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July, 2009



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Vakur B. Ertürk (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ayhan Altıntaş
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ABSTRACT

APPLICATION OF CHARACTERISTIC BASIS
FUNCTION METHOD FOR SCATTERING FROM AND

PROPAGATION OVER TERRAIN PROFILES

Atacan Yağbasan

M.S. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Vakur B. Ertürk

July, 2009

A computationally efficient hybrid method, that combines the characteristic basis

function method and the physical optics as well as the forward backward method,

is applied for the solution of integral equations used to investigate the electro-

magnetic scattering from and propagation over large scale rough terrain problems.

The method utilizes high-level basis functions defined on macro-domains (named

as blocks) namely characteristic basis functions that are constructed by aggre-

gating low-level basis functions (i.e., conventional sub-domain basis functions).

In the construction of the abovementioned characteristic basis functions, forward

backward method as well as the physical optics approach (when applicable) are

used. The conventional characteristic basis function method originally developed

by Prakash et al. is slightly modified to handle large terrain problems, and is fur-

ther embellished by accelerating it and by reducing its storage requirements via

the use of an extrapolation procedure. Numerical results for the induced currents,

total fields and path loss are presented and compared with either measured or

previously published reference solutions to assess the efficiency and the accuracy

of the method. Besides, certain parametric studies and convergence tests have

been carried out.

Keywords: Electromagnetic Scattering, Method of Moments, Forward-Backward

Method, Physical Optics, Characteristic Basis Function Method.
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ÖZET

KARAKTERİSTİK TEMEL FONKSİYONU METODU
İLE ARAZİ KESİTLERİNDE DALGA YAYINIMI VE

SAÇILIMI UYGULAMALARI

Atacan Yağbasan

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assoc. Prof. Dr. Vakur B. Ertürk

Temmuz, 2009

Geniş ve pürüzlü arazi kesitlerinde elektromanyetik saçılım ve yayınım prob-

lemleri için, Karakteristik Temel Fonksiyon Metodu’nu, Fiziksel Optik ve İleri

- Geri Yöntemi ile birleştiren etkin bir hibrit metot kullanılmıştır. Metot

düşük düzeyli temel fonksiyonların bir araya getirilmesiyle oluşturulan, makro-

uzayda (bloklarda) tanımlı karakteristik temel fonksiyonları kullanmaktadır.

Yukarıda bahsedilen karakteristik temel fonksiyonlarının oluşturulmasında, ileri-

geri yöntemi ve fiziksel optik kullanılmıştır. Prakash tarafından geliştirilen

bilindik karakteristik temel fonksiyon metodu, geniş arazi kesit problemlerini

çözebilecek şekilde değiştirilmiş, hızlandırılmış ve extrapolasyon tekniği kul-

lanılarak hafıza gereksinimleri azaltılmıştır. Metodun etkinliğini ve doğruluğunu

değerlendirmek için, nümerik sonuçlar endüklenen akım, toplam alan ve kayıp

cinsinden verilmiş ve daha önce ölçülen ve yayınlanan referans çözümleriyle

karşılaştırılmıştır. Ayrıca belli parametrik çalışmalar ve yakınsama testleri

yapılmıştır.

Anahtar sözcükler : Elektromanyetik Saçılım, Moment Metodu, İleri-Geri

Yöntemi, Fiziksel Optik, Karakteristik Temel Fonksiyonu Metodu.
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Chapter 1

Introduction

With the recent advances in wireless technology, accurate computation of elec-

tromagnetic wave scattering over large terrain profiles has become of great con-

cern, both for military and commercial applications [1],[2]. With the advent of

remote-sensing from airborne platforms using high resolution synthetic aperture

techniques, low-grazing angle backscattering turned out to play a crucial role for

electronic warfare since backscattered field allowed monitoring of the terrain pro-

file. On the other hand, accurate prediction of electromagnetic field strengths

is also important for commercial applications as well, since frequency allocation

and cell planning require coverage analysis with varying transmitter and receiver

locations.

Even though, analytical models regarding free-space propagation, ground re-

flection, etc. have been developed, they are only robust in a limited variety of

cases since they cannot account for multiple scattering and shadowing, which

is the case for low-grazing-angle incidence. For this reason, numerical methods

such as integral equation based approaches, which allow direct solution using

Maxwell’s equations, have become more and more appealing and have been used

as a reference solution to validate measurements.

Majority of the integral equation based methods are solved using Method of

Moments [3] based solution methods. In all these methods, the main goal is to

1



minimize the computational cost in terms of central processing unit (CPU) time

and storage requirements. A method of moments discretization of an integral

equation that describes scattering from a rough surface, yields a system of linear

equations that must be solved to obtain the surface current density. Direct solu-

tion of the system via lower/upper (LU) decomposition requires order N3 [O(N3)]

floating point operations, where N is the number of unknowns to be found. This

is typically the most expensive step in a MoM analysis of a scattering problem.

As the problem geometry becomes larger in terms of wavelength, (i.e., electrical

length of the terrain profile increases) the size of the associated MoM matrix

grows very rapidly and this, in turn, places an inordinately heavy burden on

the CPU in terms of memory and time. Furthermore, a particularly challenging

problem occurs when the incident angle approaches the mean horizontal plane

containing the rough surface (i.e., low-grazing angles). As the incident angle

approaches to horizontal, the region over which the currents are nonzero on the

surface increases due to the fact that the projection of the incident beamwidth on

the surface increases. As a result, a larger number of surface unknowns (N) must

be considered and therefore, more powerful numerical methods become necessary.

The computational expense of direct solution of the system via LU decomposi-

tion has lead to the use of iterative solution methods [4]. Non-stationary iterative

techniques [5],[6] are extensions of the standard conjugate gradient method, and

they are robust in the sense that they are not affected by the order of the sur-

face interactions in the impedance matrix. Hence, they can handle any kind of

arbitrarily shaped scattering geometries such as re-entrant surfaces. However,

their ability to converge is not as fast as that of stationary algorithms. Without

preconditioning techniques, the number of iterations to approach a desired level

of error often reaches to hundreds. In order to use a preconditioner, the entries

of the impedance matrix should be evaluated and stored, so that the use of non-

stationary algorithms are not as computationally efficient as the use of stationary

ones.

The Forward-Backward Method (FBM), which is a stationary iterative tech-

nique, was developed by Holliday et al. [7], [8] for solving the magnetic field

integral equation (MFIE), which describes the current induced on a perfectly

2



conducting (PEC) surface. A similar approach called the method of ordered

multiple interactions (MOMI), has been simultaneously proposed by Kapp and

Brown [9]. Later on, Holliday et al. extended FBM to imperfect conductors in

[10]. Both of these approaches are based on splitting the current at each point

into two components: the forward contribution due to the incident field and the

radiation of the current elements located in front of the receiving element, and

the backward contribution due to the current elements located beyond the receiv-

ing element. The forward component is first found over the whole surface and

then it is used to determine the backward contribution. This is repeated in an

iterative process until a converged solution is reached. These methods have been

proven to be very accurate and have shown a very fast convergence, giving accu-

rate results within few iterations. However, the operational count per iteration

is O(N2) and this makes the method inefficient when a very large scale terrain

profile is regarded.

In order to further reduce the operational count of the iterative methods, the

Spectral Acceleration algorithm was proposed by Chou and Johnson in order to

analyze quasi-planar (slightly rough), such as ocean-like surfaces [11], [12]. Based

on a spectral representation of the two-dimensional Green’s function and an ap-

propriate contour deformation, the spectral acceleration algorithm aims to accel-

erate the matrix-vector multiplications in the FBM by dividing the elements into

two groups for a given receiving element: strong interaction and weak interaction

groups. The criterion that defines these groups is the distance from the receiving

element. Since bigger portion of the elements are grouped as weak interaction,

and their contribution is easily computed with the use of the spectral represen-

tation of Green’s function, the operational count and memory requirements are

reduced to O(N) per iteration.

The Spectral Acceleration Forward-Backward Method (SA-FBM) is very effi-

cient when it is applied to slightly rough, such as ocean-like surfaces. Lopez et al.

modified the integration contour of the method in order to implement SA-FBM

to very undulating rough surfaces such as terrain profiles [13]. However, as the

roughness of the profile is further increased, the spectral acceleration algorithm

3



fails to provide accurate results owing to convergence problems during the com-

putation of the weak region contribution. For terrain profiles with large height

variations, it may not be possible to define integration paths in the complex plane

avoiding sudden exponential growths of the integrand. This makes the method

impractical and highly dependent on the geometry.

More recently, Prakash and Mittra proposed the Characteristic Basis Function

Method (CFBM) [14]. This approach is based on the characteristic basis functions

(CBFs); special functions defined on macro domains (blocks), that include a

relatively large number of conventional sub-domains discretized by using pulse

functions. Use of these basis functions leads to a significant reduction in the

number of unknowns, and results in a substantial size reduction of the MoM

matrix. This in turn enables us to handle the reduced matrix by using a direct

solver without the need to iterate.

In this thesis, a hybrid approach which combines the characteristic basis func-

tion method with the forward-backward method and the physical optics solution

(when applicable), has been developed for accurate and efficient solution of elec-

tromagnetic scattering and propagation problems that involve large scale and

rough terrains. The method is based on the construction of the CBFs with the

aid of either PO or FBM. Briefly, the terrain is partitioned into M blocks each of

which contains many sub-domain basis functions. Then, primary basis functions

(PBFs) and secondary basis functions (SBFs), that constitute the CBFs, are ob-

tained using either PO (when applicable) or FBM, and FBM, respectively. Then,

similar to the conventional CBFM, a new matrix equation is formed using the

abovementioned CBFs leading to a significantly small-size reduced matrix that

can be solved directly. Note that the two important attributes of CBFM are: (i)

It rigorously accounts for the mutual interaction effects through the use of SBFs

and hence, it preserves the rigors of MoM. (ii) It is iteration free. Thus, CBFM

stands as an attractive choice for analyzing electromagnetic scattering problems

involving large scale and significantly rough terrain problems.

On the other hand, some modifications/approximations are performed on the

conventional CBFM to suit it to terrain problems and hence, to improve both
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computational cost and memory storage requirements of the method. First of all,

because the mutual interactions between far away elements on a terrain are very

weak, only the mutual interactions between the adjacent blocks are retained.

However, more neighboring blocks can be included to consider more dominant

mutual interactions around the source locations. Morever, during the generation

of the reduced matrix, an extrapolation process is used.

