800 6696   1.55 1.55   

25 6 

5 6736 6736 6696   0.60 0.60   

4.10 4.10 8.80 8.80     

1 6654 6436 6264   6.23 2.75   
2 6830 6692 6052   12.86 10.58   
3 6544 6410 5874   11.41 9.12   
4 6654 6508 6408   3.84 1.56   

25 8 

5 6592 6592 6408   2.87 2.87   

7.44 5.38 12.86 10.58     

 

Table E.8 (continued): Computational results for No Wait Problem where [ ]25,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 31680 31680 31680   0.00 0.00   
2 29920 29920 29920   0.00 0.00   
3 29040 29040 29040   0.00 0.00   
4 31680 31680 31680   0.00 0.00   

40 2 

5 31680 31680 31680   0.00 0.00   

0.00 0.00 0.00 0.00     

1 18184 18208 18000   1.02 1.16   
2 17206 17222 17000   1.21 1.31   
3 17308 16730 16500   4.90 1.39   
4 18184 18208 18000   1.02 1.16   

40 4 

5 18000 18000 18000   0.00 0.00   

1.63 1.00 4.90 1.39     

1 14836 14544 14328   3.55 1.51   
2 14082 14082 13532   4.06 4.06   
3 14208 13788 13134   8.18 4.98   
4 14628 14544 14328   2.09 1.51   

40 6 

5 14482 14432 14328   1.07 0.73   

3.79 2.56 8.18 4.98     

1 14388 13390 12816   12.27 4.48   
2 13798 13442 12376   11.49 8.61   
3 13720 13300 12012   14.22 10.72   
4 13610 13538 13104   3.86 3.31   

40 8 

5 13708 13634 13104   4.61 4.04   

9.29 6.23 14.22 10.72     

 

Table E.8 (continued): Computational results for No Wait Problem where [ ]25,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 58392 58392 58392   0.00 0.00   
2 55148 55148 55148   0.00 0.00   
3 53526 53526 53526   0.00 0.00   
4 58392 58392 58392   0.00 0.00   

55 2 

5 58392 58392 58392   0.00 0.00   

0.00 0.00 0.00 0.00     

1 32520 32560 32184   1.04 1.17   
2 30772 30796 30396   1.24 1.32   
3 29878 29910 29502   1.27 1.38   
4 32520 32560 32184   1.04 1.17   

55 4 

5 32184 32184 32184   0.00 0.00   

0.92 1.01 1.27 1.38     

1 25588 25088 24696   3.61 1.59   
2 24418 24220 23324   4.69 3.84   
3 23866 23698 22638   5.42 4.68   
4 25088 25088 24696   1.59 1.59   

55 6 

5 24836 24836 24696   0.57 0.57   

3.18 2.45 5.42 4.68     

1 22992 22698 21384   7.52 6.14   
2 22898 22754 20604   11.13 10.43   
3 22222 22012 19602   13.37 12.29   
4 22992 22552 21384   7.52 5.46   

55 8 

5 23000 22782 21384   7.56 6.54   

9.42 8.17 13.37 12.29     

 

Table E.8 (continued): Computational results for No Wait Problem where [ ]25,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 2800 2800 2800 2800   0.00 0.00   
2 2170 2170 2170 2170   0.00 0.00   
3 1984 1984 1960    1.22 1.22   
4 2590 2590 2590 2590   0.00 0.00   

10 2 

5 2730 2730 2730 2730   0.00 0.00   

0.24 0.24 1.22 1.22     

1 2036 2036 2000   1.80 1.80   
2 1740 1728 1550 1728 61045.96 12.26 11.48 0.69 0.00 
3 1600 1600 1400 1600 88992.59 14.29 14.29 0.00 0.00 
4 1922 1922 1850    3.89 3.89   

10 4 

5 1950 1950 1950 1950   0.00 0.00 0.00 0.00 

6.45 6.29 14.29 14.29     

1 1956 1956 1920 1956 39908.59 1.88 1.88 0.00 0.00 
2 1846 1846 1488 1728(*)   24.06 24.06 --- --- 
3 1600 1600 1344 1600 88992.59 19.05 19.05 0.00 0.00 
4 1848 1848 1776 1848 88297.99 4.05 4.05 0.00 0.00 

10 6 

5 1872 1872 1872 1872   0.00 0.00 0.00 0.00 

9.81 9.81 24.06 24.06     

1 1956 1956 1920 1956 39908.59 1.88 1.88 0.00 0.00 
2 1846 1846 1488 1728(*)   24.06 24.06 --- --- 
3 1600 1600 1344 1600 88992.59 19.05 19.05 0.00 0.00 
4 1848 1848 1776 1848 88297.99 4.05 4.05 0.00 0.00 

10 8 

5 1872 1872 1872 1872   0.00 0.00 0.00 0.00 

9.81 9.81 24.06 24.06     

 

Table E.9: Computational results for No Wait Problem where [ ]25,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 14480 14480 14480   0.00 0.00   
2 11234 11234 11222   0.11 0.11   
3 10184 10184 10136   0.47 0.47   
4 13394 13394 13394   0.00 0.00   

25 2 

5 14118 14118 14118   0.00 0.00   

0.12 0.12 0.47 0.47     

1 8864 8864 8720   1.65 1.65   
2 7430 7430 6758   9.94 9.94   
3 6840 6840 6104   12.06 12.06   
4 8386 8418 8066   3.97 4.36   

25 4 

5 8502 8502 8502   0.00 0.00   

5.52 5.60 12.06 12.06     

1 7806 7640 7120   9.63 7.30   
2 6842 6842 5766   18.66 18.66   
3 6494 6494 5208   24.69 24.69   
4 7406 7406 6882   7.61 7.61   

25 6 

5 7454 7500 7254   2.76 3.39   

12.67 12.33 24.69 24.69     

1 7196 7032 6560   9.70 7.20   
2 6712 6712 5394   24.43 24.43   
3 6374 6374 4872   30.83 30.83   
4 6830 6830 6438   6.09 6.09   

25 8 

5 7142 6986 6786   5.25 2.95   

15.26 14.30 30.83 30.83     

 

Table E.9 (continued): Computational results for No Wait Problem where [ ]25,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 35200 35200 35200   0.00 0.00   
2 27280 27280 27280   0.00 0.00   
3 24784 24784 24640   0.58 0.58   
4 32560 32560 32560   0.00 0.00   

40 2 

5 34320 34320 34320   0.00 0.00   

0.12 0.12 0.58 0.58     

1 20292 20324 20000   1.46 1.62   
2 16772 16772 15500   8.21 8.21   
3 15624 15512 14000   11.60 10.80   
4 19204 19268 18500   3.81 4.15   

40 4 

5 19500 19500 19500   0.00 0.00   

5.01 4.96 11.60 10.80     

1 16492 16492 15440   6.81 6.81   
2 14744 14744 12338   19.50 19.50   
3 14040 14084 10808   29.90 30.31   
4 15854 15854 14726   7.66 7.66   

40 6 

5 16074 16074 15522   3.56 3.56   

13.49 13.57 29.90 30.31     

1 14758 14428 13520   9.16 6.72   
2 13942 13708 11036   26.33 24.21   
3 13592 13314 9688   40.30 37.43   
4 14094 14094 13172   7.00 7.00   

40 8 

5 14432 14432 13884   3.95 3.95   

17.35 15.86 40.30 37.43     

 

Table E.9 (continued): Computational results for No Wait Problem where [ ]25,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 64880 64880 64880   0.00 0.00   
2 50282 50282 50282   0.00 0.00   
3 45608 45608 45416   0.42 0.42   
4 60014 60014 60014   0.00 0.00   

55 2 

5 63258 63258 63258   0.00 0.00   

0.08 0.08 0.42 0.42     

1 36312 36360 35760   1.54 1.68   
2 29744 29816 27714   7.32 7.58   
3 27488 27488 25032   9.81 9.81   
4 34310 34406 33078   3.72 4.01   

55 4 

5 34866 34866 34866   0.00 0.00   

4.48 4.62 9.81 9.81     

1 28172 28172 26720   5.43 5.43   
2 24758 25082 21266   16.42 17.94   
3 23806 23888 18704   27.28 27.72   
4 26854 27356 25382   5.80 7.78   

55 6 

5 27214 27134 26052   4.46 4.15   

11.88 12.60 27.28 27.72     

1 24622 24128 22720   8.37 6.20   
2 23368 22992 18414   26.90 24.86   
3 22578 22150 16240   39.03 36.39   
4 23738 23468 21978   8.01 6.78   

55 8 

5 24014 23936 22152   8.41 8.05   

18.14 16.46 39.03 36.39     

 

Table E.9 (continued): Computational results for No Wait Problem where [ ]25,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 1560 1560 1560 1560   0.00 0.00 0.00 0.00 
2 1440 1440 1440 1440   0.00 0.00 0.00 0.00 
3 1380 1380 1380 1380   0.00 0.00 0.00 0.00 
4 1560 1560 1560 1560   0.00 0.00 0.00 0.00 

10 2 

5 1560 1560 1560 1560   0.00 0.00 0.00 0.00 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

1 994 994 936 960 2796.81 6.20 6.20 3.54 3.54 
2 1064 1064 960 1016 9737.77 10.83 10.83 4.72 4.72 
3 880 880 828 880 2819.89 6.28 6.28 0.00 0.00 
4 1054 1054 1040 1054 3000.27 1.35 1.35 0.00 0.00 

