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of bİlkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Erkan Okuyan

January, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52925306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Cevdet Aykanat (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uğur Güdükbay
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ABSTRACT

EXPLOITING REPLICATED DATA FOR
COMMUNICATION LOAD BALANCING IN

IMAGE-SPACE PARALLEL DIRECT VOLUME
RENDERING OF UNSTRUCTURED GRIDS

Erkan Okuyan

M.S. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

January, 2009

The focus of this work is on parallel volume rendering applications in which ren-

derings with different parameters are successively repeated over the same dataset.

The only reason for inter-task interaction is the existence of data primitives that

are inputs to several tasks. Both computational structure and expected task ex-

ecution times may change during successive rendering instances. Change in com-

putational structure means change in the data primitive requirements of tasks.

Since the individual processors of a parallel system have a limited storage capacity,

we can reserve a limited amount of storage for holding replicas at each processor.

For the parallelization of a particular rendering instance, the remapping model

should utilize the replication pattern of the previous rendering instance(s) for

reducing the communication overhead due to the data replication requirement of

the current rendering instance.

We propose a two-phase model for solving this problem. The hypergraph-

partitioning-based model proposed for the first phase aims to minimize the total

message volume that will be incurred due to the replication/migration of input

data while maintaining balance on computational and receive-volume loads of

processors. The network-flow-based model proposed for the second phase aims

to minimize the maximum message volume handled by processors via utilizing

the flexibility in assigning send-communication tasks to processors, which is in-

troduced by data replication. The validity of our proposed model is verified on

image-space parallelization of a direct volume rendering algorithm.

Keywords: parallel direct volume rendering, hypergraph partitioning, data repli-

cation, network flow, image-space parallelization.
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ÖZET

DÜZENSİZ IZGARALARDA GÖRÜNTÜ-UZAYI
PARALEL HACİM GÖRÜNTÜLEME İÇİN İLETİŞİM

YÜKÜ EŞİTLEMEDE KOPYALANMIŞ VERİDEN
FAYDALANMA

Erkan Okuyan

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Ocak, 2009

Bu çalışmanın hedef kullanım alanı, görüntülemelerin değişik parametreler ile

aynı veri kümesi üzerinde defalarca tekrarlandığı hacim görüntüleme uygula-

malarıdır. Görevler arası etkileşimin tek sebebi birden fazla görev için girdi olan

veri primitiflerinin bulunmasıdır. Hem hesapsal yapı hem de görevlerin tahmini

bitiş süreleri ardışık görüntüleme aşamalarında değişebilirler. Hesapsal yapıdaki

değişim, görevlerin veri girdi gereksinimlerindeki değişimi ifade eder. Paralel

sistemdeki her bir işlemcinin sınırlı bellek kapasitesi olduğundan, sınırlı mik-

tarda saklama alanını kopyaların saklanması için ayırabiliriz. Eldeki görüntüleme

aşamasının paralelleştirilmesi için, dağıtım modelinin daha önceki görüntüleme

aşamalarının kopya dağıtım yapısından, eldeki görüntüleme aşamasının gerek-

tirdiği haberleşme gereksinimlerini azaltmak için, yararlanması gereklidir.

Bu problemin çözümü için iki aşamalı bir model öneriyoruz. İlk aşama için

önerilen hiperçizge parçalama temelli modelin amacı girdi verilerin kopyalan-

ması/taşınmasından kaynaklanan toplam haberleşme hacmini asgariye indirirken

işlemcilerin hesapsal dengelerini ve girdi alış yükleri arası dengelerini korumaktır.

İkinci aşama için önerilen ağ akışı temelli model, işlemcilerin ele aldığı en büyük

mesaj hacmini, işlemcileri gönderi görevleri ile ilgili görevlendirme konusunda

veri kopyalama sonucu oluşmuş esnekliği kullanarak, asgariye indirmeyi amaçlar.

Önerilen modelin geçerliliği doğrudan hacim görüntüleme algoritmasının görüntü-

uzayı paralelleştirilmesi aracılığı ile doğrulanmıştır.

Anahtar sözcükler : paralel doğrudan hacim görüntüleme, hiperçizge parçalama,

veri kopyalama, ağ akışı, görüntü-uzayı paralelleştirme.
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Chapter 1

Introduction

With the massively parallel computer systems of modern era, physical simula-

tions in many disciplines started to gain more importance. In these simulations,

there is vast amount of input and many constraints to consider (such as physical

laws). Solving these kinds of complex systems analytically is nearly impossible.

Although usage of optimization techniques elevates this problem to some degree

still there is vast amounts of computation, which necessitates parallel systems.

Usage of powerful parallel systems for computationally heavy problems produce

vast amount of numeric data, which in essence is not understandable with its’

most basic form: numbers. So scientists needs visual analysis tools of these nu-

meric data to have better understanding of the problem at hand.

The main aim of this thesis is to present faster methods for volume rendering.

To further narrow the scope of the thesis we can comment thesis focuses on paral-

lel volume rendering algorithms. Volume rendering is simply defined as producing

2-D projection of a 3-D space data. With ever growing sizes of 3-D space data,

faster methods for rendering and possible use of hardware become necessary. In

this thesis we will introduce some improvements, mainly for parallel processing

environments, over existing rendering methods. Although we had to choose a

specific type of algorithm and method to show validity of our contributions, we

feel applying proposed methods for other type of rendering methods and other

applications is possible and helpful.

1



CHAPTER 1. INTRODUCTION 2

1.1 Scientific Visualization

Scientific visualization is a field of research that produces representations of data

for better understanding and insight. Growing sizes of data produced by com-

puter systems and inability of humans to fully understand the raw data as it is

makes scientific visualization a hot topic for research. Human brain is especially

well adapted to perceive data presented via images or sounds. So representations

produced by scientific visualization methods usually are images and sounds. Sci-

entific visualization is important for scientists because scientific research both

produce data and is affected by the produced data. Usually scientists produce

data via simulations. Next steps are understanding, analyzing the data and

drawing conclusions from it. Then they need to implement corrections or change

parameters of simulation, induced by the conclusions drawn in previous step. Sci-

entific visualization eases the process of understanding and analyzing the data so

accelerates the process of scientific research. For instance a scientist working on

an airplane wing will need to do simulations and calculate the amount of stress

on different parts of the wing. With help of a visualization tool, scientist will eas-

ily identify the problematic areas and take precautions. However, in most cases

data to visualize has 3 (or more) dimensions which makes production of under-

standable and helpful representations difficult. Sub-field of scientific visulization,

which visualization 3-D spatial data is called Volume Rendering.

1.1.1 Volume Rendering

Volume Rendering can be defined as the process of generating a representative

2-D image of a 3-D volumetric dataset. Volumetric datasets are difficult in nature

for human beings to understand easily without any representation extraction. So

good representations of 3-D datasets let scientists and engineers gain better un-

derstanding of the dataset at hand. Achieving interactive speeds are important

for volume rendering tools since faster visualization tools enables scientists to

deliver feedback to data generation algorithms quickly thus increasing the effec-

tivity of research. However, we can’t say volume rendering studies are at a level
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Cartesian

Non-Cartesian

Regular

Irregular
Rectilinear
Curvilinear
Unstructured

Table 1.1: Grid Types

that interactive speeds are achievable for big datasets and detailed visualizations.

There are several types of grids that are used to represent volumetric datasets.

Most known and used ones are cartesian grids, regular grids, rectilinear grids,

curvilinear grids and unstructured grids. Table 1.1 shows the relation between

these grids and Figure 1.1 shows sample images of these grid types.

Cartesian grids are axis aligned and points of the grid are evenly spaced in

each direction. Basically they are formed from uniform cubes. Regular grids are

cartesian grids with a single difference; they are formed from rectangular prisms.

Rectilinear grids have similar structure to regular grids but in this type of grids

volumetric primitives do not have to be evenly spaced. Curvilinear grids has

similar structure to rectilinear grids but unlike above, curvilinear grids are not axis

aligned. So, as opposed to rectilinear grids, for curvilinear grids points may have

different values in all three of the dimensions with neighbor points. Volumetric

primitive used in curvilinear grids are non-uniform hexahedra. Unstructured grids

have no implicit structure about connectivity of volumetric primitives. Several

types can be used as volumetric primitives: tetrahedra, hexahedra, etc. But every

primitive can be decomposed to tetrahedrals so usage of single type of volumetric

primitive is possible.

Regular grids present us with a very basic and easy to work decomposition of

the volume but they don’t represent the data very effectively for some datasets.

So, irregular grids are most reasonable choice for most applications. Unstructured

grids have no implicit connectivity information but they have most flexibility to

represent dataset with high effectiveness. And it is possible to explicitly present

the connectivity information for unstructured grids and use the most effective
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a) Cartesian b) Rectilinear

c) Curvilinear d) Unstructured

Figure 1.1: Grid Types [48]

representation available. In this work, we use unstructured grids with tetrahedrals

as volumetric primitives and we explicitly present connectivity information to the

system.

Inputs of volume rendering process are: a set of volumetric primitives de-

fined by the grid imposed, viewing position and orientation. Viewing position

and orientation define the image planes position in coordinate system and vol-

ume rendering algorithm calculates the contributions of volumetric primitives to

pixels. Final values of pixels in image plane will correspond to pixel values of

desired image. To calculate the contributions of volumetric primitives to pixels

in image plane, every volumetric primitive should have some data associated with

it. At this point there are two choices about where to store the data: Volumet-

ric primitives will have data associated with it as a whole, points of volumetric



CHAPTER 1. INTRODUCTION 5

primitives have the data and some interpolation of these values will be effecting

the final color. In this work we store the data with points. Another discussion

would be the type of data stored. For different purposes different types of data

should be used. For example, if the data to visualize shows temperature values

in a volume a single scalar will be enough for visualization purposes. If both

the magnitude and direction is important in dataset as in physical experiments

pertaining magnetic fields or velocity, vectors will be suitable as data. Or in

the case of a stress test a tensor should be more appropriate than other data

types. Some other visualization experiment may require different types also. In

our work, single scalar seemed enough for our purposes. We associate a single

scalar with every point defined in 3-D coordinate system.

Volumetric primitives are called voxels and in some research they are referred

to as cells. In this thesis we will use the terms voxels and cells interchangeably.

1.1.2 Direct Volume Rendering

There are two types of volume rendering method [44]: Direct Volume Render-

ing (DVR) and indirect volume rendering. DVR methods are characterized by

direct mapping between image space primitives and volumetric data so no inter-

mediate representation, such as polygons and surfaces, is used. DVR methods

are more suited to application where no apparent surfaces are present or of no

interest. So visualization of cloud, fluid and gas like structures usually use DVR

algorithms. Since direct mapping between image space primitives and volumetric

data is present change in viewing parameter causes traversal of whole dataset for

rendering. Indirect volume rendering methods are characterized by using surface

primitives for rendering purposes. Execution starts with user defining a threshold

value and cells interacting with surface primitive according to this threshold value

are considered for extracting surface representation of volume data. Extracted

intermediate representations can be rendered using standard graphics pipeline in

a fast manner. Indirect volume rendering methods are more suited to application

where apparent surfaces are present and are the interest. Such applications mainly
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arise in medical imaging where organ/tumor/vessel boundaries are needed. Fur-

thermore, extraction of intermediate representation can be done as preprocessing

in these methods so change in viewing parameters won’t necessitate traversal of

whole dataset but only rendering of intermediate representation. However, prob-

lems of false positives and false negatives may arise in indirect methods, mainly

because intermediate representation only approximate the volume data. In case

of false positives or false negatives scientist/doctor may incorrectly view small

features of the dataset. Marching Cubes [43] is an well known indirect method,

that has the problem of false positives and false negatives.

Generally indirect methods are considered faster than direct methods and di-

rect methods are considered more accurate than indirect methods. Slower nature

of direct volume rendering methods makes these methods a good candidate for

parallelization. In this thesis we have worked on a parallel direct volume rendering

algorithm.

1.1.3 Parallel Direct Volume Rendering

A common approach for parallel volume rendering has been transferring the

dataset to a single graphics workstation from the source parallel machine and

then rendering the dataset on a single machine. This is an undesirable approach

because of the time and bandwidth spent for transferring the dataset, especially if

the dataset is large. If the dataset is big in size, it is much preferable to render on

a parallel machine instead of a single graphics workstation because of the mem-

ory constraints of the single machine. It is also beneficial to divide the workload

among several processors.

High quality parallelization of direct volume rendering algorithms is a con-

venient method for achieving interactive speeds. Dataset sizes are growing and

becoming fairly big for a single processor to handle with high performance espe-

cially for computationally heavy direct volume rendering methods. So parallel

volume rendering became a hot topic of research. However, parallelization comes

with some considerations:
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• Efficient parallelization of rendering algorithms requires balanced distribu-

tion of work between processors.

• Decomposition and distribution of data if parallel processing environment

is distributed-memory architecture.

Running the parallel volume rendering tools on the same parallel environ-

ment, which is used to produce simulation data, seems somewhat convenient.

Each processor in parallel environment produces some simulation results and is

supposed to store the produced data. So after simulation, there is initial data dis-

tribution on the system. Moreover, for many applications this data distribution

is a high quality distribution since data produced by the same processor tends

to be used together. After simulation, each processor has a set of data which

has high probability to be used together. Meaning, data distribution produced

by simulation allows easy assignment of rendering jobs to processors, because for

each processor there is a partial rendering job that mainly uses the data assigned

to the processor. This decreases the data replication on the system. Alos note

that, data distribution may be improved to ensure the better balance in size or

higher quality task-data coherency for some applications.

Coupling of visualization tools and scientific simulations on the same machine

will be supported by two factors. First one is, increasing use of parallel machines

for scientific simulations. Second factor is convenient data and task distribution

for visualization enforced by data production pattern of simulation. This will

allow scientists to run their computations with the feedback received from vi-

sualization tools in a fast manner. We believe the trend to combine scientific

simulations and visualization tools on parallel machines will continue.

1.1.4 IS versus OS Parallelism

Parallelization of volume rendering algorithms can be done in two ways; Image-

space parallelization (IS parallelization) and object-space parallelization (OS par-

allelization). In OS parallelization, decomposition of total workload is done in
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object space via assigning rendering operations of sub-volumes to processors.

However, minimizing rendering load imbalance is important so that assignment

of sub-volumes should be in a manner that rendering load imbalance is minimal.

Furthermore, after rendering of sub-volumes compositing the intermediate results

is needed in OS methods so that final pixel colors can be produced. Compositing

stage may require excessive amount of communication, especially for highly ir-

regular unstructured grids, and this high communication volume stands to be the

main disadvantage for OS parallelization. Aykanat et al. [1], propose a graph par-

titioning based method utilizing OS parallelization for rendering problem which

presents promising results.

In IS parallelization, decomposition of total workload is done in image space

via assigning rendering operations of sub-screens to processors. So, a processor

responsible for rendering sub-screen, only process the data projecting onto the

sub-screen assigned to processor. If every processor stores the data needed for

performing assigned rendering operation prior to rendering, no image compositing

step is needed. However, in IS methods, achieving low load imbalance is important

while avoiding excessive communication prior to rendering. Cambazoğlu and

Aykanat [2] and Kutluca et al. [45] propose IS based methods which are taken as

performance wise reference throughout this research.

1.2 Motivation and Contributions

Parallel volume rendering is a good approach for fast rendering; this way consid-

erable speedups can be gained without sacrificing image quality. There are two

kinds of architectures in which parallelism can be achieved; in shared memory

architectures every processing unit can reach, read or write to global memory.

Memory can be built as a single module or it may be divided between processor

units. However, every memory operation affects the processors view of global

memory. This heightens the usage of memory bus, such that the applications run

over shared memory architectures are not very scalable because of memory bot-

tlenecks. Because of scalability problems of shared memory architectures, parallel
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volume rendering on distributed memory architectures is a good choice especially

for big datasets. Parallel volume rendering on distributed memory architectures

requires

• the distribution of partial rendering jobs, and

• the communication of data imposed by job distribution.

