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ABSTRACT

NOISE ENHANCED DETECTION

Suat Bayram

M.S. in Electrical and Electronics Engineering

Supervisor: Asst. Prof. Dr. Sinan Gezici

June 2009

Performance of some suboptimal detectors can be improved by adding indepen-

dent noise to their measurements. Improving the performance of a detector by

adding a stochastic signal to the measurement can be considered in the frame-

work of stochastic resonance (SR), which can be regarded as the observation of

“noise benefits” related to signal transmission in nonlinear systems. Such noise

benefits can be in various forms, such as a decrease in probability of error, or

an increase in probability of detection under a false-alarm rate constraint. The

main focus of this thesis is to investigate noise benefits in the Bayesian, mini-

max and Neyman-Pearson frameworks, and characterize optimal additional noise

components, and quantify their effects.

In the first part of the thesis, a Bayesian framework is considered, and

the previous results on optimal additional noise components for simple binary

hypothesis-testing problems are extended to M -ary composite hypothesis-testing

problems. In addition, a practical detection problem is considered in the Bayesian

framework. Namely, binary hypothesis-testing via a sign detector is studied for

antipodal signals under symmetric Gaussian mixture noise, and the effects of

shifting the measurements (observations) used by the sign detector are investi-

gated. First, a sufficient condition is obtained to specify when the sign detector

iii



based on the modified measurements (called the “modified” sign detector) can

have smaller probability of error than the original sign detector. Also, two suf-

ficient conditions under which the original sign detector cannot be improved by

measurement modification are derived in terms of desired signal and Gaussian

mixture noise parameters. Then, for equal variances of the Gaussian components

in the mixture noise, it is shown that the probability of error for the modified

detector is a monotone increasing function of the variance parameter, which is

not always true for the original detector. In addition, the maximum improve-

ment, specified as the ratio between the probabilities of error for the original

and the modified detectors, is specified as 2 for infinitesimally small variances of

the Gaussian components in the mixture noise. Finally, numerical examples are

presented to support the theoretical results, and some extensions to the case of

asymmetric Gaussian mixture noise are explained.

In the second part of the thesis, the effects of adding independent noise to

measurements are studied for M -ary hypothesis-testing problems according to

the minimax criterion. It is shown that the optimal additional noise can be

represented by a randomization of at most M signal values. In addition, a convex

relaxation approach is proposed to obtain an accurate approximation to the noise

probability distribution in polynomial time. Furthermore, sufficient conditions

are presented to determine when additional noise can or cannot improve the

performance of a given detector. Finally, a numerical example is presented.

Finally, the effects of additional independent noise are investigated in the

Neyman-Pearson framework, and various sufficient conditions on the improv-

ability and the non-improvability of a suboptimal detector are derived. First, a

sufficient condition under which the performance of a suboptimal detector can-

not be enhanced by additional independent noise is obtained according to the

Neyman-Pearson criterion. Then, sufficient conditions are obtained to specify
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when the detector performance can be improved. In addition to a generic con-

dition, various explicit sufficient conditions are proposed for easy evaluation of

improvability. Finally, a numerical example is presented and the practicality of

the proposed conditions is discussed.

Keywords: Hypothesis testing, noise enhanced detection, Bayes decision rule,

minimax, Neyman-Pearson, stochastic resonance (SR), sign detector.
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ÖZET

GÜRÜLTÜ İLE GELİŞTİRİLMİŞ SEZİM

Suat Bayram

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Asst. Prof. Dr. Sinan Gezici

Haziran 2009

Optimal olmayan bazı detektörlerin girdisine bağımsız gürültü eklenerek, de-

tektörün performansı artırılabilir. Bu olay, doğrusal olmayan sistemlerde sinyal

iletimi sırasında gürültü yararının gözlemlenmesi şeklinde de tanımlanabilen

stokastik rezonans (SR) kavramı ile ilintilidir. Gürültü yararı, hata ihtimalinin

azalması ya da belirli yanlış tespit seviyesi altında doğru tespit ihtimalinin art-

ması gibi birçok farklı şekilde gözlemlenebilir. Bu tezin temel olarak yoğunlaştığı

konu, gürültü yararının Bayesian, minimax ve Neyman-Pearson kriterlerinde

çalışılması ve optimal gürültünün formunun ve etkilerinin incelenmesidir.

Tezin ilk kısmında, ikili basit hipotez testleri için optimal gürültü

formu ile ilgili literatürdeki önceki sonuçlar, çoklu bileşik hipotez testlerine

genişletilmektedir. Buna ek olarak, iki kutuplu sinyallerin Gauss karışımı (Gaus-

sian mixture) gürültüsü altında işaret detektörü ile tespit edilmesi problemi,

Bayesian kriterine göre analiz edilmektedir. Bu analizde, işaret detektörü

tarafından kullanılan gözlemleri kaydırmanın sonuçları araştırılmaktadır. İlk

olarak, kaydırılmış gözlemler kullanan işaret detektörünün, orijinal işaret de-

tektöründen daha düşük hata olasılığına sahip olması için bir yeterli koşul sunul-

maktadır. Bunun yanında, orijinal detektörün geliştirilemediği iki yeterli koşul

elde edilmektedir. Bu yeterli koşullar, sinyal ve Gauss karışımı gürültüsünün
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parametreleri cinsinden bulunmaktadır. Gauss karışımı gürültüsündeki Gauss

bileşenlerinin standard sapmaları eşit olduğu zaman, hata ihtimali değistirilmiş

detektör için monoton artan bir fonksiyondur. Bu durum, orijinal detektör için

her zaman geçerli değildir. Buna ek olarak, Gauss karışımı gürültüsündeki Gauss

bileşenlerin standard sapmaları sıfıra gittiği zaman, orijinal hata ihtimalinin

değistirilmiş detektörün hata ihtimaline oranının, yani gelişim oranının, en fazla

ikiye eşit olduğu gösterilmektedir. Son olarak, sayısal örneklerle teorik sonuçlar

desteklenmekte ve teorik sonuçların simetrik olmayan Gauss karışımı gürültüsüne

nasıl genişletilebileceğiyle ilgili yorumlar yapılmaktadır.

Tezin ikinci kısmında, çoklu (M ’li) hipotez testlerinde, detektörlerin kul-

landığı gözlemlere bağımsız gürültü eklemenin, minimax kriteri altındaki etk-

ileri analiz edilmektedir. Optimal gürültünün ihtimal yoğunluk fonksiy-

onunun en fazla M farklı değer icin sıfırdan farklı olabileceği ispatlanmak-

tadır. Buna ek olarak, polinom zamanda optimal gürültünün ihtimal yoğunluk

fonksiyonunun yaklaşık olarak “convex relaxation” yöntemiyle elde edilebileceği

gösterilmektedir. Ayrıca, detektör performansının gürültüyle hangi durum-

larda geliştirilip geliştirilemiyeceğiyle ilgili yeterli koşullar sunulmaktadır. Son

bölümde ise, sayısal bir örnek üzerine çalışılmaktadır.

Son olarak, Neyman-Pearson kriteri altında, gözleme bağımsız gürültü ekle-

menin detektör performansı üzerindeki etkileri incelenmektedir. Bu bağlamda,

optimal olmayan bir detektörün performansının geliştirilip geliştirilemiyeceği du-

rumlarla ilgili yeterli koşullar çıkarılmaktadır. İlk olarak, Neyman-Pearson kriter-

ine göre, optimal olmayan bir detektörün performansının hangi durumda gözleme

bağımsız gürültü ekleme yoluyla geliştirilemiyeceğiyle ilgili yeterli koşul sunul-

maktadır. Daha sonra, detektörün geliştirilebilmesiyle ilgili yeterli koşullar elde

edilmektedir. Genel koşulların yanında, geliştirilebilirliliğin kolay test edilebilme-

sine imkan sağlayan çeşitli yeterli koşullar da önerilmektedir. Son olarak, sayısal

örnekler sunulmakta ve önerilen koşulların pratik değerleri tartışılmaktadır.
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Chapter 1

Introduction

1.1 Objectives and Contributions of the Thesis

Performance of some suboptimal detectors can be improved by adding indepen-

dent noise to their measurements. Improving the performance of a detector by

adding a stochastic signal to the measurement is referred to as noise enhanced

detection [1], [2]. Noise enhanced detection can also be considered in the frame-

work of stochastic resonance (SR), which can be regarded as the observation of

“noise benefits” related to signal transmission in nonlinear systems [3]-[17]. Such

noise benefits can be in various forms, such as an increase in output signal-to-

noise ratio (SNR) [5], [3], a decrease in probability of error [18], or an increase

in probability of detection under a false-alarm rate constraint [1], [17].

Although adding noise to a system commonly degrades its output, SR

presents an exception to that intuition, which is observed under special circum-

stances. The SR was first studied in [3] to explain the periodic recurrence of ice

gases. In that work, presence of noise was taken into account to explain a natural

phenomenon. Since then, the SR concept has been employed in numerous non-

linear systems, such as optical, electronic, magnetic, and neuronal systems [8].
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The first experimental verification of the SR phenomenon was the investigation

of the behavior of the Schmitt trigger in an electronic bistable system [19].

Considering the probability of error as the performance criterion, it is shown

in [18] that the optimal additional signal that minimizes the probability of er-

ror of a suboptimal detector has a constant value. In other words, addition of

a stochastic signal to the measurement corresponds to a shift of the measure-

ments in that scenario. Hence, when the aim is to minimize the probability of

error, improvement of detector performance by utilizing SR can be regarded as

threshold adaptation, which has been applied in various fields, such as in radar

problems [20]. Although the formulation of the optimal signal value is provided

in [18], no studies have investigated sufficient conditions for improvability and

non-improvability of specific suboptimal detectors according to the minimum

probability of error criterion, and quantified performance improvements that can

be achieved by measurement modifications. In addition, the effects of additional

noise have not been investigated for composite hypothesis-testing problems in

the Bayesian framework.

An important application of the results in [18] includes the investigation of

the effects of additional noise (effectively, measurement shifts) on sign detec-

tors that operate under Gaussian mixture noise. Motivated by the fact that,

under zero-mean Gaussian noise, signals with opposite polarities minimize the

error probability of a sign detector based on correlation outputs [21], antipodal

signaling with sign detection has been extensively used in communications sys-

tems [22]. In fact, sign detectors can be employed as suboptimal detectors in

symmetric non-Gaussian noise environments as well due to their low complex-

ity [23]. Therefore, it is of interest to investigate techniques that preserve the

low complexity structure of the sign detector but improve the overall receiver

performance by modifying the measurements (observations) used by the detec-

tor. In this thesis, the effects of adding a stochastic signal to measurements are
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investigated for sign detection of antipodal signals under symmetric Gaussian

mixture noise. The Gaussian mixture model is encountered in many practi-

cal scenarios, such as characterization of multiple-access-interference (MAI) [24],

ultra-wideband (UWB) communications systems [25], localization [26] and ac-

quisition [27] problems.

In Chapter 2 of the thesis, optimal additional noise is shown to have a con-

stant value for M -ary composite hypothesis-testing problems in the Bayesian

framework, which extends the results in [18]. In other words, the optimal ad-

ditional noise corresponds to a shift of the measurements for M -ary composite

hypothesis-testing problems as well. Then, the effects of measurement shifts are

investigated for sign detection of antipodal signals under symmetric Gaussian

mixture noise according to the minimum probability of error criterion. First, a

sufficient condition is obtained for measurement shifts to reduce the probability

error of a sign detector in terms of desired signal and Gaussian mixture noise

parameters. Then, two conditions under which the performance of the original

detector cannot be improved are derived. Also, for equal variances of the Gaus-

sian components in the mixture noise, the probability of error for the modified

detector is characterized as a monotone increasing function of the variance. It

is also shown via numerical examples that the original detector does not have

this property in general. In addition, a theoretical performance comparison is

made between the original and the modified detectors for small variances of the

Gaussian components in the mixture noise, and it is shown that the maximum

ratio between the probabilities of error for the original and the modified detectors

is equal to two. As a byproduct of this result, sufficient conditions for improv-

ability and non-improvability of the sign detector are obtained for infinitesimally

small variance values. Finally, numerical examples are presented to support the

theoretical results, and some concluding remarks are made.
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In addition to the Bayesian criterion, performance of some detectors can be

evaluated according to the minimax criterion in the absence of prior information

about the hypotheses [21], [28]. The study in [29] utilizes the results in [18]

and [1] in order to investigate optimal additional noise for suboptimal variable

detectors in the Bayesian and minimax frameworks. Although the formulation

of optimal additional noise is studied for a binary hypothesis-testing problem in

[29], no studies have investigated M -ary hypothesis problems under the minimax

framework, and provided the structure of the optimal noise probability density

functions (PDFs) and sufficient conditions for the improvability and the non-

improvability of a given detector.

