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ABSTRACT

ACTIVE NODE DETERMINATION FOR
CORRELATED DATA GATHERING IN WIRELESS

SENSOR NETWORKS

Efe Karasabun

M.S. in Computer Engineering

Supervisors: Asst. Prof. Dr. İbrahim Körpeoğlu and

Prof. Dr. Cevdet Aykanat

July, 2009

In wireless sensor network applications where data gathered by different sensor

nodes is correlated, not all sensor nodes need to be active for the wireless sen-

sor network to be functional. However, the sensor nodes that are selected as

active should form a connected wireless network in order to transmit the col-

lected correlated data to the data gathering node. The problem of determining

a set of active sensor nodes in a correlated data environment for a fully opera-

tional wireless sensor network can be formulated as an instance of the connected

correlation-dominating set problem. In this work, our contribution is twofold;

we propose an effective and runtime efficient iterative improvement heuristic to

solve the active sensor node determination problem and a benefit function that

aims to minimize the number of active sensor nodes while maximizing the resid-

ual energy levels of the selected active sensor nodes. Extensive simulations we

performed show that the proposed approach can achieve a good performance in

terms of both network lifetime and runtime efficiency.

Keywords: wireless sensor networks, correlated data gathering, active sensor node

determination.
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ÖZET

KABLOSUZ SENSÖR AĞLARINDA İLİNTİLİ VERİ
TOPLAMA AMAÇLI AKTİF SENSÖR BELİRLENMESİ

Efe Karasabun

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Asst. Prof. Dr. İbrahim Körpeoğlu ve

Prof. Dr. Cevdet Aykanat

Ağustos, 2009

Bazı kablosuz sensör ağları uygulamalarında sensör aygıtlarının algıladıkları ver-

iler ilintilidir. Bu gibi kablosuz sensör ağı uygulamalarının tamamen çalışır du-

rumda olması için bütün sensör aygıtlarının aktif (çalışıyor durumda) olmalarına

gerek yoktur. Buna karşılık, aktif olarak seçilen sensör aygıtlarının kendi ar-

alarıda haberleşmelerini sağlayacak kablosuz bir ağ kurarak topladıkları ilintili

verileri sorumlu merkeze göndermeleri gerekmektedir. Sensörler arasında ilintili

veri bulunan kablosuz sensör ağları uygulamalarında hangi sensör aygıtlarının ak-

tif durumda olacağının belirlenmesi, haberleşebilen ilinti-bazlı küme (connected

correlation-dominating set) problemi olarak ifade edilebilir. Bu tez çalışmasının

katkısı çift yönlüdür: İlk olarak aktif sensör aygıtlarının belirlenebilmesi için

etkin ve hızlı çalışan tekrarlamalı iyileştirme gerçekleştiren buluşşal bir algoritma

(iterative improvement heuristic) önerilmektedir. İkinci olarak ise aktif sensör

aygıtı kümesine seçilen sensör aygıtı sayısı azaltılırken, bu kümeye seçilen sensör

aygıtlarının yüksek enerjiye sahip olabilmelerine imkan veren bir yarar fonksiy-

onu önerilmektedir. Detaylı simülasyonlarla ileri sürdüğümüz bu yaklaşımın hem

kablosuz sensör ağının işleme süresi bakımından, hem de algoritma çalışma za-

manı bakımından iyi sonuçlar ortaya koyduğu görülmektedir.

Anahtar sözcükler : kablosuz sensör ağları, ilintili veri toplama, aktif sensör be-

lirleme.
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Chapter 1

Introduction

Wireless sensor networks (WSNs) are composed of a large number of spatially

distributed sensor nodes which are limited in power. These sensor nodes are

equipped with three main components to cooperatively collect information about

a monitored region. These three main components of a sensor node are a process-

ing unit with limited capability, environment sensor(s) and a short-range wireless

transceiver. By the use of these components, sensor nodes can form a multi-hop

wireless network and transmit the sensed data about the monitored environment

to a data gathering node. Sensors are able to obtain various information about

the monitored environment such as temperature, humidity, pressure, sound, mo-

tion, etc. Some WSN applications include environment and habitat monitoring,

healthcare assisance, home automation, industrial process monitoring and con-

trol, and battlefield and border surveillance.

Limited energy available in sensor nodes makes network lifetime an important

issue in WSN applications. To extend the network lifetime, energy efficient wire-

less sensor network protocols and algorithms have been devised in the literature.

Node clustering, in-network data processing, data fusion and network coding are

some of the measures taken to reduce the amount of data that is processed, sensed

or transmitted. Minimization of energy spent in processing, sensing and trans-

mitting of data allows sensor nodes to save energy. Such energy savings help to

extend the lifetime of WSN applications.

1



CHAPTER 1. INTRODUCTION 2

In some WSN applications, not all sensor nodes are required to be active

(turned on, thus spending energy) in order for the WSN application to be fully

functional. In these types of applications, exploiting the inherent data corre-

lations among the sensor devices may extensively help to prolong the network

lifetime. The data correlations between the sensor devices may exist due to the

characteristics of a sensor region and sensor node deployment such as the prox-

imity of the sensor nodes. The data correlations among sensor nodes can be

modelled as a set of two-tuples, where each tuple contains a source set of nodes

which infers a sensor node. When a source set is selected into the active sensor

node set, the sensor node inferred by that source set may stay inactive. In these

types of WSN applications, since the data of some sensor nodes can be inferred

from the data of some other nodes, it is crucial to determine the set of active sen-

sor nodes that can be sufficient to infer the data of inactive sensor nodes. Only

the active sensor nodes need to sense, process and transmit data. The inactive

nodes will be turned off and therefore they will not spend any energy.

In this work, we aim to find effective and runtime efficient centralized active

sensor node selection heuristics for correlated data gathering in WSNs to prolong

the sensor network lifetime. For this purpose, we model the active node de-

termination problem as an instance of the connected correlation dominating-set

problem [11]. In connected correlation dominating-set problem, given a network

and correlation information about which nodes infers which other nodes, we are

interested in finding a set of (dominating) nodes that can infer the (correlated)

data of the rest of the nodes. The authors of [11] propose a sophisticated but

time-consuming constructive L-hop centralized heuristic. The objective of the

L-hop centralized heuristic is to construct a connected correlation-dominating

set with minimum number of sensor nodes by the use of a benefit function that

they define. Our contribution in this work is twofold: We propose iterative active

sensor node determination (IAND) heuristic, which is both effective and run-

time efficient. The IAND heuristic is composed of a greedy constructive heuristic

and an iterative improvement heuristic to find an effective and runtime efficient

correlation-dominating set for WSNs. Furthermore, we define an energy-aware
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benefit function that is used by both the greedy constructive heuristic and the it-

erative improvement heuristic while constructing and then improving the quality

of the correlation-dominating set.

The purpose of the greedy constructive heuristic is to construct a correlation-

dominating set with a given large correlation data set as the input in a runtime

efficient manner. The iterative improvement heuristic is executed after the greedy

constructive heuristic to improve the energy quality of the active sensor nodes

selected by the greedy constructive heuristic. The basic operation in the iterative

improvement heuristic is the swap of an already selected sensor node in the current

correlation-dominating set with a set of unselected source sets. The objective in

a swap operation is to find a set of unselected source sets which achieves the

maximum amount of improvement in the energy quality of the WSN under the

constraint of preserving the correlation-dominating set property. We formulate

the problem of finding a good set of unselected source set for swapping a given

sensor node as a subproblem of the original correlation-dominating set problem.

The iterative improvement heuristic uses the 0-hop centralized heuristic of [11]

to construct a solution to this swap subproblem. Although the 0-hop centralized

heuristic is slow with large correlation data set as the input, it generates a better

selection of active sensor nodes, in terms of sensor network lifetime, compared to

that of the greedy constructive heuristic with small-scale correlation data as the

input in the swap subproblem.