The method is applied for radar cross section (RCS) calculations of two-

dimensional (2-D) faceted objects [15] as well as three-dimensional (3-D) objects

[16], and very accurate results are obtained. The method is also applied for the

analysis of microwave circuits [17] and microstrip antennas [18]. In [19], a spec-

tral domain integral equation method is developed that makes the problem be

reduced to a matrix equation having dimensions that do not depend on the size

of the faceted object but only on its shape. Besides, in order to further improve

the efficiency of the method, a sparse representation of the impedance matrix is

utilized in [20] and in order to handle multiple excitations efficiently, excitation

independent characteristic basis functions approach is proposed in [21]. In addi-

tion to these, in [22] Garcia et al. further improved the efficiency of the method

by combining CBFM with Multilevel Fast Multipole Algorithm (MLFMA). Such

a combination avoids the need to calculate and store the coupling terms in the

reduced matrix that are not close to the diagonal, thereby optimizing the CPU

time and the memory storage requirements. CBFM is first applied for terrain

profiles in [23]. The conventional CBFM is slightly modified and hybridized with

FBM to handle large terrain profiles. In [24], its computational cost is further

reduced in terms of both storage and CPU time via the use of an extrapolation

process

The organization of this thesis is as follows: In Chapter 2, background infor-

mation involving integral equation formulations for both horizontal and vertical

polarizations are given. Furthermore, previous approaches such as FBM, GFBM

and SA-FBM, that are used in this thesis are also discussed. Chapter 3 is devoted

for the formulation of the Characteristic Basis Function Method for large-scale

terrain profiles. Numerical results are presented and compared with measured as

well as the previously-published reference solutions in Chapter 4 to demonstrate

5



the accuracy and the numerical efficiency of the method. A discussion on some

of the parametric tests that are performed on such terrains is also included. An

ejwt time dependence is assumed and suppressed throughout this thesis, where

ω = 2πf with f being the operating frequency.
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Chapter 2

Background

2.1 Integral Equation Formulation for Im-

pedance Surfaces

For the computation of the scattered fields over a one-dimensional rough surface

profile which is illuminated by an electromagnetic source, an integral equation

(IE) formulation is carried out where the unknown current density is a part of

the integrand. Consequently, a relationship between the incident field and the

induced current on the surface is established.

Fig. 2.1 illustrates such a one-dimensional (1−D) rough terrain profile char-

acterized with the surface height profile C defined by z = f(x), along the x-axis,

which is embedded in a 2 − D space (x − z plane). Both the surface height

profile and the electromagnetic fields are assumed to be constant along the y-

direction. The terrain is considered to be an imperfect conductor, modeled by

the surface impedance ηs(ρ) (ρ = x̂x + ẑz) along the surface. Assuming that

the scattering surface has a finite conductivity, σ, and the relative permittivity of

the scattering surface is large, the impedance boundary condition (IBC), which

allows the surface to be treated using a single surface integral equation, can be

applied. Detailed information about impedance boundary condition can be found

7
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Figure 2.1: Problem Geometry

in [25]-[27].

With the use of surface equivalence theorem [28], an equivalent exterior prob-

lem for the rough surface profile illustrated in Fig. 2.1 can be obtained using

electric and magnetic sources J and M, respectively. Equivalent sources on the

surface can be defined with the following equations

J = n̂ ×H (2.1)

M = E× n̂ . (2.2)

Since the relative permittivity is large, the equivalent sources of (2.1) and (2.2)

satisfy the IBC with the following equation:

M = ηs(ρ)J(ρ) × n̂(ρ) (2.3)

where n̂ is the unit normal vector to the surface and ηs is the surface impedance

which may vary along the surface. IBC relates the tangential components of the

electric surface fields to the magnetic surface fields via a surface impedance ηs

defined by the elecromagnetic properties of the scatterer. Since this approximate

boundary condition relates only the fields above the surface profile, the scat-

tered fields can be evaluated without the involvement of the fields below; thus,
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the analysis of scattering problems is considerably simplified. Note that, IBC

approach is limited to media that have complex relative permittivities of 20 in

magnitude and greater [29].

The most convenient way of computing the scattered fields for a general wave

polarization, is to decompose the field into its parallel and perpendicular compo-

nents relative to the plane of incidence, and analyze each one of them separately.

The total field will be the vector some of these two polarizations.

In general there are various forms of integral equations. Two of the most popular

for time-harmonic electromagnetics are the electric field integral equation (EFIE)

and the magnetic field integral equation (MFIE). The EFIE enforces the boundary

condition on the tangential electric field and the MFIE enforces the boundary

condition on the tangential components of the magnetic field. Both of these

equations will be discussed in the following subsections.

2.1.1 EFIE Formulation for Horizontal Polarized Inci-

dence on Non-PEC Surfaces

The transverse magnetic (TMy) case, in which the electric field is perpendicular

to the plane of incidence in Fig. 2.1, is defined as the horizontal polarization case

(Einc = ŷEinc). For (TMy) case, (2.1) and (2.2) state that equivalent sources

have normal and tangential components Jy and Mt, respectively. If an impedance

boundary condition is valid, (2.3) reduces to

Ey(ρ) = ηs(ρ)Jy(ρ) (2.4)

where Ey(ρ) denotes the total electric field on the scattering surface. Since

Ey(ρ) = Einc(ρ) + Escat(ρ), an EFIE is obtained by expressing (2.4) as

−Einc(ρ) = −ηs(ρ)Jy(ρ) + Escat(ρ). (2.5)

The TM problem is treated by an E-field formulation in this section and the

TE problem will be treated by an H-field formulation in the following section.

9



Actually, both cases can be treated either by an E-field formulation or an H-field

formulation.

The scattered field Escat can be expressed as the superposition of the individ-

ual fields due to A and F as follows

Escat = EA + EF (2.6)

where EA and EF are the fields due to the magnetic and electric vector potentials

A and F, respectively. The following equations hold for the two vector potentials.

EA = −jωA − j
1

ωµǫ
∇(∇ · A) , (2.7)

EF = −1

ǫ
∇× F . (2.8)

In (2.7)-(2.8), ǫ and µ are the permittivity and permeability of the medium above

the rough surface, respectively. Since the electric field is horizontally polarized,

after performing the curl, divergence and gradient operations, (2.7) and (2.8) can

be combined with (2.6) to obtain the equation in the following form.

Escat = ây

[

−jωAy − j
1

ωµǫ

(

∂2Ax

∂x∂y
+

∂2Ay

∂y2
+

∂2Az

∂y∂z

)

− 1

ǫ

(

∂Fx

∂z
− ∂Fz

∂x

)]

.

(2.9)

Since there is no y-dependence, the second term in (2.9) vanishes, and EFIE can

be written entirely in terms of the equivalent electric current density Jy on the

surface as

−Einc
y (ρ) = −ηs(ρ)Jy(ρ) − jωAy −

1

ǫ

(

∂Fx

∂z
− ∂Fz

∂x

)

. (2.10)

The vector potentials A and F can be expressed as

Ay(ρ) = µ

∫

C

Jy(ρ
′)G(ρ,ρ′)dρ′ (2.11)

Ft(ρ) = ǫ

∫

C

t̂(ρ′)ηs(ρ
′)Jy(ρ

′)G(ρ,ρ′)dρ′ (2.12)

where t̂ = ŷ × n̂ is the unit tangent vector along the surface. Ft denotes the

tangential component of the electric field vector potential and G is the two-

dimensional Green’s function expressed as

G(ρ,ρ′) =
1

4j
H

(2)
0 (kR) (2.13)

10



where H
(2)
0 is the second-kind Hankel function with order zero and

R =

√

[x(ρ) − x(ρ′)]2 + [z(ρ) − z(ρ′)]2. (2.14)

In (2.14), primed coordinates denote the source locations, whereas unprimed

coordinates represent the observation points on the surface.

Substituting (2.11) and (2.12) into (2.10), the electric field integral equation

can be written as

−Einc
y (ρ) = −ηs(ρ)Jy(ρ) − jωµ

∫

C

Jy(ρ
′)G(ρ,ρ′)dρ′

+

∫

C

ηs(ρ
′)Jy(ρ

′)
∂

∂n′
G(ρ,ρ′)dρ′ (2.15)

where ∂
∂n′

G is the derivative of the two-dimensional Green’s function with respect

to n̂′, the normal vector to the surface at the source point ρ
′.

In order to prevent the introduction of the non-physical edge effects, the

surface profile C is arbitrarily extended to infinity in both directions. Moreover,

the illuminated rough surface is confined to a finite region so that the integration

in (2.15) can be performed.

The Method of Moments Solution

Once a relationship between the induced current and the incident field is

constituted, next step is to use a numerical technique to solve (2.15) for the

unknown current density Jy. We first expand Jy(ρ
′) into a finite series of the

form with N segments

Jy(ρ
′) ∼=

N
∑

n=1

Impm(ρ′) (2.16)

where pm(ρ′) denotes the basis (expansion) functions with unknown coefficients

Im for segment m. In order to reduce the computational burden, pulse functions

are used as the basis functions which are defined to be a constant value over one

segment and zero elsewhere, such that

pm(ρ′) =

{

1 , if ρ
′ ∈ segment m

0 , otherwise .
(2.17)
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Once we substitute (2.16) into (2.15) and test the resultant equation at ob-

servation points ρn on the surface (at the center of each segment n such that

n = 1, 2, 3, ..., N), we obtain the following equation,

−Einc
y (ρn) ∼= −ηs(ρn)In − jωµ

N
∑

m=1

Im

∫

∆xm

G(ρn, ρm)dρ′

+

N
∑

m=1

Im

∫

∆xm

ηs(ρm)
∂

∂nm
G(ρn, ρm)dρ′ . (2.18)

Since this equation is valid for each observation point ρn, an N ×N system of

linear equations can be produced by selecting observation points at the center of

each one of N segments. The procedure that is followed to convert a continuous

integral equation to a discrete matrix equation is a special case of a general

approach known as Method of Moments. In our case, the basis functions are

pulse functions and the weighting functions are impulses. This is also called

point matching (collocation) with pulse basis functions. The N × N system can

be written in matrix form as

−















Einc
y (ρ1)

Einc
y (ρ2)

...

Einc
y (ρN)















=















Z11 Z12 . . . Z1N

Z21 Z22 . . . Z2N

...
... . . .

...

ZN1 ZN2 . . . ZNN





























I1

I2

...

IN















(2.19)

or can be expressed briefly as

V = Z̄ I . (2.20)

The entries of the N×N matrix Z̄, in (2.20), characterizes the self and mutual

interactions between the segments of the profile. Thus, this matrix is referred to as

the interaction matrix. This matrix is also called the moment method impedance

matrix since V and I are interpreted as the voltage and the current vectors,

respectively. The entries of the impedance matrix in (2.19) are given by

Znm =

∫

∆xm

[

−jωµG(ρn, ρm) + ηm
∂

∂nm

G(ρn, ρm)

]

dρ′. (2.21)
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In (2.21) ρn denotes the observation point on the center of the nth segment

whereas ρm denotes the source point on the center of the mth segment. Dis-

cretizing the surface profile with λ
10

segments, the elements of the impedance

matrix may be approximated as

Znm
∼= −ωµ

4
∆xmH

(2)
0 (k|ρn − ρm|)− j

kηm

4
∆xmH

(2)
1 (k|ρn − ρm|)n̂m · ρ̂nm (2.22)

where H
(2)
0 and H

(2)
1 are the second kind Hankel functions with order zero and

one, respectively, and ∆xm is the length of the mth segment. Besides, ρ̂nm denotes

the unit vector in the direction from source ρm to the receiving element ρn and

n̂m represents the unit normal vector of the surface at ρm.

Hankel function is singular for ρn = ρm. This corresponds to the diagonal

elements of the impedance matrix and the diagonal terms contribute the most

to the solution of the system. Hence, these terms must be evaluated accurately.

(2.22) cannot be used for their computation. Therefore, using the small argument

approximation of the Hankel functions, diagonal entries of the impedance matrix

can be obtained as

Zmm
∼= −ωµ

4
∆xm

[

1 − j
2

π
ln

(

γk∆xm

4e

)]

− ηm

2
, (2.23)

where γ is the Euler constant 1.781072418 and e = 2.718281828.

