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ABSTRACT

ROBOTIC ASSEMBLY LINE DESIGN WITH TOOL
CHANGES

Adnan Tula

M.S. in Industrial Engineering

Supervisor: Prof. Dr. M. Selim Aktürk

July, 2009

This thesis is focused on assembly line design problems in robotic cells. The

mixed-model assembly line design problem that we study has several subprob-

lems such as allocating operations to the stations in the robotic cell and satisfying

the demand and cycle time within a desired interval for each model to be pro-

duced. We also ensure that assignability, precedence and tool life constraints are

met. The existing studies in the literature overlook the limited lives of tools that

are used for production in the assembly lines. Furthermore, the studies in the

literature do not consider the unavailability periods of the assembly lines and

assume that assembly lines work 24 hours a day continuously. In this study, we

consider limited lives for the tools and hence we handle tool change decisions. In

order to reflect a more realistic production environment, we deal with designing

a mixed-model assembly line that works 24 hours a day in three 8-hour shifts

and we consider lunch and tea breaks that are present in each shift. This study

is the first one to propose using such breaks as tool change periods and hence

eliminate tool change related line stoppages. In this setting, we determine the

number of stations, operation allocations and tool change decisions jointly. We

provide a heuristic algorithm for our problem and test the performances of our

heuristic algorithm and DICOPT and CPLEX solvers included in GAMS software

on different instances with varying problem parameters.

Keywords: Robotic cell, assembly line, tool change, heuristic algorithm.
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ÖZET

UÇ DEĞİŞİMLİ ROBOTİK MONTAJ HATTI TASARIMI

Adnan Tula

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. M. Selim Aktürk

Temmuz, 2009

Bu tezin konusu robotik hücrelerde montaj hattı tasarım problemleridir.

Çalıştığımız montaj hattı tasarım problemi operasyonların istasyonlara atan-

ması ve üretilecek her model için talep ve çevrim zamanının belli aralıklar

içinde karşılanması gibi alt problemler içermektedir. Bunun yanı sıra atan-

abilirlik, öncelik ve uç ömrü kısıtları sağlanmaktadır. Literatürde var olan

çalışmalarda, montaj hatlarında üretim için kullanılan uçların kısıtlı ömrü olduğu

gözardı edilmiştir. Ayrıca, literatürde yer alan çalışmalar 24 saat kesintisiz

üretimi temel almakta ve montaj hatlarında üretim yapılamayan zamanlar hesaba

katılmamaktadır. Bu tezde, kısıtlı uç ömürleri kullanılmakta, dolayısıyla uç

değişim kararları da ele alınmaktadır. Daha gerçekçi bir üretim ortamı yansıtmak

amacıyla, karma model üretimi yapılan, içinde çay ve yemek molalarının olduğu

8 saatlik üç vardiya düzeniyle günde 24 saat çalışan bir montaj hattı tasarım

problemi ele alınmıştır. Bu çalışma, çay ve yemek molalarının uç değiştirme

zamanı olarak kullanılmasını ve bunun sonucunda uç değişim zorunluluğundan

kaynaklanan üretim hattı durdurmalarının önlenmesini önermesi açısından ilk-

tir. Bu bağlamda, istasyon sayıları, operasyonların istasyonlara atanması ve uç

değişim kararları birlikte ele alınmaktadır. Çalışılan problem için çözüm yolu

olarak bir sezgisel algoritma geliştirilmiş, değişken değerlerin atandığı parame-

trelerle oluşturulan değişik örnekler üzerinde sezgisel algoritma ile DICOPT ve

CPLEX çözücülerinin performansları karşılaştırmalı olarak test edilmiştir.

Anahtar sözcükler : Robotik hücre, montaj hattı, uç değişimi, sezgisel algoritma.
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sity Project No: 300 189 2 5.

vi



Contents

1 Introduction 1

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Problem Definition 8

3 Linearization of NLMIP 18

4 Proposed Heuristic Algorithm 23

4.1 Heuristic For Finding Feasible Solutions . . . . . . . . . . . . . . 26

4.2 Improvement Algorithm . . . . . . . . . . . . . . . . . . . . . . . 31

5 Implementation 36

6 Computational Study 42

7 Conclusion 53

A Nomenclature 59

vii



List of Figures

2.1 A spot weld scheme of an automotive body component . . . . . . 9

2.2 Cycle time - revenue contribution relationship . . . . . . . . . . . 11

2.3 A spot welding gun . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Cost and Profit Values for Example 1 . . . . . . . . . . . . . . . . 26

4.2 Cost and Profit Values for Example 2 . . . . . . . . . . . . . . . . 30

5.1 Tool change schedules for spot welding tools . . . . . . . . . . . . 37

5.2 Tooling Cost Calculations . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Summary of spot welding tool changes . . . . . . . . . . . . . . . 40

5.4 A monitoring of shift-based tool changes . . . . . . . . . . . . . . 41

viii



List of Tables

4.1 Precedence matrix for Example 1 . . . . . . . . . . . . . . . . . . 25

4.2 Precedence matrix for Example 3 . . . . . . . . . . . . . . . . . . 34

6.1 Precedence matrix for computational study runs . . . . . . . . . . 44

6.2 Total Profit Values for Algorithm 1 and Algorithm 2 . . . . . . . 45

6.3 Calculation of Total Profit Values for Algorithm 1 and Algorithm 2 46

6.4 Total Profit Values for DICOPT 1 and MIP 1 . . . . . . . . . . . 47

6.5 Total Profit Values for DICOPT 2 and MIP 2 . . . . . . . . . . . 48

6.6 Gap values for MIP 1 and MIP 2 . . . . . . . . . . . . . . . . . . 49

6.7 Total Profit Values and CPU Times for CPLEX and Algorithm 2 50

6.8 Solution Analysis for Problem Clusters . . . . . . . . . . . . . . . 51

ix



Chapter 1

Introduction

An important application of robots in the automotive industry is their use for

spot welding operations in robotic cells. Once an automotive component of a

vehicle is designed and the required spot welds to assemble the pieces on this

component are determined, the problem of allocating the welding operations to

robotic cell stations arises. Different allocations result in different production

quantities (e.g., cycle times), station investment costs and tooling costs that

are incurred by replacing the tools with new ones. Each station consists of a

single robot in a fully automated production line. In order to perform welding

operations, the robots use spot welding guns that we refer to as welding tools

throughout this study. A welding tool has a limited life time that is represented

by the total number of spot welds that it can process.

This study focuses on a robotic cell mixed-model assembly line design problem

in which multiple models can be produced in any order. Our objective is to maxi-

mize the total profit that will be gained from the assembly line by manufacturing

automotive body components. The problem has several subproblems which in-

clude allocation of welding operations to the stations, satisfying the demand and

cycle time within a desired interval for the parts to be produced. While defining

the problem and constraints, we were inspired by a real-life assembly line problem

we faced in a project that we formerly conducted at one of the leading companies

in the automotive industry in Turkey.

1



CHAPTER 1. INTRODUCTION 2

Today, improvements in technology and automation and large investment

costs incurred for building assembly lines have increased the importance of studies

on designing efficient assembly lines. Assembly line designing problems attract

much attention from the academic world. Therefore, numerous studies have been

conducted by the researchers, in which some aspects such as equipment selection

and balancing of the lines are considered.

1.1 Literature Review

As described by Baybars [3], there are two main groups of assembly line studies.

Simple assembly line balancing problems (SALBP) consider a single product to

be produced in the assembly lines. In the literature, the widely used objectives

for these studies include minimizing the number of workstations or the cost for

building assembly lines for a given cycle time and minimizing the cycle time for a

given number of workstations. There are many studies in the field of SALB, some

of which are Baybars [2], McMullen and Tarasewich [16], Fleszar and Hindi [10],

Rekiek et al. [19], Scholl and Klein [22] and Levitin et al. [14]. For a review of

studies in the SALB field, we can refer to the review paper of Scholl and Becker

[21].

In general assembly line balancing problems (GALBP), SALB problems are

extended by introducing other aspects such as mixed-model or multi-model cases,

zoning constraints and parallel stations. As described by Becker and Scholl [4],

in a mixed-model line, different models are produced in the assembly line in an

arbitrary inter-mixed sequence. There are several studies in the literature for the

version of assembly line balancing problem with mixed-model lines. Bukchin et

al. [5] address the problem of designing mixed-model assembly lines in which a

make-to-order policy is followed. By separating the assembly tasks into two sets,

they propose a three-stage heuristic in order to find a solution with the minimum

number of stations for a given cycle time: in the first stage, they assign the first

set of tasks that should be assigned to the same station for each model requiring

these tasks. Then, they assign the second set of tasks that can be assigned to
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different stations for different models to balance each model in the assembly line,

subject to the constraints resulting from the assignment of the first set of tasks.