A correlation-dominating set constructed by the IAND heuristic does not nec-

essarily have to result in a connected wireless network. To achieve wireless connec-

tivity among active sensor nodes, we use the minimum Steiner tree construction

heuristic [17]. The objective of the minimum Steiner tree is to construct a con-

nected wireless network by adding the minimum number of additional nodes into

the active sensor nodes set. Thus, the minimum Steiner tree forms the connected

correlation-dominating set from the correlation-dominating set constructed by

the IAND heuristic.

We performed extensive simulations to observe the performance of the IAND

heuristics in Section 5. Furthermore, we compared our results with a recent
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and state-of-the-art solution to the active sensor node determination problem

proposed in [11]. We evaluate the heuristics in terms of sensor network lifetime

and runtime efficiency and show that we are able to achieve considerable better

results than the existing solution to the problem.

The rest of the paper is organized as follows: In Section 2, we give background

information about WSNs, in Section 3, we discuss the related work and in Sec-

tion 4.1 we give a formal definition of the problem. In Section 4, we describe our

solution approach and detail our (IAND) heuristic. In Section 5, we provide the

results of our simulation experiments done to evaluate the performance of our

IAND approach. Finally, in Section 6 we conclude our work.



Chapter 2

Background Information

In this chapter, first, wireless sensor networks (WSNs) are introduced. Second,

a clasification of WSN applications and the challanges in developing WSN ap-

plications are explained. Third, construction of Steiner trees is explained. The

information in this section is compiled from [17] [14] [13].

2.1 Wireless Sensor Networks

Recent advancements in the area of embedded systems and wireless networking

has made it possible for the emergence of a new research and application area

referred to as wireless sensor networks (WSNs). The purpose of WSNs is to co-

operatively sense and gather various information about the monitored region to

a centralized processing center refered to as the sink or data gathering node. For

that reason, WSNs are composed of a large number of spatially distributed sensor

nodes (devices). The sensor nodes that constitute a WSN have very unique char-

acteristics and capabilities. Firstly, sensor nodes are limited in power and since a

WSN is composed of a large number of sensor nodes that are usually distributed

in a large geographical area, it is not possible to recharge or replace sensor nodes

whose power is depleted. Secondly, these sensor nodes are equipped with three

5



CHAPTER 2. BACKGROUND INFORMATION 6

main components to cooperatively sense and gather information about the mon-

itored region. The three main components of the sensor nodes are the processing

unit with limited capability, environment sensors and short-range wireless trans-

mitters. By the use of its components, sensor nodes form a wireless network and

transmit the sensed data about the monitored environment to the data gather-

ing node. Figure 2.1 shows an example to a MicaZ sensor node that is used in

WSN applications, Figure 2.2 show the basic architecture of a sensor node and

Figure 2.3 shows an example to a small WSN that is composed of multiple sensor

nodes.

Figure 2.1: MicaZ sensor node

2.2 Classification of WSN Applications

WSN applications can be categorized based on the application objectives, traffic

characteristics and data delivery requirements. Most of the current WSN appli-

cations fall into one of the following broad classes.
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Figure 2.2: Basic architecture of a sensor node

2.2.1 Event Detection and Reporting

Military WSN applications such as intruder detection, and other civilian WSN

applications such as forest fire detection and detecting anomalities in a manufac-

turing process are examples to WSN applications in this category. These WSN

applications operate only once the event is detected. They generate report(s)

about the detected event and send it to the data gathering node as soon as pos-

sible. Therefore, it is very important to organize the collaboration of the sensor

nodes in such applications to generate more accurate report(s) about the detected

event. This collaboration among sensor nodes also helps to reduce the number of

false alarms generated in the WSN. Most of the time, the sensor nodes in these

WSN application stay inactive. Therefore, the wireless network connectivity of

the sensor nodes in these types of WSN applications should be organized in a way

to send the generated report(s) as soon as possible to the data gathering node as

most of the time the generated report(s) are time critical.

2.2.2 Data Gathering and Periodic Reporting

Applications in this category are monitoring the environmental conditions affect-

ing crops or livestock, monitoring temperature, humidity and lighting in office
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Figure 2.3: An example to a WSN where the links among sensor nodes indicate
the wireless connectivity and the dashed region represent the sensing range of the
sensor node

buildings, etc... In these types of WSN applications, periodic information about

the monitored region is sent to the data gathering node. Usually the data gather-

ing node is interested in the distribution of the gathered data as these applications

are not time critical. Therefore data aggregation schemes such as node clustering

and in-network processing can be applied in such scenarios. These data aggre-

gation schemes will reduce the amount of data that is to be sent to the data

gathering node. Since the amount data that is sent is reduced, this will lead to a

longer network lifetime and smaller delays in the network.

2.2.3 Sink-initiated Querying

Applications in this category are similar to the applications in data gathering and

periodic reporting section. However the difference is that rather than generation

of periodic reports about the monitored region, the data gathering node queries

the WSN or a subsection of the WSN according to the requirements of the WSN

application. In these types of applications, the necessary data communication

paths and routing mechanisms should be established between the data gathering
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node and the sensor nodes in both directions.

2.2.4 Track-based Applications

A WSNs application that is based on tracking is border surveillance where it

is important to accurately track the movements of a suspicious objects. Simi-

larly, environmental applications include tracking the movements and patterns

of insects, birds or small animals. Furthermore, transportation systems are of-

ten interested in wide-area tracking of vehicles. WSN applications for tracking

combine some characteristics of the above three WSN application categories. For

example, once the target is detected and the data gathering node is notified and it

may need to query the WSN to receive location estimates of the tracked objects.

2.3 Challanges for WSNs

In this section the challanges that are needed to be solved while developing WSN

applications is explained.

2.3.1 Characteristic Requirements

• Quality of Service - Quality of service requirements that are used in

traditional computer networks such as bounded delay or minimum band-

width do not apply to WSN applications. WSNs have their own character-

istics such as being delay tolerant and having small available bandwidth.

Therefore when applying QoS to WSN applications appropriate QoS met-

rics should be identified and used.

• Fault Tolerance - Sensor nodes in WSNs cannot be replaced when their

energies are depleted. Therefore when sensor nodes die due to depleted

energy or other environment factors, the WSN should be able to continue

operating successfully. For this reason, deploying redundant nodes should
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be done in WSN applications. Furthermore, the necessary mechanisms

should be developed for the WSN to operate with these redundant nodes.

• Network Lifetime - Network lifetime is a very important issue in WSN

applications. The network lifetime of the WSN determines the amount of

time the application will be able to operate successfully. Therefore necessary

mechanisms to perform energy savings must be considered. The required

network lifetime for a WSN application depends on the requirements of that

WSN application, however, longer the WSN operates the better it is.

• Scalability - Scalability is another import issue in WSNs. It is important

for the WSN applications to support more nodes to cover larger geographical

areas. Therefore, WSN applications should be designed with considering the

scalability requirements of that WSN application.

• Density - Some WSN applications might require a very dense deployment

of sensor nodes in the monitored region. The developed WSN applica-

tion must be able to support operations, such as building a communication

backbone, to operate successfully in such environments. Furthermore the

sensor node density may also be heterogenous. Therefore WSNs should be

designed considering the density requirements.

• Programmability - Sensor nodes need to process information and also

be able to react flexibly on changes in their tasks. Therefore, sensor nodes

should be programmable and should support updating the software they

run when necessary.

• Maintainability - Both the WSN environment and the WSN itself may

change due to depleted batteries, failing nodes and new tasks. The WSN

should be able to monitor its status and adapt to the new conditions. The

WSN should also be able to change operational parameters or choose dif-

ferent trade-offs. Therefore the WSN has to maintain itself.
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2.3.2 Required Mechanisms

• Multihop Wireless Communication - Wireless communication over a

long distance is a very energy consuming operation for sensor nodes with

limited power. However, communication over small distances through the

use of other sensor nodes is a relatively less energy consuming operation.