When the surface profile is PEC, ηm becomes 0, and the expressions for the

mutual and self coupling reduce to the following equations:

Znm
∼= −ωµ

4
∆xmH

(2)
0 (k|ρn − ρm|) , (2.24)

Zmm
∼= −ωµ

4
∆xm

[

1 − j
2

π
ln

(

γk∆xm

4e

)]

. (2.25)

Using (2.24) and (2.25), the MoM impedance matrix can be formed and the

system in (2.20) can be solved for the unknown surface current for horizontal

polarization.
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2.1.2 MFIE Formulation for Vertical Polarized Incidence

on Non-PEC Surfaces

The transverse electric (TEy) case, in which the electric field is parallel to the

plane of incidence in Fig. 2.1, is defined as the vertical polarization case (Hinc =

ŷH inc). For (TEy) case, (2.1) and (2.2) state that equivalent sources have normal

and tangential components My and Jt, respectively. If an impedance boundary

condition is valid, (2.3) reduces to

Hy(ρ) = −Jt(ρ) . (2.26)

Although the MFIE formulation is used for closed surfaces; since the surface is

assumed to be arbitrarily extended to infinity, an MFIE can be used to model

the vertical polarization problem [30]. Thus, the MFIE

−H inc
y (ρ) = Jt(ρ) + Hscat

y (ρ) (2.27)

is valid on the surface.

Similar to (2.6), the scattered field Hscat can be expressed as the superposition

of the individual fields due to A and F as follows

Hscat = HA + HF (2.28)

where HA and HF are the fields due to the magnetic and electric vector potentials

A and F, respectively. The following equations hold for the two vector potentials

HA =
1

µ
∇×A, (2.29)

HF = −jωF − j
1

ωµǫ
∇(∇ · F). (2.30)

Since the H field has only component in the ŷ-direction, after performing the

curl, gradient and divergence operations, (2.29) and (2.30) can be combined with

(2.28) to obtain the following equation

Hscat = ây

[

−jωFy − j
1

ωµǫ

(

∂2Fx

∂x∂y
+

∂2Fy

∂y2
+

∂2Fz

∂y∂z

)

+
1

µ

(

∂Ax

∂z
− ∂Az

∂x

)]

.

(2.31)
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Since there is no y-dependence, the second term in (2.31) vanishes and the MFIE

can be written entirely in terms of the tangential induced current density Jt on

the surface as

−H inc
y (ρ) = Jt(ρ) − jωFy −

1

µ

(

∂Az

∂x
− ∂Ax

∂z

)

. (2.32)

The vector potentials A and F can be expressed as

At(ρ) = µ

∫

C

t̂(ρ′)Jt(ρ
′)G(ρ,ρ′)dρ′ (2.33)

Fy(ρ) = −ǫ

∫

C

ηs(ρ
′)Jt(ρ

′)G(ρ,ρ′)dρ′ (2.34)

and t̂ is the unit tangent vector along the surface.

Substituting (2.33) and (2.34) into (2.32), the final form of the magnetic field

integral equation can be obtained as

−H inc
y (ρ) = Jt(ρ) + jωǫ

∫

C

ηs(ρ
′)Jt(ρ

′)G(ρ,ρ′)dρ′

−
∫

C

Jt(ρ
′)

∂

∂n′
G(ρ,ρ′)dρ′. (2.35)

Next step is to apply the discretization process for MFIE as applied in the

EFIE to approximate the equivalent current density.

The Method of Moments Solution

Once a relationship between the induced current and the incident field is

constituted, next step is to use a numerical technique to solve (2.35) for the

unknown current density Jt. We first expand Jt(ρ
′) into a finite series of the form

with N segments

Jt(ρ
′) ∼=

N
∑

n=1

Impm(ρ′) . (2.36)

In order to reduce the computational burden, pulse functions are used as the

basis functions which are defined to be a constant value over one segment and

zero elsewhere, such that

pm(ρ′) =

{

1 , if ρ
′ ∈ segment m

0 , otherwise .
(2.37)
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Once we substitute (2.36) into (2.35) and test the resultant equation at ob-

servation points ρn on the surface (at the center of each segment n such that

n = 1, 2, 3, ..., N), we obtain the following equation

−H inc
y (ρn) ∼= In + jωǫ

N
∑

m=1

Im

∫

∆xm

ηs(ρm)G(ρn, ρm)dρ′

−
N
∑

m=1

Im

∫

∆xm

∂

∂nm

G(ρn, ρm)dρ′. (2.38)

Since this equation is valid for each observation point ρn, N × N system of

linear equations can be produced by selecting observation points at the center of

each one of N segments. The N × N system can be written in matrix form as

−















H inc
y (ρ1)

H inc
y (ρ2)

...

H inc
y (ρN)















=















Z11 Z12 . . . Z1N

Z21 Z22 . . . Z2N

...
... . . .

...

ZN1 ZN2 . . . ZNN





























I1

I2

...

IN















(2.39)

or can be expressed briefly as

V = Z̄ I . (2.40)

The entries of the impedance matrix in (2.39) are given by

Znm =

∫

∆xm

[

jωǫηmG(ρn, ρm) − ∂

∂nm
G(ρn, ρm)

]

dρ′. (2.41)

Here ρn denotes the observation point on the center of the nth segment whereas

ρm denotes the source point on the center of the mth segment. Discretizing the

surface profile with λ
10

segments, the elements of the impedance matrix may be

approximated as

Znm
∼= −ωǫηm

4
∆xmH

(2)
0 (k|ρn − ρm|) + j

k

4
∆xmH

(2)
1 (k|ρn − ρm|)n̂m · ρ̂nm (2.42)

where H
(2)
0 and H

(2)
1 are the second kind Hankel functions with order zero and

one, respectively, and ∆xm is the length of the mth segment. Besides, ρ̂nm denotes

the unit vector in the direction from source ρm to the receiving element ρn and

n̂m represents the unit normal vector of the surface at ρm.

16



Hankel function is singular for ρn = ρm. This corresponds to the diagonal

elements of the impedance matrix and the diagonal terms contribute the most

to the solution of the system. Hence, these terms must be evaluated accurately.

(2.42) cannot be used for their computation. Therefore, using the small argument

approximation of the Hankel functions, diagonal entries of the impedance matrix

can be obtained as

Zmm
∼= 1

2
+

ωǫηm

4
∆xm

[

1 − j
2

π
ln

(

γk∆xm

4e

)]

(2.43)

where γ is the Euler constant 1.781072418 and e = 2.718281828.

When the surface profile is PEC, ηm becomes 0, and the expressions for the

mutual and self coupling reduce to the following equations by equating ηm to 0:

Znm
∼= −j

k

4
∆xmH

(2)
1 (k|ρn − ρm|)n̂m · ρ̂nm , (2.44)

Zmm
∼= 1

2
. (2.45)

Following the procedure described above, the moment method impedance

matrix, Z̄ with N2 entries, is generated. In order to solve the system for I given

in (2.40), Z̄ should be inverted. Its direct inversion via Gaussian elimination

or LU decomposition has an operational cost with O(N3). On the other hand,

the storage of the matrix has a memory requirement of O(N2). As the length

of the profile increases in terms of wavelength, the size of the associated MoM

matrix grows very rapidly and this, in turn, places an inordinately heavy burden

on the CPU in terms of memory and time. Therefore, in order to circumvent

these problems to a certain point, iterative techniques such as Forward-Backward

Method (FBM), which reduces the operational cost to O(N2) and eliminates the

need to store the impedance matrix, has been devised. In the next section, the

formulation of FBM is discussed.
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2.2 The Formulation of the Forward-Backward

Method

Direct solution of the matrix equation V = Z̄ I via Gaussian elimination or

LU decomposition has an operational cost of O(N3), where N is the number of

unknowns in the discretized representation of the surface current.

As the size of the computation domain increases, the computational expense

of these operations becomes prohibitive. Besides the O(N3) operational cost,

storage of the impedance matrix with N2 elements is also a huge burden. This

has led to the development of iterative schemes that solve for the surface current

in O(N2) steps.

The FBM is a stationary iterative technique that proposes a forward and

backward decomposition over the matrices and vectors involved in (2.20). FBM

starts with the following two decompositions such that

I = If + Ib (2.46)

Z̄ = Z̄f + Z̄s + Z̄b (2.47)

where If is the forward component denoting the current distribution due to the

wave propagation in the forward direction and Ib is the backward component

representing the current distribution due to the wave propagation in the backward

direction. On the other hand, Z̄f , Z̄s and Z̄b are, respectively, the lower triangular

part (forward impedance terms), the diagonal part (self impedance terms) and

the upper triangular part (backward impedance terms) of Z̄.

Using (2.46) and (2.47), the original system can be split into forward-

propagation and backward-propagation matrix equations, as follows

Z̄s · If = V − Z̄f · (If + Ib) (2.48)

Z̄s · Ib = −Z̄b · (If + Ib) . (2.49)

The second term in the right-hand side of (2.48) corresponds to the radiation

of current elements in front of the nth receiving element in Fig. 2.2, whereas
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Figure 2.2: Forward and backward regions for the nth matching point

the term on the right-hand side of (2.49) corresponds to the radiation of current

elements in the rear of the nth receiving element.

An iterative procedure can be used to solve forward and backward propagation

equations by initializing Ib,0 = 0, and at the qth sweep,

(Z̄s + Z̄f ) · If,(q) = V − Z̄f · Ib,(q−1) (2.50)

(Z̄s + Z̄b) · Ib,(q) = −Z̄b · If,(q). (2.51)

Since Z̄s + Z̄b is an upper triangular matrix and Z̄s + Z̄f is a lower triangular

matrix, the matrices in this iterative process do not need to be factorized or

inverted. Iterations are continued until surface currents show convergence to

within a specified accuracy criterion. The forward contribution in (2.50) can be

more explicitly expressed as

I
f,(i)
1 =

V
(i)
1

Z1,1

If,(i)
n =

V
(i)
n − (

∑n−1
k=1 Zn,kI

(i)
k )

Zn,n
, with n = 2, 3, .., N. (2.52)

Similarly, the backward contribution in (2.51), can be expressed as

I
b,(i)
N = 0
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Ib,(i)
n =

−(
∑N

k=n+1 Zn,kI
(i)
k )

Zn,n

, with n = N − 1, N − 2, .., 1. (2.53)

Using FBM, there is no need to store the elements of the impedance matrix

because of the sweeping procedure. However, the surface height data, incident

field values at matching points, and forward, backward and total currents have to

be stored in N element arrays, where N is the surface unknowns. Therefore the

memory requirement of the method is O(N). The mutual impedance values are

recomputed at each iteration with a computational cost of O(QN2), where Q is

the number of iterations. Since the method obtains very accurate results in a few

iterations (usually Q is less than 10), the total computational requirement of the

method becomes O(N2) for large N . On the other hand, since it is mathemati-

cally equivalent to the well-known symmetric successive over relaxation - SSOR

iteration, it can handle problems ending up with diagonally dominant system

matrices. Changing the order of current elements disturbs the diagonally dom-

inant nature, which then strongly affects the convergence of the method. The

algorithm may become unstable for re-entrant surfaces where current elements

are not numbered sequentially as a function of increasing x coordinate.

On the other hand FBM as being a stationary iterative technique provides

a more rapid convergence than a standard non-stationary iterative algorithm in

many cases. It has been experimented that for TM polarization induced current

values converge to an error level about 10−3 after six or seven iterations [30].

