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ABSTRACT

STORAGE AND ACCESS SCHEMES FOR
AGGREGATE QUERY PROCESSING ON ROAD

NETWORKS

Engin Demir

Ph.D. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

January, 2009

A well-known example of spatial networks is road networks, which form an in-

tegral part of many geographic information system applications, such as location-

based services, intelligent traveling systems, vehicle telematics, and location-

aware advertising. In practice, road network data is too large to fit into the

volatile memory. A considerable portion of the data must be stored on the sec-

ondary storage since several spatial and non-spatial attributes as well as points-of-

interest data are associated with junctions and links. In network query processing,

the spatial coherency that exists in accessing data leads to a temporal coherency;

in this way, connected junctions are accessed almost concurrently. Taking this

fact into consideration, it seems reasonable to place the data associated with

connected junctions in the same disk pages so that the data can be fetched to

the memory with fewer disk accesses. We show that the state-of-the-art clus-

tering graph model for allocation of data to disk pages is not able to correctly

capture the disk access cost of successor retrieval operations. We propose clus-

tering models based on hypergraph partitioning, which correctly encapsulate the

spatial and temporal coherency in query processing via the utilization of query

logs in order to minimize the number of disk accesses during aggregate query

processing. We introduce the link-based storage scheme for road networks as an

alternative to the widely used junction-based storage scheme. We present Get-

Unevaluated-Successors (GUS ) as a new successor retrieval operation for network

queries, where the candidate successors to be retrieved are pruned during pro-

cessing a query. We investigate two different instances of GUS operation: the

Get-unProcessed-Successors operation typically arises in Dijkstra’s single source

shortest path algorithm, and the Get-unVisited-Successors operation typically

arises in the incremental network expansion framework. The simulation results
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show that our storage and access schemes utilizing the proposed clustering hyper-

graph models are quite effective in reducing the number of disk accesses during

aggregate query processing.

Keywords: Spatial network databases, road networks, storage management, query

processing, clustering, hypergraph partitioning.



ÖZET

YOL AĞLARI ÜZERİNDEKİ TOPAK SORGU İŞLEME

İÇİN DEPOLAMA VE ERİŞİM PLANLARI

Engin Demir

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Ocak, 2009

İyi bilinen örnek bir uzamsal ağ olan yol ağları, bölge bazlı servisler,

akıllı yolculuk sistemleri, araç telematikleri, ve bölgeye duyarlı reklamcılık

gibi coğrafi bilgi sistemi uygulamalarının temel bir parçasını oluşturmaktadır.

Uygulamada, yol ağ verileri geçici belleğe sığamayacak kadar büyüktür. Hem

çeşitli uzamsal ve uzamsal olmayan özellikler, hem de ilgi çekici noktalar

kavşak ve yollarla ilişkilendirildiğinden, verinin oldukça büyük bir parçası ik-

incil bellekte saklanmalıdır. Ağ sorgusu işlemede, veri erişimi sırasındaki uzam-

sal tutarlılık zamansal tutarlılığa neden olmaktadır; böylece, bağlı kavşaklara

neredeyse eşzamanlı erişilmektedirler. Bu gerçeği gözönünde bulundurarak,

bağlı kavşakların verilerini aynı disk bölümleri içerine yerleştirilmesi mantıklı

görünmektedir ki veriler daha az sayıda disk erişimi ile getirilebilsin. Şu an-

daki verileri disk bölümlerine kümeleyen çizge modelinin ardıl getirme operasy-

onlarının disk erişim maliyetini doğru yakalamadığını gösteriyoruz. Topak sorgu

işleme sırasındaki disk erişimini en aza indirmek için sorgu işlemede uzamsal

ve zamansal tutarlılığı sorgu kayıtlarını kullanarak doğru kapsayan hiperçizge

bölümlemeye dayalı kümeleme modelleri öneriyoruz. Yol ağları için yola dayalı

depolama planınını yaygın kullanılan kavşağa dayalı depolama planına alter-

natif olarak tanıtıyoruz. Ağ sorgularında getirilecek aday ardılları sorgu işleme

sırasında azaltacak yeni bir ardıl getirme işlemi olarak Değerlendirilmemiş-

Ardılları-Getir ’i sunuyoruz. İki değişik Değerlendirilmemiş-Ardılları-Getir işlem

örneğini inceliyoruz: İşlenmemiş-Ardılları-Getir işlemi tipik olarak Dijkstra’nın

tek başlangıç kısayol çözüm yolunda ve Görülmemiş-Ardılları-Getir işlemi tipik

olarak atrımlı ağ genişleme taslağında ortaya çıkıyor. Benzetim sonuçları

kümeleyen hiperçizge modellerini kullanan depolama ve erişim planlarımızın

topak sorgu işleme sırasındaki disk erişim sayısını azaltmakta oldukça etkili

olduğunu göstermektedir.
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Chapter 1

Introduction

1.1 Motivation

In the last three decades, numerous conceptual models, spatial access methods,

and query processing techniques are proposed [60, 71, 69, 64, 76] to overcome

the problems faced within the extensive scale of Geographic Information Systems

(GIS). The increasing demand on geographic applications made spatial databases

quite popular. The research on spatial databases focused on the Euclidean space,

where the distances between the objects are determined by the relative positions

of the objects in space. However, the operations in spatial networks, where the

data has an underlying network topology, do not solely rely on geographical lo-

cations. This attracted many researchers from the areas of transportation GIS,

network analysis, moving object databases, operations research, artificial intelli-

gence, and robotics.

A well-known example of spatial networks is road networks, which form an

integral part of many GIS applications, such as location-based services, intelligent

traveling systems, vehicle telematics, and location-aware advertising. A road

network is represented as a finite collection of junctions and the road segments

(links) between pairs of junctions. The distance between two objects in the

network is determined by the length of the shortest path connecting these two

2



CHAPTER 1. INTRODUCTION 3

objects. Several spatial and non-spatial attributes are associated with junctions

(e.g., locations, turn restrictions) and links (e.g., length, average speed limit,

capacity, type, location related information). Additionally, points-of-interest data

is also associated with junctions and links.

In practice, road network data is too large to fit into the volatile memory,

and a considerable portion of the data must be stored on the secondary storage.

Consequently, a high number of disk accesses must be performed during the

processing of a query in order to cache the disk pages that store the relevant

spatial data in the memory. This makes organization of the spatial data over the

disk pages particularly important. There are two primary concerns in organizing

the data over the disk pages. First, the number of disk accesses should be kept

low for time efficiency in query processing. Second, the utilization of disk pages

should be increased to reduce the number of pages that the data spans for space

efficiency in data storage.

In query processing over road networks, the spatial coherency that exists

in accessing data leads to a temporal coherency, that is, connected junctions

are accessed almost concurrently. Taking this fact into consideration, it seems

reasonable to place the data associated with connected junctions in the same disk

pages so that the data can be fetched to the memory with fewer disk accesses.

In this thesis, we formulate the allocation of data to disk pages as a clustering

problem. The recent query logs can be utilized for predicting the future network

usage frequencies and hence disk access patterns, resulting in increased efficiency

and effectiveness in data organization. Based on this observation, this thesis

focuses on storage and access schemes for efficient aggregate query processing on

road networks. We propose clustering models based on hypergraph-partitioning,

which encapsulates the spatial and temporal coherency in query processing via

the utilization of query logs in order to minimize the number of disk accesses

during query processing.
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1.2 Contributions

The contributions of this thesis can be categorized into two concepts: data stor-

age schemes and kernel set of data retrieval operations. In Chapter 2, we pro-

vide the background information and the related work on disk-based storage

schemes. Chapters 3 and 4 respectively present the junction- and link-based

storage schemes for road networks and our clustering hypergraph models. Chap-

ters 5 introduces a new kernel data retrieval operation and a clustering hyper-

graph model that encapsulate the cost of this kernel operation. In Chapter 6,

we present and discuss the simulation results of our models in detail. In the

following paragraphs, we briefly overview our particular contributions together

with the organization of the thesis.

In Chapter 3 (based on [26]), first, we show that the state-of-the-art cluster-

ing graph model for the junction-based storage scheme is not able to correctly

capture the disk access cost of successor retrieval operations. Second, we propose

a novel clustering hypergraph model which utilizes the network usage frequencies

obtained from previous query logs and enables the correct estimation of the disk

access costs of successor retrieval operations. Allocation of data to disk pages

according to the clustering of the proposed hypergraph model results in a con-

siderable efficiency improvement in spatial query processing when compared with

the earlier proposals that are based on the clustering graph model. Our model is

able to use the spatial access methods of [75] in order to support network opera-

tions on clustered network data. Note that our model can also benefit from the

dynamic clustering strategies presented in [75]. Third, we introduce two adaptive

partitioning schemes based on recursive bipartitioning. These schemes, which are

applicable to both the clustering graph and hypergraph models, try to reduce the

number of allocated disk pages while trying to minimize the number of disk page

accesses during the network operations.

In Chapter 4 (based on [27]), first, we introduce the link-based storage scheme.

In this storage scheme, each record stores the data associated with a link together

with the link’s connectivity information. Second, we introduce a clustering hy-

pergraph model for the link-based storage scheme to partition the network data
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to disk pages. Third, we present a detailed comparative analysis on the proper-

ties of the junction- and link-based storage schemes and show that the link-based

storage scheme is more amenable to clustering. Fourth, we introduce storage

enhancements for bidirectional networks. We show that the link-based storage

scheme is more amenable to our enhancements than the junction-based storage

scheme and results in better data allocation for processing aggregate network

queries.

In Chapter 5 (based on [25]), first, we introduce Get-Unevaluated-Successors

(GUS ) as a new successor retrieval operation for spatial network queries, which

is overlooked in the literature. In network traversal algorithms, all successors

of a junction need not be retrieved in each invocation of the Get-Successors GS

operations. During processing a query, the successors of a junction can be clas-

sified as evaluated and unevaluated according to the properties and state of the

algorithm in which the GUS operation is invoked on that junction. The GUS

operation is defined as retrieving the unevaluated successors of a given junction.

It is an efficient implementation of the Get-Successors(GS ) operation, where

the candidate successors to be retrieved are pruned accordingly. We introduce

two different instances of GUS operations: Get-unProcessed-Successors and Get-

unVisited-Successors. The former operation typically arises in Dijkstra’s single

source shortest path algorithm, and the latter operation typically arises in the

incremental network expansion framework. Second, we propose a clustering hy-

pergraph model that captures the disk access cost of GUS operations correctly

for the junction-based storage scheme. The proposed model utilizes query logs to

minimize the number of disk page accesses to be incurred by the network queries

using GUS operation as the underlying successor retrieval operation.

In Chapter 6, we present and discuss the simulation results of our models

in detail. First, we evaluate our clustering hypergraph model for the junction-

based storage scheme and recursive bipartitioning schemes on a wide range of

real-life road network datasets with synthetic queries. The results of the con-

ducted experiments show that the proposed clustering hypergraph model is quite

effective in reducing the number of disk accesses incurred by the network opera-

tions. Second, extensive experimental comparisons are carried out on the effects
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of page size, buffer size, path length, record size, and dataset size for the junction-

and link-based storage schemes. According to the experimental results, the link-

based storage scheme can be a good alternative to the widely used junction-based

storage scheme. Third, the proposed GUS operation and associated hypergraph-

based clustering model for the junction-based storage scheme are evaluated for

two different instances of GUS operations: Get-unProcessed-Successors and Get-

unVisited-Successors. The results of our experimental simulations show that the

proposed successor retrieval operation together with the proposed clustering hy-

pergraph model is quite effective in reducing the number of disk accesses in query

processing.

Finally, Chapter 7 concludes the thesis with a summary of the contributions

and propose some future research directions.



Chapter 2

Background and Related Work

2.1 Road Networks

A well-known example of spatial networks is the road networks. We represent

a road network as a two tuple (T ,L), where T denotes the spatial locations

(junctions) and L denotes the road segments (links) between pairs of junctions.

That is, ℓij∈L denotes a link from a junction ti∈T to a neighbor junction tj∈T .

There are a number of attributes associated with junctions (e.g., locations, turn

restrictions) and links (e.g., length, average speed limit, capacity, type, location

related information). Road networks are usually represented as directed graphs

with the points located in 2D. Constraints on junctions such as turn restrictions

can be modeled by introducing dummy nodes to the graph [11, 40, 47].

2.2 Query Processing on Road Networks

With the increasing interest in intelligent transportation and modern spatial

database management systems, complex and advanced query types need to be

supported. Query types in spatial networks are somewhat different than those

in spatial databases as the evaluation of the network queries highly depends on

7
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the topological properties of the underlying network. Every conventional spatial

query type such as nearest neighbors, range search, closest pairs, and spatial join

has a counterpart in spatial network databases as discussed in [59, 28]. In network

query processing, computation of shortest paths between all pairs of objects con-

stitutes a major problem since the distance between two objects in road networks

is determined by the length of the shortest path connecting these objects.

Algorithms and approaches proposed for the computation of shortest paths in

networks are based on three main strategies.

• Network distances are computed on-the-fly [59, 84, 23, 28] using the state-

of-the-art shortest path algorithms such as Dijkstra’s algorithm [31] and A*

algorithm [24]. Disk-based shortest path algorithms are also proposed [17,

16] for the case where the size of the network is larger than the available

memory.

• Materialization techniques are proposed to precompute the network dis-

tances and store partial/full list of shortest path distances between all pairs

of objects to support efficient distance computations [48, 49, 53, 66, 16, 65].

• The underlying network is transformed into another representation in which

a network distance between two objects can be found in almost constant

time [70, 35, 66].

There is no best strategy for network distance computation as the performance

of these strategies depend on the network properties such as network size, object

density, and frequency of network updates. In general, the performance optimiza-

tion in network query processing has a focus on minimizing the cost of network

data accesses and network distance computations.

Recent frameworks for query processing on spatial networks [59, 66, 28] tend

to support efficient computation of path distances and provide efficient algorithms

for the computation of nearest neighbors, range search, closest pairs, and spatial

join queries. Papadias et al. [59] introduced a disk-based network representation

that integrates connectivity and location information, while spatial entities are
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indexed by respective spatial access methods for supporting Euclidean queries

and dynamic updates. They proposed Incremental Eucledian Restriction (IER)

and Incremental Network Expansion (INE) frameworks. In IER framework, af-

ter the selection of candidate region in Eucledian space, network distances are

computed and used to determine the actual candidates by utilizing the Eucledian

lower-bound property of the network. Network distances are computed on-the-fly

using the A* algorithm when the source and destination are known, otherwise

Dijkstra’s algorithm is employed in queries such as range search. The IER frame-

work assumes Eucledian lower-bound property, which may not hold in practice

(e.g., when the search criteria is defined as the expected travel time). In INE,

network expansion strategy of the Dijkstra’s algorithm is used in query process-

ing. The INE framework assumes monotonically increasing path distances as in

the Dijkstra’s algorithm. In a recent work, Deng et al. [28] showed that the can-

didates in IER and INE can be further pruned by utilizing an incremental lower

bound property to achieve instance optimal query processing in spatial networks.

They introduced the path distance lower bound which is defined as the minimum

of the sum of the actual shortest distance traveled from the source node to the

current node and the estimated (or ”heuristic”) distance from the current node

to the destination node. Based on this lower bound, Deng et al. [28] presented

instance optimal algorithms for nearest neighbor, range search, closest pairs and

multi-source skyline queries.

Sankaranarayanan et al. [66] introduced the Spatially Induced Linkage Cog-

nizance (SILC) framework using the path coherence between shortest paths and

the spatial positions of objects on the spatial network. In the SILC framework,

distances between all pairs of objects in a spatial network is precomputed and

stored to efficiently process spatial network queries. Even though they argue on

the feasibility of their approach, it may not be a practical approach for all appli-

cations when the storage and the complexity of updates are considered. Samet

et al. [65] recently proposed a scalable approach for network distance browsing

based on the precomputation of the shortest paths between all possible vertices

in the network. They make use of an encoding that takes advantage of the fact

that the shortest paths from a source node to all of the remaining nodes can be
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decomposed into subsets based on the first links on the shortest paths between

source and destination nodes. In [65], the amount of storage required to keep

track of the subsets is reduced by taking advantage of their spatial coherence

using a shortest path quadtree.

Range queries [59, 68, 28], closest pairs [59, 28], spatial join [67], and skyline

queries [29, 45] on road networks took the attention of many researchers. Here,

we give a detailed survey for the most popular search algorithm on road networks

namely nearest neighbor search and its extensions.

2.2.1 Nearest Neighbor Search

Studies on nearest neighbor search algorithms constitute a considerable portion

of the previous works due to its applications in many disciplines. A k-nearest

neighbor query returns the k points of interest that have the minimum network

distance from a query point. First, Jensen et al. [46] introduced a general frame-

work for nearest neighbor queries in client-server architectures. A best-first search

algorithm is used to compute the nearest neighbor candidate set in the server side.

Actual distances from the query point to objects in the candidate set is computed

and the nearest neighbor list is maintained by sorting the distances in the client

side. Papadias et al. [59] proposed nearest neighbor search algorithms using the

IER and INE frameworks. They showed that INE is more efficient and robust

than IER, which suffers by the excessive network distance computations due to

false hits. However, IER could perform better in denser, more regular networks

(e.g., city blocks), where the Euclidean distance gives a better approximation of

the travel cost. The main disadvantage of these approaches is they perform poorly

when objects are not densely distributed in the network. In order to overcome

this problem, Kolahdouzan and Shahabi [53] proposed a novel approach using

first order Voronoi diagram. In their approach, the network is partitioned into

Voronoi regions, where each cell is centered by one object and contains the nodes

that are closest to that object in network distance. Distances between nodes

within the region and the center object as well as the distances between the bor-

der nodes of the adjacent cells are precomputed to reduce the computation time
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of distances and k-nearest neighbors. However, for increasing values of k, it gets

computationally more expensive, because many paths can be traversed between

the Voronoi regions. For sparse data sets, the number of border points is large

since the number of Voronoi partitions is small and consequently its polygon is

complex. This makes the computation in the refinement step more complex since

the distances form the query point to all elements in the candidate set need to

be computed. On the other hand, if the data set is dense, the number of Voronoi

partitions and the size of the candidate set is large. Hence, there will be several

possibilities in the refinement step.

Huang et al. [41] proposed the Islands approach that precomputes and stores

the nearest nodes of the points of interest with a maximum distance of the radius

of the island. This approach has the advantage of precomputation approach

together with the network expansion approach. Cho and Chung [19] presented

an approach which is very similar to the Islands approach. They introduced the

concept of condensing points and precomputed the nearest points of interest of

the condensing points. In [19], the authors fixed the number of nearest neighbors

to be precomputed for each condensing point. Almeida and Güting [23] proposed

an incremental nearest neighbor search algorithm using the Dijkstra’s algorithm.

They used an R-tree [36] for indexing the links, which are stored as polylines

and a B-tree for indexing relative positions of points of interest lying on that

link. Recently, Samet et al. [65] proposed a best-first k-nearest neighbor search

algorithm in static networks utilizing their scalable approach for network distance

browsing based on precomputation of the shortest paths between all possible

vertices in the network. As expected, in [65], precomputation-based approaches

are shown to perform better than on-the-fly computation when many queries are

made on a particular spatial network. However, the methods based on Dijkstra’s

algorithm may be preferable especially if the desired neighbors are quite close to

the query object as the entire spatial network need not be explored.

Ku et al. [55] introduced the travel time network, whose link costs are dynamic

and reflect real time traffic functions. Based on this foundation, they proposed

a local-based greedy nearest neighbor algorithm that exploits peer-to-peer com-

munication among clients to compute results and a global-based adaptive nearest
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neighbor algorithm that relies on a centralized server for retrieving results. In

order to continuously monitor the nearest neighbors, Mouratidis et al. [58] pro-

posed two approaches. In their first approach, they maintained the query results

by processing only updates that may invalidate the current nearest neighbor sets.

In the latter approach, the queries that fall in the path between two consecu-

tive intersections in the network are grouped together, and nearest neighbors are

computed by monitoring the nearest neighbor sets of these intersections.

2.2.2 Advanced Nearest Neighbor Search

A continuous nearest neighbor query is defined as finding the nearest points of

interest along an entire path and the result is a set of intervals and their nearest

neighbors. Kolahdouzan and Shahabi [54] extended the Voronoi-based approach

to compute results for continuous nearest neighbor queries. Cho and Chung [19]

combined network expansion and precomputed nearest neighbor lists of network

nodes in order to derive query results.

Yiu et al. [82] proposed solutions for the reverse nearest neighbor queries in

large graphs, where a reverse nearest neighbor query returns data objects that

have a query point as their nearest neighbor. Yoo and Shekhar [85] introduced in-

route nearest neighbor queries on spatial networks. An in-route nearest neighbor

query searches for all points of interest closest to a prespecified route, hence the

detour from the route on the way to the destination is smallest via these points

of interest.