Using multi-hop communication, energy that is consumed by the transmit-

ting the data is divided among the forwarder sensor nodes.

• Energy Efficient Operation - Supporting energy efficient operations is

an important technique for having long network lifetime in WSNs. There-

fore, any operation that is being performed on the WSN, it should be per-

formed in the most energy efficient way possible, according to the require-

ments of the WSN application.

• Auto Configuration - Rather than using fixed operational parameters,

WSN applications should be able to configure their operational parameters

according to the current state of the WSN application. For example, sensor

nodes should be able to determine their geographical locations by communi-

cating with other nodes in the WSN or they should be able to automatically

synchronize their internal clocks with by communicating with each other.

• Collaboration and in-network processing - In some WSN applica-

tions, one sensor node might not be able to fully detect an event. For this

purpose, collaboration of sensor nodes is an important way to better mon-

itor the sensor region. Furthermore, in come cases besides collaboration

to fully sense the necessary data, in-network processing can be applied to

further analyze and extract more important information from the sensed

data. Therefore, these techniques are very important for WSN applications

to provide better results to data gathering node. Collaboration and in-

network processing also may help to reduce the total amount of data that

is sent to the data gathering node. Therefore, in that sense, they also help

to achieve a longer network lifetime.

• Data centric - In traditional communication networks, data is transfered
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between two specific devices, each equipped with (at least) one network

address. The operation of such networks is based on an address-centric

approach. In WSN applications, where nodes are deployed redundantly to

protect against node failures due environmental factors or energy depletion

or to compensate for the insufficiency of one sensor node’s actual sensing

equipment, the identity of the particular sensor node supplying data be-

comes unimportant. In that sense, the important issue is being able to

correctly gather the required data. It doesn’t matter which set of nodes

provide the data. Therefore using a data centric approach may be more

suitable for some WSN applications.

• Locality - Locality is very important especially for scalable WSNs. As a

WSN becomes large, maintaining global information about the whole WSN

becomes an infeasible task. Therefore, sensor nodes should communicate

with close sensor nodes to achieve the given tasks.

• Exploit trade-offs - WSNs will have to exploit various inherent trade-offs

between mutually contradictory goals, both during system/protocol design

and at runtime according to the specifications of the WSN application.

For example, the trade-off between having higher energy expenditure al-

lows higher result accuracy. Likewise the trade of between network lifetime

against the lifetime of individual nodes. According to the specifications of

the WSN application, necessary trade-offs should be considered and appro-

priate action should be taken.

2.4 Steiner Trees

Consider a graph G = (V,E) where each edge is associated with a weight, and

S ⊆ V . A Steiner Tree T is a subgraph of G with minimal-weight that connects

all the vertices of S. To construct T , additional vertices, referred to as Steiner

vertices, that are in V − S can be used. Consider the graph in Figure 2.11(a).

Red vertices constitute the set of vertices that need to be connected. A minimal

steiner construction of the given graph is constructed in Figure 2.11(b).
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Finding a Minimal Steiner tree is an NP-Complete problem [8]. Therefore,

heuristics [19] [17] have been deviced to solve this problem. Below we provide the

algorithm of 2-approximation Steiner tree construction [17].

1. Construct the complete distance graph G1 in which the distance from each

vertex to every other vertex is computed.

2. Find a minimum spanning tree G2 of G1.

3. Construct a subgraph of G3 of G by replacing each edge in G2 with corre-

sponding shortest path in G.

4. Find a minimum spanning tree G4 of G3.

5. Construct G5 by deleting edges in G4 so that no leaves in G5 are Steiner

vertices.

It should be noted here that the complete distance graph can be implemented

using Dijsktra’s shortest path algorithm and the minimum spanning tree can be

implemented using Prim’s minimum spanning tree algorithm. Figures 2.12–2.18

gives an example minimum steiner tree construct using the algorithm outlined

above.

(a) Complete graph G in which red ver-
tices S are needed to be connected

(b) Minimal Steiner tree of S with ad-
ditional vertices

Figure 2.4: Steiner Tree Construction
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Figure 2.5: Given graph G in which black vertices represents vertices to be con-
nected

Figure 2.6: Complete distance graph G1 of G
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Figure 2.7: Minimum spanning tree G2 of G1

Figure 2.8: Computation of G3 in which each edge in G2 is replace with shortest
path in G
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Figure 2.9: Minimum spanning tree G4 of G3

Figure 2.10: Removing of leaf Steiner vertices from G4



Chapter 3

Related Work

In WSNs having data correlations between sensor nodes, reducing the total num-

ber of bits transmitted to the data gathering node is a common approach to

avoid spending redundant energy and prolonging the network lifetime. Some ap-

proaches to achieve a longer network lifetime in a correlated data environment

include using clusters for data aggregation, constructing data aggregation trees,

utilizing network coding and constructing correlation-dominating sets.

Clustering in WSNs is a rather well studied topic [1]. On one hand, there are

generic clustering algorithms for WSNs such as HEED [24] and LEACH [12] that

do not consider data correlations between sensor nodes. On the other hand, [15]

studies the effect of partially correlated data on the performance of clustering

algorithms. It uses random geometry methodologies [20] to analyze the energy

consumption for forwarding data in a multi-hop sensor network. Furthermore

the authors combine the result they obtain with rate distortion theory [4]. This

way the authors provide a mathematical analysis framework to study the energy

consumption and network lifetime when there are arbitrary amount of data cor-

relations between sensor nodes. The analysis framework allows to determine the

optimal tuning of the cluster-head selection probability to balance the trade-off

between energy consumption and network lifetime in clustering algorithms for

WSNs.

17
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To reduce the number of transmissions performed in the network, [23] devises

the Clustered Aggregation CAG mechanism which provides approximate results

to aggregate queries using the spatial data correlations among sensor nodes. CAG

selects a set of cluster-heads, which correspond to a correlation-dominating set,

using a simple localized scheme during the query propagation phase. The main

pitfall of CAG is that it uses a simple notion of correlation, where the edges of

the forwarding tree, constitute the correlations for the selection of cluster-heads

and connecting sensor nodes.

A recent work on the subject, GRASS [2], provides exact and heuristic ap-

proaches to find a minimum number of aggregation points while routing data to

the data gathering node such that the network lifetime is maximized. In GRASS,

correlations refer to sensor nodes’ readings which overlap statistically as they

monitor the same event. These overlappings are used in GRASS to represent the

relations among the gathered data. GRASS solves the aggregator selection and

routing problems jointly at the data gathering node and then sends the results

to the sensor nodes. This way, an optimal solution that is obtained by the data

gathering node will result in an optimal routing and aggregation strategy.

Constructing data aggregation trees [9] [7] [16] is another approach to reduce

the amount of data transmitted by the sensor nodes and prolong the network life-

time. Authors of [9] propose methods to construct efficient data aggregation trees

which are rooted at the data gathering node. Data is aggregated at the interme-

diate nodes of the data aggregation tree. The authors of [7] propose a randomized

tree construction algorithm that achieves a constant factor approximation of the

optimal tree for grid network topologies. In both works, the correlations are spe-

cific to aggregation, where multiple data values can be compressed into a data

value of defined size. The correlation structure that we consider is more general in

the sense that the data of the given set of sensor nodes can be compressed depend-

ing on the correlation structure available in the network. Authors of [16] devise

a randomized approximation algorithm, namely the minimum fusion Steiner tree

(MFST), which takes into account not only the data transmission cost but also

the data fusion cost.
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Utilizing network coding to efficiently gather correlated data has been inves-

tigated by [22] [5] [3]. The authors of [22] propose two coding schemes: foreign-

coding and self-coding. For these coding techniques, they devise algorithms to

construct optimal (minimum weighted number of bit transmissions) and near-

optimal data-gathering trees. [5] proposes a method to reduce the number of bits

transmitted where the data gathering node is informed about the data correla-

tions between sensor nodes. The data correlations that are realized by the data

gathering node are then used to inform the sensor nodes about the number of

bits they should use for encoding their sensed data. But this approach assumes

a star topology and does not aim to reduce the number of bits transmitted in

the network. The authors of [3] propose two approaches to optimize the trans-

mission structure and the rate allocation determination at the sensor nodes. The

first approach allows nodes to use joint coding of correlated data without explicit

communication where routing and coding are separated. This results in complex

data coding and also global network knowledge is needed for an optimal solution.

