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ABSTRACT

DYNAMIC TEXTURE ANALYSIS IN VIDEO WITH

APPLICATION TO FLAME, SMOKE AND VOLATILE

ORGANIC COMPOUND VAPOR DETECTION

Osman Günay

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Enis Çetin

July 2009

Dynamic textures are moving image sequences that exhibit stationary charac-

teristics in time such as fire, smoke, volatile organic compound (VOC) plumes,

waves, etc. Most surveillance applications already have motion detection and

recognition capability, but dynamic texture detection algorithms are not inte-

gral part of these applications. In this thesis, image processing based algorithms

for detection of specific dynamic textures are developed. Our methods can be

developed in practical surveillance applications to detect VOC leaks, fire and

smoke. The method developed for VOC emission detection in infrared videos

uses a change detection algorithm to find the rising VOC plume. The rising

characteristic of the plume is detected using a hidden Markov model (HMM).

The dark regions that are formed on the leaking equipment are found using a

background subtraction algorithm. Another method is developed based on an

active learning algorithm that is used to detect wild fires at night and close range

flames. The active learning algorithm is based on the Least-Mean-Square (LMS)

method. Decisions from the sub-algorithms, each of which characterize a certain

property of the texture to be detected, are combined using the LMS algorithm
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to reach a final decision. Another image processing method is developed to de-

tect fire and smoke from moving camera video sequences. The global motion

of the camera is compensated by finding an affine transformation between the

frames using optical flow and RANSAC. Three frame change detection methods

with motion compensation are used for fire detection with a moving camera. A

background subtraction algorithm with global motion estimation is developed

for smoke detection.

Keywords: VOC leak detection, flame detection, smoke detection, night-fire de-

tection, computer vision, dynamic textures, hidden Markov models, least-mean-

square (LMS) algorithm, active learning, optical flow, motion compensation,

RANSAC.
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ÖZET

VİDEODA DİNAMİK DOKU ANALİZİ VE ALEV, DUMAN,

UÇUCU ORGANİK BİLEŞİK BUHARI BULMAYA

UYGULANMASI

Osman Günay

Elektrik ve Elektronik Mühendisliği Bölümü, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. A. Enis Çetin

July 2009

Dinamik dokular hareketli görüntü dizilerinden oluşan, zaman içinde durgun

karakteristik gösteren ateş, duman, uçucu organik bileşik (VOC) gazları, gibi

maddelerdir. Hareket algılama ve tanıma, görüntü tabanlı güvenlik sistem-

lerinin yerleşik bir parçası haline gelmesine rağmen, dinamik dokuları algılama

ve sınıflandırma henüz çoğu güvenlik sisteminde entegre edilmemiştir. Bu tezde

dinamik dokuların ayrıştırılması ve sınıflandırması için resim işlemeye dayalı al-

goritmalar geliştirilmiştir. Geliştirdiğimiz yöntemler güvenlik sistemlerinde VOC

sızıntıları, ateş ve duman algılamak için kullanılabilir. Infrared videolarda VOC

sızıntılarını algılamak için geliştirilen yöntem, yükselen VOC gazlarını bulmak

için bir değişiklik tespit algoritması kullanır. Gazların zaman içinde yükselme

karakteristiği bir Gizli Markov Modeli (HMM) kullanılarak algılanır. Bu ga-

zların sızıntı yapan ekipmanda oluşturduğu koyu bölgeler arkaplan çıkarma al-

goritması ile bulunur. Gece çıkan orman yangınlarını ve yakın mesafeli alevleri

algılamak için etkin bir öğrenme algoritması kullanan bir görüntü işleme yöntemi

geliştirilmiştir. Etkin öğrenme algoritması, en az ortalama kare (LMS) yöntemini

kullanır. Dinamik dokuların belirli özelliklerini karakterize eden alt-yordamların
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her biri nihai karara ulaşmak için LMS algoritması ile birleştirilmiştir. Başka bir

görüntü işleme yöntemi de hareketli kamera kullanarak ateş ve duman algılamak

için geliştirilmiştir. Kameranın çerçeveler arasında yaptığı hareket optik akış ve

RANSAC kullanılarak bulunan bir ilgin dönüşün ile telafi edilmiştir. Hareketli

bir kamera ile ateş bulmak için üç kare değişim algılama yöntemi kullanılır. Du-

man algılama için kamera hareket tahmini kullanan bir arka plan çıkarma algo-

ritması geliştirilmiştir.

Anahtar Kelimeler: VOC algılama, alev algılama, duman algılama, gece ateş

bulma, bilgisayarlı görü, dinamik doku, gizli Markov modeli, en küçük-ortalama-

kare (LMS) yordamı, aktif öğrenme, optik akış, hareket telafisi, RANSAC.
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Chapter 1

Introduction

Video based surveillance systems have been used since the closed circuit television

systems (CCTV) became widely available for security applications. During the

recent decades powered by the developments in the computer vision technology

several image processing algorithms have been developed for object recognition,

classification and event analysis. Today most video based surveillance systems

are already equipped with these image processing modules. Surveillance systems

used in industrial plants, refineries, chemical manufacturers, etc. also need algo-

rithms for automatic detection and classification of dynamic textures. Dynamic

textures are regions of moving image frames that display some sort of “temporal

stationarity”. Dynamic textures include fire, smoke, waves, gas plume, etc.

There are several algorithms in the literature developed for recognition and

segmentation of dynamic textures. Vidal and Ghoreyshi used second order Ising

descriptors to model the spatial statistics of dynamic textures [2]. They try to

solve the dynamic texture segmentation problem using this model by minimiz-

ing the temporal variance of the stochastic part of the model. This approach

is proven to handle intensity and texture based image segmentation. Another
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method to segment dynamic textures is to use optical flow features. The fea-

tures used for this method usually describe local image distortions in terms of

curl or divergence. In [3] one normal and four complete optical flow algorithms

are compared in terms of performance.

Saisan et al. used stochastic methods to learn and model dynamic textures [4].

Sequences of moving images are analyzed as signals. A closed form solution to the

learning problem for a second-order model is proposed based on total likelihood

or prediction error criteria. They proposed a method for recognition of textures

which uses the observation that similar textures tend to cluster in model space.

Dynamic textures are modeled using the spatio-temporal autoregressive model

(STAR) in [5]. In this model each pixel is expressed as a linear combination of

surrounding pixels lagged both in space and in time. Least squares method is

used to estimate model parameters for large, causal neighborhoods using a large

number of parameters. There are several other dynamic texture recognition

and modeling methods in the literature ([6] -[12]) that are aimed at segmenting

general dynamic texture characteristics.

In this thesis, practical methods for recognizing certain types of dynamic tex-

tures are developed. These methods use computationally efficient real-time al-

gorithms to work in a surveillance system. An image processing based algorithm

is designed to detect and segment volatile organic compounds (VOC) leaking

from industrial equipments using video streams captured by an infrared (IR)

camera. Video frames are automatically analyzed to detect VOC plume and also

the residues that the VOC leak leaves on the leaking equipment. VOC plumes

are detected and tracked using a change detection method and then darker re-

gions that are formed on the leaking equipment are found using a background

subtraction algorithm.
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An active learning method is used for dynamic texture recognition. The al-

gorithm combines the decision results of sub-algorithms that characterize a dif-

ferent aspect of the analyzed texture. Individual decisions of the sub-algorithms

are combined together using a least-mean-square (LMS) based decision fusion ap-

proach, and texture/no-texture decision is reached by an active learning method.

This method is also applied to wildfire detection [13]. We present the results of

the application of the algorithm to wildfire detection at night and close range

flame detection. The method for wildfire detection at night comprises three sub-

algorithms: (i) slow moving video object detection, (ii) bright region detection,

and (iii) detection of objects exhibiting periodic motion. Each of these sub-

algorithms characterizes an aspect of fire captured at night by a visible range PTZ

camera. For flame detection four sub-algorithms are developed: (i) detection of

flame colored moving objects, (ii) temporal, and (iii) spatial wavelet analysis for

flicker detection and (iv) contour analysis of fire colored region boundaries. Each

algorithm yields a continuous decision value as a real number in the range [-1,1]

at every image frame of a video sequence. Decision values from sub-algorithms

are fused using an adaptive algorithm in which weights are updated using the

Least Mean Square (LMS) method in the training (learning) stage.

An optical flow based algorithm is developed to segment moving objects from

a continuously moving camera. The algorithm is applied to flame detection and

wildfire smoke detection from a panning camera. Two different methods are

developed for texture segmentation from a moving camera. The first method

uses three consecutive frames to register camera motion between the reference

middle frame and the other two frames. After motion estimation the previous

and next frames are warped into the reference frame using the estimated affine

transformation. This approach can be used for segmenting flames from moving

camera video sequences. To segment smoke from a moving camera we use a back-

ground subtraction method similar to panoramic backgrounds usually employed

for using background subtraction with moving cameras.
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1.1 Thesis Outline

The outline of the thesis is as follows. In Chapter 2, a method for detecting VOC

plumes in video is developed. An LMS based active learning algorithm is used

for wild fire detection at night and close range flame detection in Chapter 3. In

Chapter 4, a method for segmenting fire and smoke from moving camera image

sequences is developed. Chapter 5 concludes the thesis by providing an overall

summary of the results.
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Chapter 2

VOC Leak Detection in IR

Videos

In this chapter, an image processing based algorithm is designed to detect and

segment volatile organic compounds (VOC) leaking from industrial equipments

using video streams captured by an infrared (IR) camera. In the U.S, the leak

detection and repair program (LDAR) requires petroleum refineries and organic

chemical manufacturers to check for possible VOC leaks around process equip-

ments and perform repairs if necessary since 1980s [14]. In the current detection

framework a portable flame ionization detector (FID) is used to monitor the

seals around the components for VOC leaks. Since there are a large number of

process components in a single facility this method is quite costly to perform

even if it is done only four times a year [15]. In recent years, petroleum re-

fining and petrochemical industries started using IR cameras to detect volatile

organic compounds (VOC) leaking out of process equipment. This method is a

low cost alternative to the FID procedure [16, 17]. The IR cameras work at a

predetermined wavelength that absorbs VOC leaks.
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Different substances create VOC emissions with different characteristics.