In Chapter 3 of this thesis, noise enhanced detection is studied for M -ary

hypothesis-testing problems in the minimax framework. First, the formulation

of optimal additional noise is provided for an M -ary hypothesis-testing problem

according to the minimax criterion. Then, it is shown that the optimal additional

noise can be represented by a randomization of no more than M signal levels.

In addition, a convex relaxation approach is proposed to obtain an accurate ap-

proximation to the noise PDF in polynomial time. Also, sufficient conditions are

provided regarding the improvability and non-improvability of a given detector

via additional noise.

In the absence of prior information about the hypotheses, the Neyman-

Pearson criterion considers the maximization of detection probability under a

constraint on the probability of false alarm [21]. In the framework of noise

enhanced detection, the aim is to obtain the optimal additional noise that max-

imizes the probability of detection under a constraint on the probability of false

alarm [1], [17]. In [1], a theoretical framework is developed for this problem, and

the PDF of optimal additional noise is specified. Specifically, it is proven that

optimal noise can be characterized by a randomization of at most two discrete
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signals, which is an important result as it greatly simplifies the calculation of op-

timal noise PDFs. Moreover, [1] provides sufficient conditions under which the

performance of a suboptimal detector can or cannot be improved via additional

independent noise. The study in [17] focuses on the same problem and obtains

the optimal additional noise PDF via an optimization theoretic approach. In

addition, it derives alternative improvability conditions for the case of scalar

observations.

In Chapter 4 of this thesis, new improvability and non-improvability con-

ditions are proposed for detectors in the Neyman-Pearson framework, and the

improvability conditions in [17] are extended. The results also provide alternative

sufficient conditions to those in [1]. In other words, new sufficient conditions are

derived, under which the detection probability of a suboptimal detector can or

cannot be improved by additional independent noise, under a constraint on the

probability of false alarm. All the proposed conditions are defined in terms of

the probabilities of detection and false alarm for specific additional noise values

without the need for any other auxiliary functions employed in [1]. In addition to

deriving generic conditions, simpler but less generic improvability conditions are

provided for practical purposes. The results are compared to those in [1], and

the advantages and disadvantages are specified for both approaches. In other

words, comments are provided regarding specific detection problems, for which

one approach can be more suitable than the other. Moreover, the improvabil-

ity conditions in [17] for scalar observations are extended to both more generic

conditions and to the case of vector observations.

1.2 Organization of the Thesis

The organization of the thesis is as follows. In Chapter 2, optimal additional noise

is characterized for M -ary composite hypothesis-testing problems in the Bayesian
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framework, and the effects of additional noise are investigated for conventional

sign detectors under symmetric Gaussian mixture noise.

In Chapter 3, noise benefits are investigated for M -ary hypothesis-testing

problems under the minimax framework. Both the optimal additional noise

characterization is provided, and a technique for obtaining the optimal addi-

tional noise components is proposed.

In Chapter 4, new improvability and non-improvability conditions are pro-

posed for suboptimal detectors in the Neyman-Pearson framework, and the im-

provability conditions in [17] are extended. The results also provide alternative

sufficient conditions to those in [1].
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Chapter 2

Noise Enhanced Detection in the

Bayesian Framework and Its

Application to Sign Detection

under Gaussian Mixture Noise

This chapter is organized as follows. In Section 2.1, optimal additional noise is

characterized for M -ary composite hypothesis-testing problems according to the

Bayesian criterion. Then, based on the results in Section 2.1, noise enhanced

detection is studied for sign detectors under Gaussian mixture noise in the re-

maining sections. In Section 2.2.1, the system model is introduced, and the

Gaussian mixture measurement noise is described. Then, Section 2.2.2 studies

the optimal additional independent noise for minimizing the probability of deci-

sion error for a sign detector under symmetric Gaussian mixture noise. In Section

2.2.3, conditions on desired signal amplitude and/or the parameters of Gaussian

mixture noise are derived in order to specify whether the performance of the

detector can be improved. After that, the probability of error performance of

the noise enhanced detector is investigated, and a monotonicity property of the

7



probability of error and the maximum improvement ratio are derived in Section

2.2.4. Finally, numerical examples are studied in Section 2.2.5, and concluding

remarks and extensions are presented in Section 2.3.

2.1 Noise Enhanced M-ary Composite Hypothesis-

Testing in the Bayesian Framework

2.1.1 Generic Solution

Consider the following M -ary composite hypothesis-testing problem:

Hi : pX
θ (x) , θ ∈ Λi , i = 0, 1, . . . ,M − 1 , (2.1)

where Hi denotes the ith hypothesis and pX
θ (x) represents the probability den-

sity function (PDF) of observation X for a given value of Θ = θ. Each ob-

servation (measurement) x is a vector with K components; i.e., x ∈ RK , and

Λ0, Λ1, . . . , ΛM−1 form a partition of the parameter space Λ. The prior distribu-

tion of the unknown parameter Θ, denoted by w(θ), is assumed to be known,

considering a Bayesian framework.

A generic decision rule can be defined as

φ(x) = i , if x ∈ Γi , (2.2)

for i = 0, 1, . . . , M−1, where Γ0, Γ1, . . . , ΓM−1 form a partition of the observation

space Γ.

As shown in Fig. 2.1, the aim is to add noise to the original observation x

in order to improve the performance of the detector according to the Bayesian

criterion. By adding noise c to the original observation x, the modified obser-

vation is formed as y = x + c, where c has a PDF denoted by pC(·), and is

8



Figure 2.1: Additional independent noise c is added to observation x in order to
improve the performance of the detector φ(·).

independent of x. It is assumed that the detector φ , described by (2.2), is fixed,

and the only means for improving the performance of the detector is to optimize

the additional noise c. In other words, the aim is to find pC(·) that minimizes

the Bayes risk r(φ); that is,

popt
C (c) = arg min

pC(c)
r(φ) , (2.3)

where the Bayes risk is given by [21]

r(φ) = E{RΘ(φ)} =

∫

Λ

Rθ(φ)w(θ) dθ , (2.4)

with Rθ(φ) denoting the conditional risk that is defined as the average cost of

decision rule φ for a given θ ∈ Λ. The conditional risk can be calculated from

[21]

Rθ(φ) = E{C[φ(Y ), Θ] | Θ = θ} =

∫

Γ

C[φ(y), θ] pY
θ (y) dy , (2.5)

where pY
θ (y) is the PDF of the modified observation for a given value of Θ = θ,

and C[i, θ] is the cost of selecting Hi when Θ = θ, for θ ∈ Λ. Thus, r(φ) can be

expressed as

r(φ) =

∫

Λ

∫

Γ

C[φ(y), θ] pY
θ (y) w(θ) dy dθ. (2.6)

Due to the addition of independent noise, the modified observation has the

following PDF:

pY
θ (y) =

∫

RK

pX
θ (y − c)pC(c) dc . (2.7)
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Then, from (2.6) and (2.7), the following expressions are obtained:

r(φ) =

∫

Λ

∫

Γ

∫

RK

C[φ(y), θ] pX
θ (y − c) pC(c) w(θ) dc dy dθ (2.8)

=

∫

RK

pC(c)

[∫

Λ

∫

Γ

C[φ(y), θ]pX
θ (y − c) w(θ) dy dθ

]
dc (2.9)

=

∫

RK

pC(c) f(c) dc (2.10)

= E{f(C)} (2.11)

where

f(c)
.
=

∫

Λ

∫

Γ

C[φ(y), θ] pX
θ (y − c) w(θ) dy dθ . (2.12)

From (2.11), it is observed that the solution of (2.3) can be obtained by

assigning all the probability to the minimizer of f(c); i.e.,

popt
C (c) = δ(c− c0) , (2.13)

where

c0 = arg min
c

f(c). (2.14)

In other words, the optimal additional noise that minimizes the Bayes risk can be

expressed as a constant corresponding to the minimum value of f(c). Of course,

when f(c) has multiple minima, then the optimal noise PDF can be represented

as pC(c) =
∑N

i=1 λiδ(c − c0i), for any λi ≥ 0 such that
∑N

i=1 λi = 1, where

c01, . . . , c0N represent the values corresponding to the minimum values of f(c).

The main implication of the result in (2.13) is that among all PDFs for the

additional independent noise c, the ones that assign all the probability to a single

noise value can be used as the optimal additional signal components in Fig. 2.1.

In other words, in the Bayesian framework, addition of independent noise to

observations corresponds to shifting the decision region of the detector.
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2.1.2 Special Cases

The analysis in the previous section considers a Bayes risk based on a very

generic cost function C[j, θ], which can assign different costs even to the same

decision j for a given true hypothesis θ ∈ Λi when different values of θ in

set Λi are considered. In this section, various special cases are studied for some

specific structures of the cost function. In addition, the binary hypothesis-testing

problem (M = 2) is analyzed in more detail.

If it is assumed, for all i, j, that the cost of deciding Hj when Hi is true

is the same for all θ ∈ Λi (i.e., if a uniform cost is assumed in each Λi for

i = 0, 1, . . . , M − 1), the cost function satisfies

C[φ(y) = j , θ] = Cji , ∀θ ∈ Λi , ∀i, j ∈ {0, 1, . . . , M − 1} , (2.15)

where Cji is a non-negative constant that is independent of θ [21]. Then, f(c) in

(2.12) becomes

f(c) =

∫

Λ

∫

Γ

C[φ(y), θ] pX
θ (y − c) w(θ) dy dθ

=
M−1∑
i=0

∫

Λi

(
M−1∑
j=0

∫

Γj

Cji pX
θ (y − c) dy

)
w(θ) dθ

=
M−1∑
i=0

M−1∑
j=0

Cji

∫

Γj

∫

Λi

pX
θ (y − c)w(θ) dθ dy

=
M−1∑
i=0

M−1∑
j=0

Cjifji(c) (2.16)

where

fji(c)
.
=

∫

Γj

∫

Λi

pX
θ (y − c)w(θ) dθ dy . (2.17)

In addition to (2.15), if uniform cost assignment (UCA) is considered, the

costs are specified as Cji = 1 for j 6= i and Cji = 0 for j = i. In other words,

the correct decisions are assigned zero cost, whereas the wrong ones are assigned
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unit cost. In this case, f(c) in (2.16) becomes

f(c) =
M−1∑
i=0

M−1∑
j=0

j 6=i

fji(c) = 1−
M−1∑
i=0

fii(c) . (2.18)

Next, let M = 2 (i.e., binary hypothesis-testing) and assume uniform costs

in Λi for i = 0, 1. Then, f(c) can be calculated as follows:

f(c) =
1∑

i=0

1∑
j=0

Cjifji(c) =
1∑

i=0

1∑
j=0

Cji

∫

Γj

∫

Λi

pX
θ (y − c)w(θ) dθ dy

= C10

∫

Γ1

∫

Λ0

pX
θ (y − c)w(θ) dθ dy + C00

∫

Γ0

∫

Λ0

pX
θ (y − c)w(θ) dθ dy

+ C01

∫

Γ0

∫

Λ1

pX
θ (y − c)w(θ) dθ dy + C11

∫

Γ1

∫

Λ1

pX
θ (y − c)w(θ) dθ dy

= π1C01 + π0C00 +

∫

Γ1

[
(C10 − C00)

∫

Λ0

pX
θ (y − c)w(θ) dθ

− (C01 − C11)

∫

Λ1

pX
θ (y − c)w(θ) dθ

]
dy , (2.19)

where the following relation is employed in obtaining the final expression:
∫

Γ0

∫

Λi

pX
θ (y − c)w(θ) dθ dy = πi −

∫

Γ1

∫

Λi

pX
θ (y − c)w(θ) dθ dy , (2.20)

for i = 0, 1, with πi = P (Hi) =
∫

Λi
w(θ) dθ .

Then, the Bayes risk in (2.10) can be expressed from (2.19) as

r(φ) =

∫

RK

pC(c) f(c) dc = E{f(C)}

= π1C01 + π0C00 − E{g(C)} , (2.21)

where

g(c) =

∫

Γ1

[
− (C10 − C00)

∫

Λ0

pX
θ (y − c)w(θ) dθ

+ (C01 − C11)

∫

Λ1

pX
θ (y − c)w(θ) dθ

]
dy . (2.22)

From (2.21), it is observed that r(φ) is minimized for pC(c) = δ(c − c0),

where

c0 = arg max
c

g(c) . (2.23)
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Therefore, the optimal additional noise that minimizes the Bayes risk can be

expressed as a constant corresponding to the maximum value of g(c).