For TE polarization, since the system matrix is more diagonally dominant, it

takes less iterations (typically two or three) to converge to the same level of

error. That is why FBM can be used as a numerically accurate reference solution

instead of MoM when the length of the surface profile is electrically large, where

MoM becomes hard to be applied. However, since the computational requirement

of FBM is O(N2), it is still computationally expensive and becomes difficult to

handle when the number of surface unknowns increases. This limitation has been

overcome by the Spectral Acceleration Forward Backward Method (SA-FBM),

which will be explained briefly in Section 2.4.
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Figure 2.3: Composite problem and matrix decomposition in GFBM

2.3 The Generalized Forward-Backward Method

Consider the composite problem depicted in Fig. 2.3, where one or more PEC

obstacles (in Fig. 2.3, the PEC obstacle is a ship) are included in the surface

profile. For this kind of problem, conventional FBM does not exhibit convergent

behaviour because the presence of the obstacle highly disturbs the propagation

process. There are strong interactions between the obstacle and the nearby ocean-

like surface, and within the obstacle itself, all of which may not be taken into

account with the conventional formulation involved in the standard FB method.

In order to overcome this drawback, the Generalized Forward-Backward

Method (GFBM) is proposed in [31], which is a hybrid method based on a combi-

nation of the conventional FBM with MoM. GFBM is based on the same general

concepts previously stated for FBM, but includes some significant differences

mainly in the decomposition of the matrix Z̄ that will be detailed next.

Starting with (2.20), in the same way as done in FBM, the current is expressed

as the sum of two contributions

I = If + Ib . (2.54)
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However, the impedance matrix is split in a different way in GFBM such that

Z̄ = Z̄fg + Z̄sg + Z̄bg (2.55)

where the Z̄sg matrix is the diagonal part of Z̄ with an additional block including

the impedance submatrix corresponding to the PEC obstacle and nearby ship

region; while Z̄fg and Z̄bg are, respectively, the lower triangular part and upper

triangular part of Z̄ but excluding the matrix Z̄sg, as illustrated in Fig. 2.3.

Then, the original system is transformed in a similar way as in the conventional

FBM, yielding the following matrix equations:

Z̄sg · If = V − Z̄fg · (If + Ib) (2.56)

Z̄sg · Ib = −Z̄bg · (If + Ib) (2.57)

which can be iteratively solved for If,(q) and Ib,(q) as

(Z̄sg + Z̄fg) · If,(q) = V − Z̄fg · Ib,(q−1) (2.58)

(Z̄sg + Z̄bg) · Ib,(q) = −Z̄bg · If,(q) (2.59)

starting with Ib,(0) = 0.

GFBM is very efficient when it is applied to re-entrant type surface profiles

provided that region 2 in Fig. 2.3 involves small portion of the surface unknowns.

Since self-interaction matrix of region 2 is stored and directly inverted, computa-

tional efficiency of the method is highly dependent on the number of unknowns

in this region. On the other hand, regardless of the surface unknowns in re-

gion 2, GFBM procedure has still O(N2) computational cost and is not efficient

when applied to electrically large geometries. Spectral acceleration algorithm is

adopted to GFBM in [32] to reduce the operational count to O(N). However,

direct inversion of the self-interaction matrix for region 2 is still an issue.

2.4 Spectral Acceleration of the FBM over Ter-

rain Profiles

In [11] and [12], Spectral Acceleration (SA) algorithm was developed to reduce

the computational cost of FBM to O(N) over one-dimensional slightly rough
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PEC surfaces and impedance rough surfaces, respectively. It should be noted

that these original implementations of the spectral acceleration algorithm were

developed to analyze quasi-planar (slightly rough) surfaces such as ocean-like sur-

faces, and are not suitable for very undulating geometries. López et al. modified

the spectral acceleration algorithm in order to implement SA-FBM to very un-

dulating rough surfaces such as terrain profiles [13]. Besides, SA-FBM is utilized

for the investigation of existent propagation models in [33].

SA-FBM is based on the fast computation of the radiation of the far elements

by using a spectral representation of the 2D Green’s function. Thus, the radiat-

ing elements over a given receiving element are divided into two groups: strong

interaction group Gs and weak interaction group Gw. The criterion that defines

these groups is the distance from the radiating to the receiving element. So for

a given distance Ls, the strong group Gs includes the Ns nearest elements to the

receiving element while the rest of the radiating elements are included in the weak

group Gw as illustrated in Fig. 2.4. With this decomposition, the fields radiated

over the receiving element can be expressed as the sum of the weak and strong

group contributions.

To start with, SA-FBM formulation for the integral equations derived in Sec-

tion 2.1 will be described for both horizontal and vertical polarizations. For

simplicity only the application of the SA to the forward propagation equation

will be described. The same procedure can be applied to model the backward

propagation effects.

2.4.1 Horizontal Polarization

Starting with the formulation of the EFIE described in Section 2.1 for the horizon-

tal polarization, the radiated electric field at ρn due to the forward propagation

Ef and backward propagation Eb can be obtained as:

Ef(ρn) =

n−1
∑

m=1

ImZnm (2.60)
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Figure 2.4: 1-D finite rough surface profile

Eb(ρn) =
N
∑

m=n+1

ImZnm. (2.61)

Ef is decomposed into the fields radiated by the strong and weak groups, Es and

Ew respectively,

Ef(ρn) = Es(ρn) + Ew(ρn)

=
n−1
∑

m=n−Ns

ImZnm +
n−Ns−1
∑

m=1

ImZnm (2.62)

where Ns = Ls/∆x denotes the number of elements that have strong interactions

with the nth element. The off-diagonal entries of the impedance matrix for the

horizontal polarization were derived using the EFIE in Section 2.1 for non-PEC

surfaces as

Znm = −jωµG(ρn, ρm)∆xm + ηm∆xm
∂

∂nm
G(ρn, ρm). (2.63)

The radiation of the strong interaction group is computed directly through a

matrix-vector product, but the weak group contribution is obtained by employing

the spectral representation of the Green’s function and its derivative. The spectral

representation of the Green’s functions can be expressed as

G(ρn, ρm) = − j

4π

∫

Cφ

e−jk[(xn−xm)cosφ+(zn−zm)sinφ]dφ (2.64)
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Figure 2.5: Integration path in complex space

where Cφ is the contour of integration in the complex φ-space (shown in Fig.

2.5). On the other hand, the spectral representation of the partial derivative of

the Green’s function with respect to the normal vector on the source point can

be expressed as:

∂

∂nm

G(ρn, ρm) =
k

4π

∫

Cφ

[cosθmcosφ + sinθmsinφ]e−jk[(xn−xm)cosφ+(zn−zm)sinφdφ

(2.65)

where θm is the angle between the unit normal vector to the surface at the source

point, n̂m, and the unit vector in the x direction, x̂. Introducing (2.64) and (2.65)

into the expression for Ew(ρn) and interchanging the integration and summation

yields to:

Ew(ρn) = −ωµ

4π

∫

Cφ

Fn(φ)dφ (2.66)

where

Fn(φ) =
∑

m∈Gw

Im∆xm

(

1 − ηm

η0
[cosθmcosφ + sinθmsinφ]

)

·e−jk[(xn−xm)cosφ−(zn−zm)sinφ]. (2.67)

Fn(φ) can be obtained from Fn−1(φ) as:

Fn(φ) = Fn−1(φ)e−jk[(xn−xn−1)cosφ−(zn−zn−1)sinφ]
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+Ins∆xns

(

1 − ηns

η0

[cosθnscosφ + sinθnssinφ]

)

·e−jk[(xn−xns)cosφ−(zn−zns)sinφ] (2.68)

with Fn(φ) = 0 for n ≤ Ns+1 during the forward sweep, and ns = n−Ns−1 is the

new source point introduced in the weak group as the iterative procedure sweeps

the surface in the forward direction. An analogous procedure can be followed for

backward propagation and is given in Appendix A.

2.4.2 Vertical Polarization

In a similar way, when using the MFIE formulation in the vertical polarization

case, the radiating elements are also divided into 2 groups (Gs and Gw) and their

contribution to the forward magnetic field Hf can be expressed as follows

Hf(ρn) = Hs(ρn) + Hw(ρn)

=

n−1
∑

m=n−Ns

ImZnm +

n−Ns−1
∑

m=1

ImZnm (2.69)

where Hw and Hs are the fields radiated by the weak and strong groups, respec-

tively, and Znm is defined in Section 2.1 as

Znm = jωǫηm∆xmG(ρn, ρm) − ∆xm
∂

∂nm

G(ρn, ρm). (2.70)

Using the spectral representation of Green’s function and its derivative, contri-

bution due to the weak group can be expressed as:

Hw(ρn) = − k

4π

∫

Cφ

Fn(φ)dφ (2.71)

where

Fn(φ) =
∑

m∈Gw

Im∆xm

(

cosθmcosφ + sinθmsinφ − ηm

η0

)

·e−jk[(xn−xm)cosφ−(zn−zm)sinφ]. (2.72)

Then, Fn(φ) can be obtained from Fn−1(φ) like in (2.68) except the term inside

the paranthesis is changed with
(

cosθnscosφ + sinθnssinφ − ηns

η0

)

. An analogous

procedure can be followed for backward propagation and is given in Appendix A.
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Once the integrands Fn have been determined, it is necessary to describe the

parameters which define the numerical integration in the complex space. In the

following subsections, integration path and the numerical sampling density are

described.

2.4.3 Integration Path

Hankel function is analytic in the complex plane for widely separated points, so

the integration contour Cφ in Fig. 2.5, can be deformed to any other integration

path as given in Fig. 2.6. This path is chosen to reduce the computational cost

needed to evaluate the integral and to avoid possible exponential growths of the

integrand values which would cause numerical errors due to the limited precision

of the computer.

As it can be seen in Fig. 2.6, the path is composed by several stretches. The

main one is the central stretch denoted by C; if needed two lateral stretches can

be added, the left one denoted as L, and the right one will be named as R. All the

parameters needed to determine the integration path (the angle δ that the stretch

C forms with the real axis and the position of φ1, φ2, φ3 and φ4 points on the

complex space) will be defined next. To obtain these parameters, some generic

considerations must be taken into account. All these considerations are related

to the saddle point distribution in the complex φ-space. For a general terrain

profile, as the one depicted in Fig. 2.1, saddle points are distributed along the

real axis of the complex φ plane. Each set of source (placed at ρm), and receiving

element (placed at ρn) corresponds to a saddle point located at φnm:

φnm = tan−1

(

zn − zm

xn − xm

)

(2.73)

such that φnm is limited by the minimum and maximum slopes of the terrain,

i.e. φnm ∈ [φs,min, φs,max]. It is important to notice that for an irregular terrain,

the saddle points are not distributed in a homogeneous manner along the real

axis. For a downhill profile, saddle points will be placed at φnm < 0, but for an

uphill geometry they will be placed at φnm > 0. For a generic terrain, a medium

angle φmed can be obtained from the mean value of all saddle point values. This
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Figure 2.6: Deformed integration path in the complex space

angle φmed gives a general idea of the terrain slope and the position of the saddle

points. It is desirable to center the integration path with respect to the saddle

point distribution, so the central stretch C will be centered at φmed (cross-point

of this stretch with real axis), as shown in Fig. 2.6.