Diesel and propane have vapor similar to smoke coming out of a pile of burning

wood while gasoline vapor is transparent and wavy [18]. The common character-

istic of all VOC emissions is the fact that during the initial stages of VOC leaks

the temperature of the leaking equipments and the leak drops which causes tem-

perature difference between the surrounding air and the leak. The temperature

difference causes intensity difference on the image that is created by the detector

array of the camera [15]. Another common characteristic of the VOC plumes

is the absorption of IR light at a specific wavelength. Different VOC plumes

have different absorption characteristics. The IR spectra of Ammonia, Methane,

Butane and Propane are shown in Fig. 2.1. The absorption amount of sources

is shown against the wavelength of the IR light. The FLIR camera we used has

spectral range in 7.5µm to 13µm. Therefore methane and ammonia can easily

be recognized as dark regions in the IR videos obtained with this camera. In our

approach we first detect and track VOC plumes using a change detection method

and then find the darker regions that are formed on the leaking equipment using

a background subtraction based algorithm [19].

2.1 Related Work

There are only a few implementations that use image processing for detection of

VOC emissions. Most methods use sensor arrays or FLIR and LWIR cameras

for detection. The method in [20] uses piezoelectric acoustic wave sensors for the

detection of VOCs. When a molecular material is added or subtracted from the

surface of the acoustic wave sensor, a change in its resonant frequency occurs.

Specifically they use 6 quartz crystal microbalances (QCMs) as a sensor array

and the responses of the sensors are analyzed to separate different patterns of

VOCs. Detection of VOCs is performed with polymer-coated cantilevers in [21].

The change in the resonance frequency of the cantilevers when they absorb VOCs
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is used as detection mechanism. The system in [22] uses a tin oxide gas-sensors

array and artificial neural network (ANN) for the identification of some of the

volatile organic compounds relevant to environmental monitoring. An array of

SnO2-based thick-film gas sensors is used to generate the response patterns and

back propagation neural network is used for the classification. In [15] an FFT

based image alignment method is used to register IR video frames as a prepro-

cessing module for other possible video processing methods.

Our method is similar to the method described in [18] that uses only image

processing techniques to detect VOC emissions. In [18], videos captured by a

visible-range camera are used to detect leaking VOC plume from a damaged

component using the observation that edges present in image frames lose their

sharpness around the regions where VOC emissions occur. In this method the

decrease of high frequency energy of the scene is detected using the one level

wavelet transform of the current and the background images which are obtained

using a background subtraction algorithm. The regions with VOC plume in

image frames are analyzed in low-band sub-images, as well. Image frames are

compared with their corresponding low-band images for the decrease in wavelet

energy. One drawback of this implementation is the use of a visible-range camera,

by using an infrared camera we can better monitor the temperature difference

that is caused by VOC plume during the initial stages of emission.
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(a) (b)

(c) (d)

Figure 2.1: Infrared spectrum of various VOC sources: (a) Methane IR spec-
trum; (b) Ammonia IR spectrum; (c) Butane IR spectrum; (d) Propane IR
spectrum [1].

2.2 Detection Algorithm

2.2.1 Detection of Slow Moving Objects

When process equipments in petroleum or organic chemical factories leak VOC

plume the plume has lower temperature than the surrounding air during the

initial stages of emission or the vapor absorbs the IR light and the region appears

darker then the background. This also lowers the temperature on the part of the

leaking equipment where the leak occurs. Therefore these regions become darker

in IR camera images. To detect these regions we use a background subtraction

algorithm that uses double backgrounds for finding left or removed objects that

are stationary but have different characteristics than the background. Let I(x, n)

represent the intensity value of the pixel at location x in the nth video frame.

Assuming the camera is fixed, two background images, Bfast(x, n) and Bslow(x, n)
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corresponding to the scene with different update rates are estimated [23, 24], from

the video images I(x, n). Initially, Bfast(x, 0) and Bslow(x, 0) can be taken as

I(x, 0).

In [19] a background image B(x, n + 1) at time instant n + 1 is recursively

estimated from the image frame I(x, n) and the background image B(x, n) of the

video as follows:

B(x, n + 1) =





aB(x, n) + (1− a)I(x, n) if x is stationary

B(x, n) if x is a moving pixel
, (2.1)

where the time constant a is a parameter between 0 and 1 that determines how

fast the new information in the current image I(x, n) supplants old observations.

The image B(x, n) models the background scene.

Stationary and moving pixel definitions are given in [19]. Background im-

ages Bfast(x, n) and Bslow(x, n) are updated as in Eq. (2.1) with different up-

date rates. In our implementation, Bfast(x, n) is updated at every frame and

Bslow(x, n) is updated once in a second with a = 0.7 and 0.9, respectively. The

update parameter of Bfast(x, n) is chosen smaller than Bslow(x, n) because we

want more contribution from the current image I(x, n) in the next background

image Bfast(x, n + 1)

By comparing background images, Bfast and Bslow slow moving objects are

detected [23, 24, 25] because Bfast is updated more often than Bslow. If there

exists a substantial difference between the two images for some period of time,

then an alarm for slow moving region is raised, and the region is marked. Apart

from the slow moving object constraint we also impose intensity conditions on

the detected regions considering the temperature drop on caused VOC emission
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as follows:

D(x, n) =





1 if (Bfast(x, n)− I(x, n)) > TC and I(x, n) < TI

0 else
, (2.2)

where D(x, n) is a binary image that has value 1 for pixels that satisfy inten-

sity requirements and 0 for others. TC and TI are experimentally determined

thresholds.

In Fig. 2.2 the foreground, slow and fast backgrounds and the detection result

for a frame of an IR video sequence are shown.

(a) (b)

(c) (d)

Figure 2.2: Foreground and background images of a frame of a video sequence:
(a) current image; (b) slow background; (c) fast background; (d) detection result.
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2.2.2 Detection of VOC Plume

After detecting the color change on the leaking equipment we also detect the

moving VOC plume. VOC plume is fast moving and nearly transparent for

most leaking gases. Thus plume cannot be detected using background subtrac-

tion. A change detection approach is used to detect VOC plume and background

subtraction is used to segment and discard ordinary moving objects. Moving ob-

jects are detected by subtracting the current image I(x, n) from the background

and thresholding by an adaptively updated threshold image T (x, n) as shown in

Eq. 2.3. M(x, n) is a binary image that has high values for moving regions in

the current frame:

M(x, n) =





1 if |B(x, n)− I(x, n)| > T (x, n)

0 else
(2.3)

T (x, n) is a recursively updated threshold at each frame n, describing an

intensity change at pixel position x:

T (x, n+1) =





aT (x, n) + (1− a)(c|I(x, n)−B(x, n)|) if x is stationary

T (x, n) if x is a moving pixel
,

(2.4)

where c is a real number greater than one and the update parameter a is a

positive number close to one.

Possible VOC plume regions are found by thresholding the difference between

the current frame, I(x, n), and previous frame I(x, n − 1) and discarding the

results of background subtraction as follows:

C(x, n) =





1 if TL < |I(x, n)− I(x, n− 1)| < TH and M(x, n) < 1

0 else
, (2.5)
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where C(x, n) is a binary image that has value 1 for possible plume regions.

Fig. 2.3 shows the application of the algorithm for detecting butane plume.

12



(a) (b)

(c) (d)

(e) (f)

Figure 2.3: VOC plume segmentation using change detection: (a) current frame;
(b) background; (c) threshold; (d) background motion; (e) frame difference;
(f) detection result.
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2.2.3 Rising Plume Detection

VOC plume regions tend to rise up from the equipment at the early stages of

emission. This characteristic behavior of plumes is modeled with three-state

hidden Markov models (HMM). Temporal variation in row number of the center

pixel belonging to a VOC plume regions found by change detection is used as a

one dimensional (1-D) feature signal, F = f(n), and fed to the Markov models

shown in Fig. 2.4. One of the models (λ1) corresponds to genuine VOC smoke

regions and the other one (λ2) corresponds to regions with other moving objects.

Transition probabilities of these models are estimated off-line from actual VOC

leaks and test smokes. The state S1 is attained, if the row value of the center

pixel in the current image frame is smaller than that of the previous frame (rise-

up). If the row value of the center pixel in the current image frame is larger than

that of the previous frame, then S2 is attained and this means that the region

moves-down. No change in the row value corresponds to S3 [13].

Figure 2.4: Markov model λ1 corresponding to VOC plume (left) and the Markov
model λ2 of ordinary moving objects (right). Transition probabilities aij and bij

are estimated off-line.

A possible plume region is classified as a rising region when the probability of

obtaining the observed feature signal F = f(n) given the probability model λ1

is greater than the probability of obtaining the observed feature signal F = f(n)
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given the probability model λ2, i.e., when the center pixel belonging to a slow

moving region tends to exhibit a rising characteristic [13]:

p1 = P (F |λ1) > p2 = P (F |λ2), (2.6)

where F is the observed feature signal, λ1 and λ2 represent the Markov models

for VOC plume and other objects respectively.

2.3 Experimental Results

The proposed method was implemented in C++ programming language and

tested with various VOC plume types. The HMMs used in the temporal analysis

step were trained using indoor and outdoor IR video clips with VOC emissions

and ordinary moving objects. Some of the video clips are recorded at TÜPRAŞ

(Türkiye Petrol Rafinerileri A.Ş.). We used a total of 8 video clips with total 7000

frames. The FLIR camera used to record some of the videos is Thermovision A40

shown in Fig. 2.5. Image frames with detection results from some of the clips

are shown in Fig. 2.6. The green rectangles show the moving VOC plume and

the blue rectangles indicate a temprerature change in the equipment.
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Figure 2.5: Thermovison A40 FLIR camera.

Table 2.1 summarizes the detection results for IR videos with different types

of VOC emissions. The first comparison is made between the total number of

frames in the video with VOC plume and the number of frames detected by the

algorithm. the algorithm was able to detect and track most of the plume between

the frames. A second comparison is carried out between the frame number of

the first image that the temperature change on the leaking equipment became

visible and the frame number of the image for which the first alarm is issued by

the algorithm. According to the results of the experiment, the method was able

to detect temperature change at most after 75 frames.
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(a) (b)

(c) (d)

Figure 2.6: Detection Results for different VOC emissions from various sources:
(a) Butane; (b) Gasoline; (c) Water Vapour; (d) Ammonia.
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Table 2.1: Detection results for various VOC types. Number of frames with VOC
plume and the number of frames detected by the algorithm are compared. The
frame number when the first temperature change in the equipment occurs and
the frame number of the first detection of temperature change are displayed.