The final stage is to improve the solution by a neighborhood search. Erel and

Gökcen [7] use a shortest-route formulation to solve a mixed-model assembly

line problem. Common assembly tasks between different models are assigned to

the same station. They transform the problem into a single-model version by

constructing a combined precedence diagram from the precedence diagrams of

all models. Bukchin and Rabinowitch [6] relax the assumption of restricting a

task that is common for several models to a particular station and allow such a

task to be assigned to different stations for different models. They provide an

integer formulation for their model and give a lower bound for the total station

cost and task assignment costs, which they aim to minimize. In order to find

optimal or near-optimal solutions, they propose a heuristic algorithm based on

branch-and-bound. Haq et al. [12] present a hybrid genetic algorithm for the

mixed-model assembly line balancing problem. They use the modified ranked

positional weight method to obtain an initial assignment of tasks to stations.

They reduce the search space and search time of their hybrid genetic algorithm

by providing this initial solution to their algorithm. Different from the studies

that adapt a single station at each stage of the assembly line, Askin and Zhou [1]

proposed a nonlinear integer program for assigning tasks to stations in a serial

line in which the stages of the assembly line consist of an arbitrary number of

identical, parallel workstations. While considering precedence relations between

tasks, they allow tooling selections for workstations and each task requires a

certain type of tool. Their objective is to minimize the sum of the total fixed

cost for operating stations and the total equipment/tooling cost. Because of the

complexity of the problem, they provide an assignment heuristic for finding good

initial solutions.

To address the problem of handling model changes in mixed-model lines,

Matanachai and Yano [15] approach the mixed-model line problem with the ob-

jective of facilitating the construction of good sequences and short-term workload

stability while assigning tasks to stations. They assume predetermined cycle times

and number of stations and include additional terms in their objective function
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to minimize within- and between-station processing time diversity. Maintain-

ing short-term workload stability provides robustness for daily model changes in

mixed-model lines. Merengo et al. [17] present balancing and sequencing method-

ologies for mixed-model assembly lines to minimize the number of workstations for

predetermined model cycle times, reduce work-in-process and minimize the rate of

incomplete jobs. By presenting integer programming formulations and providing

numerical results, Sawik [20] compared monolithic and hierarchical balancing and

sequencing approaches in which balancing and sequencing of mixed-model lines

are determined simultaneously and sequencing of models proceeds the balancing

of the line, respectively.

Sparling and Miltenburg [23] were the first to study the mixed-model U-line

balancing problem to minimize the number of stations in the assembly line. For

this problem, they presented a four-step approximate solution algorithm: the first

two steps transform the mixed-model problem into an equivalent single-model

problem, the third step finds the optimal workload balance for the equivalent

single-model problem and the final step transforms the balance found in the third

step into a feasible balance for the original mixed-model problem. Miltenburg [18]

extended balancing and sequencing problem to U-shape mixed-model lines in a

just-in-time environment. A nonlinear mixed-integer programming formulation

is presented to solve the balancing and sequencing problem simultaneously. Erel

et al. [8] developed a simulated annealing-based algorithm to minimize the num-

ber of stations in a U-type assembly line and tested the performance of their

proposed algorithm against optimum seeking DP and IP-based algorithms and

other heuristic procedures. In contrast to deterministic processing times, Erel et

al. [9] studied U-line balancing problem with stochastic task times. Their study

was the first one to propose a beam search-based method to minimize total ex-

pected cost, which consists of total labor cost and total expected incompletion

cost. Van Hop [13] addressed the mixed-model assembly line problem with fuzzy

processing times for the first time. A heuristic to aggregate fuzzy processing

times is proposed and the problem is transformed into a a single-model version

by using a combined precedence diagram. A heuristic is also developed to find a

solution for the fuzzy assembly line problem. Vilarinho and Simaria [24] address
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some additional zoning constraints in their study for the assignment of tasks to

stations. They assume a subset of tasks that are linked and must be assigned

to the same station and subsets of incompatible tasks that should be assigned

to different stations. They also assume that some tasks can only be assigned to

particular stations. They allow parallel stations in the assembly line and present

an ant colony optimization algorithm for minimizing the number workstations for

a given cycle time. Wilhelm and Gadidov [25] devised a branch-and-cut approach

to minimize the total assembly line cost that includes station activating, machin-

ing and tooling costs considering machine capacities and available tool spaces in

the stations. Each operation requires a set of tools to be performed so tooling

requirements constitute an important part of the problem. Machine capacity is

used as an analog of cycle time restriction that appears in single-model assembly

lines.

The studies in the literature present different model formulations and propose

different solution techniques for assembly line problems with different objective

functions. However, these studies do not consider the unavailability periods of

the assembly lines and hence are based on continuous production. In addition to

this, they overlook the limited lives of the tools that are used in production. As

we will further discuss in Chapter 5, assembly lines may suffer from tool change

related line stoppages unless the limited tool lives are taken into consideration

while allocating the operations to the stations. Therefore, we consider these two

important attributes of the robotic assembly lines in addition to other well-known

constraints of the assembly line balancing problem.

1.2 Thesis Overview

Traditional assembly line design studies are generally based on the objectives

of minimizing the cycle time, the number of stations and costs for building as-

sembly lines or maximizing the efficiency of the assembly lines. In this study,

different from the studies in the literature, we address a mixed-model assembly

line problem with a profit maximization objective. We maximize the total profit
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function, which is the difference between the revenue gained by manufacturing

components of the final products and the sum of the station investment costs

and tooling costs. Station investment costs include robot cost, fixture cost and

space cost and tooling costs are incurred by replacing the tools with new ones.

In addition to this, the studies in the literature do not consider the unavailability

periods of the assembly lines and assume that assembly lines work 24 hours a day

continuously. However, we deal with designing a mixed-model assembly line that

works 24 hours a day in three 8-hour shifts. We consider lunch and tea breaks to

reflect a more realistic production environment. In the literature, there are many

studies regarding tool selection and tool costs, but these studies ignore limited

tool life and incorporate the assumption that tool change is omitted throughout

the planning horizon and tooling costs are incurred once at the beginning of the

production stage. Tool life has two implications. First, tools must be changed

at the end of their tool lives and this will increase the tooling cost. Second, tool

changes may correspond to a time when the assembly line is supposed to be op-

erating and therefore may result in line stoppages. In our study, we consider that

tools have limited lives that are represented by the total number of spot welds

that they can perform. We use the lunch and tea breaks as tool change periods

by which we aim to eliminate tool change related line stoppages. At each break,

if there exist welding tools that have a remaining number of spots less than the

total number of spots that they have to perform until the next break, they should

be changed with new ones. Therefore, the tooling cost term that appears in our

objective function is a function of the total number of tools used throughout the

planning horizon.

The organization of this study is as follows: In the next chapter we will present

a nonlinear mixed-integer formulation of our assembly line design problem. In

Chapter 3, we will provide the linearized mixed-integer version of the same prob-

lem. In Chapter 4, a heuristic algorithm for finding good feasible solutions will be

developed and this heuristic algorithm will be improved by a surrogate problem.

An implementation of our study to a leading automotive company in Turkey will

be provided in Chapter 5. Numerical results and several comparisons between

our heuristic algorithm and GAMS software are given in Chapter 6. Concluding
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remarks are given in Chapter 7. A summary of all the problem parameters and

decision variables is provided in the appendix.



Chapter 2

Problem Definition

In this chapter, we give the definition of our problem and introduce the parame-

ters, variables and the mathematical model we will use to solve our problem.

We consider a robotic cell that contains at most m stations: S1, S2, . . . , Sm.

Let M={1, 2,. . . , m} be the set of indices of these stations. Space restrictions

in the production area and a limited budget for investment costs are among the

reasons of such a restriction on the number of stations. We use the parameter

Vj to denote the cost of setting up station j, j ∈ M . The cost of setting up a

station consists of robot cost, fixture cost and space cost. There are g different

models of parts to be produced in this robotic cell and G={1, 2,. . . , g} is the

index set of part models. Ohi represents operation i of model h, i ∈ Nh, h ∈ G,

where Nh={1, 2,. . . , nh} is the index set of welding operations of model h to

be allocated to stations and nh is the number of operations to be performed to

produce a part of model h. Welding operations consist of a number of spot welds.