Mentioned task repartitioning and data communication operations makes the

following metrics important.

Work Load Imbalance: If every processor do not have equal amount of work, some

processor finishes early and have idle time. Utilization of this idle time

may increase the performance of the system therefore balancing workload

is important.

Storage Volume: Every processor should be responsible for storing nearly equal

amount of data. If some processor has high amount of data to store and

limited memory, rendering tool may slow down or even crash. Further-

more, unequal assignment of store may cause imbalance on communication

volumes of processors.

Communication Load Imbalance: High send and receive volume loads of proces-

sors may have adverse effect on system performance, via adversely effecting

communication performance. In some systems maximum of send or receive

volume of any processor has dominating effect and this maximum value

should be decreased while in others total volume handled by any proces-

sor may have dominating effect. In general for distributed systems, one

port and two port communication systems corresponds to above schema

respectively.

Previous hypergraph based methods primarily reduces the total amount of

communication while maintaining work load balance. This method indirectly re-

duces the send volumes and receive volumes of processors. However, in the trade
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off between high communication volume load of a processor and total commu-

nication volume in the system, hypergraph partitioning tools may have opt to

produce a partition that has lower total communication volume but very high

send or receive volume loads for a processor in the system. This fact may cause

the application to work slower for some architectures. On the other hand, state

of the art hypergraph partitioning tools PaToH and H-Metis presents the multi-

constraint approaches so that while minimizing total volume of communication

partitioning tool balances workload of processors, send volumes of processors and

receive volumes of processors. However, this multi-constraint approaches are not

present with fixed vertex formulation to the best of our knowledge. Thus, fixed

vertex model based formulation for remapping under data replication does not use

multi-constraints. Balance on volume loads of processors is achieved by proposed

network flow based method and heuristics.

Radical increase in computation power presented by GPUs and usage of this

power in GPU clusters makes the communication step in volume rendering meth-

ods a bottleneck. This thesis mainly focuses on communication patterns for

volume renderers and general trend in technology increases the importance of

methods presented in this thesis. The contributions in this thesis are as follows:

• Incorporation of replication to parallel rendering algorithm and proof of HP

model with multiple fixed vertices per net model to encode the minimization

of actual total communication volume under replicated data.

• Adaption and extention of [4] to balance communication volumes loads of

processors.

• Proposal of a network flow based solution for data deletion to increase

flexibility in the system.

• Proposal of INSH (inverse net size heuristic) to balance the receive volume

loads of processors.

• Implemention and experimention of these general algorithms for a real vol-

ume rendering application.
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1.3 List of Symbols and Abbreviations

P Set of processors

K Number of processors

R Rendering application

PB Set of pixel blocks to be rendered

time(pbi) Rendering time of pixel block i

Input(pbi) Set of clusters needed to render pixel block i

D Set of clusters

size(Cj) Size of storage used to store cluster j

PixelBlock(Cj) Set of pixel blocks that need cluster j

G = (V, E) Clusterization graph

wG(vi) Weight of ith vertex of clusterization graph

wG(eij) Cost of edge (i,j) of clusterization graph

Home(Cj) The processor of cluster j using single home approach

HI Interaction hypergraph - without replication

w(vi) Weight of vertex i in HI

c(nj) Cost of net j in HI

Π K way vertex partition of HI

Wk Total weight of vertices in part k induced by Π

Λ(nj) Set of parts that connects net j

λ(nj) Number of parts that connects net j

TotalCommV ol(Π) Total communication induced by Π

I Set of successive rendering instances

WSh(Pk) Working set of processor k at rendering instance h

eRSh−1(Pk) Set of clusters that is stored by processor k prior to Ih

eHomeh(Cj) Set of processors that stores cluster j prior to Ih
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rc(Cj) replication count of cluster j

M Memory limit of processors

HR Remapping hypergraph - with replication

Ψ(nj) Set of parts connected by net j through processor vertices

ψ(nj) Number of parts connected by net j through processor vertices

INSH Inverse net size heuristic

RecvSet(Cj) Set of processors to receive cluster j

SendSet(Cj) Set of processors that can send cluster j

Recv(D) Receive requirement pattern

SendF lex(D) Send flexibility pattern

RecvCnt(Pk) Number of clusters to be received by processor k

SendCnt(Pk) Number of clusters to be sent by processor k

F Assignment flow network

PR Processors vertices of F that will involve in receive operations

PS Processors vertices of F that may involve in send operations

UD Cluster vertices of F

B Upperbound on maximum send/total volume

handled by a processor

Ξ Complete communication-task-to-processor assignment

MaxSendCnt(Ξ) Maximum number of clusters sent by a processor

WT Number of total send operations

Wr Number of failed send operations for a failed probe

SatCnt Number of saturated terminal edges for a failed probe

MaxTotalCnt(Ξ) Maximum number of clusters sent and received by a processor

Fcont Replica contraction network

Pcont Processor vertices of replica contraction network

Dcont Cluster vertices of replica contraction network

Econt Edge set of replica contraction network

Bcont Lower bound on replication count of minimally replicated cluster



Chapter 2

Background and Previous Work

In this chapter we will give details about previous work on volume rendering in

three stages. In the first stage will give design options on volume rendering in an

organized way with related previous work. In the second stage we will give details

about some important publications on volume rendering in a less organized way.

In the third part we will give details about some publication that are closely

related to this thesis and we will discuss the relation between in detail.

There are several methods on how to achieve volume rendering. Throughout

this stage we will demonstrate design options in a well classified manner. But in

some cases there are possible hybrid options. In general we are not inclined to

detail these options, but we will mention about some well studied hybrid methods.

Furthermore, topics and design options given in this section has main concern of

general rendering system performance in terms of interactivity and throughput.

Most basic decision option on design of a volume renderer can be said as

direct [1][2][45]/indirect [8][18] volume rendering. As mentioned above direct

volume rendering methods treats the volume as a whole while indirect methods

extracts intermediate representations like polygons which usually rendered by

graphics hardware.

13
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Another decision option on design of a volume renderer would be the decision

on serial [6][10][13][35][41] or parallel [1][2][7][8][19][33][34][45] volume rendering.

From its earliest stages, volume rendering was defined as a computation intensive

operation. Also nature of the work suggests that renderers should produce images

at interactive rates (at least 1 image/second), which also hightens the stakes

performance wise. If we consider the general trend on dataset size growth vs.

hardware improvements stated in [35], it is safe to say that for the next decade,

the status of volume rendering as a computational intensive operation will not

change. There are several serial methods proposed for fast volume rendering.

However, radical increases in data sizes and limited memory for serial algorithms

forced researchers to consider parallel rendering methods. Most notable benefit

of a parallel volume rendering method is the use of better processing-unit-power

and memory of underlying architecture, especially for bigger datasets but parallel

volume renderers can not use the spatial coherency in data as good as serial

algorithms. Generally parallel volume renderers perform better on bigger datasets

while serial volume renderers perform better on smaller data sets. Additionally

parallel volume renders will have a cost disadvantage because of higher cost of

underlying parallel architecture.

Assuming a parallel renderer is being designed, there are 3 more options on

how to design a parallel renderer. Molnar et al. [17] present us with a good and

well accepted classification of parallel renderers. Proposed 3 options are: sort-

first, sort-middle, sort-last. Parallel rendering consists of 2 main parts: geome-

try processing (transformation, clipping, lighting, etc.) and rasterization (scan-

conversion, shading, visibility determination, etc.). Nature of parallel renderers

requires communication of data at some point of execution which is called sort-

ing. Classification is done according to where the sorting occurs from object space

to image space. If sorting is done at the beginning of execution with raw data

in a fashion that every processor receives necessary data to complete geometry

processing and rasterization without any further communication, it is called sort-

first. If sorting takes place after geometry processing but before rasterization it is

called sort-middle. In sort-middle systems, transformed data (according to view-

ing parameters) is communicated instead of raw data. The last class of sort-last
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algorithms aims to defer the communication step as much as possible and pixel

data is communicated after rasterization stage takes place.

Without getting into much detail we should mention about advantages and

disadvantages about each approach related to this thesis. Sort-first approaches

have the advantage of exploiting frame-to-frame coherence where several viewing

stages with little changes in viewing parameters take place. In these situations

initial distribution of dataset among processors can be changed in an organized

fashion which will decrease the communication time. Sort-middle approaches

can do the same but it requires a clever implementation. Sort-last approaches

do not have the ability to exploit such frame-to-frame coherence. Sort-first and

sort-middle approaches are generally susceptible to load imbalance mainly be-

cause calculation for some pixels may require much more data than others. And

in some cases, there are not as good balanced solutions as sort-last approaches.

However, there are some work that have achieved very good load-balance be-

tween processors, hypergraph partitioning based remapping model proposed by

Aykanat and Cambazoğlu [2] being one of them. Still sort-first and sort-middle

approaches may cause imbalances between processors in receive volume size and

storage volume sizes, but we will go into detail for them in later stages of this

thesis. Sort-last approaches are less prone to load imbalances but pixel traffic at

the communication step may be extremely high, particularly when oversampling.

Further classification can be done as image-space rendering methods and

object-space rendering methods. In general, sort-first and sort-middle approaches

tend to couple with image-space algorithms while sort-last methods uses object-

space iteration model. This thesis is based on image-space methods while sort-

first being the specific method.

Use of additional hardware is another option on design of volume renderers.

While purely software-based methods are capable of volume rendering, use of

additional hardware may improve the speed of volume renderer greatly. The

reason for that is, hardware based methods benefits from the pipeline of the

graphics hardware. Keeping in mind that using additional hardware has cost

disadvantages, there are several promising works that utilize graphics hardware
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and obtain good results. There are 2 options on using hardware: Using special

hardware or using commodity graphics accelerators. Two examples of special

hardware are SGI’s InfiniteReality and UNC’s PixelFlow machines. These type of

hardware solutions are usually rather costly compared to using standard graphics

accelerators. Although there are important works for both types of hardware

usage, using commodity graphics accelerators is the more popular choice for the

last decade. Reason of this is the increasing programmable nature GPUs and the

radical increase in graphics card speed of the last decade (faster than Moore’s

law).

Vilanova and Ruijters [24] discusses various bottlenecks about GPU-based

volume rendering. Most important two of them being: Limited bus speed between

system memory and GPU memory and texture memory limitation of graphics

hardware. They propose a novel approach to relieve the problems on determined

bottleneck areas for a GPU-based rendering system. However, they don’t discuss

that some of the bottlenecks found in the GPU-based systems can be effectively

addressed by GPU clusters.

Figure 2.1: Texture Memory Problem [35]
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Figure 2.1 graphically represents the memory problem. As seen in the figure

dataset sizes are much bigger than texture memory sizes of commodity off-the-

shelf graphics cards. Although GPU based rendering methods are fast alterna-

tives, capabilities of a single GPU is far from interactive rates just because of the

limited texture memory for larger datasets. GPU clusters present much more flex-

ibility, much larger computation power and larger overall system texture memory.

Therefore GPU clusters seem to be the viable option for interactive rendering for

now.

For the second stage important previous publications are given: Roettger et

al. [6] propose an important work in the sense that many optimization techniques

proposed earlier has been collected together. This paper employs techniques

like slicing approach, where several slices parallel to image plane is formed for

rendering purposes, volumetric clipping, where parts in volume which are out

of view frustrum is omitted, and advanced lightning approaches. Furthermore,

in this work, capabilities of graphics hardware are used for efficient rendering of

slices via an underlying ray casting approach. A problem of slicing approach,

ring artifacts, is prevented via use of slabs instead of slices. Also it should be

stated that this is a serial algorithm and for bigger datasets parallel algorithms

with same capabilities may be of need. Ino et al. [7] propose a sort-last parallel

approach with a new image compositing scheme. They show proposed algorithm

especially behaves well for large number of processors.

Cullip and Neumann propose one of the pioneer work [15] and use trilinear

interpolation hardware as an acceleration technique for volume rendering. In

this work, necessary sampling schemes with object-space and image space sample

planes are discussed. Using one of the special hardware Silicon Graphics Real-

ityEngine workstations they prove the effectivity of hardware usage. They also

acknowledges the problem, may be the biggest problem of hardware-based ren-

dering, of limited texture memory. Texture memory is a limited source and for

many datasets this memory is not enough to store all the dataset. So some sort

of replacement policy is needed and dataset has to be brought to graphics mem-

ory part by part. Cabral et al. [16] also use 3D texture acceleration techniques

and show availability of volume reconstruction along with volume rendering with
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help of 3D texture hardware. They show validity of their system on advanced

medical problems. Krüger and Westermann [13] integrates standard acceleration

techniques to standard graphics hardware implementations and shows the impor-

tance of such methods for interactive rendering. These techniques are: Early ray

termination and empty space skipping. Both in [13] and [16] special hardware

solutions are employed.

Müller et al. propose a GPU-based parallel rendering method [30]. Proposed

algorithm is an ray casting based object space method. They propose a k-d tree

based load balancing scheme and empty space skipping method to increase the

performance of the system. For middle sized datasets they achieve interactive

speeds on a GPU-cluster system with 8 rendering nodes. However, concept of

bricking (volume data is divided into uniform texture bricks and each brick is

treated as an object space primitive) is used which tends to increase the interac-

tion between object-space primitives so causing swaps in and out of the memory.

Work of Marchesin et al. [32] has similar structure. It is also a GPU-based sort-

last parallel method where bricking techniques are employed along with k-d tree

based load balancing. Main contribution of this work is dynamic load balanc-

ing algorithm on situations where initial data distribution causes imbalance in

rendering load. Such situations arise in level-of-detail methods and/or zoom-

ing. For that a hierarchical cache structure is used where video ram, system ram

and system disk forms the hierarchy. Assumption of whole dataset replication

in every processing node is the biggest weakness of this work. Cavin et al. [36]

also employ the use of high end graphics cards on commodity off-the-shelf PC

clusters. In this work, implementation allows fully overlapped CPU(s), GPU(s),

and network usage all along the execution. Samanta et al. [18] present us with a

dynamic sort-first/sort-last parallel hybrid method with polygon rendering. The

main idea is to dynamically partition the 2D screen into tiles and partition 3D

primitives into groups in order to balance rendering loads via 3D grouping and

balance communication load required for compositing tiles via 2-D partitioning.

Furthermore, system employs the use of commodity graphics accelerators for fur-

ther performance and authors presents some reasoning for sort-first usage instead

of sort-middle with graphics clusters. Acknowledged shortcomings of system such
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as client-side bottleneck and dynamic data management overhead is labeled as,

likely to diminish with net trends in technology. Bachthaler et al. [31] also pro-

pose a GPU-based parallel sort-first/sort-last hybrid method. The main topic is

texture-based visualization of flow fields on curved surfaces. This work is simi-

lar in nature to work of Samanta et al. [18]. A bricking technique for 3-D data

partitioning is used for overcoming texture memory problem and a dynamic 2-D

partitioning scheme is used for work load balancing. Garcia and Shen propose a

hybrid image-space/object-space method [19] and there are two modes of imple-

mentation, one using texturing hardware and one is software-based. Necessary

comparisons are given. Samanta et al. [9] propose a sort-first multi-projector

rendering system. We think this is a promising work because it employs the

best possible techniques for interactive volume rendering with a group of hard-

est parameters. Most notable one of these parameters is very big image sizes

(over 6 million pixels). For interactive rendering, load balancing methods is pro-

posed, usage of high speed GPUs and a parallel architecture is used. Validity of

image-space methods for big image sizes and big datasets has been shown.

One other type of work for volume rendering is level-of-detail volume render-

ing. The idea in level-of-detail volume rendering is to render the region of interest

in greater detail and other parts in less detail. Lamar et al. [12] use an octree

to decompose 3-D data and form several levels of coarser 3-D representation to

exploit the benefits of level-of-detail volume rendering. At the time of rendering,

according to users interest to a region, system may render data in greater detail

or may opt to render in lesser detail or not at all. Rendering in less detail is

faster so overall system performance increases with small loss of detail, especially

in point of interest. Artifacts introduced, especially when rendering two different

but adjacent detail levels, is the biggest problem of level-of-detail rendering. A

method that utilizes spherical shell geometry is introduced and low-resolution

data is processed with a different transfer function in order to minimize the arti-

fact introduced. Work of Weiler et al. [11] is similar in nature, but a hierarchy is

introduced to effectively interpolate between detail levels to reduce the artifacts.