An aggregate nearest neighbor query is defined as finding the point of interest

that minimizes an aggregate distance function (e.g., sum of distances, maximum

travel time) with respect to a set of query points. Yiu et al. [84] proposed solu-

tions for aggregate nearest neighbor queries using alternative aggregate functions.

Their approaches, which utilize Euclidean distance bounds, spatial access meth-

ods, and network distance materialization structures, takes advantage of IER and

INE frameworks proposed in [59]. IER approach is shown to be the best when the

link costs are proportional to their lengths so that Eucledian distance is a tight
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lower bound on actual network distance. However, their IER algorithm requires

a large number of network traversals for the distance computation of candidates.

Hu et. al [38] proposed a method based on precomputation of distance signatures

for each node in the network. Their method is efficient in sparse networks but

the precomputation cost will be extensive in dense networks. Alternatively, Ioup

et al. [44] proposed an algorithm based on M-tree [20] index structure and the

road network embedding method in [70]. The road network embedding method

computes approximate network distances and hence it is not suitable for all ap-

plications.

2.3 Kernel Set of Database Operations

In road network databases, Create, Find, Insert, Delete, Get-a-Successor(GaS ),

and Get-Successors (GS ) operations should be performed efficiently as discussed

in [75]. Here, we will provide a brief overview of these operations. The Create

operation creates a network from a given set of junctions and links. The Find,

Insert, and Delete operations perform the actions implied by their names on

records of junctions. It should be noted that an auxiliary index structure (e.g., a

B+tree with Hilbert-ordering) is necessary to retrieve the records efficiently since

the records are not ordered. Additionally, in order to support different types of

spatial queries using the spatial coordinates, a multidimensional index (e.g., an

R-tree) can be build on top of the data points. The Find operation retrieves

a record from the disk by using the auxiliary index. The successor retrieval

operations GaS and GS are specific to aggregate network queries. The GaS

operation retrieves the record of a specified successor of a given junction from the

page buffer. If the page that stores the record is not in the page buffer, a Find

operation is performed in order to retrieve the page from the disk. Similarly, the

GS operation retrieves the records of all successors of a given junction by scanning

its successor list. While searching for the records of successors, it retrieves the

records that are currently in the page buffer. If there are records that are not

found in the page buffer, one of the remaining records is retrieved by invoking a

Find operation. This process is recursively repeated until all records of successors
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are retrieved.

2.4 Processing Aggregate Network Queries

In road networks, frequently observed aggregate network queries include route

evaluation and path computation queries [74], in which an aggregate property is

defined as a function of the attributes of junctions and links. Here, we will focus

on the problem of determining the aggregate properties on-the-fly by using the

network expansion strategy. In order to derive the aggregate properties, route

evaluation queries require retrieval of all junctions and links in a specified route,

which is a sequence of junctions 〈t1, t2, t3, . . . , tk〉 and links 〈ℓ12, ℓ23, . . . , ℓ(k−1)k〉.

A naive approach for route evaluation is to perform a sequence of Find operations

on the specified junctions. However, a much better alternative is to perform an

initial Find operation followed by a sequence of GaS operations since an efficient

implementation of GaS operations reduces the total disk access cost for route

evaluation queries. Path computation queries deploy iterative search algorithms

such as the breadth-first search, best-first search, A* search, and Dijkstra’s al-

gorithm [31] on the network to derive the aggregate properties. The Dijkstra’s

algorithm processes an unprocessed junction that is extracted from the priority

queue at each iteration, where processing a junction means scanning its succes-

sor list to compute the aggregate property. Thus, in path computation queries,

records are accessed through a sequence of Find and GS operation pairs (i.e.,

Find, GS, . . . , Find, GS ), where the Find operations are selectively performed

only if the record is not found in the current page buffer. The quantitative mod-

els for the disk access cost of several path computations are summarized in [74]

and validated in [73]. These models show that efficient implementation of the GS

operation leads to reduced disk access cost for many path computations.
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Figure 2.1: A sample road network.

2.5 Data Allocation Problem

Since the data records, which contain the topology- and application-dependent

attributes, do not fit into the volatile memory, they must be stored in the sec-

ondary storage. In processing aggregate network queries, a vast amount of data

must be recursively accessed in such a way that records of connected junctions

are likely to be concurrently accessed. Consequently, the disk pages that contain

these records must be fetched into the memory for processing.

Typically, distribution of queries over network elements is not uniform, and

individual access frequencies of the network elements are different. Hence, if the

previous query logs are available, they can be utilized to estimate the access

frequencies of the network elements that will be retrieved by the future queries.

Fig. 2.1 illustrates a sample network with 8 junctions and 14 links, where the

squares represent the junctions and directed lines represent the links. In the

figure, access frequencies for GS and GaS operations are respectively given in

squares and on directed lines.

In this thesis, we mainly focus on the record-to-page allocation problem in

road networks. Given a road network (T ,L) and the access frequencies extracted

from a query log, the record-to-page allocation problem can be stated as the

problem of allocating a set of data records R={r1, r2, . . .} to a set of disk pages

P={P1,P2, . . .} such that the total disk access cost is reduced as much as possible
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while the number of allocated disk pages is kept reasonable. Typically, allocation

of data to disk pages can be modeled as a clustering problem, where the clustering

objective is to store the records that are likely to be concurrently accessed in the

same pages as much as possible. This clustering objective relates to minimizing

the disk access costs of successor retrieval operations in network queries. This

way, efficiency in query processing can be achieved since fewer disk accesses are

usually required to fetch all relevant records.

2.6 Graph and Hypergraph Partitioning

An undirected graph G=(V , E) is defined as a set of vertices V and a set of edges

E . Every edge eij ∈ E connects a pair of distinct vertices vi and vj. A weight

w(vi) is associated with each vertex vi∈V and a cost c(eij) is assigned with each

edge eij ∈ E . Π = {V1,V2, . . . ,VK} is a K-way vertex partition of G if each part

Vk is non-empty, parts are pairwise disjoint, and the union of parts gives V .

In a given K-way vertex partition Π of G, an edge is said to be cut if its pair

of vertices fall into two different parts and uncut otherwise. The partitioning

objective is to minimize the cutsize defined over the cut edges Ecut, that is,

Cutsize(Π) =
∑

eij∈Ecut

c(eij). (2.1)

The partitioning constraint is to maintain an upper bound on the part weights,

i.e., Wk ≤ Wmax, for each k = 1, . . . , K, where Wk =
∑

vi∈Vk
w(vi) denotes the

weight of part Vk and Wmax denotes the maximum allowed part weight.

A hypergraphH=(V ,N ) consists of a set of vertices V and a set of nets N [7].

Each net nj∈N connects a subset of vertices in V , which are called as the pins of

nj and denoted as Pins(nj). Hence, graph is a special instance of a hypergraph

where each net has exactly two pins. The size of a net nj is the number of vertices

connected by nj, i.e., |nj|= |Pins(nj)|. The size of a hypergraph H is defined as

the total number of its pins, i.e., |H|=
∑

nj∈N
(|nj|). Each vertex vi has a weight

w(vi), and each net nj has a cost c(nj).
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In a given K-way vertex partition Π={V1,V2, . . . ,VK} of H, a net is said to

connect a part if it has at least one pin in that part. The connectivity set Λ(nj)

of a net nj is the set of parts connected by nj. The connectivity λ(nj)= |Λ(nj)|

of a net nj is equal to the number of parts connected by nj. If λ(nj) = 1, then

nj is an internal net. If λ(nj)>1, then nj is an external net and is said to be a

cut net. The partitioning objective is to minimize a cutsize metric defined over

the cut nets. In the literature, a number of cutsize metrics are employed [2]. In

connectivity−1 (λ−1) metric, which is widely used in VLSI [22] and in scientific

computing [4, 13, 77] communities, each net nj contributes c(nj)(λ(nj)−1) to the

cutsize of a partition Π. That is,

Cutsize(Π)=
∑

nj∈N

c(nj)(λ(nj)−1). (2.2)

The partitioning constraint is to maintain an upper bound on part weights as in

graph partitioning.

The multi-level framework [10] has been successfully adopted in hypergraph

partitioning leading to successful hypergraph partitioning tools hMeTiS [50] and

PaToH [14]. In multi-level hypergraph partitioning, the original hypergraph is

coarsened into a smaller hypergraph after a series of coarsening levels. At each

coarsening level, highly coherent vertices are grouped into supervertices by using

various matching heuristics. After the partitioning of the coarsest hypergraph,

the generated coarse hypergraphs are uncoarsened back to the original, flat hy-

pergraph. At each uncoarsening level, a refinement heuristic (e.g., Fiduccia-

Mattheyses [32] or Kernighan-Lin [52]) is applied to minimize the cutsize while

maintaining the partitioning constraint.

Although direct K-way hypergraph partitioning [3] is feasible, the Recursive

Bipartitioning (RB) paradigm is widely used in K-way hypergraph partitioning

and known to be amenable to produce good solution qualities. This paradigm is

especially suitable for partitioning hypergraphs when K is not known in advance.

In the RB paradigm, first, a two-way partition of the hypergraph is obtained.

Then, each part of the bipartition is further bipartitioned in a recursive manner
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until the desired number K of parts is obtained or part weights drop below a

given maximum allowed part weight, Wmax.

2.7 Disk-Based Network Representations

A considerable number of studies have been carried out on spatial databases

to design effective storage schemes [33, 42, 59, 61, 62, 63, 75, 81] for ef-

ficient query processing. These efforts can be categorized into two groups

as proximity- and connectivity-based approaches. In the proximity-based ap-

proaches [33, 61, 62, 63], interrelation of data is dependent on spatial proximity.

However, query processing in spatial networks mostly involves route evaluation

and path computation queries [34, 57, 72], which require the use of the con-

nectivity information. As the connectivity information cannot be resolved from

spatial proximity, the proximity-based approaches are not directly applicable in

indexing and querying of spatial networks [73]. In the connectivity-based ap-

proaches [43, 59, 75, 81, 84], the connectivity relationship is embedded in graph

representations of spatial networks. Based on this fact, efficient access meth-

ods are proposed for directed network graphs with no cycles [5, 21, 39, 56] and

with limited cycles [1]. However, as these proposals rely on the total ordering

of the graph vertices, they do not accurately model all kinds of spatial networks

including road networks.

In the literature, only a few approaches which fully utilize the connectivity

information are proposed [75, 81, 43]. These works use graph partitioning for

clustering the spatial network data. These approaches represent the spatial net-

work as an undirected clustering graph, where partitioning the clustering graph

induces a clustering of the spatial network data into disk pages and the partition-

ing objective relates to storing concurrently accessed data in the same pages.

Shekhar and Liu [75] proposed Connectivity-Clustered Access Method

(CCAM) to cluster the spatial network data into disk pages based on network

connectivity using graph partitioning. Basic database operations (i.e., Create,
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Find, Insert, and Delete) and successor retrieval operations (i.e., GaS and GS )

are evaluated in their clustering graph model. CCAM focuses on Get-a-Successor

(GaS ) operations to retrieve a successor of a junction in route evaluation queries

and Get-Successors (GS ) operations to retrieve all successors of a junction in

path computation queries. CCAM correctly captures the disk access cost of

(GaS ) operations and tries to minimize the disk access cost of successor retrieval

operations. In [75], the authors also evaluate dynamic reclustering strategies. Ex-

perimental results show that CCAM performs better than the previous proximity-

and connectivity-based methods in reducing the number of disk page accesses.

The clustering graph model is used in the recent spatial query processing and

clustering works [49, 83, 84, 23].

Woo and Yang [81] proposed the Network-Traversal Clustering (NTC)

method, which obtains the minimum number of disk pages based on the as-

sumption that the size of data records is fixed and the disk page size is a multiple

of the record size. This assumption is not appropriate for spatial networks since,

in most cases, the record sizes vary depending on the connectivity of the network.

Both CCAM [75] and NTC [81] methods fail to correctly capture the number

of disk accesses incurred by the successor retrieval operations on spatial networks.

As mentioned in [75], although the clustering graph model accurately captures

the disk access cost of GaS operations, it cannot correctly capture the disk ac-

cess cost of GS operations. When GaS and GS operations are not uniformly

distributed over the network and the GS operations are more frequent than the

GaS operations, the performance of the clustering graph model degrades. We will

describe in detail and discuss more on the clustering graph model in Section 3.2.

Huang et al. [42] described a general scheme, where links of the network are

stored in a separate link table. They proposed a clustering technique, called spa-

tial partition clustering (SPC), for optimization of path computations. In their

approach, the link table is clustered into disk pages such that each page stores

the information of links whose source coordinates are closely located. This ap-

proach is based on spatial locality, and hence the clustering of links does not

utilize the connectivity information. In [43], Huang et al. proposed alternative
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approaches based on SPC and the two-way partitioning clustering [18], which try

to utilize both the spatial locality and connectivity information. They used the

ratio-cut [18] and Fiduccia-Mattheyses [32] heuristics to reduce the number of

cross-page links. Papadias et al. [59] proposed a data structure that integrates

connectivity information with the spatial properties. The successor lists of junc-

tions that are close in space according to their Hilbert ordering are placed in the

same disk page. Yiu et al. [84] partitioned the network graph into grids using

spatial coordinates of the nodes. The data records are packed into pages in a

breath-first manner starting from a randomly selected node in a grid and select-

ing nodes from that grid using the connectivity information. These approaches

do not model the disk access cost of successor retrieval operations in path com-

putation queries. None of the above approaches but CCAM capture spatial and

temporal coherency in queries via utilizing query logs.



Chapter 3

Junction-Based Storage Scheme

In this chapter, fist, we describe the widely used junction-based storage scheme.

We show that the state-of-the-art clustering graph model for allocation of data

of disk pages is not able to correctly capture the disk access costs of succes-

sor retrieval operations. We propose a novel clustering hypergraph model that

correctly captures the disk access costs of these operations. The proposed model

aims to minimize the total number of disk page accesses due to successor retrieval

operations. Based on this model, we further propose two adaptive recursive bi-

partitioning schemes to reduce the number of allocated disk pages while trying

to minimize the number of disk page accesses. We evaluate our clustering hy-

pergraph model and recursive bipartitioning schemes on a wide range of road

network datasets in Section 6.3. The results of the conducted experiments show

that the proposed model is quite effective in reducing the number of disk accesses

incurred by the network operations.

The organization of this chapter is as follows: In Section 3.2, the clustering

graph model and its deficiencies are discussed. Section 3.3 presents the clustering

hypergraph model for the junction-based storage scheme. We present our adap-

tive partitioning schemes in Section 3.4. Finally, we conclude the chapter with a

summary in Section 3.5.

21
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3.1 Definition

A frequently used approach for storing a road network in the secondary storage

is to use the adjacency list data structure, where a record is allocated for each

junction of the network [75, 59, 69, 84, 76]. Each record ri stores the data associ-

ated with junction ti and its connectivity information including the predecessor

and successor lists. The data associated with junction ti contains the coordi-

nate of junction ti and its attributes. The predecessor list Pre(ti) denotes the

list of incoming links of ti, whereas the successor list Suc(ti) denotes the list of

outgoing links of ti. Each element in the predecessor list stores the coordinates

of the source junction th of an incoming link ℓhi. The predecessor lists are used

in maintenance operations to update the successor lists. In the successor list,

each element stores the coordinates of the destination junction tj of an outgoing

link ℓij as well as the attributes of ℓij. The record sizes are not fixed because of

the variation in the predecessor and successor list sizes. If all links of a junction

ti are bidirectional, a storage saving can be achieved since the predecessor and

successor lists of ti contain exactly the same set of junctions. Hence, it suffices

to store only the successor list of ti.

3.2 Clustering Graph Model

In this section, we briefly describe the clustering graph model proposed by

Shekhar and Liu [75] and deficiencies of their model.

3.2.1 Graph Representation

An undirected clustering graph G=(V , E) is created to model the network (T ,L).

In G, a vertex vi∈V exists for each record ri∈R storing the data associated with

junction ti∈T . The size of a record ri is assigned as the weight w(vi) of vertex

vi. There exists an edge eij between vertices vi and vj, for i < j, if junctions ti

and tj are connected by at least one link. That is, eij∈E if either ℓij∈L or ℓji∈L
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or both. The cost c(eij) associated with eij is

c(eij) =















f(ti)+f(ti, tj), if ℓij∈L, ℓji 6∈L;

f(tj)+f(tj, ti), if ℓji∈L, ℓij 6∈L;

f(ti)+f(tj)+f(ti, tj)+f(tj, ti), if ℓij, ℓji∈L.

(3.1)

3.2.2 Graph Model

Shekhar and Liu [75] formulate the record-to-page allocation problem as the prob-

lem of partitioning the clustering graph G with the disk page size being the up-

per bound on part weights. Shekhar and Liu partition G into a number of parts

Π = {V1,V2, . . .}, where each part Vk ∈ Π corresponds to the subset of records

to be assigned to disk page Pk ∈ P. The partitioning objective is to maximize

the Weighted Connectivity Residue Ratio (WCRR) metric, which corresponds to

maximizing the sum of the costs of internal edges in a partition. It can be shown

that maximizing WCRR is equivalent to minimizing the cutsize given in (2.1).

This cutsize relates to the total disk access cost of successor retrieval operations.

Note that, in the original problem definition given in Section 2.5, the number K

of parts is not known in advance. Thus, they use a partitioning algorithm based

on recursive bipartitioning with ratio-cut heuristic in order to create a number of

parts, each with a size less than or equal to the disk page size.

Fig. 3.1 shows the clustering graph G for the sample network given in Fig. 2.1.

In the figure, circles denote vertices, and lines denote edges. For the sake of clarity,

G is displayed in two parts, where edge costs represent the access frequencies of

GaS operations in Fig. 3.1(a) and GS operations in Fig. 3.1(b). Fig. 3.1 also

shows a 3-way partition Π = {V1,V2,V3} of G, where the shaded regions represent

the vertex parts.

3.2.3 Deficiencies of Clustering Graph Model

Although the clustering graph model correctly captures the disk access cost of

GaS operations invoked in route evaluation queries, it fails to correctly capture
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Figure 3.1: A 3-way vertex partition, which models disk access costs of (a) GaS
and (b) GS operations for the clustering graph G of the sample network given in
Fig. 2.1.

the cost of GS operations invoked in path computation queries. Consider a

junction ti with dout(ti) > 1 successive junctions. Assume that the records of

these dout(ti)+1 junctions span two disk pages. The cost of such an assignment

should always be f(ti). However the cost estimated by the clustering graph model

depends on the distribution of these dout(ti)+1 records across the two pages.

Consider a distribution in which record ri is assigned to a page together with

m<dout(ti)−1 of the records corresponding to successors of ti and the remaining

dout(ti)−m records are assigned to the other page. In this case, the graph model

estimates the cost as (dout(ti)−m)× f(ti), which is an overestimation compared

to the actual cost f(ti). This deficiency easily extends to the cases where these

dout(ti)+1 records are distributed among more than two pages. On the other hand,

the graph model succeeds in cases where each record corresponding to successors

of junction ti, except the ones in the page of ri, is allocated to a separate page.

In Fig. 3.1, we illustrate the deficiency of the clustering graph model in es-

timating the total disk access cost of GS operations using the sample parti-

tion Π = {V1 = {v1, v4, v5},V2 = {v2, v3},V3 = {v6, v7, v8}}. According to par-

tition Π, the total costs of GaS and GS operations, due to the cut edges in

Ecut = {e12, e13, e24, e34, e46, e47, e57}, are computed as 51 and 73, respectively.

Note that 51 is a correct estimation for the cost of GaS operations. However, the
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disk access cost of GS operations is overestimated as 73, whereas the actual cost

is 53. This difference 73−53 = 20 stems from the overestimation of the costs of

the GS (t1) and GS (t7) operations by the clustering graph model. For example,

the disk access cost of GS (t1) operations, where the set of successors of t1 is

Suc(t1)={t2, t3, t4}, is overestimated as 2×11 = 22 due to the cut edges e12, e13,

each with a cost of 11. However, the actual cost is f(t1)=11 since page P2, which

contains records r2 and r3, is accessed and placed into the page buffer only once

to retrieve both r2 and r3 at each GS (t1) operation.

3.3 Clustering Hypergraph Model

In this section, we propose a clustering hypergraph model for the record-to-page-

allocation problem.

3.3.1 Hypergraph Construction

A clustering hypergraph H=(V ,N ) is created to model the network (T ,L). In

H, a vertex vi∈V exists for each record ri∈R storing the data associated with

junction ti∈T . The size of a record ri is assigned as the weight w(vi) of vertex

vi. The net set N of H is the union of two disjoint sets of nets, NGaS and NGS,

which respectively encapsulate the disk access costs of GaS and GS operations,

i.e., N =NGaS∪NGS.