Let Whi be the number of spot welds required to perform operation i of model

h, i ∈ Nh, h ∈ G. An operation may require a single spot weld. However, some

operations require more than one spot weld in order to assemble the part at its

proper geometry. In general, the spot welds that are close to each other with

respect to their locations on the component are grouped together as operations.

A welding tool has a limited lifetime that is represented by the total number of

spot welds it can process. We define Bj as the total number of spot welds such

8
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that the welding tool in station j ∈M can process.

Figure 2.1: A spot weld scheme of an automotive body component

An example of an automotive body component is given in Figure 2.1. Figure

2.1 shows the spot welds required to perform some of the welding operations on

different locations of a part. The 26 spot welds seen in this figure constitute a

subset of all operations required to produce this body component. As we can see,

a spot weld can be close to some spot welds but can also be distant from some

other spot welds. Therefore, the locations of the spot welds on a part along with

the minimum number of required spot welds to assemble the subcomponents to

maintain their proper geometry during the part transfer between stations play

an important role in grouping these spot welds as operations.
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In order to set up a profitable assembly line and determine the number of

stations required in the assembly line, we have to take the expected demand

into consideration. We represent the yearly expected demand for the parts to

be produced as θh, h ∈ G. We use the parameter γh to denote the target cycle

time for model h to meet the yearly expected demand θh. In general, let T̄h be

the time allocated to production of model h. Let f̄h be the cycle time of model

h and let θ̄h be the corresponding production amount for model h. Then, the

relationship between f̄h and θ̄h is as follows:

θ̄h =
T̄h

f̄h
∀h.

We use the parameters γLh and γUh as the lower and upper bounds for the actual

cycle time of model h, respectively. We neither accept to produce an amount of

parts of model h less than the amount that can be produced when the actual cycle

time is equal to γUh nor can make any additional profit if production of model h

exceeds the amount that can be produced when the actual cycle time is equal

to γLh . Up to the production amount of θh we assume a constant profit for each

part of model h produced and denote it by PRh. In case of producing between

θh and the amount that can be produced when the actual cycle time is equal to

γLh , each excess part of model h produced contributes an expected profit denoted

by PRǫ
h. If the production of model h exceeds the amount that can be produced

when the actual cycle time is equal to γLh , any excess part does not contribute

any additional profit. We represent the relationship between PRh and PRǫ
h as

the following:

PRǫ
h = PRh −∆h, ∆h ≥ 0.

Let fh be the cycle time of model h for a particular allocation. Let θ̂h and θLh

be the production amounts of model h when the cycle time of model h is equal

to the decision variable, fh, and the given parameter, γLh , respectively. In this

setting, revenue contribution of each model h, which is the sum of the individual

profits that each product of model h contributes, is calculated as in the following:

Total Revenue =





θ̂h · PRh if γh ≤ fh ≤ γUh ,

θh · PRh + (θ̂h − θh) · PR
ǫ
h if γLh ≤ fh ≤ γh,

θh · PRh + (θLh − θh) · PR
ǫ
h if fh < γLh .
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Figure 2.2 shows an example of the relationship between the revenue contri-

bution such that PRh = $20 and PRǫ
h = $5 and the cycle time for a particular

model h that is produced in the assembly line, where γUh = 84 seconds, γh = 72

seconds and γLh = 64 seconds.

Figure 2.2: Cycle time - revenue contribution relationship

As we see in Figure 2.2, while the cycle time of model h decreases from γUh

(i.e., 84 seconds) to γh (i.e., 72 seconds), the contribution of model h to the total

revenue increases with a slope of PRh. While the cycle time decreases from γh

to γLh (i.e., 64 seconds), the revenue increases with a slope of PRǫ
h. The slope

between γh and γLh is lower than the slope between γUh and γh because after the

production amount of the expected demand θh, each excess component of model

h produced contributes an expected profit of PRǫ
h, which is lower than PRh.

Finally, when the cycle time decreases down from γLh , the revenue contribution of

model h remains constant because after the production amount of θLh , any excess

component of model h does not contribute any profit.

There are several reasons for an assembly line to stop when it is supposed

to be operating. For instance, the tips of the welding tools may cling on the

part during a welding operation and the welding tool then must be replaced

with a new one. Also, the grippers used for transportation of parts through the

assembly line may not close properly and therefore may not hold the part, which

causes the assembly line to stop. Moreover, the censors may not recognize or may

miscognize a part. In addition to these, a welding tool may finish its lifetime at

some time when the assembly line is supposed to be operating. Except in the
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last instance, the reasons that cause the assembly line to stop are more technical

and may happen at any time. However, the last instance can be prevented by

making it possible to allow tool changes only in scheduled breaks such as tea or

lunch breaks in which the assembly line does not operate.

In most of the automotive industries (including the one that we have been

collaborating), plants work 24 hours in three 8-hour shifts and there are breaks

in an 8-hour shift. In general, there is a 10-minute break at the beginning of a

shift, a 10-minute tea break, a 30-minute lunch break and a second 10-minute

tea break. The working hours between two breaks are equal and last 1 hour and

45 minutes. Each break corresponds to a possible tool change time period. In

any break, if the remaining number of spots such that a welding tool can perform

is less than the total number of spots it has to perform until the next break, it

needs to be replaced with a new tool in that particular tool change time period

in order to prevent line stoppages due to the tool changes. Let Cj be the cost of

the tool in station j, j ∈ M . We define Dq as the available tool change time in

tool change period q, q = 1, 2, . . . , U , where U is the total number of breaks in

the planning horizon.

We calculate the required tool change time as a function of the number of

tools to be replaced:

K + µ ·

m∑

j=1

zjq ∀q = 1, 2, . . . , U,

where K is a constant that denotes the time to prepare for welding tool changes

and µ is another constant that corresponds to the time required to replace a single

welding tool. Furthermore, zjq is a binary variable to indicate whether tool in

station j ∈ M is changed in tool change period q. Two spot welding tools are

attached to the spot welding gun as shown in Figure 2.3, and both of them are

replaced at the same time.

As we have previously seen in Figure 2.1, the positions of spot welds on a

part are at different locations. It may not be possible for a particular type of

welding tool to reach to every location on a part due to its geometry. Therefore,

it is not possible to process all spot welds by one type of welding tool so there
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Figure 2.3: A spot welding gun

are several types of welding tools. As a result, a welding tool cannot perform all

operations so we define an assignability matrix A and use the following parameter:

ahij =





1, if operation i ∈ Nh of model h ∈ G can be assigned

to station j ∈ M ;

0, otherwise.

There may be additional subcomponents to be assembled to a part of model

h inside the robotic cell. The subcomponents may block the positions of some

spot welds required for an operation, i.e., Ohi. Therefore, Ohi must be performed

before this particular subcomponent is assembled to the part. For similar reasons,

we define a precedence matrix P and use the following parameter:

phik =





1, if operation i ∈ Nh of model h ∈ G precedes operation

k ∈ Nh of model h ∈ G;

0, otherwise.

The difference between the processing time of a spot weld by two different

types of welding tools is negligible so the processing time of an operation is

independent of the station at which it is processed. Therefore, we let thi be the

time required to perform operation i ∈ N of model h ∈ G. We calculate thi as a

function of the number of spot welds required to perform operation i of model h
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as follows:

thi = α + β ·Whi ∀h ∈ G, i ∈ Nh,

where α is a constant that denotes the time required for the robot to reach to

the position to perform operation i of model h and β is another constant that

corresponds to the time required to process a single spot weld.

In order to calculate the time allocated for production of parts of a particular

model, we need to calculate the proportion of time that should be allocated to

the production of a particular model. Therefore we define the parameter ψh for

h = 1, . . . , g as the following:

ψh =
θh · γh∑g

l=1 θl · γl
∀h ∈ G.

As mentioned before, the production time between two breaks is 1 hour 45 min-

utes, which is equal to 6300 seconds. Then, the time allocated for the production

of parts of model h between two breaks in the assembly line is calculated as

6300 · ψh seconds.

The decision variables we will use to formulate our model are defined below:

fh: actual cycle time for model h, h ∈ G.