This method uses slicing method, which is more allowing for algorithms that re-

duce rendering artifacts of level-of-detail rendering. In this work data is divided
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into bricks which are then represented in lesser detail. To address artifacts arises

for rendering two different but adjacent detail levels, boundary voxels of bricks

are replicated which enables smooth transaction between level-of-details.

Another area of research in volume rendering via usage of GPUs aims to re-

lieve the very limited texture memory problem. Fout and Ma [35] propose a

asymmetric transform compression scheme which facilitates the real time decom-

pression of data on GPU. Asymmetric nature of algorithm utilizes not so critical

compression time at the time data is produced to facilitate real-time nature of

volume rendering without sacrificing compression quality. Increasing the effec-

tiveness of texture memory enables real-time volume rendering via GPU-based

methods. However, compression methods did not start to take importance with

the usage of GPUs. There is a group of research that exploits the usage of

wavelets to increase the performance of the system, but main aim of these com-

pression schemes always have been relieving the bottlenecks of communication

or memory originating from data size. Work of Gao et al. [33] is such an exam-

ple. The main idea in this work is to convert raw data into a multiresolution

wavelet tree and design algorithms to partition the wavelet tree into pieces con-

sidering data dependencies and workload balance among processors. At run time

wavelet tree is traversed according to a user specified error tolerance and then

rendered after decompression. Guthe and Straßer [28] and Guthe et al. [14] use

hierarchical wavelet representations and at rendering time necessary detail levels

are decompressed and sent to texturing hardware. Typically 30:1 compression

rates are reported without noticeable artifacts. Also usage of wavelet compres-

sion scheme with GPUs is an important contribution considering texture memory

problem. Wang et al. propose an important method [34]. In this work, wavelet

based methods are used in a multiresolution context over large-scale time-varying

data sets which is big problem for rendering systems if interactivity is important.

Methods proposed by Muraki [23], Kim and Shin [22] and Ihm and Park [21] are

some earlier work on wavelets showing the validity of wavelet usage for managing,

rendering and compressing 3D data.

Weiskopf et al. [10] propose a novel approach to maintain constant frame

rates when using 3D textures when rendering. The main problem is the nature
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of modern graphics cards that have optimized texture cache for fast 2D texture

retrieval. While using 3D textures have some benefits, like smaller memory usage

and ease of implementation, slow retrieval of textures is a problem. For that

they propose a bricking approach which then stored in 3D texture memory in

different orientations. So different viewing conditions won’t cause major change

in rendering rates.

As far as we know, only Samanta et al. [8] investigated the effects of replica-

tion on volume rendering. Their contention is, with a replication amount of k <<

n (n being processor count) primitives over nodes in parallel machine, rendering

performances closer to replication n is achievable while respecting memory con-

straints closer to replication 1. In this sense a subset of our work is very similar to

this work. While they are extending their work from their previous work [18] and

using a hybrid sort-first/sort-last and investigating the effects of replication, we

are investigating the effects of replication on a purely image-space context. Fur-

thermore, their replication pattern is not changing throughout visualization while

our replication pattern changes on each iteration. Their contention is supported

by our findings and benefit of replication (usage of excess memory) is established

both in image-space and object-space environments.

Viola et al. [26] propose an importance driven volume rendering system, which

remove or suppress less important parts of volumetric data in order to magnify

the effects of more important volume parts. For that an importance metric is

defined for volumetric objects where volume of interest has high importance and

occluding objects have less importance. Although main idea of this work is to

increase the usefulness of image produced, not rendering some parts of volume

while increasing the quality of final image has performance benefits in terms of

interactiveness. Work of Wang et al. [29] is somewhat related to previously men-

tioned importance driven volume rendering system, but extensions in this work

also allows user to non-linearly magnify the high importance objects via defining

volumetric lenses for better inspection. Performance benefits are similar in both

of these works. Hadwiger et al. [25] use the explicit segmentation information

and selectively enable objects of interest for detailed graphics hardware based

rendering. Furthermore, within proposed method different transfer functions can
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be given to different objects and different rendering methods (direct volume ren-

dering, iso-surfacing etc.) can be applied to different segments in dataset.

Work of Bordoloi and Shen [27] is an interesting work in the sense that they

suggest a minimal set of viewing angles to user that captures the entire scene.

For that several views are considered according to their representativeness of the

scene and a clustering approach is applied. At the end, N best representing

viewing angles are selected for user to render. This work aims to decrease the

time spent for rendering purposes by doing some preprocessing and allow user to

gain intuition about the whole volumetric data.

For the third stage, our work is closely related with three publications [2][4][8].

We develop our work by taking [2] as a basis. Cambazoğlu and Aykanat present

a parallel image-space volume rendering method based on remapping with hy-

pergraph partitioning to obtain good load balancing while minimizing total com-

munication. Our work is very similar to [2] considering rendering algorithms and

general structure. Also note that, our work extends and improves [2] in several

ways. First, we introduce the replication of data to facilitate faster rendering,

and prove hypergraph partitioning remapping method minimizes total communi-

cation under replication. A proposed heuristic to reduce maximum receive volume

improves the system performance dramatically especially for very irregular data.

In general we think, this work is a significant improvement over [2].

As far as we know [8] is the only work to investigate the effect of replica-

tion on volume rendering. However, they replicate the data in a static manner,

where replication occurs prior to visualization and does not change throughout

visualization. In our approach, dynamic replication is allowed where natural

communication of dataset between processors is used for replication. So dynamic

replication is achieved with zero communication cost. Furthermore, data co-

herency between spatially close pixel blocks can be exploited with this method,

as opposed to [8], even though it is out of scope of this thesis. In this aspects, we

think our work surpasses [8]. Also Samanta et al. present the results of replication

on volume rendering on a hybrid indirect volume rendering context, whereas our

work presents the effect of replication on a direct image-space parallel context.
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Therefore, we think our work seems to be completing the findings of [8].

Final publication closely related to this thesis is [4]. In this work, a network

flow based load balancing algorithm is presented. In this work tasks to assign

to processors has the flexibility to be assigned to more than one processor. So a

task-to-processor mapping can be found that balances the computation loads of

processors. We have used and extended the proposed method for our communi-

cation needs.



Chapter 3

General HP-based IS

Parallelization

3.1 Framework

The target parallel computing platform is a homogenous distributed-memory ar-

chitecture. In this platform, there exists a set P={P1, P2, . . . , PK} of K identical

processors each having its own local memory. These processors are connected to

each other via an interconnection network. Interprocessor coordination and com-

munication is performed via message passing. A PC-cluster constitutes a typical

example for the target parallel platform.

The rendering method to be parallelized is represented as a two tuple R =

(PB,D). Here PB = (pb1, pb2, . . . , pbn) represents the set of pixel blocks to be

rendered. Pixel blocks can have different rendering times. The expected render-

ing time of pixel block pbi is denoted as time(pbi). The dataset is divided into

pairwise disjoint sub-parts called clusters where D = (C1, C2, . . . , Cm). Render-

ing of each pixel block pbi needs a subset of the data set, namely a set of clusters,

as input. The set of clusters needed by rendering operation of pbi is denoted as

Input(pbi). There is no dependency between distinct pixel block rendering opera-

tions. The only reason for interaction between pixel block rendering operations is

24
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C1 C4 C5 C6 C8 C9 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32C2 C3 C10

pb1 pb2 pb3 pb4 pb5 pb7 pb8 pb9 pb10 pb11pb12

C7

pb6

Figure 3.1: A rendering operation R=(PB,D) with | PB | = 12 tasks and | D |
= 32 clusters.

the existence of the clusters that are inputs to several rendering operations. The

set of rendering operations that need cluster Cj is denoted as PixelBlock(Cj).

Clusters can have different sizes; the size of a cluster Cj is denoted as size(Cj)

and measured by the size of storage used to store Cj . Figure 3.1 shows the in-

teraction between pixel block rendering operations and clusters, it illustrates a

sample rendering with n = 12 pixel blocks and m = 32 clusters.

The focus of this work is parallel volume rendering applications in which simi-

lar type of renderings are successively repeated over the same dataset instance for

many times with different parameters. So the overall rendering can be considered

as a sequence of computations {R1 = (PB1,D),PB2 = (PB2,D), . . .} performed

over the same dataset D. Both computational structure and expected pixel block

rendering times may change during successive viewing instances. Change in com-

putational structure means change in the input set of pixel block rendering op-

eration.

Figure 3.2: General Execution of Rendering Algorithm

Figure 3.2 shows the general execution of the rendering system. In the first

step of initial data distribution, processors divide the dataset into clusters which

then are assigned to processors thus each processor is holding a pairwise disjoint

subset of the whole dataset. This step does not have to be repeated for every

successive rendering iteration so this step is called view independent step. Then
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there is the remapping step in which assignment of rendering operations of pixel

blocks to processors takes place. However assignment of pixel blocks pbi to Pk

may require communication for a subset of Input(pbi) by Pk. This subset consists

of clusters that is required by rendering pbi but have not stored by Pk. After data

migration step every processor is free to render its’ assigned sub-screen. This

step produces the final image by communicating sub-screens to a final destina-

tion. Rendering may be redone with different parameters, starting from the step

remapping.

3.2 Concepts in Image-Space Parallelization

Ray casting based rendering algorithms can be parallelized using both object-

space methods and image-space methods. An image-space parallel method has

been implemented for this work. However load imbalances between processors

and data-to-processor mappings are important concepts for implementing an effi-

cient image-space parallel method. In this chapter, we will explain some concepts

regarding our image-space parallel method and give reasoning about some deci-

sions made for performance before giving details about our main contribution in

the next chapter. We urge reader to keep in mind that, concepts in this chapter,

like clustering, screen subdivision, workload calculation etc., are used by both

old HP-based, newly proposed HP-based and to some extent other rendering al-

gorithms (Some sort of clustering, workload calculation and screen subdivision is

necessary for image space parallelization of a volume rendering algorithm. Algo-

rithms to achieve these may change however used concepts and reasoning to use

them are same.).

3.2.1 Ray-Casting

Ray-casting is a method where color of a pixel is calculated with the help of

a ray shot from the viewpoint through pixel into the volume. Final color is a

product/composite of samples taken over the ray at some regular intervals until



CHAPTER 3. GENERAL HP-BASED IS PARALLELIZATION 27

Figure 3.3: Ray-Casting [5]

the end of volume. If sample taken over the ray does not coincide with a grid

vertex point then some interpolation of neighbor grid vertices is needed. Transfer

functions are used at each resampling point in order to compute color and opacity

contributions and each resampling point accumulates the color and opacity values

according to some weighting scheme into the final color of the pixel. All pixels

should be processed to get the final colors of all pixels. Figure 3.3 explains the

process in more detail.

We have used Koyamada’s ray-casting algorithm [42]. For more detail on

implementation and optimizations please refer to [5] and [41].

3.2.2 Clustering

IS parallelization requires distribution of pixel rendering jobs among processors.

To achieve load balance among processors in parallel system, initial calculation

of work amount for rendering each pixel is needed. Rendering time for each pixel

is directly proportional to ray face intersection count. For the most accurate

calculation of loads for each pixel, every tetrahedral should be processed if it

causes a ray-face intersection. However processing every tetrahedral individually

produces unacceptable amount of preprocessing calculations therefore a clustering

method is used.

Applying a global clustering method that takes the whole volume as input

gives us more accurate results. However volumetric data usually produced by
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scientific simulations produces the data distributed among processors. Such clus-

tering method requires communication to obtain better clustering of the data.

We think applying a local clustering approach gives us good enough clustering

quality while avoiding communication costs. In local clustering, every processing

unit processes the data assigned to produce clusters.

Clusterization of data is important for two reasons. First, producing limited

number of clusters is handy for bookkeeping purposes. Second and more im-

portantly, formed clusters are the primitives to work load calculation process so

clusters should be formed to ease work load calculation. To ease the work load

calculation process, the idea of generating minimum surface area clusters is used.

Using this idea produces sphere-like clusters therefore less scan-conversion is per-

formed in work load calculations. Furthermore sphere-like clusters decreases the

data dependency (same cluster usage) between pixels rendering tasks so, what-

ever task-to-processor assignment method is used, search space is increased for

remapping.

One other requirement for clusterization can be stated as: Every cluster should

be nearly equal in size. It is necessary because production a mix of very big and

very small clusters tends to increase rendering time. Also it may incur an addi-

tional unnecessary communication because big clusters tend to be communicated

much and receiving processor usually don’t need to use all data in a big cluster.

3.2.2.1 Graph Partitioning

Graph partitioning is a method for grouping vertices of a graph into P parts while

considering some predetermined constraints and optimizing an objective function.

Its been known to be used in many areas, one being VLSI design. For clustering

purposes a graph partitioning method has been used. In this partitioning, applied

constraint corresponds to maintaining balance between clusters and objective

function corresponds to total surface area of clusters.

Undirected graph G=(V, E) where V denote the set of tetrahedral cells and E
denote the set of shared faces between tetrahedral cells has been partitioned, as
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Figure 3.4: Cell clusterization using METIS

seen in Figure 3.4. For each vi ∈ V there is an associated cost wG(vi) and for each

eij ∈ E there is an associated cost wG(eij). A vertex vi is connected to vj with

edge eij in G if there is a shared face between tetrahedrals denoted by vi and vj .

We have partitioned V into P pairwise disjoint nonempty sets

V = V(C1) ∪ V(C2) ∪ . . . ∪ V(CP ) (3.1)

where vertices in each partition i corresponds to cluster Ci and V(Ci) corresponds

to vertex set of Ci. Total weight of vertices belonging to Ci is defined as W (Ci) =∑
vi∈V(Ci)

wG(vi). Partitioning constraint enforces W (C1) ∼= W (C2) ∼= . . . ∼=
W (CP ) meaning every cluster has nearly the same size. In graph partitioning

an edge is said to be cut if endpoints of the edge lies in different partitions

and the set of all cut edges is denoted with E ′. Total weight of cut edges is

defined as W (E ′) =
∑

vi∈V(Ci)&vj /∈V(Ci)
wG(eij) and partitioning objective is to

minimize W (E ′). Minimizing W (E ′) means, total interaction between clusters

are minimized.

There are six possible weighting schemes proposed by Cambazoğlu [5] to de-

termine vertex and edge weights of clusterization graph. It is given in Table 3.1

below. The symbols CV, CA, FA denotes cell volume, cell area and face area

respectively.

We think usage of FA as edge weights is natural since it represents the in-

teraction between tetrahedrals naturally. A ray leaving a cluster has a chance

of entering another cluster directly proportional to shared face area, therefore

we use FA weighting scheme for edge weights. Furthermore usage of FA scheme
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V ertexWeight EdgeWeight
1 1
1 FA

CA 1
CA FA
CV 1
CV FA

Table 3.1: Cluster generation weighting schemes

also produces spherical shaped clusters, which does not cause drastic change in

rendering time for changing viewing angles [10]. For the vertex weighting there

are three possible options. Vertex weight one produces clusters nearly equal in

storage size however rendering times of clusters can be different. Schemes CA

and CV tend to produce clusters equal in rendering time but not storage size.

Vertex weight CA and CV can be used if communication in parallel system is not

the bottleneck area, vertex weight one should be the choice if prevention of very

big clusters (in storage size) hence avoiding additional communication overhead

is important. Findings of Cambazoğlu [5] supports our decisions. Furthermore

proposed network flow approach needs clusters to have same storage size so we

have chosen one as vertex weights. Clusters may be referred to as data primitives

in this thesis since clusters are used as primitives to handle the dataset as opposed

to data primitives of the actual dataset, tetradedral.