In order to obtain a more explicit expression for g(c), the following result is

employed [21].

pX(y − c|Θ ∈ Λi) =
1

πi

∫

Λi

pX
θ (y − c)w(θ) dθ , i = 0, 1. (2.24)

Then, g(c) in (2.22) can be expressed as

g(c) =

∫

RK

φ(y)

[
(C01 − C11)

∫

Λ1

pX
θ (y − c)w(θ) dθ

− (C10 − C00)

∫

Λ0

pX
θ (y − c)w(θ) dθ

]
dy (2.25)

=

∫

RK

φ(x + c)
[
(C01 − C11)π1p

X(x|θ ∈ Λ1)

− (C10 − C00)π0p
X(x|θ ∈ Λ0)

]
dx , (2.26)

where the result in (2.24), as well as a change of variables (x = y − c) are used

in obtaining the final result. If we define a new function h(x) as

h(x) = (C01 − C11)π1p
X(x|θ ∈ Λ1)− (C10 − C00)π0p

X(x|θ ∈ Λ0) , (2.27)

we then have

g(c) =

∫

RK

φ(x + c)h(x) dx . (2.28)

As can be seen from (2.28), g(c) is the correlation between the decision function

and h(x).

If we also assume that correct decisions have zero cost, and wrong ones have

unit cost, we have r(φ) = π1 − E{g(C)} and

h(x) = π1p
X(x|θ ∈ Λ1)− π0p

X(x|θ ∈ Λ0) . (2.29)

For simple hypotheses (i.e., when Λ0 and Λ1 contain single elements), (2.29)

yields h(x) = π1p
X
1 (x)−π0p

X
0 (x), which is the result obtained in [18]. In Section

2.2, the result for simple hypotheses is used to investigate noise enhanced sign

detectors under Gaussian mixture noise.
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2.1.3 A Detection Example

In this section, the following composite hypothesis-testing problem is studied in

order to present an example of the theoretical results obtained in the previous

sections.

H0 : θ ∈ Λ0 = [−α, 0] ,

H1 : θ ∈ Λ1 = (0, 2α] , (2.30)

where α is a known positive real number. For a given value of Θ = θ, the

observation X has the following PDF:

pX
θ (x) =

1

3

[
γ(x; θ − A, σ2) + γ(x; θ, σ2) + γ(x; θ + A, σ2)

]
, (2.31)

where γ(x; µ, σ2)
.
= 1√

2πσ
exp

(
− (x−µ)2

2σ2

)
. In other words, the observation is dis-

tributed as the mixture of three Gaussian distributions with the same variance

σ2 and means θ − A, θ, and θ + A. In addition, the prior distribution of Θ is

modeled by a uniform random variable between −α and 2α, which is denoted

as Θ ∼ U [−α , 2α]. Therefore, the prior probabilities of the hypotheses can be

obtained as π0 = P (H0) =
∫ 0

−α
1
3α

dθ = 1/3 and π1 = P (H1) =
∫ 2α

0
1
3α

dθ = 2/3 .

The sign detector is considered as the decision rule in this example, which is

expressed as

φ(y) =





1 if y ≥ 0

0 if y < 0

. (2.32)

The aim is to obtain the optimal value of additional signal c such that y = x + c

results in the minimum Bayes risk for this composite hypothesis-testing problem

(cf. (2.3)).

Assuming uniform costs in Λ0 and Λ1 and for UCA, the optimal value of c

can be obtained from (2.14), (2.17) and (2.18), or from (2.23), (2.28) and (2.29).

When the solution based on (2.14), (2.17) and (2.18) is considered, f(c) can be
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obtained as f(c) = 1 − f00(c) − f11(c). From (2.17), f00(c) and f11(c) can be

expressed for Θ ∼ U [−α , 2α] as

f00(c) =
1

3α

∫ 0

−α

∫ 0

−∞
pX

θ (y − c) dy dθ , (2.33)

f11(c) =
1

3α

∫ 2α

0

∫ ∞

0

pX
θ (y − c) dy dθ . (2.34)

Then, after some manipulation, f(c) = 1− f00(c)− f11(c) can be obtained, from

(2.31), (2.33) and (2.34), as

f(c) = 1− f00(c)− f11(c) =
2

3
− 1

9α

(∫ 2α

0

vθ(c) dθ −
∫ 0

−α

vθ(c) dθ

)
, (2.35)

where

vθ(c)
.
= Q

(−θ + A− c

σ

)
+ Q

(−θ − c

σ

)
+ Q

(−θ − A− c

σ

)
. (2.36)

Therefore, the optimal value of c can be calculated from (2.14) and (2.35) as

c0 = arg max
c

{∫ 2α

0

vθ(c) dθ −
∫ 0

−α

vθ(c) dθ

}
. (2.37)

In Fig. 2.2, the Bayes risks are plotted against α for the original sign detector

(i.e., without additional signal c) and for the noise enhanced sign detector (i.e.,

with optimal additional signal c0) when A = 2 and σ = 1. Note from (2.11) that

the Bayes risks are given by r(φ) = f(0) and r(φ) = f(c0) for the original and

the noise enhanced sign detectors, respectively. It is observed from the figure

that there is significant improvement for small values of α and the amount of

improvement decreases as α increases. For example, for α = 0.5, the Bayes risks

are 0.429 and 0.323, respectively, for the conventional and the noise enhanced

sign detectors, whereas they are 0.298 and 0.262 for α = 1.5 .

In Fig. 2.3, the Bayes risk is plotted versus additional signal c when A = 2

and σ = 1 for various values α . For each α, there is a unique minimizer of the

Bayes risk for a positive value of c. In addition, it is observed that the optimal

additional signal value c0 in (2.37) decreases as α increases. In fact, for large
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values of α, c0 goes to zero, which implies that the detector cannot be improved

by additional noise; that is, the original detector is non-improvable, which is in

compliance with the result in Fig. 2.2.

2.2 Noise Enhanced Sign Detection under

Gaussian Mixture Noise

After showing, in the previous section, that an optimal additional noise corre-

sponds to a shift of the measurements used by the detector, this section inves-

tigates the effects of measurement shifts for sign detection of antipodal signals

under symmetric Gaussian mixture noise.

2.2.1 Signal Model

Consider the following measurement (observation) model

x = Ab + n , (2.38)

where b ∈ {−1, +1} represents the equiprobable binary symbol to be detected,

A > 0 is the known amplitude coefficient,1 and n is the measurement noise,

which is modeled as symmetric Gaussian mixture noise. The PDF of the noise

is given by

pN(x) =
M∑
i=1

wi ψi(x− xi) , (2.39)

where wi ≥ 0 for i = 1, . . . ,M ,
∑M

i=1 wi = 1, and

ψi(x) =
1√

2π σi

exp

(−x2

2 σ2
i

)
, (2.40)

1The results in the thesis can be extended to A < 0 cases as well, by switching the decision
regions of the detector in (2.42).
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for i = 1, . . . , M . Due to the symmetry assumption, xi = −xM−i+1, wi = wM−i+1

and σi = σM−i+1 for i = 1, . . . , bM/2c.

The symmetric Gaussian mixture model specified above is observed in many

practical scenarios [25]-[30]. One important scenario is multiuser wireless com-

munications, in which the desired signal is corrupted by interference from other

users as well as zero-mean Gaussian background noise. In that case, the over-

all noise has a symmetric Gaussian mixture model when the user symbols are

symmetric and equiprobable (e.g., ±1 with equal probability) [23].

The problem can be stated as the following binary hypothesis test

H0 : X ∼ pN(x + A) ,

H1 : X ∼ pN(x− A) , (2.41)

where hypotheses H0 and H1 correspond to b = −1 and b = +1 cases, respec-

tively. The following conventional sign detector is considered to determine the

index of the true hypothesis, which is expressed as

φ(x) =





0 , x < 0

1 , x > 0

. (2.42)

In the case of x = 0, the detector decides H0 or H1 randomly (i.e., with equal

probabilities). It is well-known that the conventional detector in (2.42) is not

optimal in general for Gaussian mixture noise [18], [31]. However, its main

advantage is that it has very low complexity, which makes it very practical for

low cost applications. Therefore, the main aim in this work is to keep the low

complexity of the detector but to modify the measurement in (2.38) in order to

improve detection performance.
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2.2.2 Formulation of Optimal Measurement Shifts

Instead of the original measurement x, consider a noise modified version of the

measurement as

y = x + c , (2.43)

where c represents additional independent noise term.

As studied in [18] and in Section 2.1, the optimal additional noise c that

minimizes the probability of decision error2 is a constant that solves the following

maximization problem:

copt = arg max
c

∫ ∞

−∞
φ(y + c) [pN(y − A)− pN(y + A)] dy , (2.44)

where pN(·) represents the PDF of the measurement noise in (2.38).

For the detector in (2.42), the optimal additional noise in (2.44) is given by

copt = arg max
c

∫ ∞

−c

[pN(y − A)− pN(y + A)] dy , (2.45)

which, after some manipulation, can be expressed, from (2.39), as

copt = arg max
c

M∑
i=1

wi

[
Q

(−c− A− xi

σi

)
−Q

(−c + A− xi

σi

)]
, (2.46)

where Q(x) = 1√
2π

∫∞
x

e−t2/2dt represents the Q-function. Note that the opti-

mization in (2.46) can be performed over c ≥ 0 only, since it can be shown

that the term in the square brackets is an even function of c for the symmetric

Gaussian mixture noise model.

The probability of decision error when a constant noise c is added in (2.43)

is given by [18]

P(c) =
1

2
− 1

2

M∑
i=1

wi

[
Q

(−c− A− xi

σi

)
−Q

(−c + A− xi

σi

)]
. (2.47)

2This criterion is equivalent to the minimization of the Bayes risk for uniform cost assign-
ment and equal priors [21].
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When the optimal value of c is calculated as in (2.46), PSR = P(copt) specifies

the error probability obtained via measurement modification. The conventional

case corresponds to using no additional noise, i.e., Pconv = P(0). Note that

copt = 0 corresponds to the non-improvability case, in which it is not possible to

improve the detector performance by adding noise to the measurement; that is,

PSR = Pconv. On the other hand, if PSR < Pconv, the detector is improvable [1].

One justification for using additional noise (measurement shifts) to improve

performance of suboptimal detectors as in (2.42) instead of employing an optimal

detector based on the likelihood ratio test is reduced implementation complexity

[1]. Instead of calculating the likelihood ratio for each observation, the detector

in (2.42) just checks the sign of the observation shifted by copt. Note that the

calculation of copt requires the solution of the optimization problem in (2.46),

but that problem needs to be solved only when the noise statistics and/or the

signal amplitude change.

2.2.3 Conditions for Improvability and Non-improvability

of Detection

In this section, sufficient conditions are derived in order to determine whether

additional noise can enhance the performance of the conventional detector in

(2.42) in the presence of symmetric Gaussian mixture measurement noise. Such

improvability and non-improvability conditions carry practical importance, since

determination of whether additional noise is useful or not based on desired signal

and measurement noise parameters helps specify when to solve the optimization

problem in (2.46) for the optimal additional noise.

First, a sufficient condition on the signal amplitude and the measurement

noise statistics is obtained in order for additional noise to improve detection

performance.
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Proposition 1: The detector in (2.42) is improvable if the signal amplitude

A in (2.38) and the measurement noise specified by (2.39) and (2.40) satisfy

M∑
i=1

wi

σ3
i

(A + xi) e
− (A+xi)

2

2σ2
i < 0 . (2.48)

Proof : From (2.46), a first-order necessary condition for optimal additional

noise value can be obtained by equating the first derivative with respect to c to

zero.

M∑
i=1

wi√
2π σi

(
e
− (−c−A−xi)

2

2σ2
i − e

− (−c+A−xi)
2

2σ2
i

)
= 0 . (2.49)

Note that the condition in (2.49) is satisfied by the conventional solution, i.e.,

for c = 0. In addition, the second derivative at c = 0 can be calculated from

(2.49) as

M∑
i=1

wi√
2π σ3

i

(
−(A + xi) e

− (A+xi)
2

2σ2
i − (A− xi) e

− (A−xi)
2

2σ2
i

)
. (2.50)

Due to the symmetry of the Gaussian mixture PDF, the expression in (2.50) is

always positive when the condition in the proposition is satisfied. Since the first

derivative is zero and the second derivative is positive at c = 0, it is a minimum

point of the objective function in (2.46). Therefore, (2.47) implies that there

exists c 6= 0 such that PSR(c) < Pconv, which proves the improvability of the

detector. ¤

Proposition 1 provides a simple sufficient condition to determine if the use of

additional noise can improve the performance of the detector in (2.42). When

the condition in (2.48) is satisfied, the optimal additional noise can be calculated

from (2.46) (which is non-zero since the system is improvable), and the updated

measurement in (2.43) can be used for improved error performance.

Similar to determining the improvability of the system, it is also important to

know when the system cannot be improved via additional noise. Such a knowl-

edge prevents efforts for solving (2.46) to find the additional noise, which yields
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copt = 0 when the system is non-improvable. In the following, two conditions are

provided to classify the system as non-improvable.