σj =

{
1, if station j ∈M is used in the assembly line;

0, otherwise.

xhij =

{
1, if operation i ∈ Nh of model h ∈ G is assigned to station j ∈M ;

0, otherwise.

zjq =





1, if tool in station j ∈M is changed in tool change period q,

q = 1, 2, . . . , U ;

0, otherwise.

Rjq: remaining number of spot welds such that the welding tool in station j can

process after tool change period q, j = 1, 2, . . . , m, q = 1, 2, . . . , U .
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Having defined the parameters and the decision variables of our problem, the

nonlinear mixed-integer mathematical model we will use to solve our problem is

the following:

Model 1 (NLMIP):

Maximize

g∑

h=1

PRh ·min{
θh · γh
fh

, θh} (2.1)

+

g∑

h=1

PRǫ
h ·min{max{

θh · γh
fh

− θh, 0},
θh · γh
γLh

− θh}

− ρ ·
m∑

j=1

U∑

q=1

Cj · zjq − η ·
m∑

j=1

Vj · σj

Subject to

fh ≥ τj · σj +

nh∑

i=1

thi · xhij ∀h, j (2.2)

fh ≤ γUh ∀h (2.3)

xhij ≤ ahij · σj ∀h, i, j (2.4)
m∑

j=1

xhij = 1 ∀h, i (2.5)

phik ·

j∑

l=1

xhil + (1− phik) ≥ xhkj ∀h, i, j, k (2.6)

Rjq = Bj · zjq + [Rj(q−1) −

g∑

h=1

6300 · ψh
fh

·

nh∑

i=1

Whi · xhij](1− zjq) ∀j, q (2.7)

Rj0 = Bj ∀j (2.8)

Rjq ≥

g∑

h=1

6300 · ψh
fh

· (

nh∑

i=1

Whi · xhij) ∀j, q (2.9)

fh ≥ 0, Rjq ≥ 0, xhij , σj , zjq ∈ {0, 1} ∀h, i, j, q (2.10)

We use a piecewise linear objective function in which we include the profit

that is supposed to be earned by producing up to θh amount of parts of model h.

We add the extra profit for the situation of producing more than θh and subtract

the tooling cost incurred by replacing the welding tools and the cost incurred
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by setting up required stations. Tooling cost and station cost are converted to

yearly costs by the constants ρ and η, which depend on the selection of U and

the number of months that the production of the selected models will continue,

respectively. Constraint (2.2) ensures that the cycle time is the maximum station

time, which is the sum of the operation times allocated to that station plus a

constant τj required for the robot in station j to begin and finalize processing

the allocated operations. By (2.3), we prevent the actual cycle time for model h

from exceeding γUh . Constraint (2.4) restricts operations to be assigned only to

the stations where they can be performed and to stations which are used in the

assembly line. By (2.5), we ensure that an operation is assigned to exactly one

station and none of the operations remains unassigned. Constraint (2.6) allows

an operation to be assigned to a station if all its predecessor operations are

assigned to the same or to a preceding station. Constraint (2.7) handles updates

for the remaining number of spot welds for welding tools in stations through the

production time. In Constraint (2.8), we define the remaining tool life for each

tool at the beginning of the planning period. In this study, we assume that we

always start the production with new tools. By constraint (2.9), we guarantee

that none of the welding tools finishes its lifetime between two breaks since the

cost of stopping the assembly line except the scheduled breaks is very costly.

In our problem, we assume that we have enough workforce to handle any

number of tool changes in a particular tool change time period. In some cases,

there may be restricted workforce to handle tool changes. Then, the following

constraint, which ensures that we do not spend more than available time for tool

changes in a particular tool change time period, can be added to Model 1:

K + µ ·
m∑

j=1

zjq ≤ Dq ∀q = 1, 2, . . . , U.

In this chapter, we have defined our problem, the problem parameters and the

decision variables and formulated our problem as an NLMIP. In order to solve the

NLMIP formulation of our problem, we use DICOPT, a nonlinear solver included

in GAMS software. To work on more realistic instances, we provide data sets that

are close to the data set which we worked on in the project that we had formerly

conducted. However, as we will see in Chapter 6 in more detail, DICOPT fails to
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find solutions for the NLMIP instances with the given data sets. Therefore, in the

next chapter of our study, we will convert NLMIP to a mixed integer problem by

doing necessary linearizations for the objective function and nonlinear constraints

and try to solve the equivalent mixed integer problem by using the commercial

CPLEX solver.



Chapter 3

Linearization of NLMIP

NLMIP is a nonlinear mixed integer model that includes products of two or more

variables. We continue our study with linearizing the objective function (e.g.,

equation (2.1)), constraint (2.2), constraint (2.3), constraint (2.7) and constraint

(2.9) of NLMIP with some well-known linearization techniques.

First, we define the variable ωh and replace it with 1
fh

, which frequently occurs

in Model 1. Now the nonlinear part

g∑

h=1

PRh ·min{
θh · γh
fh

, θh}+

g∑

h=1

PRǫ
h ·min{max{

θh · γh
fh

− θh, 0},
θh · γh
γLh

− θh}

in our piecewise linear objective function becomes

g∑

h=1

PRh ·min{θh · γh · ωh, θh}

+

g∑

h=1

PRǫ
h ·min{max{θh · γh · ωh − θh, 0},

θh · γh
γLh

− θh}. (1∗)

Introducing new positive variables AOh, λ
1
h, λ

2
h, BOh and a binary variable yh,

18
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we propose Constraints (3.1)-(3.8) for the linearization of our objective function.

AOh ≤ θh · γh · ωh ∀h ∈ G (3.1)

AOh ≤ θh ∀h ∈ G (3.2)

θh · γh · ωh − θh = λ1
h − λ

2
h ∀h ∈ G (3.3)

λ1
h ≤M · yh ∀h ∈ G (3.4)

λ2
h ≤M · (1− yh) ∀h ∈ G (3.5)

BOh ≤ λ1
h ∀h ∈ G (3.6)

BOh ≤
θh · γh
γLh

− θh ∀h ∈ G (3.7)

ωh, AOh, BOh, λ
1
h, λ

2
h ≥ 0, yh ∈ {0, 1} ∀h ∈ G (3.8)

Proposition 3.1. Constraints (3.1)-(3.8) correctly linearize the objective func-

tion introduced in NLMIP in Chapter 2, Equation (2.1).

Proof: First we replace min{θh ·γh ·ωh, θh} with AOh. Since we deal with a max-

imization problem, Constraints (3.1) and (3.2) are sufficient for the linearization

of the first term in (1∗). Then, we replace max{θh · γh · ωh − θh, 0} that appears

in the second term of (1∗) with λ1
h. By Constraints (3.3)-(3.5), we ensure that

λ1
h is positive if θh · γh · ωh − θh is positive, and 0 otherwise. Finally, we replace

min{λ1
h,

θh·γh

γL
h

− θh} that appears in the second term of (1∗) with BOh. Similar to

what we did for the linearization of the first term of (1∗), Constraints (3.6) and

(3.7) are sufficient for the linearization of the second term of (1∗). Hence, Con-

straints (3.1)-(3.8) correctly linearize the objective function introduced in NLMIP

in Equation (2.1). 2

The nonlinear part of our objective function now becomes

g∑

h=1

PRh ·AOh +

g∑

h=1

PRǫ
h · BOh.

The new objective function, which is now linear, is the following:

g∑

h=1

PRh · AOh +

g∑

h=1

PRǫ
h ·BOh − ρ ·

m∑

j=1

U∑

q=1

Cj · zjq − η ·
m∑

j=1

Vj · σj



CHAPTER 3. LINEARIZATION OF NLMIP 20

Using ωh = 1
fh

, constraint (2.2) becomes

1 ≥ τj · ωh +

nh∑

i=1

thi · xhij · ωh, ∀h, j. (2.2∗)

We define ehij = xhij · ωh, a very large number F and propose Constraints (3.9)-

(3.13) for the linearization of Constraint (2.2∗).

ehij ≤ ωh ∀h ∈ G, i ∈ Nh, j ∈M (3.9)

ehij ≤ F · xhij ∀h ∈ G, i ∈ Nh, j ∈M (3.10)

ehij ≥ ωh − F · (1− xhij) ∀h ∈ G, i ∈ Nh, j ∈M (3.11)

ehij ≥ 0 ∀h ∈ G, i ∈ Nh, j ∈M (3.12)

1 ≥ τj · ωh +

nh∑

i=1

thi · ehij ∀h ∈ G, j ∈M (3.13)

Proposition 3.2. Constraints (3.9)-(3.13) correctly linearize Constraint (2.2∗).