3.2.3 Load Balancing

Load balancing is an important issue for volume renderers. To achieve good load

balance and avoid degrading performance a good screen subdivision algorithm is

needed. Work load calculations are necessary to calculate the rendering times of

pixels for assigning near equal amount of work to each processor. Furthermore

communication operations of processors should be handled to avoid assigning

great amount of network related operations to a single processor, in order to

achieve better computational load balance.
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3.2.3.1 Screen Subdivision

Image-space parallel volume renderers work by distributing pixels of desired im-

age to processors for rendering purposes. Earlier work on screen subdivision

includes quad-trees, recursive bisection and jagged partitioning. The shortcom-

ings of these algorithms lie on the notion that sub-screens should be in the shape

of a rectangle. However rectangular subsections reduce the freedom for assigning

pixels to processors in an optimal manner. Therefore more flexible techniques

such as [2] is needed. However calculation of pixel-to-processor assignment with

actual image pixels causes too much preprocessing. Therefore a grouping method

of actual pixels should be used for practicality purposes. In this work, screen is

divided into nxn pieces and for further computation each pixel block has been

treated as a pixel. Number of pixel blocks is a parameter for the program but

an engineering formula has been proposed by Cambazoğlu [5] to determine the

appropriate number of pixel blocks.

3.2.3.2 Workload Calculation

In order to achieve good load balance, work needed for a pixel block to be rendered

should be estimated correctly. This is called workload calculation. In this work,

we calculate the work needed to render a cluster with

Load(C) =
∑

f∈FC
ff

Area(f) (3.2)

where f denotes the face, FC
ff denotes the set of front facing faces of cluster C

and Area(f) is the projection area of face f with current viewing parameters.

Load(C) is then distributed among pixel blocks that intersect with the projection

area of the cluster C to find the work loads of pixel blocks.
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3.2.4 Remapping

For an efficient parallelization, pixel blocks should be partitioned among pro-

cessors in such a way that communication overhead is minimized while compu-

tational load balance is maintained. An initial high quality pixel-to-processor

mapping may become a low quality mapping as the viewing parameters change.

Therefore remapping of pixels to processors is needed as the viewing parameters

change. As mentioned earlier this pixel-to-processor remapping should assign bal-

anced loads of computations while minimizing the communication of the parallel

system. This problem is NP-hard and HP-based method presents a high quality

solution to remapping problem.

3.3 HP-based Remapping Solution without

Replication

HP-based remapping problem without replication is addressed in the work of

Cambazoglu and Aykanat [2]. In this work every processor is assigned to store

a set of clusters, which are pairwise disjoint. Therefore no two processors store

the same cluster at the start of the rendering instance. So notation Home(Cj) is

used for the one and only processor that is storing the cluster Cj. Furthermore

Home(Cj) is responsible for replicating cluster Cj in case the proposed remapping

algorithm induces a partition that requires replication of Cj. At the end of

rendering instance, if a processor Pk is storing a cluster Cj and pk �= Home(Cj),

processor Pk simply deletes Cj.

3.3.1 Introduction to Hypergraph Partitioning Problem

A hypergraph H=(V,N ) consists of a set of vertices V and a set of nets N . Each

net nj in N connects a subset of vertices in V, which are said to be the pins of

nj . Let Pins(nj) denote the set of pins of net nj . Let Nets(vi) denote the set
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of nets that connect vertex vi. We extend the Nets(·) notation to a subset of

vertices, that is Nets(U) =
⋃

vi∈U Nets(vi) for any U ⊆ V.

Each vertex vi has a weight w(vi), and each net nj has a cost c(nj). Π =

{V1,V2, . . . ,VK} is a K-way vertex partition if each part Vk is non-empty, parts

are pairwise disjoint, and the union of parts gives V. In Π, a net is said to connect

a part if it has at least one pin in that part. The connectivity set Λ(nj) of a net

nj is the set of parts connected by nj. The connectivity λ(nj)= |Λ(nj)| of a net

nj is equal to the number of parts connected by nj . If λ(nj) = 1, then nj is an

internal net. If λ(nj)>1, then nj is an external net and is said to be at cut. In

Π, the weight Wk of a part Vk is equal to the sum of the weights of vertices in

Vk, i.e.,

Wk =
∑

vi∈Vk

w(vi). (3.3)

The K-way hypergraph partitioning problem is defined as finding a vertex

partition Π for a given hypergraphH=(V,N ) such that part weights are balanced

while a cost defined on nets is optimized. In this work, the connectivity−1 metric

Cutsize(Π) =
∑

nj∈N
c(nj)(λ(nj)−1) (3.4)

is used as the cost to be minimized. In this metric, which is frequently used in

VLSI [51] and recently used in scientific computing [52][53][54] communities, each

net nj contributes c(nj)(λ(nj)−1) to the cost χ(Π) of a partition Π.

3.3.2 HP-based Remapping Model

In this section, we show that pixel-block-to-processor assignment problem, in or-

der to achieve remapping, can be described as a K-way hypergraph partitioning

with fixed vertices. In this model, the computational structure of the render-

ing instance is represented as an interaction hypergraph HI = (V,N ), where
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V = PB ∪ P and N = D. That is, nets represent clusters while vertices repre-

sent pixel blocks and processors such that there exists a vertex vi for each pixel

block pbi, there exists a vertex pk for each processor Pk and there exist a net nj

for each cluster Cj . Net nj connects the set of vertices which represent the pixel

blocks that need cluster Cj as input and the processor Home(Cj) that is asigned

to store the cluster Cj.

Pins(nj) = {pbi : Cj ∈ Input(pbi)} ∪Home(Cj) (3.5)

In other words

Nets(vi) = {Cj : Cj ∈ Input(pbi)} (3.6)

Nets(pk) = {Cj : Pk = Home(Cj)}. (3.7)

The expected rendering time of each pixel block is assigned as the weight

of the respected vertex, i.e., w(vi) = time(pbi). Weight of processor vertex pk

is assigned zero. The size of each data primitive is assigned as the cost of the

respected net, i.e., c(nj) = size(Cj). Here, size(Cj) is assumed to be the number

of bytes needed to store or send the data primitive Cj .

Consider a K-way vertex partition Π = {V1,V2, . . . ,VK} of HI . Note that

each part Vk contains a single fixed vertex, which is processor vertex pk, due

to the partitioning with K-fixed vertices model. So partition Π is decoded as

assigning the set of pixel blocks corresponding to the set of pixel block vertices

in part Vk to processor Pk. So Π will be used interchangeably to refer to vertex

partition ofHI and pixel block-to-processor mapping for for the current rendering

instance. That is, vertex partition Π will denote the pixel block-to-processor

mapping {PB1,PB2, . . . ,PBK}, where PBk ={pbi : pbi ∈ Vk}.

A processor Pk can complete the rendering of pixel block pbi, which is assigned

to Pk by vertex partition Π, only if all clusters in Input(pbi) are replicated in the

local memory of Pk. Here we will refer to the set of clusters needed by a processor
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Pk as its working set WS(Pk), where

WS(Pk) =
⋃

pbi∈PBk

Input(pbi) = {Cj : | PixelBlock(Cj) ∩ PBk | �= 0} (3.8)

So all clusters in WS(Pk) should be replicated in processor Pk for Pk to complete

its assigned workload PBk.

K-way vertex partition Π of HI induces a pixel block-to-processor mapping.

Since vertices in part Vk of Π correspond to the pixel blocks assigned to processor

Pk for rendering, the weight Wk of Vk corresponds to the total expected rendering

time for processor Pk. So the partitioning constraint corresponds to maintaining

computational load balance among the processors.

Any part Vk in Λ(nj) − Home(Cj) corresponds to processor Pk that needs

Cj but does not hold a replica of Cj. So the set Λ(nj) − Home(Cj) of parts

corresponds to the set of processors that should receive a replica of Cj for the

current rendering instance. That is, data primitive Cj should be communicated

|Λ(nj)−Home(Cj) | = λ(nj)−1 times, because every clusters has only one home

processor an only stored once. Hence, total communication volume incurred by

Π will be

TotalCommV ol(Π) =
∑

nj∈N
(λ(nj)− 1)c(nj) (3.9)

=
∑

nj∈N
λ(nj)c(nj)−

∑
nj∈N

c(nj) (3.10)

=
∑

nj∈N
(λ(nj)− 1)c(nj) +

∑
nj∈N

c(nj)−
∑

nj∈N
c(nj)(3.11)

= Cutsize(Π) (3.12)

In (3.12), the partitioning objective of minimizing the cutsize according to the

connectivity-1 metric given in (3.4) corresponds to minimizing the total volume

of communication. Note that, Cutsize(Π) = TotalCommV ol(Π) is the exact

volume of communication on the parallel system.



Chapter 4

HP-based IS Parallelization

under Replication

This chapter focuses on modifications of general HP-based image-space paral-

lelization to facilitate use of data replication for better performance. Volume

rendering applications are a good candidate for make use of rendering because

similar type of renderings are successively repeated over the same dataset in-

stance for many times with different parameters. During successive instances

of rendering data migration, thus data replication, naturally occurs to facilitate

rendering.

As opposed to previous single home processor approach for general HP-based

image-space parallelization, this work makes use of replication and extends the

home processor idea to support more than one home processor for each cluster.

Therefore at the beginning of each instance clusters are allowed to be stored

in more than one processor, thus decreasing the total communication volume.

Furthermore, with the use of replication, the flexibility of assigning replication

operation (sending) of a cluster to more than one processor arises, so we can use

this flexibility to balance send message volume loads of processors or total com-

munication volume loads of processors. Remapping problem and corresponding

HP-based method changes to some extent to support replication and we give the

36
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following remapping method and we show proposed method minimizes the total

communication volume.

Overall rendering operation can be thought as a series of rendering instances.

Therefore rendering application can be defined as I = {I1, I2, . . .}. Furthermore

working set notation WS(Pk) for processor Pk is extended to WSh(Pk) to specify

working set of Pk for the hth rendering instance.

For the parallelization of a particular rendering instance Ih, the remapping

model should utilize the replication pattern of the previous rendering instances for

reducing communication overhead due to the replication pattern of the current

rendering instance. For example, all (some of) clusters in WSh−1(Pk) already

resides in the replica buffer of processor Pk under the assumption that processors

have sufficient (insufficient) memory. Furthermore, the replica buffer of Pk may

contain replicas of other data primitives due to the available storage capacity.

These additional replicas depend on the replication patterns of the computa-

tional phases before Ih−1 and the replica replacement policy used. We define

the extended replica set eRSh−1(Pk) of processor Pk to denote the set of clusters

that reside in the replica buffer of processor Pk just before the parallel execution

of phase Ih. The extended replica sets of individual processors determine the

extended replication pattern:

eRSh−1(P) = {eRSh−1(P1), eRS
h−1(P2), . . . , eRS

h−1(Pk)}. (4.1)

In this setting, the replication of a cluster Cj in processor Pk for parallel com-

putation of Ih incurs a communication only if Cj /∈ eRSh−1(Pk). In a similar

manner extended home processor set for a cluster Cj can be defined as

eHomeh(Cj) = {Pk : Cj ∈ eRSh(Pk)}. (4.2)

So the repartitioning model should take the 2-tuple (Ih, eRSh−1(P)) as input for

reducing communication overhead of phase h due to the replication.

Since the individual processors of the parallel system have a limited storage

capacity, we can reserve a limited amount of storage for holding replicas for the

next instance. Depending on the nature of the application, we might have the
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requirement that eRSh−1(Pk) has an upper boundM . That is, Size(eRSh(Pk)) ≤
M where M denotes the upper bound on replica buffers of processors. The total

size of the data primitives replicated at any processor Pk should not exceed this

capacity.

In this section, we propose a two phase repartitioning approach for efficient

parallelization of any viewing instance Ih given the previous extended replication

pattern eRSh−1(P). In the first phase we determine the assignment of pixel

blocks to processors while we determine the assignment of communication tasks

to processors in the second phase.

4.1 Remapping with Replication

In this section, we show that pixel-block-to-processor assignment problem encoun-

tered in the first phase can be described as a K-way hypergraph partitioning with

fixed vertices. For this purpose we construct a remapping/repartitioning hyper-

graph HR(Ih, eRSh−1(P )) = (V, Ñ ) by augmenting the interaction hypergraph

HI(I) = (V,N ), proposed earlier in Section 3.3.2, with some pin additions.

New pins are added to the pin set of each net of HI to encode the extended

replication pattern eRSh−1(P) in HR. That is, for each net nj of HI we have:

Pins(ñj)=Pins(nj) ∪ {pk : dj ∈ eRSh−1(Pk)} (4.3)

As seen in (4.3), a processor vertex pk is added to the pin list of net nj if cluster

Cj is currently in the extended replica set of processor Pk. Note that the number

of new pins added to net nj is equal to replication count rc(dj) of data primitive

dj where rc(Cj)=|eHome(Cj) | denotes the replication count of Cj.

Figure 4.1 illustrates the repartitioning hypergraph constructed for the sam-

ple application in Figure 3.1 for a given extended replication pattern on a
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Figure 4.1: Repartitioning hypergraph of the sample application given
in Figure 3.1 for the extended replication pattern eRSh−1(P) =
{{C1, C8−9, C12, C21−23}, {C2−7, C10−12, C21}, {C9, C13−20}, {C22−32}} on a 4-
processor system.

four-processor system. In the figure, circles and triangles respectively rep-

resent task and processor vertices, whereas squares represent nets. As seen

in the figure, net n12 connects to processor vertices p1 and p2 since clus-

ter C12 is replicated on processors P1 and P2. Figure 4.1 also shows a

four-way vertex partition which denotes the pixel-block-to-processor mapping

{{pb1, pb2, pb3}, {pb4, pb5, pb6}, {pb7, pb8, pb9}, {pb10, pb11, pb12}}.

Consider a K-way vertex partition Π = {V1,V2, . . . ,VK} of HR. Note that

each part Vk contains a single fixed vertex, which is processor vertex pk, due to the
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partitioning with K-fixed vertices model. So partition Π is decoded as assigning

the set of pixel blocks in part Vk to processor Pk. That is, vertex partition Π

will denote the pixel-block-to-processor mapping {PB1,PB2, . . . ,PBK}, where

PBk ={pbi : vi ∈ Vk}.

Consider a K-way vertex partition Π of HR(Ih, eRSh−1(P ))). Since vertices

in part Vk (except processor vertex pk) correspond to the pixel blocks assigned

to processor Pk and w(pk) = 0, the weight Wk of Vk corresponds to the total

expected computation time for processor Pk. So the partitioning constraint cor-

responds to maintaining computational load balance among the processors during

the rendering instance Ih.

Extended replication pattern eRSh−1(P) determines the anchored connectiv-

ity set Ψ(nj) for each net nj , for any partition Π.

Ψ(nj) = {Vk : Cj ∈ eRSh−1(Pk)} (4.4)

In hypergraph theoretic notation, Ψ(nj) denotes the set of parts connected by

net nj through processor vertices, i.e., Vk ∈ Ψ(nj) if pk ∈ Pins(nj). Thus Ψ(nj)

represents the set of parts corresponding to the processors that hold a replica

of cluster Cj. However, any part Vk in Λ(nj) − Ψ(nj) corresponds to processor

Pk that needs Cj but does not hold a replica of Cj. So the set Λ(nj) − Ψ(nj)

of parts corresponds to the set of processors that should receive a replica of Cj

for the current rendering instance. That is, cluster Cj should be communicated

| Λ(nj) − Ψ(nj) | = λ(nj) − ψ(nj) times. Hence, total communication volume

incurred by Π will be
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TotalCommV ol(Π) =
∑

nj∈N
(λ(nj)− ψ(nj))c(nj) (4.5)

=
∑

nj∈N
λ(nj)c(nj)−

∑
nj∈N

ψ(nj)c(nj) (4.6)

=
∑

nj∈N
(λ(nj)− 1)c(nj) +

∑
nj∈N

c(nj)−
∑

nj∈N
ψ(nj)c(nj)(4.7)

= Cutsize(Π̃) +
∑

nj∈N
c(nj)−

∑
nj∈N

ψ(nj)c(nj) (4.8)

In (4.8), both the second and third summation terms are constants since they,

respectively, represent the total dataset size Size(D) and total data replication

size

Size(eRSh−1(P))=
∑

Pk∈P eRS
h−1(Pk). Hence, the partitioning objective of min-

imizing the cutsize according to the connectivity-1 metric given in (3.4) corre-

sponds to minimizing the total volume of communication.