Proposition 2: Assume that the variances of the Gaussian components in

the mixture noise, specified by (2.39) and (2.40), converge to infinity; that is,

σ2
i →∞ for i = 1, . . . , M . Then, the detector in (2.42) is non-improvable.

Proof : This result can be proven by showing that lim
σ2
1 ,...,σ2

M→∞
P (c)
P (0)

= 1, where

P (c) is as in (2.47). In other words, no improvement can be obtained for any

value of c. Hence, the detector is non-improvable. ¤

The main implication of Proposition 2 is that when the variance of each

Gaussian component in the Gaussian mixture noise is very large, the conventional

decision rule, which decides H0 for negative measurements and H1 otherwise, has

lower probability of error than any other decision rule that applies the sign rule

in (2.42) on shifted measurements as in (2.43) for c 6= 0. In other words, for large

variances, copt = 0 and PSR = Pconv .

Another non-improvability condition can be obtained when the signal ampli-

tude A in (2.38) is larger than or equal to all the mass points in the Gaussian

mixture noise.

Proposition 3: Assume that the signal amplitude A in (2.38) is larger than

or equal to the maximum of the mean values of the Gaussian components in the

Gaussian mixture in (2.39); that is,

A ≥ max
i=1,...,M

{xi} . (2.51)

Then, the detector in (2.42) is non-improvable.

Proof : The first-order necessary optimality condition in (2.49) is given by

M∑
i=1

wi

σi

e
− (c+A+xi)

2

2σ2
i =

M∑
i=1

wi

σi

e
− (c−A+xi)

2

2σ2
i . (2.52)
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Due to the symmetry of the Gaussian mixture noise, (2.52) can be expressed as

bM/2c∑
i=1

wi

σi

(
e
− (c+A+xi)

2

2σ2
i + e

− (c+A−xi)
2

2σ2
i

)
=

bM/2c∑
i=1

wi

σi

(
e
− (−c+A+xi)

2

2σ2
i + e

− (−c+A−xi)
2

2σ2
i

)
.

(2.53)

Since A ≥ max
i=1,...,M

{xi}, A+xi ≥ 0 and −A+xi ≤ 0 for i = 1, . . . , M . Then, for

c > 0, it is observed that e
− (c+A+xi)

2

2σ2
i < e

− (−c+A+xi)
2

2σ2
i and e

− (c+A−xi)
2

2σ2
i < e

− (−c+A−xi)
2

2σ2
i

for i = 1, . . . , M . Therefore, the term on the right-hand-side (RHS) of (2.53)

is always larger than that on the left-hand-side (LHS) for c > 0. Similarly, it

can be shown that the term on the LHS of (2.53) is always larger than that on

the RHS for c < 0. The equality is satisfied only when c = 0. In addition, the

second derivative at c = 0, given in (2.50), is always negative since A ± xi ≥ 0

for i = 1, . . . , M . Hence, c = 0 is the unique maximum of the problem in (2.46).

¤

Proposition 3 states that if the signal amplitude A is larger than or equal to all

the mean values of the Gaussian components in the mixture noise, then there is no

need to search for optimal additional noise as copt = 0 in that case, which implies

that the conventional algorithm cannot be improved. In fact, if A > max
i=1,...,M

{xi}
and if σi’s in (2.40) are very small, then the conventional system can have very

small probability of error, hence, may not need performance improvement in

some cases.

2.2.4 Performance Analysis of Noise Enhanced Detection

After the investigation of improvability and non-improvability conditions in the

previous section, this section focuses on some properties of noise enhanced detec-

tion, and theoretical limits on performance improvements that can be obtained

by adding noise to measurements.
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First, the effects of additional noise are investigated as a function of the

standard deviations of the Gaussian noise components in the Gaussian mixture

noise specified by (2.39) and (2.40). Let σ = [σ1 · · · σM ] represent the standard

deviation terms in (2.40). Then, the probability of decision error of the noise

enhanced detector can be expressed, from (2.46) and (2.47), as

PSR(σ) =
1

2
− 1

2
max

c

M∑
i=1

wi

[
Q

(−c− A− xi

σi

)
−Q

(−c + A− xi

σi

)]
.

(2.54)

In the conventional case, no additional noise is used; hence, the probability of

decision error is given by

Pconv(σ) =
1

2
− 1

2

M∑
i=1

wi

[
Q

(−A− xi

σi

)
−Q

(
A− xi

σi

)]
. (2.55)

For certain parameters of the Gaussian mixture noise, the probabilities of decision

error in (2.54) and (2.55) may not be monotonically decreasing as the standard

deviations, σ1, . . . , σM , decrease. Although this might seem counter-intuitive at

first, it mainly due to the multi-modal nature of the Gaussian mixture distri-

bution. In Section 2.2.5, numerical examples are provided to illustrate that be-

havior. Although the probabilities of error can exhibit non-monotonic behaviors

in general, the following proposition states that for equal standard deviations, a

decrease in the standard deviation value can never result in an increase in the

probability of decision error for the noise enhanced detector.

Proposition 4: Assume σi = σ for i = 1, . . . ,M . Then, PSR(σ) in (2.54) is

a monotone increasing function of σ.

Proof : When σi = σ for i = 1, . . . , M , PSR(σ) in (2.54) is expressed as

PSR(σ) =
1

2
− 1

2

M∑
i=1

wi

[
Q

(−copt(σ)− A− xi

σ

)
−Q

(−copt(σ) + A− xi

σ

)]
,

(2.56)
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where copt(σ) represents the maximizer of the summation term in (2.54), which

satisfies the following first and second derivative conditions3

M∑
i=1

wi

σ

(
e−

(−copt(σ)−A−xi)
2

2σ2 − e−
(−copt(σ)+A−xi)

2

2σ2

)
= 0 , (2.57)

M∑
i=1

wi

σ3

[
(−copt(σ)− A− xi) e−

(−copt(σ)−A−xi)
2

2σ2

− (−copt(σ) + A− xi) e−
(−copt(σ)+A−xi)

2

2σ2

]
< 0 . (2.58)

In order to prove the monotonicity of PSR(σ) in (2.56) with respect to σ, the

first derivative of PSR(σ) is calculated as follows:

dPSR(σ)

dσ
=

1

2

M∑
i=1

wi√
2π σ2

{ [
−dcopt(σ)

dσ
σ + copt(σ) + A + xi

]
e−

(copt(σ)+A+xi)
2

2σ2

−
[
−dcopt(σ)

dσ
σ + copt(σ)− A + xi

]
e−

(copt(σ)−A+xi)
2

2σ2

}
, (2.59)

which can be manipulated to obtain

dPSR(σ)

dσ
= − 1

2
√

2π

dcopt(σ)

dσ

M∑
i=1

wi

σ

[
e−

(copt(σ)+A+xi)
2

2σ2 − e−
(copt(σ)−A+xi)

2

2σ2

]

+
1

2
√

2π σ2

M∑
i=1

wi

[
(copt(σ) + A + xi) e−

(copt(σ)+A+xi)
2

2σ2

− (copt(σ)− A + xi) e−
(copt(σ)−A+xi)

2

2σ2

]
. (2.60)

Since copt(σ) satisfies (2.57), the first term in (2.60) becomes zero. In addi-

tion, (2.58) implies that the second term in (2.60) is always positive. Therefore,

dPSR(σ)/dσ > 0 is satisfied; hence, PSR(σ) is a monotone increasing function of

σ. ¤

It is noted from the proof of Proposition 4 that the result is valid also for

asymmetric Gaussian mixture noise. In other words, as long as σi = σ for

i = 1, . . . , M , PSR(σ) in (2.54) is a monotone increasing function of σ.

3The inequalities in (2.57) and (2.58) can be obtained similar to those in (2.49) and (2.50)
by taking the derivatives of the summation term in (2.54), which is equal to that in (2.46),
with respect to c.
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One implication of Proposition 4 is that for equal σ1, . . . , σM in (2.40), the

noise enhanced detector utilizes any decrease in the standard deviations for de-

creasing the probability of decision error. In other words, a decrease in the stan-

dard deviation can never increase error probability. This statement is not true

in general for the conventional algorithm, which does not employ any additional

noise. Addition of noise provides such a desirable monotonicity property since it

effectively provides an adaptive detector structure depending on the characteris-

tics of the noise. Note that addition of a constant to the decision variable, as in

(2.43), for the detector in (2.42) is equivalent to using the original observation

but adjusting the threshold of the detector.

The condition in Proposition 4 about equal σ1, . . . , σM values may not hold in

all scenarios. However, one important scenario in which such Gaussian mixture

noise components are observed includes measurement noise that is composed

of zero-mean Gaussian noise and discrete noise components. An important ex-

ample of such a scenario is binary detection in the presence of multiple-access

interference (MAI) [23], where the measurement is modeled as

x = A1b1 +
K∑

k=2

Akbk + n , (2.61)

with bi ∈ {±1} and n representing a zero-mean Gaussian noise component. The

aim is to detect b1 in the presence of MAI,
∑K

k=2 Akbk, and background noise, n.

Therefore, the total noise,
∑K

k=2 Akbk + n, can be modeled as Gaussian mixture

noise with mean values at
∑K

k=2 Akbk for all possible b2, . . . , bK values (that is,

for [b2, . . . , bK ] ∈ {±1}K−1 ) and standard deviation terms being all equal to that

of the background noise term n. Therefore, the result in Proposition 4 applies in

this practical scenario.

As studied in Proposition 2, additional noise cannot improve detector perfor-

mance for very large variances of the Gaussian mixture noise. Another important

case is to investigate the behavior of the noise enhanced detector for very small

variances. As σi → 0 for i = 1, . . . , M , the probability of decision error in (2.55)
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Figure 2.4: Mean values (xj’s) in a symmetric Gaussian mixture noise for M = 8,
and signal amplitude A.

for the conventional algorithm can be expressed as4

Pconv =
1

2
− 1

2

M∑
i=1

wi u(A− |xi|) , (2.62)

where u(·) is the unit step function defined as

u(x)
.
=





1 , x > 0

0.5 , x = 0

0 , x < 0

. (2.63)

Similarly, as σi → 0 for i = 1, . . . , M , the probability of decision error in (2.54)

for the noise enhanced algorithm is given by

PSR =
1

2
− 1

2
max

c

M∑
i=1

wi u(A− |xi + c|) . (2.64)

The expressions in (2.62) and (2.64) provide a simple interpretation of the

probability of decision error. For example, consider the values of x1, . . . , xM and

A as in Fig. 2.4. Since the probability of error expression in (2.62) states that

the xi values that are between −A and A contribute to the summation term, only

the weights w1, w2, w7 and w8 are employed in the calculation of the probability

of error for the settings in Fig. 2.4. For the noise enhanced scenario, various

values of c in (2.64) correspond to various shifts of the interval in Fig. 2.4 as

shown in Fig. 2.5. Then, the value of c that results in the minimum probability

of error is selected as the additional noise component.

4x1, . . . , xM are assumed to be distinct such that |xj − xk| À σi as σi → 0, ∀j 6= k, ∀i.
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Figure 2.5: Mean values (xj’s) in a symmetric Gaussian mixture noise for M = 8,
signal amplitude A, and additional noise c.

The previous interpretation of noise enhanced detection for very small vari-

ance values facilitates calculation of theoretical limits on performance improve-

ments that can be obtained via additional noise.

Proposition 5: Let M be an even number5 and 0 < x1 < · · · < xM/2 without

loss of generality. As σi → 0 for i = 1, . . . , M , the maximum improvement of the

sign detector in (2.42) under symmetric Gaussian mixture noise given by (2.39)

and (2.40) is specified as

max
A,x1,...,xM ,w1,...,wM

Pconv

PSR

= 2 , (2.65)

which is achieved when there exists i ∈ {1, . . . ,M/2 − 1} such that xi+1 > A >

(xi + xM/2)/2 .

Proof : Let xi < A < xi+1 for any i ∈ {1, . . . , M/2 − 1}. Note that there

is no need to consider i = M/2 since there can be no improvement by adding

noise to the measurement for A > xM/2 = max{xi}, as stated in Proposition 3.

From (2.62), the probability of error for the conventional case can be calculated

for xi < A < xi+1 as (c.f. Fig. 2.6-(a))

Pconv =
1

2

(
1− 2

i∑

l=1

wl

)
=

1

2
−

i∑

l=1

wl , (2.66)

where the symmetry property of the Gaussian mixture, i.e., xi = −xM−i+1 and

wi = wM−i+1 for i = 1, . . . , M/2, is employed.