We employ two-pin nets in H to represent the disk access cost of GaS opera-

tions. In NGaS, there exists a two-pin net nij with Pins(nij)={vi, vj}, for i<j,

if junctions ti and tj are connected by at least one link. That is, nij ∈N
GaS if

either ℓij∈L or ℓji∈L or both. The cost c(nij) associated with nij for capturing

the costs of GaS (ti, tj) and GaS (tj, ti) operations is
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Figure 3.2: The clustering hypergraph: (a) two-pin net n12 for the GaS (t1, t2)
and GaS (t2, t1) operations (b) multi-pin net n1 for the GS (t1) operations.

c(nij) =















f(ti, tj), if ℓij∈L, ℓji 6∈L;

f(tj, ti), if ℓji∈L, ℓij 6∈L;

f(ti, tj)+f(tj, ti), if ℓij, ℓji∈L.

(3.2)

Note that these two-pin nets correspond to the edges employed in the clus-

tering graph described in Section 3.2.1 with the difference that their costs do not

include the costs of GS operations (i.e., the access frequency f(ti) of junction ti).

Fig. 3.2(a) displays the two-pin net construction for a pair of neighbor junctions

t1 and t2.

We employ multi-pin nets in H to represent the disk access cost of GS oper-

ations. In NGS, there exists a (dout(ti)+1)-pin net ni for each junction ti with

dout(ti)>0 successors, where ni connects vertex vi and the vertices corresponding

to the records of the junctions that are in the successor list of ti. That is,

Pins(ni) = {vi} ∪ {vj : tj ∈ Suc(ti)},

where Suc(ti) is the set of successors of ti. Each net ni is associated with a cost

c(ni) = f(ti) (3.3)

to capture the cost of GS (ti) operations. Fig. 3.2(b) displays the multi-pin net

construction for junction t1 with Suc(t1)={t2, t3, t4}.

The size of the clustering hypergraphH in terms of the number of pins depends

on the topological properties of the network. The number |NGaS| of two-pin nets
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varies between ⌈|L|/2⌉ and |L|. The number |NGS| of multi-pin nets equals |T |−α,

where α = |{ti : dout(ti) = 0}| is the number of dead ends. The number of pins

introduced by multi-pin nets is |L|+|T |−α. Hence, the total number of pins in

H is between 2 ⌈|L|/2⌉+|L|+|T |−α and 3 |L|+|T |−α.

3.3.2 Hypergraph Model

After modeling the network (T ,L) as a clustering hypergraph H, we formulate

the record-to-page allocation problem as the problem of partitioning H with the

disk page size, P , being the upper bound on part weights (i.e., Wmax = P ). A

hypergraph partitioning algorithm can be used to partition the clustering hy-

pergraph into a number of parts Π = {V1,V2, . . .}. Here, partition Π induces a

record-to-page allocation, where each part Vk ∈ Π corresponds to the subset of

records to be allocated to disk page Pk∈P. That is, vi∈Vk means that record ri

is allocated to page Pk.

In our model, the cutsize of a partition Π relates to the total number of disk

accesses incurred by the GaS and GS operations. The cutsize can be written as

Cutsize(Π) =
∑

ni∈NGaS

c(ni)(λ(ni)− 1) +
∑

ni∈NGS

c(ni)(λ(ni)− 1)

=
∑

ni∈N

c(ni)(λ(ni)− 1). (3.4)

In fact, under the assumption that a single-page buffer is available, the λ−1

cost incurred to the partition by the 2-pin cut nets in NGaS exactly corresponds

to the disk access cost incurred by the GaS operations in the route evaluation

queries. With the assumption of a single-page buffer, the λ−1 metric is also able

to encapsulate the disk access cost of GS operations in the path computation

queries. Our model correctly captures the aggregate disk access costs of GaS and

GS operations. Consequently, in our model, minimizing Cutsize(Π) given in (3.4)

exactly minimizes the total number of disk accesses.



CHAPTER 3. JUNCTION-BASED STORAGE SCHEME 28

To illustrate the correctness of our model, we provide the following example.

Consider a partition Π and a 2-pin net nij ∈N
GaS with Pins(nij) = {vi, vj}. If

nij is internal to a part Vk, then records ri and rj both reside in page Pk. Since

both ri and rj can be found in the memory when Pk is in the page buffer, neither

GaS (ti, tj) nor GaS (tj, ti) operations incur any disk access. If nij is a cut net

with connectivity set Λ(nij)={Vk,Vm}, ri and rj reside in separate pages Pk and

Pm. Without loss of generality, assume that ri ∈ Pk and rj ∈ Pm. In this case,

GaS (ti, tj) operations incur f(ti, tj) disk accesses in order to replace the current

page Pk in the buffer with Pm in the disk. In a similar manner, GaS (tj, ti)

operations incur f(tj, ti) disk accesses in order to replace the current page Pm in

the buffer with Pk in the disk. Hence, cut net nij incurs a cost of c(nij) to the

cutsize since λ(nij)−1=1.

Now, consider the same partition Π and a multi-pin net ni ∈ N
GS. If ni is

internal to a part Vk, then record ri and all records of the successive junctions of

ti reside in page Pk. Consequently, GS (ti) operations do not incur any disk access

since page Pk is already in the page buffer. If ni is a cut net with connectivity

set Λ(ni), record ri and the records of the successors of ti are distributed across

the pages corresponding to the vertex parts that belong to Λ(ni). Without loss of

generality, assume that ri resides in page Pk, where Vk must be in Λ(ni). In this

case, each GS (ti) operation incurs λ(ni)−1 page accesses in order to retrieve the

records of the successors of ti by fetching the pages corresponding to the vertex

parts in Λ(ni)−{Vk}. Hence, cut net ni incurs a cost of c(ni)(λ(ni)−1) to the

cutsize.

In Fig. 3.3, we illustrate the correctness of the clustering hypergraph H for

the network given in Fig. 2.1 using partition Π = {V1 ={v1, v5},V2 ={v2, v3, v4},

V3 = {v6, v7, v8}}. For the sake of simplicity, H is given in two parts which

separately show the net sets NGaS and NGS with the associated costs of GaS

and GS operations shown in parentheses. According to partition Π, the disk

access cost of GaS operations, due to the set {n12, n13, n14, n45, n46, n47, n57} of

cut nets, is computed as (3+6+4+5+18+7+7)(2−1) = 50 since each of these

nets has a connectivity of 2. The disk access cost of GS operations, due to the set

{n1, n4, n7} of cut nets, is computed as 11×(2−1)+10×(3−1)+9×(3−1)=49 since
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Figure 3.3: The clustering hypergraph H for the network given in Fig. 2.1
and a 3-way vertex partition separately shown on net-induced subhypergraphs
(a) (V ,NGaS) and (b) (V ,NGS) respectively modeling disk access costs of GaS
and GS operations.

the connectivities of these nets are 2, 3, and 3, respectively. Note that internal

nets do not incur any cost for neither GaS nor GS operations since they have a

connectivity of 1. In Fig. 3.3(b), consider cut net n1 with Pins(n1)={v1, v2, v3, v4}

and Λ(n1) = {V1,V2}. Since v1 is in vertex part V1, page P1 must be the single

page in the buffer when GS (t1) operations are invoked. Since v2, v3, and v4 are

all in V2, each of the 11 GS (t1) operations will incur only one disk access for page

P2 to bring it into the page buffer for retrieving records r2, r3 and r4.

It is worthwhile to elaborate on the difference between the partitions produced

by the clustering graph and hypergraph models for the network given in Fig. 2.1.

In Fig. 3.1 and Fig. 3.3, both models achieve their optimum partitions under

the partitioning constraint of three records per page. The clustering hypergraph

model achieves a better record-to-page allocation with a disk access cost of 99

compared to the clustering graph model which has a cost of 124. This is basically

due to the difference in the assignment of vertex v4 to parts; v4 is in V1 in the

clustering graph model, whereas it is in V2 in the clustering hypergraph model.

The clustering graph model fails to obtain this better allocation since the high
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cost of edge e14 due to GS (t1) operation prevents vertex v4 from moving to V2

although introducing this edge to the cut actually incurs no additional cost.

3.4 Recursive Graph/Hypergraph Bipartition-

ing Schemes

In the record-to-page allocation problem, a secondary objective, in addition to

the main objective of minimizing the number of disk accesses, is to keep the

number of allocated disk pages as small as possible. Since the size of each record

varies depending on the topological properties of the network, the total number

K of pages to be allocated is not known in advance. The lower bound on K is

equal to the ratio of the total size of the records to the disk page size. It is hard

to achieve this lower bound since the problem of minimizing the number of disk

pages is NP-hard (bin-packing problem [37]) even without the main objective of

minimizing the number of disk accesses.

The Recursive Bipartitioning (RB) paradigm is widely used in K-way

graph/hypergraph partitioning and known to be amenable to produce good so-

lution qualities. This paradigm is inherently suitable for partitioning graphs and

hypergraphs when K is not known in advance. Hence, the RB paradigm can be

successfully employed in the clustering graph and hypergraph models for solving

the record-to-page allocation problem.

In the RB paradigm, first, a two-way partition of the graph/hypergraph is

obtained. Then, each part of the bipartition is further bipartitioned in a recursive

manner until the desired number K of parts is obtained or part weights drop below

a given maximum allowed part weight, Wmax. In RB-based graph partitioning,

the cut-edge removal scheme is adopted, that is, the cut edges of the bipartition

are removed after each bipartitioning step. In RB-based hypergraph partitioning,

the cut-net splitting scheme [13] is adopted to capture the λ−1 cutsize metric

given in (3.4). In both graph and hypergraph partitioning, balancing the part

weights of the bipartition is enforced as the bipartitioning constraint.



CHAPTER 3. JUNCTION-BASED STORAGE SCHEME 31

3.4.1 Determining Number of Pages

Here, we introduce two RB schemes, based on different bipartitioning constraints,

to partition the records into pages while trying to minimize the total number

of allocated pages. In both schemes, bipartitioning is recursively employed for

partitioning the clustering graphs/hypergraphs until all parts have weights less

than or equal to Wmax, which is set to be equal to the disk page size, P . In

a resulting partition Π = {V1,V2, . . .}, a part Vk is said to be lightly loaded if

(Wk/Wmax)≤0.5 and heavily loaded otherwise.

In the first scheme, RB1, the bipartitioning constraint on part weights is to

obtain two nearly equal-sized parts. That is,

W1,W2≤
W1+W2

2
(1+ǫ), (3.5)

where W1 and W2 are the weights of the parts of the bipartition, and ǫ is the

allowed deviation ratio over the predetermined load distribution. The deviation

ratio is introduced to provide a flexibility to the bipartitioning heuristics for

achieving lower cutsize values. In essence, each bipartitioning step tries to balance

the part weights to maintain a uniform space utilization among the pages. We

slightly adapt the bipartitioning constraint given in (3.5) when the weight of a

part to be bipartitioned drops below 3P . One of the parts is forced to have a

weight close to P in order to increase the load factor of heavily loaded parts thus

increasing the number of lightly loaded parts. By this adaptation, it is possible

to further decrease K since lightly loaded parts are likely to be generated and

packed into pages.

On the other hand, in the second scheme, RB2, the bipartitioning constraint

on part weights is

W1,W2≤P

⌈

W1+W2

2P

⌉

(1+ǫ) (3.6)

to obtain a distribution such that one of the part weights is nearly a multiple of

P . In essence, weight distribution of parts is adaptively tuned to decrease K by

increasing the load factors of the heavily loaded parts with the assumption of a

following phase in which the lightly loaded parts will be packed. This objective
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is tried to be achieved by making one of the part weights approximately a mul-

tiple of the disk page size, instead of dividing a part into two nearly equal-sized

parts. However, due to the allowed deviation ratio, this partitioning approach

may generate large numbers of lightly loaded parts.

3.4.2 Packing Lightly Loaded Parts

Elimination of lightly loaded parts can be formulated as an instance of the bin-

packing problem [37], where the parts correspond to items, pages correspond to

bins, and the disk page size corresponds to bin capacity. The best-fit-decreasing

heuristic used in solving the bin-packing problem is adopted to obtain a final

distribution of parts to pages. Parts are assigned to pages in decreasing size

order, where the best-fit criterion corresponds to assigning a part to a page which

currently has the minimum space utilization.

It is also possible to further improve the primary objective of minimizing the

total disk access cost while reducing the number of allocated pages. This can be

done by modifying the best-fit criterion such that a part is assigned to a page

that already contains part(s) with the highest weighted net connectivity to the

part to be assigned. However, experimental results show that the gain is at most

0.5% of the total cutsize. The improvement of packing is very small since the

lightly loaded parts are generated at relatively distant branches of the recursive

bipartitioning tree and the cutsize contribution of the nets that connect such

parts is typically very small.

3.5 Summary

We investigated the record-to-page allocation problem for the junction-based stor-

age scheme in road network databases. We showed that the state-of-the-art clus-

tering graph model does not correctly capture the cost of the Get-Successors

operations incurred in path computation queries, and hence it is not suitable for
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road networks where the path computations occur frequently. In order to over-

come this deficiency, we proposed a clustering hypergraph model. Our model

correctly captures the costs of disk accesses for both Get-a-Successor operations

incurred by route evaluation queries and Get-Successors operations incurred by

path computation queries. We also presented two recursive bipartitioning schemes

to reduce the number of allocated disk pages while trying to minimize the number

of disk page accesses.

In order to evaluate our clustering hypergraph model for the junction-based

storage scheme, we have conducted extensive simulation tests. In Chapter 6,

we present and discuss the simulation results of the proposed model in detail.

Experimental results obtained on a wide range of road networks verify the validity

of our hypergraph model.



Chapter 4

Link-Based Storage Scheme

In this chapter, we introduce the link-based storage scheme and compare it with

the previously proposed junction-based storage scheme. We extend our clustering

hypergraph model in Chapter 3 from junction-based storage to link-based storage.

We propose techniques for additional storage savings in bidirectional networks

that make the link-based storage scheme even more preferable in terms of the

storage efficiency. We evaluate the performance of our link-based storage scheme

against the junction-based storage scheme both theoretically and empirically. The

results of the experiments conducted on a wide range of road network datasets

and presented in Section 6.4 show that the link-based storage scheme is preferable

in terms of both storage and query processing efficiency.

The organization of this chapter is as follows: In Sections 4.1, the link-based

storage scheme is introduced. Section 4.2 gives a detailed comparison between the

junction-based storage scheme and the link-based storage scheme. Auxiliary index

structures to support query processing on these storage schemes are discussed in

Section 4.3. Section 4.4 presents our clustering hypergraph model for the link-

based storage scheme. Finally, we summarize the chapter in Section 4.5.

34
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4.1 Definition

In the proposed link-based storage scheme, a record is allocated for each link

of the network. Each record rij stores the data associated with link ℓij and its

connectivity information. The data associated with a link ℓij typically contains

the coordinates of junctions ti and tj, attributes of the destination junction tj

and attributes of ℓij. The connectivity information includes the predecessor and

successor lists. The predecessor list Pre(ℓij) includes the set of incoming links

of the source junction ti of ℓij, whereas the successor list Suc(ℓij) includes the

set of outgoing links of the destination junction tj of ℓij. Each element in the

predecessor list of a link ℓij stores the coordinates of the source junction th of an

incoming link ℓhi, whereas each element in the successor list stores the coordinates

of the destination junction tk of an outgoing link ℓjk.

In this scheme, storage savings can be achieved if the network contains bidi-

rectional links where the link attributes are the same for both directions. For

example, if ℓij, ℓji ∈L, the information in records rij and rji can be stored as a

single record, where the predecessor and successor lists are updated accordingly.

Further savings can be achieved if all links of both junctions of a bidirectional link

are also bidirectional. In that case, the predecessor and successor lists of both ℓij

and ℓji can be stored only once since the predecessor list of ℓij corresponds to the

successor list of ℓji and vice versa.

4.2 Comparison of Storage Schemes

In practice, the storage size of the link attributes is greater than that of the junc-

tion attributes, and the number of links is greater than the number of junctions.

Depending on these network-specific parameters, one of the two storage schemes

may be favorable in terms of the total storage size and/or the average record size.

The role of average record size in the disk access cost of network queries can be

explained as follows. For a given query distribution, the sum of the frequencies

of the GS operations to be invoked from the outgoing links of junction tj in the
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link-based storage scheme is equal to the frequency of the GS operations to be in-

voked from tj in the junction-based storage scheme. Hence, in processing a query,

the number of records to be retrieved in both storage schemes is the same. Since

smaller average record size enables clustering more records to a page, the query

overhead is expected to decrease with decreasing average record size. Below, we

provide a detailed comparative analysis of the storage schemes in terms of both

the total storage size and average record size.

The total storage sizes ST and SL of the junction- and link-based storage

schemes can be computed as

ST =
∑

t∈T

(Cid + CT + |Pre(t)|Cid + |Suc(t)|(Cid + CL))

c(t)|(Cid + CL))

= |T |(Cid + CT) + |L|(2Cid + CL) (4.1)

and

SL =
∑

ℓ∈L

(2Cid + CL + CT + |Pre(ℓ)|Cid + |Suc(ℓ)|Cid)

= |L|(2Cid + CL + CT) + Cid

∑

ℓ∈L

(|Pre(ℓ)|+ |Suc(ℓ)|), (4.2)

where Cid denotes the storage size of junction coordinates. CT and CL refer to

the fixed storage size of junction and link attributes, respectively. The difference

between the total storage sizes of the two schemes is

SL − ST = Cid

∑

ℓ∈L

(|Pre(ℓ)|+ |Suc(ℓ)|) + |L|CT − |T |(Cid + CT)

= CT(|L| − |T |) + Cid

(

∑

ℓ∈L

(|Pre(ℓ)|+ |Suc(ℓ)|)− |T |

)

. (4.3)

In a typical road network, the number of links is greater than the number of

junctions (i.e., |L|> |T |), and each link has at least one predecessor or successor

(i.e., |Pre(ℓ)| + |Suc(ℓ)| ≥ 1 for each ℓ). Hence, both terms in (4.3) are always
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positive. As a result, the link-based storage scheme requires more disk space than

the junction-based storage scheme.

The average record sizes sT and sL of the junction- and link-based storage

schemes can be computed as follows under the simplifying assumption that the

number of incoming and outgoing links for each junction are both equal to davg =

|L|/|T |. Under this assumption, ST remains the same while SL and SL−ST

respectively become

SL = |L|(2Cid + CL + CT) + 2Cid|L|davg (4.4)

and

SL − ST = CT(|L| − |T |) + Cid(2|L|davg − |T |). (4.5)

Hence, the average record sizes are

sT =
ST

|T |
= Cid + CT + davg(2Cid + CL) (4.6)

and

sL =
SL

|L|
= 2Cid + CL + CT + 2Ciddavg. (4.7)

The difference between the average record sizes of the two schemes is

sT − sL = CL(davg − 1)− Cid. (4.8)

In a typical road network, davg > 1 and CL > Cid. Hence, the average record

size in the link-based storage scheme is always smaller than that of the junction-

based storage scheme under the given simplifying assumption. As seen from this

comparative analysis, although the link-based storage scheme requires more disk

space, its average record size is likely to be smaller. Thus, the link-based storage

scheme can be expected to perform better than the junction-based storage scheme

in terms of disk access cost.

In bidirectional networks, the storage savings described in Sections 3.1 and 4.1

are expected to increase the efficiency of both storage schemes. The link-based
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storage scheme is expected to benefit more from the storage savings compared

to the junction-based storage scheme since, in the link-based storage scheme, we

combine the records storing the two directional links between two junctions into

a single record and hence halve the number of records. The total storage size

decreases for both schemes as shown below:

Sb
T = |T |(Cid + CT) + |L|(Cid + CL) (4.9)

and

Sb
L =
|L|

2
(2Cid + CL + 2CT) + 2Cid|L|(davg − 1). (4.10)

Note that (4.10) is derived by using the simplifying assumption mentioned earlier.

The difference between the total storage sizes of the two schemes becomes

Sb
L − Sb

T = CT(|L| − |T |) + Cid(2|L|(davg − 1)− |T |)− CL
|L|

2
. (4.11)

The comparison of (4.5) and (4.11) shows that the total storage size difference

between the two schemes decreases in favor of the link-based scheme by |L|(2Cid+

CL/2). As seen in (4.11), the link-based scheme may even require less total disk

space than the junction-based scheme for large CL values.