Consider the 4-way vertex partition shown in Figure 4.1. For vertex part Ṽ3,

Nets(Ṽ3) − Nets(pk) = {n9−24} − {n9, n13−20} = {n10−12, n21−24}. So 7 clusters

{C10, C11, C12, C21, C22, C23, C24}. Simmilarly, P2 is to receive 2 clusters C8 and

C9, whereas P1 and P4 do not receive any clusters. So the total communication

volume is equal to 7 + 2 = 9.

As seen in the figure, the cutsize is equal to 15 assuming unit-size data prim-

itives. The total data set size and total data replication size are 32 and 38 re-

spectively. So Equation 4.8 correctly computes the total communication volume

since 15 + 32− 38 = 9.

For vertex part Ṽ3, since Nets(Ṽk − pk) = {n10−24} the peak replica buffer

size of processor P3 because of the working set WS(P3) = {C10−24}.
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4.2 Communication-Task-to-Processor Assign-

ment

Recall that, for a given partition Π of HR, Ψ(nj) denotes the set of parts corre-

sponding to the processors that hold a replica of cluster Cj, whereas Λ(nj)−Ψ(nj)

represents the set of parts corresponding to the processors that should receive a

replica of cluster Cj. For the sake of clarity of the presentation of this subsection,

we introduce the following parallel application specific notation

RecvSet(Cj) = {Pk : Vk ∈ Λ(nj)−Ψ(nj)} (4.9)

SendSet(Cj) = {Pk : Vk ∈ Ψ(nj)}. (4.10)

Here RecvSet(Cj) denotes the set of processors on which the cluster Cj should

be replicated via communication. So the number of communication tasks to be

completed regarding cluster Cj is equal to | RecvSet(Cj) | = | Λ(nj) − Ψ(nj) |.
Any processor in SendSet(Cj) can achieve the communication task(s) of sending

a copy of cluster Cj to any processor(s) in RecvSet(Cj). We will exploit this

flexibility in the assignment of communication tasks in order to minimize the

maximum message volume (send message volume) handled by a processor.

The receive sets of clusters determine the pattern of processors’ receive re-

quirements, whereas the send sets of clusters determine the flexibility pattern on

the send communication tasks. That is,

Recv(D) = {RecvSet(C1), RecvSet(C2), . . . , RecvSet(Cm)} (4.11)

SendF lex(D) = {SendSet(C1), SendSet(C2), . . . , SendSet(Cm)}. (4.12)

Given Recv(D) and SendF lex(D) determined in the first phase (remapping),

we propose a network flow based formulation for finding optimal communication-

task-to-processor assignment for the second phase assuming equal sized clusters.

Our formulation adapts and extends the model and methods recently proposed

by Pinar and Hendrickson [4] for flexibly assignable unit tasks to improve load
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balance. In case of equal-sized clusters, the receive volume for processors can be

represented in terms of the number of clusters to be received. That is, receive

volume can be shown as

RecvCnt(Pk) =| {dj : Pk ∈ RecvSet(dj)} | (4.13)

in terms of cluster count.

We construct a 3-layered flow network F(Recv(D), SendF lex(D)) = (PR ∪
UD ∪ PS, E) which is referred to here as the assignment flow network. The set

PR ={pR
1 , p

R
2 , . . . , p

R
K} of vertices in the first layer represent the set of processors

that will involve in receive-communication operations, where pR
k corresponds to

processor Pk. The set UD ={u1, u2, . . .} of cluster vertices in the middle layer rep-

resents the subset of clusters that are involved in at least one communication op-

eration. That is, ui ∈ UD only if | RecvSet(di) | �=0. The set PS ={pS
1 , p

S
2 , . . . , p

S
K}

of vertices in the third layer represents the set of processors that may involve in

send-communication operations, where pS
k corresponds to processor Pk.

Edges are introduced only between the vertices of successive layers of F , that

is

E = EsR ∪ ERU ∪ EUS ∪ ESt. (4.14)

The set EsR of source edges is constructed by connecting the source vertex s to

all receive vertices in the first layer. The capacity of each source edge is set to be

equal to the number of clusters to be received by the respective processor, i.e.,

cap (s, pR
k )=RecvCnt(Pk) ∀ (s, pR

k ) ∈ EsR.

The set of receive edges connecting the vertices of first and second layers are

determined as follows: There exists an edge from the receive-processor vertex pR
k

to the cluster vertex uj if cluster Cj should be replicated on processor Pk via

communication. That is,

ERU = {(pR
k , uj) : Pk ∈ RecvSet(Cj)}. (4.15)
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The capacity of each receive edge in ERU is set to be equal to 1. The set of

send-task-assignment edges connecting the vertices of second and third layers

are determined as follows: There exists an edge from the cluster vertex Cj to

the send-processor vertex pS
k if the task of sending cluster Cj can be assigned to

processor Pk. That is,

EUS = {(uj, p
S
k ) : Pk ∈ SendSet(Cj)}. (4.16)

The capacity of each assignment edge in EUS is set to be equal to infinite. Finally,

the set ESt of terminal edges is constructed by connecting all send-processor ver-

tices in the third layer to the terminal vertex t. Here we will use the notation

InAdj(·) and OutAdj(·) to denote the set of vertices adjacent to a vertex through

incoming and outgoing edges, respectively. The capacity of each assignment edge

in EUS is determined as a function of parameter B. B is the parameter that will

be used in network probing and this capacity assignment will be detailed in the

next subsection.

Figure 4.2 ilustrates the general structure of assignment flow network. The

three receive edges (pR
x , uj), (pR

y , uj) and (pR
z , uj) show that cluster Cj is to be

received by processors Px, Py and Pz. The two assignment edges (uj, p
S
k ) and

(uj, p
S
l ) show that cluster Cj can be sent by processors Pk and Pl. In other

words, three receive edges and two assignment edges present the flexibility of

assigning the three communication tasks among two processors Px and Py.

Consider assignment flow network F(Recv(D), SendF lex(D)). Communication-

task-to-processor assignment problem can be formulated as a maximum flow prob-

lem on assignment flow network F(Recv(D), SendF lex(D)). If a complete flow

f exists on F , then flow f induces a complete communication-task-to-processor

assignment.

Consider a complete flow f with | f |= ∑K
k=1 cap(s, p

R
k ) on F . Note

that each receive vertex pR
x has cap(s, pR

x ) outgoing edges of unit capacity, i.e.,

| OutAdj(pR
x ) |=cap(s, pR

x ). Therefore saturation of all source edge capacities by

f implies the saturation of all receive edge capacities. This in turn means that
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Figure 4.2: General Structure of the Assignment Flow Network

all receive requirements are satisfied by the send-task assignment to be induced

by flow f . The flow on the assignment edges between the cluster vertices and

send-processor vertices is decoded as send-task-to-processor assignment as fol-

lows: A flow f(uj, p
S
k ) from cluster vertex uj to send-processor vertex pS

k means

that processor Pk becomes responsible for sending cluster Cj to any f(uj, p
S
k )

processors corresponding to the vertices in InAdj(uj). Since the capacities of all

incoming receive edges of Cj are saturated and flow conservation holds on vertex

uj, inDegree(uj) send tasks associated with Cj will be shared among the pro-

cessors corresponding to the vertices in OutAdj(uj). Therefore, send volume of a

processor is

SendCnt(Pk) = f(pS
k , t); (4.17)

in terms of cluster count.

Consider a sample flow distribution regarding vertex uj of flow network given

in Figure 4.2. The flows f(uj, p
S
k )=2 and f(uj, p

S
l )=1 on the two outgoing edges
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of uj assign two and one send-communication tasks to processors Pk and Pl, re-

spectively, thus satisfying the three send communication operations associated

with the data primitive dj.

4.2.1 Assignment Flow Parametric Search

A parametric search algorithm can be used to find a solution to a problem that

has minimal associated cost. Thus, in this part we will explain the details of a

method that uses parametric search algorithm, similar to one proposed by Pinar

and Hendrickson [4], that sets an upper bound on send volume loads of processors

or total volume loads of processors. A parametric search algorithm has two

components. First component is a probing function that determines if there is a

solution that has associated cost less than a specified value. Second component

is an algorithm that searches among a set of candidate optimal solution.

In this work we use maximum-flow algorithms as probe function. Therefore

our claim is, a maximum-flow algorithm run on previously created assignment

network F(Recv(D), SendF lex(D)) can set an upper bound on maximum send

volume of processors or maximum total communication volume of processors. For

the sake of simplicity, we first present usage of maximum-flow algorithm (same

as [4] but on different flow network) as a probe function to set an upper bound

on maximum send volume of processors. Then we extend this method to set an

upper bound on total communication volume handled by a processor.

Consider a complete communication-task-to-processor assignment Ξ. Ξ in-

duces a maximum send volume load

MaxSendCnt(Ξ) = max(SendCnt(P1), SendCnt(P2), . . . , SendCnt(PK))

(4.18)

in terms of cluster count. MaxSendCnt(Ξ) ≤ B if there exists a complete flow
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on F(Recv(D), SendF lex(D)) where all terminal edges have capacity B. This

is true because decoding of flow f on F(Recv(D), SendF lex(D)) ensures that

no processor is assigned more than f(pS
k , t) send operations. Capasity constraint

cap(pS
k , t) = B for maximum flow algorithm ensures f(pS

k , t) ≤ B. Therefore

MaxSendCnt(Ξ) ≤ B.

For finding minimal MaxSendCnt(Ξ) for a complete communication-task-

to-processor assignment Ξ, we must find minimal value of B. Pinar and Hen-

drickson [4] propose two methods, bisection search and incremental search, which

only incremental search is suitable (because of low number of probes) for our

application.

Incremental search starts with the lowest possible solution and increases the

probing value at each iteration until the optimal solution is found. However

choosing increment size is important because very small increments increase exe-

cution time whereas very large increments cause the optimal value to be missed.

Thus increments should be just large enough that after a failed probe increment

should increase the probe value to smallest value that possibly has a solution.

Let WT be the total send operations,i.e.,

WT =

K∑
k=1

RecvCnt(Pk) (4.19)

and B be is the probe value. Incremental search should start execution with

lowest possible B = 	WT /K
 where K is the total processor number and every

processor is assigned equal number of send operations. Then after a failed probe

with probe value B, let Wr be the failed flow,i.e.,

Wr = WT −
K∑

k=1

f(pS
k , t) (4.20)

SatCnt be the number of saturated terminal edges,i.e.,

SatCnt =| {(pS
k , t) : f(pS

k , t) = cap(pS
k , t)} | (4.21)

and Inc be the increment on probe value B,i.e.,

Inc = 	Wr/SatCnt
 (4.22)
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then no probe value smaller than B + Inc can have a complete communication-

task-to-processor assignment. This comes from the fact that current topology

of assignment network F(Recv(D), SendF lex(D)) does not allow enough flow to

come to vertex pS
k for an unsaturated (pS

k , t) edge (if it were to allow, additional un-

used terminal edge capacity would be used and more flow would be passed, which

is a contradiction to maximum flow algorithm), therefore only additional flow can

be passed over saturated edges. Pseudocode of classical IncrementalSearch algo-

rithm is given below.

IncrementalSearch(){
B ← 	WT/K

foreach unsuccessful probe do

Inc← 	Wr/SatCnt

B ← B + Inc

end

}

Figure 4.3 shows the assignment flow network and the flow obtained via bal-

ancing on send volumes. There are four processors and nine clusters subject to

communication as shown in Figure 4.1. For the sake of simplicity in presentation

no cluster is received by more than one processor, so bold arrows between data

vertices and send processor vertices means the assignment of single send opera-

tion to the processor. There are cluster to graph point pairings such as: u1-C10,

u2-C11, u9-C12, u3-C21, u4-C8, u5-C9, u6-C22, u7-C23 and u8-C24. Note that every

edge between receive vertices and data vertices are shown in bold, meaning every

receive request is satisfied with the current flow. There are 9 send operations

therefore best possible B = 	9/4
 = 3 and maximum flow found has been found

for B = 3 value. As shown in the figure, maximally (communication task) loaded

processors are assigned 3 send operations. As opposed to single home processor

approach, this method decreases the send volume handled by a processor to 3

from 7.

We have shown how to use maximum flow algorithm as a probe function to
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Figure 4.3: Assignment Flow Network Balanced by Send Volumes

set an upper bound on maximum send volume of processors and explained in-

cremental search algorithm. Now we extend this method to set an upper bound

on total communication volume handled by a processor. Consider a complete

communication-task-to-processor assignment Ξ. Ξ induces a maximum total com-

munication volume load MaxTotalCnt(Ξ),i.e.,

TotalCnt(Pk) = SendCnt(Pk) +RecvCnt(Pk) (4.23)

MaxTotalCnt(Ξ) = max(TotalCnt(P1), . . . , T otalCnt(PK)) (4.24)

in terms of cluster count.

MaxTotalCnt(Ξ) ≤ B if there exists a complete flow on F(Recv(D), SendF lex(D))
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where,

cap(pS
k , t) = B − RecvCnt(Pk). (4.25)

This is true because decoding of flow f on F(Recv(D), SendF lex(D)) ensures

that no processor is assigned more than f(pS
k , t) send operations. Capacity

constraint cap(pS
k , t) = B − RecvCnt(Pk) for maximum flow algorithm ensures

f(pS
k , t) ≤ max(0, B −RecvCnt(Pk)). Therefore following assertions are true

SendCnt(Pk) = f(pS
k , t) ≤ B − RecvCnt(Pk) (4.26)

TotalCnt(Pk) = SendCnt(Pk) +RecvCnt(Pk) (4.27)

≤ RecvCnt(Pk) +B −RecvCnt(Pk) (4.28)

TotalCnt(Pk) ≤ B (4.29)

for receive processor vertices’ terminal edges with B ≥ RecvCnt(Pk). Then

TotalCnt(Pk) ≤ B for processors with RecvCnt(Pk) ≤ B.

For finding minimal MaxTotalCnt(Ξ) for a complete communication-task-

to-processor assignment Ξ, we must find minimal value of B. As in the case

of minimization of MaxSendCnt(Ξ) incremental search is used for our applica-

tion. Incremental search starts with the lowest possible solution and increases

the probing value at each iteration until the optimal solution is found.

Incremental search should start execution with lowest possibleB. If a selection

of B where B is small enough that total terminal edge capacity

TotalTermCap(F) =
K∑

k=1

(B − RecvCnt(Pk)) (4.30)

=

K∑
k=1

B −
K∑

k=1

RecvCnt(Pk) (4.31)

= KB −WT ≤ WT . (4.32)

is not feasible. However to make TotalTermCap(F) ≥ WT , minimum B could

be calculated using 4.32 as

B = 	2WT/K
. (4.33)

Furthermore we define

MaxRecvCnt(Π) = max(RecvCnt(P1), RecvCnt(P2), . . . , RecvCnt(PK))

(4.34)
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where MaxTotalCnt(Ξ) ≥ MaxRecvCnt(Π) using 4.23 and 4.24. Since B is an

upperbound for MaxTotalCnt(Ξ), following assertion is true.

B ≥MaxRecvCnt(Π) (4.35)

Using 4.33 and 4.35 lowest possible starting B is

B = max(	2WT /K
,MaxRecvCnt(Π)). (4.36)

After a failed probe calculation of Inc is the same as balance on send volumes

of processors case. Pseudocode of extended IncrementalSearch algorithm is given

below.