In order to obtain the maximum improvement that can be obtained via ad-

ditional noise, the parameter values that result in the minimum PSR in (2.64)

5Assuming an even M does not reduce the generality of the result due to the symmetry of
the Gaussian mixture noise.
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Figure 2.6: (a) In the conventional case, the mean values (xj’s) of the Gaussian
mixture noise that are in the interval [−A,A] determine the probability of error.
(b) When a constant noise term c is added, the mean values (xj’s) of the Gaussian
mixture noise that are in the interval [−A− c, A− c] determine the probability
of error.

should be determined. The interpretation of the probability of error calculation

related to the weights of xj’s that reside in the interval [−A − c, A − c] (as in

the example in Fig. 2.5) implies that the maximum improvement can be ob-

tained for a value of c that results in a shift of the interval [−A,A] such that

all the xj values that are on the shift direction are included in the new interval

[−A− c, A− c] in addition to the xj’s that are already included in [−A,A]. This

scenario is depicted in Fig. 2.6. In the conventional case, ±x1, . . . ,±xi are in-

cluded in the interval [−A,A]. The minimum probability of error when noise c

is added corresponds to the case in which the interval [−A − c, A − c] includes

as many xj’s as possible. Since shifting the interval [−A,A] to one direction (to

the right for c < 0 and to the left for c > 0) guarantees that the at least M/2− i

points will be outside [−A− c, A− c], the best case is obtained when the interval

[−A− c, A− c] includes all the remaining M/2 + i points, as in Fig. 2.6-(b). In

that case, the probability of error is given by

PSR =
1

2


1− 2

i∑

l=1

wl −
M/2∑

l=i+1

wl


 . (2.67)

29



Due to symmetry,
∑M/2

l=1 wl = 1/2. Therefore,
∑M/2

l=i+1 wl in (2.67) can be ex-

pressed as 1/2−∑i
l=1 wl. Hence, (2.67) becomes

PSR =
1

2

(
1

2
−

i∑

l=1

wl

)
=

Pconv

2
, (2.68)

as claimed in the proposition.

Note that the scenario in Fig. 2.6-(b) can be obtained if −A−c < xM−i+1 and

A− c > xM/2. Since xM−i+1 = −xi, these inequalities imply A > (xi + xM/2)/2.

As A is assumed to satisfy xi < A < xi+1, the minimum probability of error can

be obtained when xi+1 > A >
xi+xM/2

2
, as stated in the proposition.6

To complete the proof, the equality case is considered as well. Let A = xi for

any i ∈ {1, . . . , M/2}. Then, the probability of error in (2.62) can be obtained

as

Pconv =
1

2

(
1− 2

i−1∑

l=1

wl − wi

)
. (2.69)

Similar to preceding arguments for calculating the minimum probability of error

for the noise enhanced case, (2.64) can be expressed as

PSR =
1

2


1− 2

i−1∑

l=1

wl −
M/2∑

l=i

wi


 =

1

2

(
1

2
−

i−1∑

l=1

wl

)
. (2.70)

From (2.69) and (2.70), PSR > Pconv/2 is obtained. Hence, the maximum im-

provement cannot be obtained for A = xi. ¤

The practical importance of Proposition 5 is that it defines an upper bound

on the performance improvement that can be obtained by using additional noise,

when the variances of the Gaussian components in the mixture noise (c.f. (2.40))

are significantly smaller than the distances between consecutive mean values, xj’s

in (2.39). In such a case, Proposition 5 states that the noise enhanced detector

cannot have a probability of decision error that is smaller than half of that for

the conventional case.
6For a leftwards shift, i.e., for c > 0, −A− c < xM/2+1 = −xM/2 and A− c > xi need to be

satisfied for the maximum improvement, which results in the same expression.
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The proof of Proposition 5 also leads to derivation of some necessary and

sufficient conditions for improvability or non-improvability of detection via SR

as σi → 0 for i = 1, . . . , M . A simple sufficient condition for improvability can be

obtained by investigation of Fig. 2.6-(a). If A satisfies A > (xi +xi+1)/2, shifting

the interval [−A,A] to the right (left) by an amount that is slightly larger than

xi+1 − A; that is, setting |c| = xi+1 − A + ε for sufficiently small ε > 0, results

in including xi+1 (xM−i) in the interval [−A − c, A − c], in addition to all the

points that are already included in [−A,A]. Therefore, smaller probability of

error can be obtained in that case. Hence, the detector in (2.42) is improvable if

A > (xi + xi+1)/2 for i ∈ {1, . . . , M/2− 1}.

A sufficient condition for non-improvability can be obtained in a similar man-

ner as σi → 0 for i = 1, . . . , M . First, the previous arguments imply that

A ≤ (xi +xi+1)/2 is a necessary condition for non-improvability. In order to find

a condition that guarantees that the detector cannot be improved by any value

of c, it is first observed that for any possible improvement, the interval [−A,A] in

Fig. 2.6 must be shifted to the right (or, left) direction so that it includes some

of xi+1, . . . , xM/2 (or, xM−i, . . . , xM/2+1) in the shifted interval [−A − c, A − c].

However, A ≤ (xi+xi+1)/2 implies that at least xM−i+1 (or, xi) must be excluded

from the interval [−A− c, A− c] in order to include at least one of xi+1, . . . , xM/2

(or, xM−i, . . . , xM/2+1). If wi ≥
∑M/2

l=i+1 wl , the probability of error can never

be lower for a non-zero value of c, since exclusion of xM−i+1 (or, xi) causes an

increase in the probability of error which cannot be compensated even if all of

xi+1, . . . , xM/2 (or, xM−i, . . . , xM/2+1) are included in [−A − c, A − c]. In other

words, in the presence of non-zero additional noise (c 6= 0), the probability of

error can never be smaller than the conventional probability of error (c = 0).

Therefore, for xi < A < xi+1, A ≤ (xi + xi+1)/2 and wi ≥
∑M/2

l=i+1 wl are suffi-

cient conditions for non-improvability.
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Figure 2.7: Probability of error versus A/σ2 for symmetric Gaussian mixture
noise with M = 10, where the center values are ±[0.02 0.18 0.30 0.55 1.35] with
corresponding weights of [0.167 0.075 0.048 0.068 0.142].

2.2.5 Numerical Results

In this section, numerical examples are provided in order to investigate the the-

oretical results obtained in the previous sections. For all cases, the variances of

the Gaussian components in the mixture noise are assumed to be the same; i.e.,

σi = σ for i = 1, . . . , M in (2.40).

First, symmetric Gaussian mixture noise with M = 10 is considered, where

the mean values of the Gaussian components in the mixture noise in (2.39)

are specified as ±[0.02 0.18 0.30 0.55 1.35] with corresponding weights of

[0.167 0.075 0.048 0.068 0.142]. Fig. 2.7 illustrates the probabilities of error

for the sign detector with and without additional noise (denoted as “modified”

and “original”, respectively) for various values of A/σ2. The signal value A in

(2.38) is set to A = 1, and σ is varied in order to obtain various A/σ2 values. It

is observed from Fig. 2.7 that the use of additional noise can improve detector
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Figure 2.8: Probability of error in (2.47) versus c for various A/σ2 values for the
scenario in Fig. 2.7.

performance significantly for large A/σ2 values, that is, as σ is decreased. In

addition, the probability of error of the noise enhanced detector reduces mono-

tonically with A/σ2, as predicted by Proposition 4. On the other hand, the

conventional sign detector without additional noise exhibits a non-monotonic

behavior and experiences an error floor for high A/σ2 values. Also, it is observed

that as the variance increases, the detector becomes non-improvable as can be

expected from Proposition 2.

In order to investigate the scenario in Fig. 2.7 in more detail, Fig. 2.8 plots

the probability of error in (2.47) versus c for various A/σ2 values, and Fig. 2.9

plots the improvability function in (2.48) and the optimal additional noise, copt,

obtained from (2.46) versus A/σ2. As stated by Proposition 1, whenever the

function in (2.48) is negative, the detector is improvable, meaning that copt 6= 0.

It is again observed that as σ2 increases, the system becomes non-improvable.
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Figure 2.9: The improvability function in (2.48) and the optimal additional signal
value copt in (2.46) versus A/σ2 for the scenario in Fig. 2.7.
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Figure 2.10: Probability of error versus A for symmetric Gaussian mix-
ture noise with σi = 0.1 for i = 1, . . . , M and M = 10, where the
center values are ±[0.02 0.18 0.30 0.55 1.35] with corresponding weights of
[0.167 0.075 0.048 0.068 0.142].
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Figure 2.11: The improvability function in (2.48) and the optimal additional
signal value copt in (2.46) versus A for the scenario in Fig. 2.10.

Next, the same Gaussian mixture noise as in the previous scenario is assumed,

and the probabilities of error of the conventional and the noise enhanced detectors

are plotted versus A for σ = 0.1 in Fig. 2.10. As stated in Proposition 3,

the detector is non-improvable when the signal amplitude A is larger than or

equal to the maximum mean value of the Gaussian components in the mixture

noise; that is, A ≥ 1.35 in this case. Fig. 2.11 illustrates the improvability

function in (2.48) and the optimal additional noise copt in (2.46) versus A for this

scenario. Again, it is observed that whenever the function in (2.48) is negative

there is improvement (i.e., copt 6= 0) in accordance with Proposition 1. It is

also noted that the condition in Proposition 1 is a sufficient but not a necessary

condition for improvability, which can be observed, for example, at A = 0.86,

where the function value is positive and the detector is improvable. Investigation
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Figure 2.12: Probability of error versus σ for A = 1 and for symmet-
ric Gaussian mixture noise with M = 12, where the center values are
±[0.0965 0.2252 0.4919 0.6372 0.8401 1.0151] with corresponding weights of
[0.1020 0.0022 0.2486 0.0076 0.1293 0.0103].

of Fig. 2.11 also reveals that the detector is improvable for A ∈ [0.42, 0.54] and

A ∈ [0.85, 1.35].7

For the final scenario, a symmetric Gaussian mixture noise with M = 12 is

considered, where the mean values of the Gaussian components in the mixture

noise in (2.39) are specified as ±[0.0965 0.2252 0.4919 0.6372 0.8401 1.0151] with

corresponding weights of [0.1020 0.0022 0.2486 0.0076 0.1293 0.0103]. Fig. 2.12

plots the probabilities of error for the conventional and noise enhanced detectors

versus σ when the signal amplitude A is set to A = 1. In accordance with

Proposition 2, as σ increases, the detector becomes non-improvable, which is

also observed from Fig. 2.13, the plot of copt versus σ. In addition, as stated

in Proposition 4, the probability of error is a monotone increasing function of

7Although the improvement for A ∈ [0.42, 0.54] is difficult to observe from Fig. 2.10, the
numerical results show slight reductions in the probabilities of error of the noise enhanced
detector in that range.

36



0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

σ

c op
t

Figure 2.13: The optimal additional noise copt in (2.46) versus σ for the scenario
in Fig. 2.12.

σ for the noise enhanced detector, whereas the conventional one exhibits a non-

monotonic behavior. Also, as σ → 0, the ratio between the probability of error

in the conventional case and the noise enhanced case becomes 2 (Pconv = 0.0103

and PSR = 0.00515). This is expected from Proposition 5, since A satisfies the

condition in the proposition, xi+1 > A > (xi + xM/2)/2 for i = 5 (namely,

1.1051 > 1 > (0.8401 + 1.1051)/2 = 0.9726). Finally, Fig. 2.14 illustrates the

improvability function in (2.48), which indicates that the detector is improvable

(i.e., copt 6= 0) whenever the function takes a negative value.

2.3 Concluding Remarks and Extensions

In this chapter, two main contributions have been provided. First, the effects

of independent additional noise have been investigated for M -ary composite
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Figure 2.14: The improvability function in (2.48) versus σ for the scenario in
Fig. 2.12.

hypothesis-testing problems in the Bayesian framework. It has been shown that

the optimal additional noise can be expressed as the shifts of the measurements.

Second, the effects of additional noise on a sign detector have been studied

for binary hypothesis testing under symmetric Gaussian mixture noise. Suffi-

cient conditions have been obtained for improvability and non-improvability of

the detector in terms of the desired signal amplitude and the parameters of the

Gaussian mixture noise. Also, the monotonicity property of the noise enhanced

detector has been proven for equal variances of the Gaussian components in the

mixture noise. In addition, for infinitesimally small variances of the Gaussian

mixture components, the maximum improvement that can be achieved via addi-

tional noise has been specified as half of the probability of error for the detector

without additional noise. The numerical examples have been provided to support

and explain the theoretical results.
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It should be noted that the results in Section 2.2 can be extended to Gaussian

mixture noise that is symmetric around a non-zero value as well. In that case,

the conventional sign detector compares each measurement to the mean of the

mixture noise. The framework in Section 2.2 can still be employed, based on

modified measurements that are obtained by subtracting the mean value from the

original measurements. In addition, the theoretical results on probability of error

performance in Section 2.2.4 can be considered for asymmetric Gaussian mixture

noise in the following manner. As stated after Proposition 4, the monotonicity

result is valid also for the asymmetric case. Considering the theoretical limit in

Proposition 5 on performance improvement that can be achieved via additional

noise, the maximum ratio between the probabilities of error for the conventional

and noise enhanced detectors becomes infinity for asymmetric Gaussian mixture

noise as the variances of the Gaussian components converge zero. This is because

there can be cases in which the interval [−A− c, A− c] in Fig. 2.6-(b) includes

all the mean values (xj’s) while the interval [−A,A] in Fig. 2.6-(a) does not,

which is possible due to the asymmetry of the mean values. In that case, the

probability of error becomes zero for the noise enhanced case whereas it is non-

zero for the conventional one. In other words, the performance improvement

that can be obtained via additional noise is unbounded for asymmetric Gaussian

mixture measurement noise.