To completely determine the stretch C, the angle δ formed with the real axis

must be defined. The inclination angle of the central path δ is determined by

limiting the contribution due to the most critical saddle point over the deformed

contour. The limit proposed in [11] is not valid because it was obtained con-

sidering the special geometric characteristics of ocean-like rough surfaces. When

the geometries under study present important height variations, this limit must

be redefined. Through empirical tests it has been found that a value of e2 is a

nearly optimum choice to limit this contribution, even though smaller values can

be used. Upon this consideration, the angle δ must follow the expression:

tanδ = min





1
√

kRs

2
|φnm − φmed| − 1



 (2.74)
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where

Rs =
√

(xn − xm)2 + (zn − zm)2. (2.75)

It is necessary to find the worst case (i.e., the maximum value of
√

Rs|φnm−φmed|).
The computation of

√
Rs|φnm−φmed| for all possible source-observation point sets

would imply a cost of O(N2). For the most cases the terrain can be approximated

by a coarser polygonal line with segments with dimensions proportional to the

strong group Gs length. With this approximation, the minimum value of δ can

be obtained by analyzing the saddle point distribution.

As it can be seen by inspection of Fig. 2.6, the central stretch C is limited

by the cross point φ1 with the steepest descent path of the saddle point φs,min

(SDPφs,min) and by the cross point φ2 with the steepest descent path of the

saddle point φs,max (SDPφs,max). In most cases, the integrand will decay to zero

near these points. However, for more complex terrains, when δ is close to 0o,

it may be possible that some contributions do not diminish enough along the

stretch C, and so Fn(φ) may not decay to zero near the stretch extremes. Then,

it would be necessary to add parts corresponding to portions of the SDPφs,min

and SDPφs,max. Considering that these points are placed close to the real axis,

the SDPs can be approximated by 45o straight lines.

In case the stretch L is needed for a correct integration, the stretch will be

extended from φ1 to φ3, a point where the integrand decays to a reference value

ζ . It is necessary to determine at which value of φ3 the contribution of φs,max

gets a value of ζ i.e.:

Im(φ3) = −
√

−lnζ

kLs

(2.76)

where Im(.) represents the imaginary part. In general a value of ζ = 10−3

provides a good accuracy in the complex integration, even though smaller values

can be used.

An analogous procedure is used to determine the addition of the stretch R

considering the saddle point placed as φs,max.
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2.4.4 Step of Integration

Once the path is determined, it is necessary to define the step of integration. For

the central stretch C, the step of integration is defined as:

∆φC =
√

5/kRs,max/22 (2.77)

where Rs,max =
√

L2
s + (zmax − zmin)2. This integration step could be used for the

complete integration path, but the integrand over the lateral stretches smoothly

decays to zero and a larger integration step could be used.

To determine the step used for the lateral stretches the distance Rs,max, in

(2.77), must be substituted by the distance that defines the most significant saddle

points over the lateral stretches. For the stretch L, the distance Rmax,φs,min
is

the maximum distance between any pair of source-receiving points whose saddle

point is placed at φs,min. Meanwhile, for the stretch R, the distance Rmax,φs,max
is

the maximum distance between any pair of source-receiving points whose saddle

point is placed at φs,max. This means that the steps of integration are taken as

the following: for the stretch L

∆φL =
√

5/(kRmax,φs,min
)/22, (2.78)

for the lateral stretch R

∆φR =
√

5/(kRmax,φs,max
)/22. (2.79)

Then, the integration variable is mapped to the Re(φ) axis according to

dφC → ∆φCejδ (2.80)

dφL,R → ∆φL,Rejπ/4. (2.81)

Spectral acceleration algorithm is very efficient for computing scattered fields

when the terrain profile does not involve large height variations. As the height

variation increases, the inclination angle δ takes very low values such that the

path of integration will be so close to the real axis and the integrand will present

very fast oscillations. In addition, the deformed contour of integration approaches
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to its intersection with the SAP of the outermost saddle point. This point has a

significant effect on the exponential growth of the integrand on the complex space.

This implies that (2.74) is not valid anymore. In other words, the angular spectral

integration path cannot be deformed in the complex angular plane. A great

number of numerical tests on the SA-FBM over terrain profiles show that when

the inclination angle δ is smaller than 4 degrees [30], weak region contribution

does not converge and leads to inaccurate results. This makes the performance

of SA-FBM highly dependent on geometry. That is why SA-FBM cannot be a

reference solution when the terrain profile involves large height variations.

To remedy this problem, a hybrid approach which combines the characteristic

basis function method with the physical optics solution (when applicable) and the

forward-backward method has been developed for accurate and efficient solution

of electromagnetic scattering and propagation problems that involve large scale

and rough terrains. This new approach is discussed in the next chapter.
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Chapter 3

Characteristic Basis Function

Method

The FBM has been shown to provide a more rapid convergence than a standard

non-stationary iterative algorithm in many cases. However, the FBM results in

an operational count of O(N2) in the matrix vector multiplication, and in order to

avoid O(N2) memory storage, a time consuming computation of the impedance

matrix elements needs to be repeated on every iteration. This computational

cost prohibits the application of the FBM to large-scale scattering problems. On

the other hand, the Spectral Acceleration Forward-Backward Method (SA-FBM)

is very efficient when it is applied to slightly rough such as ocean-like surfaces.

Lopez et al. modified the integration contour of the method in order to imple-

ment SA-FBM to very undulating rough surfaces such as terrain profiles [13].

However, as the roughness of the profile is further increased, the spectral acceler-

ation algorithm fails to provide accurate results owing to convergence problems

during the computation of the weak region contribution. For terrain profiles

with large height variations, it may not be possible to define integration paths in

the complex plane avoiding sudden exponential growths of the integrand. It is

claimed that by broadening the range of the plane wave expansion, such problems

might be avoided. This claim will be reinvestigated. However, for the time being,

large height variations make the method impractical and highly dependent on the
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geometry.

Characteristic Basis Function Method (CBFM) which is first proposed by

Prakash and Mittra in [14], aims to reduce the size of the matrix arising in

the MoM formulation, using high level basis functions, called characteristic ba-

sis functions (CBFs), defined on macro-domains by aggregating low-level (i.e.,

conventional sub-domain) basis functions. CBFM differs from the other entire-

domain approaches in several aspects. First, the technique is more general, and

can be applied to an arbitrary geometry; second, it includes the mutual inter-

action effects rigorously and systematically; third, it leads to small-size matrix

systems that can be solved directly without any need to iterative solvers. The

third aspect makes CBFM an iteration-free method.

3.1 CBFM Formulation For Terrain Profiles

The MoM formulation for the electromagnetic scattering problem results in a set

of linear system of algebraic equations that are cast in a matrix form as follows

V = Z̄ I (3.1)

where Z̄ is the known MoM impedance matrix of size N × N , V is an N × 1

known excitation vector, and I is the unknown solution vector of size N × 1.

CBFM approach starts with partitioning the terrain profile into M distinct

blocks with Ni being the number of unknowns in block i (i.e.,
∑M

i=1 Ni = N). For

the sake of illustration, a terrain profile which is divided into M blocks is shown

in Fig. 3.1. Next step is to construct a set of high-level basis functions that

represent each block (a portion of the terrain profile). These characteristic basis

functions (CBFs) are comprised of (i) primary basis functions (PBFs) arising

from the self-interactions within the domain, and (ii) secondary basis functions

(SBFs) that account for the mutual coupling effects from the rest of the domains.

However, to eliminate the spurious edge effects at block truncations, each block

is extended in both directions by ∆ and hence, each extended block has N e
i

unknowns (N e
i > Ni). Each CBF, whether a PBF or a SBF will represent the
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Figure 3.1: Geometry of a terrain profile partitioned into M blocks

entire block. Thus, the PBFs, denoted by I
(i)
i , are constructed for each extended

block by solving the equation

Z̄(i)
e I

(i)
i = V(i) for i = 1, 2, ..., M (3.2)

where Z̄
(i)
e is the N e

i × N e
i self impedance matrix of the extended block i and

V(i) is the N e
i ×1 excitation vector corresponding to this block, which is a subset

of V that includes the rows belonging to block i. The concept of block matrices

is illustrated symbolically in Fig. 3.2, with M = 3, and the extended blocks are

also shown in the same figure. The individual blocks are shown in solid lines,

while the extended blocks are shown in dotted lines. Even though the original

number of unknowns N may be quite large because the original terrain geometry

is large in terms of the wavelength, the number of unknowns in each block (i.e.,

Ni) can be kept to a manageable size and hence, (3.2) can be solved using direct

inversion techniques or iteratively leading to a computational cost of O(N3
i ) or

O(N2
i ), respectively, for each block. In addition, since these PBFs will serve

as a part of the basis functions to construct the reduced matrix, their accurate

evaluation (particulary for large scale terrain geometries) is not necessary at this

stage. Therefore, (3.2) is solved using single iteration of FBM to accelerate the

method. Note that, depending on the nature of the electromagnetic source, that
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Figure 3.2: A three block segmentation of the MoM matrix

is used to illuminate the terrain profile, one can also use physical optics (PO)

given by JPO
s = 2n̂ × Hinc to construct PBFs. Use of PO obviously eliminates

the need to solve (3.2). In this study, PBFs are found by using either a single

iteration of FBM or PO to accelerate the method. It has been observed that, if

the terrain is illuminated by an isotropic radiator or by a plane wave, then one can

safely use PO. However, if the terrain is illuminated by a directive antenna (for

instance a dipole) located at a couple of wavelengths above the terrain, then use

of PO yields a visible deterioration on induced current results that also affects the

accuracy of the scattered field. At the end of this step, M PBFs are generated.

Once the PBFs have been obtained, the next step is to construct the SBFs that

account for the mutual interactions between the blocks. Following the procedure

outlined in [14], fields due to the kth PBF evaluated on the ith block yield the

excitation vector V
(i)
k , to be used in the computation of the kth SBF for block i,

I
(i)
k , and is computed via the following matrix multiplication:

V
(i)
k = −Z̄(i,k)I

(k)
k (3.3)

where Z̄(i,k) is formed from the original MoM matrix Z̄ by selecting the testing

location at the extended block i, with the source location being the block k. If

the extended block i shares a number of unknowns, let’s say N c
i,k, with block

k, then by eliminating these source locations, the sizes of Z̄(i,k) and I
(k)
k become

N e
i × (Nk − N

(c)
i,k ) and (Nk − N

(c)
i,k ) × 1, respectively. On the other hand, if the
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Figure 3.3: Illustration of mutual interactions between neigbouring blocks

extended block i and block k are far-away blocks (i.e., there is no overlap due

to extension of the blocks), then the sizes of Z̄(i,k) and I
(k)
k become N e

i × Nk and

Nk × 1, respectively. After evaluating V
(i)
k from (3.3), the SBF for block i, I

(i)
k , is

found from the solution of

Z̄(i)
e I

(i)
k = V

(i)
k . (3.4)

Similar to PBFs, accurate evaluation of SBFs is not required at this stage and

hence, single iteration of FBM is used in (3.4) to ensure efficiency. Note that

in 1 − D terrain problems it is expected that the SBFs of well-separated groups

will be very similar to the SBFs of adjacent groups. Therefore, in contrast to

[14], only the mutual interactions between the adjacent blocks are retained as

illustrated in Fig. 3.3 (i.e., for block i, SBFs are constructed for blocks k = i− 1

and k = i+1). This is mainly due to the fact that, in an electrically large terrain,

mutual interactions among the far-away blocks are very weak. Therefore, the sizes

of Z̄(i,k) and I
(k)
k used in (3.3) are generally N e

i × (Nk −N
(c)
i,k ) and (Nk −N

(c)
i,k )×1,

respectively. Also note that the two end-blocks have single SBFs. Consequently,

the total number of SBF turns out to be 2M − 2 leading to a total of 3M − 2

CBFs (M PBFs + 2M − 2 SBFs) for terrain problems. At this point, it should

be mentioned that if more SBFs are included (i.e., more neighboring blocks are
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included on each side of the extended block i), the accuracy of the solution

(taking FBM as a reference solution) improves up to a certain degree and then

remains the same. However, such an improvement in the accuracy is not uniform

throughout the terrain. It is usually more dominant close to the source region.