IncrementalSearchExtended(){
B ← max(	2WT /K
,MaxRecvCnt(Π))

foreach unsuccesful probe do

Inc← 	Wr/SatCnt

B ← B + Inc

end

}

Figure 4.4 shows the assignment flow network and the flow obtained via bal-

ancing on total volumes handled by processors. There are four processors and

nine clusters subject to communication as shown in Figure 4.1. For the sake of

simplicity in presentation no cluster is received by more than one processor, so

bold arrows between data vertices and send processor vertices means the assign-

ment of single send operation to the processor. There are cluster to graph point

pairings such as: u1-C10, u2-C11, u9-C12, u3-C21, u4-C8, u5-C9, u6-C22, u7-C23

and u8-C24. Note that every edge between receive vertices and data vertices are

shown in bold, meaning every receive request is satisfied with the current flow.

There are 9 send operations therefore best possible B = 	2 ∗ 9/4
 = 5. However

processor 3 is already receiving 7 clusters so best possible B = 7. As shown

in the figure, if a processor is already scheduled to receive clusters then smaller

amount of send operations are assigned to that processor. For example, processor

3 is already receiving 7 clusters so no send operation is assigned to processor 3.
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Figure 4.4: Assignment Flow Network Balanced by Total Volumes

As opposed to single home processor approach, this method decreases the send

volume handled by a processor to 4 from 7.

4.3 Replication Contraction

We allow clusters to replicate in more than one processor via natural replication

process of the renderer. However, monitoring and necessary deletion on replicas

is needed as the execution continues. At each iteration, replication count of any

cluster may increase and total replicated clusters on a processor may exceed the

memory limit M of the processors. We have employed deletion algorithm at the

end of each iteration, making memory space for the remapping algorithm.
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Allowing replication has the main goal of utilizing excess memory in the sys-

tem. Therefore algorithms utilizing replication should allow replication until some

point where excess system memory is used but not exceeded. So after each itera-

tion of rendering algorithm a portion of the replicas will be deleted. This section

mainly focuses on clever contraction of replication buffer so that system has the

most flexibility for fast rendering in the next iteration.

We proposed and implemented several algorithms for replica contraction,

namely: LRRF (least recently rendered first), LCF (least connected first), SVF

(smallest volume first), SAF (smallest area first), SDPF (smallest data points

first) ,LDPF (largest data points first). From these algorithms LRRF mainly

aims to utilize frame to frame coherence, SVF and SAF aims to increase the

replication of clusters most likely to be replicated, SDPF and LDPF aims to ex-

ploit the trade off between memory usage and bandwidth usage. However none

of them produces good results mainly because they restrict the flexibility used by

assignment flow network.

We have proposed 2 more replica contraction algorithms, namely: RAND

(random) and DELNET (replica contraction network). Test results were given

by using these methods since they produce more flexible patterns than previously

proposed ones. RAND algorithm randomly deletes clusters from candidates until

some previously define value reached while DELNET tries to maximize the flex-

ibility used by assignment flow network via finding a contraction pattern in the

parallel system so that each cluster is replicated in at least Bcontr processors. We

will give details about DELNET algorithm in the next section.

4.3.1 DELNET

DELNET is a maximum flow network based parametric search algorithm (just

like assignment flow network). The main idea behind DELNET algorithm is to

increase the flexibility of assignment network via enforcing a lower bound on repli-

cation count of minimally replicated cluster while deleting clusters. Construction

and parametric search of DELNET is explained below.
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We construct a 2-layered flow network Fcontr = (Pcontr ∪ Dcontr, Econtr) which

is referred to here as the replica contraction network. The set Pcontr =

{p1, p2, . . . , pK} of vertices in the first layer represent the set of processors that

needs to delete at least one cluster, where pk corresponds to processor Pk. The

set Dcontr = {c1, c2, . . . cm} of cluster vertices in the second layer represents the

clusters that are possible candidates to be deleted. That is, Ci is a candidate of

deletion only if | rc(Ci) | �=1.

Edges are introduced only between the vertices of successive layers of Fcontr,

that is

Econtr = EsP
contr ∪ EPD

contr ∪ EDt
contr. (4.37)

The set EsP
contr of source edges is constructed by connecting the source vertex s to

the processor vertices in the first layer if processors associated with the processor

vertices have to delete at least 1 cluster. The capacity of each source edge is set

to be equal to the number of clusters to be deleted by the respective processor,

i.e., cap (s, pk)=max(eRS(Pk)−M, 0).

The set of delete edges connecting the vertices of first and second layers are

determined as follows: There exists an edge from the processor vertex pk to the

cluster vertex cj if cluster Cj is a candidate to be deleted by processor Pk The

capacity of each delete edge in EPD
contr is set to be equal to 1.

Finally, the set EDt
contr of terminal edges is constructed by connecting all cluster

vertices in the second layer to the terminal vertex t. The capacity of each terminal

edge in EDt
contr is determined as a function of parameter Bcontr. Bcontr is the

parameter that will be used in network probing and it is the replication count of

minimally replicated cluster after deletion. The capacity of each terminal edge

in (ci, t) = rc(Ci) − Bcontr. However as opposed to previous assignment flow

network where parametric search value is slowly increased in replica contraction

network parametric search value is slowly decreased. We employ such technique

because higher lower bound on minimally replicated cluster presents us with more

flexibility.
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Parametric search of lower bound on minimally replicated cluster begins from

the highest possible value, which is Bcontr = min(rc(C1), rc(C2), . . . , rc(Cm)).

Then as the parametric search goes we decrease the Bcontr value until a com-

plete flow is found (here we won’t go into detail about how to decrease the Bcontr,

however it is similar in nature to the assignment flow parametric search). Then

complete flow on replica contraction network should be decoded as, if unit flow

exists on edge (pk, cj), then processor Pk should delete cluster Cj. This way,

Bcontr value resulting in complete flow on replica contraction network becomes

the lower bound for minimally replicated cluster.



Chapter 5

Experimental Results

This chapter presents experimental results using three different datasets and we

will show that findings of these experiments validate the proposed algorithms.

5.1 Datasets and Environment

Proposed algorithms are implemented on a 32-node cluster interconnected by a

Fast Ethernet switch using LAM implementation of the MPI message passing

interface. Each node has an Intel Pentium IV 3.0 GHz processor, 1 GB of RAM

and runs Mandrake Linux, version 10.1.

We have used three dataset in this thesis for experiments. These datasets were

obtained from NASA-Ames Research Center [38] and they represent the results of

CFD simulations. All these datasets were originally curvilinear in structure and

consisted of hexahedral cells. We have converted the initial format into unstruc-

tured tetrahedral format by dividing each hexahedral cells into five tetrahedral

cells using tetrahedralization techniques presented in [39][40]. Alco connectiv-

ity information is kept during this operation, which then used to speed up the

rendering process.

Table 5.1 presents some related information about datasets Blunt Fin

56
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Data Set Vertices Cells CSV

BLUNT 40960 187395 5.50
POST 109744 513375 4.26
COMB 47025 215040 0.42

Table 5.1: Data Set Properties

(BLUNT), Combustion Chamber (COMB) and Oxygen Post (POST). In this

table, number of vertices, number of cells and an irregularity metric is given.

CSV value gives us the cell size variation within the cells of a data set, so bigger

CSV values means there is more irregularity in the dataset.

We have used a wide range of changing parameters for the experiments. One

parameter that we haven’t changed during our experiments is image size. We

have used 400× 400 as our final image size. We have used a fixed and somewhat

smaller image size because fast development of graphics hardware and usage of

GPUs for rendering purposes increase the actual rendering speed so make the

communication step for parallel volume rendering applications the bottleneck. In

this work we have used previously implemented CPU based rendering method [41]

which does not utilize the fast GPU based rendering. However, simply reducing

the image sizes, so reducing rendering time, enables us to show validity of our al-

gorithm for current state of rendering algorithms and architectures. As mentioned

above reader should refer to [41] for details of sequential rendering algorithm.

Parallelization of sequential rendering algorithm have been previously carried

out in [2][45]. This work is an extension of [2][5]. In this work we have tried

to optimize the communication pattern with the help of replication. We have

investigated the effect of replication on performance and tried to overcome the

irregularity of the datasets and reader should refer to [5] for experimental results

that does not directly relate to replication, such as view independent preprocess-

ing, workload calculation etc.

All timings are in seconds and communication volumes are given in MBytes.

Imbalance metrics are given as the ratio of maximum value to average value.
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5.2 Inverse Net Size Heuristic

Irregular structure of the datasets may cause imbalance in rendering loads or

imbalance in communication loads. Balancing rendering loads is guaranteed by

hypergraph partitioning tool PaToH [46] but imbalance on communication loads

are not explicitly monitored by the partitioning (remapping) tool so a processor

may have to receive much more data than the average or a processor may have to

send much more data than the average. Irregular structure of the data we have

used nearly guarantees that unacceptable communication imbalance ratios will

be obtained. In our rendering application case, for datasets BLUNT and POST,

we have high receive communication load imbalances. To speed up the migration

process we have to address this problem.

A multi-constraint partitioning method is needed where one constraint mon-

itors the balance in rendering loads where other monitors the receive volume

loads of processors (it is possible for receive volume loads but not possible for

send volume loads when replication is present). For remapping/repartitioning

hypergraph HR(Ih, eRSh−1(P )) = (V, Ñ ) and the partition Π, balance on

| Nets(PBk) − Nets(pk) | infer balance on receive volumes of processors. In

other words, nets that connect the part k but not processor vertex pk, corre-

sponds to clusters that processor k needs but does not have. So balance on

| Nets(PBk) − Nets(pk) | means balance on receive volume loads’ of processor

where clusters are equal sized. However, most of the current HP tools do not

support the feature of defining partitioning constraint(s) on the nets of parts. To

our knowledge only PaToH support defining constraint on maintaining balance

all nets of every part but this feature of PAToH can not be used directly since

the nets of a part should be differentiated for satisfying the constraints regarding

receive volume loads.

For achieving an effect of balance on receive volume loads of processors we

propose a heuristic which we call Inverse Net Size Heuristic (INSH) where com-

munication loads induced by transfer of a cluster is equally divided and added to

vertex weights of pixel blocks that use the cluster at hand. So vertex weight of a

pixel vertex in the hypergraph should be redefined as
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w(vi) = time(pbi) + e×
∑

nj∈Nets(vi)

c(nj)

| Pins(nj)− rc(Cj) | . (5.1)

Here time(pbi) is the original weight of the vertex, e is the scaling factor between

rendering loads and communication loads and | Pins(nj)−rc(Cj) | is the number

of pixel vertices associated with net nj . Scaling factore e is needed because, we

are combining 2 components which are not the same type. We have used scaling

factors ranging from 0 to 3120 for the experiments. For the readability of this

thesis, these values are normalized so e values ranges from 0 to 80 with intervals

of 10 in the presented results.

A single constraint partition with INSH do not find the perfect partition,

which both balances the receive volume loads of processors and rendering loads

of processors. Instead it forces partitioning tool to assign less rendering load to

a partition that is already assigned to receive a high volume, which avoids addi-

tional receive volume load associated with not assigned rendering load. Therefore,

INSH may lead to imbalances in rendering loads of processors while balancing

the communication volumes of processors. Sample statistical data is given in

Table 5.2. Data presented in this table is produced using 32 processors and the

POST dataset with different replication factors (0-50-100-150-200%) and the av-

erage values are presented. These particular parameters are chosen because they

produce the most representative results to see the effect of INSH scaling factor.

However, a complete set of experimental results can be found in Section 5.6.

Total time, migration time and rendering time is defined as the maximum

time spent by any processor during respective phases. Rendering imbalance be-

tween processors is defined as a ratio of maximum rendering load of a processor to

average rendering load. Migration imbalance is defined as the ratio of maximum

effective communication volume to average of effective communication volume

where effective communication volume is defined as the maximum of send and

receive volumes of processors. Selection of such migration imbalance metric is

needed because in two port communication model maximum of send or receive

volume dominates the communication time. As presented in Table 5.2, maximally

receiving processor is receiving about 20 MB of data whereas maximally sending
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e tt mt rt mi ri msv mrv

32-Processors - POST

0 2.56 2.09 0.20 2.39 1.20 7.37 20.58
10 2.02 1.46 0.29 2.35 1.83 9.64 8.96
20 2.12 1.46 0.38 2.39 2.51 10.17 8.37
30 2.18 1.45 0.45 2.38 3.05 10.18 8.33
40 2.26 1.45 0.53 2.37 3.56 10.23 8.32
50 2.32 1.44 0.60 2.39 4.03 10.27 8.27
60 2.40 1.44 0.67 2.39 4.50 10.30 8.23
70 2.43 1.43 0.72 2.39 4.83 10.23 8.32
80 2.48 1.43 0.77 2.40 5.13 10.30 8.24

Table 5.2: 32-Processor statistics with changing INSH scaling factor for the
dataset POST. Reported parameters are INSH scaling factor (e), total time (tt),
migration time (mt), rendering time (rt), migration imbalance (mi), rendering im-
balance (ri), maximum send volume handled by a processor (msv) and maximum
receive volume handled by a processor (mrv).

processors is sending 7 MB of data without INSH. For the architectures, such as

ours, using two port communication model, dominating factor for a processors

communication time is the maximum of send volume of a processor and receive

volume of a processor. So decreasing the receive volume of maximally receiving

processor is important even if this causes imbalance in rendering times. Table 5.2

shows even usage of small scaling factors causes a radical decrease in maximum

receive volume in the system. Furthermore, we expect, and observe, that usage

of increasing scaling factors of INSH also causes increase in rendering time and

rendering load imbalance between processors. Also there is a proportion in in-

creasing rates of rendering time and rendering imbalance. It is because rendering

imbalance between processors is defined as a ratio of maximum rendering load of

a processor to average rendering load. Since average rendering load is constant no

matter what the scaling factor is, we see the proportion between rendering time

and the rendering imbalance but same proportion is not present between migra-

tion times and migration imbalance metrics for changing scaling factors. Change

in communication pattern enforced by change in scaling factor also changes the

average of effective communication volume. For the selection of optimal INSH

scaling factor, total times should be considered because the trade-off between

communication times and rendering times best can be observed with this metric.
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Figure 5.1: Total time with changing INSH scaling factor - 32 Processor

Figure 5.2: Total time with changing INSH scaling factor - 16 Processor
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Figure 5.3: Total time with changing INSH scaling factor - 8 Processor

Figures 5.1, 5.2, 5.3 show the relation between total rendering times and INSH

scaling factor for processor counts 32, 16 and 8. Figures show that INSH scaling

factor usage should be directly proportional with irregularity of the dataset (CSV)

because fairly regular dataset COMB always shows decrease in performance with

higher scaling factors, whereas fairly irregular datasets BLUNT and POST shows

increase in performance up to some point and then shows decrease in performance.

Optimal INSH scaling factor for irregular datasets seems to be 10. From this

point we will show experimental results using INSH scaling factor 10 for datasets

BLUNT and POST while using results INSH scaling factor 0 for the dataset

COMB.

5.3 Effect of Replication

Replication of clusters will improve the communication time even though no other

optimization technique is employed. Consider a processor is assigned a set of pixel

blocks so it needs a set of clusters for rendering purposes. If required clusters are

already replicated by the processor, no communication is needed as opposed to the
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R(%) tt mt mtv ttimp mtimp mtvimp

32-Processors POST

0 1.99 1.57 16.60 - - -
50 1.94 1.51 16.00 2.79 3.49 3.57
100 1.89 1.47 15.42 5.13 6.50 7.09
150 1.82 1.39 14.62 8.63 11.17 11.90
200 1.78 1.36 14.09 10.47 13.29 15.11
250 1.74 1.32 13.30 12.43 15.86 19.89
300 1.71 1.28 12.73 14.12 18.27 23.32
350 1.70 1.27 12.73 14.52 18.82 23.31

Table 5.3: 32-Processor statistics showing improvement with different replica-
tion percentages for the POST dataset. Reported parameters are percentage of
replication (R), total execution time (tt), migration time (mt), maximum vol-
ume handled by a processor (mtv), total execution time improvement (ttimp),
total migration time improvement (mtimp), improvement for maximum message
volume handled by a processor (mtvimp).

case that clusters are retrieved from other processors. So most basic function of

data replication is avoidance of communication. This basic improvement should

be stated with experiments and excluded from the improvements of optimization

techniques that use replication. Table 5.3 shows the effect of replication for 32

processors and dataset POST. R denotes the percentage of the replication. For

example, 100% replication means processor stores two times its original data size.

tt (total execution time) and mt (migration time) were explained before and are

measured in MB. mtv is maximum total volume handled by a processor and it

is also measured in MB. ttimp, mtimp and mtvimp are the improvements in

total execution time, total migration time and maximum total volume handled

by a processor with increasing replication. All of the improvements were given in

percentages.