VOC Type # of Frames First Frame of # of First Alarm Frame
with Plume Temp. change detected frames for Temp. Change

Ammonia - 100 - 122
Gasoline 17 780 11 830

Butane+Propane 280 530 196 605
Water Vapour 870 - 500 -

Ethylene 170 - 110 -
Ammonia - 300 - 310
Ammonia - 273 - 294
Ammonia - 365 - 380

2.4 Summary

A novel method to detect VOC emissions in IR videos is developed. The algo-

rithm detects both moving VOC plume and the temperature change on the leak-

ing equipment. The algorithm uses a background subtraction that uses double

backgrounds to detect slow moving or stationary objects. Intensity restrictions

are defined to further analyze the temperature change that occurs during the

initial stages of emission. Moving VOC plume is detected using a change detec-

tion approach. Hidden Markov models are trained offline using temporal frame

information to detect the rising nature of VOC plume. The method can be used

for both indoor and outdoor VOC emission detection applications.
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Chapter 3

Fire Detection Using LMS Based

Active Learning

In this chapter, an active learning method for dynamic texture recognition is

described. The algorithm combines the decision results of sub-algorithms that

characterize a different aspect of the analyzed texture. Individual decisions of

the sub-algorithms are combined together using a least-mean-square (LMS) based

decision fusion approach, and texture/no-texture decision is reached by an active

learning method.

We present the results of the application of the algorithm to wildfire detection

at night and close range flame detection. The method for wildfire detection at

night comprises three sub-algorithms: (i) slow moving video object detection,

(ii) bright region detection, and (iii) detection of objects exhibiting periodic

motion. Each of these sub-algorithms characterizes an aspect of fire captured at

night by a visible range PTZ camera. In our system, we detect smoke during

day-time and switch to the night-fire detection mode at night. Because smoke

becomes visible much earlier than flames in Mediterranean Region. In Fig. 3.1,

a day-time wildfire at an initial stage is shown. This fire was detected by our
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system in the summer of 2009. A snapshot of a typical night fire smoke captured

by a look-out tower camera from a distance of 3 km is shown in Fig. 3.2. Even

the flame flicker is not visible from long distances. Therefore, one cannot use the

flame flicker information in [26] for long distance night-fire detection.

For the flame detection problem, four sub-algorithms are used (i) detection

of flame colored moving objects, (ii) temporal, and (iii) spatial wavelet analysis

for flicker detection and (iv) contour analysis of fire colored region boundaries.

Each algorithm yields a continuous decision value as a real number in the range

[-1,1] at every image frame of a video sequence.

Decision values from sub-algorithms are fused using an adaptive algorithm in

which weights are updated using the Least Mean Square (LMS) method in the

training (learning) stage.

3.1 Related Work on Active Learning

The active learning method used in this thesis is similar to classifier ensembles

used in pattern recognition, in which decisions from different classifiers are com-

bined using a linear combiner [27]. A multiple classifier system can prove useful

for difficult pattern recognition problems especially when large class sets and

noisy data are involved, because it allows the use of arbitrary feature descriptors

and classification procedures at the same time [28]. The dynamic texture recog-

nition problem can also be formulated as a joint application of multiple classifier

decisions.

The studies in the field of collective recognition, which were started in the

middle of the 1950s, found wide application in practice during the last decade,

leading to solution to complex large-scale applied problems [29]. One of the first

examples of the use multiple classifiers was given by Dasarathy in [27] in which
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he introduced the concept of composite classifier systems as a means of achieving

improved recognition system performance compared to employing the classifier

components individually. The method is illustrated by studying the case of the

linear/NN(Nearest Neighbor) classifier composite system. Kumar and Zhang

used multiple classifiers for palmprint recognition by characterizing the user’s

identity through the simultaneous use of three major palmprint representations

and achieve better performance than either one individually [30]. A multiple

classifier fusion algorithm is proposed for developing an effective video-based

face recognition method [31]. Garcia and Puig present results showing that pixel-

based texture classification can be significantly improved by integrating texture

methods from multiple families, each evaluated over multisized windows [32].

The proposed technique consists of an initial training stage that evaluates the

behavior of each considered texture method when applied to the given texture

patterns of interest over various evaluation windows of different size.

Figure 3.1: A snapshot of a typical forest fire smoke at the initial stages captured
by a forest watch tower which is 5 km away from the fire (fire region is marked
with an arrow).
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Figure 3.2: A snapshot of a typical night fire captured by a forest watch tower
which is 3 km away from the fire (fire region is marked with an arrow).

3.2 Related Work on Fire Detection

There are several publications on computer vision based fire detection ([33] -

[41]). Most fire and flame detection algorithms are based on color and motion

analysis in video. However, all of these algorithms focus on either day-time flame

detection or smoke detection. Fires occurring at night and at long distances from

the camera have different temporal and spatial characteristics than daytime fires,

as shown in Figs. 3.1 and 3.2. This makes it necessary to develop explicit

methods for video based fire detection at night.

The proposed automatic video based night-time fire detection algorithm is

based on four sub-algorithms: (i) slow moving video object detection, (ii) bright

region detection, and (iii) detection of objects exhibiting periodic motion. Each

sub-algorithm separately decides on the existence of fire in the viewing range of

the camera. Decisions from sub-algorithms are linearly combined using an adap-

tive active fusion method. Initial weights of the sub-algorithms are determined
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from actual forest fire videos and test fires. They are updated using the Least-

Mean-Square (LMS) algorithm during initial installation [42]. The error function

in the LMS adaptation is defined as the difference between the overall decision of

the compound algorithm and the decision of an oracle. In our case, the oracle is

the security guard in the forest watch tower. The system asks the guard to verify

its decision whenever an alarm occurs. In this way, the user actively participates

in the learning process.

The active learning method based on LMS algorithm is a also applied to close

range flame detection in visible range video. The sub-algorithms are modified

versions of the some of the previous works [40, 26, 38, 39] which include fire

detection algorithms that use temporal and spatial wavelet analysis of the video

in a Hidden Markov Models framework to determine the existence of fire. In this

paper, we use an LMS based on-line learning algorithm to combine the decisions

of sub-algorithms, obtained using wavelet analysis and Markov models, in an

efficient manner.

Moving objects are determined using a background subtraction algorithm for

flame detection and fire colored moving objects are determined using Hidden

Markov Models. Temporal and spatial wavelet analysis are carried out on flame

boundaries and inside the fire region. An increase in energy of wavelet coefficients

indicate an increase in high frequency activity. Contours of moving objects are

also analyzed by estimating the boundaries of moving fire colored regions in each

image frame. This spatial domain clue is also combined with temporal clues

to reach a final decision. The proposed automatic video based fire detection

algorithm is based on four sub-algorithms: (i) detection of fire colored moving

objects, (ii) temporal and (iii) spatial wavelet analysis for flicker detection, and

(iv) contour analysis of flame boundaries. Each sub-algorithm separately decides

on the existence of fire in the viewing range of the camera.
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3.3 Adaptation of Sub-algorithm Weights

In the proposed method each sub-algorithm has its own decision function. De-

cision values from sub-algorithms are linearly combined and weights of sub-

algorithms are adaptively updated. Sub-algorithm weights are updated accord-

ing to the Least-Mean-Square (LMS) algorithm which is the most widely used

adaptive filtering method [43, 44]. The individual decision algorithms do not

produce binary values 1 (correct) or −1 (false), but they produce a zero-mean

real number. If the number is positive (negative), then the individual algorithm

decides that there is (not) fire in the viewing range of the camera. The higher

the absolute value, the more confident the sub-algorithm.

Let the compound algorithm be composed of M -many detection algorithms:

D1, ..., DM . Upon receiving a sample input x, each algorithm yields a zero-mean

decision value Di(x) ∈ R. The type of the sample input x may vary depending

on the algorithm. It may be an individual pixel, or an image region, or the entire

image depending on the sub-algorithm of the computer vision problem.

Let D(x, n) = [D1(x, n)...DM(x, n)]T , be the vector of confidence values of

the sub-algorithms for the pixel at location x of input image frame at time step

n, and w(n) = [w1(n)...wM(n)]T be the current weight vector.

We define

ŷ(x, n) = DT(x, n)w(n) =
∑

i

wi(n)Di(x, n) (3.1)

as an estimate of the correct classification result y(x, n) of the oracle for the

pixel at location x of input image frame at time step n, and the error e(x, n) as

e(x, n) = y(x, n)− ŷ(x, n). Weights are updated by minimizing the mean-square-

error (MSE):

min
wi

E[(y(x, n)− ŷ(x, n))2], i = 1, ...,M, (3.2)
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where E represents the expectation operator. After solving the MSE problem

the following normalized weight update equation is obtained:

w(n + 1) = w(n) + µ
e(x, n)

||D(x, n)||2D(x, n), (3.3)

where the µ is an update parameter in the range 0 < µ < 2. Initially the weights

can be selected as 1
M

. The adaptive algorithm converges, if y(x, n) and Di(x, n)

are wide-sense stationary random processes and when the update parameter µ

lies between 0 and 2 [45, 43, 46, 13]. Eq. (3.3) is a computable weight-update

equation. Whenever the oracle provides a decision, the error e(x, n) is computed

and the weights are updated according to Eq. (3.3).

The sub-algorithms described in the previous section are devised in such a way

that each of them yields non-negative decision values, Di’s, for pixels inside fire

regions. The final decision which is nothing but the weighted sum of individual

decisions must also take a non-negative value when the decision functions yield

non-negative values. This implies that, in the weight update step of the active

decision fusion method, weights, w(n) ≥0, should also be non-negative. In the

proposed method, the weights are updated according to Eq. (3.3) and negative

weights are reset to zero complying with the non-negative weight constraint.

3.4 Application to Wild Fire Detection at Night

3.4.1 Building Blocks of Fire Detection Algorithm

Fire detection algorithm is developed to detect the existence of fire within the

viewing range of visible range camera monitoring forestal areas at night. The

proposed fire detection algorithm consists of three main sub-algorithms: (i) slow

moving object detection in video, (ii) bright region detection, and (iii) detection
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of objects exhibiting periodic motion, with decision functions, D1(x, n), D2(x, n)

and, D3(x, n) respectively, for each pixel at location x of every incoming image

frame at time step n.