In bidirectional networks, the average record sizes become

sb
T =

Sb
T

|T |
= Cid + CT + davg(Cid + CL) (4.12)

and

sb
L =

Sb
L

|L|/2
= CL + 2CT + 2Cid(2davg − 1). (4.13)

The difference between the average record sizes of the two schemes is

sb
T − sb

L = CL(davg − 1)− 3Cid(davg − 1)− CT. (4.14)

The comparison of (4.8) and (4.14) shows that the difference between the average

record sizes decreases in bidirectional networks in general. As seen in (4.14), the
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average record size of the link-based scheme remains to be less than that of the

junction-based scheme for typical networks, where davg >1, CL >3Cid, and CT is

quite small.

Even though the average record size difference between the two schemes de-

creases in bidirectional networks, the link-based storage scheme is still more

amenable to record clustering compared to the junction-based scheme. We will

explain this advantage of the link-based storage scheme over the junction-based

storage scheme for a junction tj with d links all of which are bidirectional. In

the junction-based storage scheme, junction tj will have d successors. We should

cluster record rj storing tj together with all the records storing the d successor

junctions to the same page to avoid the page access cost for the GS (tj) operation.

That is, these d+1 records need to be clustered in the same page. On the other

hand, in the link-based storage scheme scheme, each link incident to junction tj

has d−1 successors excluding itself. Since rij stores both ℓij and ℓji, we should

cluster record rij together with d−1 records storing the links incident to tj other

than ℓji in the same page to avoid the page access cost for the GS (ℓij) operation.

This holds for all records storing the links incident to junction tj. Hence, it is

sufficient to cluster these d records in the same page to avoid the page access cost

for the GS operations invoked from the links incident to junction tj. Therefore,

in the link-based scheme, each GS operation invoked from a junction connected

by only bidirectional links can be accomplished by accessing one less record than

the junction-based scheme.

Figs. 4.1(a) and (b) respectively show the junction- and link-based storage

schemes for a sub-network consisting of a junction t1 connected by 4 bidirectional

links. The data records are shown in the right sides of Fig. 4.1, where the succes-

sors are separated by bold lines and additional successors are appended as dotted

parts to represent the neighbor junctions/links not shown in the figure. In the

junction-based storage scheme, d = 5 records (i.e., r1, r2, r3, r4, and r5), whereas

in the link-based storage scheme d−1=4 records (i.e., r12, r13, r14, and r15) need

to be clustered in a page to avoid the page access cost for the same number of

GS operations. This explains why the link-based storage scheme will be more

amenable to clustering than the junction-based storage scheme even when the
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Figure 4.1: Storage of records in a bidirectional sub-network using (a) the
junction-based and (b) the link-based storage schemes.

average record sizes are equal in the two storage schemes.

In addition to the above-mentioned advantages in storage size and cluster-

ing, the link-based storage scheme, as in the dual network concept, which was

originally proposed in [11] and later used in [79] and [80], expresses the rela-

tions between consecutive links along paths and is more suitable to capture the

restrictions in networks such as turn restrictions.
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4.3 Auxiliary Index Structures

A hash-based index structure is used to locate the network elements in both

storage schemes. Data retrieval (i.e., Find, GaS, and GS ) operations needed for

querying network elements in the course of execution are performed by using

this hash-based index with an average cost of single disk access for each retrieval

request if the network element does not already reside in the memory. The storage

cost of a hash-based index is in the order of number of network elements to be

indexed. So, the storage cost of the hash-based index is in the order of |T | and |L|

in the junction- and link-based storage scheme, respectively. That is, the hash-

based index respectively requires an additional storage of size Shash = |T |Cptr

and Shash = |L|Cptr in the junction- and link-based storage schemes, where Cptr

denotes the size of a pointer to a data record.

In general, the route evaluation or path computation queries are submitted

to the GIS systems as point queries, which contain the (x, y) coordinates of a

source and a destination point. It is more likely that the query points lie on the

links rather than junctions. Here, we refer to the link that a source point lies on

as the source link. In the link-based storage scheme, route evaluation and path

computation start from the source link, whereas, in the junction-based storage

scheme, they start from the destination junction of the source link. In both cases,

the source link must be identified. In our architecture, an R-tree index on links is

used as an additional index in both storage schemes and the sole purpose of this

index is to locate the source link. The R-tree has two types of nodes: non-leaf

nodes and leaf nodes [36]. Non-leaf nodes contain index record entries of the form

<MBR, ptr> where MBR is the minimum bounding rectangle of all rectangles

stored in the entries of the lower level child node pointed to by ptr. The only

minor difference between the R-tree implementation in the two storage schemes

is the data stored in the leaf nodes. Each leaf node stores an <MBR, ptr> pair

for a link, where MBR corresponds to the minimum bounding rectangle of the

link and ptr is the disk page address of the respective record. This record stores

data associated with the respective link in the link-based storage scheme, whereas

it stores data associated with the endpoint junction of the respective link in the
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junction-based storage scheme. As the leaf nodes determine the overall storage

complexity of the index, both storage schemes require an additional storage of

size SRtree = |L|CRnode for indexing the links of the network. Here, CRnode denotes

the size of each leaf node.

4.4 Clustering Hypergraph Model

In this section, we present our clustering hypergraph model for the general case

of directed networks, where an individual record is stored for each directed link.

This model can easily be extended to the bidirectional case, where a single record

is stored for each bidirectional link.

4.4.1 Hypergraph Construction

A clustering hypergraph HL = (VL,NL) is created to model the network (T ,L).

In HL, a vertex vij∈VL exists for each record rij∈R storing the data associated

with link ℓij∈L. The size of a record rij is assigned as the weight w(vij) of vertex

vij. The net set NL is the union of two disjoint sets of nets, NGaS
L and NGS

L ,

which respectively encapsulate the disk access costs of GaS and GS operations,

i.e., NL =NGaS
L ∪NGS

L .

In NGaS
L , we employ two-pin nets to represent the cost of GaS operations. For

each incoming and outgoing link pair ℓhi and ℓij of each junction ti, GaS (ℓhi, ℓij)

operations incur a two-pin net nhij with Pins(nhij) = {vhi, vij}. If the source

junction of the incoming link is the same as the destination junction of the out-

going link (i.e., h = j), the two two-pin nets incurred by the GaS (ℓhi, ℓij) and

GaS (ℓij, ℓhi) operations can be coalesced into a single two-pin net with appro-

priate cost adjustment. Thus, the cost c(nhij) associated with net nhij can be

written as

c(nhij)=

{

f(ℓhi, ℓij), if ℓhi, ℓij∈L∧h 6=j;

f(ℓhi, ℓij)+f(ℓij, ℓhi), if ℓhi, ℓij∈L∧h=j.
(4.15)
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Figure 4.2: The clustering hypergraph construction: (a) two-pin net n123 for
the GaS (ℓ12, ℓ23) operations, (b) coalescence of two two-pin nets incurred by
GaS (ℓ12, ℓ21) and GaS (ℓ21, ℓ12) into net n121, (c) multi-pin net n12 for the GS (ℓ12)
operations.

Here, f(ℓhi, ℓij) denotes the total access frequency of path 〈ℓhi, ℓij〉 in GaS (ℓhi, ℓij)

operations. Fig. 4.2(a) shows the two-pin net construction for a pair of neighbor

links ℓ12 and ℓ23, and Fig. 4.2(b) shows the two-pin net construction for the cyclic

paths 〈ℓ12, ℓ21〉 and 〈ℓ21, ℓ12〉.

In NGS
L , we employ multi-pin nets to represent the cost of GS operations. For

each link ℓhi with a destination junction ti having dout(ti)>0 successor(s), GS (ti)

operations incur a (dout(ti)+1)-pin net nhi, which connects vertex vhi and the

vertices corresponding to the records of the links that are in the successor list of

ℓhi. That is,

Pins(nhi) = {vhi} ∪ {vij : tj ∈ Suc(ti)}. (4.16)

Each net nhi is associated with a cost

c(nhi) = f(ℓhi) (4.17)

for capturing the cost of GS (ℓhi) operations. Here, f(ℓhi) denotes the total access

frequency of link ℓhi in GS (ℓhi) operations. Fig. 4.2(c) displays the multi-pin net

construction for link ℓ12, which has the successor list {ℓ23, ℓ24, ℓ25}.
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4.4.2 Hypergraph Model

After HL =(VL,NL) is constructed, it is partitioned into a number of parts Π=

{V1,V2, . . .} using the recursive bipartitioning paradigm mentioned in Section 3.4.

Here, each part Vk ∈ Π corresponds to the subset of records to be assigned to

disk page Pk ∈ P. The partitioning constraint is to enforce the page size as

the upper bound on the weight of the vertex parts so that the disk page size

is not exceeded in record allocation. The partitioning objective is to minimize

the cutsize according to the connectivity−1 metric as defined in Section 2.6.

Under the single-page buffer assumption, the connectivity−1 cost incurred to

the cutsize by the two-pin cut nets in NGaS
L and multi-pin cut nets in NGS

L

exactly corresponds to the disk access cost incurred by the GaS operations in

the route evaluation queries and GS operations in the path computation queries,

respectively. Thus, in our model, minimizing Cutsize(Π) given in (4.18) exactly

minimizes the total number of disk accesses. In the following two paragraphs, we

show the correctness of our model for the GaS and GS operations.

Cutsize(Π) =
∑

ni∈NGaS
L

c(ni)(λ(ni)− 1)+
∑

ni∈NGS
L

c(ni)(λ(ni)− 1)

=
∑

ni∈NL

c(ni)(λ(ni)− 1). (4.18)

Consider a partition Π and a two-pin net nhij ∈ N
GaS
L with Pins(nhij) =

{vhi, vij}. If nhij is internal to a part Vk, then records rhi and rij both reside

in page Pk. Since both rhi and rij can be found in the memory when Pk is in

the page buffer, neither GaS (ℓhi, ℓij) nor GaS (ℓij, ℓhi) operations incur any disk

access. Note that GaS (ℓij, ℓhi) operations are possible only if h = j. If nhij is a

cut net with connectivity set Λ(nhij) = {Vk,Vm}, rhi and rij reside in separate

pages Pk and Pm. Without loss of generality, assume that rhi∈Pk and rij ∈Pm.

In this case, GaS (ℓhi, ℓij) operations incur f(ℓhi, ℓij) disk accesses in order to

replace the current page Pk in the buffer with Pm in the disk. In a similar

manner, GaS (ℓij, ℓhi) operations incur f(ℓij, ℓhi) disk accesses in order to replace

the current page Pm in the buffer with Pk in the disk. Hence, cut net nhij incurs
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Figure 4.3: The clustering hypergraph HL for the network given in Fig. 2.1
and a 4-way vertex partition separately shown on net-induced subhypergraphs
(a) (VL,NGaS

L ) and (b) (VL,NGS
L ) respectively modeling the disk access cost of

GaS and GS operations.

a cost of c(nhij) to the cutsize since λ(nhij)−1=1.

Now, consider the same partition Π and a multi-pin net nij ∈ N
GS
T . If nij

is internal to a part Vk, then record rij and all records storing the links in the

successor list of ℓij reside in page Pk. Consequently, GS (ℓij) operations do not

incur any disk access since page Pk is already in the page buffer. If nij is a cut net

with connectivity set Λ(nij), record rij and the records storing the links in the

successor list of ℓij are distributed across the pages corresponding to the vertex

parts that belong to Λ(nij). Without loss of generality, assume that rij resides

in page Pk, where Vk must be in Λ(nij). In this case, each GS (ℓij) operation

incurs λ(nij)−1 page accesses in order to retrieve the records storing the links in

the successor list of ℓij by fetching the pages corresponding to the vertex parts in

Λ(nij)−{Vk}. Hence, cut net nij incurs a cost of c(nij)(λ(nij)−1) to the cutsize.

Fig. 4.3 shows the clustering hypergraphHL for the network given in Fig. 2.1 in

two parts, which separately show the net sets NGaS
L and NGS

L with the associated

costs of GaS and GS operations shown in parentheses. In Fig. 4.3(a), consider
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two-pin cut net n246 with Pins(n246)={v24, v46} and Λ(n246)={V1,V3}. Since v24

is in vertex part V1, page P1 must be the single page in the buffer when GS (ℓ24)

operations are invoked. Since v46 is in part V2, λ(n246)−1=2−1=1 disk access is

required to retrieve record r46 into the buffer. Similarly, in Fig. 4.3(b), consider

multi-pin cut net n24 with Pins(n24) = {v24, v45, v46} and Λ(n24) = {V1,V2,V3}.

Since v24 is in vertex part V1, page P1 must be the single page in the buffer when

GS (ℓ24) operations are invoked. Since v45 and v46 are respectively in parts V2 and

V3, each of the four GS (ℓ24) operations will incur λ(n24)−1=3−1=2 disk accesses

for pages P2 and P3 to bring them into the buffer for processing records r45 and r46.

Note that internal nets do not incur any cost for neither GaS nor GS operations

since they have a connectivity of 1. The total cost of GaS operations, due to

the cut nets {n134, n146, n245, n246, n345, n346, n512, n675, n678, n686, n745, n751, n867},

is (1+2+1+5+1+1+3+3+9+4+1+7+3)×(2−1) = 41 and the total cost of

GS operations, due to the cut nets {n13, n14, n24, n34, n51, n67, n68, n74, n75, n86},

is 3×(2−1)+3×(2−1)+4×(3−1)+2×(3−1)+11×(2−1)+9×(2−1)+7×(2−1)+

1×(2−1)+7×(2−1)+4×(2−1)=57.

The clustering hypergraph models for the junction- and link-based storage

schemes are accurate as long as the queries in the previous query log tend to

reappear in the current time window. Disk pages can be periodically reorganized

to capture the characteristics of query logs in different time windows. Further-

more, incremental clustering approaches can be adapted to reflect the changes in

time.

4.4.3 Comparison of Clustering Hypergraph Models

The clustering hypergraph models for the junction- and link-based storage

schemes are closely related in representing a given road network for solving

the record-to-page allocation problem under the respective storage scheme. In

both clustering hypergraphs, vertices represents the records, whereas nets repre-

sent the successor retrieval operations. The set of vertices connected by a net

correspond to the set of records concurrently accessed by the respective opera-

tion. Vertex weights correspond to records sizes, whereas net costs correspond to
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the frequency of the respective network operation. In both models, records are

clustered into disk pages by partitioning the respective hypergraph, where the

partitioning objective corresponds to minimizing the disk access cost of succes-

sor retrieval operations in network queries. The topological difference between

these two hypergraph models stems from the difference between the two storage

schemes. Topologically, vertices correspond to junctions and links in the former

and latter hypergraph models, respectively.

The sizes of the constructed hypergraphs in our clustering models play an im-

portant role in computational and space requirements of the partitioning process.

These sizes depend on the topological properties of the network. In the cluster-

ing hypergraph HT for the junction-based storage scheme, the number |NGaS
T |

of two-pin nets varies between ⌈|L|/2⌉ and |L|. The number |NGS
T | of multi-pin

nets is equal to |T |−α, where α= |{ti : dout(ti)=0}| is the number of dead ends.

The number of pins introduced by multi-pin nets is |L|+|T |−α. Hence, we have

|VT| = |T |,

⌈|L|/2⌉+ |T | − α ≤ |NT| ≤ |L|+ |T | − α, (4.19)

2⌈1.5 |L|⌉+ |T | − α ≤ |HT| ≤ 3|L|+ |T | − α.

In the clustering hypergraph HL for the link-based storage scheme, the num-

ber |NGaS
L | of two-pin nets is

∑

ti∈T
(din(ti)×dout(ti))−β, where din(ti) denotes

the number of predecessors of ti and β = |{ℓij : ℓij ∈ L ∧ ℓji ∈ L}| is the

number of bidirectional links. The number |NGS
L | of multi-pin nets is equal to

|L|−
∑

ti∈T ,dout(ti)=0 din(ti). The number of pins introduced by multi-pin nets is
∑

ti∈T ,dout(ti)>0 din(ti)×(dout(ti)+1). Hence, we have

|VL| = |L|,

|NL| =
∑

ti∈T

(din(ti)× dout(ti))−β+|L|−
∑

ti∈T ,dout(ti)=0

din(ti), (4.20)

|HL| = 3
∑

ti∈T

(din(ti)× dout(ti))+
∑

ti∈T ,dout(ti)>0

din(ti)− 2β.
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In this work, we claim that the clustering hypergraph model provides more

flexibility in partitioning for the link-based storage scheme compared to the

junction-based storage scheme. We illustrate this by the following example.

Fig. 4.4(a) shows a sample sub-network (T ,L) with a junction t3 having two

incoming and three outgoing links. Figs. 4.4(b) and 4.4(c) show the net-induced

subhypergraphs (VT,NGS
T ) and (VL,NGS

L ) corresponding to the sub-network

given in Fig. 4.4(a) for the junction- and link-based storage schemes, respec-

tively. Ten GS operations are assumed to be performed on junction t3, five GS

operations for each incoming link of t3. As seen in the figure, junction t3 induces

only one net n3 in HT , whereas the two incoming links ℓ13 and ℓ23 of t3 induce

nets n13 and n23 in HL. Figs. 4.4(b) and 4.4(c) also show 2-way partitions for HT

and HL. In this example, if there were no part size constraints, moving vertex v3

from V1 to V2 would remove net n3 from the cut, thus reducing the cutsize by 10.

However, this move may not be feasible due to the maximum part size constraint

on V2. Since the record sizes in the link-based storage scheme are less than those

in the junction-based storage scheme as shown in Section 4.2, either v13 or v23

can move to V2 without violating the maximum part size constraint, respectively

removing n13 or n23 from the cut with a saving of 5 on the cutsize. In general, the

partitioning of the clustering hypergraph for the link-based storage scheme has

a better solution space as there is greater flexibility in moving vertices between

parts.
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Figure 4.5: (a) A bidirectional sub-network with GS (t1), (b)HT: a five-pin net n1

for the GS (t1) operations with c(n1)=f(t1), (c) HL: four identical four-pin nets
n12, n13, n14, and n15 for GS (ℓ12), GS (ℓ13), GS (ℓ14), and GS (ℓ15), respectively, (d)
HL: identical nets n12, n13, n14, and n15 coalesced into net n′

1 with cost c(n′
1) =

c(n1).

In bidirectional networks, the storage saving in the link-based scheme re-

sults in higher improvements in query processing performance compared to the

junction-based scheme. We provide Fig. 4.5 to validate this claim. Fig. 4.5(a)

shows a sample sub-network (T ,L) with a junction t1 having four bidirectional

incoming/outgoing links. Figs. 4.5(b) and 4.5(c) show the net-induced subhy-

pergraphs (VT,NGS
T ) and (VL,NGS

L ) corresponding to the sub-network for the

junction- and link-based storage schemes, respectively. Note that the sum of the

number of GS operations performed on the incoming links of junction t1 in the

link-based storage scheme is equal to the number of GS operations performed on

junction t1. That is, f(ℓ21)+f(ℓ31)+f(ℓ41)+f(ℓ51)=f(t1).

As seen in Fig. 4.5(b), in HT, for the GS (t1) operation, there is a five-pin

net with Pins(n1) = {v1, v2, v3, v4, v5} and c(n1) = f(t1). In the construction of

the clustering hypergraph for the link-based storage scheme, two directional links

between the same junctions (i.e., ℓij and ℓji) are represented with a bidirectional

link ℓij, where i<j. Hence, a vertex vij exists for each record rij storing link ℓij.

As seen in Fig. 4.5(c), HL has four four-pin nets n12, n13, n14, and n15 to capture

the costs of the GS (ℓ21), GS (ℓ31), GS (ℓ41), and GS (ℓ51) operations, respectively.

Note that these four four-pin nets connect the same set of pins, i.e., Pins(n12)=

Pins(n13) = Pins(n14) = Pins(n15) = {v12, v13, v14, v15}. Such nets, which connect

exactly the same set of pins, are called identical nets. Identical nets can be
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coalesced into a single representative net. The representative net’s cost is set to

the total cost of all constituting nets. Here, n12, n13, n14, and n15 can be coalesced

into a representative net n′
1 with Pins(n′

1)={v12, v13, v14, v15} and c(n′
1)=c(n12)+

c(n13)+c(n14)+c(n15) as shown in Fig. 4.5(d). Comparison of Figs. 4.5(b) and

4.5(d) shows that, for GS operations, the clustering hypergraphs for the two

storage schemes have the same set of nets with equal costs. However, the size

of each net in HL is one less than the size of the respective net in HT. This

finding conforms with the fact that, in query processing, each GS operation in

the link-based storage scheme accesses one record less compared to the junction-

based storage scheme. Thus, the partitioning of HL is expected to lead to smaller

cutsize compared to that of HT because of smaller net sizes in the link-based

storage scheme.