Unfortunately, for extremely large terrains it brings significant computational

burden and memory requirements during the construction of the reduced matrix,

which is to be explained next.

After constructing all CBFs, the solution to the entire problem is expressed

as a linear combination of 3M − 2 CBFs (under the assumption that only the

adjacent blocks are included during the construction of the SBFs) given by

IN×1 =

2
∑

k=1

α
(1)
k
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(3.5)

where α
(i)
k is the unknown complex expansion coefficient for the kth basis function

of block i. Substituting (3.5) into (3.1), the solution can be cast into the following

form:

VN×1 =

2
∑

k=1

α
(1)
k u

(1)
k +

3
∑

k=1

α
(2)
k u

(2)
k + ... +

3
∑

k=1

α
(M−1)
k u

(M−1)
k +

2
∑

k=1

α
(M)
k u

(M)
k (3.6)

where

u
(i)
k = [[Ā1,i I

(i)
k ][Ā2,i I

(i)
k ]...[ĀM,i I

(i)
k ]]T . (3.7)

Note that in (3.7) Āi,k is the MoM impedance matrix in (3.1), and generated

selecting observation points in block i and source points in block k. It differs

from Z̄(i,k) used in (3.3) in the sense that Āi,k is not an extended matrix since the

extension parts are truncated prior to (3.5). To solve (3.6), the inner product of

both sides is taken with the Hermitian of each u
(i)
k given by (3.7) to generate the

(3M−2)×(3M−2) reduced matrix. The solution of the resultant matrix equation

yields the unknown expansion coefficients, α
(i)
k , for the CBFs. Note that accurate

solution of the reduced matrix equation is now critical and direct solvers are

preferred. In fact, the direct solution of this system does not pose a computational
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burden since 3M − 2 is significantly small compared to N . Moreover, even for

cases where 3M−2 is large, one can use recently developed direct solvers that can

handle up to million unknowns [34] or reformulate the problem so that multilevel

CBFM [22], that makes the direct solution for the corresponding reduced matrix

feasible, can also be implemented.

Extrapolation Process

The most time-consuming and main memory-intensive parts of the method

are the storage of u
(i)
k given by (3.7) and the generation of the reduced matrix

regardless of using FBM (or PO) in the construction of CBFs. However both

the computation time and the memory requirements can be significantly reduced

using a very simple extrapolation process. Notice that the vectors, u
(i)
k , actually

represent the entire domain fields of the induced current I
(i)
k on the entire ith

block. It is observed that in many regions of a large scale terrain profile these

field amplitudes vary slightly and their phase variation is almost linear as shown

in Fig. 3.4. Hence, during the generation of (3.7), relatively small groups are

formed from the elements of u
(i)
k in such a way that the roughness of regions

along the terrain governs the number of elements in each group. Abrupt roughness

variations are usually selected as the borders of these groups. Practically, groups

can be composed of 20, 50 or in some cases 100 elements. Then, assuming linearly

varying phase and constant amplitude for the fields (i.e., elements of u
(i)
k ) within

each group, two elements at the middle are chosen, the phase difference between

them is computed, and the values of the remaining elements in the group are

determined via simple extrapolation when needed. As a result, for a group of 2l

elements (l may vary from group to group), a factor of l is defined to indicate the

amount of acceleration in the computation time and the savings from the memory

requirements. Although this extrapolation procedure requires a modest amount

of pre-processing, it is easy to implement, and it can accelerate the method by a

factor of Leff (effective reduction factor), which is given by

Leff =

(

∑Ng

i=1
∆xi

li

xtotal

)−1

(3.8)

where Ng is the total number of groups, ∆xi is the length of each group and
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Figure 3.4: A 10λ portion of a u
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k vector and its extrapolated version with

Leff=10

39



xtotal is the length of the whole terrain. Leff is usually between 10 and 20 for the

real-life terrain profiles considered in this study.

Computation of the Scattered Field

Once the current distribution over the rough surface profile has been com-

puted, the next step is to compute the scattered field. If the region of interest

corresponds to a small portion of the surface, the numerical evaluation of the

total field will involve a reduced number of operations. But if these regions are

extended to the complete terrain profile and the field strength is computed in a

dense set of points, similar to the MoM discretization, the CPU cost will increase

up to O(N2), since the scattered field is expressed as,

Escat
y (ρn) = −jωAy −

1

ǫ

(

∂Fx

∂z
− ∂Fz

∂x

)

∼= −ωµ

4

N
∑

m=1

Im∆xmH
(2)
0 (k|ρn − ρm|)

−j
k

4

N
∑

m=1

Im∆xmηmH
(2)
1 (k|ρn − ρm|)n̂m · p̂nm (3.9)

and

Hscat
y (ρn) = −jωFy +

1

µ

(

∂Ax

∂z
− ∂Az

∂x

)

∼= ωǫ

4

N
∑

m=1

Im∆xmηmH
(2)
0 (k|ρn − ρm|)

+j
k

4

N
∑

m=1

Im∆xmH
(2)
1 (k|ρn − ρm|)n̂m · p̂nm (3.10)

for TM and TE polarization cases respectively. In (3.9) and (3.10) Im denotes the

computed induced current on the source point ρm, and ρn denotes the observation

point where the scattered field will be obtained.
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Chapter 4

Numerical Results

In this chapter, numerical results are presented to validate the efficiency and

accuracy of CBFM over different one-dimensional terrain profiles. Results are

obtained for both horizontal (i.e., TM) and vertical (i.e., TE) polarizations. In

all results, a point-matching with rectangular pulse-shaped basis functions that

have λ/10 pulse width has been utilized. In order to check the accuracy of the

method, results are compared with the FBM and the SA-FBM, if applicable.

The first set of results are given to test the accuracy of the proposed method

on a relatively smooth terrain as illustrated in Fig. 4.1(a). The terrain is a

2000λ (i.e., N = 20000) non-PEC rough surface profile with ηs = 20 + j20. Solid

line represents the surface profile whereas dashed line represents 1.8λ above the

surface, where the field distribution is going to be computed. This surface is

illuminated by a dipole antenna which is considered to be 25 Watts and located

at a height 25λ above the beginning of the surface (x1 = 0, z1 = 25λ). For

horizontal polarization, elements of the incident field vector can be given by,

Vn = −Einc
y (ρn) = −E0

e−jkdn

dn
sinθn (4.1)

where θn is the elevation angle of the receiving element from the vertical axis of

the source, and sinθn can be determined by

sinθn =
xn − x1

dn

. (4.2)
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In (4.2) dn denotes the distance between the nth receiving element and the source.

It is given by,

dn =
√

[xn − x1]2 + [zn − z1]2. (4.3)

For vertical polarization, elements of the incident field vector is given by,

Vn = −H inc
y (ρn) = −E0

η0

e−jkdn

dn
sinθn. (4.4)

Using the radiation intensity integral in [35], the transmitted power from the

dipole, Pt, is calculated from,

Pt =

∫ π

θ=0

∫ 2π

φ=0

|E0|2
2η

sinθdθdφ , (4.5)

and the magnitude of the electric field can be related to Pt as

E0 =
√

90Pt (4.6)

and is considered to be 25 Watts.

For this problem, operating frequency is chosen to be 300 MHz. Since the

profile does not involve big height variations, SA-FBM is used as a reference

solution. When applying CBFM, the terrain is partitioned into 100 blocks and

298 CBFs are used. During the generation of CBFs, single-iteration FBM is

used. A uniform extrapolation is used for this terrain. Therefore, the acceleration

factor l becomes Leff and is chosen to be 50. Fig. 4.1(b) and Fig. 4.1(c) show

the induced current magnitudes on the surface for TM polarization case when

no extension is performed and 1λ extension is performed, respectively. As can

be clearly seen in Fig. 4.1(b), when the blocks are not extended, the current

distribution involves spurious edge effects. In Fig. 4.1 (c), it can be observed

that these spurious edge effects are substantially reduced when 1λ extension is

performed. Extensions beyond 1λ did not affect (i.e., improve) the accuracy.

Therefore, for the rest of all results an extension of 1λ is used for the suppression

of spurious edge effects. As a matter of fact, such edge effects do not create a

visible problem on the accuracy of the field distribution as illustrated on Fig.

4.2(b) and 4.2(c). For both cases, the total field results are in perfect agreement

with the SA-FBM results. Fig. 4.3 illustrates the induced current and total field

results for TE polarization.
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Figure 4.1: Induced current on a 2000 λ rough surface (TM polarized dipole).
M = 100, Leff = 50.
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Figure 4.2: Total field above a 2000 λ rough surface (TM polarized dipole).
M = 100, Leff = 50.
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Figure 4.3: Induced current and total field results for a 2000 λ rough surface (TE
polarized dipole). M = 100, Leff = 50.
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Fig. 4.4. (a) illustrates the same non-PEC rough surface profile given in

Fig. 4.1. This time, terrain is illuminated by a grazing incident plane wave. For

horizontal polarization, elements of the excitation vector become

Vn = −Einc
y (ρn) = e−jk(xncosθ−znsinθ) (4.7)

where θ is the angle of incidence from x-axis and is taken as π/20. For vertical

polarization, elements of the excitation vector is given by

Vn = −H inc
y (ρn) =

1

η0
e−jk(xncosθ−znsinθ) . (4.8)

For this problem, M is chosen to be 100 and during the generation of PBFs,

PO is used and Leff is chosen to be 50. SBFs are generated using single iteration

FBM. Fig. 4.4 shows the induced current magnitudes and total field distribution

for TM polarization and Fig. 4.5 shows the induced current and total field distri-

bution for TE polarization. For both cases, CBFM results are in good agreement

with the SA-FBM results. Therefore, we can conclude that CBFM approach

yields accurate results for plane wave illumination, as well.

The next set of results are obtained over a real-life, 20 km downhill terrain

profile around , as illustrated in Fig. 4.6(a). Operating frequency is 500 MHz,

hence, total number of surface unknowns turns out to be 330000. Profile is

considered to have an impedance surface of ηs = 25 + j20Ω. At 500 MHz, this

impedance corresponds to a relative permittivity of ǫr = 30.43 and a conductivity

of σ = 3.76.

The surface profile is assumed to be illuminated by an isotropic antenna with

Pt = 50W , located at 25 meters above the left-most end of the surface, for both

TM and TE polarizations. The total feld strengths are evaluated over a copy of

each original terrain at h = 1.8 meters above. When applying CBFM, terrain is

partitioned into 100 blocks. PBFs are generated via PO and only neighboring

blocks are taken into account while generating SBFs. A uniform extrapolation

process is performed over the entire surface, making Leff = 50. SA-FBM is used

as a reference solution since the terrain does not involve big height variations.