Future work includes extensions of the theoretical framework in Section 2.2

to other noise distributions than the Gaussian mixture noise.

39



Chapter 3

Noise Enhanced M-ary

Hypothesis-Testing in the

Minimax Framework

In this chapter, noise benefits are investigated for M -ary hypothesis-testing prob-

lems in the minimax framework. In Section 3.1, the formulation of optimal addi-

tional noise is provided for an M -ary hypothesis-testing problem according to the

minimax criterion. Then, it is shown in Section 3.2 that the optimal additional

noise can be represented by a randomization of no more than M signal levels.

In addition, a convex relaxation approach is proposed to obtain an accurate

approximation to the noise probability density function (PDF) in polynomial

time. Also, sufficient conditions are provided regarding the improvability and

non-improvability of a given detector via additional noise. Finally, numerical

examples and concluding remarks are presented in Section 3.3.
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3.1 Problem Formulation

Consider the following M -ary hypothesis-testing problem:

Hi : pX
i (x) , i = 0, 1, . . . , M − 1 , (3.1)

where pX
i (x) represents the PDF of the observation under hypothesis Hi and the

observation (measurement) x is a vector with K components; i.e., x ∈ RK .

A generic decision rule can be defined as

φ(x) = i , if x ∈ Γi , (3.2)

for i = 0, 1, . . . , M−1, where Γ0, Γ1, . . . , ΓM−1 form a partition of the observation

space Γ.

In the minimax approach, the prior probabilities of the hypotheses are un-

known. However, each decision is associated with a known cost value, and the

aim is to minimize the maximum of the average costs of the decision rule con-

ditioned on different hypotheses [21]. More formally, let Cji ≥ 0 represent the

cost of choosing Hj when Hi is true. Then, the average cost of a decision rule φ

conditioned on Hi being the true hypothesis is calculated as

Ri(φ) =
M−1∑
j=0

CjiPi(Γj) , (3.3)

where Pi(Γj) represents the probability of choosing Hj when Hi is the true hy-

pothesis. This quantity, Ri(φ), is called the conditional risk of φ given Hi. Under

the minimax framework, the aim is to reduce the maximum of the conditional

risks for different hypotheses as much as possible.

In some cases, addition of independent noise to measurements can improve

the performance of a suboptimal decision rule (detector) [1], [17], [31]. In such

scenarios, instead of the original measurement (observation) x, a noise-added ver-

sion of that, y = x+n, is used by the detector, where n represents the additional
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noise term. The main motivation for such noise enhanced detection approaches

is to use a low-complexity suboptimal detector, and improve its performance via

adjusting the measurements.

In this study, we consider a fixed decision rule φ, and aim to obtain the opti-

mal additional noise PDF pN (·) that minimizes the maximum of the conditional

risks.

popt
N (n) = arg min

pN (n)
max

i∈{0,1,...,M−1}
Ry

i (φ) , (3.4)

where Ry
i (φ) represents the conditional risk of φ given Hi when the noise-added

measurement y is used; that is, Ry
i (φ) =

∑M−1
j=0 CjiP

y
i (Γj), with Py

i (Γj) repre-

senting the probability that y ∈ Γj when Hi is true.

3.2 Noise Enhanced Hypothesis-Testing

In order to investigate the solution of the optimization problem in (3.4), we first

manipulate the conditional risk Ry
i (φ) as follows:

Ry
i (φ) =

M−1∑
j=0

CjiP
y
i (Γj) =

M−1∑
j=0

Cji

∫

Γj

pY
i (z)dz (3.5)

=
M−1∑
j=0

Cji

∫

Γj

∫

RK

pN (n)pX
i (z− n) dn dz (3.6)

=
M−1∑
j=0

Cji

∫

RK

pN (n)

∫

Γj

pX
i (z− n) dz dn (3.7)

=
M−1∑
j=0

Cji E{Fij(N)} = E{Fi(N)} , (3.8)

with Fij(n)
.
=

∫
Γj

pX
i (z−n)dz and Fi(n)

.
=

∑M−1
j=0 CjiFij(n). From (3.5) to (3.6),

the independence of X and N is employed to obtain the PDF of Y = X + N .

Then, the optimization problem in (3.4) becomes

min
pN (·)

max
i∈{0,1,...,M−1}

E{Fi(N)} . (3.9)
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Note that under uniform cost assignment (UCA); that is, when Cji = 1 for j 6= i,

and Cji = 0 for j = i, the conditional risk becomes Ry
i (φ) = 1 − E{Fii(N )}.

Then, (3.9) can be expressed as

max
pN (·)

min
i∈{0,1,...,M−1}

E{Fii(N )}. (3.10)

Although it is quite difficult to perform a search over all possible noise PDFs

in (3.9), the following proposition states that the search can be performed over

the set of discrete probability distributions with at most M mass points in most

practical scenarios.

Proposition 1: Define set U as

U = {(u0, u1, . . . , uM−1) : u0 = F0(n), u1 = F1(n),

. . . , uM−1 = FM−1(n) , for a ¹ n ¹ b} , (3.11)

where n ∈ RK, and a ¹ n ¹ b means that nj ∈ [aj, bj] for j = 1, . . . , K. If U is

a closed subset of RK, then the optimal noise PDF in (3.4) can be expressed as

popt
N (n) =

M−1∑
i=0

λi δ(n− ni) , (3.12)

where
∑M−1

i=0 λi = 1 and λi ≥ 0 for i = 0, 1, . . . , M − 1.

Proof: The proof can be viewed as an extension of the results in [17] and [1]

for the two-dimensional case to the M -dimensional case. The details of a similar

proof can be found in [32]. ¤

The main implication of Proposition 1 is that an optimal additional noise

can be represented by a randomization of no more than M different signal levels.

Under certain conditions, such as the following one, the optimal noise PDF can

be guaranteed to include less than M mass points.
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Corollary 1: Let S1 and S2 represent two sets such that S1 ∩ S2 = ∅ and

S1 ∪ S2 = {0, 1, . . . , M − 1}. If max
i∈S2

Fi(n) ≤ min
i∈S1

Fi(n) ∀n, then the optimal

noise PDF contains at most |S1| mass points.1

Proof: Under the conditions in the corollary, the conditional risks indexed

by S2 do not have any effect on the minimax risk, since the other conditional

risks determine the maximum risk for all possible noise values. Therefore, the

result in the corollary directly follows from Proposition 1. ¤

Based on Proposition 1, the optimization problem in (3.9) can be expressed

as

min
{nj ,λj}M−1

j=0

max
i∈{0,1,...,M−1}

M−1∑
j=0

λj Fi(nj) , (3.13)

subject to
∑M−1

j=0 λj = 1 and λj ≥ 0 for j = 0, 1, . . . , M − 1. Although (3.13) is

significantly simpler than (3.9), it can still be a non-convex optimization problem

in general. Therefore, global optimization techniques, such as particle-swarm

optimization (PSO), can be applied to obtain the optimal noise PDF [33]. As

an alternative approach, we provide an approximate formulation that results

in a convex optimization problem. Assume that the additional noise n can

take only finitely many known values specified by ñ1, . . . , ñL, and the aim is to

determine the weights λ̃1, . . . , λ̃L of those possible noise values. Then, (3.9) can

be expressed, after some manipulation, as the following optimization problem:

min
t,{λ̃j}L

j=1

t

subject to
L∑

j=1

λ̃j Fi(ñj) ≤ t , for i = 0, 1, . . . , M − 1

L∑
j=0

λ̃j = 1 , λ̃j ≥ 0 , j = 1, . . . , L (3.14)

The optimization problem in (3.14) is a linearly constrained linear programming

(LCLP) problem, which can be solved in polynomial time [34]. Also, as L is

1Here, |S1| denotes the number of elements in set S1.
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increased (as the optimization is performed over more noise values), the solution

of the optimization problem in (3.14) gets close to the optimal solution of (3.9).

Finally, the issue of determining whether additional noise can improve the

performance of a given detector without actually solving the optimization prob-

lem in (3.9) is addressed. In the following, sufficient conditions are presented for

the improvability and the non-improvability of a given detector via the use of

additional noise.

Proposition 2: Define J(n) = max
i∈{0,1,...,M−1}

Fi(n). If n0 = arg min
n

J(n) is

not equal to zero, then the detector is improvable.

Proof: Consider that the noise with PDF pN (n) = δ(n − n0) is added

to the observation x. Then, the maximum of the conditional risks become

max
i

Ry
i (φ) = max

i
Fi(n0) = J(n0). Since n0 = arg min

n
J(n) 6= 0, J(n0) <

J(0) = max
i

Fi(0) = max
i

Ri(φ). In other words, max
i

Ry
i (φ) < max

i
Ri(φ);

hence, the detector is improvable. ¤

Proposition 3: Let k = arg max
i

Fi(0). If arg min
n

Fk(n) is equal to zero,

then the detector is non-improvable.

Proof: The statement k = arg max
i

Fi(0) means that in the absence of addi-

tional noise, the kth conditional risk is the maximum one; hence, it determines

the overall risk in the minimax framework. If arg min
n

Fk(n) is equal to zero,

it means that addition of noise cannot reduce the kth conditional risk. Since

the kth conditional risk cannot be reduced by any additional noise and it is the

maximum one among all the conditional risks, the performance of the detector

cannot be improved. ¤

The results in Proposition 2 and Proposition 3 can be used to determine when

it is necessary to tackle the optimization problem in (3.9) to obtain the optimal
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Figure 3.1: Maximum of the conditional risks versus η for the original and the
noise-modified detectors for A = 1, B = 2.5, σ = 0.1, w1 = 0.5 and w2 = 0.5.

additional noise PDF. For example, when the non-improvability condition in

Proposition 3 is satisfied, it is directly concluded that popt
N (n) = δ(n).

3.3 Numerical Results

In this section, numerical examples are provided in order to investigate the the-

oretical results obtained in the previous section. A ternary hypothesis-testing

problem is considered with the following PDFs:

pX
0 (x) = w1γ(x;−A, σ2) + w2γ(x; A, σ2)

pX
1 (x) = w1γ(x;−A + B, σ2) + w2γ(x; A + B, σ2)

pX
2 (x) = w1γ(x;−A−B, σ2) + w2γ(x; A−B, σ2) (3.15)
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Figure 3.2: Probability mass function of optimal additional noise for various
threshold values when the parameters are taken as A = 1, B = 2.5, σ = 0.1,
w1 = 0.5 and w2 = 0.5.

where γ(x; µ, σ2) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
. The decision rule is described as fol-

lows:

φ(x) =





0 , −η < x < η

1 , x ≥ η

2 , x ≤ −η

, (3.16)

where η is a constant. Under UCA, the conditional risks can be obtained, after

some manipulation, as

R0(φ) = 1− w1

[
Q

(−η + A

σ

)
−Q

(
η + A

σ

)]

− w2

[
Q

(−η − A

σ

)
−Q

(
η − A

σ

)]

Ri(φ) = 1− w1 Q

(
η + siA−B

σ

)
− w2 Q

(
η − siA−B

σ

)

for i = 1, 2, where s1 = 1 and s2 = −1.
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Fig. 3.1 plots the maximum of conditional risks for the original and the noise-

modified detectors with respect to η in (3.16) when the parameters are taken as

A = 1, B = 2.5, w1 = 0.5, w2 = 0.5 and σ = 0.1. From the figure, it is observed

that for certain values of η, the performance can be improved via the addition

of noise. For example, for η = 1.8, the improvement ratio, defined as the ratio

between max
i∈{1,2,3}

Ri(φ) and max
i∈{1,2,3}

Ry
i (φ), is equal to 2. As another example, for

η = 2.4, the improvement ratio is calculated as 1.52.