10 4 

5 1092 1092 1040 1092 6470.92 5.00 5.00 0.00 0.00 

5.93 
 

5.93 
 

10.83 
 

10.83 
 

1.65 
 

1.65 
 

4.72 
 

4.72 
 

1 994 994 832 960 2796.81 19.47 19.47 3.54 3.54 
2 1064 1064 864 1016 6583.86 23.15 23.15 4.72 4.72 
3 880 880 736 880 2235.39 19.57 19.57 0.00 0.00 
4 1054 1054 936 1054 3000.27 12.61 12.61 0.00 0.00 

10 6 

5 1092 1092 988 1092 6470.92 10.53 10.53 0.00 0.00 

17.06 
 

17.06 
 

23.15 
 

23.15 
 

1.65 
 

1.65 
 

4.72 
 

4.72 
 

1 994 994 832 960 2796.81 19.47 19.47 3.54 3.54 
2 1064 1064 864 1016 11335.24 23.15 23.15 4.72 4.72 
3 880 880 736 880 2357.05 19.57 19.57 0.00 0.00 
4 1054 1054 936 1054 3000.27 12.61 12.61 0.00 0.00 

10 8 

5 1092 1092 988 1092 6470.92 10.53 10.53 0.00 0.00 

17.06 17.06 23.15 23.15 1.65 1.65 4.72 4.72 

 

Table E.10: Computational results for No Wait Problem where [ ]1,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 8788 8788 8788   0.00 0.00   
2 8112 8112 8112   0.00 0.00   
3 7774 7774 7774   0.00 0.00   
4 8788 8788 8788   0.00 0.00   

25 2 

5 8788 8788 8788   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 4760 4760 4732   0.59 0.59   
2 4760 4716 4656   2.23 1.29   
3 4214 4204 4186   0.67 0.43   
4 4768 4758 4732   0.76 0.55   

25 4 

5 4732 4732 4732   0.00 0.00   

0.85 
 

0.57 
 

2.23 
 

1.29 
 

    

1 3606 3500 3380   6.69 3.55   
2 4176 4128 3696   12.99 11.69   
3 3256 3208 2990   8.90 7.29   
4 3970 3916 3796   4.58 3.16   

25 6 

5 3984 3984 3796   4.95 4.95   

7.62 
 

6.13 
 

12.99 
 

11.69 
 

    

1 3606 3500 3016   19.56 16.05   
2 4176 4128 3216   29.85 28.36   
3 3256 3208 2668   22.04 20.24   
4 3810 3714 3328   14.48 11.60   

25 8 

5 3984 3984 3328   19.71 19.71   

21.13 19.19 29.85 28.36     

 

Table E.10 (continued): Computational results for No Wait Problem where [ ]1,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 21840 21840 21840   0.00 0.00   
2 20160 20160 20160   0.00 0.00   
3 19320 19320 19320   0.00 0.00   
4 21840 21840 21840   0.00 0.00   

40 2 

5 21840 21840 21840   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 11488 11488 11440   0.42 0.42   
2 10680 10632 10560   1.14 0.68   
3 10200 10192 10120   0.79 0.71   
4 11496 11488 11440   0.49 0.42   

40 4 

5 11440 11440 11440   0.00 0.00   

0.57 
 

0.45 
 

1.14 
 

0.71 
 

    

1 8116 8116 8008   1.35 1.35   
2 8290 7942 7680   7.94 3.41   
3 7458 7412 7084   5.28 4.63   
4 8804 8752 8632   1.99 1.39   

40 6 

5 8564 8512 8320   2.93 2.31   

3.90 
 

2.62 
 

7.94 
 

4.63 
 

    

1 7040 6986 6240   12.82 11.96   
2 7642 7594 6480   17.93 17.19   
3 7116 7116 5750   23.76 23.76   
4 7842 7786 7280   7.72 6.95   

40 8 

5 8084 7978 7020   15.16 13.65   

15.48 14.70 23.76 23.76     

 

Table E.10 (continued): Computational results for No Wait Problem where [ ]1,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 40768 40768 40768   0.00 0.00   
2 37632 37632 37632   0.00 0.00   
3 36064 36064 36064   0.00 0.00   
4 40768 40768 40768   0.00 0.00   

55 2 

5 40768 40768 40768   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 21216 21202 21112   0.49 0.43   
2 19654 19640 19488   0.85 0.78   
3 18758 18758 18676   0.44 0.44   
4 21202 21202 21112   0.43 0.43   

55 4 

5 21112 21112 21112   0.00 0.00   

0.44 
 

0.41 
 

0.85 
 

0.78 
 

    

1 15094 14736 14560   3.67 1.21   
2 14420 14372 13872   3.95 3.60   
3 13324 13406 12880   3.45 4.08   
4 15264 15248 15028   1.57 1.46   

55 6 

5 14624 14902 14560   0.44 2.35   

2.62 
 

2.54 
 

3.95 
 

4.08 
 

    

1 12490 12276 11284   10.69 8.79   
2 13088 12876 11376   15.05 13.19   
3 11282 11158 9982   13.02 11.78   
4 13212 12890 12324   7.21 4.59   

55 8 

5 12282 12336 11596   5.92 6.38   

10.38 8.95 15.05 13.19     

 

Table E.10 (continued): Computational results for No Wait Problem where [ ]1,35jp ∈  and [ ]22, 28id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 2160 2160 2160 2160  0.00 0.00 0.00 0.00 
2 2040 2040 2040 2040  0.00 0.00 0.00 0.00 
3 1980 1980 1980 1980  0.00 0.00 0.00 0.00 
4 2160 2160 2160 2160  0.00 0.00 0.00 0.00 

10 2 

5 2160 2160 2160 2160  0.00 0.00 0.00 0.00 

0.00 
 

0.00 
 

0.00 
 

0.00 
 0.00 0.00 0.00 0.00 

1 1296 1296 1296 1296  0.00 0.00 0.00 0.00 
2 1236 1236 1224 1236 5167.71 0.98 0.98 0.00 0.00 
3 1200 1200 1188 1200 2626.64 1.01 1.01 0.00 0.00 
4 1308 1308 1296 1308 1499.70 0.93 0.93 0.00 0.00 

10 4 

5 1440 1440 1440 1440  0.00 0.00 0.00 0.00 

0.58 0.58 1.01 1.01 0.00 0.00 0.00 0.00 

1 1296 1236 1152 1236 1316.86 12.50 7.29 4.85 0.00 
2 1236 1236 1088 1236 5167.71 13.60 13.60 0.00 0.00 
3 1132 1132 990 1076 1270.04 14.34 14.34 5.20 5.20 
4 1236 1236 1152 1236 926.56 7.29 7.29 0.00 0.00 

10 6 

5 1440 1440 1296 1368 2934.76 11.11 11.11 5.26 5.26 

11.77 10.73 14.34 14.34 3.06 2.09 5.26 5.26 

1 1296 1236 1152 1236 1316.86 12.50 7.29 4.85 0.00 
2 1236 1236 1088 1236 5167.71 13.60 13.60 0.00 0.00 
3 1132 1132 990 1076 1270.04 14.34 14.34 5.20 5.20 
4 1236 1236 1152 1236 926.56 7.29 7.29 0.00 0.00 

10 8 

5 1440 1440 1224 1368 2934.76 17.65 17.65 5.26 5.26 

13.08 12.04 17.65 17.65 3.06 2.09 5.26 5.26 

 

Table E.11: Computational results for No Wait Problem where [ ]1,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 12168 12168 12168   0.00 0.00   
2 11492 11492 11492   0.00 0.00   
3 11154 11154 11154   0.00 0.00   
4 12168 12168 12168   0.00 0.00   

25 2 

5 12168 12168 12168   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 6562 6562 6552   0.15 0.15   
2 6224 6224 6188   0.58 0.58   
3 6016 6016 6006   0.17 0.17   
4 6562 6562 6552   0.15 0.15   

25 4 

5 6552 6552 6552   0.00 0.00   

0.21 
 

0.21 
 

0.58 
 

0.58 
 

    

1 4720 4706 4680   0.85 0.56   
2 5092 5092 4964   2.58 2.58   
3 4386 4386 4290   2.24 2.24   
4 5012 4996 4968   0.89 0.56   

25 6 

5 5040 4968 4968   1.45 0.00   

1.60 
 

1.19 
 

2.58 
 

2.58 
 

    

1 4306 4306 3960   8.74 8.74   
2 4990 4922 4352   14.66 13.10   
3 3974 3974 3630   9.48 9.48   
4 4456 4456 4392   1.46 1.46   

25 8 

5 4780 4708 4392   8.83 7.19   

8.63 7.99 14.66 13.10     

 

Table E.11 (continued): Computational results for No Wait Problem where [ ]1,35jp ∈  and [ ]32,38id ∈  

 

 

 



 302

LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 30240 30240 30240   0.00 0.00   
2 28560 28560 28560   0.00 0.00   
3 27720 27720 27720   0.00 0.00   
4 30240 30240 30240   0.00 0.00   

40 2 

5 30240 30240 30240   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 15848 15848 15840   0.05 0.05   
2 14992 14992 14960   0.21 0.21   
3 14536 14536 14520   0.11 0.11   
4 15848 15848 15840   0.05 0.05   

40 4 

5 15840 15840 15840   0.00 0.00   

0.09 
 

0.09 
 

0.21 
 

0.21 
 

    

1 11140 11140 11088   0.47 0.47   
2 10640 10568 10472   1.60 0.92   
3 10248 10228 10164   0.83 0.63   
4 11152 11152 11088   0.58 0.58   

40 6 

5 11108 11088 11088   0.18 0.00   

0.73 
 

0.52 
 

1.60 
 

0.92 
 

    

1 8864 8720 8640   2.59 0.93   
2 9312 9312 8840   5.34 5.34   
3 8522 8522 7920   7.60 7.60   
4 9484 9484 9360   1.32 1.32   