The decision functions Di, i = 1, ..., M of sub-algorithms either produce bi-

nary values 1 (correct) or −1 (false), or zero-mean real numbers for each incoming

sample x. If the number is positive (negative), then the individual algorithm de-

cides that there is (not) fire in the viewing range of the camera. Output values

of decision functions express the confidence level of each sub-algorithm. Higher

the value, the more confident the algorithm.

Detection of Slow Moving Objects

The slow moving object detection algorithm used in Section 2.2.1 is also used

here. When a fire starts at night it appears as a bright spot in the current image

I(x, n) and it can be detected by comparing the current image with the back-

ground image. However, one can also detect headlights of a vehicle or someone

turning the lights of a building, etc. because they also appear as bright spots in

the current image. On the other hand we can distinguish night fire from head-

lights by using two background images with different update rates. Contribution

of headlights of vehicles into the background image Bfast(x, n) will not be high

but the night fire will appear in Bfast(x, n) over time. Bslow(x, n) is updated

once a second therefore contribution of the night fire will be slower in this image.

The update parameter of Bfast(x, n) is chosen smaller than Bslow(x, n) be-

cause we want more contribution from the current image I(x, n) in the next

background image Bfast(x, n + 1)By comparing background images, Bfast and

Bslow slow moving objects are detected because Bfast is updated more often than

Bslow [23, 24, 25]. If there exists a substantial difference between the two images

for some period of time, then an alarm for slow moving region is raised, and

26



the region is marked. The decision value indicating the confidence level of the

first sub-algorithm is determined by the difference between background images.

Decision function D1(x, n) is defined as:

D1(x, n) =





−1 if |Bfast(x, n)−Bslow(x, n)| ≤ Tlow

2
|Bfast(x,n)−Bslow(x,n)|−Tlow

Thigh−Tlow
− 1 if Tlow ≤ |Bfast(x, n)−Bslow(x, n)| ≤ Thigh

1 if Thigh ≤ |Bfast(x, n)−Bslow(x, n)|
, (3.4)

where 0 < Tlow < Thigh are experimentally determined threshold values [13]. The

threshold Tlow is simply determined according to the noise level of the camera.

When the pixel value difference is less than Tlow = 10 we assume that this differ-

ence is due to noise(pixel values are between 0 and 255 in 8-bit grayscale images)

and the decision function takes the value D1(x, n) = −1 when the difference

between the pixel values at location x of the image increases the value of the

decision function increases as well. When the difference exceeds Thigh = 30, we

are sure that there is a difference between two images and the decision func-

tion D1(x, n) = 1. On the average, 30/(255 ÷ 2) corresponds to %25 difference

between the two pixels.

In our implementation, Tlow (Thigh) is taken as 10 (30) on the luminance (Y)

component of video images. The decision function is not sensitive to the threshold

value Thigh because night fire appears as a bright spot in a dark background. In

all the test sequences that contain wild fire the decision function takes the value 1.

Confidence value is 1 (−1), if the difference |Bfast(x, n)−Bslow(x, n)| is higher

(lower) than threshold Thigh (Tlow). The decision function D1(x, n) takes real

values in the range [-1,1] if the difference is in between the two threshold values.

Detection of Bright Regions

In this sub-algorithm, image intensity analysis is carried out on slow moving ob-

jects to detect bright regions. Long distance wild fires detected at night appear
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as bright regions and do not carry much color information. Commercial visible

range PTZ cameras that we used cannot capture color information from miles

away at night as shown in Fig. 3.2. Therefore it is difficult to implement fire

detection methods that depend on RGB information. Confidence value corre-

sponding to this sub-algorithm should account for these characteristics.

The decision function for this sub-algorithm D2(x, n) takes values between

1 and −1 depending on the value of the Y (x, n) component of the YUV color

space. The decision function D2(x, n) is defined as:

D2(x, n) =





1− 255−Y (x,n)
128

, if Y (x, n) > TI

−1, otherwise
, (3.5)

where Y (x, n) is the luminance value of the pixel at location x of the input image

frame at time step n. The luminance component Y takes real values in the range

[0,255] in an image. The threshold TI is an experimentally determined value and

taken as 180 on the luminance (Y ) component. The luminance value exceeded

TI=180 in all test fires we carried out. The confidence value of D2(x, n) is -1 if

Y (x, n) is below TI . The decision value approaches 1 as luminance value increases

and drops down to -1 for pixels with low luminance values.

Our system is developed for Mediterranean area and in this area the weather

is clear and humidity is low in summer season when most of the wild fires occur.

It is very unlikely that a wildfire will start in a humid day [47]. Our test videos

are captured in a clear day with low humidity level.

Detection of Periodic Regions

The main sources of false alarms in a fire detection scenario at night conditions

are flashing lights on vehicles and building lights in residential areas. Most of

these light sources exhibit perfect periodic behavior which can be detected using
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frequency based analysis techniques. The removal of objects exhibiting periodic

motion eliminates some of the false alarms caused by artificial light sources.

The decision function for this sub-algorithm D3(x, n) is used to remove periodic

objects from candidate fire regions. The candidate regions are determined by

thresholding the previous two decision functions D1(x, n) and D2(x, n) as follows:

A(x, n) =





1, if D1(x, n) > TD1 and D2(x, n) > TD2

0, otherwise
, (3.6)

where the TD1 and TD2 are experimentally determined thresholds and A(x, n) is

a binary image having value 1 for pixels corresponding to candidate regions and 0

for others. The candidate pixels are grouped into connected regions and labeled

by a two-level connected component labeling algorithm [48]. The movement of

the labeled regions between frames is also observed using an object tracking

algorithm [25]. The mean intensity values of tracked regions are stored for 50

consecutive frames corresponding to 2 sec of video captured at 25 fps. The

resulting sequence of mean values is used to decide the periodicity of the region.

Average magnitude difference function (AMDF) methods are used for detection

of objects exhibiting periodic motion.

AMDF is generally used to detect pitch period of voiced speech signals [49].

For a given sequence of numbers s[n], AMDF is calculated as follows:

P (l) =
N−l+1∑

n=1

|s[n + l − 1]− s[n]|, l = 1, 2, ..., N , (3.7)

where N is the number of samples in s[n].
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Figure 3.3: AMDF graphs for (a) periodic flashing light and (b) non-periodic
bright region in video.

In Eq. 3.7, s[n] represents the intensity value of each candidate region . N

is selected as 50 in 25 fps video. For periodic regions, the graph of AMDF also

shows a periodic character as shown in Fig. 3.5. If the AMDF of s[n] is periodic

we define PAMDF =1, otherwise we set PAMDF =-1.

The decision function for the third sub-algorithm is determined in the follow-

ing manner:

D3(x, n) =





1, PAMDF = 1

−1, otherwise
(3.8)

3.4.2 Experimental Results

The proposed fire detection scheme with LMS based active learning method is

implemented in C++ programming language and tested with forest surveillance

recordings captured from cameras mounted on top of forest watch towers near

Antalya and Mugla regions in Turkey. For detection tests we used an analog

PTZ camera and an IP PTZ camera. The analog camera we used is Samsung
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SCC-641P. The camera supports 4CIF (704x576) and CIF (352x288) resolutions,

with minimum illumination of 0.1 lux in color mode and 0.003 lux in black and

white mode. Samsung camera also provides a 22X optical zoom. The IP camera

we used is Axis 232D dome camera. This camera provides resolutions maxi-

mum, 768x576 (PAL)/704x480 (NTSC) and minimum, 176x144 (PAL)/160x120

(NTSC), with 18X optical zoom and minimum illumination of 0.3 lux (color

mode)/0.005 lux (black and white mode). Actually these cameras’ features are

similar to any other commercially available PTZ camera, therefore any cam-

era with minimum CIF resolution and capable of producing more than 10 fps

video frame rate would suffice for our detection method. The Samsung camera

mounted on the forest watch tower is shown in Fig. 3.4.

Figure 3.4: Samsung analog camera mounted on the watch tower.

We have 9 actual fire videos recorded at night. The proposed algorithm was

able to detect fires in 2 to 20 seconds after they became visible. The results of the
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algorithm is compared with the non-adaptive version of the method. The results

are summarized in Table 3.1. Fig. 3.5 shows a sample of a detected fire from

video file V1. The other bright object in this frame is caused by the headlights

of a fire truck. The proposed algorithm was able to separate the two and issue a

correct alarm. Figs. 3.6 and 3.7 display detection results on videos that contain

actual forest fires. In all test fires, an alarm is issued in less than 10 seconds after

the start of the fire. The proposed adaptive fusion strategy significantly reduces

the false alarm rate of the fire detection system by integrating the feedback

from the guard (oracle) into the decision mechanism by using the active learning

framework described in Section 3.3.

Figure 3.5: Correct alarm for a fire at night and elimination of fire-truck head-
lights.
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Figure 3.6: Detection results on an actual forest fire at night.

Figure 3.7: Detection results on an actual forest fire at night.

A set of video clips containing various artificial light sources is used to gen-

erate Table 3.2. The snapshots from four of the videos are shown in Fig. 3.8.

These videos contain an ice skating ring, seaside buildings, seaport and airport

at night. Number of false alarms issued by different methods are presented. The
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Table 3.1: Two different methods (LMS based, and non-adaptive) are compared
in terms of frame numbers at which an alarm is issued for fire captured at various
ranges and fps. It is assumed that the fire starts at frame 0.

Video Seq. Range Frame Rate Frame number of first alarm
(km) (fps) LMS Based Non-Adaptive

V1 5 25 221=10 sec 241
V2 6 25 100=4 sec 115
V3 6 25 216=8 sec 730
V4 7 25 151=6 sec 724
V5 1 25 83=4 sec 184
V6 0.5 25 214=8 sec 204
V7 0.1 30 59=2 sec 241
V8 0.1 30 74=3 sec 194
V9 0.1 30 56=2 sec 211

Table 3.2: Two different methods (LMS based, and non-adaptive) are compared
in terms of the number of false alarms issued to video sequences that do not
contain fire.