Total field distributions for both TM and TE polarizations are given in Fig. 4.6(b)

and (c), respectively.
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Figure 4.4: Induced current and total field results for low-grazing (θ = π/20) TM
polarized plane wave. M = 100, Leff = 50.

47



0  0.2 0.4 0.6 0.8 1  1.2 1.4 1.6 1.8 2  
640

660

680

700

720

740

S
ur

fa
ce

 H
ei

gh
t (

m
)

(a) non−PEC Rough Surface Profile

Surface Profile

Field Computation Pointsθ

Source

0  0.2 0.4 0.6 0.8 1  1.2 1.4 1.6 1.8 2  

0

1

2

3

4

5

6

In
du

ce
d 

C
ur

re
nt

 (m
A)

(b) Induced Current (TE Pol.)

SA−FBM

CBFM

0  0.2 0.4 0.6 0.8 1  1.2 1.4 1.6 1.8 2  
−65

−60

−55

−50

−45

Distance (km)

To
ta

l H
 F

ie
ld

 (d
BA

/m
)

(c) Total Field (TE Pol.)

SA−FBM

CBFM

Figure 4.5: Induced current and total field results for low-grazing (θ = π/20) TE
polarized plane wave. M = 100, Leff = 50.
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Figure 4.6: Total field results for TM and TE polarized isotropic radiator over a
20 km downhill profile near Ankara. M = 100, Leff = 50.

49



The next set of results is the comparisons of CBFM with the measurements

and the SA-FBM. The selected terrains, namely Hadsund and Jerslev terrain

profiles in Fig. 4.7 (a) and Fig. 4.8 (a), respectively, are from Denmark. The

measured data is obtained from [36], derived by using a transmitting dipole lo-

cated at a height of 10.4 meters with a transmitted power of 10 Watts and a gain

of 8 dBi. The receiving antenna is on the top of a van with a height of 2.4 meters.

A surface impedance value ηs = 20 + j8.1Ω is used in order to handle some small

forests and other types of land covers along the profiles. The path loss results for

TM polarization at 435 MHz over Hadsund and at 970 MHz for Jerslev profiles

are presented in Fig. 4.7 (b) and 4.8 (b), respectively. To generate the CBFM

results, the Hadsund terrain, that is 7931 meters long (N = 115000), is divided

into 100 blocks (i.e., M = 100) and 298 CBFs are used. The corresponding values

for the 5446 meters long Jerslev profile are; N = 180000 at 970 MHz, M = 100

and the total number of CBFs is 298. In the generation of CBFs, PBFs and SBFs

are obtained via a single iteration of FBM. A non-uniform extrapolation process,

detailed in the previous section, is implemented to accelerate the generation of

u
(i)
k vectors. The number l is selected to be large (l = 50) at relatively flat por-

tions of the terrains, which correspond to 0-2 km range for the Hadsund terrain

and 0.75-1.5 km for the Jerslev terrain, and l = 10 is used for the rest. As a

result, u
(i)
k generation part of the method is accelerated by approximately 12.5

and 11 times, for the Hadsund and Jerslev terrain profiles, respectively. As seen

in Fig. 4.7 (b) and in Fig. 4.8 (b), CBFM results are in good agreement with

both measurements and SA-FBM that verifies the accuracy of the method. It is

obvious that SA-FBM, being an O(N) type method, is much faster than CBFM.

However, it fails as the roughness of the terrain profile increases, particularly

when there are large height variations along the terrain. Hadsund terrain profile

considered here has a height variation less than 60 meters while it is 25 meters

for the Jerslev terrain.

In the next set of results, effects of some parameters such as the number of

blocks and the number of SBFs on the efficiency and accuracy of the method will

be investigated in detail for terrain profiles with large height variations where

SA-FBM fails to give accurate results.
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Figure 4.7: Path loss for TM polarized dipole over Hadsund terrain profile at 435
MHz. Distance 7931 m. N = 115000, M = 100, Leff = 12.5.
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Figure 4.8: Path loss for TM polarized dipole over Jerslev terrain profile at 970
MHz. Distance 5446 m. N = 180000, M = 100, Leff = 11.
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Consider the surface profile illustrated in Fig. 4.9 (a). This terrain is a 5 km

portion from the west side of Turkey with ηs = 20 + j15, and has a height vari-

ation more than 700 meters. The terrain is illuminated by an isotropic radiator

with 25 Watts output. The elements of the excitation vector for the horizontal

polarization is given by

Vn = −Einc
y (ρn) = −E0

e−jkdn

dn

. (4.9)

For vertical polarization, elements of the incident field vector is given by

Vn = −H inc
y (ρn) = −E0

η0

e−jkdn

dn

. (4.10)

In both (4.9) and (4.10), dn is given in (4.3). Using the radiation intensity integral

in (4.5), the magnitude of the electric field can be related to the transmitted power

as

E0 =
√

60Pt . (4.11)

The isotropic radiator is located at 25 meters above x = 0. The receiver height is

2.4 meters. The total field results for both TM and TE polarizations are obtained

via CBFM. Note that due to the big height variation, SA-FBM could not converge

to a result. Hence, FBM is used as a reference solution. Total field results for

M = 50, M = 100 and M = 200 are given in Fig. 4.9 (b), Fig. 4.9 (c), and Fig.

4.9 (d) for TM polarization, and Fig. 4.10 (b), Fig. 4.10 (c) and Fig. 4.10 (d)

for TE polarization. In all cases, PBFs are obtained using physical optics and

the blocks are extended by an amount of 1λ for the suppression of edge effects.

For all cases (i.e., different M values), the non-uniform extrapolation is used in

the following way for this terrain: Up to 3 kilometers, l = 10 is used uniformly.

After 3 kilometers, l is increased to 50, because the surface profile is flatter. As

a result, u
(i)
k is computed 15 times faster (i.e., Leff = 15).

As can be observed from the plots in Fig. 4.9 and Fig. 4.10, CBFM results

are in good agreement with the FBM results in all cases. Besides, one can see

that results become more accurate as the number of blocks, M , is increased.

This is expected since an increase in M leads to use of more CBFs which enables

the current distribution to be represented more accurately. However, such an

increase in the accuracy comes in the expense of increased CPU time because
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Figure 4.9: Total field for TM polarized isotropic radiator over a terrain profile
from the west side of Turkey. Distance 5000 m, N = 50000, Leff = 15.
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Figure 4.10: Total field for TE polarized isotropic radiator over a terrain profile
from the west side of Turkey, Distance 5000 m, N = 50000, Leff = 15.
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M Ni # of CBFs # of iter. CPU (s)/iter. Total CPU (s) Error (%)

fbm - - - 6 7242 43452 -
cbfm 50 1000 148 - - 1378 10.1

cbfm 100 500 298 - - 2577 6.1

cbfm 200 250 598 - - 8607 3.5

Table 4.1: Comparison of CPU times of CBFM with FBM and absolute errors for the terrain
problem in Fig. 4.9 (a) for various M values (TM Pol.)

M Ni # of CBFs # of iter. CPU (s)/iter. Total CPU (s) Error (%)

fbm - - - 2 5794 11588 -
cbfm 50 1000 148 - - 1308 10.8

cbfm 100 500 298 - - 2543 8.2

cbfm 200 250 598 - - 8590 3.4

Table 4.2: Comparison of CPU times of CBFM with FBM and absolute errors for the terrain
problem in Fig. 4.10 (a) for various M values (TE Pol.)

of the additional inner products that are needed to be calculated during the

generation of the reduced matrix. CPU times and absolute errors for various

M values are given in Table 4.1 and Table 4.2 for TM and TE polarizations,

respectively. Absolute percentage error of the CBFM is defined as

abs. error(%) =
||ICBFM − IFBM ||2

||IFBM ||2
× 100 (4.12)

where ICBFM and IFBM are the CBFM and FBM currents, respectively and || . ||2
indicates the Frobenious norm. In this example FBM is taken as a reference

solution.

As depicted in Table 4.1 and Table 4.2, CBFM results are in good agreement

with the FBM results but in a considerably less amount of time, even in the

M = 200 case, where it takes approximately 8600 seconds for both TM and TE

polarizations. This cost is comparable to a single iteration FBM result, which is

about 7200 seconds for TM polarization and 5794 seconds for TE polarization. It

should be noted that 6 iterations are required to obtain accurate FBM results for

TM polarization whereas this number is only 2 for the TE case. Note that when

M = 50, the required CPU times for CBFM are around 1400 seconds for both

polarizations that are 5 times less than that of a single iteration FBM result for

the TM case.
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N 50000 50000 50000 N

M 200 100 50 M

Leff 15 15 15 Leff

Basis
Func-
tions

PBF 0.4 0.4 0.4 O(N)

SBF 85 170 350 O(N2/M)

Total 85 171 350 O(N2/M)

Reduced
Matrix
Gen.

u
(i)
k 510 505 507 O(N2/Leff)

Inner Product 8012 1901 521 O(N × M2)

Total 8522 2406 1028

Total 8607 2577 1378

FBM (1 iteration) 7242 7242 7242 O(N2)

Table 4.3: CPU Times (s) for Different Stages of CBFM with Various Parameters

Table 4.3 presents the CPU times for different stages of CBFM for this ex-

ample, in detail. One can realize that as the number of blocks, M , increases,

reduced matrix generation part, more specifically, inner product operations of

the CBFM procedure, dominates in terms of CPU times since its computational

cost is O(N ×M2). On the other hand, with the use of the extrapolation process,

CPU times for the generation of the u
(i)
k vectors, are substantially reduced. Note

that further increase of Leff does not bring an important reduction in CPU times.

Although this part has O(N2/Leff ) operational cost, Leff parameter allows us

to prevent rapid exponential growth in CPU times. Besides, it is obvious that

CPU times for the generation of basis functions are negligible to some extent.

Generation of PBFs does not depend on M since the use of PO is O(N) oper-

ations. However, this is not valid for SBFs since we use FBM while generating

SBFs. CPU times for SBFs and number of blocks, M , are inversely proportional.

Hence, with a major decrease of M , generation of SBFs can be a dominant part

of CBFM procedure. So it can be deduced that as long as M is kept in such a

way that the generation of basis functions remains as the minor part in terms

of CPU time, CBFM has O(N) operational cost to some extent. Actually, this

is illustrated in Fig. 4.11 for M = 50 and M = 200. Note that, as well as the

generation of PBFs, inversion of the reduced matrix is also negligible since the

matrix size is quite small.

In addition to number of blocks, M , we define a new parameter, nn, which

represents the number of neighborhoods taken into account at each side of the
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Figure 4.11: Comparison of CPU times with FBM for M = 50 and M = 200
with Leff=15

extended block i, for the computation of SBFs. It should be noted that until

now, we have implemented CBFM technique by taking only the adjacent blocks

(i.e., nn = 2) for the generation of SBFs. For nn = 4, (3.6) should be modified

as

VN×1 =

3
∑

k=1

α
(1)
k u

(1)
k +

4
∑

k=1

α
(2)
k u

(2)
k +

5
∑

k=1

α
(3)
k u

(3)
k + ...