40 8 

5 9484 9412 9360   1.32 0.56   

3.64 3.15 7.60 7.60     

 

Table E.11 (continued): Computational results for No Wait Problem where [ ]1,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 56448 56448 56448   0.00 0.00   
2 53312 53312 53312   0.00 0.00   
3 51744 51744 51744   0.00 0.00   
4 56448 56448 56448   0.00 0.00   

55 2 

5 56448 56448 56448   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 29254 29254 29232   0.08 0.08   
2 27652 27652 27608   0.16 0.16   
3 26810 26810 26796   0.05 0.05   
4 29246 29246 29232   0.05 0.05   

55 4 

5 29232 29232 29232   0.00 0.00   

0.07 
 

0.07 
 

0.16 
 

0.16 
 

    

1 20286 20274 20160   0.63 0.57   
2 19272 19190 19040   1.22 0.79   
3 18570 18556 18480   0.49 0.41   
4 20274 20274 20160   0.57 0.57   

55 6 

5 20160 20160 20160   0.00 0.00   

0.58 
 

0.47 
 

1.22 
 

0.79 
 

    

1 15808 15996 15624   1.18 2.38   
2 16158 16022 15640   3.31 2.44   
3 14662 14596 14322   2.37 1.91   
4 16744 16726 16560   1.11 1.00   

55 8 

5 15700 15800 15624   0.49 1.13   

1.69 1.77 3.31 2.44     

 

Table E.11 (continued): Computational results for No Wait Problem where [ ]1,35jp ∈  and [ ]32,38id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 2400 2400 2400 2400   0.00 0.00 0.00 0.00 
2 1860 1860 1860 1860   0.00 0.00 0.00 0.00 
3 1680 1680 1680 1680   0.00 0.00 0.00 0.00 
4 2220 2220 2220 2220   0.00 0.00 0.00 0.00 

10 2 

5 2340 2340 2340 2340   0.00 0.00 0.00 0.00 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 0.00 0.00 0.00 

1 1440 1440 1440 1440   0.00 0.00 0.00 0.00 
2 1214 1214 1116 1214 5615.35 8.78 8.78 0.00 0.00 
3 1056 1056 1008 1056 1776.71 4.76 4.76 0.00 0.00 
4 1332 1332 1332 1332   0.00 0.00 0.00 0.00 

10 4 

5 1404 1404 1404 1404   0.00 0.00 0.00 0.00 

2.71 2.71 8.78 8.78 0.00 0.00 0.00 0.00 

1 1300 1300 1200 1240 709.58 8.33 8.33 4.84 4.84 
2 1214 1214 992 1214 6216.62 22.38 22.38 0.00 0.00 
3 1032 1032 784 1032 1707.36 31.63 31.63 0.00 0.00 
4 1306 1306 1184 1306 1246.28 10.30 10.30 0.00 0.00 

10 6 

5 1404 1404 1248 1386 3096.17 12.50 12.50 1.30 1.30 

17.03 17.03 31.63 31.63 1.23 1.23 4.84 4.84 

1 1300 1300 1200 1240 709.58 8.33 8.33 4.84 4.84 
2 1214 1214 992 1214 2875.94 22.38 22.38 0.00 0.00 
3 1032 1032 784 1032 863.08 31.63 31.63 0.00 0.00 
4 1306 1306 1184 1306 1246.28 10.30 10.30 0.00 0.00 

10 8 

5 1404 1404 1248 1386 3096.17 12.50 12.50 1.30 1.30 

17.03 17.03 31.63 31.63 1.23 1.23 4.84 4.84 

 

Table E.12: Computational results for No Wait Problem where [ ]1,35jp ∈  and [ ]22, 48id ∈  

 

 

 



 305

LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 13520 13520 13520   0.00 0.00   
2 10478 10478 10478   0.00 0.00   
3 9464 9464 9464   0.00 0.00   
4 12506 12506 12506   0.00 0.00   

25 2 

5 13182 13182 13182   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 7280 7280 7280   0.00 0.00   
2 5798 5774 5642   2.76 2.34   
3 5136 5136 5096   0.78 0.78   
4 6734 6734 6734   0.00 0.00   

25 4 

5 7098 7098 7098   0.00 0.00   

0.71 
 

0.62 
 

2.76 
 

2.34 
 

    

1 5252 5252 5200   1.00 1.00   
2 5140 5048 4278   20.15 18.00   
3 3960 3960 3640   8.79 8.79   
4 5066 5066 4810   5.32 5.32   

25 6 

5 5320 5320 5070   4.93 4.93   

8.04 
 

7.61 
 

20.15 
 

18.00 
 

    

1 4700 4700 4160   12.98 12.98   
2 4978 4978 3782   31.62 31.62   
3 3876 3776 2912   33.10 29.67   
4 4728 4654 4292   10.16 8.43   

25 8 

5 4930 4930 4524   8.97 8.97   

19.37 18.34 33.10 31.62     

 

Table E.12 (continued): Computational results for No Wait Problem where [ ]1,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 33600 33600 33600   0.00 0.00   
2 26040 26040 26040   0.00 0.00   
3 23520 23520 23520   0.00 0.00   
4 31080 31080 31080   0.00 0.00   

40 2 

5 32760 32760 32760   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 17600 17600 17600   0.00 0.00   
2 13784 13784 13640   1.06 1.06   
3 12480 12480 12320   1.30 1.30   
4 16312 16312 16280   0.20 0.20   

40 4 

5 17160 17160 17160   0.00 0.00   

0.51 
 

0.51 
 

1.30 
 

1.30 
 

    

1 12400 12384 12320   0.65 0.52   
2 10112 10112 9548   5.91 5.91   
3 9356 9356 8624   8.49 8.49   
4 11652 11652 11396   2.25 2.25   

40 6 

5 12012 12012 12012   0.00 0.00   

3.46 
 

3.43 
 

8.49 
 

8.49 
 

    

1 9792 9968 9600   2.00 3.83   
2 9356 9134 7750   20.72 17.86   
3 8460 8396 6720   25.89 24.94   
4 10116 10116 9620   5.16 5.16   

40 8 

5 10000 10000 9750   2.56 2.56   

11.27 10.87 25.89 24.94     

 

Table E.12 (continued): Computational results for No Wait Problem where [ ]1,35jp ∈  and [ ]22, 48id ∈  
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LB Gap (%) 
Optimality 

Gap (%) 

Average 

LB Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality Gap 

(%) 

Maximum 

Optimality Gap 

(%) 
n  K  

Ins. 

# 
NWH1 NWH2 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 
NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 NWH1 NWH2 

1 62720 62720 62720   0.00 0.00   
2 48608 48608 48608   0.00 0.00   
3 43904 43904 43904   0.00 0.00   
4 58016 58016 58016   0.00 0.00   

55 2 

5 61152 61152 61152   0.00 0.00   

0.00 
 

0.00 
 

0.00 
 

0.00 
 

    

1 32480 32480 32480   0.00 0.00   
2 25370 25352 25172   0.79 0.72   
3 22912 22912 22736   0.77 0.77   
4 30068 30068 30044   0.08 0.08   

55 4 

5 31668 31668 31668   0.00 0.00   

0.33 
 

0.31 
 

0.79 
 

0.77 
 

    

1 22580 22552 22400   0.80 0.68   
2 18152 18092 17360   4.56 4.22   
3 16240 16192 15680   3.57 3.27   
4 21176 21120 20720   2.20 1.93   

55 6 

5 21840 21840 21840   0.00 0.00   

2.23 
 

2.02 
 

4.56 
 

4.22 
 

    

1 17698 17698 17360   1.95 1.95   
2 15680 15556 13826   13.41 12.51   
3 13774 13424 12152   13.35 10.47   
4 17390 17390 16502   5.38 5.38   

55 8 

5 17076 17076 16926   0.89 0.89   

6.99 6.24 13.41 12.51     

 

Table E.12 (continued): Computational results for No Wait Problem where [ ]1,35jp ∈  and [ ]22, 48id ∈
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Appendix F 

 

Numerical Results for the General Problem 



 309

n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 1560 1560 1560   0.00 0.00 
2 1440 1440 1440   0.00 0.00 
3 1380 1380 1380   0.00 0.00 
4 1560 1560 1560   0.00 0.00 

10 2 

5 1560 1560 1560   0.00 0.00 

0.00 0.00 0.00 0.00 

1 936 936 936   0.00 0.00 
2 864 864 864   0.00 0.00 
3 828 828 828   0.00 0.00 
4 936 936 936   0.00 0.00 

10 4 

5 936 936 936   0.00 0.00 

0.00 0.00 0.00 0.00 

1 728 728 728   0.00 0.00 
2 672 672 672   0.00 0.00 
3 644 644 644   0.00 0.00 
4 728 728 728   0.00 0.00 

10 6 

5 748 728 748 443.07 2.75 0.00 

0.55 2.75 0.00 0.00 

1 686 624 686 124.91 9.94 0.00 
2 672 576 672 460.94 16.67 0.00 
3 608 552 608 248.54 10.14 0.00 
4 716 624 716 271.69 14.74 0.00 

10 8 

5 748 624 748 443.07 19.87 0.00 

14.27 19.87 0.00 0.00 

 

Table F.1: Computational results for General Problem where [ ]1,11jp ∈  and [ ]22, 28id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 8788 8788   0.00  
2 8112 8112   0.00  
3 7774 7774   0.00  
4 8788 8788   0.00  

25 2 

5 8788 8788   0.00  

0.00 0.00   

1 4732 4732   0.00  
2 4368 4368   0.00  
3 4186 4186   0.00  
4 4732 4732   0.00  