Proof: First we replace xhij · ωh with ehij . We also know that ωh is strictly

positive for each h ∈ G because cycle time of each model is strictly positive. So,

if xhij is equal to 1, by Constraints (3.9) and (3.11), ehij = ωh. If xhij is equal to

0, then by Constraints (3.10) and (3.12), ehij is equal to 0. So in any case, ehij is

equal to xhij · ωh. Hence, Constraints (3.9)-(3.13) correctly linearize Constraint

(2.2∗). 2

Since ωh = 1
fh

, constraint (2.3) becomes

1

ωh
≤ γUh , ∀h ∈ G. (2.3∗)

We linearize constraint (2.3∗) by replacing it with the following:

γUh · ωh ≥ 1 ∀h. (3.14)

As we previously defined ωh = 1
fh

and ehij = xhij · ωh, constraint (2.7) becomes

Rjq = Bj · zjq +Rj(q−1) −Rj(q−1) · zjq −

g∑

h=1

6300 · ψh · (

nh∑

i=1

Whi · ehij)

+

g∑

h=1

6300 · ψh · (

nh∑

i=1

Whi · ehij · zjq) ∀j, q. (2.7∗)
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Now we define Ojq = Rj(q−1) · zjq and πhijq = ehij · zjq, and propose Constraints

(3.15)-(3.23) for the linearization of Constraint (2.7∗).

Ojq ≤ Rj(q−1) ∀j ∈M, q = 1, 2, . . . , U (3.15)

Ojq ≤ F · zjq ∀j ∈M, q = 1, 2, . . . , U (3.16)

Ojq ≥ Rj(q−1) − F · (1− zjq) ∀j ∈M, q = 1, 2, . . . , U (3.17)

Ojq ≥ 0 ∀j ∈M, q = 1, 2, . . . , U (3.18)

πhijq ≤ ehij ∀i ∈ Nh, j ∈M, q = 1, 2, . . . , U (3.19)

πhijq ≤ F · zjq ∀i ∈ Nh, j ∈M, q = 1, 2, . . . , U (3.20)

πhijq ≥ ehij − F · (1− zjq) ∀i ∈ Nh, j ∈M, q = 1, 2, . . . , U (3.21)

πhijq ≥ 0 ∀i ∈ Nh, j ∈M, q = 1, 2, . . . , U (3.22)

Rjq = Bj · zjq +Rj(q−1) −Ojq −

g∑

h=1

6300 · ψh · (

nh∑

i=1

Whi · ehij)+

g∑

h=1

6300 · ψh · (

nh∑

i=1

Whi · πhijq) ∀j ∈M, q = 1, 2, . . . , U (3.23)

Proposition 3.3. Constraints (3.15)-(3.23) correctly linearize Constraint (2.7∗).

Proof: First, we replace Rj(q−1) · zjq with Ojq. Similar to the linearization of

constraint (2.2∗), by constraints (3.15)-(3.18), the third term of the right-hand

side of Constraint (2.7∗), Rj(q−1) · zjq, becomes linear. Then, we replace ehij · zjq

that appears in the fifth term of the right-hand side of Constraint (2.7∗) with

πhijq. Similar to the linearization of Constraint (2.2∗) again, by Constraints

(3.19)-(3.22), ehij · zjq becomes linear. Hence, Constraints (3.15)-(3.23) correctly

linearize Constraint (2.7∗). 2

Using ehij = xhij · ωh again, constraint (2.9) becomes linear:

Rjq ≥

g∑

h=1

6300 · ψh · (

nh∑

i=1

Whi · ehij) ∀j ∈M, q = 1, 2, . . . , U. (3.24)

Having linearized the objective function and the necessary constraints, we finally

have the following mixed integer model:
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Model 2 (MIP):

Maximize

g∑

h=1

PRh · AOh +

g∑

h=1

PRǫ
h · BOh

− ρ ·
m∑

j=1

U∑

q=1

Cj · zjq − η ·
m∑

j=1

Vj · σj

Subject to Constraints (3.1)-(3.7)

Constraints (3.9)-(3.11), (3.13)

Constraint (3.14)

Constraints (2.4)-(2.6)

Constraints (3.15)-(3.17), (3.19)-(3.21), (3.23)

Constraint (2.8)

Constraint (3.24)

ωh, AOh, BOh, λ
1
h, λ

2
h ≥ 0, yh ∈ {0, 1} ∀h, σj ∈ {0, 1} ∀j

Rjq, Ojq ≥ 0, zjq ∈ {0, 1} ∀j, q

ehij ≥ 0, xhij ∈ {0, 1} ∀h, i ∈ Nh, j, πhijq ≥ 0 ∀h, i ∈ Nh, j, q

In summary, in this chapter, we have linearized our NLMIP model and ob-

tained an MIP model by adding necessary linearization variables and constraints.

As we will see further in Chapter 6, when we try to solve MIP by using CPLEX,

we see that for several instances of MIP, CPLEX fails to find even a feasible

solution to our problem in a time limit of 2 hours. Therefore, in the next chapter

of our study, we will present a heuristic that finds a feasible solution for a given

γUh to instances of our problem. Later on, we will introduce an improvement

procedure to obtain stronger results from the given initial feasible solutions.



Chapter 4

Proposed Heuristic Algorithm

As we have mentioned before, DICOPT and CPLEX fail to solve NLMIP and

MIP instances, respectively and more detailed results for DICOPT and CPLEX

will be given in Chapter 6. Therefore, in this chapter of our study, we will first

present a heuristic algorithm that finds a set of initial feasible solutions for an

instance of our problem. In the latter step, by adding a surrogate problem to our

heuristic, we will improve the initial solutions in terms of the Total Profit value.

The heuristic algorithm that we will use for finding initial feasible solutions

is called Algorithm 1. Algorithm 1 performs several major iterations, which

result in distinct feasible solutions. Each major iteration starts with different

cycle time upper bound (i.e., γUh ) values. Therefore, when we run Algorithm 1,

by performing several major iterations, we perform a search for different initial

solutions corresponding to different cycle time values over the intervals [γLh , γ
U
h ] for

h ∈ G. At each step of a major iteration, one operation is allocated to a station

and at each step, the allocation performed satisfies the assignability, cycle time,

precedence and tool life constraints.

The heuristic algorithm that we will use for improving the initial solutions is

called Algorithm 2. At the end of each major iteration of Algorithm 2, we solve

an additional mixed integer problem to improve the initial solution in terms of

the total profit value. The additional mixed integer problem that we solve in

23
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Algorithm 2 is a reduced version of the MIP given in Chapter 3, in which we

replace our objective function with a surrogate one and use only the constraints

that are necessary for ensuring the feasibility of an allocation found.

By obtaining a set of feasible solutions rather than a single solution, we gain

more insight about the nonlinearity of our problem and the difficulty in solving

it. Example 1 that will provide us more clear information about these points is

solved by Algorithm 1, which we will soon present in Section 4.1.

Example 1: An automotive company is planning to set up a robotic cell assembly

line to produce body components for two different models of cars (g = 2). Next

year, the company plans to sell 150000 cars of the first model (θ1 = 150000)

and 75000 cars of the second model (θ2 = 75000). To achieve this production

amount, the company sets a target cycle time of 76 seconds for both models

(γh = 76 for h = 1, 2). In order to meet the orders received so far, a cycle

time of at most 80 seconds should be satisfied for both models (γUh = 80 for

h = 1, 2) and market research shows that the company can not sell cars more

than the amount that can be produced when the cycle time is 60 seconds for both

models (γLh = 60 for h = 1, 2). Cost analysis shows that up to the production

amount of 150000 for the first model and 75000 for the second model, each body

component produced will contribute a profit of $10 (PRh = 10 for h = 1, 2). In

case of producing more than the expected demand, each excess body component

produced will contribute an expected profit of $7 for both models (PRǫ
h = 7 for

h = 1, 2). In the production area, there is available space for at most ten stations

(m = 10). The cost of setting up one station in the assembly line is $192500

(Vj = 192500 for j = 1, 2, . . . , 10). The welding tools have a tool life of 3200 spot

welds (Bj = 3200 for j = 1, 2, . . . , 10) and each welding tool costs $10 (Cj = 10

for j = 1, 2, . . . , 10). Both models require 15 spot welding operations (nh = 15

for h = 1, 2) and the number of spots required to perform these operations are

10, 8, 8, 7, 10, 9, 8, 7, 10, 9, 7, 6, 13, 12 and 10, respectively. The time required

for a robot in a station to reach to the position to perform an operation, the

time required to perform a single spot weld and the time required for a robot

to begin and finalize processing the allocated operations are calculated to be 1,

2 and 3 seconds, respectively (α = 1, β = 2, τj = 3 for j = 1, 2, . . . , 10). An
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operation can be allocated to any station (ahij = 1 for h = 1, 2, i = 1, 2, . . . , nh,

j = 1, 2, . . . , 10) and precedence relations between the welding operations are

given in the following table.