As seen in Table 5.3 with increasing amount of replication, results shows fairly

regular improvements in total execution time, total migration time and maximum

volume handled by a processor. Further data can be found in Section 5.6. Graph-

ical representations of these data is shown in Figure 5.4.
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a)% of communication and total execution time improvement 32-Processor

b)% of communication and total execution time improvement 16-Processor

c)% of communication and total execution time improvement 8-Processor

Figure 5.4: Effect of replication on total execution time and communication time
for 32, 16 and 8 processors
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5.4 Network Flow Algorithm Improvement

As presented in Chapter 4, network flow formulation has 2 balancing options.

First option balances send volumes of processors while second options balances the

total communication loads of processors. Balancing send volumes, when receive

volumes are already determined, effectively corresponds to minimizing maximum

of send or receive volumes of processors, i.e., minimizing effective communication

load for two port communication model. Balancing total communication loads of

processors corresponds to balancing communication between processors for single

port communication model. Since our architecture uses two port communication

model, we have balanced send volumes of processors for the experiments. A

detailed experiment set is given in Section 5.6. Partial results for 32-processors

with POST dataset are shown in Table 5.4. R (% of replication), mt (migration

time) and mtimp (% of migration time improvement) are explained before. net

specifies if network flow based algorithm is used or not, msv is maximum send

volume handled by a processor and msvimp is the percentage of improvement

achieved for maximum send volume loads of processors with assignment network

flow algorithm. As seen in Table 5.4 for 32 processor improvements of 15% to

27% is obtained for cluster migration phase.

Figures 5.5 and 5.6 present good improvement rates whereas Figure 5.7 shows

somewhat unpredictable improvement rates. We think that deciding replication

relative to processors initial data size is the problem. For example, 8-processors

replication of 250% nearly replicates half of the dataset on a single processor,

which decrease the necessity to improve communication and makes the applica-

tion behave more like a serial rendering algorithm. Therefore, we think proposed

network flow based algorithm is more suitable to be used with large processor

numbers and big datasets. We have used maximum flow algorithm first pro-

posed by Goldberg and Tarjan [49][50], which has a computational complexity

of O(V 2E). Even for high processor numbers time spent for maximum network

flow algorithm is negligible, so this data is omitted in tables.
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R(%) net mt msv mtimp msvimp

32-Processors POST

50
0 1.51 10.06

15.26 36.13
1 1.28 9.32

100
0 1.47 9.57

23.57 50.10
1 1.12 8.93

150
0 1.39 9.12

23.90 55.84
1 1.06 8.48

200
0 1.36 8.93

25.05 55.59
1 1.02 8.31

250
0 1.32 8.50

27.49 56.18
1 0.96 8.08

Table 5.4: 32-Processor statistics showing improvements of network flow algo-
rithm (while balancing send volumes of processors) for POST dataset with differ-
ent replication percentages. Reported parameters are percentage of replication
(R), network flow present bit (net), migration time (mt), maximum send message
volume handled by a processor (msv), migration time improvement (mtimp), im-
provement for maximum send message volume handled by a processor (msvimp).

Figure 5.5: Communication time Improvement with Proposed Network Flow Al-
gorithm - 32 Processor
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Figure 5.6: Communication time Improvement with Proposed Network Flow Al-
gorithm - 16 Processor

Figure 5.7: Communication time Improvement with Proposed Network Flow Al-
gorithm - 8 Processor
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5.5 Total System Improvement

Total system improvement consists of 2 components. First component is the

improvements obtained via usage of INSH and the second component is the im-

provements obtained via usage of network flow algorithm. Table 5.5 shows the

improvement results on total execution time and migration time. A complete set

of results can be found in Section 5.6.

R(%)mod tt mt ttimp mtimp

32-Processors-POST

50
0 2.51 2.18

36.04 41.15
1 1.61 1.28

100
0 2.41 2.07

40.15 46.03
1 1.44 1.12

150
0 2.35 2.02

41.16 47.51
1 1.38 1.06

200
0 2.31 1.98

42.94 48.56
1 1.32 1.02

250
0 2.23 1.89

43.38 49.45
1 1.26 0.96

Table 5.5: 32-Processor statistics showing total system improvements consist-
ing of network flow algorithm improvements and INSH improvements for POST
dataset with different replication percentages. Reported parameters are percent-
age of replication (R), network flow/INSH present bit (mode), total execution
time (tt), migration time (mt), total execution time improvement (ttimp), mi-
gration time improvement (mtimp).
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Figure 5.8: Migration Time Improvement with Proposed Network Flow Algo-
rithm and INSH - 32 Processor

Figure 5.9: Total Execution Time Improvement with Proposed Network Flow
Algorithm and INSH - 32 Processor
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Figure 5.10: Total Execution Time Improvement with Proposed Network Flow
Algorithm and INSH - 16 Processor

Figure 5.11: Migration Time Improvement with Proposed Network Flow Algo-
rithm and INSH - 16 Processor
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Figure 5.12: Total Execution Time Improvement with Proposed Network Flow
Algorithm and INSH - 8 Processor

Figure 5.13: Migration Time Improvement with Proposed Network Flow Algo-
rithm and INSH - 8 Processor
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5.6 A Complete Set of Experimental Data

Total time, migration time and rendering time is defined as the maximum time

spent by any processor during respective phases. Rendering imbalance between

processors is defined as a ratio of maximum rendering load of a processor to

average rendering load. Migration imbalance is defined as the ratio of maximum

effective communication volume to average of effective communication volume

where effective communication volume is defined as the maximum of send and

receive volumes of processors. Selection of such migration imbalance metric is

needed because in two port communication model maximum of send or receive

volume dominates the communication time.

Abreviation used in this section are:

e INSH scaling factor

R Replication percentage

net Network flow present bit

mode Network flow + INSH present bit

tt Total execution time (second)

mt Migration time (second)

rt Rendering time (second)

mi Migration imbalance

ri Rendering imbalance

msv Maximum send volume handled by a processor (MB)

mrv Maximum receive volume handled by a processor (MB)

mtv Maximum total volume handled by a processor (MB)

ttimp Improvement on total execution time (%)
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mtimp Improvement on migration time (%)

msvimp Improvement on maximum send volume handled by a processor (%)

mtvimp Improvement on maximum total volume handled by a processor (%)
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5.6.1 Inverse Net Size Heuristic

e tt mt rt mi ri msv mrv

32-Processors

BLUNT

0 1.26 0.80 0.15 2.94 1.20 4.31 7.99
10 1.02 0.48 0.22 2.18 1.79 3.68 3.54
20 1.09 0.48 0.30 2.04 2.43 3.47 3.36
30 1.17 0.48 0.37 1.99 3.08 3.40 3.29
40 1.25 0.49 0.45 1.99 3.69 3.38 3.25
50 1.34 0.49 0.54 1.99 4.42 3.37 3.27
60 1.38 0.49 0.58 1.98 4.76 3.37 3.24
70 1.43 0.49 0.63 1.98 5.22 3.36 3.22
80 1.48 0.48 0.69 1.98 5.73 3.35 3.24

POST

0 2.56 2.09 0.20 2.39 1.20 7.37 20.58
10 2.02 1.46 0.29 2.35 1.83 9.64 8.96
20 2.12 1.46 0.38 2.39 2.51 10.17 8.37
30 2.18 1.45 0.45 2.38 3.05 10.18 8.33
40 2.26 1.45 0.53 2.37 3.56 10.23 8.32
50 2.32 1.44 0.60 2.39 4.03 10.27 8.27
60 2.40 1.44 0.67 2.39 4.50 10.30 8.23
70 2.43 1.43 0.72 2.39 4.83 10.23 8.32
80 2.48 1.43 0.77 2.40 5.13 10.30 8.24

COMB

0 0.88 0.46 0.15 1.51 1.09 2.93 3.20
10 0.90 0.47 0.16 1.54 1.17 3.05 3.16
20 0.92 0.48 0.18 1.56 1.27 3.12 3.11
30 0.93 0.48 0.19 1.57 1.37 3.14 3.05
40 0.94 0.48 0.20 1.58 1.44 3.16 3.04
50 0.96 0.48 0.21 1.60 1.50 3.20 3.05
60 0.97 0.49 0.22 1.59 1.56 3.22 3.07
70 0.97 0.49 0.22 1.61 1.60 3.24 3.09
80 0.98 0.49 0.23 1.60 1.62 3.23 3.06

Table 5.6: 32-Processor statistics with changing INSH scaling factor



CHAPTER 5. EXPERIMENTAL RESULTS 75

e tt mt rt mi ri msv mrv

16-Processors

BLUNT

0 1.29 0.89 0.27 2.40 1.13 4.81 8.85
10 1.13 0.68 0.33 2.11 1.35 4.58 5.60
20 1.15 0.65 0.38 2.00 1.56 4.47 4.85
30 1.18 0.63 0.43 1.91 1.79 4.42 4.51
40 1.23 0.63 0.48 1.90 2.00 4.44 4.30
50 1.28 0.63 0.53 1.90 2.21 4.50 4.24
60 1.32 0.62 0.57 1.89 2.42 4.43 4.14
70 1.36 0.62 0.62 1.87 2.60 4.48 4.14
80 1.40 0.62 0.66 1.87 2.79 4.46 4.11

POST

0 2.86 2.36 0.37 1.91 1.15 8.19 23.02
10 2.41 1.87 0.41 1.92 1.30 10.07 15.16
20 2.34 1.75 0.46 1.95 1.51 10.94 12.88
30 2.35 1.70 0.52 1.97 1.72 11.34 11.81
40 2.45 1.74 0.59 2.00 1.94 11.77 11.25
50 2.48 1.73 0.63 2.03 2.12 12.22 11.04
60 2.54 1.74 0.68 2.07 2.28 12.32 10.92
70 2.60 1.75 0.73 2.04 2.46 12.39 10.57
80 2.64 1.75 0.77 2.04 2.60 12.56 10.53

COMB

0 1.05 0.66 0.29 1.56 1.06 4.13 4.52
10 1.06 0.66 0.29 1.57 1.06 4.17 4.56
20 1.07 0.66 0.31 1.57 1.11 4.22 4.45
30 1.08 0.66 0.31 1.58 1.14 4.23 4.50
40 1.07 0.66 0.31 1.58 1.14 4.28 4.50
50 1.08 0.66 0.32 1.58 1.17 4.28 4.49
60 1.09 0.66 0.33 1.59 1.19 4.32 4.49
70 1.10 0.67 0.33 1.60 1.21 4.35 4.48
80 1.10 0.66 0.34 1.59 1.22 4.36 4.43

Table 5.7: 16-Processor statistics with changing INSH scaling factor.
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e tt mt rt mi ri msv mrv

8-Processors

BLUNT

0 1.47 0.86 0.52 1.88 1.07 5.03 7.99
10 1.47 0.82 0.55 1.81 1.15 5.03 7.72
20 1.46 0.79 0.57 1.81 1.19 5.11 7.29
30 1.52 0.76 0.65 1.78 1.33 5.14 6.75
40 1.48 0.76 0.63 1.73 1.33 5.11 6.53
50 1.50 0.75 0.66 1.69 1.40 5.02 6.19
60 1.51 0.72 0.69 1.68 1.46 4.95 5.97
70 1.55 0.74 0.72 1.66 1.53 4.94 5.87
80 1.57 0.72 0.75 1.65 1.59 4.96 5.67

POST

0 2.99 2.17 0.70 1.82 1.11 9.85 23.36
10 2.85 2.03 0.70 1.82 1.12 10.69 21.41
20 2.84 1.98 0.74 1.80 1.20 11.13 19.86
30 2.85 1.93 0.81 1.79 1.31 11.55 18.70
40 2.84 1.91 0.81 1.80 1.35 11.94 17.28
50 2.82 1.86 0.85 1.78 1.42 12.05 16.37
60 2.84 1.85 0.88 1.76 1.49 12.11 15.60
70 2.85 1.82 0.91 1.75 1.55 12.24 15.16
80 2.90 1.84 0.95 1.74 1.63 12.53 15.01

COMB

0 1.48 0.83 0.57 1.47 1.05 5.56 5.89
10 1.48 0.82 0.57 1.47 1.04 5.55 5.85
20 1.48 0.83 0.57 1.46 1.04 5.54 5.86
30 1.49 0.84 0.57 1.47 1.05 5.63 5.97
40 1.52 0.84 0.60 1.47 1.08 5.61 5.85
50 1.51 0.85 0.58 1.46 1.06 5.61 5.87
60 1.50 0.83 0.59 1.48 1.07 5.69 5.81
70 1.52 0.85 0.59 1.46 1.08 5.61 5.83
80 1.58 0.88 0.61 1.48 1.10 5.74 5.81

Table 5.8: 8-Processor statistics with changing INSH scaling factor.
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5.6.2 Effect of Replication

R(%) tt mt mtv ttimp mtimp mtvimp

32-Processors

BLUNT

0 0.91 0.51 6.06 - - -
50 0.89 0.49 5.95 2.49 4.25 1.68
100 0.86 0.46 5.61 5.45 9.85 7.42
150 0.86 0.46 5.47 5.97 10.53 9.59
200 0.85 0.45 5.41 7.15 12.98 10.61
250 0.83 0.43 5.25 9.46 17.14 13.28
300 0.80 0.40 4.94 12.17 21.66 18.43
350 0.81 0.40 4.92 11.95 21.90 18.77

POST

0 1.99 1.57 16.60 - - -
50 1.94 1.51 16.00 2.79 3.49 3.57
100 1.89 1.47 15.42 5.13 6.50 7.09
150 1.82 1.39 14.62 8.63 11.17 11.90
200 1.78 1.36 14.09 10.47 13.29 15.11
250 1.74 1.32 13.30 12.43 15.86 19.89
300 1.71 1.28 12.73 14.12 18.27 23.32
350 1.70 1.27 12.73 14.52 18.82 23.31

COMB

0 0.76 0.49 5.67 - - -
50 0.76 0.49 5.63 0.72 0.47 0.70
100 0.74 0.46 5.45 3.66 5.12 4.04
150 0.72 0.45 5.33 5.15 7.82 6.11
200 0.71 0.44 5.13 6.63 10.81 9.54
250 0.70 0.42 4.95 8.37 13.25 12.85
300 0.69 0.41 4.89 9.17 15.19 13.76
350 0.68 0.40 4.72 10.50 17.94 16.75

Table 5.9: 32-Processor statistics showing effects of replication.
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R(%) tt mt mtv ttimp mtimp mtvimp

16-Processors

BLUNT

0 1.19 0.79 8.50 - - -
50 1.12 0.72 7.74 5.98 8.99 8.94
100 1.09 0.67 7.43 8.62 15.75 12.53
150 1.02 0.63 6.83 14.11 20.83 19.57
200 0.97 0.57 6.35 18.47 28.09 25.23
250 0.94 0.55 6.10 20.86 31.18 28.23
300 0.91 0.52 5.82 23.40 34.98 31.46
350 0.87 0.48 5.56 26.57 39.66 34.57

POST

0 2.57 2.09 24.77 - - -
50 2.47 1.99 23.65 3.81 4.87 4.52
100 2.32 1.84 22.62 9.61 12.01 8.67
150 2.27 1.79 21.47 11.67 14.68 13.31
200 2.15 1.66 19.86 16.49 20.58 19.81
250 2.01 1.52 18.16 21.83 27.33 26.66
300 1.92 1.43 17.55 25.49 31.69 29.13
350 1.92 1.42 16.97 25.49 31.98 31.49