25 4 

5 4732 4732   0.00  

0.00 0.00   

1 3380 3380   0.00  
2 3134 3120   0.45  
3 2990 2990   0.00  
4 3380 3380   0.00  

25 6 

5 3380 3380   0.00  

0.09 0.45   

1 2722 2704   0.67  
2 2630 2496   5.37  
3 2410 2392   0.75  
4 2722 2704   0.67  

25 8 

5 2704 2704   0.00  

1.49 5.37   

 

Table F.1 (continued): Computational results for General Problem where [ ]1,11jp ∈  and [ ]22, 28id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 21840 21840   0.00  
2 20160 20160   0.00  
3 19320 19320   0.00  
4 21840 21840   0.00  

40 2 

5 21840 21840   0.00  

0.00 0.00   

1 11440 11440   0.00  
2 10560 10560   0.00  
3 10120 10120   0.00  
4 11440 11440   0.00  

40 4 

5 11440 11440   0.00  

0.00 0.00   

1 8008 8008   0.00  
2 7392 7392   0.00  
3 7084 7084   0.00  
4 8008 8008   0.00  

40 6 

5 8008 8008   0.00  

0.00 0.00   

1 6256 6240   0.26  
2 5792 5760   0.56  
3 5552 5520   0.58  
4 6256 6240   0.26  

40 8 

5 6240 6240   0.00  

0.33 0.58   

 

Table F.1 (continued): Computational results for General Problem where [ ]1,11jp ∈  and [ ]22, 28id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 40768 40768   0.00  
2 37632 37632   0.00  
3 36064 36064   0.00  
4 40768 40768   0.00  

55 2 

5 40768 40768   0.00  

0.00 0.00   

1 21112 21112   0.00  
2 19488 19488   0.00  
3 18676 18676   0.00  
4 21112 21112   0.00  

55 4 

5 21112 21112   0.00  

0.00 0.00   

1 14560 14560   0.00  
2 13440 13440   0.00  
3 12880 12880   0.00  
4 14560 14560   0.00  

55 6 

5 14560 14560   0.00  

0.00 0.00   

1 11298 11284   0.12  
2 10446 10416   0.29  
3 9996 9982   0.14  
4 11298 11284   0.12  

55 8 

5 11284 11284   0.00  

0.14 0.29   

 

Table F.1 (continued): Computational results for General Problem where [ ]1,11jp ∈  and [ ]22, 28id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 2160 2160 2160  0.00 0.00 
2 2040 2040 2040  0.00 0.00 
3 1980 1980 1980  0.00 0.00 
4 2160 2160 2160  0.00 0.00 

10 2 

5 2160 2160 2160  0.00 0.00 

0.00 0.00 0.00 0.00 

1 1296 1296 1296  0.00 0.00 
2 1224 1224 1224  0.00 0.00 
3 1188 1188 1188  0.00 0.00 
4 1296 1296 1296  0.00 0.00 

10 4 

5 1296 1296 1296  0.00 0.00 

0.00 0.00 0.00 0.00 

1 1008 1008 1008  0.00 0.00 
2 952 952 952  0.00 0.00 
3 924 924 924  0.00 0.00 
4 1008 1008 1008  0.00 0.00 

10 6 

5 1008 1008 1008  0.00 0.00 

0.00 0.00 0.00 0.00 

1 864 864 864  0.00 0.00 
2 884 816 884 223.77 8.33 0.00 
3 812 792 812 256.36 2.53 0.00 
4 884 864 884 464.63 2.31 0.00 

10 8 

5 936 864 936 127.09 8.33 0.00 

4.30 8.33 0.00 0.00 

 

Table F.2: Computational results for General Problem where [ ]1,11jp ∈  and [ ]32,38id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality 

 Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 12168 12168    0.00   
2 11492 11492    0.00   
3 11154 11154    0.00   
4 12168 12168    0.00   

25 2 

5 12168 12168    0.00   

0.00 0.00   

1 6552 6552    0.00   
2 6188 6188    0.00   
3 6006 6006    0.00   
4 6552 6552    0.00   

25 4 

5 6552 6552    0.00   

0.00 0.00   

1 4680 4680    0.00   
2 4420 4420    0.00   
3 4290 4290    0.00   
4 4680 4680    0.00   

25 6 

5 4680 4680    0.00   

0.00 0.00   

1 3744 3744    0.00   
2 3545 3536    0.25   
3 3432 3432    0.00   
4 3744 3744    0.00   

25 8 

5 3744 3744    0.00   

0.05 0.25   

 

Table F.2 (continued): Computational results for General Problem where [ ]1,11jp ∈  and [ ]32,38id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 30240 30240    0.00   
2 28560 28560    0.00   
3 27720 27720    0.00   
4 30240 30240    0.00   

40 2 

5 30240 30240    0.00   

0.00 0.00   

1 15840 15840    0.00   
2 14960 14960    0.00   
3 14520 14520    0.00   
4 15840 15840    0.00   

40 4 

5 15840 15840    0.00   

0.00 0.00   

1 11088 11088    0.00   
2 10472 10472    0.00   
3 10164 10164    0.00   
4 11088 11088    0.00   

40 6 

5 11088 11088    0.00   

0.00 0.00   

1 8640 8640    0.00   
2 8160 8160    0.00   
3 7920 7920    0.00   
4 8640 8640    0.00   

40 8 

5 8640 8640    0.00   

0.00 0.00   

 

Table F.2 (continued): Computational results for General Problem where [ ]1,11jp ∈  and [ ]32,38id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 56448 56448    0.00   
2 53312 53312    0.00   
3 51744 51744    0.00   
4 56448 56448    0.00   

55 2 

5 56448 56448    0.00   

0.00 0.00   

1 29232 29232    0.00   
2 27608 27608    0.00   
3 26796 26796    0.00   
4 29232 29232    0.00   

55 4 

5 29232 29232    0.00   

0.00 0.00   

1 20160 20160    0.00   
2 19040 19040    0.00   
3 18480 18480    0.00   
4 20160 20160    0.00   

55 6 

5 20160 20160    0.00   

0.00 0.00   

1 15624 15624    0.00   
2 14756 14756    0.00   
3 14322 14322    0.00   
4 15624 15624    0.00   

55 8 

5 15624 15624    0.00   

0.00 0.00   

 

Table F.2 (continued): Computational results for General Problem where [ ]1,11jp ∈  and [ ]32,38id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 2400 2400 2400   0.00 0.00 
2 1860 1860 1860   0.00 0.00 
3 1680 1680 1680   0.00 0.00 
4 2220 2220 2220   0.00 0.00 

10 2 

5 2340 2340 2340   0.00 0.00 

0.00 0.00 0.00 0.00 

1 1440 1440 1440   0.00 0.00 
2 1116 1116 1116   0.00 0.00 
3 1008 1008 1008   0.00 0.00 
4 1332 1332 1332   0.00 0.00 

10 4 

5 1404 1404 1404   0.00 0.00 

0.00 0.00 0.00 0.00 

1 1120 1120 1120   0.00 0.00 
2 868 868 868   0.00 0.00 
3 784 784 784   0.00 0.00 
4 1036 1036 1036   0.00 0.00 

10 6 

5 1092 1092 1092   0.00 0.00 

0.00 0.00 0.00 0.00 

1 960 960 960   0.00 0.00 
2 836 744 836 132.34 12.37 0.00 
3 728 672 728 163.90 8.33 0.00 
4 898 888 898 265.87 1.13 0.00 

10 8 

5 996 936 996 160.56 6.41 0.00 

5.65 12.37 0.00 0.00 

 

Table F.3: Computational results for General Problem where [ ]1,11jp ∈  and [ ]22, 48id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 13520 13520    0.00   
2 10478 10478    0.00   
3 9464 9464    0.00   
4 12506 12506    0.00   

25 2 

5 13182 13182    0.00   

0.00 0.00   

1 7280 7280    0.00   
2 5642 5642    0.00   
3 5096 5096    0.00   
4 6734 6734    0.00   

25 4 

5 7098 7098    0.00   

0.00 0.00   

1 5200 5200    0.00   
2 4030 4030    0.00   
3 3640 3640    0.00   
4 4810 4810    0.00   

25 6 

5 5070 5070    0.00   

0.00 0.00   

1 4160 4160    0.00   
2 3278 3224    1.67   
3 2912 2912    0.00   
4 3848 3848    0.00   

25 8 

5 4056 4056    0.00   

0.33 1.67   

 

Table F.3 (continued): Computational results for General Problem where [ ]1,11jp ∈  and [ ]22, 48id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 33600 33600    0.00   
2 26040 26040    0.00   
3 23520 23520    0.00   
4 31080 31080    0.00   

40 2 

5 32760 32760    0.00   

0.00 0.00   

1 17600 17600    0.00   
2 13640 13640    0.00   
3 12320 12320    0.00   
4 16280 16280    0.00   

40 4 

5 17160 17160    0.00   

0.00 0.00   

1 12320 12320    0.00   
2 9548 9548    0.00   
3 8624 8624    0.00   
4 11396 11396    0.00   

40 6 

5 12012 12012    0.00   

0.00 0.00   

1 9600 9600    0.00   
2 7440 7440    0.00   
3 6728 6720    0.12   
4 8880 8880    0.00   

40 8 

5 9360 9360    0.00   

0.02 0.12   

 

Table F.3 (continued): Computational results for General Problem where [ ]1,11jp ∈  and [ ]22, 48id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 62720 62720    0.00   
2 48608 48608    0.00   
3 43904 43904    0.00   
4 58016 58016    0.00   