+
5
∑

k=1

α
(M−2)
k u

(M−2)
k +

4
∑

k=1

α
(M−1)
k u

(M−1)
k +

3
∑

k=1

α
(M)
k u

(M)
k (4.13)

which results in 5M − 6 CBFs (M PBFs +4M − 6 SBFs).

For nn = 6, (3.6) should be modified as

VN×1 =
4
∑

k=1

α
(1)
k u

(1)
k +

5
∑

k=1

α
(2)
k u

(2)
k +

6
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k=1

α
(3)
k u

(3)
k +

7
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k=1

α
(4)
k u

(4)
k + ...

+

7
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k=1

α
(M−3)
k u

(M−3)
k +

6
∑

k=1

α
(M−2)
k u

(M−2)
k +

5
∑

k=1

α
(M−1)
k u

(M−1)
k +

4
∑

k=1

α
(M)
k u

(M)
k (4.14)
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Figure 4.12: Total field for TM polarized isotropic radiator with various number
of mutual interactions. Distance 5000 m, N = 50000, M = 50, Leff = 15.
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Figure 4.13: Total field for TE polarized isotropic radiator with various number
of mutual interactions. Distance 5000 m, N = 50000, M = 50, Leff = 15.
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N M nn # of CBFs Total CPU Time (s) Error (%)

fbm 50000 - - - 43452 -
cbfm 50000 50 2 148 (3M − 2) 1378 10.1

cbfm 50000 50 4 244 (5M − 6) 2950 5.7

cbfm 50000 50 6 338 (7M − 12) 5056 4.8

cbfm 50000 50 8 430 (9M − 20) 7620 5.0

Table 4.4: Comparison of CPU times of CBFM with FBM and absolute errors for the terrain
problem in Fig. 4.9 (a) for various nn values (TM Pol.)

N 50000 50000 50000 50000 N

nn 2 4 6 8 nn

Basis
Func-
tions

PBF 0.4 0.4 0.4 0.4 O(N)

SBF 350 693 1028 1357 O(N2 × nn/M)

Total 350 693 1028 1357 O(N2/M)

Reduced
Matrix
Gen.

u
(i)
k 507 836 1157 1478 O(N2 × (nn + 1)/Leff)

Inner Product 521 1450 2836 4721 O(N × M2 × (nn + 1)2)

Total 1028 2286 3993 6199

Total 1378 2979 5021 7556

FBM (1 iteration) 7242 7242 7242 7242 O(N2)

Table 4.5: CPU Times (s) for Different Stages of CBFM with Various nn values. M = 50
and Leff = 15

61



which results in 7M − 12 CBFs (M PBFs + 6M − 12 SBFs). With similar

approach, for nn = 8, total number of CBFs turns out to be 9M − 20.

Table 4.4 presents the CPU times and absolute errors for various nn values.

Keep in mind that in an electrically large terrain, mutual interactions among

far-away blocks are very weak. Thus, including more neighboring blocks does

not improve the overall accuracy significantly in a uniform fashion. However, it

is observed that when the field points are close to the source region, significant

improvement is observed if two neighboring blocks on each side of the extended

block i is included (i.e., nn = 4). This is an expected results because when

the excitation is strong, mutual interactions among the blocks that are close to

the excitation become also strong. Hence, inclusion of more mutual interactions

naturally improves the accuracy in this region. Table 4.5 is the modified version

of Table 4.3 with nn inserted as an explicit parameter into the formulation. Fig.

4.12 and Fig. 4.13 illustrates the total field distribution for varying nn values

with M = 50 and Leff = 15, for TM and TE polarizations.

Storage Requirements of CBFM

Previously, it was shown how CPU times vary with certain parameters such as

the number of blocks, M , Leff and nn. Likewise, memory storage of CBFM also

changes with those parameters. CBFM is advantegeous in the sense that it does

not require storage of any matrix except the reduced matrix as long as direct

solvers for the generation of basis functions are not used which is the case for

this study. Since basis functions are generated via the use of iterative solvers or

physical optics, impedance matrices are not stored. However, basis functions and

u
(i)
k vectors should be stored for the generation of the reduced matrix. Memory

storage for the basis functions can be estimated as (3M−2)×Ni where Ni = N/M

and (3M − 2) × N/Leff for u
(i)
k vectors. Thus, total memory storage turns out

to be

storage ∼= (3M − 2) × N

M
+ (3M − 2) × N

Leff
(4.15)

for nn = 2. When more mutual interactions are taken into account (i.e., nn 6= 2),

(3M − 2) factor will be replaced by the corresponding values given in Table

4.4. Apparently, dominating part of the above sum is the storage of u
(i)
k vectors.
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Fortunately, with the use of the extrapolation process, significant reduction can

be obtained for the memory storage.
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Chapter 5

Conclusions

In this study, an iteration-free, rigorous and efficient method, that combines

CBFM, PO (when applicable) and FBM, is employed for the solution of IEs to

investigate scattering from and propagation over large-scale rough terrain prob-

lems. The method is based on constructing macro-domain basis functions from

the conventional sub-domain basis functions, with the help of PO and/or one iter-

ation of FBM. It is further accelerated using a non-uniform extrapolation process

throughout the terrain under investigation. CBFM has been applied for several

terrain profiles with varying parameters in order to investigate its accuracy and

to develop an efficient strategy for the solution of electromagnetic scattering from

rough surfaces. In order to justify CBFM results, FBM and, if converges, SA-

FBM are used as a reference solutions. CBFM results are also compared with

measurement results obtained from real-world terrains.

CBFM is implemented for various kind of excitations such as isotropic radi-

ator, dipole antenna and plane wave. It has been shown that performance of

CBFM is independent of the excitation due to its iteration-free nature.

Implementation of CBFM involves determination of some parameters. Since

they turn out to make a considerable effect on CPU times and memory usage,

critical parameters are number of blocks while partitioning the surface profile and

number of mutual interactions taken into account while generating SBFs. It has
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been observed that selecting number of blocks around 50 and 100 for problems

with unknowns at the order of 20000-300000 results in a good optimization be-

tween accuracy and computational cost. Further increase causes more usage of

memory and more CPU times since it brings additional inner product operations

for construction of the reduced matrix, whereas further decrease of number of

blocks also brings additional CPU times since, this time, basis function genera-

tions start to dominate due to its O(N2/M) operational cost.

On the other hand, numerical results show that it yields very accurate results

to take only the mutual interactions of neighboring blocks into account while

generating SBFs. This is due to the fact that in an electrically large profile,

mutual interactions among far-away blocks are very weak. However, it is observed

that when the field points are close to source region, significant improvement is

observed if more neighboring blocks on each side of a block are included (i.e.,

nn 6= 2). This is an expected result because when the excitation is strong, mutual

interactions among the blocks that are close to the excitation become also strong.

Hence, inclusion of more mutual interactions naturally improves the accuracy in

this region. However, increase in the CPU times and the storage requirements is

again an issue.

One of the future works is to apply CBFM to re-entrant surface profiles.

Although GFBM and its spectral accelerated version GFBSA have been proposed,

these approaches cannot reduce the O(N3) operational count arising in the direct

inversion of the obstacle region self-interaction matrix.
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Appendix A

Spectral Acceleration for the

Backward Propagation

A.1 Horizontal Polarization

Starting with the formulation of the EFIE described in Section 2.1 for the horizon-

tal polarization, the radiated electric field at ρn due to the forward propagation

Ef and backward propagation Eb can be obtained as:

Ef(ρn) =
n−1
∑

m=1

ImZnm (A.1)

Eb(ρn) =
N
∑

m=n+1

ImZnm. (A.2)

Eb is decomposed into the fields radiated by the strong and weak groups, Es and

Ew respectively,

Eb(ρn) = Es(ρn) + Ew(ρn)

=
n+1
∑

m=n+Ns

ImZnm +
n+Ns+1
∑

m=N

ImZnm (A.3)

where Ns = Ls/∆x denotes the number of elements that have strong interactions

with the nth element. The off-diagonal entries of the impedance matrix for the
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horizontal polarization were derived using the EFIE in Section 2.1 for non-PEC

surfaces as

Znm = −jωµG(ρn, ρm)∆xm + ηm∆xm
∂

∂nm
G(ρn, ρm). (A.4)

The radiation of the strong interaction group is computed directly through a

matrix-vector product, but the weak group contribution is obtained by employing

the spectral representation of the Green’s function and its derivative. The spectral

representation of the Green’s functions can be expressed as

G(ρn, ρm) = − j

4π

∫

Cφ

e−jk[(xn−xm)cosφ+(zn−zm)sinφ]dφ (A.5)

where Cφ is the contour of integration in the complex φ-space (shown in Fig.

2.5). On the other hand, the spectral representation of the partial derivative of

the Green’s function with respect to the normal vector on source point can be

expressed as:

∂

∂nm
G(ρn, ρm) =

k

4π

∫

Cφ

[cosθmcosφ + sinθmsinφ]e−jk[(xn−xm)cosφ+(zn−zm)sinφdφ

(A.6)

where θm is the angle between the unit normal vector to the surface at the source

point, n̂m, and the unit vector in the −x direction, -x̂. Substituting (A.5) and

(A.6) into the expression for Ew(ρn) and interchanging the integration and sum-

mation yields to:

Ew(ρn) = −ωµ

4π

∫

Cφ

Fn(φ)dφ (A.7)

where

Fn(φ) =
∑

m∈Gw

Im∆xm

(

1 − ηm

η0
[cosθmcosφ + sinθmsinφ]

)

·e−jk[(xn−xm)cosφ−(zn−zm)sinφ]. (A.8)

Fn(φ) can be obtained from Fn+1(φ) as:

Fn(φ) = Fn+1(φ)e−jk[(xn−xn+1)cosφ−(zn−zn+1)sinφ]

+Ins∆xns

(

1 − ηns

η0
[cosθnscosφ + sinθnssinφ]

)

·e−jk[(xn−xns)cosφ−(zn−zns)sinφ] (A.9)

with Fn(φ) = 0 for n ≥ N − Ns, and ns = n + Ns + 1 is the new source point

introduced in the weak group as the iterative procedure sweeps the surface in the

backward direction.
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A.2 Vertical Polarization

In a similar way, when using the MFIE formulation in the vertical polarization

case, the radiating elements are also divided into 2 groups (Gs and Gw) and their

contribution to the forward magnetic field Hf can be expressed as follows

Hb(ρn) = Hs(ρn) + Hw(ρn)

=
n+1
∑

m=n+Ns

ImZnm +
n+Ns+1
∑

m=N

ImZnm (A.10)

where Hw and Hs are the fields radiated by the weak and strong groups, respec-

tively, and Znm is defined in Section 2.1 as

Znm = jωǫηm∆xmG(ρn, ρm) − ∆xm
∂

∂nm

G(ρn, ρm). (A.11)

Using the spectral representation of Green’s function and its derivative, contri-

bution due to the weak group can be expressed as:

Hw(ρn) = − k

4π

∫

Cφ

Fn(φ)dφ (A.12)

where

Fn(φ) =
∑

m∈Gw

Im∆xm

(

cosθmcosφ + sinθmsinφ − ηm

η0

)

·e−jk[(xn−xm)cosφ−(zn−zm)sinφ]. (A.13)

Then Fn(φ) can be obtained from Fn+1(φ) like in (A.9) except the term inside

the paranthesis is changed with
(

cosθnscosφ + sinθnssinφ − ηns

η0

)

.
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