Video Seq. Frame Rate Duration Number of false alarms
(fps) (frames) LMS Based Non-Adaptive

V10 15 3000 1 4
V11 15 1000 0 2
V12 15 2000 0 3
V13 15 1000 0 2
V14 10 1900 0 1
V15 10 1200 0 5

proposed LMS based method produces the lowest number of false alarms in our

data set. The proposed method produces a false alarm only to the video clip

V10. On the other hand, the other method produces false alarms in all the test

clips. In real-time operating mode the PTZ cameras are in continuous scan mode

between predefined preset locations. They stop at each preset and run the detec-

tion algorithm for some time before moving to the next preset. By calculating

separate weights for each preset we were able to reduce false alarms.

34



Figure 3.8: Snapshots from videos that are used for false alarm tests. (a) Ice
skating ring at night, (b) seaside building lights at night, (c)seaport at night, (d)
airport at night.

3.5 Application to Close Range Flame Detec-

tion

3.5.1 Sub-algorithms of Flame Detection Algorithm

Flame detection algorithm is developed to locate flame regions within the viewing

range of visible range camera. Four sub-algorithms that make up the composite

detection algorithm are: (i) detection of fire colored moving objects, performing

(ii) temporal wavelet analysis, (iii) spatial wavelet analysis, and (iv) contour anal-

ysis of flame boundaries. The respective decision functions, D1(x, n), D2(x, n),
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D3(x, n) and D4(x, n), are defined, for each pixel at location x of every incoming

image frame at time step n.

i) Detection of Flame Colored Moving Objects

Moving Region Detection: For moving object detection the background sub-

traction algorithm developed in [19] is used. Let I(x, n) represent the intensity

value of the pixel at location x in the n− th video frame I and let B(x, n) denote

the estimated background intensity value at the same pixel position. T (x, n) is

a recursively updated threshold at each frame n. The formulations for update

equations of background and threshold can be found in [19, 40, 39].

It is assumed that regions significantly different from the background are

moving regions. Estimated background image is subtracted from the current

image to detect moving regions which corresponds to the set of pixels satisfying:

|I(x, n)−B(x, n)| > T (x, n) (3.9)

are determined. These pixels are grouped into connected regions (blobs) and

labeled by using a two-level connected component labeling algorithm [48].

Detection of Flame Colored Pixels: Markov models shown in Fig. 3.9 are

used to detect flame in color video. Two models are trained off-line for both flame

and non-flame pixels. States of the Markov models are determined according to

color information as in [39].
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Figure 3.9: Three-state Markov models for flame (left) and non-flame (right)
moving pixels.

The fire and flame color model of [39] is used for defining the flame-pixels.

Namely; R > RT , R > G > B, S > (255−R)∗ST /RT where R,G, and B denote

the color channels of RGB color space, ST is the value of saturation when the

value of R channel is RT . In flame color classification, both values of RT and ST

are defined according to various experimental results, and typical values range

from 40 to 60 and 170 to 190, for ST and RT , respectively.

The three-state Markov model used for flame detection is presented in

Fig. 3.9. The state F1 corresponds to a pixel having a fire color. The state

F2 also corresponds to a pixel having a fire color but the fire color range of F2 is

different from F1. The state called as Out is reserved for non-fire colored pixels.

Temporal variation in RGB values of each pixel belonging to a moving region

is used as a one dimensional (1-D) feature signal, F = f(n), and fed to the

Markov models shown in Fig. 3.9.

A moving pixel is classified as a fire pixel when the probability of obtaining

the observed feature signal F = f(n) given the probability model λ1 is greater

than the probability of obtaining the observed feature signal F = f(n) given

the probability model λ2, i.e., when the pixel has fire color characteristics [13]:

p1 = P (F |λ1) > p2 = P (F |λ2), (3.10)
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where F is the observed feature signal, λ1 and λ2 represent the Markov models

for fire and ordinary moving objects, respectively.

As the probability p1 (p2) gets a larger value than p2 (p1), the confidence

level of this sub-algorithm increases (decreases). A decision function, D1(x, n),

is defined describing the Markov Model based flame colored region detection

sub-algorithm. The zero-mean decision function D1(x, n) is determined by the

normalized difference of Markov Model probabilities [13]:

D1(x, n) =





p1−p2

p1+p2
, if x is a moving pixel

−1, otherwise
(3.11)

When a moving pixel is classified as a fire colored pixel, i.e., p1 À p2, D1(x, n)

is close to 1. Otherwise, the decision function D1(x, n) is close to −1.

ii) Temporal Wavelet Analysis for Flicker Detection

The second sub-algorithm analyzes the frequency history of pixels in flame col-

ored moving regions. Each pixel I(x, n) at location x belonging a fire colored

moving object in the image frame at time step n is fed to a two stage-filter bank.

The signal Ĩn(x) is a one-dimensional signal representing the temporal variations

in color values of the pixel I(x, n) at location x in the nth image frame. Tem-

poral wavelet analysis is carried out using the red channel values of the pixels.

The two-channel subband decomposition filter bank is composed of half-band

high-pass and low-pass filters with filter coefficients {−1
4
, 1

2
,−1

4
} and {1

4
, 1

2
, 1

4
},

respectively.

Three-state Markov models are trained off-line for both flame and non-flame

pixels to represent the temporal behavior (Fig. 3.10). These models are trained

by using first-level wavelet coefficients dn(x) corresponding to the intensity values
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Ĩn(x) of the flame-colored moving pixel at location x as the feature signal. The

number of zero crossings of the subband signal dn in a few seconds can be used to

discriminate between a flame pixel and an ordinary fire colored object pixel [26,

38, 39].

Figure 3.10: Three-state Markov models for flame (left) and non-flame (right)
moving flame-colored pixels.

The states of HMMs are defined as follows: at time n, if |w(n)| < T1, the state

is in S1; if T1 < |w(n)| < T2, the state is S2; else if |w(n)| > T2, the state S3 is

attained. Here |w(n)| denotes the absolute value of the wavelet coefficient corre-

sponding to the currently analyzed pixel. T1 < T2 are experimentally determined

thresholds. During the recognition phase, the HMM based analysis is carried out

in pixels near the contour boundaries of flame-colored moving regions. The state

sequence of length 20 image frames is determined for these candidate pixels and

fed to the flame and non-flame pixel models [26, 38, 39].

Let p1 and p2 denote the probabilities obtained from the models for flame and

non-flame pixels respectively. As the probability p1 (p2) gets a larger value than

p2 (p1), the confidence level of this sub-algorithm increases (decreases). There-

fore, the zero-mean decision function D2(x, n) is determined by the normalized

difference of these probabilities:

D2(x, n) =
p1 − p2

p1 + p2

(3.12)
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When a fire colored moving region is classified as a fire pixels according to fre-

quency history, i.e., p1 À p2, D2(x, n) is close to 1. Otherwise, the decision

function D2(x, n) is close to −1 [13].

The probability of a Markov model producing a given sequence of wavelet co-

efficients is determined by the sequence of state transition probabilities. There-

fore, the flame decision process is insensitive to the choice of thresholds T1 and

T2, which basically determine if a given wavelet coefficient is close to zero or not.

iii) Spatial Wavelet Analysis

The third sub-algorithm is the spatial wavelet analysis of moving regions contain-

ing fire colored pixels to capture color variations in pixel values. In an ordinary

fire-colored object there will be little spatial variations in the moving region. On

the other hand, there will be significant spatial variations in a fire region. The

spatial wavelet analysis of a rectangular frame containing the pixels of fire-colored

moving regions is performed. A decision parameter describing spatial variance is

defined for this step, according to the energy of the wavelet subimages [26, 39]:

ξ =
1

M ×N

∑

k,l

|Ilh(k, l)|+ |Ihl(k, l)|+ |Ihh(k, l)|, (3.13)

where Ilh(k, l) is the low-high subimage, Ihl(k, l) is the high-low subimage, and

Ihh(k, l) is the high-high subimage of the wavelet transform, respectively, and

M ×N is the number of pixels in the fire-colored moving region. If the decision

parameter of the fourth step of the algorithm, ξ, exceeds a threshold, then it is

likely that this moving and fire-colored region under investigation is a fire region.

The decision function for this sub-algorithm is determined as follows:

D3(x, n) =





2 ξ
ξmax

− 1, if ξ ≥ ξT

−1, otherwise
, (3.14)
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where ξmax and ξT are experimentally determined parameters from videos con-

taining flames. ξmax is the largest value that ξ can take and ξT is a predefined

threshold. The threshold determines the definite non-fire cases. The decision

function is not sensitive to this threshold. One can also use D3(x, n) = 2 ξ
ξmax

− 1

as the decision function without the dependence on the threshold.

iv) Wavelet Domain Analysis of Object Contours

The fourth sub-algorithm of the proposed method analyzes the contours of flame

colored objects. A one-dimensional (1-D) signal x(θ) is obtained by computing

the distance from the center of mass of the object to the object boundary for

0 ≤ θ < 2π. To determine the high-frequency content of a curve, we use a single

scale wavelet transform. The feature signal x[l] is fed to a filterbank and the

low-band signal

c[l] =
∑
m

h[2l −m]x[m] (3.15)

and the high-band subsignal

w[l] =
∑
m

g[2l −m]x[m] (3.16)

are obtained. Coefficients of the lowpass and the highpass filters are h[l] =

{1
4
, 1

2
, 1

4
} and g[l] = {−1

4
, 1

2
,−1

4
}, respectively [50, 51].

Since regular objects have relatively smooth boundaries compared to flames,

the high-frequency wavelet coefficients of flame boundary feature signals have

more energy than regular objects. Therefore, the ratio of the wavelet domain

energy to the energy of the low-band signal is a good indicator of a fire region.

This ratio is defined as

ρ =

∑
l |w[l]|∑
l |c[l]|

. (3.17)
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The likelihood of the moving region to be a fire region is highly correlated with

the parameter ρ. The Higher the value of ρ, higher the probability of the region

belonging to flame regions [40]. The decision function for this sub-algorithm is

defined as follows:

D4(x, n) =





2 ρ
ρmax

− 1, if ρ ≥ ρT

−1, otherwise
, (3.18)

where ρmax is the maximum value of ρ and ρT is an experimentally determined

threshold. The threshold determines the definite non-fire cases. The decision

function is not sensitive to this threshold. One can also use D4(x, n) = 2 ρ
ρmax

−1

as the decision without the dependence on the threshold.