In Fig. 3.2, the probability distributions of the optimal additional noise

components are illustrated for η = 1.2, η = 1.8 and η = 2.4 based on the

parameter settings for Fig. 3.1. It is observed that the optimal noise PDFs

for η = 2.4, η = 1.8 and η = 1.2 contain 2, 3 and 1 mass points, respectively,

in accordance with Proposition 1. Also, it is noted that since the detector is

non-improvable for η = 1.2, the optimal noise turns out to be zero.

Finally, Fig. 3.3 illustrates the performance of the original and the noise-

modified detectors versus the standard deviation parameter in (3.15) for η = 1.8,

A = 1, B = 2.5, w1 = 0.5 and w2 = 0.5. As the standard deviation increases,

the improvement ratio becomes smaller, and after a certain value, the detector

becomes non-improvable.

3.4 Concluding Remarks

In this chapter, the effects of adding independent noise to measurements have

been studied for M -ary hypothesis-testing problems according to the minimax

criterion. It has been shown that the optimal additional noise can be represented

by a randomization of at most M signal values. In addition, a convex relaxation

approach has been proposed to obtain an accurate approximation to the noise

probability distribution in polynomial time. Furthermore, sufficient conditions

have been presented to determine when additional noise can or cannot improve
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Figure 3.3: Original and noise-modified maximum of the conditional risks vs σ
graph for the parameters taken as η = 1.8, A = 1, B = 2.5, w1 = 0.5 and
w2 = 0.5.

the performance of a given detector. Finally, a numerical example has been

presented.
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Chapter 4

On the Improvability and

Non-improvability of Detection

in the Neyman-Pearson

Framework

In this chapter, noise benefits are investigated in the Neyman-Pearson framework

[1], [17]; that is, improvements in detection probability under a constraint on the

probability of false-alarm are considered. Section 4.1 introduces the detection

problem and the formal definitions of improvability and non-improvability. Then,

a non-improvability condition is presented in Section 4.2. In Section 4.3, a generic

improvability condition, as well as more specific and explicit ones are derived.

Finally, a numerical example is provided in Section 4.4, and concluding remarks

are made in Section 4.5.
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4.1 Signal Model

Consider a binary hypothesis-testing problem described as

H0 : p0(x) ,

H1 : p1(x) , (4.1)

where x is the K-dimensional data (measurement) vector, and p0(x) and p1(x)

represent the PDFs of x under H0 and H1, respectively.

The decision rule (detector) is denoted by φ(x), which maps the data vector

into a real number in [0, 1], which represents the probability of selecting H1 [21].

Under certain circumstances, detector performance can be improved by adding

independent noise to the data vector x [1], [17]. Let y represent the modified

data vector expressed as

y = x + n , (4.2)

where n represents the additional independent noise term.

The Neyman-Pearson framework is considered in this study, and performance

of a detector is specified by its probability of detection and probability of false

alarm [21]. Since the additional noise is independent of the data, the probabilities

of detection and false alarm are given, respectively, by

Py
D =

∫

RK

φ(y)

[∫

RK

p1(y − x)pN (x)dx

]
dy , (4.3)

Py
F =

∫

RK

φ(y)

[∫

RK

p0(y − x)pN (x)dx

]
dy , (4.4)

where K is the dimension of the data vector. After some manipulation, (4.3)

and (4.4) can be expressed as [1]

Py
D = E{F1(N)} , (4.5)

Py
F = E{F0(N)} , (4.6)
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where N is the random variable representing the additional noise term and

Fi(n)
.
=

∫

RK

φ(y)pi(y − n)dy , i = 0, 1 . (4.7)

Note that in the absence of additional noise, i.e., n = 0, the probabilities of

detection and false alarm are given by Px
D = F1(0) and Px

F = F0(0), respectively.

The detector φ(·) is called improvable if there exists additional noise1 n that

satisfies Py
D > Px

D = F1(0) and Py
F ≤ Px

F = F0(0). Otherwise, the detector is

called non-improvable.

4.2 Non-improvability Conditions

In [1], sufficient conditions for improvability and non-improvability are derived

based on the following function:

J(t) = sup
{
F1(n) | F0(n) = t , n ∈ RK

}
, (4.8)

which defines the maximum probability of detection, obtained by adding constant

noise n, for a given probability of false alarm. It is stated that if there exists a

non-decreasing concave function Ψ(t) that satisfies Ψ(t) ≥ J(t) ∀t and Ψ(Px
F) =

J(Px
F) = F1(0), then the detector is non-improvable [1]. The main advantage of

this result is that it is based on single-variable functions J(t) and Ψ(t) irrespective

of the dimension of the data vector. However, in certain cases, it may be difficult

to calculate J(t) in (4.8) or to obtain Ψ(t). Therefore, we aim to derive a non-

improvability condition that depends directly on F0 and F1 in (4.7).

The following proposition provides a sufficient condition for non-improvability

based on convexity and concavity arguments for F0 and F1.

Proposition 1: Assume that F0(n) ≤ F0(0) implies F1(n) ≤ F1(0) for all

n ∈ Sn, where Sn is a convex set2 consisting of all possible values of additional

1In this thesis, additional noise that is independent of the original data is considered.
2Since convex combination of individual noise components can be obtained via randomization

[35], Sn can be modeled as convex.
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noise n. If F0(n) is a convex function and F1(n) is a concave function over Sn,

then the detector is non-improvable.

Proof: Due to the convexity of F0, the probability of false alarm in (4.6) can

be bounded, via the Jensen’s inequality, as

Py
F = E{F0(N )} ≥ F0 (E{N}) . (4.9)

Since Py
F ≤ Px

F = F0(0) is a necessary condition for improvability, (4.9)

implies that F0 (E{N}) ≤ F0(0) is required. Since E{N} ∈ Sn, F0 (E{N}) ≤
F0(0) implies that F1 (E{N}) ≤ F1(0) due to the assumption in the proposition.

Therefore,

Py
D = E{F1(N )} ≤ F1 (E{N}) ≤ F1(0) , (4.10)

where the first inequality results from the concavity of F1. Then, from (4.9)

and (4.10), it is concluded that Py
F ≤ F0(0) = Px

F implies Py
D ≤ F1(0) = Px

D.

Therefore, the detector is non-improvable.3 ¤

Consider the assumption in the proposition, which states that F0(n) ≤ F0(0)

implies F1(n) ≤ F1(0) for all possible values of n. This assumption is realis-

tic in most practical scenarios, since decreasing the probability of false alarm

by using a constant additional noise n does not usually result in an increase in

the probability of detection. In fact, if there exists a noise component ñ such

that F0(ñ) ≤ F0(0) and F1(ñ) > F1(0), the detector can be improved simply by

adding ñ to the original data, i.e., for pN (x) = δ(x− ñ). Therefore, the assump-

tion in the proposition is in fact a necessary condition for non-improvability.

As an example application of Proposition 1, consider a hypothesis-testing

problem in which H0 is represented by a zero-mean Gaussian distribution with

variance σ2 and H1 by a Gaussian distribution with mean µ > 0 and variance

3It is shown in [17] and [1] that the optimal noise PDF is in the form of pN (x) = λ δ(x −
n1) + (1 − λ)δ(x − n2). Hence, it would be sufficient to perform the proof for E{F (N)} =
λF (n1) + (1− λ)F (n2), although we provide a more generic one.
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σ2. The decision rule selects H1 if y ≥ 0.5µ and H0 otherwise. Let Sn =

(−0.5µ, 0.5µ) represent the set of additional noise values for possible performance

improvement. From (4.7), F0 and F1 can be obtained as F0(x) = Q
(

0.5µ−x
σ

)
and

F1(x) = Q
(−0.5µ−x

σ

)
. It is observed that F0 is convex and F1 is concave over Sn.

Therefore, Proposition 1 implies that the detector is non-improvable.

Comparison of the non-improvability condition in Proposition 1 with that in

[1], stated at the beginning of this section, reveals that the former provides a

more direct way of evaluating the non-improvability since there is no need to

obtain auxiliary functions, such as Ψ(t) and J(t) in (4.8). However, if J(t) can

be obtained easily, then the result in [1] can be more advantageous since it always

deals with a function of a single variable irrespective of the dimension of the data

vector. Therefore, for multi-dimensional measurements, the result in [1] can be

preferred if the calculation of J(t) in (4.8) is tractable.

In fact, even for multi-dimensional measurements, the problem can be con-

sidered as a one-dimensional problem in some cases if the measurement noise

components are independent and identically distributed. Hence, the result of

Proposition 1 can still be more advantageous in such scenarios.

4.3 Improvability Conditions

Based on the definition in (4.8), it is stated in [1] that the detector is improvable if

J(Px
F) > Px

D or J
′′
(Px

F) > 0 when J(t) is second-order continuously differentiable

around Px
F .4 Similar to the previous section, the aim is to obtain improvability

conditions that directly depend on F0 and F1 in (4.7) instead of J in (4.8).

First, it can be observed from (4.5) and (4.6) that if there exists a noise

component ñ such that F1(ñ) > F1(0) and F0(ñ) ≤ F0(0), then the detector

4In this thesis, J
′
(a) and J

′′
(a) are used to represent, respectively, the first and second

derivatives of J(t) at t = a.
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can be improved by using pN (x) = δ(x − ñ). From (4.8), it is concluded that

this result provides a generalization of the J(Px
F) > Px

D condition [1].

In practical scenarios, F0(n) ≤ F0(0) commonly implies F1(n) ≤ F1(0).

Therefore, the previous result cannot be applied in many cases. Therefore, a

more generic improvability condition is presented in the following proposition.

Proposition 2: The detector is improvable if there exist n1 and n2 that

satisfy

[F0(0)− F0(n2)][F1(n1)− F1(n2)]

F0(n1)− F0(n2)
> F1(0)− F1(n2) . (4.11)

Proof: Consider additional noise n with pN (x) = λ δ(x−n1)+(1−λ) δ(x−
n2). The detector is improvable if n1, n2, and λ ∈ [0, 1] satisfy

Py
F = En{F0(n)} = λF0(n1) + (1− λ) F0(n2) ≤ F0(0) , (4.12)

Py
D = En{F1(n)} = λF1(n1) + (1− λ) F1(n2) > F1(0) . (4.13)

Although Py
F ≤ F0(0) is sufficient for improvability, the equality condition in

(4.12), i.e., Py
F = F0(0), is satisfied in most practical cases. As studied in The-

orem 4 in [1], Py
F < F0(0) implies a trivial case in which the detector can be

improved by using a constant noise value. Therefore, the equality condition in

(4.12) can be considered, although it is not a necessary condition. Then, λ can

be expressed as λ = [F0(0) − F0(n2)]/[F0(n1) − F0(n2)], which can be inserted

in (4.13) to obtain (4.11). ¤

Although the condition in Proposition 2 can directly be evaluated based on

F0 and F1 functions in (4.7), finding suitable n1 and n2 values can be time

consuming in some cases. In fact, it may not always be simpler to check the

condition in Proposition 2 than to calculate the optimal noise PDF as in [1].

Therefore, more explicit and simpler improvability conditions are derived in the

following.
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Proposition 3: Assume that F0(x) and F1(x) are second-order continuously

differentiable around x = 0 . The detector is improvable if there exists a K-

dimensional vector z such that
∑K

i=1 zi
∂Fj(x)

∂xi
> 0 for j = 0, 1 and

(
K∑

l=1

K∑

i=1

zlzi
∂2F1(x)
∂xl∂xi

)(
K∑

i=1

zi
∂F0(x)

∂xi

)
>

(
K∑

l=1

K∑

i=1

zlzi
∂2F0(x)
∂xl∂xi

)(
K∑

i=1

zi
∂F1(x)

∂xi

)

(4.14)

are satisfied at x = 0, where xi and zi represent the ith components of x and z,

respectively.

Proof: Consider the improvability conditions in (4.12) and (4.13) with in-

finitesimally small noise components, nj = εj for j = 1, 2. Then, Fi(εj) can be

approximated by using the Taylor series expansion as Fi(0) + εT
j fi + 0.5 εT

j Hiεj,

where Hi and fi are the Hessian and the gradient of Fi(x) at x = 0, respectively.