Table 4.1: Precedence matrix for Example 1

h i\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
1 2 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
1 3 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
1 4 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
1 5 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
1 6 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
1 7 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
1 8 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
1 9 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 11 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
2 2 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
2 3 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
2 4 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
2 5 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
2 6 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
2 7 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
2 8 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
2 9 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
2 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
2 11 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
2 12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
2 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

When we solve Example 1 with Algorithm 1, we get different solutions and

objective function values corresponding to different cycle times. Figure 4.1 shows

the values for the objective function terms and the objective function value as

Total Profit for the corresponding cycle times.

As seen in Figure 4.1, revenue, which is the sum of the profits that each

product contributes, strictly increases as the cycle times decrease until to γLh
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Figure 4.1: Cost and Profit Values for Example 1

values. Station cost is a nondecreasing function as long as the cycle times decrease

because lower cycle times require a larger number of stations and it exhibits a

stepping structure due to the breakpoints that correspond to particular cycle

times.

After giving an insight about the solution of our problem and the nonlinearity

of our objective function, we now present our heuristic algorithm that we use for

finding initial solutions.

4.1 Heuristic For Finding Feasible Solutions

The heuristic that we introduce in this section consists of several major iterations.

The only difference between these iterations are the values of parameter γUh , the

upper bound on the cycle time for model h, h ∈ G. Using different γUh values at

each major iteration result in a distinct feasible solution. In each major iteration,
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we start with creating a list I of unassigned operations, which initially includes

all operations and becomes empty when all of the operations are allocated to the

stations. Then, by using predecessor matrix P , for each operation Ohi we create

pred(h, i), a list that includes all predecessor operations of Ohi. In the further

steps of each iteration, while allocating an operation to a station, we need to

use the original pred(h, i) lists to ensure that the allocation satisfies precedence

constraints, but we also need to update these lists whenever an operation is

allocated to a station. Therefore, for each Ohi, we create another predecessor

list p̂red(h, i), which is initially a copy of pred(h, i) but is subject to changes

in the further steps. The reason for keeping dynamic p̂red(h, i) lists is that an

operation becomes assignable when its p̂red(h, i) list is empty. While assigning

the operations to the stations, for each station, we need to keep information

about the total time spent and total number of spots performed for a particular

model in order to ensure that cycle time and tool life constraints remain satisfied.

Therefore, we use loadhj and spothj, which keep the necessary information about

the total time spent and total number of spots performed for a particular model

in each station and which are initially equal to τj and 0, respectively.

After these initializations, we start allocating the welding operations to sta-

tions. At each step, we allocate only one operation to a station. Therefore, we

perform
∑g

h=1 nh steps until there is no operation left to allocate, in other words,

I = Ø. At each step, we choose to allocate the operation Ohi with the largest

operation time and whose predecessor operations have all been allocated before.

Our selection rule resembles using Longest Processing Time (LPT) rule, which is

one of the most popular techniques used in bin packing problems. By allocating

the operation with the largest processing time, we aim to have a solution with as

few stations as possible, in other words, with as low investment costs as possible.

We allocate such a candidate operation to the station with minimum possible

index, while ensuring the feasibility of four important constraints. Firstly, the

candidate operation should be assignable to that station. Secondly, after allocat-

ing the candidate operation, the cycle time for that particular model should not

be exceeded. Thirdly, we check if each predecessor operation of the candidate

operation has been assigned to the same or to a preceding station. Finally, we
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ensure that after allocating the candidate operation, the total number of spots

that will be performed at that station between two breaks will not exceed the

life of the welding tool at the same station. Once we allocate an operation to

a station, we remove it from I, the list of unassigned operations. We update

loadhj and spothj for the station that the operation is allocated and remove the

operation from the predecessor lists p̂red(h, i) of those other operations for which

the allocated operation is a predecessor operation. When the allocation of all op-

erations is complete, we calculate objective function value for the corresponding

solution.

As mentioned before, our heuristic consists of several major iterations. We

start the first major iteration with γ̂Uh = γUh values for each h ∈ G. At the end of

each major iteration, we obtain cycle time (fh) values and start the next major

iteration with γ̂Uh = fh − 1. This setting provides us to obtain different solutions

from each major iteration and we continue this process until γ̂Uh < γLh for each

h ∈ G. The reason behind this stopping criterion is that achieving a cycle time

fh lower than γLh for any model does not contribute any additional profit and

therefore the objective function value does not increase.

In Example 1 that was presented at the beginning of this chapter, the largest

objective function value corresponds to the solution in which fh = γh for both

models. But since all objective function terms depend on the values of cycle

times, this may not always be the case. In other words, we may obtain larger

objective function values with arbitrary cycle times. The following example shows

the importance of why we perform a search for different solutions corresponding

to different cycle time values over the intervals [γLh , γ
U
h ] for h ∈ G.

Example 2: Suppose that the company in Example 1 can not sell cars more

than the amount that can be produced when the cycle time is 65 seconds instead

of 60 seconds for both models (γLh = 65 for h = 1, 2). Furthermore, the cost of

setting up one station in the assembly line is decreased to $110000 (Vj = 110000

for j = 1, 2, . . . , 10) instead of $192500 in the previous example. All the data

provided in Example 1 except these two remain the same. For Example 2, Figure

4.2 shows the values for the objective function terms and the objective function
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Algorithm 1: Heuristic for finding initial feasible solutions
Input: m ∈ IN, g ∈ IN, nh for h = 1, . . . , g, A, P, Whi for h = 1, . . . , g,

i = 1, . . . , nh, Bj and τj for j = 1, . . . ,m, γh, γUh and θh for h = 1, . . . , g.
Output: S, a set of feasible solution(s)
begin

initialize

γ̂Uh = γUh ∀h ∈ G

S = Ø
while ∃ γ̂Uh such that γ̂Uh ≥ γLh do

Create list I that contains all operations Ohi, h = 1, . . . , g, i = 1, . . . , nh
Create predecessor list pred(h, i) for each Ohi, h ∈ G, i ∈ Nh from P

initialize

p̂red(h, i) = pred(h, i), loadhj = τj, spothj = 0 for all h = 1, . . . , g,
i = 1, . . . , nh, j = 1, . . . ,m

while I 6= Ø do

Find an operation Ohi ∈ I with p̂red(h, i) = Ø and maximum thi
Assign Ohi to station Sj with minimum possible index such that

ahij = 1
loadhi + thi ≤ γUh
phik ·

∑j
l=1 xhil + (1− phik) ≥ xhkj for each k ∈ pred(h, i)

6300·ψh

max{maxk∈M\j{loadhk},loadhj+thi}
· (spothj + Whi)

+
∑

h̄∈G\h

6300·ψh̄

maxk∈M{loadh̄k}
· spoth̄j ≤ Bj

loadhj = loadhj + thi
spothj = spothj + Whi

I = I \ {Ohi}

p̂red(c, d) = p̂red(c, d) \ {Ohi} for all Ocd ∈ I

Let y be the corresponding solution
Find ϕy, the corresponding objective function value
S = S ∪ y

fh ← maxj∈M{loadhj} ∀h ∈ G

γ̂Uh ← fh − 1 ∀h ∈ G

end



CHAPTER 4. PROPOSED HEURISTIC ALGORITHM 30

value as Total Profit for the corresponding cycle times.