The second approach allows nodes to exploit the data correlation only by receiv-

ing explicit side information from other nodes. This way, the correlation structure

is exploited through communication and joint aggregate coding/decoding locally

at each node. This results is easy data coding and relies only on locally available

data as side information. But in this approach optimizing the routing structure

becomes complex.

A very recent solution to the connected correlation-dominating set problem

in the context of WSNs is given by [11]. The authors propose a centralized

approximation algorithm called the L-hop centralized heuristic. The objective

of the L-hop centralized heuristic is to find a correlation-dominating set with

minimum number of nodes. The L-hop centralized heuristic is composed of two

phases. The first phase constructs a correlation-dominating set and the second

phase runs a Steiner tree approximation algorithm [17] to connect the correlation-

dominating set constructed in the first phase. The complexity of the L-hop

centralized heuristic is O(nm2gL), where n is the number of sensor nodes in the

network, m is the number of correlations, g is the maximum degree of a sensor

node in the intersection graph of source sensor nodes and L is the hop count used
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in the heuristic.

There are two main pitfalls of the L-hop centralized heuristic algorithm. The

first pitfall is its high computational complexity. In a dense WSN, the execution

time of the algorithm becomes unexpectedly high. The authors of [11] suggest

that best results that are closest to the optimum solution set are obtained by

taking the L value as 1. However our simulation results in Section 5.2.1 report

that chosing the L value as 1 as opposed to 0, only performs a small increase in

the network lifetime while having a dramatically low runtime performance. The

second pitfall is the limited energy awareness of the L-hop centralized heuristic.

The heuristic tries to increase the sensor network lifetime by only selecting the

minimum number of sensor nodes. However, it does not consider the residual

energy levels of the sensor nodes while constructing the correlation-dominating

set. In this work, we develop an iterative improvement heuristic as a solution

to the first pitfall by achieving an effective and runtime efficient correlation-

dominating set and we devise an energy-aware benefit function as a solution to

the second pitfall.



Chapter 4

Iterative Active Sensor Node

Determination

4.1 Problem Definition

We represent the WSN as a two-tuple W = (N , C). Here, N represents the

set of sensor nodes and C represents the set of correlations among sensor nodes.

In C, each correlation is represented as two-tuple C = (S, s), where source set

S contains the source sensor nodes and s is the inferred node. The correlation

C = (S, s) means that when source sensor nodes in set S are active nodes in the

WSN, sensor node s may stay inactive. This would result in energy saving in

node s as it will not need to process, sense or transmit any data.

Let Nodes(S) denote the set of sensor nodes constituting the source set S. We

extend the Nodes(.) operator to denote the sensor nodes that constitute a set S̃

of source sets, i.e.,

Nodes(S̃) =
⋃
S∈S̃

Nodes(S). (4.1)

Let Infer(S) denote the set of sensor nodes that are inferred by the source set

21
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S, i.e.,

Infer(S) = {s : (S, s) ∈ C}. (4.2)

We extend the Infer(.) operator to denote the set of nodes inferred by a set S̃

of source sets, i.e.,

Infer(S̃) =
⋃
S∈S̃

Infer(S). (4.3)

Let SrcSet(s) denote the set of source sets that contain node s, i.e.,

SrcSet(s) = {S : (S, s) ∈ C}. (4.4)

It should be noted that the correlations are not transitive. That is, Infer(S1)

= S2 and Infer(S2) = S3 does not imply Infer(S1) = S3.

The problem of selecting the minimum number of sensor nodes while keeping

the WSN fully operational can be formulated as an instance of the connected

correlation-dominating set problem [11].

For a given sensor network W = (N , C), a set M of source sets is called a

connected correlation-dominating set if the following two conditions hold:

1. For each sensor node s/∈Nodes(M), there is a source set S⊆M such that

(S, s) is a correlation in C.

2. The communication subnetwork induced by Nodes(M) is connected, and

Nodes(M) contains the data-gathering node.

Here, Nodes(M) denotes the set of sensor nodes that form the connected

correlation-dominating set, i.e.,
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Nodes(M) =
⋃

S∈M

Nodes(S). (4.5)

The connected correlation-dominating set problem is NP-hard as the less general

minimum dominating set problem is well known to be NP-hard [10]. Therefore,

we should use heuristics for solving the problem.

4.2 Iterative Active Sensor Node Determina-

tion (IAND) Heuristic

In order to effectively and efficiently solve the connected correlation-dominating

set problem, we devise a fast energy-aware greedy constructive heuristic which is

followed by an iterative improvement heuristic. The proposed approach is referred

to here as the iterative active node determination (IAND) heuristic. Both the

greedy constructive heuristic and iterative improvement heuristic use an energy-

aware benefit function for the determination of which nodes to keep active in the

WSN.

4.2.1 Energy Aware Benefit Function

The benefit function B(S,M) used by [11] determines the number of newly in-

ferred nodes per new source node added to set Nodes(M). Therefore the benefit

function tries to select the highest number of newly inferred nodes while keeping

the number of newly added source nodes to Nodes(M) the smallest. This way

set Nodes(M) is constructed by selecting the minimum number of nodes, while

inferring the maximum number of nodes. The benefit function B(S,M) is as

follows;
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B(S,M) =
Number of newly inferred nodes by S

Number of new source nodes added to Nodes(M)

=
|Infer(S)− Infer(M)|
|Nodes(S)−Nodes(M)|

. (4.6)

Rather than defining a totally different benefit function, we extend the ben-

efit function in Equation (5) by adding energy awareness. For this purpose, we

introduce an energy awareness function E(S,M);

E(S,M) =
Energy average of new source nodes added to Nodes(M)

Energy average of newly inferred nodes by S

=
Eavg(Nodes(S)−Nodes(M))

Eavg(Infer(S)− Infer(M))
. (4.7)

We obtain the new energy aware benefit function by combining B(S,M) and

E(S,M), where the primary benefit value is considered as B(S,M) and the

secondary benefit value is considered as E(S,M). The energy aware benefit

function is outlined in Algorithm 1. The source set with the higher primary

benefit value is assumed to have a higher benefit value. If two source sets have

primary benefit values that are close to each other, i.e., their absolute difference is

smaller than ε, then the secondary benefit value determines which source set has

the higher benefit value. Consider a benefit value comparison of two source sets

S1 and S2 for possible inclusion into M. If abs(B(S1,M) − B(S2,M)) < ε then

the source set with higher E(S,M) is assumed to have a higher benefit value.

Otherwise, source set with higher B(S,M) value is assumed to have a higher

benefit value. The purpose of the energy-aware benefit function is to select the

minimum possible number of sensor nodes while preserving the energy quality of

the selected nodes as high as possible.

We prefer geometric averaging scheme in the computation of E(S,M).

The geometric average of a given a set {e1, e2, ..., en} of data is computed as

n
√
e1.e2 . . . en. Another approach could have been using arithmetic averaging
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Algorithm 1: EnergyAwareBenefit Function

input : S1, S2, M
if abs(B(S1,M) − B(S2,M)) ≤ ε then1

if E(S1,M) ≥ E(S2,M) then2

return S13

else4

return S25

else6

if B(S1,M) ≥ B(S2,M) then7

return S18

else9

return S210

scheme. Furthermore, instead of averaging, a min-max approach could have also

been taken where E(S,M) would be the minimum energy value of the new sensor

node in the source set divided by the maximum energy value of the new sensor

node in the newly inferred nodes set.