In bidirectional networks, the sizes of the clustering hypergraphs for the two

storage schemes become

|VT| = |T |,

|NT| = |L|/2 + |T |, (4.21)

|HT| = 2|L|+ |T |,

and

|VL| = |L|/2,

|NL| =
∑

ti∈T

d(ti)
2 − |L|+ |T | − τ, (4.22)

|HL| = 2
∑

ti∈T

d(ti)
2 − |L| − τ,

where d(ti)=din(ti)=dout(ti) and τ = |{ti : d(ti) = 1}|.

4.5 Summary

We introduced the link-based storage scheme and presented a detailed compar-

ative analysis on the properties of junction- and link-based storage schemes. In
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the link-based storage scheme, each record stores the data associated with a link

together with the link’s connectivity information. We proposed a clustering hy-

pergraph model for the link-based storage scheme to partition the network data

into disk pages where data would be periodically reorganized using the previous

query logs. Our detailed comparative analysis on the properties of the junction-

and link-based storage schemes showed that the link-based storage scheme is

more amenable to clustering. Moreover, we introduced storage enhancements for

bidirectional networks. We showed that the link-based storage scheme is more

amenable to our enhancements than the junction-based storage scheme and re-

sults in better data allocation for processing aggregate network queries.

Extensive experimental comparisons were carried out on the effects of page

size, buffer size, path length, record size, and dataset size for the junction- and

link-based storage schemes. In Chapter 6, we present and discuss the simulation

results of the proposed model in detail. Experimental results showed that the

link-based storage scheme outperforms the widely-used junction-based storage

scheme in terms of both storage and query processing efficiency.



Chapter 5

Efficient Successor Retrieval

Operations

Get-Successors (GS ) which retrieves all successors of a junction is a kernel oper-

ation used to facilitate aggregate computations in road network queries. Efficient

implementation of the GS operation is crucial since the disk access cost of this

operation constitutes a considerable portion of the total query processing cost.

However, efficient implementation of the GS operation is overlooked in the liter-

ature.

In this chapter, we first propose a new successor retrieval operation Get-

Unevaluated-Successors (GUS ), which retrieves only the unevaluated successors

of a given junction. The GUS operation is an efficient implementation of the GS

operation, where the candidate successors to be retrieved are pruned according to

the properties and state of the algorithm used in the target application. Second,

for the junction-based storage scheme, we propose a hypergraph-based model for

clustering concurrently retrieved junctions by the GUS operations to the same

pages. The proposed model utilizes query logs to correctly capture the disk access

cost of GUS operations. The proposed GUS operation and associated clustering

model are evaluated for two different instances of GUS operations which typically

arise in Dijkstra’s single source shortest path algorithm [31] and the incremental

52
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network expansion framework [59]. The results of our experimental simulations in

Section 6.5 show that the proposed successor retrieval operation together with the

proposed clustering hypergraph model is quite effective in reducing the number

of disk accesses in query processing.

The organization of this chapter is as follows: We introduce and discuss the

proposed GUS operation in Section 5.1. Section 5.2 describes the clustering

hypergraph model proposed for the GUS operations. Finally, we summarize the

chapter in Section 5.3.

5.1 Get-Unevaluated-Successors (GUS)

For a given query, during the execution of the underlying search algorithm, those

junctions, whose records are retrieved and the computation related with these

records are completed, are said to be “evaluated”. The remaining junctions are

said to be “unevaluated”. That is, a GUS operation is defined as retrieving the

unevaluated successors of a given junction. The sequence of GUS operations to

be performed for a given query can be efficiently implemented by maintaining a

set of either evaluated or unevaluated junctions in memory. That is, checking

whether a given junction is evaluated or unevaluated can be simply achieved

without retrieving the record of the junction. This way, only the records of the

unevaluated successors of t are retrieved for a GUS (t, Suc(t, U)) operation, where

U denotes the set of unevaluated junctions just before the invocation of the GUS

operation for the current query. The set

Suc(ti, U)={tj : tj ∈ Suc(ti) ∧ tj ∈ U} (5.1)

denotes the set of unevaluated successors of ti. Note that in this notation Suc(ti)

corresponds to Suc(ti, T ). We introduce two examples of GUS operations: Get-

unProcessed-Successors (GuPS ) and Get-unVisited-Successors (GuVS ).

The GuPS operation typically arises in Dijkstra’s single source shortest path

algorithm [31]. Dijkstra’s algorithm repeatedly extracts an unprocessed junction
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from a priority queue and processes it, where processing a junction means scan-

ning its successor list to compute an aggregate property. Thus, in the GuPS op-

eration, evaluated junctions correspond to the processed junctions whose records

will not be reevaluated during the execution of the search algorithm for a given

query. Hence there is no need to retrieve the records of such junctions more than

once. In order to clarify the usage of this operation, we briefly show the pseu-

docode of the Dijkstra’s single source shortest path algorithm [31] in two parts:

Algorithm 1 shows the main body of the algorithm, whereas Algorithm 2 shows

an I/O efficient implementation of the GuPS operation. In Algorithms 1 and 2,

Q represents an in-memory priority queue, which contains unprocessed junctions

keyed with respect to their distance values from the source junction. So, Q ef-

fectively corresponds to the set U of unevaluated junctions as in the definition of

GUS.

Recall that, in the algorithms using the same strategy presented in Dijkstra’s

algorithm [31], the GuPS operation is invoked while processing the elements

extracted from the priority queue as in line 8 of Algorithm 1. As seen in Algo-

rithm 2, the for-loop in lines 1–4 computes the set PageSet of pages that contain

only unprocessed successor junctions and finally retrieves the pages in PageSet.

In Algorithm 1, the doubly-nested for-loop in lines 9–14 shows the processing of

junction ti. In this for loop, the retrieved pages in PageSet are processed one

by one to relax the distance values of unprocessed successors of junction ti. Note

that the pages that already reside in the page buffer are handled before the other

pages in PageSet, and while handling a page, all unprocessed junctions in that

page are processed before retrieving a new page.

The GuVS operation typically arises in algorithms using the incremental net-

work expansion (INE) framework [59]. Algorithms using INE framework repeat-

edly extract an unvisited junction from a priority queue and scan its successor

list. Thus, in the GuVS operation, evaluated junctions correspond to the already

visited junctions whose records will not be re-visited during the execution of the

search algorithm for a given query. Similar to the GuPS operation, there is no

need to retrieve the records of these junctions more than once. In order to clarify

the usage of the GuVS operation, we briefly show the pseudocode of the k-nearest
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Algorithm 1 Dijkstra’s Single Source Shortest Path Algorithm

Require: (T ,L), source junction s

1: for each junction ti in T do

2: dist[ti]←∞
3: previous[ti]← null
4: dist[s]← 0
5: Q← T
6: while Q is not empty do

7: ti ← EXTRACT MIN(Q)
8: GuPS(ti, Suc(ti, Q))
9: for each retrieved page Pi ∈ PageSet do

10: for each successor tj ∈ Pi of ti do

11: if dist[ti] + length(ti, tj) < dist[tj ] then

12: dist[tj ]← dist[ti] + length(ti, tj)
13: DECREASE KEY(Q, tj , dist[tj ])
14: previous[tj ]← ti
15: return previous[]

Algorithm 2 Get-unProcessed-Successors GuPS(ti, Suc(ti, Q))

1: for each successor tj of ti do

2: if tj ∈ Q then

3: PageSet← PageSet ∪ page[tj ]
4: retrieve PageSet

neighbor search using the incremental network expansion framework [59] in two

parts: Algorithm 3 shows the main body of the algorithm, whereas Algorithm 4

shows an I/O efficient implementation of the GuVS operation. Points of interest

are discovered in such a way that the junctions are explored in the order of their

network distance from the query point. In order to satisfy this property, a prior-

ity queue Q, which contains candidate unprocessed junctions keyed with respect

to their network distance values from the query point, is stored in memory. The

set V contains unvisited junctions and effectively corresponds to the set U of

unevaluated junctions as in the definition of GUS.

Recall that, in the algorithms using the INE framework, GuVS operation is

invoked while processing the elements extracted from the priority queue in the

expansion of the network (line 10, Algorithm 3). As seen in Algorithm 4, the for-

loop in lines 1–4 computes the set PageSet of pages that contain only unvisited
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Algorithm 3 k-Nearest Neighbor Search Using Incremental Network Expansion
Framework
Require: (T ,L), query point q, Q is a min-heap keyed on dN (q, t)
1: V ← T
2: titj ← find segment(q)
3: Scover ← find entities(titj)
4: {p1, · · · , pk} = k nearest entities in Scover sorted in ascending order of their network

distance
5: dNmax ← dN (q, pk) // if pk = ∅, dNmax =∞
6: INSERT(Q, < (ti, dN (q, ti)), (tj , dN (q, tj)) >)
7: ti ← EXTRACT MIN(Q)
8: V ← V −{ti}
9: while (dN (q, ti) < dNmax) do

10: GuV S(ti, Suc(ti, V ))
11: for each retrieved page Pi ∈ PageSet do

12: for each successor tj ∈ Pi of ti do

13: V ← V −{tj}
14: Scover ← find entities(titj)
15: update {p1, · · · , pk} from {p1, · · · , pk} ∪ Scover

16: dNmax ← dN (q, pk)
17: INSERT(Q, tj , dN (q, tj))
18: ti ← EXTRACT MIN(Q)
19: return {p1, · · · , pk}

Algorithm 4 Get-unVisited-Successors GuV S(ti, Suc(ti, V ))

1: for each successor tj of ti do

2: if tj ∈ V then

3: PageSet← PageSet ∪ page[tj ]
4: retrieve PageSet

junctions and finally retrieves the pages in PageSet. In the doubly-nested for-

loop in lines 11–18 of Algorithm 3, the retrieved pages in PageSet are processed

one by one to update the nearest neighbor list by expanding the network search

through the unvisited successors of junction ti. Page handling strategy mentioned

for the GuPS operation is also valid in this case. That is, the pages that already

reside in the page buffer are handled before the other pages in PageSet, and while

handling a page, all unvisited junctions in that page are visited before retrieving

a new page.
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5.2 Clustering Hypergraph Model for GUS

Operations

Here, we present our clustering hypergraph model, which correctly captures the

cost of GUS operations for the junction-based storage scheme.

5.2.1 Hypergraph Construction

A clustering hypergraph HGUS = (V ,NGUS) is created to model the network

(T ,L). The vertices of HGUS represent the records storing the data associated

with the junctions as in HGS. That is, there exists a vertex vi ∈ V for each

junction ti ∈ T . The size of a record ri is assigned as the weight w(vi) of vertex

vi. The set NGUS is composed of nets that represent the record access patterns

of GUS operations. That is, each distinct GUS operation incurs a net in NGUS.

The set GUS(ti, Suc(ti, U)) of GUS operations invoked on junction ti with the

same set Suc(ti, U) of unevaluated successors incur a net nSuc(ti,U) with a cost

c(nSuc(ti,U)) = f(ti, Suc(ti, U)). (5.2)

Here, f(ti, Suc(ti, U)) denotes the frequency of the GUS(ti, Suc(ti, U)) operations

obtained from the query log. The net nSuc(ti,U) captures the record access pattern

of such GUS operations by connecting vertex vi and the vertices corresponding

to Suc(ti, U). That is,

Pins(nSuc(ti,U)) = {vi} ∪ {vj : tj ∈ Suc(ti, U)}. (5.3)

Note that the size of net nSuc(ti,U) can be between 2 and dout(ti) + 1 since

|Suc(ti, U)| ≤ dout(ti). Single pin nets are discarded since GUS(ti, Suc(ti, U))

operations with Suc(ti, U)=∅ do not incur any record access. Fig. 5.1 displays

the net construction for a GUS(t1, Suc(t1, U)) operation invoked on junction t1

with Suc(t1) = {t2, t3, t4, t5} but Suc(t1, U)={t3, t5}.
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Figure 5.1: The clustering hypergraph construction: GUS(t1, {t3, t5}) incurs a
net with pins {v1, v3, v5}.

The size of hypergraph HGUS depends on both the topological properties of

the network and the record access patterns in the query log. Each junction ti

with dout(ti) > 1 may incur as many as 2dout(ti) − 1 nets in HGUS. Recall that

GS(ti) operations invoked on junction ti incur a single net of size dout(ti) + 1

in HGS for representing the record access pattern of GS operations. However,

our experiments on realistic road networks with synthetic query sets show that

the average number of nets generated per junction in HGUS remains below 3.6.

Furthermore, the possibility of identical nets (those which have the same pin set)

incurred by neighbor junctions can be exploited to decrease the number of nets by

using the identical net detection and elimination algorithms in [12]. In identical

net elimination process, a set of identical nets is collapsed into a single net whose

cost is set to be equal to the sum of the costs of its constituent identical nets.

Although generation of HGS using the query log is a rather trivial task, gen-

eration of HGUS may need special attention. As in the GS case, we assume that

a query log contains a sequence of junctions processed for each query, where the

order of the sequence is determined by the order of retrieval of junction records.

Let qi =< ti1 , ti2 , · · · , tik , · · · > denote the sequence of junctions accessed during

processing a query qi in the log. Then, k-th junction tik in qi corresponds to

the GUS(tik , Suc(tik , Uik)) operation, where Uik represents the set of unevaluated

junctions just before the invocation of GUS(tik , Suc(tik , Uik)) in query qi.

For the GuPS(tik , Suc(tik , Uik)) operations performed on junction tik ,

Uik =T −qik, (5.4)
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Algorithm 5 Frequency computation for net cost determination in HGuPS

Require: Query log Qlog =< q1, q2, · · · , qn >, where qi =< ti1 , ti2 , · · · , tim >

1: U ← T ⊲ U denotes the set of unprocessed junctions
2: for each query qi in Qlog do

3: for k = 1 to |qi| do

4: U ← U − {tik}
5: for each successor tj ∈ Suc(tik) do

6: if tj ∈ U then

7: f(tj , Suc(tik , U))← f(tj , Suc(tik , U)) + 1

Algorithm 6 Frequency computation for net cost determination in HGuVS

Require: Query log Qlog =< q1, q2, · · · , qn >, where qi =< ti1 , ti2 , · · · , tim >

1: U ← T ⊲ U denotes the set of unvisited junctions
2: for each query qi in Qlog do

3: for k = 1 to |qi| do

4: U ← U − {tik}
5: for each successor tj ∈ Suc(tik) do

6: U ← U − {tj}
7: if tj ∈ U then

8: f(tj , U)← f(tj , U) + 1

whereas for the GuV S(tik , Suc(tik , Uik)) operations

Uik =T −qik−
⋃

tj∈qik

Suc(tj). (5.5)

Here, qik =<ti1 , ti2 , · · · , tik > denotes the k-th prefix subsequence of qi. Note that

the junction subsequence qik is also used as a junction subset in (5.4) and (5.5).

Algorithms 5 and 6 show the pseudocodes for computing the frequencies of the

GuPS and GuVS operations, respectively, from a given query log.

Efficient implementation of Algorithms 5 and 6 require efficient maintenance

of the <operation, frequency> pairs. For this purpose, we maintain a list of GUS

operations together with their frequencies for each junction. Each operation

GUS(ti, Suc(ti, U)) in the list of a junction ti is encoded as a bit sequence stored

in a byte assuming a junction has at most 8 successors. In this encoding, the

positions of 1 bits in a byte determine the junctions in Suc(ti, U). In this way,

locating a GUS(ti, ·) operation for incrementing its frequency count requires mi
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byte comparisons in the list for ti, where mi denotes the number of GUS(ti, ·)

operations encountered so far in the query log.

5.2.2 Hypergraph Model

The constructed clustering hypergraphHGUS =(V ,NGUS) is partitioned into parts

Π = {V1, · · · ,Vk, · · · } to obtain a record-to-page allocation, where each vertex

part Vk ∈ Π corresponds to the subset of records to be allocated to disk page

Pk ∈ P. That is, if vi ∈ Vk then record ri is allocated to page Pk. Hence, the

vertex parts of Π correspond to the disk pages of the resulting allocation. The

recursive bipartitioning (RB) paradigm is used to obtain Π, where the maximum

allowed part weight is set to the disk page size, i.e., Wmax =P (see Section 3.4).

Here, we will show that the partitioning objective of minimizing the cutsize

according to (2.2) corresponds to minimizing the total number of disk accesses

incurred by the GUS operations under the single-page buffer assumption. Con-

sider an internal net ni of part Vk in partition Π. As seen in (2.2), ni does not

incur any cost to the cutsize. Since ni is internal to part Vk, record ri and all

records of the unevaluated successor junctions of ti reside in page Pk. Hence,

GUS(ti, Suc(ti, U)) operations do not incur any disk access as page Pk is already

in the page buffer. In Π, consider a cut net ni with connectivity set Λ(ni). As seen

in (2.2), ni incurs a cost of c(ni)(λ(ni)−1) to the cutsize. The connectivity set

Λ(ni) of ni means that record ri and the records of the unevaluated successors of

ti are distributed across the pages corresponding to the vertex parts that belong

to Λ(ni). Without loss of generality, assume that ri resides in page Pk, where Vk

is in Λ(ni). In this case, each GUS(ti, Suc(ti, U)) operation incurs λ(ni)−1 page

accesses in order to retrieve the records of the unevaluated successors of ti by

fetching the pages corresponding to the vertex parts in Λ(ni)−{Vk} since page Pk

is already in the page buffer when the GUS(ti, Suc(ti, U)) operation is invoked.

Fig. 5.2 shows a sample road network with 8 junctions and 17 links. In

the figure, squares represent junctions, directed edges represent links, and the

values on the links represent the length of these links. Fig. 5.2 also illustrates a
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Figure 5.2: A sample road network with a query set.
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Figure 5.3: Clustering hypergraphs (a) HGS, (b) HGuPS, and (c) HGuVS for the
sample road network in Fig. 5.2 and 3-way vertex partitions of these hypergraphs.

sample query set composed of 4 queries, where each query is shown as a <source,

destination> junction pair together with the sequence of processed junctions

(query log). For the sake of presentation, in each query, we assume that the

sequence of processed junctions are the same in the three clustering hypergraph

models using HGS, HGuPS, and HGuVS.

In Fig. 5.3, we illustrate the clustering hypergraphs HGS, HGuPS, and HGuVS

for the sample road network given in Fig. 5.2. Fig. 5.3 also shows sample 3-

way vertex partitions of these hypergraphs, where each part can store at most

3 vertices. Each net is named with the id of the junction on which GS or GUS

operations are invoked and net costs are shown in parentheses. If multiple nets

are generated for a junction ti due to GUS(ti, Suc(ti, U)) operations with different

Suc(ti, U), they are marked with apostrophes (e.g., n4, n′
4, n

′′
4).
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Consider the 3-way partition Π = {V1 = {v1, v4, v5},V2 = {v2, v3, v6},V3 =

{v7, v8}} of HGS shown in Fig. 5.3(a). The cut net n4 with Pins(n4)={v4, v5, v6}

and Λ(n4)={V1,V2} incurs the cost c(n4)(λ(n4)−1)=4(2− 1)=4 to the cutsize.

Here, we will show that each of the four GS(t4) operations represented by net

n4 incurs one disk access under the single-page buffer assumption. Since v4 is in

part V1, P1 must be the page in the single-page buffer when GS(t4) operations

are invoked. The records r5 and r6 corresponding to the successors t5 and t6 of

t4 will be accessed in the following order. Since v5 is also in part V1, firstly the

record r5 in P1 will be accessed. Then, since v6 is in part V2, page P2 will be

retrieved to replace P1 in the buffer in order to access record r6 in P2. The disk

access cost of GS operations due to the set {n1, n2, n3, n4, n6, n7} of cut nets is

(1+2+2+4+2+1)(2−1)=12 since each of these nets has a connectivity of 2.

ConsiderHGuPS shown in Fig. 5.3(b). As seen in Fig. 5.3(b), GuPS operations

invoked on junction t4 incur two nets n4 and n′
4. The net n4 is generated with

Pins= {v4, v5, v6} and a cost of 2 since Suc(t4, U) = {t5, t6} in queries < t2, t8 >

and <t4, t3 >. The net n′
4 is generated with Pins= {v4, v6} and a cost of 2 since

Suc(t4, U)={t6} in queries <t5, t6 > and <t7, t6 >.

Consider the 3-way partition Π = {V1 = {v1, v2, v5},V2 = {v3, v4, v6},V3 =

{v7, v8}} of HGuPS shown in Fig. 5.3(b). In this partition, n4 is a cut net with

λ(n4)=2 thus incurring the cost of 2(2−1)=2 to the cutsize, whereas net n′
4 is

an internal net of V2 and hence does not incur any cost to the cutsize. It is clear

that GuPS(t4, {t6}) operations represented by net n′
4 do not incur any disk access.