Therefore, (4.12) and (4.13) require

λ εT
1 H0ε1 + (1− λ)εT

2 H0ε2 + 2[λ ε1 + (1− λ)ε2]
T f0 < 0 ,

λ εT
1 H1ε1 + (1− λ)εT

2 H1ε2 + 2[λ ε1 + (1− λ)ε2]
T f1 > 0 . (4.15)

Let ε1 = κ z and ε2 = ν z, where κ and ν are infinitesimally small real

numbers, and z is a K-dimensional real vector. Then, the conditions in (4.15)

can be simplified, after some manipulation, as

[
K∑

l=1

K∑
i=1

zlzi
∂2F0(x)

∂xl∂xi

+ c
K∑

i=1

zi
∂F0(x)

∂xi

] ∣∣∣∣∣
x=0

< 0 , (4.16)

[
K∑

l=1

K∑
i=1

zlzi
∂2F1(x)

∂xl∂xi

+ c

K∑
i=1

zi
∂F1(x)

∂xi

] ∣∣∣∣∣
x=0

> 0 . (4.17)

where

c
.
=

2 [λκ + (1− λ) ν]

λκ2 + (1− λ) ν2
. (4.18)
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Since
∑K

i=1 zi
∂Fj(x)

∂xi
> 0 at x = 0 for j = 0, 1, (4.16) and (4.17) can also be

expressed as

[(
K∑

l=1

K∑
i=1

zlzi
∂2F0(x)

∂xl∂xi

)(
K∑

i=1

zi
∂F1(x)

∂xi

)

+ c

(
K∑

i=1

zi
∂F0(x)

∂xi

)(
K∑

i=1

zi
∂F1(x)

∂xi

)]∣∣∣∣∣
x=0

< 0 , (4.19)

[(
K∑

l=1

K∑
i=1

zlzi
∂2F1(x)

∂xl∂xi

)(
K∑

i=1

zi
∂F0(x)

∂xi

)

+ c

(
K∑

i=1

zi
∂F0(x)

∂xi

)(
K∑

i=1

zi
∂F1(x)

∂xi

)]∣∣∣∣∣
x=0

> 0 . (4.20)

It is noted from (4.18) that c can take any value in (−∞,∞) by selecting ap-

propriate λ ∈ [0, 1] and infinitesimally small κ and ν values. Therefore, under

the condition in (4.14), which states that the first term in (4.19) is smaller than

the first term in (4.20), there always exists c that satisfies the improvability

conditions in (4.19) and (4.20). ¤

Note that Proposition 3 employs only the first and second derivatives of F0

and F1 without requiring the calculation of n1 and n2 as in Proposition 2. In [17],

an improvability condition is obtained for scalar observations (i.e., for K = 1)

based only on
∂Fj(x)

∂x
and

∂2Fj(x)

∂x2 terms for j = 0, 1. Hence, Proposition 3 extends

the improvability result in [17] not only to the case of vector observations but

also to a more generic condition that involves partial derivatives (“interactions”

among additional noise components),
∂2Fj(x)

∂xlxi
, as well.

Another improvability condition that depends directly on F0 and F1 is pro-

vided in the following proposition.

Proposition 4: The detector is improvable if F1(x) and −F0(x) are strictly

convex at x = 0 .
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Proof: Consider the improvability conditions in (4.15). Let ε1 = −ε2 = ε

and λ = 0.5. Then, (4.15) becomes

εTH0ε < 0 , εTH1ε > 0 . (4.21)

Since F1(x) is strictly convex and F0(x) is strictly concave at x = 0, H1 is

positive definite and H0 is negative definite. Hence, there exists ε that guarantees

improvability. ¤

Finally, an improvability condition that depends on the first-order partial

derivatives of F0(x) and F1(x) is derived in the following proposition, which can

be considered as an extension of the improvability condition in [17].

Proposition 5: Assume that F0(x) and F1(x) are continuously differentiable

around x = 0 . The detector is improvable if there exists a K-dimensional vector

s such that
(

K∑
i=1

si
∂F1(x)

∂xi

)(
K∑

i=1

si
∂F0(x)

∂xi

)
< 0 (4.22)

is satisfied at x = 0 , where si represents the ith component of s.

Proof: Consider the improvability conditions in (4.15). Let ε1 = ς s1 and

ε2 = ς s2 where s1 and s2 are any K-dimensional real vectors and ς is an in-

finitesimally small positive real number. Then, it can be shown that when

[λ s1 + (1− λ) s2]
T f0 < 0 and [λ s1 + (1− λ) s2]

T f1 > 0 (4.23)

are satisfied, one can find an infinitesimally small positive ς such that the con-

ditions in (4.15) are satisfied. Let s
.
= λ s1 + (1− λ) s2 . Note that s can be any

K-dimensional real vector for suitable values of s1, s2 and λ ∈ [0, 1]. Based on

the definition of s, (4.23) can be expressed as sT f0 < 0 and sT f1 > 0.

For ς < 0, similar argument can be used to show that sT f0 > 0 and sT f1 <

0 are sufficient conditions for improvability. Hence, (sT f1)(s
T f0) < 0 can be

obtained as the overall improvability condition. ¤
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Comparison of the improvability conditions in this section with those in [1]

reveals that the results in this section all depend on functions F0 and F1 in

(4.7) directly, whereas those in [1] are obtained based on J(t) defined in (4.8).

Therefore, this study provides a direct way of evaluating the improvability of

a detector. However, the approach in [1] can be more advantageous in certain

cases, since it always deals with a single-variable function irrespective of the

dimension of the data vector. Also, it is shown in the next section that under

certain circumstances, the improvability condition in [1] is equivalent to that in

Proposition 3.

4.4 Numerical Results

In this section, a binary hypothesis-testing problem is studied in order to provide

an example of the results presented in the previous sections. The hypotheses H0

and H1 are defined as

H0 : x = w ,

H1 : x = A1 + w , (4.24)

where x ∈ R2, 1 denotes a vector of ones, A > 0 is a known scalar value, and w

is Gaussian mixture noise with the following PDF

pW(x) =
1

4π

[
1

|Σ1|0.5
exp

(
−1

2
(x + µ)TΣ−1

1 (x + µ)

)

+
1

|Σ2|0.5
exp

(
−1

2
(x− µ)TΣ−1

2 (x− µ)

) ]
, (4.25)

where Σ1 =


 σ2 ρ1σ

2

ρ1σ
2 σ2


, Σ2 =


 σ2 ρ2σ

2

ρ2σ
2 σ2


, x = [x1 x2]

T , and µ =

[µ1 µ2]
T . In addition, the detector is described by

φ(y) =





1 , y1 + y2 ≥ A/2

0 , y1 + y2 < A/2

, (4.26)

59



where y = x + n, with n representing the additional independent noise term.

Based on (4.25), F0(x) and F1(x) can be calculated as follows:

Fi(x) =
1

2
Q

(
A/2− x1 − x2 + µ1 + µ2 − si

σ
√

2(1 + ρ1)

)

+
1

2
Q

(
A/2− x1 − x2 − µ1 − µ2 − si

σ
√

2(1 + ρ2)

)
, (4.27)

for i = 0, 1, where s0 = 0, s1 = 2A, and Q(x) = 1√
2π

∫∞
x

e−t2/2dt denotes the

Q-function. From (4.27), the first and second derivatives can be obtained as

∂Fi(x)

∂x1

=
∂Fi(x)

∂x2

=
1

4
√

π σ

(
1√

1 + ρ1

e
− (A/2−γ2−si)

2

4σ2(1+ρ1) +
1√

1 + ρ2

e
− (A/2−γ1−si)

2

4σ2(1+ρ2)

)
,

∂2Fi(x)

∂x2
1

=
∂2Fi(x)

∂x2
2

=
∂2Fi(x)

∂x1∂x2

=
σ−3

8
√

π

(
(A/2− γ2 − si)√

(1 + ρ1)3
e
− (A/2−γ2−si)

2

4σ2(1+ρ1) +
(A/2− γ1 − si)√

(1 + ρ2)3
e
− (A/2−γ1−si)

2

4σ2(1+ρ2)

)
,

(4.28)

for i = 0, 1, where γ1
.
= x1 + x2 + µ1 + µ2 and γ2

.
= x1 + x2 − µ1 − µ2. It is

noted from (4.28) that the first-order derivatives are always positive and all the

first-order derivatives and the second-order derivatives are the same. Therefore,

the improvability condition in (4.14) becomes independent of z for this exam-

ple. Therefore, the improvability condition in Proposition 3 can be stated as

when g(σ)
.
=

[
∂2F1(x)

∂x2
1

∂F0(x)
∂x1

− ∂2F0(x)

∂x2
1

∂F1(x)
∂x1

] ∣∣∣
x=0

is positive, the detector is im-

provable. Fig. 4.1 plots the improvability function g(σ) for various values of

A. It is observed that the detector performance can be improved for A = 1 if

σ ∈ [0.55, 3.24], for A = 2 if σ ∈ [0.42, 3.09], for A = 4 if σ ∈ [0.29, 2.38]. On the

other hand, when the more generic result in Proposition 2 is applied to the same

example, it is obtained that the detector is improvable for A = 1 if σ ≤ 3.24, for

A = 2 if σ ≤ 3.14, and for A = 4 if σ ≤ 2.59. Hence, Proposition 2 provides

more generic improvability conditions as expected.

Fig. 4.2 plots the detection probabilities of the original (no additional noise)

and the noise modified detectors with respect to σ for A = 2. From the figure, it
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Figure 4.1: The improvability function obtained from Proposition 3 for various
values of A, where ρ1 = 0.1, ρ2 = 0.2, µ1 = 2, and µ2 = 3.
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Figure 4.2: Detection probabilities of the original and noise modified detectors
versus σ for A = 2, ρ1 = 0.1, ρ2 = 0.2, µ1 = 2, and µ2 = 3.
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is observed that for smaller values of σ, more improvement is obtained, and after

σ = 3.14 there is no improvement as expected from the improvability conditions.

In this specific example, it can be shown that the improvability condi-

tions in Proposition 3 and in [1] are equivalent. Since the functions F0

and F1 defined in (4.27) are both monotone increasing functions of x1 + x2,

J(t) = sup {F1(x) | F0(x) = t} can be obtained as J(t) = F̃1

(
F̃−1

0 (t)
)
, where

F̃i(m)
.
= Fi(x)

∣∣
x1+x2=m

. Then, J
′′
(t) can be obtained as

J
′′
(t) =

d

dt





F̃
′

1

(
F̃−1

0 (t)
)

F̃
′

0

(
F̃−1

0 (t)
)





=
F̃

′′
1

(
F̃−1

0 (t)
)
− F̃

′
1

(
F̃−1

0 (t)
)

F̃
′′

0

(
F̃−1

0 (t)
)

/ F̃
′

0

(
F̃−1

0 (t)
)

[
F̃

′
0

(
F̃−1

0 (t)
)]2 . (4.29)

At t = Px
F = F0(0) = F̃0(0), F̃−1

0 (t) becomes equal to 0; hence, J
′′
(Px

F) > 0

implies F̃
′′

1 (0) − F̃
′′

0 (0)F̃
′

1 (0)/F̃
′

0 (0) > 0. For this specific problem, it can be

shown that dF̃i(m)
dm

∣∣∣
m=0

= ∂Fi(x)
∂x1

∣∣∣
x=0

= ∂Fi(x)
∂x2

∣∣∣
x=0

and d2F̃i(m)
dm2

∣∣∣
m=0

= ∂2Fi(x)

∂x2
1

∣∣∣
x=0

=

∂2Fi(x)

∂x2
2

∣∣∣
x=0

= ∂2Fi(x)
∂x1∂x2

∣∣∣
x=0

for i = 0, 1, and dF̃0(m)
dm

∣∣∣
m=0

is a positive constant. There-

fore, the improvability conditions in Proposition 3 and that in [1] are equivalent

in this specific example. However, it should be noted that the two conditions

are not equivalent in general, and the calculation of J(t) can be difficult in the

absence of monotonicity properties related to F0.

For the same measurement noise distribution, if we use a sign detector instead

of the detector in (4.26), then, from the improvability function, it is obtained that

the detector performance can be improved for A = 1 if σ ∈ [0.57, 3.1628], for

A = 2 if σ ∈ [0.46, 2.7150], for A = 3 if σ ∈ [0.43, 0.9203], as shown in Fig. 4.3.

On the other hand, when the result in Proposition 2 is applied to this example,

it is obtained that the detector is improvable for A = 1 if σ ≤ 3.20, for A = 2 if

σ ≤ 3.01, and for A = 3 if σ ≤ 2.60.
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Figure 4.3: The improvability function obtained from Proposition 3 for various
values of A in the case of sign detector where ρ1 = 0.1, ρ2 = 0.2, µ1 = 2, µ2 = 3.

4.5 Concluding Remarks

In this chapter, improvability and non-improvability conditions have been pro-

posed to specify when detection performance of a suboptimal detector can be

improved via additional noise under a constraint on probability of false alarm.

The proposed results are defined in terms of the probabilities of detection and

false alarm for specific additional noise values (cf. (4.7)) without the need for

any other auxiliary functions as in [1]. However, for multi-dimensional measure-

ments with dependent noise, the conditions in [1] can still be advantageous in

some cases if the calculation of the auxiliary function in (4.8) is not challenging.

In addition, the improvability results in [17] have been extended to both more

generic conditions and to multi-dimensional measurements. All in all, this study

has provided new improvability and non-improvability conditions that can be

useful in various scenarios.
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