For a given dataset with a fixed arithmetic average, geometric averaging gives

higher results for lower variations in the data values. That is why we prefer using

the geometric averaging scheme rather than the arithmetic averaging scheme. For

example, consider a source set S1 with two new source nodes whose energy values

are 1 and 19. Also consider a second source set S2 with again two new source nodes

whose energy values are 10 and 10. Assume that both source sets infer one new

node whose energy value is 20. Because B(S1,M) = B(S2,M), the secondary

metric will decide which source set to be selected. If arithmetic averaging would

be used, this would have resulted in E(S1,M) = E(S2,M) = 0.5. However, it

is obvious that S1 should definitely have a lower benefit value since source set S2

will likely be able to live longer than S1. If geometric averaging would be used,

this would have resulted in E(S1,M) ' 0.2175 and E(S2,M) = 0.5 which is

desirable as selection of S2 would likely result in a longer network lifetime.

When compared with the max-min approach, geometric averaging performs

better in such cases; consider a source set S3 with two new source nodes whose
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energy values are 10 and 40. Also consider a second source set S4 with again two

new source nodes whose energy values are 10 and 10. Assume both source sets

infer one new node whose energy value is 20. Because B(S3,M) = B(S4,M),

the secondary metric will decide which source set to be selected. If max-min

approach would be used, this would have resulted in E(S3,M) = E(S4,M) =

0.5. However, if geometric averaging would to be used, this would have resulted

in E(S3,M) = 1 and E(S4,M) = 0.5 which is desirable as selection of S3 would

likely result in a longer network lifetime.

During simulations, we observe that using geometric averaging in computing

the E(S,M) values prolongs the network lifetime of the WSN when combined

with the iterative improvement heuristic the most. The details of the trade-off

between these three benefit functions is given in Section 5.2.1.

4.2.2 Greedy Constructive Heuristic

We introduce the greedy constructive heuristic which generates a

correlation-dominating set from the given set C of data correlations as the in-

put. The constructed correlation-dominating set will be an input to the iterative

improvement heuristic for refinement. The purpose of the greedy constructive

heuristic is to perform the active sensor node selection as fast as possible for a

large given data correlation input. The purpose of the greedy constructive heuris-

tic is not to find the best or the minimum set of active sensor nodes. It is intended

to be used together with the iterative improvement heuristic so that the energy

quality of the selected active sensor nodes can be further improved. The greedy

constructive heuristic uses the energy-aware benefit function for computing the

benefit values of source sets.

The constructive heuristic briefly works as follows; it first computes the

energy-aware benefit values for each source set through a single sequential pass

over the given source sets. Then the source sets are sorted using a quicksort-based

algorithm [18] according to the energy-aware benefit values in decreasing order.

Finally source sets with higher benefit are added to set M until M becomes a
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correlation-dominating set. The outline of the heuristic is given in Algorithm 2.

Algorithm 2: greedyConstructive Heuristic

input : N , C, dataGatheringNode d
output: M
M← ∅;1

SList ← ∅;2

Nodes(M) ← d;3

foreach correlation C = {S, s} ∈ C do4

S.benefit1 ← B(S,M);5

S.benefit2 ← E(S,M);6

SList ← SList ∪ (S, S.benefit1, S.benefit2);7

//sort in descending order;8

SSortedList ← Sort(SList);9

while IsCorrelationDom(M) = FALSE do10

S ← next source set in SSortedList;11

M←M ∪ {S};12

For the sake of runtime efficiency, the source sets are maintained in compressed

form in two one-dimensional arrays srcNodeIndexArray and srcNodeArray.

The IDs of the source sensor nodes that belong to the source set S are stored

in srcNodeArray at the indices beginning from srcNodeIndexArray[S] to

srcNodeIndexArray[S + 1]− 1. The inferred nodes are also maintained in

compressed form in two one-dimensional arrays inferredNodeIndexArray and

inferredNodeArray. The IDs of the inferred sensor nodes by the source

set S are stored in inferredNodeArray at the indices beginning from

inferredNodeIndexArray[S] to inferredNodeIndexArray[S+1]− 1. The data

structures that are output of the greedy constructive heuristic are the setMArray

which corresponds to M and the nodesInSetMArray which corresponds to

Nodes(M). setMArray stores 1 in its ith index if the source set with ID i

is in set M or 0 otherwise. Similarly nodesInSetMArray stores 1 in its jth

index if the node with ID j is inside a source set that is in Nodes(M).
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4.2.3 Iterative Improvement Heuristic

The selected set of active sensor nodes which constitute the correlation-

dominating set found by the constructive heuristic is an initial solution to the iter-

ative improvement heuristic. The purpose of the iterative improvement heuristic

is to go through the initial solution and try to improve the quality of the selected

active sensor nodes while preserving the correlation-dominating set property. The

iterative improvement heuristic is outlined in Algorithm 3.

The iterative improvement heuristic is composed of 4 phases;

1. Induction of source sets that are not inM due to the sensor nodes of source

sets in M.

2. Identification and removal of redundant nodes in Nodes(M).

3. Performing a sequence of swaps between selected sensor nodes and unse-

lected source sets to improve the energy quality of M.

4. Identification and removal of redundant nodes in Nodes(M).

Algorithm 3: Iterative Improvement Heuristic

//First phase ;1

sourceSetsInduction()2

//Second phase;3

eliminateRedundantNodes()4

//Third phase;5

performSwaps()6

//Forth phase;7

eliminateRedundantNodes()8

For the first phase, a subset S̃ of source sets in M may already contain the

sensor nodes of another source set Sj which is not in M. Source sets such as Sj

are said to be induced by M. That is,
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⋃
Si∈S̃

Nodes(Si) ⊇ Nodes(Sj), where Sj /∈ M. (4.8)

These induced source sets are the ones that are not selected by the constructive

heuristic but do exist. These induced source sets exist by the source sensor nodes

in Nodes(M) but which are probably in different source sets. Therefore without

adding any further nodes to Nodes(M), more source sets can be considered to

exist in M. Induction of new source sets increases the number of source sets in

M and the number of sensor nodes inferred by M. This increases the degrees

of freedom of the iterative improvement heuristic which in turn increases the

possibility of identification and deletion of redundant sensor nodes in phases 2

and 4, and increases the possibility of performing more swaps in phase 3 to

enhance the energy quality of M. Consider S1 ∈ M, S2 ∈ M and S3 /∈ M. Let

Nodes(S1) = {s1, s4, s5} and Infer(S1) = {s7}, and Nodes(S2) = {s2, s9} and

Infer(S2) = {s10}. Let Nodes(S3) = {s1, s2} and Infer(S3) = {s3}. Since S1

and S2 induce S3, S3 can be added toM without any cost. This phase is outlined

in Algorithm 4.

Algorithm 4: sourceSetsInduction function

input : M
output: M
foreach source set S /∈ M do1

existanceF lag ← TRUE;2

foreach source node s ∈ S do3

if s /∈ Nodes(M) then4

existanceF lag ← FALSE;5

break;6

if existanceF lag = TRUE then7

M←M ∪ {S}8

In the second phase of the algorithm, the redundant sensor nodes in

Nodes(M) are identified and removed from M. A sensor node s is said to

be redundant in Nodes(M) if the following two conditions hold;
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1. There is a source set S ∈ M where S infers sensor node s and does not

contain s as its source sensor node. That is,

∃ S ∈ M such that s /∈ S and s ∈ Infer(S).

2. The sensor nodes that are inferred by the source sets that contain s are

already inferred by other source set(s) in M. That is,

∃ S̄ ⊆M such that Infer(S̄) ⊇ Infer(SrcSet(s)) and S̄ ∩ SrcSet(s) = ∅.