Figure 4.2: Cost and Profit Values for Example 2

The two different Total Profit value patterns in Figure 4.1 and Figure 4.2 show

that our problem is difficult in the sense that Total Profit is a ‘very nonlinear

function’ according to the DICOPT solutions manual. Also, Figure 4.2 clearly

shows that there may be multiple peak points of Total Profit function, which

means that the global optimum for the objective function value may correspond to

particular cycle times in the intervals [γLh , γ
U
h ] for h ∈ G and even for the instances

of NLMIP that can be solved by DICOPT, there is the fact that DICOPT may get

stuck in one of the local optima. Therefore, we perform a search for alternative

solutions corresponding to different cycle time values over the intervals [γLh , γ
U
h ]

for h ∈ G. In addition to these facts, we still do not know whether we find the

best solution achievable in terms of the objective function value. Hence, in the

following section of our study, we will try to strengthen our search methods in

order to find better solutions than the ones that we can find with Algorithm 1.
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4.2 Improvement Algorithm

Algorithm 1 presented in Section 4.1 does not necessarily give an optimal alloca-

tion of operations in terms of the objective function value of MIP. In other words,

there may be a better allocation of operations that corresponds to cycle times

different than the ones that correspond to a solution found by Algorithm 1.

As previously defined, let y ∈ S be a feasible solution that is found by Algo-

rithm 1 to our problem. Let my be the number of stations used in the assembly

line in the feasible solution y. As long as the cycle times are larger than the

corresponding γLh values, achieving lower cycle times with less than or equal to

my stations increases the revenue and so the Total Profit, which we aim to max-

imize. Hence, in this section, we present the following problem, in which we use

a surrogate objective function to minimize the cycle time of each model to be

produced in addition to the overall cycle time denoted by MaxCycleTime.

Minimize MaxCycleTime +

g∑

h=1

fh − γ
L
h

Subject to MaxCycleTime ≥ fh ∀h

Constraint (2.2)

(SP)
m∑

j=1

σj ≤ my

Constraints (3.9)-(3.11), (3.13), (3.14)

Constraints (2.4)-(2.6)

Bj ≥

g∑

h=1

6300 · ψh · (

nh∑

i=1

Whi · ehij) ∀j

MaxCycleTime ≥ 0, fh, ωh ≥ 0 ∀h,

ehij ≥ 0, xhij ∈ {0, 1} ∀h, i ∈ Nh, j, σj ∈ {0, 1} ∀j

In order to achieve better allocations of operations in terms of the objective

function value, we reduce our problem to SP. The optimal allocation to SP is

still a feasible solution for MIP that is presented in Chapter 3 as shown in the

following lemma.
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Lemma: Let x̄ be an optimal solution to SP, then x̄ is a feasible solution to MIP.

Proof: In SP, we omit constraints (3.1)-(3.8), (3.15)-(3.17), (3.19)-(3.21), (3.23),

(2.8) and (3.24), which are present in MIP. We need constraints (3.1)-(3.8) for

linearization of the objective function of NLMIP. Since our objective in SP is

different from MIP, omitting these constraints does not affect the feasibility of

x̄ to MIP. We use constraints (3.15)-(3.17), (3.19)-(3.21) and (3.23) in MIP for

linearization of constraint (2.7) in NLMIP. Together with constraints (2.8) and

(3.24), these constraints ensure that the remaining number of spot welds that a

welding tool in station j can perform after tool change time period q is greater

than or equal to the number of spot welds it has to perform until the next tool

change time period. In other words, we need these constraints to determine the

values of zjq variables, which are necessary for calculation of tooling costs in the

objective function. Again, since we have a different objective function and zjq

values are necessary for calculation of tooling costs, omitting constraints (3.15)-

(3.17), (3.19)-(3.21), (3.23), (2.8) and (3.24) does not affect the feasibility of x̄ to

MIP. 2

Let y ∈ S be a feasible solution that is found by Algorithm 1 to our problem

and let my be the number of stations used in the assembly line in the feasible

solution y. We first run SP for my − 1 stations with the same upper bound and

other parameters used in Algorithm 1 that result in the feasible solution y. If the

same cycle times in the feasible solution y can not be met by using less number

of stations, we run SP again for my stations to improve the cycle times and so

the Total Profit that we want to maximize in the original problem.

Let y ∈ S be a feasible solution that is found by Algorithm 1 to our problem

and let ȳ be an optimal SP solution using the same parameters that result in

the feasible solution y in Algorithm 1. Let ϕy and ϕȳ be the objective function

values that correspond to y and ȳ, respectively. Algorithm 2 is a combination of

Algorithm 1 and SP.

As mentioned in the previous chapter of our study, the difficulty of our problem

results from the fact that our objective function is very nonlinear. In the following

example, we will see how DICOPT fails to find the optimal solution and how we



CHAPTER 4. PROPOSED HEURISTIC ALGORITHM 33

Algorithm 2: Algorithm for improving heuristic solutions
Input: m ∈ IN, g ∈ IN, nh for h = 1, . . . , g, A, P, Whi for h = 1, . . . , g,

i = 1, . . . , nh, Bj and τj for j = 1, . . . ,m, γh, γUh and θh for h = 1, . . . , g.
Output: Best solution
begin

initialize

γ̂Uh = γUh ∀h ∈ G

S = Ø, S̄ = Ø
while ∃ γ̂Uh such that γ̂Uh ≥ γLh do

Create list I that contains all operations Ohi, h = 1, . . . , g, i = 1, . . . , nh
Create predecessor list pred(h, i) for each Ohi, h ∈ G, i ∈ Nh from P

initialize

p̂red(h, i) = pred(h, i), loadhj = τj, spothj = 0 for all h = 1, . . . , g,
i = 1, . . . , nh, j = 1, . . . ,m

while I 6= Ø do

Find an operation Ohi ∈ I with p̂red(h, i) = Ø and maximum thi
Assign Ohi to station Sj with minimum possible index such that

ahij = 1
loadhi + thi ≤ γUh
phik ·

∑j
l=1 xhil + (1− phik) ≥ xhkj for each k ∈ pred(h, i)

6300·ψh

max{maxk∈M\j{loadhk},loadhj+thi}
· (spothj + Whi)

+
∑

h̄∈G\h

6300·ψh̄

maxk∈M{loadh̄k}
· spoth̄j ≤ Bj

loadhj = loadhj + thi
spothj = spothj + Whi

I = I \ {Ohi}

p̂red(c, d) = p̂red(c, d) \ {Ohi} for all Ocd ∈ I

Let y be the corresponding feasible solution
S = S ∪ y

Solve the SP model with the same parameters and find ȳ, the
corresponding SP solution
S̄ = S̄ ∪ ȳ

fh ← maxj∈M{loadhj} ∀h ∈ G

γ̂Uh ← fh − 1 ∀h ∈ G

Find ϕy and ϕȳ for each y ∈ S and ȳ ∈ S̄

Best← argmaxy∈S,ȳ∈S̄{max{maxy∈Sϕy,maxȳ∈S̄ϕȳ}}

end
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improve our heuristic results by adding the surrogate problem.

Example 3: Suppose that the company in Example 1 has an available space

in their production area only for four stations (m = 4). Suppose further that

both models require 10 spot welding operations (nh = 10 for h = 1, 2) and the

number of spot welds required to perform these operations are 10, 8, 8, 7, 10, 9,

8, 7, 10 and 9, respectively. Except precedence relations, all the data provided

in Example 1 remain the same. Precedence relations for operations are given in

Table 4.2.

Table 4.2: Precedence matrix for Example 3

h i\k 1 2 3 4 5 6 7 8 9 10
1 1 0 0 0 0 1 1 1 1 0 0
1 2 0 0 0 0 1 1 1 1 0 0
1 3 0 0 0 0 1 1 1 1 0 0
1 4 0 0 0 0 1 1 1 1 0 0
1 5 0 0 0 0 0 0 0 0 1 1
1 6 0 0 0 0 0 0 0 0 1 1
1 7 0 0 0 0 0 0 0 0 1 1
1 8 0 0 0 0 0 0 0 0 1 1
1 9 0 0 0 0 0 0 0 0 0 0
1 10 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 1 1 1 1 0 0
2 2 0 0 0 0 1 1 1 1 0 0
2 3 0 0 0 0 1 1 1 1 0 0
2 4 0 0 0 0 1 1 1 1 0 0
2 5 0 0 0 0 0 0 0 0 1 1
2 6 0 0 0 0 0 0 0 0 1 1
2 7 0 0 0 0 0 0 0 0 1 1
2 8 0 0 0 0 0 0 0 0 1 1
2 9 0 0 0 0 0 0 0 0 0 0
2 10 0 0 0 0 0 0 0 0 0 0

In this example, the best objective function value that is achievable by Al-

gorithm 1 is 1640022 and in this solution, the number of stations used in the

assembly line is equal to 3 and cycle times for both models are equal to 73. How-

ever, when we run SP, we see that with 3 stations, a cycle time of 69 is achievable

for both models. Such a decrease in the cycle time results in more production

and so in more revenue. Hence, the best objective value achievable increases to

1735082 by Algorithm 2. Furthermore, the best solution found for this instance by

DICOPT has an objective function value of 1702947, which means that DICOPT
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got stuck in one of the local optima of the objective function. Moreover, this

relatively small instance of our problem can be solved to optimality by CPLEX

in approximately 20 minutes and the optimal value is the same with the one that

we find by Algorithm 2. But for this instance, Algorithm 2 finds the optimal

solution just in a few seconds.