3.5.2 Experimental Results

Three approaches are compared with each other in the experiments: (a) LMS

based method, (b) weighted majority algorithm (WMA) based method and (c) a

non-adaptive method. The method with no adaptive learning simply issues an

alarm if all of the decision functions are 1 for the case of binary decision functions

producing outputs 1 and -1 for fire and non-fire regions. Comparative tests are

carried out with recordings containing actual fire and test sequences with no

fires. Fire alarms are issued by all three methods at about the same time after

fire becomes visible. However, there are some performance differences among the

schemes in terms of false alarm rates.

The WMA [52] is summarized in Fig. 3.11. In WMA, as opposed to our

method, individual decision values from sub-algorithms are binary, i.e., di(x, n) ∈
{−1, 1}, which are simply the quantized version of real valued Di(x, n) defined in

Section 3.4.1. In the WMA, the weights of sub-algorithms yielding contradictory

decisions with that of the oracle are reduced by a factor of two in an un-controlled
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Table 3.3: Three different methods (Non-adaptive, LMS based, WMA based) are
compared in terms of frame numbers at which an alarm is issued for fire captured
at various ranges and fps. It is assumed that the fire starts at frame 0.

Video Seq. Range Frame Rate Frame number/Time(sec) of first alarm
(m) (fps) LMS Based WMA Based Non-Adaptive

V1 2 10 44 4.4s 39 3.9s 51 5.1s
V2 50 30 48 1.6s 43 1.4s 62 2.0s
V3 50 30 49 1.6s 35 1.2s 37 1.2s
V4 30 30 106 3.5s 44 1.5s No Alarm
V5 1 30 64 2.1s 42 1.4s 18 0.6s
V6 5 10 43 4.3s 140 14s 38 3.8s
V7 60 30 334 11.1s 320 10.7s 349 11.6s
V8 80 30 73 2.4s 78 2.6s No Alarm
V9 100 30 41 1.4s 36 1.2s 12 0.4s
V10 10 15 48 3.2s 44 2.9s 56 3.7s
V11 20 15 49 3.3s 33 2.2s 48 3.2s
V12 50 15 46 3.0s 41 2.7s 80 5.3s
V13 40 15 47 3.1s 43 2.9s 18 1.2s
V14 30 15 72 4.8s 68 4.5s 20 1.3s
V15 70 30 212 7.0s 216 7.2s 156 5.2s
V16 15 30 259 8.6s 249 8.3s 163 5.4s
V17 20 30 68 2.3s 47 1.6s No Alarm

Average 94.3 4.0s 89.3 4.1s 79.1 3.6s

manner, unlike the proposed LMS based algorithm [53]. Initial weights for WMA

are taken as 1
M

, as in the proposed LMS based scheme.

The LMS based scheme, the WMA based scheme, and the non-adaptive

approach are compared with each other in the following experiments. In Ta-

bles 3.3 and 3.4, video recordings containing actual fires and video sequences

with no fires are used.

LMS and WMA based decision fusion methods detect fires within 12 seconds

but the method with no learning capability failed to produce alarms for 3 of the

video sequences, as shown in Table 3.3. The LMS based method issues a correct

alarm within 4 seconds on the average. The detection rates of the methods are

comparable to each other. On the other hand, the proposed adaptive fusion

strategy reduces the false alarm rate of the system by integrating the feedback
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Weighted Majority(x,n)
for i = 1 to M do

wi(0) = 1
M

, Initialization
end for
if

∑
i:di(x,n)=1 wi(n) ≥ ∑

i:di(x,n)=−1 wi(n) then
return 1

else
return -1

end if
for i = 1 to M do

if di(x, n) 6= y then

wi(n + 1) ← wi(n)
2

end if
end for

Figure 3.11: The pseudo-code for the Weighted Majority Algorithm

Table 3.4: Three different methods (Non-adaptive, LMS based, WMA based) are
compared in terms of the number of false alarms issued for fire video sequences
that do not contain fire.

Video Seq. Frame Rate Duration Number of false alarms
(fps) (frames) LMS Based WMA Based Non-Adaptive

V18 25 1500 0 0 1
V19 25 2000 2 1 6
V20 25 2000 0 0 2
V21 25 150 0 2 1
V22 25 500 3 5 7
V23 25 1000 0 5 2
V24 25 150 0 0 2

from the guard (oracle) into the decision mechanism within the active learning

framework described in Section 3.3.

A set of video clips that do not contain fire is used to generate the results in

Table 3.4. These video clips are especially selected from recordings that contain

fire colored moving objects. Number of false alarms issued by different methods

are presented. The adaptive algorithms produce lower number of false alarms

and LMS based scheme is better than WMA except for one video sequence. Total

number of false alarms for the clips in Table 3.4 issued by the methods (a) the
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LMS based scheme, (b) the WMA based scheme, (c) the non-adaptive approach

are 5, 13 and 21, respectively.

Detection results for some of the test sequences in Table 3.3 are given in

Fig. 3.12. Sample frames from the test videos in Table 3.4 are shown in Fig. 3.13.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Examples from detected fires.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.13: Examples from the test set.
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3.6 Summary

In this chapter, an active learning method for dynamic texture recognition is

described. The algorithm combines the decision results of sub-algorithms that

characterize a different aspect of the analyzed texture. Individual decisions of

the sub-algorithms are combined together using a least-mean-square (LMS) based

decision fusion approach, and texture/no-texture decision is reached by an active

learning method. The algorithm is applied to wildfire detection at night and

close range flame detection. The compound algorithm for night fire detection is

composed of three sub-algorithms which produce their individual decision values.

Each algorithm is designed to characterize an aspect of night fires. The main

algorithm for flame detection comprises four sub-algorithms. Each algorithm

is designed to characterize an aspect of flames. The decision functions of sub-

algorithms yield their own decisions as confidence values in the range [−1, 1] ∈ R.

Computationally efficient sub-algorithms are selected in order to realize a real-

time fire detection system working on a standard PC. The LMS based adaptive

decision fusion strategy takes into account the feedback from the user of the

application. Experimental results show that the learning duration is decreased

with the proposed active learning scheme.
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Chapter 4

Fire and Smoke Detection with a

Moving Camera

In this chapter, an optical flow based algorithm is developed to segment moving

objects from a continuously moving camera. The algorithm is applied to flame

detection and wildfire smoke detection from a panning camera. Two-dimensional

image motion can be obtained by projecting the three-dimensional motion of ob-

jects, relative to a camera, onto the image plane of the camera. Two-dimensional

image motion can be observed as either instantaneous image velocities or discrete

image displacements using time-ordered image sequences. These instantaneous

image velocities are usually called the optical flow field or the image velocity field.

If it is assumed that optical flow is a reliable approximation to two-dimensional

image motion, it may then be used to recover the three-dimensional motion of

the camera. Optical flow may be also used to perform motion detection and ob-

ject segmentation [54, 55]. The optical flow methods try to calculate the motion

between two image frames which are taken at times t and t + δt using partial

derivatives with respect to the spatial and temporal coordinates at every pixel

position. There are different algorithms for optical flow computation, in our
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method we use Lucas-Kanade optical flow calculation algorithm. The Lucas-

Kanade method is a two-frame differential method for optical flow estimation.

It introduces an additional term to the optical flow by assuming the flow to be

constant in a local neighborhood around the central pixel under consideration at

any given time [56]. We developed two methods for object segmentation from

a moving camera. The first method uses three consecutive frames to register

camera motion between the reference middle frame and the other frames. After

motion estimation the previous and next frames are warped into the reference

frame using the estimated affine transformation. This approach can be used for

segmenting moving objects like walking people, cars, etc. but it cannot be used

to segment smoke because the smoke plume does not have well defined bound-

aries as ordinary objects do and its movement is slow when viewed from long

distances. To segment smoke from a moving camera we use a background sub-

traction method similar to panoramic backgrounds usually employed for using

background subtraction with moving cameras.

4.1 Related Work

Motion segmentation is a fundamental component of many surveillance applica-

tions. The simplest method used to segment motion is background subtraction

which involves constructing a reference frame to represent the background of the

scene and subtracting each incoming image from the reference frame [19, 25].

Most background subtraction algorithms assume that the camera is stationary

and additional steps are required to compensate for camera motion when the

camera is non-stationary. Several algorithms for camera motion compensation

are developed that use optical flow and change detection [57]. In [58], a new

global motion estimation algorithm for change detection with moving camera is

proposed. The algorithm assigns confidence measures to the motion vectors for
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each block. The confidence measure is determined by combining the “cornerness”

and “distinctness” measure of blocks.

In [59], an image registration and moving object detection system is designed

to work in real-time on a standard PC using probabilistic methods. The dis-

placement of each pixel is described as probability distribution over a matrix of

possible displacements. The registration parameters are computed using a small

set of randomly selected points. The consistency of the probabilistic displace-

ment of image points with the global image motion is used to detect moving

objects.

Qi and Ghazal describe a global motion estimation algorithm oriented to

video object segmentation. They propose a hierarchical differential GME. The

method combines three-step search and motion parameters prediction as initial

estimation step to increase efficiency. The outliers introduced by local motion

are rejected using a robust estimator that uses object information. For the first

frame, when the object information is unavailable, a robust estimator is proposed

which rejects outliers by examining their distribution in local neighborhoods of

the error between the current and the motion-compensated previous frame [60].

Arnell and Petersson propose a segmentation algorithm based on a special

representation of optical flow, on which u-disparity is applied. The background

flow is approximated by a quadratic function and u-disparity is used to indirectly

find and mask it out. Contrast filtering is used to increase robustness in the opti-

cal flow calculation [61]. A global motion estimation method for aerial imagery is

proposed by fitting the optical flow field [62]. An optical flow evaluation scheme

is introduced to choose a small set of reliable flows for fitting, as opposed to the

traditional least-squares regression technique which is sensitive to outliers. The

improvement of the GME algorithm is achieved by removing almost all of the

flow outliers that are unfit for fitting.
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In [57], optical flow and change detection methods are combined with a

boundary extraction algorithm to segment moving objects. For change detection

they use three consecutive video frames, a backward frame, the frame of interest

and a forward frame instead of two adjacent time frames. Backward and forward

frames are compensated relative to the reference frame using optical flow based

simultaneous iterative camera motion compensation and background estimation.