COMB

0 1.05 0.70 8.39 - - -
50 1.03 0.69 8.27 1.12 1.90 1.46
100 1.01 0.66 7.96 3.64 5.68 5.11
150 0.98 0.63 7.66 6.43 9.91 8.73
200 0.94 0.59 7.14 10.49 16.50 14.90
250 0.92 0.57 6.95 12.20 18.92 17.20
300 0.89 0.54 6.48 14.85 23.38 22.78
350 0.86 0.51 6.10 17.31 27.30 27.30

Table 5.10: 16-Processor statistics showing effects of replication.
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R(%) tt mt mtv ttimp mtimp mtvimp

8-Processors

BLUNT

0 1.59 1.00 10.76 - - -
50 1.55 0.88 9.93 2.80 11.85 7.73
100 1.41 0.82 9.18 11.25 18.48 14.68
150 1.32 0.72 8.29 17.09 27.70 23.00
200 1.27 0.67 7.40 20.27 33.01 31.21
250 1.19 0.59 6.58 25.28 40.76 38.88
300 1.13 0.54 5.77 28.73 46.76 46.36
350 1.03 0.43 4.92 35.09 56.56 54.30

POST

0 3.20 2.43 26.19 - - -
50 2.96 2.19 24.33 7.37 9.99 7.11
100 2.78 2.00 22.25 13.15 17.71 15.05
150 2.64 1.86 20.71 17.44 23.28 20.94
200 2.46 1.68 18.77 23.09 30.92 28.35
250 2.31 1.52 16.57 27.86 37.34 36.73
300 2.15 1.36 14.87 32.86 44.03 43.22
350 1.96 1.17 12.95 38.81 52.03 50.55

COMB

0 1.61 0.99 12.18 - - -
50 1.52 0.90 11.22 5.41 8.98 7.85
100 1.43 0.81 10.21 11.20 18.33 16.14
150 1.37 0.76 9.24 14.56 23.93 24.13
200 1.30 0.68 8.37 19.22 31.91 31.25
250 1.22 0.60 7.41 24.13 39.63 39.20
300 1.16 0.54 6.53 27.61 45.47 46.43
350 1.11 0.48 6.03 30.91 51.28 50.46

Table 5.11: 8-Processor statistics showing effects of replication.
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5.6.3 Network Flow Algorithm Improvement

R(%) net mt msv mtimp msvimp

32-Processors

BLUNT

50
0 0.49 3.95

5.26 35.65
1 0.47 2.54

100
0 0.46 3.61

7.74 46.39
1 0.43 1.94

150
0 0.46 3.46

10.71 50.74
1 0.41 1.70

200
0 0.45 3.21

9.02 47.64
1 0.41 1.68

250
0 0.43 3.04

7.03 47.58
1 0.40 1.60

POST

50
0 1.51 10.06

15.26 36.13
1 1.28 9.32

100
0 1.47 9.57

23.57 50.10
1 1.12 8.93

150
0 1.39 9.12

23.90 55.84
1 1.06 8.48

200
0 1.36 8.93

25.05 55.59
1 1.02 8.31

250
0 1.32 8.50

27.49 56.18
1 0.96 8.08

COMB

50
0 0.49 3.01

9.40 20.87
1 0.44 2.38

100
0 0.46 2.93

11.14 31.05
1 0.41 2.02

150
0 0.45 2.87

13.28 32.67
1 0.39 1.93

200
0 0.44 2.83

11.23 34.51
1 0.39 1.85

250
0 0.42 2.76

12.49 36.10
1 0.37 1.76

Table 5.12: 32-Processor statistics showing improvements of network flow.
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R(%) net mt msv mtimp msvimp

16-Processors

BLUNT

50
0 0.72 5.12

9.96 42.93
1 0.65 2.92

100
0 0.67 4.50

5.39 48.06
1 0.63 2.34

150
0 0.63 4.17

7.78 49.03
1 0.58 2.13

200
0 0.57 3.41

2.31 43.63
1 0.56 1.92

250
0 0.55 3.25

4.63 44.78
1 0.52 1.79

POST

50
0 1.99 10.72

9.77 32.34
1 1.80 7.25

100
0 1.84 9.78

5.46 42.15
1 1.84 5.66

150
0 1.79 9.15

10.13 43.73
1 1.79 5.15

200
0 1.66 8.34

8.33 44.80
1 1.66 4.61

250
0 1.52 7.29

4.02 38.88
1 1.52 4.46

COMB

50
0 0.69 4.32

7.98 23.64
1 0.64 3.30

100
0 0.66 4.12

12.92 32.20
1 0.58 2.80

150
0 0.63 4.00

14.69 35.03
1 0.54 2.60

200
0 0.59 3.82

7.38 35.12
1 0.54 2.48

250
0 0.57 3.65

13.84 37.41
1 0.49 2.28

Table 5.13: 16-Processor statistics showing improvements of network flow.
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R(%) net mt msv mtimp msvimp

8-Processors

BLUNT

50
0 0.88 5.87

3.13 33.56
1 0.86 3.90

100
0 0.82 4.94

5.05 31.96
1 0.78 3.36

150
0 0.72 4.02

1.91 37.65
1 0.71 2.51

200
0 0.67 3.46

0.55 28.23
1 0.67 2.48

250
0 0.59 2.89

-1.69 27.09
1 0.60 2.11

POST

50
0 2.19 12.02

-3.14 28.47
1 2.26 8.60

100
0 2.00 10.23

-5.27 35.56
1 2.10 6.59

150
0 1.86 8.76

2.93 29.14
1 1.81 6.21

200
0 1.68 6.93

-1.79 27.90
1 1.71 5.00

250
0 1.52 5.75

1.34 26.11
1 1.50 4.25

COMB

50
0 0.90 6.09

6.71 21.53
1 0.84 4.78

100
0 0.81 5.52

6.95 28.80
1 0.75 3.93

150
0 0.76 5.13

12.70 33.41
1 0.66 3.42

200
0 0.68 4.51

8.48 29.71
1 0.62 3.17

250
0 0.60 3.97

0.85 31.19
1 0.59 2.73

Table 5.14: 8-Processor statistics showing improvements of network flow.
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5.6.4 Total System Improvement

R(%)mod tt mt ttimp mtimp

32-Processors

BLUNT

50
0 1.14 0.82

33.15 43.25
1 0.76 0.47

100
0 1.14 0.80

37.77 46.74
1 0.71 0.43

150
0 1.11 0.80

38.52 48.34
1 0.69 0.41

200
0 1.09 0.76

39.02 46.15
1 0.66 0.41

250
0 1.07 0.75

38.28 47.44
1 0.66 0.40

POST

50
0 2.51 2.18

36.04 41.15
1 1.61 1.28

100
0 2.41 2.07

40.15 46.03
1 1.44 1.12

150
0 2.35 2.02

41.16 47.51
1 1.38 1.06

200
0 2.31 1.98

42.94 48.56
1 1.32 1.02

250
0 2.23 1.89

43.38 49.45
1 1.26 0.96

COMB

50
0 0.76 0.49

17.29 9.40
1 0.63 0.44

100
0 0.74 0.46

19.38 11.14
1 0.59 0.41

150
0 0.72 0.45

22.09 13.28
1 0.56 0.39

200
0 0.71 0.44

22.89 11.23
1 0.55 0.39

250
0 0.70 0.42

21.71 12.49
1 0.55 0.37

Table 5.15: 32-Processor statistics of total system improvement(net+INSH).
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R(%)mod tt mt ttimp mtimp

16-Processors

BLUNT

50
0 1.29 0.94

19.94 17.93
1 1.03 0.65

100
0 1.24 0.89

17.93 28.96
1 1.02 0.63

150
0 1.20 0.85

20.04 31.56
1 0.96 0.58

200
0 1.16 0.81

19.20 31.31
1 0.94 0.56

250
0 1.12 0.77

19.84 32.60
1 0.90 0.52

POST

50
0 2.93 2.49

22.50 27.90
1 2.27 1.80

100
0 2.82 2.34

21.49 25.63
1 2.21 1.74

150
0 2.66 2.22

21.94 27.76
1 2.08 1.61

200
0 2.55 2.11

21.81 27.91
1 1.99 1.52

250
0 2.43 1.99

20.38 26.60
1 1.93 1.46

COMB

50
0 1.03 1.69

6.73 7.98
1 0.96 0.64

100
0 1.01 0.66

10.28 12.92
1 0.90 0.58

150
0 0.98 0.63

11.60 14.69
1 0.86 0.54

200
0 0.94 0.59

6.78 7.38
1 0.87 0.54

250
0 0.92 0.57

10.85 13.84
1 0.82 0.49

Table 5.16: 16-Processor statistics of total system improvement(net+INSH).
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R(%)mod tt mt ttimp mtimp

8-Processors

BLUNT

50
0 1.53 0.96

5.04 10.56
1 1.45 0.86

100
0 1.43 0.85

4.63 9.30
1 1.36 0.78

150
0 1.35 0.77

3.21 8.30
1 1.30 0.71

200
0 1.23 0.65

-2.44 -1.88
1 1.26 0.67

250
0 1.17 0.60

-2.01 -0.28
1 1.20 0.60

POST

50
0 3.07 2.31

1.12 2.54
1 3.03 2.26

100
0 2.91 2.15

0.90 2.20
1 2.88 2.10

150
0 2.73 1.97

4.97 8.30
1 2.59 1.81

200
0 2.72 1.85

8.36 7.44
1 2.49 1.71

250
0 2.55 1.64

10.44 8.30
1 2.28 1.50

COMB

50
0 1.52 1.90

3.93 6.71
1 1.46 0.84

100
0 1.43 0.81

4.15 6.95
1 1.37 0.75

150
0 1.37 0.76

7.23 12.70
1 1.27 0.66

200
0 1.30 0.68

4.94 8.48
1 1.23 0.62

250
0 1.22 0.60

0.40 0.85
1 1.21 0.59

Table 5.17: 8-Processor statistics of total system improvement(net+INSH).



Chapter 6

Conclusion

Interactive direct volume rendering of large datasets still stands to be a hard

problem especially with growing trend of dataset sizes. We believe for interactive

direct volume rendering, use of state of the art algorithms, parallel processing

and hardware assisted rendering is needed. Furthermore, unutilized system re-

sources can be used to increase performance, leading lo lower execution times and

interactivity. In this thesis, we tried to exploit the use of excess system memory

to increase the performance for big scale volume rendering applications.

6.1 Work Carried Out

Hypergraph partitioning based remapping problem addresses the problem of flex-

ibly assigning the pixel blocks to processors, without any predetermined restric-

tions, which helps to decrease the total volume of communication in the system.

Furthermore, more balanced computation loads can be distributed via usage of

this method. We tried to extend this flexibility to communication operations

where processors are allowed to store replicated data.

Replication of the dataset in the system has two advantages. Firstly, repli-

cated data effectively achieves avoidance of communication. If data-to-processor
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mapping dictates replicated data is the subject of a communication operation,

no communication is needed. This is the natural effect of replication and en-

hanced by the extended replication-HP model where replicated data is taken into

consideration to minimize the total communication volume. Therefore, reported

25% less communication volumes achieved by old HP-based remapping model is

preserved for replication-HP model.

Secondly, replicated data presents the flexibility to assign a send operation to

processors, which store the replicated data. This flexibility is used to balance send

message volumes of processors or total message volumes of processors. Balancing

send message volumes of processors corresponds to balancing maximum of send

message volume and receive message volume, whereas balancing total message

volumes of processors corresponds to balancing total of send message volume

and receive message volume; both of which has suitable corresponding parallel

architectures to be used. To balance send/total message volumes of processors, we

have utilized a maximum flow network algorithm with parametric search, where

optimal balance is found with nearly negligible processing cost with equal sized

data primitives. Considerably better communication load balances were achieved

and up to 50% savings for maximum send/total message volume handled by

a processor is obtained. This savings transforms well into communication phase

speedups with high processor numbers, which proves the validity of our algorithms

to utilize excess memory for big scale volume rendering applications.

INSH is proposed to overcome the irregularity effects of the dataset, where

vertex weights of the replication hypergraph are modified to encapsulate the ef-

fects of communication operations. More than 100% improvements on maximum

receive volume handled by a processor is achieved for irregular datasets for high

processor numbers with considerably less increase in rendering imbalance.

Maximum network flow based parametric search algorithm DELNET to delete

replicas is proposed to round up three modes of network flow algorithms. DEL-

NET increases the flexibility to assign send operations to processors via enforcing

a lower bound on replication count of data primitives. So for each data primitive,

there will be at least a number of processors to assign a send operation regarding
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the data primitive. Although it is not explicitly shown in this thesis, DELNET

has the effect of decreasing the maximum total message volume handled by a

processor considerably mainly because there is less flexibility to balance the total

message volume handled by processors.

Effect of these algorithms is tested in image-space parallelization of a DVR al-

gorithm and up to total 45% improvement in total time is achieved, excluding the

communication avoidance effects of replication, especially for irregular datasets

and high number of processors.

6.2 Future Work

Proposed INSH is an approximation of actually balancing receive volumes of

processors and rendering loads of processors separately. We have proposed such

algorithm because, to the best of our knowledge, state of the art HP tools does

not support multi-constraint with fixed vertices formulation. Production of such

tool could produce superior timing results. Finally, applying proposed methods

to object-space parallelization could be an interesting future work since similar

kinds of problems may arise in object-space parallelization of DVR algorithms.
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[13] J. Krüger, and R. Westermann, “Acceleration Tecniques for GPU-based

Volume Rendering”, in Proc. IEEE Visualization, pp. 287–292, 2003.

[14] S. Guthe, M. Wand, J. Gonser, and W. Strasser, “Interactive Rendering of

Large Volume Data Sets”, in Proc. IEEE Visualization, pp. 53–60, 2002.

[15] T. Cullip, and U. Neumann, “Accelerating Volume Reconstruction with

3D Texture Hardware”, in Technical Report TR93-027, 1993.

[16] B. Cabral, N. Cam, and J. Foran, “Accelerated Volume Rendering and

Tomographic Reconstruction Using Texture Mapping Hardware”, in Proc.

of the 1994 symposium on Volume Visualization, pp. 91–98, 1994.



BIBLIOGRAPHY 91

[17] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A Sorting Classification

of Parallel Rendering”, in IEEE Comput. Graph. Appl., vol. 14, no. 4,

pp. 23–32, 1994.

[18] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh, “Hybrit Sort-First and

Sort-Last Parallel Rendering with a Cluster of PCs”, in Proc. Eurographics

/ ACM SIGGRAPH Workshop on Graphics Hardware, pp. 97–108, Los

Angles, CA, 2000.

[19] A. Garcia, and H.-W. Shen, “An Interleaved Parallel Volume Renderer

with PC-Clusters”, in Proc. Eurographics Workshop on Parallel Graphics

and Visualization (EGPGV), pp. 51–59, 2002.

[20] M. Magallon, M. Hopf, T. Ertl, “Parallel Volume Rendering Using PC

graphics Hardware”, in Pacific Conference on Computer Graphics and

Applications, pp. 384–389, 2001.

[21] I. Ihm, and S. Park, “Wavelet-Based 3D Compression Scheme for Very

Large Volume Data”, in Graphics Interface ’98, pp. 107–116, 1998.

[22] T.-Y. Kim, and Y. G. Shin, “An Efficient Wavelet-Based Compresion

Method for Volume Rendering”, in Pacific Graphics ’99 (1999), pp. 147–

157.

[23] S. Muraki, “Approximation and Rendering of Volume Data Using Wavelet

Transforms”, in IEEE Visualization ’92, pp. 21–28.

[24] A. Vilanova, and D. Ruijters, “Optimizing GPU Volume Rendering”, in

WSCG - Winter School of Computer Graphics, 2006.

[25] M. Hadwiger, C. Berger, and H. Hauser, “High-Quality Two-Level Volume

Rendering of Segmented Data Sets on Consumer Graphics Hardware”, in

Proc. IEEE Visualization 2003, pp. 301–308, 2003.

[26] I. Viola, A. Kanitsar, and M. E. Gröller, “Importance-Driven Volume
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