55 2 

5 61152 61152    0.00   

0.00 0.00   

1 32480 32480    0.00   
2 25172 25172    0.00   
3 22736 22736    0.00   
4 30044 30044    0.00   

55 4 

5 31668 31668    0.00   

0.00 0.00   

1 22400 22400    0.00   
2 17360 17360    0.00   
3 15680 15680    0.00   
4 20720 20720    0.00   

55 6 

5 21840 21840    0.00   

0.00 0.00   

1 17360 17360    0.00   
2 13454 13454    0.00   
3 12152 12152    0.00   
4 16058 16058    0.00   

55 8 

5 16926 16926    0.00   

0.00 0.00   

 

Table F.3 (continued): Computational results for General Problem where [ ]1,11jp ∈  and [ ]22, 48id ∈  

 

 

 



 321

n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 1560 1560 1560   0.00 0.00 
2 1440 1440 1440   0.00 0.00 
3 1380 1380 1380   0.00 0.00 
4 1560 1560 1560   0.00 0.00 

10 2 

5 1560 1560 1560   0.00 0.00 

0.00 0.00 0.00 0.00 

1 936 936 936   0.00 0.00 
2 900 864 900 3667.16 4.17 0.00 
3 838 828 838 1989.84 1.21 0.00 
4 956 936 956 1977.28 2.14 0.00 

10 4 

5 966 936 966 3129.95 3.21 0.00 

2.14 4.17 0.00 0.00 

1 844 728 844 813.64 15.93 0.00 
2 826 672 826 1161.52 22.92 0.00 
3 770 644 766 637.23 19.57 0.52 
4 862 728 862 615.01 18.41 0.00 

10 6 

5 862 728 862 965.10 18.41 0.00 

19.05 22.92 0.10 0.52 

1 844 624 844 813.64 35.26 0.00 
2 826 576 826 952.30 43.40 0.00 
3 770 552 766 1929.22 39.49 0.52 
4 862 624 862 615.01 38.14 0.00 

10 8 

5 862 624 862 965.10 38.14 0.00 

38.89 43.40 0.10 0.52 

 

Table F.4: Computational results for General Problem where [ ]5,15jp ∈  and [ ]22, 28id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 8788 8788    0.00   
2 8112 8112    0.00   
3 7774 7774    0.00   
4 8788 8788    0.00   

25 2 

5 8788 8788    0.00   

0.00 0.00   

1 4732 4732    0.00   
2 4443 4368    1.72   
3 4186 4186    0.00   
4 4732 4732    0.00   

25 4 

5 4732 4732    0.00   

0.34 1.72   

1 3666 3380    8.46   
2 3621 3120    16.06   
3 3315 2990    10.87   
4 3770 3380    11.54   

25 6 

5 3752 3380    11.01   

11.59 16.06   

1 3262 2704    20.64   
2 3246 2496    30.05   
3 2954 2392    23.49   
4 3337 2704    23.41   

25 8 

5 3297 2704    21.93   

23.90 30.05   

 

Table F.4 (continued): Computational results for General Problem where [ ]5,15jp ∈  and [ ]22, 28id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality 

 Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 21840 21840    0.00  
2 20160 20160    0.00  
3 19320 19320    0.00  
4 21840 21840    0.00  

40 2 

5 21840 21840    0.00  

0.00 0.00   

1 11440 11440    0.00   
2 10560 10560    0.00   
3 10120 10120    0.00   
4 11440 11440    0.00   

40 4 

5 11440 11440    0.00   

0.00 0.00   

1 8308 8008    3.75   
2 7914 7392    7.06   
3 7600 7084    7.28   
4 8647 8008    7.98   

40 6 

5 8440 8008    5.39   

6.29 7.98   

1 7112 6240    13.97   
2 6748 5760    17.15   
3 6438 5520    16.63   
4 7314 6240    17.21   

40 8 

5 7140 6240    14.42   

15.88 17.21   

 

Table F.4 (continued): Computational results for General Problem where [ ]5,15jp ∈  and [ ]22, 28id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 40768 40768    0.00   
2 37632 37632    0.00   
3 36064 36064    0.00   
4 40768 40768    0.00   

55 2 

5 40768 40768    0.00   

0.00 0.00   

1 21112 21112    0.00   
2 19488 19488    0.00   
3 18676 18676    0.00   
4 21112 21112    0.00   

55 4 

5 21112 21112    0.00   

0.00 0.00   

1 14983 14560    2.91   
2 14204 13440    5.68   
3 13484 12880    4.69   
4 15366 14560    5.54   

55 6 

5 15083 14560    3.59   

4.48 5.68   

1 12460 11284    10.42   
2 11800 10416    13.29   
3 11187 9982    12.07   
4 12787 11284    13.32   

55 8 

5 12429 11284    10.15   

11.85 13.32   

 

Table F.4 (continued): Computational results for General Problem where [ ]5,15jp ∈  and [ ]22, 28id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality 

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

Gap (%) 

1 2160 2160 2160  0.00 0.00 
2 2040 2040 2040  0.00 0.00 
3 1980 1980 1980  0.00 0.00 
4 2160 2160 2160  0.00 0.00 

10 2 

5 2160 2160 2160  0.00 0.00 

0.00 0.00 0.00 0.00 

1 1296 1296 1296  0.00 0.00 
2 1224 1224 1224  0.00 0.00 
3 1188 1188 1188  0.00 0.00 
4 1296 1296 1296  0.00 0.00 

10 4 

5 1296 1296 1296  0.00 0.00 

0.00 0.00 0.00 0.00 

1 1078 1008 1078 960.90 6.94 0.00 
2 1055 952 1055 717.96 10.82 0.00 
3 984 924 984 731.85 6.49 0.00 
4 1090 1008 1090 700.67 8.13 0.00 

10 6 

5 1120 1008 1120 675.74 11.11 0.00 

8.70 11.11 0.00 0.00 

1 1078 864 1078 1402.63 24.77 0.00 
2 1055 816 1055 519.41 29.29 0.00 
3 984 792 984 312.95 24.24 0.00 
4 1090 864 1090 700.67 26.16 0.00 

10 8 

5 1120 864 1120 675.74 29.63 0.00 

26.82 29.63 0.00 0.00 

 

Table F.5: Computational results for General Problem where [ ]5,15jp ∈  and [ ]32,38id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality 

 Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 12168 12168    0.00   
2 11492 11492    0.00   
3 11154 11154    0.00   
4 12168 12168    0.00   

25 2 

5 12168 12168    0.00   

0.00 0.00   

1 6552 6552    0.00   
2 6188 6188    0.00   
3 6006 6006    0.00   
4 6552 6552    0.00   

25 4 

5 6552 6552    0.00   

0.00 0.00   

1 4680 4680    0.00   
2 4733 4420    7.08   
3 4290 4290    0.00   
4 4730 4680    1.07   

25 6 

5 4755 4680    1.60   

1.95 7.08   

1 4085 3744    9.11   
2 4213 3536    19.15   
3 3830 3432    11.60   
4 4248 3744    13.46   

25 8 

5 4251 3744    13.54   

13.37 19.15   

 

Table F.5 (continued): Computational results for General Problem where [ ]5,15jp ∈  and [ ]32,38id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 30240 30240    0.00   
2 28560 28560    0.00   
3 27720 27720    0.00   
4 30240 30240    0.00   

40 2 

5 30240 30240    0.00   

0.00 0.00   

1 15840 15840    0.00   
2 14960 14960    0.00   
3 14520 14520    0.00   
4 15840 15840    0.00   

40 4 

5 15840 15840    0.00   

0.00 0.00   

1 11088 11088    0.00   
2 10512 10472    0.38   
3 10164 10164    0.00   
4 11168 11088    0.72   

40 6 

5 11088 11088    0.00   

0.22 0.72   

1 9114 8640    5.49   
2 8932 8160    9.46   
3 8524 7920    7.63   
4 9476 8640    9.68   

40 8 

5 9320 8640    7.87   

8.02 9.68   

 

Table F.5 (continued): Computational results for General Problem where [ ]5,15jp ∈  and [ ]32,38id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 56448 56448    0.00   
2 53312 53312    0.00   
3 51744 51744    0.00   
4 56448 56448    0.00   

55 2 

5 56448 56448    0.00   

0.00 0.00   

1 29232 29232    0.00   
2 27608 27608    0.00   
3 26796 26796    0.00   
4 29232 29232    0.00   

55 4 

5 29232 29232    0.00   

0.00 0.00   

1 20160 20160    0.00   
2 19095 19040    0.29   
3 18480 18480    0.00   
4 20160 20160    0.00   

55 6 

5 20160 20160    0.00   

0.06 0.29   

1 16214 15624    3.78   
2 15779 14756    6.93   
3 14986 14322    4.64   
4 16610 15624    6.31   

55 8 

5 16221 15624    3.82   

5.10 6.93   

 

Table F.5 (continued): Computational results for General Problem where [ ]5,15jp ∈  and [ ]32,38id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 2400 2400 2400   0.00 0.00 
2 1860 1860 1860   0.00 0.00 
3 1680 1680 1680   0.00 0.00 
4 2220 2220 2220   0.00 0.00 

10 2 

5 2340 2340 2340   0.00 0.00 

0.00 0.00 0.00 0.00 

1 1440 1440 1440   0.00 0.00 
2 1116 1116 1116   0.00 0.00 
3 1008 1008 1008   0.00 0.00 
4 1332 1332 1332   0.00 0.00 

10 4 

5 1404 1404 1404   0.00 0.00 

0.00 0.00 0.00 0.00 

1 1150 1120 1150 344.09 2.68 0.00 
2 1020 868 1020 861.57 17.51 0.00 
3 910 784 902 664.89 16.07 0.89 
4 1110 1036 1110 338.26 7.14 0.00 