Compensated backward and forward frames are subtracted from the frame of

interest and then compared with the estimated background models for intensity

change detection. Then the approximate shape of the objects are acquired using

these change detection results.

Another method for moving object segmentation from moving cameras is to

use panoramic backgrounds. In this method a background model is generated

by stitching together the individual images representing the stationary parts of

the scene into a spherical or cylindrical mosaic. The moving regions are then

detected by registering the incoming images into the panoramic background [63,

64, 65]. However, this approach is computationally costly to implement in real-

time because both the mosaic generation and trigonometric registration required

for mapping the image to the background are time consuming procedures. In,

Dellaert and Collins developed a simpler method for tracking the pan and tilt

of a PTZ camera [66]. The initial background model is generated methodically

from a set of images with known pan and tilt settings. Instead of a background

mosaic they use the individual images directly and choose the one closest to the

current images in terms of their distance in the pan-tilt space. Then they use

a planar projective transformation between the current image and the reference

background.

In our method we use modified versions of the methods in [57] and [66]. For

moving object detection we find the optical flow between the reference frame and

backward and forward frames. For outliers rejection we use RANSAC method
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and then find an affine transformation between the frames. This method is

applicable to both motion detection and fire detection. For smoke detection

with a moving camera we use a background subtraction method in which we

first gather a collection of images from the non-stationary part of the background

assuming that camera is continuously panning with constant tilt setting. For the

first frame we search all of the background images and find the one closest to

the current image. We then warp the current image to the background using

an affine transformation. For the next frames we only look for the background

images closer to the previously selected one to reduce the search time. The

difference between the warped image and the background are used to find the

moving objects.

4.2 Detection Algorithm

4.2.1 Optical Flow Background

The starting point for most optical flow estimation algorithms is the brightness

constancy assumption which states that the pixel intensities are preserved from

one frame to the next,

I(x, t) = I(x + u, t + 1), (4.1)

where I(x, t) is image intensity as a function of pixel coordinate x and time t,

and u is the 2D velocity. The brightness constancy assumption does not exactly

hold for most practical estimation problems. Using Eq. 4.1 generally leads to

satisfactory results as stated in [67].

If we assume that the displaced image can be approximated by a first-order

Taylor series:

I(x + u, t + 1) ≈ I(x, t) + u · ∇I(x, t) + It(x, t), (4.2)
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where ∇I ≡ (Ix, Iy) and It are the spatial and temporal partial derivatives of the

image I. Ignoring higher-order terms in the Taylor series and then substituting

Eq. 4.2 into Eq. 4.1, the following equation is obtained:

∇I(x, t) · u + It(x, t) = 0 (4.3)

which is called the gradient constraint equation and gives the relation between

the velocity and the image derivatives at one image location. If we have only two

frames, and cannot estimate It, we can replace It(x, t) in Eq. 4.3 by δI(x, t) ≡
I(x, t + 1)− I(x, t) and obtain a new constraint equation [56].

The Lucas-Kanade optical flow method solution assumes a locally constant

flow. The additional constraint needed for the estimation of the flow field is

introduced in this method by assuming that the flow u is constant in a small

window of size m × m with m > 1, which is centered at position x. This

method constrains u using the gradient constraints from nearby pixels using

the assumption that they share the same velocity. The velocity that minimizes

the constraint errors is found using the least-squares (LS) estimation [56]:

E(u) =
∑

x

g(x)[u · ∇I(x, t) + It(x, t)]2, (4.4)

where g(x) is a weighting function which is usually chosen to be Gaussian that

determines the support of the estimator. The least squares optical flow estimate

is the 2D velocity u that minimizes E(u). The minimum of E(u) can be found

by equating its derivatives with respect to u to zero:

∂E(u1, u2)u1 =
∑

x

g(x)[u1I
2
x + u2IxIy + IxIt] = 0, (4.5)

∂E(u1, u2)u2 =
∑

x

g(x)[u1I
2
x + u2IxIy + IxIt] = 0, (4.6)

where u1 and u2 are the elements of the flow.
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In matrix form these equations can be written as:

Mu = ~b, (4.7)

where M and ~b are defined as:

M =




∑
gI2

x

∑
gIxIy

∑
gIxIy

∑
gI2

y


 ,~b = −




∑
gIxIt

∑
gIyIy


 (4.8)

When M has full rank, then the least squares estimate of the flow can be

found as u = M−1~b [67].

In our application, we use the pyramidal implementation of Lucas-Kanade

optical flow method described in [68]. In Fig. 4.1, the optical flow between two

consecutive frames of a video sequence is shown as directed arrows that describe

the motion of evenly distributed 480 points from the first frame.
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(a) (b)

(c)

Figure 4.1: Optical flow between 2 consecutive frames: (a) frame 1; (b) frame 2;
(c) optical flow.

4.3 Motion Detection Algorithm

The flowchart of the motion detection algorithm is shown in Fig. 4.2. Global mo-

tion compensation step is carried out using optical flow and RANSAC (Ransom

Sample Consensus). For registering the backward and forward frames an affine

transformation is found that describes the camera motion between these frames

and the reference frame. A six parameter affine model as in Eq. 4.9 is used:

x′ = a0x + a1y + a2

y′ = a3x + a4y + a5

, (4.9)
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where (x, y) is the location of the pixel in the nth image frame In, (x′, y′) is

location of the pixel in the previous, In−1 or the next frame, In+1 , and ~a =

(a0, a1, a2, a3, a4, a5) is the vector of affine transformation parameters. The affine

model is an approximation to projective motion model and the projected 2D

motion of most camera motions can be described by an affine transformation [69].

Figure 4.2: The flowchart of the moving region detection algorithm.

For optical flow estimation, evenly distributed points from the currently pro-

cessed image are chosen and then the corresponding points in the reference image
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are found. RANSAC is used to find the affine model parameters that can trans-

form the point coordinates between the two frames. RANSAC is a method to

estimate the parameters of a mathematical model from a set of observations.

RANSAC differs from classical parameter estimation techniques such as least-

squares method since it tries to detect and reject outliers which are the “gross

errors” that do not fit the model [70]. For the global motion compensation

problem, the inliers are the motion vectors that are caused by movement of the

camera and the outliers are the local motion of moving objects.

The procedure for applying RANSAC to the results of optical flow is as

follows; random three points are chosen from the first image and then an affine

transformation is found between the corresponding points in the reference frame.

All points selected in the first frame and the reference frame are checked with the

estimated transform and if a point from features set can be transformed within

some error threshold with the estimated model parameters it is added to the

consensus set. If the size of the consensus set reaches a threshold value or the

maximum number of iterations for RANSAC is reached the algorithm stops and

the final model parameters are used to form the affine transformation vector.

In Figs. 4.3 and 4.4 the motion detection algorithm is used to find moving

objects from a panning camera. As can be seen from the uncompensated differ-

ence frames in Figs. 4.3(d) and 4.3(e) it is difficult to identify moving objects

when camera motion is present. The affine model parameters for backward and

forward frames are:

~ab = (1.002690,−0.002519,−5.332665,−0.000968, 0.999622, 0.176728) and

~af = (0.997627, 0.002666, 3.451948, 0.000571, 1.000087,−0.101921)

respectively. Since the only camera motion is caused by panning the effective

parameter of the model is a2 which corresponds the translation in the x-direction.
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(a) (b)

(c)

(d) (e)

Figure 4.3: Three consecutive frames from a panning camera and their differ-
ences: (a) backward frame; (b) forward frame; (c) reference frame; (d) reference
and backward difference; (e) reference and forward difference.
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(a) (b)

(c) (d)

(e)

Figure 4.4: Sample application of the algorithm for detecting moving objects
with a panning camera: (a) compensated backward frame; (b) compensated
forward frame; (c) compensated forward difference; (d) compensated backward
difference; (e) after thresholding and smoothing.
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4.4 Background Subtraction with Motion Com-

pensation

The three frame change detection method can be used to find moving objects

from a moving camera moving sequence, but to detect slow moving or station-

ary objects we need an algorithm like background subtraction that can segment

objects of interest. For background subtraction we use a method similar to the

one described in [66]. We first gather images that form the stationary part of the

scene to be monitored. Instead of forming a panoramic background by stitching

together these images, we use them directly as a collection of background im-

ages. At the start of the analysis all images are searched and the background

image that is closest to the current image is chosen as the background for that

image. Then an affine transformation is found between the background and cur-

rent images using optical flow and RANSAC using the method in Section 4.3.

The difference between the compensated image and the background image is fil-

tered and thresholded to find the objects that do not belong to the background.

After the first frame only a small number of background images that are close

to the previously selected background image in the pan-tilt space, are searched

for a possible match to the incoming frame assuming that camera does not make

sudden movements.

For matching the current image to a background image we use a simple nor-

malized correlation based template matching algorithm. The number of back-

ground images that are sufficient for a correct representation of the background

depends on the speed of the camera and the FPS (frames per second) of the video

stream. Collecting too many images may slow down the background matching

process and occupy more memory space, on the other hand if the number of

background images is not enough the whole background cannot be represented

and registration of the incoming frame to the background may not be possible.
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In Fig. 4.6, the results of applying the background subtraction algorithm to

detect moving objects from a panning camera are shown. The camera moves

with a constant speed of 4.6◦/sec and FPS of the stream is 10. 39 background

images are selected from the stationary part of the scene as shown in Fig. 4.5.

Since the camera completes a 360◦ turn in around 79 seconds we are representing

each 9.2◦ turn by a single background image.

Figure 4.5: The background images used for the test in Fig. 4.6.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Background subtraction applied to a panning camera. The camera
speed is 4.6◦/sec. The background images are taken at 2 second intervals; there
is a total of 39 background frames representing the 360◦ range of the panning
camera: (a) current frame; (b) selected background frame; (c) current frame
and background difference; (d) compensated frame; (e) compensated difference;
(f) after thresholding and smoothing.

For a system working with live video streams we cannot use the same back-

ground images for a long time, because the lighting conditions or the stationary

part background might change over time. Therefore, the background images

63



should be updated periodically to overcome this problem. Background update

is performed by replacing the background image by the closest image that is

mapped to that background. Since the background images should be stationary

we use three frame change detection technique described in Section 4.3 to check

if there are moving objects in the frame. If all frames that are mapped to the

same background have moving objects that background frame is updated in the

next round.