Here, we will show that each of the two GuPS(t4, {t5, t6}) operations represented

by net n4 incurs one disk access under the single-page buffer assumption. Since v4

is in part V2, P2 must be the page in the single-page buffer when GuPS(t4, {t5, t6})

operations are invoked. The records r5 and r6 corresponding to the successors t5

and t6 of t4 will be accessed in the following order. Since v6 is also in part V2,

firstly the record r6 in P2 will be accessed. Then, since v5 is in part V1, page P1

will be retrieved to replace P2 in the buffer in order to access record r5 in P1.

In this way, the proposed clustering hypergraph model correctly encapsulates the

disk access cost of the GuPS operations invoked on junction t4. Note that if the

record-to-page allocation induced by the partition in Fig. 5.3(a) is used instead
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of the one induced by the partition in Fig. 5.3(b), GuPS operations invoked on

junction t4 will incur two more disk accesses due to the disposition of records r2

and r4 in different pages. The disk access cost of GuPS operations due to the set

{n1, n2, n4, n6, n
′
6, n7} of cut nets is (1+2+2+1+1)(2−1) + 1(3−1)=9.

Consider HGuVS shown in Fig. 5.3(c). Note that some of the GuVS operations

do not incur a net since all successors of the respective junctions are already vis-

ited during processing a query. For example, in query <t5, t6 >, GuVS operations

invoked on junctions t2 and t3 do not incur any net. As seen in Fig. 5.3(c), GuVS

operations invoked on junction t4 incur three nets n4, n′
4, and n′′

4. The net n4

is generated with Pins= {v4, v5, v6} and a cost of 1 since Suc(t4, U) = {t5, t6} in

query <t4, t3 >. The net n′
4 is generated with Pins= {v4, v6} and a cost of 2 since

Suc(t4, U)={t6} in queries <t5, t6 > and <t7, t6 >. The net n′′
4 is generated with

Pins= {v4, v5} and a cost of 1 since Suc(t4, U)={t5} in query <t2, t8 >.

Consider the 3-way partition Π = {V1 = {v1, v2, v5},V2 = {v3, v4, v6},V3 =

{v7, v8}} of HGuVS shown in Fig. 5.3(c). In this partition, n4 and n′′
4 are cut

nets with λ(n4) = λ(n′′
4) = 2 thus both incurring the cost of 1(2−1) = 1 to the

cutsize, whereas net n′
4 is an internal net of V1 and does not incur any cost to

the cutsize. It is clear that the two GuV S(t4, {t6}) operations represented by net

n′
4 do not incur any disk access. Each GuV S(t4, {t5, t6}) operation represented

by net n4 incurs one disk access under the single-page buffer assumption as dis-

cussed for the GuPS(t4, {t5, t6}) operation since the record-to-page allocation is

the same in Figs. 5.3(b) and (c). Here, we will show that each GuV S(t4, {t5}) op-

eration represented by net n′′
4 incurs one disk access under the single-page buffer

assumption. Since v4 is in part V2, P2 must be the page in the single-page buffer

when GuV S(t4, {t5}) operations are invoked. Since v5 is in part V1, page P1 will

be retrieved to replace P2 in the buffer in order to access record r5 in P1. In

this way, the proposed clustering hypergraph model correctly encapsulates the

disk access cost of the GuVS operations invoked on junction t4. The disk access

cost of GuVS operations due to the set {n1, n2, n4, n
′′
4, n6, n

′
6, n7} of cut nets is

(1+1+1+1+1+1)(2−1) + 1(3−1) = 8. Note that the total number of disk

accesses is smaller both in HGuPS and HGuVS models when compared with HGS

model since the number of records to be accessed are pruned by the GuPS and
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GuVS operations according to the properties of queries.

The accuracy of the clustering hypergraph models depend on the repetition of

the past queries since the record access frequencies in these models are obtained

from the query log. Disk pages can be periodically reorganized to capture the

disk access cost of queries using logs from different time windows. Moreover,

changes in time can be integrated in our models with the usage of incremental

clustering approaches.

5.3 Summary

We introduced a new successor retrieval operation, Get-Unevaluated-Successors

(GUS ), for spatial network databases and focused on the problem of record-to-

page data allocation in road networks in order to minimize the disk access cost

of GUS operations in query processing. The GUS operation is an efficient imple-

mentation of the Get-Successors (GS ) operation, where the candidate successors

to be retrieved are pruned according to the properties and state of the search algo-

rithm used in the target application. We showed two examples of GUS operation

in network query processing, namely the Get-unProcessed-Successors (GuPS ) op-

eration as used in the Dijkstra’s single source shortest path algorithm [31] and the

Get-unVisited-Successors (GuVS ) operation as used in the algorithms utilizing

the incremental network expansion framework [59].

We proposed a clustering hypergraph model to allocate network data to disk

pages, where data would be periodically reorganized using query logs. Our model

exactly captures the disk access cost of GUS operations in network queries under

the single-page buffer assumption. Extensive experiments are conducted to show

the effects of dataset, query set, page size, and buffer size through simulations. In

Chapter 6, we present and discuss the simulation results of the proposed model in

detail. Experimental results showed that both GuPS and GuVS operations lead

to a significant improvement in query processing and the corresponding clustering
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hypergraph models achieve better results than earlier solutions for the record-to-

page allocation problem in a road network database.



Chapter 6

Experimental Results

6.1 Experimental setup

Experiments are conducted on a wide range of real-life road network datasets

collected from U.S. Tiger/Line [15] (Minnesota7 including 7 counties Anoka,

Carver, Dakota, Hennepin, Ramsey, Scott, Washington; Sanfrancisco; Oregon;

NewMexico; Washington), U.S. Department of Transportation [30] (California

Highway Planning Network), and Brinkhoff’s data files [9] (Oldenburg; San-

Joaquin). These datasets are primarily composed of points and polylines con-

necting the points. Since there is no embedded direction information in these

datasets, we assume that all links are bidirectional. In general, self-loops and

multi-links can be modeled by introducing dummy nodes to generate a sim-

ple network graph. But, for simplicity, we perform a preprocessing over these

datasets to eliminate self-loops, multi-links, and points that do not correspond

to a junction (i.e., a junction must be connected to at least three points). All

experiments are conducted on these preprocessed datasets, whose properties are

given in Table 6.1, where the datasets are listed in the order of increasing net-

work size. In Table 6.1, |T | and |L| denote the number of junctions and links,

respectively, and davg denotes the average number of predecessors and successors

of a junction.

66
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Table 6.1: Properties of road network datasets
Dataset Name |T | |L| davg

D0 Oldenburg 4465 10 778 2.41
D1 California HPN 10 141 28 370 2.80
D2 SanJoaquin 17 444 45 974 2.64
D3 Minnesota7 34 222 92 206 2.69
D4 Sanfrancisco 166 558 426 742 2.56
D5 NewMexico 448 959 1 112 230 2.48
D6 Oregon 507 212 1 203 344 2.37
D7 Washington 548 901 1 304 126 2.38

It is important to note that all links in our datasets are bidirectional. This

enables the use of the storage savings mentioned in Sections 3.1 and 4.1. In the

junction-based storage scheme, we store only the successor list of each junction. In

the link-based storage scheme, we combine the records storing the two directional

links between two junctions into a single record and hence halve the number of

records.

We generated synthetic query set for each dataset in order to be able to obtain

a cost distribution over the nets of the constructed hypergraphs. For this purpose,

a set of source and destination junction pairs, which have a predetermined shortest

path length, is generated by slightly modifying the network-based node selection

option of Brinkhoff’s Network Generator for Moving Objects [8]. Queries that

traverse the junctions on the shortest paths between the source and destination

junction pairs are added into the query set as route evaluation queries. Queries

that seek the shortest paths (using Dijkstra’s algorithm) are added into the query

set as path computation queries. The number of queries is set to be the same

in both route evaluation and path computation queries in Sections 6.3 and 6.4.

In Section 6.5, we conducted experiments with only path computation queries to

construct and evaluate our model for efficient successor retrieval operations.

The clustering hypergraphs are constructed as described in Sections 3.3.1,

4.4.1, and 5.2.1. The vertex weights are set to be equal to the size of the

respective records. The state-of-the-art tools MeTiS [51] and PaToH [14] are

used with default parameters for bipartitioning the clustering graphs and hy-

pergraphs, respectively. The running time of the hypergraph partitioning tool

PaToH is O(log |V|
∑

nj∈N
|nj|

2) at each bisection step of the recursive biparti-

tioning scheme, where V and N denote the vertex and net sets of the remaining
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hypergraph at that bisection step (see the net splitting process used in the recur-

sive bipartitioning (RB) in [14]). In terms of network parameters, the running

time of the first bisection step is O(d2
avg |T | log |T |) and O(d2

avg |L| log |L|) for

the junction- and link-based storage schemes, respectively, under the simplifying

assumption that the number of incoming and outgoing links for each junction are

both equal to davg = |L|/|T |. Assuming a balanced recursive bisection tree for

our RB schemes in Section 3.4 and number K of pages, the overall running time

becomes O(d2
avg |T | log |T | log K) and O(d2

avg |L| log |L| log K) for the junction-

and link-based storage schemes, respectively. However, these are rather loose up-

per bounds and the partitioning tool PaToH is quite fast while generating high

quality results. For example, the overall RB2-based partitioning times for the

D1, D2, D3, and D4 datasets are respectively 3.2, 5.6, 26.7, and 317.1 seconds,

on the average, including the read/write operations of input/output files. These

timings are reported on a PC that is equipped with an Intel Pentium IV 2.6 GHz

processor and 2GB of RAM, and hypergraph representations for all datasets and

parameters fit into the main memory.

The deviation ratio ǫ in (3.5) and (3.6) is set to 0.10 throughout the experi-

ments. We conducted experiments with four page sizes of P = 1, 2, 4, and 8 KB

in Sections 6.3 and 6.4. In Section 6.5, we conducted experiments with page sizes

of P = 4, 8, 16, and 32 KB in order to show the advantages of efficient successor

retrieval operations with larger page sizes. Here, the allocation of the records of

a given dataset for a given page size is referred to as an allocation instance. Due

to the randomized nature of the partitioning heuristics, the experiment for each

allocation instance is repeated 10 times and the average performance results are

reported in the following figures.

Furthermore, simulations are conducted in order to observe the effect of re-

ducing the total disk access cost of successor retrieval operations on the total

number of disk accesses incurred by the aggregate network queries. We imple-

ment a hash-based index on junction/link ids for efficient record retrieval and

an R-tree index on links for point queries. The lookup cost of these indices for

Find operations is included in our simulation results showing the total number of

disk accesses for query processing. In order to evaluate the effect of disk caching
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on our models, simulations are performed using page buffers with a capacity of

B =1, 2, 4, and 8 pages. Our selection of buffer sizes may look small for a

realistic setting; however, they are proportional with the dataset sizes we have.

The buffer sizes are selected such that only a small portion of a dataset resides

in the memory at any time. The Least Recently Used (LRU) page replacement

algorithm is employed as the caching algorithm. Our intention is not to show the

effects of buffer replacement policies and cache mechanisms used in the systems.

Instead, the experiments are conducted to show that it is still viable to use the

clustering approach for increasing number of buffer pages. The synthetic queries

used for query set generation are also used in simulations for measuring the total

disk access cost.

6.2 Implementation Details

In order to clarify how we handled the data retrieval in our simulations we describe

each case as follows: Recall that if the disk page that has the target record is

already stored in the memory, then it causes a page hit and the record is used

from the cache. Otherwise, the disk page is retrieved from the secondary storage.

In this case, there are three possibilities:

• We are given a query point (x, y) to find the network element matching

these coordinates. The R-tree is used to find the disk address of the link,

i.e., the first Find operation in the course of query processing.

• We are given a network element which already resides in the mem-

ory due to prior operations, and we are asked to find a successor of

that record. The hash-based index is used to retrieve the successor

record from the secondary storage, i.e., Get-a-Successor (GaS(ti, tj)), Get-

Successors (GS(ti)), Get-unProcessed-Successors (GuPS(ti, Suc(ti, U))),

Get-unVisited-Successors (GuV S(ti, Suc(ti, U))). We should mention here

that, for this case, the use of a hash-based index can be avoided by storing

the disk addresses of the records in the successor/predecessor lists of the
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respective network elements. However, this scheme introduces additional

complexity during the reorganization and update operations.

• We are given a network element with its id. The hash-based index is used

to locate the disk address of the record, i.e., Find(ti), GaS(ti, tj), GS(ti),

GuPS(ti, Suc(ti, U)), GuV S(ti, Suc(ti, U)).

For each network query, the R-tree index is used only once to realize the

very first Find operation to locate the source link. All following data retrieval

operations (i.e., Find, Get-a-Successor, Get-Successors, and Get-Unevaluated-

Successors) needed during query processing are performed by using a hash-based

index with an average cost of single disk access for each retrieval request if the

network element does not already reside in the memory. Please note that, disk

access costs regarding the indices are already included in our simulation results.

The way the R-tree structure is constructed may affect only the cost of the very

first Find operation. In our simulations, we assume an R*-tree [6] implementation

with an average lookup cost of a single disk access.

6.3 Evaluation of Junction-Based Storage Scheme

In this section, we first describe query generation and properties of the con-

structed graphs and hypergraphs. Then, we evaluate the performance of RB1

and RB2 schemes in terms of both the number of allocated pages and the cutsize

and investigate the effect of packing lightly loaded parts. Finally, we evaluate the

performance of the clustering graph and hypergraph models with changing page

and page buffer sizes in terms of both the cutsize, which gives the total number of

disk page accesses incurred by the GaS and GS operations, and the total number

of disk accesses in aggregate network queries.

6.3.1 Query Generation

The clustering graph and hypergraph models are constructed based on the as-

sumption that network usage frequencies can be obtained via utilizing the query
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Table 6.2: Average number of junctions accessed in queries
Route Path

Dataset evaluation computation
D0 11 109
D1 16 217
D2 19 419
D3 31 1207
D4 48 3577
D5 99 8767
D6 105 10 214
D7 107 12 696

logs. One way to gather the frequencies is to record the access frequencies of

junctions and links. In our experiments, we generate a number of queries using

a synthetic-query generation approach. Specifically, Brinkhoff’s Network Gen-

erator for Moving Objects framework [8] is employed with the network-based

node selection option to generate a set of source and destination junction pairs.

For route evaluation queries, shortest paths between the source and destination

junctions are used, whereas for path computation queries, Dijkstra’s single source

shortest path algorithm is executed between the source and destination junctions.

For each dataset, 1000 queries are generated. These queries are used for first gen-

erating the query sets and then measuring the total disk access cost during the

experiments. The number of junctions accessed in the queries varies depending

on the topological properties and the size of the dataset. The average number of

junctions accessed in the queries for each dataset is given in Table 6.2.

6.3.2 Properties of Graphs and Hypergraphs

Table 6.3 displays the properties of generated clustering graphs and hypergraphs

used in the experiments. As described in Section 3.3, in our model, vertex weights

correspond to record sizes in bytes. Throughout the experiments, we reserve 12

bytes for link attributes (i.e., CL = 12) and 4 bytes for the coordinates of a

junction (i.e., Cid =4). The size of coordinates of a junction is highly dependent

on the specification of the coordinate system, and it is possible to compress the

coordinates to small values. In the experimental section, 4 bytes is found to be

sufficient to represent all coordinates in our datasets. No space is reserved for

junction attributes (i.e., CT =0). The average vertex weight, wavg, and the total

vertex weight, Wtotal, for each dataset are also given in the table. Recall that,
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Table 6.3: Properties of generated clustering graphs and hypergraphs
G H

Dataset |V| |E| |V| |N | |H| wavg Wtotal

D0 4465 5389 4465 7886 22 085 42.62 190 308
D1 10 141 14 181 10 141 17 369 52 965 48.76 494 484
D2 17 444 22 801 17 444 26 225 80 785 46.17 805 360
D3 34 222 45 419 34 222 46 056 149 493 47.11 1 612 184
D4 166 558 212 916 166 558 197 630 654 990 44.99 7 494 104
D5 448 959 554 448 448 959 510 477 1 682 429 43.64 19 591 516
D6 507 212 601 340 507 212 574 353 1 844 579 41.96 21 282 352
D7 548 901 650 268 548 901 613 558 1 980 535 42.01 23 051 620

since all of the links in the datasets are bidirectional, in the hypergraph model,

coordinates in the predecessor list of a junction will be equivalent to the ones in

the successor list of the junction. Hence, we store only the successor list of the

corresponding junction.

6.3.3 Comparison of RB1 and RB2 schemes

In Fig. 6.1, we compare the performance of the RB1 and RB2 schemes in terms

of the number K of allocated pages and show the effect of packing on K. If

no packing is employed, RB1 achieves 10.3% smaller K values than RB2 on the

average. However, as expected, packing results in much better improvement in K

in RB2 when compared with RB1. As seen in Fig. 6.1, in RB1, packing achieves

a small reduction in K (only 4.1% on the average) since the partitions created by

this scheme involve few lightly loaded pages, thus resulting in restricted solution

spaces for the packing algorithm. In contrast, RB2 creates many lightly loaded

pages, providing a flexibility in the solution space for packing. In RB2, packing

reduces K by 22.7% on the average.

In the same way, in Fig. 6.2, we compare the performance of the RB1 and

RB2 schemes in terms of the cutsize and provide the effect of packing on the

cutsize. If no packing is employed, RB1 achieves 1.7% smaller cutsize values

than RB2 on the average. Although reducing K decreases the cutsize in general,

the improvement of packing in the cutsize is quite small for both RB1 and RB2

schemes as the cutsize among the packed parts is small.

According to the results, RB2 with packing achieves 10.1% smaller K values
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Figure 6.1: Comparison of RB1 and RB2 schemes for D0–D7 datasets in terms
of the number of allocated pages
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Figure 6.2: Comparison of RB1 and RB2 schemes for D0–D7 datasets in terms
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Figure 6.3: Percent cutsize improvement of the clustering hypergraph model over
the clustering graph model

while yielding 1.7% higher cutsize values than RB1 with packing on the average.

In the following sections, we only present the performance results for the cluster-

ing graph and hypergraph models employing the RB2 scheme with packing since

the models employing the RB1 scheme with packing give a similar performance

in reducing the cutsize. Note that the RB2 scheme allocates the data over a

number of pages which is at most 9.8% (8.1% on the average) higher than the

lower bound on K.

6.3.4 Comparison of Clustering Graph and Hypergraph
Models

Fig. 6.3 displays the variation in the percent cutsize improvement of the clustering

hypergraph model over the clustering graph model with increasing page size.

Recall that cutsize values encapsulate the total disk access costs of GaS and GS

operations. It is important to note that, in these experiments, the models obtain

rather close numbers of disk pages. The graph model achieves K values only

0.03% smaller than the hypergraph model on the overall average. This enables a

fair comparison of the cutsize values attained by these two models.

As seen in Fig. 6.3, the hypergraph model performs better than the graph

model in terms of the cutsize for every allocation instance. In all datasets, the
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performance gap between the two models increases with increasing page size in

favor of the hypergraph model. When P is doubled, the cutsize values obtained

by the clustering graph and hypergraph models respectively decrease by 35.6%

and 38.4%, on the average. This is because decreasing the page size increases

the likelihood of distributing the records of the successors of a junction across

separate pages, thus allowing the graph model to avoid the deficiency mentioned

in Section 3.2.3. On the average over all allocation instances, the performance

improvement of the hypergraph model over the graph model is 14.7%.

In Fig. 6.4, we compare the performance of the clustering graph and hyper-

graph models via simulation in terms of the total number of disk accesses incurred

by aggregate network queries and provide the effect of changing P and B. Recall

that the cost of aggregate network query processing includes the costs of GaS

and GS operations and the cost of priority queue operations. Increasing P and

the buffer size independently decrease the number of disk accesses in both models

since the chance of assigning concurrently accessed records to the pages that are

already in the memory increases. In all simulation results with different buffer

sizes, the hypergraph model performs better than the graph model in reducing

the number of disk page accesses. On the average, the performance gap between

the two models increases with increasing page size in favor of the hypergraph

model.

The effect of page buffer size on the performance of these models is also

important. In almost all datasets, the percent performance improvement of the

hypergraph model over the graph model increases with increasing buffer size

independent of the page size. There are only two exceptions in simulations on

the smallest datasets D0 and D1 using the largest buffer size of 8 pages and the

largest page size of 8 KB. In these cases, a considerable portion of the data reside

in the memory, and hence the clustering models loose their effectiveness.