10 6 

5 1180 1092 1180 659.10 8.06 0.00 

10.29 17.51 0.18 0.89 

1 1150 960 1150 344.09 19.79 0.00 
2 1020 744 1020 839.97 37.10 0.00 
3 910 672 902 852.47 35.42 0.89 
4 1110 888 1110 338.26 25.00 0.00 

10 8 

5 1180 936 1180 659.10 26.07 0.00 

28.67 37.10 0.18 0.89 

 

Table F.6: Computational results for General Problem where [ ]5,15jp ∈  and [ ]22, 48id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 13520 13520    0.00   
2 10478 10478    0.00   
3 9464 9464    0.00   
4 12506 12506    0.00   

25 2 

5 13182 13182    0.00   

0.00 0.00   

1 7280 7280    0.00   
2 5642 5642    0.00   
3 5096 5096    0.00   
4 6734 6734    0.00   

25 4 

5 7098 7098    0.00   

0.00 0.00   

1 5200 5200    0.00   
2 4453 4030    10.50   
3 3821 3640    4.97   
4 4835 4810    0.52   

25 6 

5 5070 5070    0.00   

3.20 10.50   

1 4385 4160    5.41   
2 4002 3224    24.13   
3 3561 2912    22.29   
4 4370 3848    13.57   

25 8 

5 4524 4056    11.54   

15.39 24.13   

 

Table F.6 (continued): Computational results for General Problem where [ ]5,15jp ∈  and [ ]22, 48id ∈  

 

 

 



 331

n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 33600 33600    0.00   
2 26040 26040    0.00   
3 23520 23520    0.00   
4 31080 31080    0.00   

40 2 

5 32760 32760    0.00   

0.00 0.00   

1 17600 17600    0.00   
2 13640 13640    0.00   
3 12320 12320    0.00   
4 16280 16280    0.00   

40 4 

5 17160 17160    0.00   

0.00 0.00   

1 12320 12320    0.00   
2 9768 9548    2.30   
3 9008 8624    4.45   
4 11436 11396    0.35   

40 6 

5 12012 12012    0.00   

1.42 4.45   

1 9792 9600    2.00   
2 8410 7440    13.04   
3 7796 6720    16.01   
4 9730 8880    9.57   

40 8 

5 9910 9360    5.88   

9.30 16.01   

 

Table F.6 (continued): Computational results for General Problem where [ ]5,15jp ∈  and [ ]22, 48id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 62720 62720    0.00   
2 48608 48608    0.00   
3 43904 43904    0.00   
4 58016 58016    0.00   

55 2 

5 61152 61152    0.00   

0.00 0.00   

1 32480 32480    0.00   
2 25172 25172    0.00   
3 22736 22736    0.00   
4 30044 30044    0.00   

55 4 

5 31668 31668    0.00   

0.00 0.00   

1 22400 22400    0.00   
2 17739 17360    2.18   
3 15949 15680    1.72   
4 20720 20720    0.00   

55 6 

5 21840 21840    0.00   

0.78 2.18   

1 17640 17360    1.61   
2 14852 13454    10.39   
3 13523 12152    11.28   
4 16960 16058    5.62   

55 8 

5 17394 16926    2.76   

6.33 11.28   

 

Table F.6 (continued): Computational results for General Problem where [ ]5,15jp ∈  and [ ]22, 48id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 1834 1560 1820 181898.53 17.56 0.77 
2 1708 1450 1708(*)  17.79 --- 
3 1648 1400 1648(*)  17.71 --- 
4 1838 1560 1838 161391.61 17.82 0.00 

10 2 

5 1820 1560 1810(*)  16.67 --- 

17.51 17.82     

1 1434 936 1434 85488.61 53.21 0.00 
2 1444 874 1388 192790.49 65.22 4.03 
3 1354 848 1354 179757.190   59.67 0.00 
4 1461 936 1445 74839.4 56.09 1.11 

10 4 

5 1461 936 1444 134805.22 56.09 1.18 

58.05 65.22 1.58 4.03 

1 1434 728 1434 85488.61 96.98 0.00 
2 1444 682 1388 192790.49 111.73 4.03 
3 1354 664 1354 179757.190   103.92 0.00 
4 1461 728 1445 74839.4 100.69 1.11 

10 6 

5 1461 728 1444 134805.22 100.69 1.18 

102.80 111.73 1.58 4.03 

1 1434 624 1434 85488.61 129.81 0.00 
2 1444 586 1388 192790.49 146.42 4.03 
3 1354 572 1354 179757.190   136.71 0.00 
4 1461 624 1445 74839.4 134.13 1.11 

10 8 

5 1461 624 1444 134805.22 134.13 1.18 

136.24 146.42 1.58 4.03 

 

Table F.7: Computational results for General Problem where [ ]25,35jp ∈  and [ ]22, 28id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 9464 8788    7.69   
2 8809 8137    8.26   
3 8476 7824    8.33   
4 9476 8788    7.83   

25 2 

5 9412 8788    7.10   

7.84 8.33   

1 6183 4732    30.66   
2 6097 4393    38.79   
3 5730 4236    35.27   
4 6106 4732    29.04   

25 4 

5 6022 4732    27.26   

32.20 38.79   

1 5532 3380    63.67   
2 5711 3145    81.59   
3 5421 3040    78.32   
4 5595 3380    65.53   

25 6 

5 5672 3380    67.81   

71.38 81.59   

1 5532 2704    104.59   
2 5711 2521    126.54   
3 5421 2442    121.99   
4 5595 2704    106.92   

25 8 

5 5672 2704    109.76   

113.96 126.54   

 

Table F.7 (continued): Computational results for General Problem where [ ]25,35jp ∈  and [ ]22, 28id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 22990 21840    5.27   
2 21380 20200    5.84   
3 20588 19400    6.12   
4 23034 21840    5.47   

40 2 

5 22880 21840    4.76   

5.49 6.12   

1 13738 11440    20.09   
2 13195 10600    24.48   
3 12901 10200    26.48   
4 13754 11440    20.23   

40 4 

5 13572 11440    18.64   

21.98 26.48   

1 11777 8008    47.07   
2 11924 7432    60.44   
3 11578 7164    61.61   
4 11920 8008    48.85   

40 6 

5 12062 8008    50.62   

53.72 61.61   

1 11777 6240    88.73   
2 11924 5800    105.59   
3 11578 5600    106.75   
4 11920 6240    91.03   

40 8 

5 12062 6240    93.30   

97.08 106.75   

 

Table F.7 (continued): Computational results for General Problem where [ ]25,35jp ∈  and [ ]22, 28id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 42396 40768    3.99   
2 39371 37687    4.47   
3 37832 36174    4.58   
4 42436 40768    4.09   

55 2 

5 42172 40768    3.44   

4.12 4.58   

1 24884 21112    17.87   
2 23381 19543    19.64   
3 22702 18786    20.85   
4 24469 21112    15.90   

55 4 

5 24146 21112    14.37   

17.72 20.85   

1 20499 14560    40.79   
2 20471 13495    51.69   
3 19845 12990    52.77   
4 20462 14560    40.54   

55 6 

5 20523 14560    40.95   

45.35 52.77   

1 20499 11284    81.66   
2 20471 10471    95.50   
3 19845 10092    96.64   
4 20462 11284    81.34   

55 8 

5 20523 11284    81.88   

87.40 96.64   

 

Table F.7 (continued): Computational results for General Problem where [ ]25,35jp ∈  and [ ]22, 28id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 2310 2160 2310 170999.89 6.94 0.00 
2 2210 2040 2210 190760.79 8.33 0.00 
3 2160 1980 2160 81086.12 9.09 0.00 
4 2330 2160 2330 129037.66 7.87 0.00 

10 2 

5 2310 2160 2310 81365.27 6.94 0.00 

7.84 9.09 0.00 0.00 

1 1750 1296 1750 41103.71 35.03 0.00 
2 1682 1224 1682 39336.05 37.42 0.00 
3 1648 1188 1648 40989.59 38.72 0.00 
4 1770 1296 1770 21453.83 36.57 0.00 

10 4 

5 1734 1296 1734 31669.32 33.80 0.00 

36.31 38.72 0.00 0.00 

1 1750 1008 1750 41103.71 73.61 0.00 
2 1682 952 1682 39336.05 76.68 0.00 
3 1688 924 1648 40989.59 82.68 2.43 
4 1756 1008 1756 42265.24 74.21 0.00 

10 6 

5 1734 1008 1734 31669.32 72.02 0.00 

75.84 82.68 0.49 2.43 

1 1750 864 1750 41103.71 102.55 0.00 
2 1682 816 1682 39336.05 106.13 0.00 
3 1688 792 1648 40989.59 113.13 2.43 
4 1756 864 1756 42265.24 103.24 0.00 

10 8 

5 1734 864 1734 31669.32 100.69 0.00 

105.15 113.13 0.49 2.43 

 

Table F.8: Computational results for General Problem where [ ]25,35jp ∈  and [ ]32,38id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 12518 12168    2.88   
2 11917 11492    3.70   
3 11579 11154    3.81   
4 12568 12168    3.29   

25 2 

5 12543 12168    3.08   

3.35 3.81   

1 7869 6552    20.10   
2 7519 6188    21.51   
3 7313 6006    21.76   
4 7910 6552    20.73   

25 4 

5 7848 6552    19.78   

20.78 21.76   

1 6800 4680    45.30   
2 6621 4420    49.80   
3 6426 4290    49.79   
4 6800 4680    45.30   