4.5 Detection Experiments

4.5.1 Fire Detection Experiments

In Figs. 4.7 and 4.8 the three frame change detection with motion compensa-

tion algorithm is applied to fire detection with a moving camera. First moving

regions are found using the method in Section 4.3 and then fire colored pixels

connected together to cover the whole flame regions because motion detection

algorithm may only find the edges of flame regions. After finding fire colored

moving regions the methods in Section 3.5.1 of Chapter 3 are applied to these

regions to check if they are actual fire regions. We use three of the four sub-

algorithms for flame detection (i) detection of flame colored moving objects, (ii)

spatial wavelet analysis for flicker detection and (iii) contour analysis of fire col-

ored region boundaries. Keeping temporal history of flame regions is difficult

with a moving camera so we do not use this algorithm. We mark the pixels

as belonging to a fire region when they meet the requirements of all three al-

gorithms. Fig. 4.8(e) shows the moving regions that are found by the motion

compensation algorithm. Fig. 4.8(f) shows the fire detection result after fire col-

ored pixels are connected and fire detection algorithms are applied. The final

segmentation result is shown in Fig. 4.9.
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(a) (b)

(c)

(d) (e)

Figure 4.7: Three consecutive frames from camera that is zooming out of a burn-
ing van: (a) backward frame; (b) forward frame; (c) reference frame; (d) reference
and backward difference; (e) reference and forward difference.

65



(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Sample application of the motion compensation algorithm for de-
tecting fire with a moving camera: (a) compensated backward frame; (b) com-
pensated forward frame; (c) compensated backward difference; (d) compensated
forward difference; (e) after thresholding and smoothing; (f) after connecting fire
colored pixels and applying fire detection algorithm.
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Figure 4.9: Final fire detection result.

In Table 4.1, video sequences that contain close range flames are tested with

the developed method to check the performance of the algorithm. There are

14 videos with 14,803 frames in total that are mostly recorded with hand-held

moving cameras. The number of frames with flames, the number of correctly

classified frames, incorrectly registered moving frames, and frames for which

false alarms are issued are summarized in the table. The method was able to

detect flames in most of the frames. Since videos are recorded with hand-held

cameras the motion of the camera is not smooth which caused some of the frames

to be incorrectly aligned. The majority of the false alarms are issued when the

registration of the frames was unsuccessful.
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Table 4.1: Fire detection results for 14 different video sequences mostly recorded
with hand-held moving cameras. The videos are compared in terms of total num-
ber of frames with flame, the detected number of frames, incorrectly registered
frames and frames with false positive alarms.

Video Seq. # of Frames # of Frames Correctly Incorrectly False
with flame classified registered positive

frames frames frames
V1 268 260 234 0 0
V2 210 210 204 0 1
V3 600 590 535 3 4
V4 571 565 560 2 3
V5 1000 960 794 2 0
V6 451 450 410 0 0
V7 500 500 405 0 5
V8 1081 1070 1001 30 18
V9 2518 2518 2331 23 12
V10 2608 2600 2294 10 8
V11 1200 1200 1093 3 4
V12 2248 2248 2169 6 0
V13 1219 1219 1095 7 5
V14 330 330 325 0 0

4.5.2 Smoke Detection Experiments

The application of the background subtraction algorithm for smoke detection is

shown in Fig. 4.10. The current image is mapped to the selected background

image using the affine transformation that is found using optical flow. The dif-

ference between the warped current image and the selected background image is

used to find the new objects in the scene. After that smoke colored object detec-

tion and shadow elimination steps from the wildfire smoke detection algorithm

in [13] are applied. If possible smoke regions are detected using the background

subtraction algorithm the camera stops panning and runs the complete smoke

detection algorithm in [13] for some time to verify the existence of smoke.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Sample application of the background subtraction algorithm for de-
tecting smoke with a moving camera: (a) current image; (b) selected background
image; (c) uncompensated difference; (d) compensated current frame; (e) com-
pensated difference; (f) after thresholding the difference and applying the forest
smoke detection algorithm.

In Table 4.2 the results of applying the background subtraction algorithm to

four different video sequences are shown.
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Table 4.2: Smoke detection results for four different video sequences. The videos
are compared in terms of total number of frames with smoke, the detected number
of frames, incorrectly registered frames and frames with false positive alarms.

Video Seq. # of Frames # of Frames Correctly Incorrectly False
with smoke classified registered positive

frames frames frames
V1 186 100 93 5 6
V2 420 420 417 10 8
V3 897 840 840 40 15
V4 572 532 523 9 3

4.6 Summary

In this chapter global motion compensation methods are used to segment moving

objects from a moving camera. The methods are actually intended to detect fire

and smoke from moving camera sequences. For fire detection we use three frame

change detection methods for registering the backward and forward frames to

the reference frame. For registering the global motion of the camera optical flow

between the two frames is calculated by RANSAC and an affine transformation

is found that maps the camera motion from frame to frame. Since the flicker

of flames has a detectable frequency we use this method to detect close range

fires. For detecting long range wild fire smokes we use a background subtraction

algorithm because they usually move slower when viewed from long distances. A

collection of images are used to represent the stationary part of the background,

and when a new frame arrives a background image that is closest to the frame

is chosen as the background for this frame. The global motion compensation

method is then used to register the current frame to the background and the

difference between the registered image and the background is used to find the

new objects in the background. Experimental results show that these can be

used to detect fire smoke from continuously moving cameras.
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Chapter 5

Conclusion and Future Work

Automatic recognition of fire, smoke, VOC plumes, etc. is important for video

based surveillance systems used in industrial plants, chemical factories and out-

door systems for monitoring forestal areas. In this thesis, some signal and image

processing techniques for automatic recognition of some classes of dynamic tex-

tures are developed. Specifically, algorithms are developed for VOC leak detec-

tion in IR videos, wild fire detection at night, and fire and smoke detection with

a moving camera.

The algorithm developed for VOC leak detection uses the observation that

during the initial stages of emission the leak causes a gray scale value change

around the leaking equipment and these regions become darker in IR camera

images. Background subtraction and change detection algorithms are used to

detect this temporal variation and VOC plume. The method is tested with videos

recorded at TÜPRAŞ (Türkiye Petrol Rafinerileri A.Ş.) factory in Kırıkkale and

showed promising results.

The LMS based algorithm developed and applied to wildfire smoke detection

in [13] is used to detect wild fires at night. The smoke visible in the early stages

of wild fires is not visible at night and the fire becomes visible only when the
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flames reach a certain height. The wild fire flames appear as bright spots in

a visible range PTZ camera. The method is integrated into the surveillance

system used by Directorate of Forestry of Turkey for monitoring forestal areas

for early detection of forest fires. During day time the system uses the wild fire

smoke detection and at night switches to our method for detecting night fires.

The proposed fire detection scheme with LMS based active learning method is

tested with forest surveillance recordings captured from cameras mounted on

top of forest watch towers near Antalya and Muǧla regions in Turkey. The LMS

based algorithm is also used to detect close range flames by using the algorithms

developed in ([38]-[40]) in an active learning framework.

The cameras used in the early wild fire detection system are in continuous

scan mode between predefined preset (park) positions. At each preset position

the camera waits for a certain period of time and runs the detection algorithm.

If the area to be monitored is large the number of park positions should also be

large and this could introduce additional delays in the detection. To overcome

this problem we also developed methods for segmenting fire and smoke from

continuously moving cameras.

For fire detection we used three frame change detection method for registering

the backward and forward frames to the reference frame. For registering the

global motion of the camera optical flow between the two frames is calculated

and then using RANSAC an affine transformation is found that maps the camera

motion from one frame to the next. Since the flicker of flames has a detectable

frequency we use this method to detect close range fires.

For detecting long range wild fire smokes we used a background subtraction

algorithm since they usually move slower. A collection of images are used to

represent the stationary part of the background, and when a new frame arrives

a background image that is closest to the frame is chosen as the background for

this frame. The global motion compensation method is then used to register
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the current frame to the background and the difference between the registered

image and the background is used to find the new objects in the background.

Experimental results show that these can be used to detect fire smoke from

continuously moving cameras.

5.1 Future Work

The LMS algorithm used for wildfire detection uses a supervised learning ap-

proach. The oracle, the security guard watching the surveillance camera in this

case, decides whether the detected regions are actual fire regions. This approach

is time consuming since the oracle needs to mark every frame. An improvement

over this approach would be to use an unsupervised learning method to classify

frame pixels without the help of an oracle. We are planning to implement the

unsupervised version of the active learning algorithm.

The motion compensation method developed for fire and smoke detection

works well when the background of the scene monitored by the camera consists

of rigid objects; like buildings, cars, etc. For the case of non-rigid dynamic back-

grounds the algorithm sometimes fails to register the image to the background.

As a future work we will implement global motion compensation algorithms that

deal with dynamic backgrounds.
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[40] B. U. Töreyin and A. E. Çetin, “Online Detection of Fire in Video,” in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pp. 1–5, 2007.

[41] T. Çelik and H. Demirel, “Fire Detection in video sequences using a generic

color model,” Fire Safety Journal, vol. 44, pp. 147–158, 2009.

[42] B. Widrow and M.E. Hoff, “Adaptive switching circuits,” in Proceedings of

the IRE WESCON (New York Convention Record), vol. 4, pp. 96–104, 1960.

[43] S. Haykin, Adaptive Filter Theory. Prentice Hall, 2002.

[44] B.Widrow and S.D.Stearns, Adaptive Signal Processing. Prentice Hall, 1985.

[45] B. Widrow and J.M. McCool and M.G. Larimore and C.R. Johnson, “Sta-

tionary and nonstationary learning characteristics of the LMS adaptive fil-

ter,” Proceedings of the IEEE, vol. 64, no. 8, pp. 1151–1162, 1976.

[46] B.A. Schnaufer and W.K. Jenkins, “ New data-reusing LMS algorithms for

improved convergence,” in Proceedings of the Asilomar Conference, Pacific

Groves, CA, vol. 2, pp. 1584–1588, 1993.

[47] N. Dogan, Orman Yangın Yönetimi ve Yangın Sivilkultürü (In Turkish),

pp. 143–155. Türkiye Orman Genel Müdürlüğü, (General Directorate of
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