Comparison of the total disk access cost of GaS and GS operations captured

by the cutsize and the total disk access cost of aggregate network queries shows

that, although the average improvement in the total disk access cost of GaS

and GS operations is 14.7%, the average improvement in the total disk access
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Figure 6.4: The total disk access costs of aggregate network queries for each
dataset in the clustering graph and hypergraph models with increasing page size
P in KB and page buffer size B in number of pages.
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cost of aggragate network queries remains around 4.4%. This stems from the

difference between the cutsize and the total disk access cost of aggregate network

queries, which is due to the additional overhead of Find operations incurred by

the priority queue processing in path computation queries. This overhead varies

depending on the location in the memory hierarchy of the records matching the

ids extracted from the priority queue. Hence, in the worst case, where all records

must be retrieved from the disk, the overhead is equal to the total number of

records accessed in path computation queries. In the experiments, for the single-

page buffer case, this overhead is found to be around 80% of the total number

of disk accesses on the average. The overhead of the network operations still

remains around 20% despite our explicit effort towards minimizing this overhead.

6.4 Evaluation of Link-Based Storage Scheme

In this section, we first describe synthetic query generation step. Then, we com-

pare the storage size of the junction- and link-based storage schemes and present

the properties of clustering hypergraphs. We evaluate the performance of the

clustering hypergraph models for the junction- and link-based storage schemes

in two aspects. In Section 6.4.4, we evaluate the partition quality in terms of

cutsize, which corresponds to the total number of disk accesses incurred by GaS

and GS operations under the single-page buffer assumption. In Section 6.4.5,

we assess the total number of disk accesses in aggregate network queries through

simulations.

6.4.1 Query Generation

In order to span most elements in the network and hence to create a hypergraph

large enough to represent the network, we adaptively determined a separate query

count and a path length for each dataset. According to the path lengths in the

queries, we formed three query sets: Qshort, Qmedium, and Qlong. We selected the

path lengths and the number of queries in each query set as follows: For Qshort,

Qmedium, and Qlong, the path length is respectively set to the 1/18, 1/6, and 1/2 of



CHAPTER 6. EXPERIMENTAL RESULTS 79

Table 6.4: Properties of query sets
Path Number of

Query set Dataset length queries GaS GS
Qshort D1 8 5071 30 420 498 478

D2 8 8722 52 230 823 121
D3 26 17 111 405 910 14 583 559
D4 27 83 279 2 080 352 129 398 112

Qmedium D1 25 3042 69 943 3 108 062
D2 25 5233 119 572 4 830 266
D3 78 10 267 766 892 61 064 163
D4 81 49 967 3 944 006 604 478 026

Qlong D1 75 1014 74 022 3 977 814
D2 76 1744 127 948 9 033 815
D3 233 3422 774 053 70 111 055
D4 242 16 656 3 995 328 959 588 281

the diameter of the road network. The number of queries in each dataset is picked

linearly proportional to the number of junctions. For Qshort, Qmedium, and Qlong,

the number of queries is respectively set to the 5/10, 3/10, and 1/10 of the number

of junctions in the network. Table 6.4 displays the path length and the number

of queries used for each dataset and query set pair. Table 6.4 also displays the

number of GaS and GS operations respectively invoked by the route evaluation

and path computation queries for each dataset and query set pair. Although the

total number of queries is set to be equal in both query types, GS operations

constitute 97.7% of all operations in the query workload. This is because of the

fact that, for a given source and destination junction pair, the number of GS

operations in the path computation queries using Dijkstra’s algorithm is much

larger than the number of GaS operations in the route evaluation queries. Here,

we should note that the total net costs in the clustering hypergraphs generated

for the two storage schemes are exactly equal for a given query set. This enables

a fair comparison between the clustering hypergraph models for the two storage

schemes.

6.4.2 Storage Size of Junction- and Link-Based Schemes

In the experiments, 4 bytes are reserved for the coordinates of a junction (i.e.,

Cid = 4) and no space is reserved for junction attributes (i.e., CT = 0). We used

three different sizes of 16, 28, and 40 bytes for the link attributes (i.e., CL =16,

CL = 28, and CL = 40) in both storage schemes. These attribute sizes, which
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Table 6.5: Storage requirements of junction and link-based storage schemes (in
bytes)

CT =0
CL Dataset Sb

T Sb
L sb

T sb
L

16 D1 607 964 813 624 60.0 57.4
D2 989 256 1 298 856 56.7 56.5
D3 1 981 008 2 650 184 57.9 57.5
D4 9 201 072 11 850 952 55.2 55.5

28 D1 948 404 983 844 93.5 69.4
D2 1 540 944 1 574 700 88.3 68.5
D3 3 087 480 3 203 420 90.2 69.5
D4 14 321 976 14 411 404 86.0 67.5

40 D1 1 288 844 1 154 064 127.1 81.4
D2 2 092 632 1 850 544 120.0 80.5
D3 4 193 952 3 756 656 122.6 81.5
D4 19 442 880 16 971 856 116.7 79.5

Normalized averages
16 1.00 1.29 1.00 0.99
28 1.00 1.01 1.00 0.77
40 1.00 0.87 1.00 0.67

Sb

T
and Sb

L
denote the total storage sizes for the junction- and link-based storage schemes, respectively.

sb

T
and sb

L
denote the average record sizes for the junction- and link-based storage schemes, respectively.

are even smaller than the recent proposals [78], are selected to show the actual

pattern of performance difference between the two storage schemes. This way, we

are able to evaluate the effect of the average record size and total storage size on

the relative performance of the two storage schemes. Table 6.5 displays the total

storage sizes and the average record sizes for the junction- and link-based storage

schemes for each dataset and link attribute size pair. The Sb
T and sb

T values given

in Table 6.5 are exactly the same with those that can be obtained by substituting

the network specific parameters in Table 6.1 and the appropriate CL, Cid, and CT

values into (4.9) and (4.12). However, the Sb
L and sb

L values computed by using

(4.10) and (4.13) differ from the values in Table 6.5 because of the simplifying

assumption used in these equations. As seen in the Table 6.6, both the actual

average and total storage sizes are respectively 9.7% and 9.8% greater than the

theoretical values, on the overall average.

As seen in Table 6.5, for CL =16, the average record sizes are almost equal in

the two storage schemes, whereas the link-based scheme requires 29% more total

storage than the junction-based scheme, on the average. For CL = 28, the total

storage sizes are almost equal in the two storage schemes, whereas the average

record size of the link-based scheme is 23% less than that of the junction-based

scheme, on the average. For CL =40, both the total storage size and the average
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Table 6.6: Difference between theoretical and actual storage requirements of the
link-based storage scheme (in bytes)

Sb
L sb

L
CL Dataset theoretical actual % diff. theoretical actual % diff.
16 D1 748 413 813 624 8.7 52.8 57.4 8.7

D2 1 153 219 1 298 856 12.6 50.2 56.5 12.5
D3 2 356 305 2 650 184 12.5 51.1 57.5 12.5
D4 10 453 890 11 850 952 13.4 49.0 55.5 13.3

28 D1 918 633 983 844 7.1 64.8 69.4 7.1
D2 1 429 063 1 574 700 10.2 62.2 68.5 10.1
D3 2 909 541 3 203 420 10.1 63.1 69.5 10.1
D4 13 014 342 14 411 404 10.7 61.0 67.5 10.7

40 D1 1 088 853 1 154 064 6.0 76.8 81.4 6.0
D2 1 704 907 1 850 544 8.5 74.2 80.5 8.5
D3 3 462 777 3 756 656 8.5 75.1 81.5 8.5
D4 15 574 794 16 971 856 9.0 73.0 79.5 8.9

record size of the link-based scheme are less than those of the junction-based

scheme (on the average 13% and 33%, respectively). Although, in general, the

link-based scheme requires more storage than the junction-based scheme, the link-

based scheme becomes more favorable than the junction-based scheme for CL =40.

This is mainly due to the fact that the proposed way of handling bidirectional

links enables higher storage savings in the link-based scheme compared to the

junction-based scheme. Note that the link-based storage scheme has a slightly

larger average record size than the junction-based storage scheme for D4 with

CL =16. This does not comply with the analytical evaluation given in Section 4.2

because of the underlying assumption on the average record size.

6.4.3 Properties of Hypergraphs

Table 6.7 displays the properties of the clustering hypergraphs used in the

experiments for the junction- and link-based storage schemes. In this table,

|n|avg = |H|/|N | denotes the average net size of a hypergraph. Since the GaS

and GS operations incurred by the generated queries may not traverse all net-

work elements, the number of nets for each hypergraph is less than the number

of all possible nets that can be induced. As mentioned in Section 4.4.3, bidi-

rectional links lead to identical nets in both storage schemes. These nets are

detected and eliminated by a preprocessing step. Table 6.7 displays the values

after this identical net elimination step.
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Table 6.7: Properties of the clustering hypergraphs for the junction- and link-
based storage schemes

Qshort Qmedium Qlong

Dataset |V| |N | |H| |n|avg |N | |H| |n|avg |N | |H| |n|avg

Junction-based storage scheme
D1 10 141 19 344 56 913 2.9 15 691 49 607 3.2 14 576 47 376 3.3
D2 17 444 30 033 88 575 2.9 25 926 80 359 3.1 23 987 76 449 3.2
D3 34 222 50 970 159 836 3.1 49 439 156 747 3.2 45 128 148 033 3.3
D4 166 558 250 116 760 252 3.0 243 853 747 713 3.1 225 476 710 905 3.2
Link-based storage scheme
D1 14 185 18 400 45 302 2.5 14 553 37 603 2.6 13 092 34 680 2.6
D2 22 987 28 768 72 090 2.5 22 991 60 526 2.6 20 423 55 367 2.7
D3 46 103 47 080 125 054 2.7 44 659 120 200 2.7 38 581 107 968 2.8
D4 213 371 222 231 576 712 2.6 211 869 555 947 2.6 186 466 504 947 2.7

As seen in Table 6.7, HL contains considerably more (25.1% on the average)

vertices than HT. Note that the total number of vertices corresponds to the

number of records in a storage scheme. In a bidirectional road network, the

junction- and link-based storage schemes respectively have |T | and |L|/2 records,

and typically |T | < |L|/2 since davg > 2. In terms of the number of nets, HL

contains fewer (10.5% on the average) nets than HT. This is mainly due to the

junctions with degree one, which do not incur multi-pin nets in HL. In Table 6.7,

the average net size in HL is smaller than that of HT in accordance with the

discussion given in Section 4.4.3 on multi-pin nets.

6.4.4 Partitioning Quality

As in our earlier proposal for the junction-based storage scheme in Section 3.3, we

use a recursive bipartitioning scheme to partition HL into parts (see Section 3.4).

Similar to the results in Section 6.3.3, the RB2 scheme is experimentally found to

give slightly better results than the RB1 scheme. The slightly better performance

of RB2 in the link-based storage scheme is again due to the fact that it benefits

more from page packing as it generates more lightly loaded pages after partition-

ing. Hence, in our implementation, we adopt the recursive bipartitioning scheme

RB2 and page packing approach described in Section 3.4.

Fig. 6.5 displays the partitioning quality of the clustering hypergraph models

for the junction- and link-based storage schemes with the link attribute sizes

CL = 16 and CL = 28. These experiments are conducted on the hypergraphs
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Figure 6.5: Partitioning quality of the clustering hypergraph models for the
junction- and link-based storage schemes with CT =0.
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Table 6.8: Averages for percent cutsize improvement of the link-based storage
scheme over the junction-based storage scheme

CT =0
CL =16 CL =28 CL =40

Query set P K Cutsize K Cutsize K Cutsize
Qsmall 1 -30.9 42.2 -1.6 51.6 12.8 56.4

2 -31.0 42.6 -1.9 52.1 12.0 56.8
4 -31.6 42.1 -2.2 52.0 11.6 57.0
8 -31.2 41.5 -2.2 51.3 11.6 56.4

Qmedium 1 -30.8 43.7 -1.5 53.0 13.0 57.4
2 -31.1 44.4 -1.9 53.7 12.1 58.2
4 -31.5 44.0 -1.8 53.5 11.6 58.2
8 -31.3 44.0 -2.0 53.0 11.5 57.8

Qlong 1 -30.7 44.8 -1.5 53.7 12.9 58.0
2 -31.1 45.8 -1.8 54.8 12.1 59.3
4 -31.1 45.6 -2.1 55.0 11.6 59.7
8 -31.6 45.7 -2.4 54.9 11.2 59.4

generated using the query sets Qshort and Qlong. As seen in Fig. 6.5, in all cases,

the link-based storage scheme achieves smaller cutsize values than the junction-

based storage scheme. As expected, the cutsize values decrease with increasing

page size in both storage schemes, whereas the performance gap between these

two schemes does not vary significantly with varying page size.

Table 6.8 shows the average performance improvements of the clustering hy-

pergraph model for the link-based storage scheme over that for the junction-based

storage scheme for all query sets and CL values. In Table 6.8, P denotes the disk

page size. In the table, positive values indicate percent decrease in the K and

cutsize values, whereas negative values indicate percent increase in the K values,

achieved by the link-based storage scheme compared to the junction-based stor-

age scheme. As seen in Table 6.8, the two storage schemes achieve almost equal

K values for the CL =28 case. The junction-based storage scheme achieves 31.2%

smaller K values for the CL = 16 case, whereas the link-based storage scheme

results in 12.0% smaller K values for the CL = 40 case, on the average. These

percent differences are approximately equal to the percent differences for the total

storage sizes reported in Table 6.5.

As seen in Table 6.8, for the CL =28 case, which incurs almost equal K values

for both storage schemes, the link-based storage scheme achieves 53.2% less cut-

size values than the junction-based storage scheme, on the average. The relative
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performance improvement of the link-based storage scheme over the junction-

based storage scheme increases up to 57.9% when the size of the link attributes

increases to CL = 40. These experimental findings are in accordance with our

expectations discussed in Section 4.4.3. However, it is interesting to note that,

for CL =16, although the link-based storage scheme leads to considerably higher

K values, it achieves considerably lower cutsize values (43.9% on the average).

This can be attributed to the properties of the clustering hypergraphs modeling

the networks with bidirectional links.

The effect of query sets on the relative performance between the two storage

schemes is also important. As seen in Table 6.8, for fixed page size and CL

values, the performance gap between the two storage schemes increases as the

path length increases in favor of the link-based storage scheme. This finding can

be attributed to the increase in the number of GS operations with increasing

path length. As mentioned in Section 4.4.3, the performance difference between

the two storage schemes is expected to be higher for GS operations compared to

the GaS operations.

6.4.5 Disk Access Simulations

Figs. 6.6 and 6.7 display the relative performance comparisons of the two storage

schemes in terms of the number of disk accesses for both route evaluation and

path computation queries. In these figures, B denotes the page buffer size. The

simulation results in these figures are presented for the link attribute sizes CL =16

and CL = 28 with the varying page and buffer sizes. The query sets Qshort and

Qlong are respectively evaluated in Figs. 6.6 and 6.7 to show the effect of path

length and number of queries in simulations. The average improvements over all

datasets are given in Table 6.9 for all query sets and all CL values.

As seen in Figs. 6.6 and 6.7, the link-based storage scheme outperforms the

junction-based storage scheme for almost all simulation cases. In Figs. 6.6 and 6.7,

for the CL = 16 case with a single-page buffer, the link-based storage scheme

performs better than the junction-based storage scheme in all simulations except

for the case of D1 with P = 8 and Qshort. For the CL = 16 case with larger
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Figure 6.6: Disk access comparisons of the two storage schemes in aggregate
network query simulations for the Qshort query set and CT =0.
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Figure 6.7: Disk access comparisons of the two storage schemes in aggregate
network query simulations for the Qlong query set and CT =0.
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Table 6.9: Averages for percent performance improvement of the link-based stor-
age scheme over the junction-based storage scheme in terms of total number of
disk accesses for CT =0

CL =16 CL =28 CL =40
B P Qshort Qmedium Qlong Qshort Qmedium Qlong Qshort Qmedium Qlong

1 1 20.7 20.9 21.2 28.5 27.9 27.8 33.4 32.6 32.5
2 17.0 17.9 18.2 24.3 23.6 23.6 28.6 27.5 27.4
4 13.6 15.3 16.1 21.0 20.4 20.5 25.3 23.6 23.6
8 10.2 13.6 14.7 18.3 18.0 18.4 22.6 20.8 20.8

2 1 19.7 20.6 21.0 29.1 28.2 28.2 34.5 33.1 33.0
2 15.0 17.1 17.7 24.8 23.9 23.9 30.1 28.1 28.0
4 9.8 13.7 15.0 21.4 20.5 20.6 27.0 24.3 24.2
8 4.4 11.1 12.8 17.9 17.8 18.3 24.5 21.6 21.4

4 1 16.9 19.5 20.3 29.3 28.5 28.4 35.6 33.7 33.4
2 10.3 15.2 16.3 24.8 24.2 24.1 31.7 29.1 28.8
4 2.7 10.1 12.4 20.8 20.5 20.7 29.2 25.6 25.3
8 -4.3 5.4 8.3 16.3 17.2 17.9 26.2 23.1 22.6

8 1 11.0 17.2 18.6 28.7 28.9 28.8 36.7 34.9 34.3
2 2.4 10.8 12.9 23.3 24.5 24.4 33.1 31.0 30.2
4 -4.7 1.3 5.9 18.3 20.5 20.6 29.9 28.1 27.2
8 -10.7 -10.3 -3.4 13.3 15.9 16.8 24.7 26.2 24.9

page and buffer sizes, especially with short queries, the junction-based storage

scheme performs slightly better than the link-based storage scheme. This is due

to the fact that average record sizes are almost equal, but the total storage of the

link-based storage scheme is 29% larger than that of the junction-based storage

scheme.

The comparison of the two storage schemes in Table 6.9 is consistent with the

results presented in Table 6.8. However, the final improvements in the simulations

are less than the improvements in actual total costs of GaS and GS operations.

As seen in Table 6.8, the average improvement in the total disk access cost of GaS

and GS operations for a single-page buffer is 43.9% and 53.2% for CL = 16 and

for CL =28, respectively. Nevertheless, in Table 6.9, the average improvement in

the total disk access cost of aggregate network queries for a single-page buffer is

11.7% and 22.6% for CL =16 and for CL =28, respectively. This is mainly due to

the additional overhead of Find operations incurred by the internal steps of the

shortest path algorithm used in path computation queries.

According to Figs. 6.6 and 6.7, as expected, increasing page size and increas-

ing buffer size independently decrease the number of disk accesses in the two

storage schemes. The performance gap between the storage schemes decreases
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Table 6.10: Averages for percent performance improvement of the link-based
storage scheme over the junction-based storage scheme in terms of total number
of disk accesses for CL =28

CT =4 CT =8 CT =16
B P Qshort Qmedium Qlong Qshort Qmedium Qlong Qshort Qmedium Qlong

1 1 28.5 29.6 27.7 26.5 26.3 26.3 25.0 25.0 25.1
2 24.2 24.4 23.4 22.4 22.2 22.4 20.9 21.1 21.3
4 21.0 20.8 20.3 19.0 19.1 19.4 17.3 18.1 18.5
8 18.4 18.2 18.2 15.9 16.6 17.3 14.0 15.6 16.3

2 1 29.1 29.1 28.0 26.7 26.4 26.5 24.8 24.9 25.2
2 24.8 23.4 23.7 22.2 22.2 22.5 20.1 20.8 21.2
4 21.4 19.8 20.4 17.9 18.8 19.2 15.4 17.4 18.0
8 18.1 16.6 18.0 14.0 15.6 16.7 10.6 14.1 15.3

4 1 29.3 30.4 28.3 25.8 26.2 26.4 23.2 24.4 24.8
2 24.8 25.0 23.9 20.7 21.7 22.2 17.5 19.8 20.5
4 20.9 20.7 20.4 15.2 17.8 18.5 11.0 15.7 16.7
8 16.5 17.4 17.5 10.2 13.5 15.1 4.4 10.8 12.8

8 1 28.7 31.1 28.6 23.7 25.7 26.0 19.7 23.2 24.0
2 23.3 25.5 24.1 17.2 20.7 40.0 12.2 17.7 18.9
4 18.5 20.9 20.1 10.6 15.5 35.8 4.1 11.8 13.8
8 13.3 16.1 16.3 5.4 8.3 30.9 -1.6 2.7 6.9

with increasing P . For CL = 16, there are even cases where the junction-based

storage scheme performs better than the link-based storage scheme. This exper-

imental finding can be attributed to the total number of records fetched to the

memory for query processing and the total storage size difference between the

two schemes. As seen from Table 6.4, the length of queries is quite small in D1

and D2 for Qshort, and hence the hit rate for records in the buffer increases with

increasing page and buffer sizes. On the other hand, for CL =16, the total number

of records and the total storage size of the junction-based scheme is smaller than

the link-based scheme and thus the junction-based scheme is expected to perform

better with large buffers that can store a considerable portion of the dataset.