25 6 

5 6736 4680    43.93   

46.82 49.80   

1 6436 3744    71.90   
2 6534 3536    84.79   
3 6292 3432    83.33   
4 6508 3744    73.82   

25 8 

5 6527 3744    74.33   

77.64 84.79   

 

Table F.8 (continued): Computational results for General Problem where [ ]25,35jp ∈  and [ ]32,38id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality 

 Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 30800 30240    1.85   
2 29200 28560    2.24   
3 28400 27720    2.45   
4 30880 30240    2.12   

40 2 

5 30800 30240    1.85   

2.10 2.45   

1 18208 15840    14.95   
2 17168 14960    14.76   
3 16730 14520    15.22   
4 18114 15840    14.36   

40 4 

5 17840 15840    12.63   

14.38 15.22   

1 14544 11088    31.17   
2 14082 10472    34.47   
3 13788 10164    35.66   
4 14544 11088    31.17   

40 6 

5 14432 11088    30.16   

32.52 35.66   

1 13311 8640    54.06   
2 13441 8160    64.72   
3 13040 7920    64.65   
4 13400 8640    55.09   

40 8 

5 13577 8640    57.14   

59.13 64.72   

 

Table F.8 (continued): Computational results for General Problem where [ ]25,35jp ∈  and [ ]32,38id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 57218 56448    1.36   
2 54192 53312    1.65   
3 52679 51744    1.81   
4 57328 56448    1.56   

55 2 

5 57218 56448    1.36   

1.55 1.81   

1 32560 29232    11.38   
2 30796 27608    11.55   
3 29910 26796    11.62   
4 32560 29232    11.38   

55 4 

5 32184 29232    10.10   

11.21 11.62   

1 25088 20160    24.44   
2 24220 19040    27.21   
3 23698 18480    28.24   
4 25088 20160    24.44   

55 6 

5 24836 20160    23.19   

25.51 28.24   

1 22580 15624    44.52   
2 22444 14756    52.10   
3 21976 14322    53.44   
4 22552 15624    44.34   

55 8 

5 22575 15624    44.49   

47.78 53.44   

 

Table F.8 (continued): Computational results for General Problem where [ ]25,35jp ∈  and [ ]32,38id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality 

 Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 2510 2400 2510 127740.02 4.58 0.00 
2 2074 1860 2072 124644.94 11.51 0.00 
3 1950 1680 1942 179867.56 16.07 0.00 
4 2380 2220 2380 131910.80 7.21 0.00 

10 2 

5 2460 2340 2460 168552.26 5.13 0.00 

8.90 16.07 0.00 0.00 

1 1902 1440 1902 25370.04 32.08 0.00 
2 1648 1116 1648 58345.15 47.67 0.00 
3 1596 1008 1582 53465.44 58.33 0.88 
4 1852 1332 1852 24405.94 39.04 0.00 

10 4 

5 1836 1404 1836 28640.59 30.77 0.00 

41.58 58.33 0.22 0.88 

1 1910 1120 1882 18165.78 70.54 1.49 
2 1648 868 1648 58345.15 89.86 0.00 
3 1596 784 1582 53465.44 103.57 0.88 
4 1848 1036 1848 20613.73 78.38 0.00 

10 6 

5 1836 1092 1836 28640.59 68.13 0.00 

82.10 103.57 0.47 1.49 

1 1910 960 1882 18165.78 98.96 1.49 
2 1648 744 1648 58345.15 121.51 0.00 
3 1596 672 1582 53465.44 137.50 0.88 
4 1848 888 1848 20613.73 108.11 0.00 

10 8 

5 1836 936 1836 28640.59 96.15 0.00 

112.45 137.50 0.47 1.49 

 

Table F.9: Computational results for General Problem where [ ]25,35jp ∈  and [ ]22, 48id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 13770 13520    1.85   
2 11032 10478    5.29   
3 10114 9464    6.87   
4 12881 12506    3.00   

25 2 

5 13482 13182    2.28   

3.86 6.87   

1 8626 7280    18.49   
2 7156 5642    26.83   
3 6678 5096    31.04   
4 8305 6734    23.33   

25 4 

5 8459 7098    19.17   

23.77 31.04   

1 7257 5200    39.56   
2 6706 4030    66.40   
3 6494 3640    78.41   
4 7216 4810    50.02   

25 6 

5 7166 5070    41.34   

55.15 78.41   

1 6862 4160    64.95   
2 6621 3224    105.37   
3 6284 2912    115.80   
4 6830 3848    77.49   

25 8 

5 6904 4056    70.22   

86.77 115.80   

 

Table F.9 (continued): Computational results for General Problem where [ ]25,35jp ∈  and [ ]22, 48id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 34000 33600    1.19   
2 26800 26040    2.92   
3 24772 23520    5.32   
4 31680 31080    1.93   

40 2 

5 33200 32760    1.34   

2.54 5.32   

1 19912 17600    13.14   
2 16288 13640    19.41   
3 15322 12320    24.37   
4 19268 16280    18.35   

40 4 

5 19500 17160    13.64   

17.78 24.37   

1 15706 12320    27.48   
2 14450 9548    51.34   
3 14084 8624    63.31   
4 15834 11396    38.94   

40 6 

5 15418 12012    28.35   

41.89 63.31   

1 13958 9600    45.40   
2 13490 7440    81.32   
3 13292 6720    97.80   
4 13824 8880    55.68   

40 8 

5 14094 9360    50.58   

66.15 97.80   

 

Table F.9 (continued): Computational results for General Problem where [ ]25,35jp ∈  and [ ]22, 48id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 63270 62720    0.88   
2 49653 48608    2.15   
3 45608 43904    3.88   
4 58841 58016    1.42   

55 2 

5 61757 61152    0.99   

1.86 3.88   

1 35770 32480    10.13   
2 29100 25172    15.60   
3 27130 22736    19.33   
4 34406 30044    14.52   

55 4 

5 34866 31668    10.10   

13.94 19.33   

1 27649 22400    23.43   
2 24743 17360    42.53   
3 23888 15680    52.35   
4 26974 20720    30.18   

55 6 

5 26972 21840    23.50   

34.40 52.35   

1 23499 17360    35.36   
2 22581 13454    67.84   
3 22081 12152    81.71   
4 23092 16058    43.80   

55 8 

5 23298 16926    37.65   

53.27 81.71   

 

Table F.9 (continued): Computational results for General Problem where [ ]25,35jp ∈  and [ ]22, 48id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 1560 1560 1560   0.00 0.00 
2 1440 1440 1440   0.00 0.00 
3 1380 1380 1380   0.00 0.00 
4 1560 1560 1560   0.00 0.00 

10 2 

5 1560 1560 1560   0.00 0.00 

0.00 0.00 0.00 0.00 

1 966 936 958 1542.77 3.21 0.84 
2 977 864 974 4733.44 13.08 0.31 
3 880 828 880 4309.56 6.28 0.00 
4 1028 936 1028 3944.96 9.83 0.00 

10 4 

5 1089 936 1080 4871.54 16.35 0.83 

9.75 16.35 0.40 0.84 

1 966 728 958 1542.77 32.69 0.84 
2 977 672 974 4385.29 45.39 0.31 
3 880 644 862 2002.31 36.65 2.09 
4 1054 728 1028 3944.96 44.78 2.53 

10 6 

5 1089 728 1080 4871.54 49.59 0.83 

41.82 49.59 1.32 2.53 

1 966 624 958 1542.77 54.81 0.84 
2 977 576 974 3337.92 69.62 0.31 
3 880 552 862 1341.00 59.42 2.09 
4 1054 624 1028 3944.96 68.91 2.53 

10 8 

5 1089 624 1080 4871.54 74.52 0.83 

65.46 74.52 1.32 2.53 

 

Table F.10: Computational results for General Problem where [ ]1,35jp ∈  and [ ]22, 28id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 8788 8788    0.00   
2 8112 8112    0.00   
3 7774 7774    0.00   
4 8788 8788    0.00   

25 2 

5 8788 8788    0.00   

0.00 0.00   

1 4760 4732    0.59   
2 4643 4368    6.30   
3 4204 4186    0.43   
4 4758 4732    0.55   

25 4 

5 4732 4732    0.00   

1.57 6.30   

1 3500 3380    3.55   
2 4051 3120    29.84   
3 3208 2990    7.29   
4 3732 3380    10.41   

25 6 

5 3849 3380    13.88   

12.99 29.84   

1 3500 2704    29.44   
2 4051 2496    62.30   
3 3208 2392    34.11   
4 3625 2704    34.06   

25 8 

5 3849 2704    42.34   

40.45 62.30   

 

Table F.10 (continued): Computational results for General Problem where [ ]1,35jp ∈  and [ ]22, 28id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 21840 21840    0.00   
2 20160 20160    0.00   
3 19320 19320    0.00   
4 21840 21840    0.00   

40 2 

5 21840 21840    0.00   

0.00 0.00   

1 11488 11440    0.42   
2 10632 10560    0.68   
3 10192 10120    0.71   
4 11488 11440    0.42   

40 4 

5 11440 11440    0.00   

0.45 0.71   

1 8116 8008    1.35   
2 7942 7392    7.44   
3 7412 7084    4.63   
4 8526 8008    6.47   

40 6 

5 8440 8008    5.39   

5.06 7.44   

1 6902 6240    10.61   
2 7590 5760    31.77   
3 6999 5520    26.79   
4 7381 6240    18.29   

40 8 

5 7880 6240    26.28   

22.75 31.77   

 