The number of active sensor nodes in a WSN is a very important factor on the

application lifetime that runs on that WSN. If a sensor network has a large number

of active sensor nodes, these sensor nodes will need to transmit their sensed data

to the data gathering node. Due to multi-hop data routing, each forwarded data

will reduce some amount of energy from the forwarder sensor node. This will

affect the overall network lifetime as having more active sensor nodes will cause

a faster reduction in the energy levels of the sensor nodes. Therefore it is very

important to keep the number of active sensor nodes in the WSN as small as

possible. For this purpose, in the iterative improvement heuristic, this phase

allows to delete redundant sensor nodes from Nodes(M). This phase deletes

these redundant sensor nodes while preserving the correlation-dominating set

property of the selected active sensor nodes set. Deletion of redundant sensor

nodes will cause less network traffic without sacrificing the fully operability of

the WSN. This will help the WSN to have a longer lifetime. The outline of this

phase is provided in Algorithm 5.

In Algorithm 5, the first two for loops (lines 1-5) compute the inference count

for each sensor node. Here, the inference count for sensor node s denotes the

number of source sets that infer s. Then, the algorithm checks each sensor node

s in Nodes(M) whether it can be eliminated. For this purpose, the algorithm

checks the inference count of each sensor node r which is inferred by the source

sets that contain s. If the inference count of such a sensor node r is smaller

than or equal to 1, it means that there is at most one source set that infers r.

Therefore elimination of s from Nodes(M) should not be allowed as it will leave

r as an uninferred node. If r would remain as uninferred, setM would no longer

be a correlation-dominating set. The if statement (lines 16-22) is executed if s
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can be removed from Nodes(M). In that case, s is removed from Nodes(M),

the source sets that contain s as a source sensor node are removed from M
and finally the inference count of each sensor node that is no longer inferred is

decremented. It should be noted here that the processing order of the sensor

nodes in Nodes(M) for elimination might affect the solution quality. Finding

the maximum number of sensor nodes that can be eliminated from Nodes(M)

seems to be a hard problem. Therefore, for the sake of runtime efficiency, we

prefered using a simple yet effective solution scheme.

Algorithm 5: eliminateRedundantNodes function

foreach sensor node s ∈ N do1

count[s] ← 0;2

foreach source set S ∈ M do3

foreach sensor node s ∈ Infer(S) do4

count[s] ← count[s] + 1;5

foreach sensor node s ∈ Nodes(M) do6

foreach source set S ∈ SrcSet(s) do7

removeF lag ← TRUE;8

if S ∈ M then9

foreach sensor node r ∈ Infer(S) do10

if count[r] ≤ 1 then11

removeF lag ← FALSE;12

break;13

if removeFlag = TRUE then14

break;15

if removeFlag = TRUE then16

Nodes(M) ← Nodes(M) − {s};17

foreach source set S ∈ SrcSet(s) do18

if S ∈ M then19

M←M − S;20

foreach sensor node r ∈ Infer(S) do21

count[r] ← count[r] − 1;22
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In the third phase of the algorithm, in order to improve the energy quality

of selected nodes, the iterative improvement heuristic tries to perform swaps

between the selected active sensor nodes and unselected source sets. For each

sensor node s, whose residual energy level is less than the arithmetic average of

the sensor nodes in Nodes(M), the heuristic finds the set of sensor nodes that will

remain uninferred if s is to be removed from set Nodes(M). Then the heuristic

tries to find a ”good” subset of unselected source sets that can replace sensor

node s in order to infer the uninferred sensor nodes when s is removed from set

Nodes(M). Here, goodness of a subset of source sets refers to containing small

number of additional sensor nodes which have high residual energy levels.

Here we show that the solution to this swapping problem can be formulated

as a subproblem of the original problem in a much smaller scale. We are again

trying to select source sets for the inference of some nodes, but this time in a

smaller scale. In a given correlation-dominating set solution M to the original

problemW=(N , C), finding a ”good” subset of unselected source sets to replace a

source node s from Nodes(M) can be formulated as finding a ”good” correlation-

dominating set of the following subproblem Wsub(s) = (Nsub(s), Csub(s)), where

Csub(s) = {(S, r) : S /∈M∧ r ∈ Infer(SrcSet(s))

∧ r /∈ Infer(M− SrcSet(s))} (4.9)

Nsub(s) =
⋃

(S,r)∈Csub

Nodes(S) (4.10)

In the subproblem Wsub(s), Csub(s) consists of the correlations among unselected

source sets that infer the sensor nodes of already selected source sets that contains

s and that are not inferred by the remaining source set in M. Nsub(s) contains

the sensor nodes of source sets in Csub(s).

We use the 0-hop centralized constructive heuristic of [11] with our energy-

aware benefit function defined in Section 4.2.1 for solving the above problem.

The 0-hop centralized constructive heuristic is outlined in Algorithm 6. The
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reason why we use the 0-hop centralized constructive heuristic rather than the

greedy constructive heuristic (Algorithm 3) is because of the small scale of the

subproblem. The scale of swapping problem is small because we are only try-

ing to find source sets for inferring a small set of sensor nodes. Although 0-hop

centralized constructive heuristic takes much more time than the greedy con-

structive heuristic for large scale problems, the running time of 0-hop centralized

constructive heuristic is expected to be in acceptable levels for the small scale

of the subproblem, and hence amortizing its better solution quality compared

to the greedy constructive heuristic. The swapping of sensor nodes in M with

unselected source sets is outlined in Algorithm 7.

In Algorithm 7, sensor nodes in Nodes(M), whose residual energy levels are

smaller than the average residual energy level ofM, are considered for swapping

starting from the sensor node with the minimum residual energy level. We need

to maintain a priority queue Q for the selection of sensor nodes with low energy

levels because new sensor nodes that are added to Nodes(M) due to the swap

operations might be considered for swapping in the future iterations. The first two

inner for loops (lines 7-14) construct the correlation-dominating set subproblem

which will be solved for the swap of current sensor node s from Nodes(M). The

subproblem is solved at line 15 using 0-hop centralized constructive heuristic. At

line 16, this subproblem solution is checked in order to see whether it improves

the current quality of M in terms of average residual energy level. If the newly

selected sensor nodes improve the overall solution quality of setNodes(M), then s

is swapped with the newly selected source sets. The 0-hop centralized construtive

heuristic may fail to find a solution for the subproblem, in which case the resulting

Msub is not swapped for the current solution M. The last two for loops (lines

19-27) realize the swap operation together with inserting the new sensor nodes

added to Nodes(M) into Q. It should be noted that the energy(s) function gives

the residual energy level of sensor node s.

The fourth phase of the algorithm is the same as the second phase. The

improved solution Nodes(M) is pruned by identifying and deleting the nodes

that become redundant after the swap phase.
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Algorithm 6: 0HopCentralizedHeuristic

input : Nsub, Csub

output: M
M← ∅;1

foreach correlation Ccur = (Scur, scur) ∈ Csub do2

if Scur /∈ M then3

Smax ← Scur;4

foreach correlation Ctmp = (Stmp, stmp) ∈ Csub do5

if Stmp /∈ M then6

Smax←EnergyAwareBenefit(Smax,Stmp,M);7

M←M ∪ {Smax};8

if IsCorrelationDom(M) = TRUE then9

break;10

4.2.4 Minimum Steiner Tree Construction

After the execution of the iterative active sensor node determination heuristic,

the correlation-dominating set is established. The correlation-dominating set is

unaware of the network connectivity of the sensor nodes. It only guarantees

that the constructed set is able to fully sense the necessary data of the WSN. In

order for this data to be successfully collected at the data gathering node, the

correlation-dominating set has to be fully connected. To establish the connected

correlation-dominating set, we construct a minimum Steiner tree [17] which con-

nects the sensor nodes in Nodes(M) by adding necessary sensor nodes not in

Nodes(M) to achieve wireless connectivity. The sensor nodes that are added to

Nodes(M) after the minimum Steiner tree construction are called Steiner sensor

nodes. The objective of minimum Steiner tree algorithm is to keep the number

of Steiner nodes as small as possible. Note that the Steiner sensor nodes will not