Recall that CT and CL are two important factors that affect the average record

size and total storage size. The experimental results reported and discussed so far

were obtained for a fixed CT =0 with varying CL values of 16, 28, and 40 bytes. In

order to represent a study on varying CT, we also conducted a set of experiments

for a fixed CL = 28 with varying CT values of 4, 8, and 16 bytes. The total

disk access simulation results of these experiments are displayed in Table 6.10.

As seen in the table, the link-based scheme performs better than the junction-

based scheme for every combination of simulation parameters except for B = 8,

P =8, CT =16 and Qshort. The performance gap between the two storage schemes
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decreases with increasing CT values, as expected. However, even for the largest

CT value of 16 bytes, the link-based storage scheme respectively incurs 14.9%,

17.7%, and 18.7% less disk accesses than the junction-based storage scheme for

Qshort, Qmedium, and Qlong query sets, on the average.

6.5 Evaluation of Efficient Successor Retrieval
Operations

In this section, we first describe the query generation and properties of con-

structed hypergraphs. Then, in order to confirm the validity of the proposed suc-

cessor retrieval operations and associated clustering models, we compare the per-

formance of the proposed Get-unProcessed-Successors (GuPS) operations mod-

eled by HGuPS (GuPS,HGuPS) and Get-unVisited-Successors (GuV S) operations

modeled by HGuVS (GuV S,HGuVS) against Get-Successors (GS) operations mod-

eled by HGS (GS,HGS). In Section 6.5.3, we evaluate the partitioning quality in

terms of cutsize, which corresponds to the total number of disk accesses incurred

by the successor retrieval operations under the single-page buffer assumption. In

Section 6.5.4, we estimate the total number of disk accesses in query processing

through simulations.

In the experiments, 8, 16, and 32 bytes are reserved for the coordinates of a

junction, junction attributes, and link attributes, respectively. The storage sizes

assigned for these parameters are selected in accordance with the earlier proposals

and characteristics of the datasets. We should also note that, as all links in each

dataset are bidirectional, we utilize the storage saving mentioned in Section 3.1

via storing only the successor list of each junction. The total storage size of the

network data excluding size of the points of interest and index structures are 1378,

2258, 4510, and 21067 KB in the D1, D2, D3, and D4 datasets, respectively.

6.5.1 Query Generation

For each dataset, we generated three synthetic query sets Qshort, Qmedium, and

Qlong depending on the shortest path length of the queries. In order to attain a
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Table 6.11: Properties of query sets
Number of # of operations that may incur disk access

Path operations % improvement
Dataset length Queries GS/GuPS/GuVS GuPS GuVS GuPS GuVS
Qshort

D1 8 7096 713 540 649 990 564 474 8.9 22.9
D2 8 11 701 994 296 814 044 745 016 18.1 30.6
D3 26 18 011 14 510 159 11 801 657 10 371 337 18.7 35.1
D4 27 86 167 125 939 189 95 580 202 84 914 536 24.1 42.9
Qmedium

D1 25 3909 3 104 899 2 748 033 2 286 093 11.5 29.8
D2 25 5899 4 692 252 3 749 669 3 286 196 20.1 37.5
D3 78 9964 56 685 642 45 116 531 39 096 176 20.4 39.0
D4 81 49 074 581 893 328 433 966 062 381 245 888 25.4 46.2
Qlong

D1 75 1153 3 310 447 2 880 172 2 389 886 13.0 32.0
D2 76 1759 9 745 309 7 655 299 6 618 883 21.4 40.8
D3 233 3458 66 055 205 51 384 653 44 490 684 22.2 42.0
D4 242 16 505 976 443 708 723 602 253 635 910 853 25.9 47.1

high level network coverage, we adaptively determined a different path length and

a query count for each dataset and query set (D,Q) pair. Here, network coverage

for a given (D,Q) pair is defined as the ratio of the number of processed links to

the total number of links in the network. The path length is set to 1/18, 1/6, and

1/2 of the diameter of each network for Qshort, Qmedium, and Qlong, respectively.

The number of queries for each (D,Q) pair is selected as follows: Initially, the

number of queries is set to 0.5%, 0.3%, and 0.1% of the number of junctions in

the network for Qshort, Qmedium, and Qlong, respectively. Each of these queries

is repeated 100 times on the average (between 50 and 150 times) to simulate a

more realistic case with frequent queries. If the network coverage of these queries

remains below 90%, then additional queries are added to have a coverage higher

than 90%. These query sets are used both in the construction of the clustering

hypergraphs and in the simulations. Table 6.11 displays the properties of these

synthetic query sets.

In Table 6.11, the number of queries and operations columns refer to the total

number of queries and successor retrieval operations invoked for each (D,Q) pair.

For a fair comparison among query processing strategies using GS, GuPS, and

GuVS operations, we enforced the number of these operations to be the same for

each (D,Q) pair. In Table 6.11, the 5th and 6th columns show the number of

GuPS and GuVS operations that may incur disk access(es). The remaining GuPS

and GuVS operations do not incur any disk access, because the set of unevaluated
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Table 6.12: Properties of generated hypergraphs
Qshort Qmedium Qlong

Dataset |V| |NGS| |HGS| |n|avg |NGS| |HGS| |n|avg |NGS| |HGS| |n|avg

D1 10 141 10 134 38 495 3,8 10 136 38 500 3,8 10 137 38 502 3,8
D2 17 444 17 366 63 236 3,6 17 351 63 181 3,6 17 279 62 926 3,6
D3 34 222 33 723 125 103 3,7 33 383 124 082 3,7 33 451 124 288 3,7
D4 166 558 166 152 592 183 3,6 166 212 592 327 3,6 165 850 591 150 3,6

|V| |NGuPS| |HGuPS| |n|avg |NGuPS| |HGuPS| |n|avg |NGuPS| |HGuPS| |n|avg

D1 10 141 35 682 103 912 2,9 36 287 102 855 2,8 32 242 89 230 2,8
D2 17 444 51 118 150 450 2,9 50 712 144 007 2,8 43 497 120 550 2,8
D3 34 222 92 806 265 192 2,9 79 731 222 837 2,8 63 047 176 108 2,8
D4 166 558 408 021 1 139 808 2,8 369 094 1 015 144 2,8 332 092 910 504 2,7

|V| |NGuVS| |HGuVS| |n|avg |NGuVS| |HGuVS| |n|avg |NGuVS| |HGS| |n|avg

D1 10 141 35 544 99 437 2,8 34 288 91 279 2,7 28 754 72 789 2,5
D2 17 444 49 697 141 767 2,9 45 695 123 424 2,7 37 155 95 684 2,6
D3 34 222 77 829 207 891 2,7 64 546 165 548 2,6 51 067 128 760 2,5
D4 166 558 365 759 964 027 2,6 319 967 819 010 2,6 287 675 730 615 2,5

successors for these operations is found to be empty in query processing (i.e.,

Suc(t, U)=∅). Note that each GS operation may incur disk access(es). The last

two columns of the Table 6.11 show the percent decrease in the total number of

GuPS and GuVS operations that may incur disk access(es) when compared with

the total number of GS operations.

6.5.2 Properties of Hypergraphs

Table 6.12 shows the properties of the generated clustering hypergraphs for GS,

GuPS, and GuVS operations. In the table, |V|, |N |, |H|, and |n|avg denote the

number of vertices, nets, pins and the average net size of hypergraphs, respec-

tively. Recall that, for a given dataset, the number of vertices of the three clus-

tering hypergraphs HGS, HGuPS, and HGuVS is the same for all of the three query

sets. As mentioned in Section 3.3.1, in HGS, there exists a single net for each

junction on which a GS operation is invoked. However, in Table 6.12, for each

(D,Q) pair, the number of nets is slightly less than the number of junctions since

the network coverage of queries is between 90% and 100%. In HGuPS and HGuVS,

there might be multiple nets for each junction on which a GuPS and a GuVS

operation is invoked with distinct set of unevaluated successors, respectively. For

each (D,Q) pair, the average number of nets per junction remains below 3.50

and 3.58 for HGuPS and HGuVS, respectively. On the overall, the average number

of nets per junction is 2.40 and 2.68 for HGuPS and HGuVS, respectively.
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Table 6.13: Number of pages (in ranges) for all allocation instances
P D1 D2 D3 D4
4 [368, 370] [607, 609] [1212, 1216] [5652, 5658]
8 [184, 186] [303, 305] [606, 608] [2830, 2834]

16 [91, 93] [151, 153] [303, 305] [1414, 1418]
32 [46, 48] [75, 77] [151, 153] [705, 709]

6.5.3 Partitioning Quality

For a given dataset and a page size, the number K of disk pages allocated ei-

ther changes very slightly or does not change at all for different query sets and

operations. So, K value ranges are reported in Table 6.13 for dataset and page

size pairs. As seen in Table 6.13, for each dataset, the number of allocated pages

decreases linearly with increasing page size as expected.

Fig. 6.8 displays the partitioning quality of clustering hypergraph models for

GS, GuPS, and GuVS operations in terms of cutsize for the Qshort and Qlong

query sets. In all allocation instances, both (GuPS,HGuPS) and (GuV S,HGuVS)

achieve significantly smaller cutsize values than (GS,HGS). The cutsize values

decrease with increasing page size since the number of records that can be packed

in a page increases.

Table 6.14 shows the average cutsize improvement of (GuPS,HGuPS) and

(GuV S,HGuVS) over (GS,HGS) for the Qshort, Qmedium, and Qlong query sets.

As seen in Table 6.14, (GuPS,HGuPS) and (GuV S,HGuVS) achieve 46.9% and

68.8% improvement in cutsize over (GS,HGS), on the overall average. For a fixed

query set, the performance gaps between (GS,HGS) and the other two models

do not vary considerably with increasing page size. On the other hand, for a

fixed page size, the performance gaps slightly increase in favor of (GuPS,HGuPS)

and (GuV S,HGuVS) as the query set changes from Qshort to Qlong. This can be

explained by the increase in the number of operations in the query sets. A large

number of operations is likely to decrease the number of unevaluated successors

of individual junctions.
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Figure 6.8: Partitioning quality of clustering hypergraph models for GS, GuPS,
and GuVS operations. Cutsize is equal to the total number of disk accesses
due to the respective successor retrieval operation under the single-page buffer
assumption.
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Table 6.14: Averages for percent cutsize improvements of (GuPS,HGuPS) and
(GuV S,HGuVS) over (GS,HGS)

(GuPS,HGuPS) (GuV S,HGuVS)
P Qsmall Qmedium Qlong Qsmall Qmedium Qlong

4 46.1 47.2 48.4 67.3 69.1 70.9
8 45.5 47.0 48.2 67.3 69.1 71.0

16 44.7 46.8 48.4 66.3 68.7 70.9
32 45.0 46.8 48.5 65.5 68.3 70.7

Table 6.15: Averages for percent performance improvements of (GuPS,HGuPS)
and (GuV S,HGuVS) over (GS,HGS) in terms of total number of disk accesses.

(GuPS,HGuPS) (GuV S,HGuVS)
B P Qsmall Qmedium Qlong Qsmall Qmedium Qlong

1 4 14.5 13.6 13.4 19.4 19.2 18.9
8 10.4 9.8 9.5 13.0 13.4 13.0

16 6.9 6.9 6.5 7.7 8.7 8.4
32 3.6 4.7 4.5 1.8 5.5 5.0

2 4 14.8 14.0 13.8 18.5 18.8 18.5
8 10.8 10.3 10.0 12.2 12.9 12.6

16 7.1 7.3 7.1 6.6 8.0 7.7
32 5.5 4.8 5.0 -0.5 4.5 3.9

4 4 16.0 14.7 14.5 16.6 18.2 18.0
8 12.1 11.2 10.9 8.7 11.8 11.7

16 8.2 8.3 8.3 2.0 6.2 6.2
32 5.5 5.4 6.5 0.7 1.8 1.6

8 4 17.7 16.4 16.1 12.5 16.6 16.6
8 12.4 13.0 12.9 4.8 8.6 9.1

16 8.3 10.1 10.9 2.6 1.1 1.4
32 7.7 7.9 9.7 -0.2 -3.6 -7.7

6.5.4 Disk Access Simulations

Figs. 6.9 and 6.10 compare the performance of (GuPS,HGuPS) and

(GuV S,HGuVS) over (GS,HGS) in terms of total number of disk accesses for

the Qshort and Qlong query sets, respectively. The values displayed in Figs. 6.9

and 6.10 show the number of disk accesses incurred by the successor retrieval op-

erations as well as those incurred by the Find operations in query processing. Ta-

ble 6.15 shows the average percent performance improvement of (GuPS,HGuPS)

and (GuV S,HGuVS) over (GS,HGS) over all datasets.

As seen in Figs. 6.9 and 6.10, (GuPS,HGuPS) performs considerably better

than (GS,HGS) in all simulation instances. However, (GuV S,HGuVS) performs

better than (GS,HGS) in all but 10 out of 128 simulation instances. This is

because of the fact that the disk access cost due to the Find operations consti-

tutes a much larger portion of the total disk access cost in the (GuV S,HGuVS)
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Figure 6.9: Total disk access cost of (GS,HGS), (GuPS,HGuPS), and
(GuV S,HGuVS) in query simulations using different page size P in KB and buffer
size B in number of pages for Qshort query set.
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Figure 6.10: Total disk access cost of (GS,HGS), (GuPS,HGuPS), and
(GuV S,HGuVS) in query simulations using different page size P in KB and buffer
size B in number of pages for Qlong query set.
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Table 6.16: Averages for percent performance improvements of (GuPS,HGuPS)
and (GuV S,HGuVS) over (GS,HGS) in terms of the number of disk accesses in-
curred only by the successor retrieval operations.

(GuPS,HGuPS) (GuV S,HGuVS)
B P Qsmall Qmedium Qlong Qsmall Qmedium Qlong

1 4 46,8 47,3 48,4 68,2 69,2 70,9
8 46,4 47,0 48,2 68,3 69,2 71,0

16 45,8 46,9 48,4 67,5 68,8 70,9
32 46,4 46,9 48,5 66,9 68,5 70,8

2 4 44,4 46,7 48,1 65,5 68,3 70,3
8 42,9 46,1 47,7 64,3 68,0 70,3

16 40,9 45,4 47,8 61,6 67,0 70,0
32 39,9 44,4 47,5 58,1 65,8 69,5

4 4 40,7 45,6 47,5 59,7 66,6 69,1
8 37,7 44,5 46,8 55,9 65,5 68,8

16 33,4 42,7 46,7 48,8 63,0 68,0
32 30,8 39,8 45,9 41,8 59,4 66,4

8 4 34,5 43,4 46,2 48,2 62,4 66,5
8 28,8 40,6 44,9 40,0 58,7 64,9

16 24,0 36,1 43,7 31,7 51,7 61,9
32 22,4 29,5 39,7 27,3 42,3 54,9

scheme when compared to the other two schemes since the number of disk ac-

cesses incurred by the GuVS operations are much less than those incurred by

the GS and GuPS operations. Recall that although the clustering hypergraph

models HGS, HGuPS, and HGuVS respectively capture the exact cost of disk ac-

cesses to be incurred by the successor retrieval operations under the single-page

buffer assumption, they do not capture the cost of disk accesses to be incurred

by the Find operations. The percent performance averages in Table 6.15 also

confirm this finding. As seen in Table 6.15, (GuV S,HGuVS) performs better than

(GS,HGS) in all but 4 out of 48 cases where these 4 disimprovement (negative

values) cases occur for large page and buffer size values. Furthermore, comparison

of Tables 6.14 and 6.15 shows that average percent performance improvements

in simulation results are considerably less than average cutsize improvements.

In order to further clarify this issue, we provide Table 6.16 which displays the

average percent performance improvements in terms of disk accesses only due to

the successor retrieval operations in simulations. Comparison of Tables 6.14 and

6.16 shows that percent performance improvements for all simulations are almost

the same as in the cutsize improvements for the single-page buffer case, and very

close for the larger buffer sizes.

According to Figs. 6.9 and 6.10, as expected, increasing the page size and
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increasing the buffer size independently decreases the number of disk accesses

in all simulation instances. Comparison of Figs. 6.9 and 6.10 shows that the

decrease in the number of disk accesses is more prominent with the Qshort query set

compared with the Qlong query set. As seen in Table 6.16, for fixed page and buffer

sizes, the performance improvement of both (GuPS,HGuPS) and (GuV S,HGuVS)

over (GS,HGS), in terms of the disk access cost due to the successor retrieval

operations, slightly increase with increasing query length. However, as seen in

Table 6.15, it is hard to find any such trend for the total disk access cost because

of the additional disk accesses incurred by the Find operations.



Chapter 7

Conclusions and Future Work

New proposals for efficient storage and access schemes are inevitable when the

massive size of modern spatial databases are considered. In this thesis, we pro-

posed storage and access schemes for efficient query processing on road networks.

In particular, we showed that the state-of-the-art clustering graph model for the

junction-based storage scheme is not able to correctly capture the disk access

costs of successor retrieval operations in query processing on road network. For

the junction-based storage scheme, we proposed a novel clustering hypergraph

model that utilizes the network usage frequencies obtained from previous query

logs and enables the correct estimation of the disk access costs of successor re-

trieval operations. We introduced two adaptive partitioning schemes based on

recursive bipartitioning when the number of parts is not known in advance. Al-

location of data to disk pages according to the clustering by partitioning of the

proposed hypergraph results in a considerable efficiency improvement in aggre-

gate query processing when compared to the earlier proposals that are based on

the clustering graph model.

We introduced the link-based storage scheme where each record stores the

data associated with a link together with the link’s connectivity information. Our

detailed comparative analysis on the properties of the junction- and link-based

storage schemes showed that the link-based storage scheme is more amenable to

clustering. We proposed a clustering hypergraph model for the link-based storage

100
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scheme to partition the network data into disk pages. We showed that the link-

based storage scheme results in better data allocation for processing aggregate

network queries.

We introduced a kernel operation Get-Unevaluated-Successors (GUS ) for spa-

tial network queries as a new successor retrieval operation, which is overlooked in

the literature. We proposed a clustering hypergraph model that captures the disk

access cost of GUS operations correctly for the junction-based storage scheme.

The proposed GUS operation and associated hypergraph-based clustering model

are evaluated for two different instances of GUS operations: Get-unProcessed-

Successors and Get-unVisited-Successors. The former operation typically arises

in Dijkstra’s single source shortest path algorithm, and the latter operation typ-

ically arises in the incremental network expansion framework. The results of

our experimental simulations show that the proposed successor retrieval opera-

tion together with the proposed clustering hypergraph model is quite effective in

reducing the number of disk accesses in query processing.

Although this work focused on route evaluation and path computation queries,

the developed framework can easily be applied to other types of network queries

such as dynamic path computation [78], nearest neighbor [23], range search and

closest pairs [59]. Some of these types of queries, such as variants of nearest

neighbors and closest pairs, require storing points of interest (POI). The storage

of POI is generally handled separately from the network topology, as the updates

on POI are frequent when compared to the changes in the network topology. To

efficiently handle such queries, we are also conducting research on embedding

POI into our storage schemes. The storage schemes mentioned in this work are

generic representations of networks, and hence, any index can be built on top

of these storage schemes. Application of the link-based storage scheme in graph

topologies may also be beneficial for research problems in other fields.

Our work on record-to-page allocation problem for road networks can also

be extended in several ways. For example, it is possible to mine the frequently

occurring patterns in query logs using existing sequence mining approaches. Fre-

quent sequences can also be stored in consecutive disk pages in order to minimize
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the disk access cost of network queries. Mining frequent sequences is considered

as a future work.
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matrices into block-diagonal form. SIAM Journal of Scientific Computing,

25(6):1860–1879, 2004.

[5] J. Banerjee, S. Kim, W. Kim, and J. Garza. Clustering DAG for CAD

databases. IEEE Transactions on Software Engineering, 14(11):1684–1699,

November 1988.

[6] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an

efficient and robust access method for points and rectangles. ACM SIGMOD

Record, 19(2):322–331, 1990.

[7] C. Berge. Graphs and Hypergraphs. North-Holland Publishing Company,

1973.

[8] T. Brinkhoff. A framework for generating network-based moving objects.

Geoinformatica, 6(2):153–180, 2002.

103



BIBLIOGRAPHY 104

[9] T. Brinkhoff. Data files: Oldenburg, San Joaquin. http://www.fh-oow.de/

institute/iapg/personen/brinkhoff/generator/, 2007.

[10] T. N. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factor-

ization. In Proceedings of the 6th SIAM Conference on Parallel Processing

for Scientific Computing, pages 445–452, 1993.

[11] T. Caldwell. On finding minimum routes in a network with turn penalties.

In Communications of the ACM, pages 107–108, 1961.

[12] B. B. Cambazoglu, C. Aykanat, and B. Uçar. An identical net detection
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