Table F.10 (continued): Computational results for General Problem where [ ]1,35jp ∈  and [ ]22, 28id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 40768 40768    0.00   
2 37632 37632    0.00   
3 36064 36064    0.00   
4 40768 40768    0.00   

55 2 

5 40768 40768    0.00   

0.00 0.00   

1 21202 21112    0.43   
2 19640 19488    0.78   
3 18758 18676    0.44   
4 21202 21112    0.43   

55 4 

5 21112 21112    0.00   

0.41 0.78   

1 14736 14560    1.21   
2 14284 13440    6.28   
3 13406 12880    4.08   
4 15248 14560    4.73   

55 6 

5 14902 14560    2.35   

3.73 6.28   

1 12258 11284    8.63   
2 12702 10416    21.95   
3 11158 9982    11.78   
4 12591 11284    11.58   

55 8 

5 12244 11284    8.51   

12.49 21.95   

 

Table F.10 (continued): Computational results for General Problem where [ ]1,35jp ∈  and [ ]22, 28id ∈  

 

 

 



 349

n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 2160 2160 2160  0.00 0.00 
2 2040 2040 2040  0.00 0.00 
3 1980 1980 1980  0.00 0.00 
4 2160 2160 2160  0.00 0.00 

10 2 

5 2160 2160 2160  0.00 0.00 

0.00 0.00 0.00 0.00 

1 1296 1296 1296  0.00 0.00 
2 1236 1224 1236 1478.51 0.98 0.00 
3 1200 1188 1200 1747.53 1.01 0.00 
4 1308 1296 1308 3051.37 0.93 0.00 

10 4 

5 1326 1296 1326 2284.08 2.31 0.00 

1.05 2.31 0.00 0.00 

1 1182 1008 1182 1280.05 17.26 0.00 
2 1236 952 1236 1478.51 29.83 0.00 
3 1086 924 1071 554.78 17.53 1.40 
4 1236 1008 1236 605.87 22.62 0.00 

10 6 

5 1314 1008 1314 2086.30 30.36 0.00 

23.52 30.36 0.28 1.40 

1 1182 864 1182 1280.05 36.81 0.00 
2 1236 816 1236 1478.51 51.47 0.00 
3 1086 792 1071 554.78 37.12 1.40 
4 1236 864 1236 605.87 43.06 0.00 

10 8 

5 1314 864 1314 2086.30 52.08 0.00 

44.11 52.08 0.28 1.40 

 

Table F.11: Computational results for General Problem where [ ]1,35jp ∈  and [ ]32,38id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 12168 12168    0.00   
2 11492 11492    0.00   
3 11154 11154    0.00   
4 12168 12168    0.00   

25 2 

5 12168 12168    0.00   

0.00 0.00   

1 6562 6552    0.15   
2 6224 6188    0.58   
3 6016 6006    0.17   
4 6562 6552    0.15   

25 4 

5 6552 6552    0.00   

0.21 0.58   

1 4706 4680    0.56   
2 5040 4420    14.03   
3 4330 4290    0.93   
4 4781 4680    2.16   

25 6 

5 4830 4680    3.21   

4.18 14.03   

1 4239 3744    13.22   
2 4810 3536    36.03   
3 3882 3432    13.11   
4 4410 3744    17.79   

25 8 

5 4624 3744    23.50   

20.73 36.03   

 

Table F.11 (continued): Computational results for General Problem where [ ]1,35jp ∈  and [ ]32,38id ∈  

 

 

 



 351

n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 30240 30240    0.00   
2 28560 28560    0.00   
3 27720 27720    0.00   
4 30240 30240    0.00   

40 2 

5 30240 30240    0.00   

0.00 0.00   

1 15848 15840    0.05   
2 14992 14960    0.21   
3 14536 14520    0.11   
4 15848 15840    0.05   

40 4 

5 15840 15840    0.00   

0.09 0.21   

1 11140 11088    0.47   
2 10568 10472    0.92   
3 10228 10164    0.63   
4 11152 11088    0.58   

40 6 

5 11088 11088    0.00   

0.52 0.92   

1 8720 8640    0.93   
2 9034 8160    10.71   
3 8522 7920    7.60   
4 9484 8640    9.77   

40 8 

5 9295 8640    7.58   

7.32 10.71   

 

Table F.11 (continued): Computational results for General Problem where [ ]1,35jp ∈  and [ ]32,38id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 56448 56448    0.00   
2 53312 53312    0.00   
3 51744 51744    0.00   
4 56448 56448    0.00   

55 2 

5 56448 56448    0.00   

0.00 0.00   

1 29254 29232    0.08   
2 27652 27608    0.16   
3 26810 26796    0.05   
4 29246 29232    0.05   

55 4 

5 29232 29232    0.00   

0.07 0.16   

1 20274 20160    0.57   
2 19190 19040    0.79   
3 18556 18480    0.41   
4 20267 20160    0.53   

55 6 

5 20160 20160    0.00   

0.46 0.79   

1 15996 15624    2.38   
2 15963 14756    8.18   
3 14596 14322    1.91   
4 16342 15624    4.60   

55 8 

5 15800 15624    1.13   

3.64 8.18   

 

Table F.11 (continued): Computational results for General Problem where [ ]1,35jp ∈  and [ ]32,38id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 2400 2400 2400   0.00 0.00 
2 1860 1860 1860   0.00 0.00 
3 1680 1680 1680   0.00 0.00 
4 2220 2220 2220   0.00 0.00 

10 2 

5 2340 2340 2340   0.00 0.00 

0.00 0.00 0.00 0.00 

1 1440 1440 1440   0.00 0.00 
2 1188 1116 1188 1693.10 6.45 0.00 
3 1056 1008 1056 1279.40 4.76 0.00 
4 1332 1332 1332   0.00 0.00 

10 4 

5 1404 1404 1404   0.00 0.00 

2.24 6.45 0.00 0.00 

1 1245 1120 1240 621.22 11.16 0.40 
2 1188 868 1188 2190.65 36.87 0.00 
3 1012 784 1012 1389.17 29.08 0.00 
4 1265 1036 1265 1495.26 22.10 0.00 

10 6 

5 1350 1092 1350 1238.59 23.63 0.00 

24.57 49.59 0.08 0.40 

1 1245 960 1240 621.22 29.69 0.40 
2 1188 744 1188 2457.44 59.68 0.00 
3 1012 672 1012 1326.71 50.60 0.00 
4 1265 888 1265 1495.26 42.45 0.00 

10 8 

5 1350 936 1350 1238.59 44.23 0.00 

45.33 59.68 0.08 0.40 

 

Table F.12: Computational results for General Problem where [ ]1,35jp ∈  and [ ]22, 48id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 13520 13520    0.00   
2 10478 10478    0.00   
3 9464 9464    0.00   
4 12506 12506    0.00   

25 2 

5 13182 13182    0.00   

0.00 0.00   

1 7280 7280    0.00   
2 5767 5642    2.22   
3 5136 5096    0.78   
4 6734 6734    0.00   

25 4 

5 7098 7098    0.00   

0.60 2.22   

1 5252 5200    1.00   
2 4922 4030    22.13   
3 3955 3640    8.65   
4 4964 4810    3.20   

25 6 

5 5120 5070    0.99   

7.20 22.13   

1 4553 4160    9.45   
2 4915 3224    52.45   
3 3739 2912    28.40   
4 4582 3848    19.07   

25 8 

5 4926 4056    21.45   

26.16 52.45   

 

Table F.12 (continued): Computational results for General Problem where [ ]1,35jp ∈  and [ ]22, 48id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality  

Gap (%) 

1 33600 33600    0.00   
2 26040 26040    0.00   
3 23520 23520    0.00   
4 31080 31080    0.00   

40 2 

5 32760 32760    0.00   

0.00 0.00   

1 17600 17600    0.00   
2 13784 13640    1.06   
3 12480 12320    1.30   
4 16312 16280    0.20   

40 4 

5 17160 17160    0.00   

0.51 1.30   

1 12384 12320    0.52   
2 10074 9548    5.51   
3 9218 8624    6.89   
4 11652 11396    2.25   

40 6 

5 12012 12012    0.00   

3.03 6.89   

1 9952 9600    3.67   
2 8952 7440    20.32   
3 8307 6720    23.62   
4 10116 8880    13.92   

40 8 

5 10000 9360    6.84   

13.67 23.62   

 

Table F.12 (continued): Computational results for General Problem where [ ]1,35jp ∈  and [ ]22, 48id ∈  
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n  K  
Ins. 

# 
GH 

Lower 

Bound 
Optimal 

CPU 

Times 

(sec) 

LB  Gap 

(%) 

Optimality  

Gap (%) 

Average LB 

Gap (%) 

Maximum 

LB Gap (%) 

Average 

Optimality 

Gap (%) 

Maximum 

Optimality 

 Gap (%) 

1 62720 62720    0.00   
2 48608 48608    0.00   
3 43904 43904    0.00   
4 58016 58016    0.00   

55 2 

5 61152 61152    0.00   

0.00 0.00   

1 32480 32480    0.00   
2 25352 25172    0.72   
3 22912 22736    0.77   
4 30068 30044    0.08   

55 4 

5 31668 31668    0.00   

0.31 0.77   

1 22552 22400    0.68   
2 18073 17360    4.11   
3 16192 15680    3.27   
4 21120 20720    1.93   

55 6 

5 21840 21840    0.00   

2.00 4.11   

1 17698 17360    1.95   
2 15514 13454    15.31   
3 13424 12152    10.47   
4 17275 16058    7.58   

55 8 

5 17076 16926    0.89   

7.24 15.31   

 

Table F.12 (continued): Computational results for General Problem where [ ]1,35jp ∈  and [ ]22, 48id ∈  
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