need to sense data from their environment although they will be active nodes in

the network. The Steiner nodes will only be responsible for the routing of data

packets towards the data gathering node.
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Algorithm 7: performSwaps function

input : N , C, M
output: M
//Priority queue Q keyed with residual energy;1

Q ← Nodes(M);2

s ← ExtractMin(Q);3

initialEnergyAvgM ← Eavg(M);4

while energy(s) < initialEnergyAvgM do5

Csub ← ∅;6

foreach correlation (S, r) ∈ C do7

if Eavg(S) > initialEnergyAvgM then8

if source set S /∈ M then9

if sensor node r∈Infer(SrcSet(s)) then10

Csub ← Csub ∪ (S, r);11

Nsub ← ∅;12

foreach correlation (S, r) ∈ Csub do13

Nsub ← Nsub ∪ Nodes(S)14

Msub ← 0HopHeuristic(Nsub, Csub);15

if Eavg(M ∪ Msub) > Eavg(M) then16

//Swap s with Nodes(Msub);17

Nodes(M) ← Nodes(M) − {s};18

foreach correlation (S, r) ∈ C do19

if S /∈ M then20

if r ∈ Infer(SrcSet(s)) then21

M←M − {S};22

M←M ∪ {Msub};23

foreach sensor node r ∈ Nodes(Msub) do24

if r /∈ M then25

Nodes(M) ← Nodes(M) ∪ {r};26

Insert(Q,r);27

s ← ExtractMin(Q);28



Chapter 5

Simulations and Evaluation

In this section, we report and discuss the results of the simulations we performed

to test the validy of our proposed approach to the active sensor node determina-

tion problem in WSN. For this purpose, we first discuss the energy consumption

model to be used in our simulations. Then, we report simulation results in dif-

ferent network topologies with different parameters to observe the performance

of the proposed approach.

5.1 Energy Consumption Model

In order to determine the amount of energy that will be reduced from each se-

lected sensor node, we define the following energy consumption model. After

each configuration of setM as a connected correlation-dominating set, there are

R data gathering rounds until the next configuration. During any given round,

each selected active sensor node generates one packet towards the data gathering

node. Let P be the amount of energy that is spent for transmitting one packet

from one sensor node to its parent sensor node. Let G denote the number of

descandants of an active sensor node. The total amount of energy spent by a

selected active sensor node in a round is P × 2G + 1 and the total amount of

energy spent by a Steiner sensor node in a round is P × 2G. Note that Steiner

36
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nodes do not generate a data packet by themselves. They only act as routers

for other packets. The total amount of energy that is consumed between two

successive configurations is R × (P × 2G + 1) for a selected active sensor node

and is R × (P × 2G) for a Steiner sensor node. We assume short-range radio

transmitters and therefore the energy consumption for packet transmission is in-

dependent of the distance between sensor nodes. We also assume that the energy

consumed in transmitting and receiving a packet is the same.

5.2 Assumptions and Parameter Values

The P value, which is the amount of energy that is spent for transmitting one

packet from one sensor node to its parent sensor node, is selected as 0.01 energy

units, where the initial energy of a sensor node is 100 energy units. The R

value, which is the number of data gathering rounds between two configurations,

is selected as 100. The communication range between sensor nodes is assumed

to be 20 meters. The two main criteria for making performance comparisons

between different approaches is sensor network lifetime and runtime of the active

sensor node determination heuristics. We assume that the WSN is dead and

cannot further operate once a connected correlation-dominating set cannot be

constructed. Unless otherwise stated, the WSN topology is modelled according

to Gaussian distribution with standard deviation (σ) set to 1 on a 150x150 meter2

area, where the data gathering node is selected from the center of the network.

It should be noted that in a WSN topology modelled according to Gaussian

distribution more sensor nodes are placed around the center of the network as

the σ value becomes smaller. The σ value indicates the variation of node positions

around the data gathering node position.

The correlations that define the inference relationship among nodes are gen-

erated randomly in the simulations. The three parameters that effect the random

correlation generation process are Cper, Cmaxsrc and Cmaxhop. A candidate corre-

lation is accepted as a valid correlation if the correlation percentage value that

is randomly selected in the scale of [0,100] is smaller than the defined Cper value
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for correlation generation. The Cmaxsrc parameter defines the maximum num-

ber of source sensor nodes that is allowed to be in a given correlation. Lastly,

the Cmaxhop parameter defines the maximum hop-count in the WSN for sensor

nodes to infer one another. Unless otherwise stated, the correlation generation

parameter values are Cper = 50, Cmaxsrc = 5 and Cmaxhop = 3.

For each simulation experiment, 10 different correlation sets are generated

with different random seeds and the average of the 10 simulations on these cor-

relation sets is reported in the following figures. This simulation scheme is used

in order to provide average case results in the comparison of various active node

determination heuristics.

5.2.1 Simulation Results

We first performed simulations to determine the parameters to be used in the

comparison of IAND and L-hop centralized heuristics. Once we determined the

parameters values to be used in these heuristics, we compared them in different

network topologies. Finally, we changed the correlation generation parameter

values to further observe and report the performance of the compared heuristics.

Figure 5.1 compares the performance of the 0-hop and 1-hop centralized

heuristics with increasing number of nodes. The 0-hop and 1-hop heuristics are

L-hop heuristics where L is 0 and 1, respectively. Figure 5.1(a) shows that the

network lifetime performance of the 1-hop centralized heuristic is slightly better

than that of the 0-hop centralized heuristic. The reason for the slightly bet-

ter network lifetime performance of the 1-hop centralized heuristic is because of

the fact that it includes a larger set of source sets into M through 1-hop union

of source sets. However, in terms of runtime performance, Figure 5.1(b) shows

that the runtime of the 1-hop centralized heuristic dramatically increases as the

network becomes denser. Therefore, it becomes impractical to use the 1-hop cen-

tralized heuristic even for medium scale WSNs (and any L-hop heuristic with

L larger than 1). For this reason, we compare our IAND heuristic against the

0-hop centralized heuristic in the rest of the experiments. The 0-hop centralized
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heuristic achieves a solution of reasonably good quality with very short running

time. It should be noted that the runtime of the 0-hop centralized heuristic is

very small compared to that of the 1-hop centralized heuristic, so that its run-

ning time seems to lie on the x-axis of Figure 5.1(b). Because of the extremely

long runtime of the 1-hop centralized heuristic, this simulation is performed on a

110x110 meter2 area in which the number of sensor nodes in the network is varied

between 125 and 350.

Figure 5.2(a) shows the effect of the ε parameter on the performance of our

IAND heuristic. As seen in Figure 5.2(a), the network lifetime performance of

IAND heuristic increases with increasing ε until ε = 0.5, and then it begins to

decrease for higher ε values. This is experimental finding is expected. For small

ε values, the energy-aware benefit function gives more emphasis to the B(S,M)

function which considers the number of source nodes and inferred nodes. For

large ε values, the energy-aware benefit function gives more emphasis to E(S,M)

function which considers the residual energy levels of the source nodes and inferred

nodes.

Figure 5.2(b) shows the effect of three different energy averaging schemes

proposed in Section 4.2.1 for our energy-aware benefit function in the performance

of IAND heuristic. We compare the performance of our energy-aware benefit

function against the benefit function of [11] which is referred to as ”base” in

Figure 5.2(b). As seen in the figure, although the difference is not large, all

proposed energy-aware benefit function schemes perform better than the benefit

function of [11]. Furthermore, Figure 5.2(b) confirms our expectation that the

geometric averaging scheme performs better than the arithmetic averaging scheme

and min-max scheme.

Figure 5.3 shows the performance of the IAND heuristic compared with the

0-hop centralized heuristic as the WSN becomes denser. In Figure 5.3, we also

display the simulation results for an IAND version in which a random construc-

tive heuristic is used instead of the greedy constructive heuristic given in Algo-

rithm 2. This random constructive heuristic selects source sets randomly until

the correlation-dominating set is constructed. IAND-rand results are given here
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to show the effectiveness of iterative improvement heuristic even when a simple

constructive heuristic is used for finding an initial solution. Thus, the IAND-rand

heuristic is composed of the random constructive heuristic follwed by the itera-

tive improvement heuristic. As seen in Figure 5.3(a), both IAND and IAND-rand

perform considerably better than the 0-hop centralized heuristic in terms of av-

erage network lifetime, where IAND performs better than IAND-rand. As seen

in Figure 5.3(b), the proposed IAND heuristics run drastically faster than the 0-

hop centralized heuristic and the runtime performance gap increases considerably

with the increasing network density in favor of IAND heuristics.

Figure 5.4 compares the performance of the IAND and IAND-rand heuristics

with the 0-hop centralized heuristic as the σ value of the Gaussian distribution

of the given WSN topology increases while the number of nodes stays as 500 in

the same area. It should be noted here that the WSN topology becomes more

uniform with increasing σ. Similarly, Figure 5.5 compares the performance of

the IAND and IAND-rand heuristics against the 0-hop centralized heuristic in a

uniform network topology as the number of nodes in the same area increases. As

seen in Figure 5.4(a), the IAND approach is able achieve relatively much better

network lifetime performance for small values of σ where the network topology is

skewed and denser around the data gathering node. As also seen in Figure 5.4(a),

the performance gap between the IAND heuristics and the 0-hop centralized

heuristic becomes smaller with increasing σ. However, as seen in Figure 5.5(a),

there is still considerable network lifetime performance difference between IAND

approach and the 0-hop centralized heuristic in the uniform WSN topology. As

seen in Figure 5.4(b), the runtime performance gap between IAND and the 0-hop

centralized heuristic stays the same with increasing σ. As seen in Figure 5.5(b),

the IAND heuristics run drastically faster than the 0-hop centralized heuristic as

the number of nodes in the uniform WSN topology increases.

The main reason for the decrease in the network lifetime performance gap

between IAND heuristics and 0-hop centralized heuristic with increasing σ is be-

cause of the fact that when the network topology is uniform, the nodes around the

data gathering node constitute a bottleneck for the performance of all heuristics.

The energy levels of the sensor nodes around the data gathering node deplete
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faster than other nodes in the network because the sensor nodes around the data

gathering node have more descendant sensor nodes and therefore they need to

forward more packets than other sensor nodes. Since the sensor nodes around

the data gathering node deplete their energy levels and become unusable, it be-

comes harder to construct a connected correlation-dominating set in a uniform

topology. That is why all the approaches were not able to increase the net-

work lifetime after a limited point. This experimental finding was also reported

in [21], [6]. Figure 5.5(a) also shows that in uniform WSN topology, the network

lifetime performance gap between the IAND and IAND-rand heuristics is quite

small.

Figures 5.6–5.8 are presented to show the effect of the correlation-set gen-

eration parameters Cper, Cmaxsrc and Cmaxhop in the performance comparison of

heuristics. Figures 5.6–8 shows the performance variation of IAND and 0-hop

centralized heuristic with varying one of the parameter while fixing the other

two. The simulations were performed with a 500 node WSN network.

As seen in .Figure 5.6(a), with increasing Cper value the network lifetime

performance of all heuristics increase while the performance gap between IAND

and 0-hop centralized heuristic remains nearly the same. Figure 5.6(b) shows

that the runtime performance gap between IAND and 0-hop centralized heuristic

becomes smaller as the correlation percentage increases. This is because, as the

Cper value increases, the number of available candidate source sets increase and

hence the number of passes over the candidate source sets performed by the 0-hop

centralized heuristic decreases.

As seen in Figure 5.7, the Cmaxsrc value does not affect the network lifetime

and runtime performance of the heuristics considerably. This behaviour might

be attributed to the possibility that the size of the union of source sets that

constitute the connected correlation-dominating set remain nearly the same with

varying Cmaxrsc value.

As seen in Figure 5.8(a), the increase of the Cmaxhop value increases the perfor-

mance gap between IAND and 0-hop centralized heuristic in the favor of IAND.

As the Cmaxhop value increases, more sensor nodes that are distant from each
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other are able to infer one another. This allows the iterative improvement heuris-

tic to perform more swap operations which in turn increases the network lifetime

performance. As seen in Figure 5.8(b), the runtime performance gap between

IAND heuristics and 0-hop centralized heuristic remains nearly the same.
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(a) Average network lifetime performance

(b) Average runtime performance

Figure 5.1: Performance comparison of 0-hop and 1-hop centralized heuristics.
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(a)

(b)

Figure 5.2: Effect of (a) ε parameter and (b) benefit function scheme on the
performance of the IAND heuristic
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(a) Average network lifetime performance

(b) Average runtime performance

Figure 5.3: Performance comparison of IAND, IAND-rand and 0-hop centralized
heuristic with increasing number of nodes and Gaussian distribution with σ = 1.
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(a) Average network lifetime performance

(b) Average runtime performance

Figure 5.4: Performance comparison of IAND, IAND-rand and 0-hop centralized
heuristic with increasing Gaussian distribution σ.
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(a) Average network lifetime performance

(b) Average runtime performance

Figure 5.5: Performance comparison of IAND, IAND-rand and 0-hop centralized
heuristic in a uniform topology.
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(a) Average network lifetime performance

(b) Average runtime performance

Figure 5.6: Performance comparison of IAND, IAND-rand and 0-hop centralized
heuristics as the Cper value is increased, where Cmaxsrc = 5 and Cmaxhop = 3.
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(a) Average network lifetime performance

(b) Average runtime performance

Figure 5.7: Performance comparison of IAND, IAND-rand and 0-hop centralized
heuristics as the Cmaxsrc value is increased, where Cper = 50 and Cmaxhop = 3.
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(a) Average network lifetime performance

(b) Average runtime performance

Figure 5.8: Performance comparison of IAND, IAND-rand and 0-hop centralized
heuristics as the Cmaxhop value is increased, where Cper = 50 and Cmaxsrc = 5.
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Conclusion

In wireless sensor network (WSN) applications where data gathered by different

sensor nodes is correlated, all sensor nodes need not to be active for the WSN to

be functional. In such WSN applications, selecting a set of active sensor nodes in

the network is a critical issue for the performance of the WSN. In this work, we

considered the problem of finding an active subset of nodes which are connected

and can infer the correlated data of the inactive sensor nodes. This problem was

formulated as an instance of the connected correlation-dominating set problem.

In order to solve the connected correlation-dominating set problem in the con-

text of WSNs, we have proposed and developed an Iterative Active sensor Node

Determination (IAND) heuristic which is composed of a fast constructive heuris-

tic followed by an effective and runtime efficient iterative improvement heuristic.

The constructive heuristic is a fast algorithm that provides an initial solution for

the iterative improvement heuristic. This initial solution is composed of selected

active sensor nodes that constitute a correlation-dominating set for the given

network.

The iterative improvement heuristic performs a sequence of swap operations to

further improve the quality of active sensor nodes while preserving the correlation-

dominating set property of the set of active sensor nodes. The swap opera-

tions take place between the selected sensor nodes in the current correlation-

dominating set and the unselected source sets. The problem of finding a ”good”
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swap for a given selected source node was formulated as a subproblem of the orig-

inal correlation-dominating set problem. We used the 0-hop centralized heuristic

of [11] for solving this swap subproblem due to the small-size of the subproblem.

The extensive simulations that we performed showed that the proposed ap-

proach can efficiently compute an active sensor node set and can be effective in

prolonging the network lifetime. We also compared our approach with a state-of-

the-art approach. The simulation results showed that our approach can perform

considerably better in terms of WSN lifetime than the existing approach, while

achieving drastically better runtime efficiency.
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