In this chapter, we have given our proposed heuristic algorithm together with

some examples and numerical results. In the next chapter, we will see an overview

of the implementation of our tool change decisions to a real-life assembly line

problem. In Chapter 6, we will test the performance of our heuristic on some

instances of our problem and compare the performances of our heuristic and

DICOPT and CPLEX solvers.



Chapter 5

Implementation

In this chapter, we will give some details about the tool change decision policy

that we proposed to solve the real-life assembly line problem that we faced in

the project that we had formerly conducted at one of the leading automotive

companies in Turkey. As mentioned before, while defining our problem and con-

straints in our study, we were inspired by this project. Our aim in the project

was to increase the efficiency of an assembly line that performed spot welding op-

erations and produced body components for different models of cars. The most

important problem of the assembly line was that some tool changes coincided to

the times when the assembly line was supposed to be operating. Therefore, in

order to perform tool changes, the assembly line was stopped and this resulted in

loss of production. In their previous assembly line balancing problems, the com-

pany has allocated almost 10% of their available capacity to the line stoppages

due to the tool changes. To eliminate such tool change related line stoppages,

we developed a decision support system that indicated at which break each of

the welding tools in the assembly line should be replaced with a new one. All

the relevant information about operation allocations, number of spot welds that

each tool must perform and cycle times for each model was provided to us by

the company. However, since the assembly line was operating for a long time,

we did not have a chance to revise the allocation of welding operations to the

stations because it would take a long time to recode the robot operations and

36
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movements and to perform production simulation studies. Therefore, we were

able to apply the results of our tool change analysis only to the current system,

without changing any operation allocation. Figure 5.1 is a screenshot of one of

the modules that we had in our decision support system.

Figure 5.1: Tool change schedules for spot welding tools

Figure 5.1 shows a part of a weekly tool change schedule for spot welding

tools. The four buttons on the left are used for returning back to the tool change

schedule of the previous week, advancing to the next production week and forming

the tool change schedule and generating a tool change report. The dates and the

starting and ending hours of each break are given. The work duration column

shows the production time between the current break and the next break. R1,

R2, R3, R4, R5 and R6 represent the spot welding tools at six different stations.

Under these columns, the remaining life of welding tools after each break is given.

If the number ’1’ occurs in any cell of these columns, it means that the welding

tool has to be changed with a new one at the corresponding break because the

remaining life of the tool is not enough for that tool to be used for production
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until the next break.

If the remaining life of a tool after a particular break is negative and hence

the corresponding cell is highlighted (i.e., filled in red), it means that the life of

such a tool has expired at some time before the break. Although the tool change

decisions are made to eliminate such occurrences and hence tool change related

line stoppages, it did not work for all the spot welding tools in the current sys-

tem. This might occur for two reasons. In initial allocation of the operations,

there might be some spot welding tools with a very frequent usage such that

the tool life might be shorter than the available time period. Another reason

is that our decision support system uses real time data and once it is executed,

it obtains the current time and the remaining number of spot welds that each

tool can perform from Welding Management System (WMS), version 2.94, which

is a software developed for welding operations by Gf Welding S.p.A. company.

Therefore, there might be some deviation between the actual number of compo-

nents being produced and the expected demand information that we have used

in our formulation due to the unexpected events leading to line stoppages such

as the tips of the welding tools may cling on a part during a welding operation,

the grippers used for transportation of parts through the assembly line may not

close properly or the censors may not recognize or may miscognize a part. For

example, although the welding tools R2 and R4 are changed at every break, they

still sometimes cause the assembly line to stop between two particular breaks.

The reason for such stoppages was that the number of spots that the welding

tools R2 and R4 had to perform between two particular breaks as a result of the

predetermined operation allocations sometimes exceeded their tool lives in terms

of the total number of spot welds that they can perform. Therefore, it can be

derived that tool change related stoppages in assembly lines cause from alloca-

tion of operations which are determined without considering the limited lives of

tools that are used for production. Hence, this is the reason why we determine

operation allocations and tool change decisions jointly in our study.

Another useful property of our decision support system is that one can see the

corresponding tooling cost that is incurred for particular tool change schedules.

Figure 5.2 shows the weekly and yearly tooling costs for a particular tool change
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schedule.

Figure 5.2: Tooling Cost Calculations

The tooling cost calculations enable the company to do sensitivity analysis for

tool change decisions. As seen in Figure 5.2, in the current system, there are some

tools that are changed before the end of their tool lives (i.e., earliness > 0) and

some other tools that cause the assembly line to stop (i.e., lateness > 0). As we

have observed in the actual production, if they could have reallocated one or two

operations from station 4 to station 3 (which was feasible due to the cycle time,

precedence and assignability constraints), both the earliness cost of station 3 and

the lateness cost of station 4 could be decreased at the same time. Therefore, the

current allocation could easily be improved in terms of the tooling cost leading

to a higher total profit value since the other parameters in the objective function

remain the same. If the tool change earliness is high and the reallocation is not

possible due to either cycle time or precedence or assignability constraints, the

company may set up automated tool changers in the assembly line. If this option

is realized, there might be some loss in the total available production time due to

decreasing the earliness because the tools that are changed early will be changed

at some time when the assembly line is supposed to be operating, rather than in

breaks. However, there might also be some gain in the total available production

time due to decreasing the lateness because automated tool changers will change

the tool in relatively shorter time with respect to stopping the assembly line and

changing the tools manually. In addition to these, automated tool changers may

decrease the reliability of the tool changes and hence the quality of the products.

Moreover, investment costs will be incurred for setting up tool changers in the

assembly lines. However, increasing the utilization of the spot welding tools would

decrease the total tooling cost. Therefore, sensitivity analysis that can be handled
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via our decision support system is very useful for evaluating such options.

In addition to providing tool change schedules, we provided a summary of

tool changes and the total number of tools to be changed at each break as a tool

change support system. Figure 5.3 shows another module of our decision support

system, which indicates necessary tool changes to be performed at each break.

Figure 5.3: Summary of spot welding tool changes

Figure 5.3 shows only the tool change times for each spot welding tool and the

total number of tools to be changed at each break. The values in the total number

of tool changes column are also used for calculating the total weekly tooling cost.

In order to send the tool change decisions to the production area, we provided

an interface to be monitored in the production area in order for the workers

to obtain necessary information for tool change schedules. Figure 5.4 shows a

shift-based summary of tool changes. Based on the current data obtained at any

time, our module determines and reports the necessary welding tool changes for

each break of the current shift. When monitored in the production area, this



CHAPTER 5. IMPLEMENTATION 41

information also provides the workers an ease for tracing and performing tool

changes.

Figure 5.4: A monitoring of shift-based tool changes



Chapter 6

Computational Study

In this chapter of our study, we will evaluate the performances of our heuris-

tic method and the commercial solvers DICOPT2X-c and CPLEX 10.1 for our

problem and provide some computational results that we obtained by using Al-

gorithm 1 and Algorithm 2 that are coded in C++ environment, and the solvers

mentioned above. We used the modeling interface of GAMS 22.3. A computer

with 1024 MB memory and Pentium Dualcore 1.73 GHZ CPU was used for taking

the runs. First of all, we define the data set that we used in our runs.

There are two important factors that affect the size of our problem and optimal

allocations in the solutions. The first one is the parameter g, the number of

different models that will be produced in the robotic cell assembly line. As this

parameter increases, our problem becomes harder to be solved by the commercial

solvers DICOPT or CPLEX. The second one is the ratio of the profit contribution

of the models to the station investment cost, denoted as PRh

Vj
. This ratio is very

important to evaluate the tradeoff between the revenue and the number of stations

that will be used in the assembly line. We set two levels as low and high for both

of these factors. When the number of models is at its low level we use g = 2 and

when it is at its high level, we use g = 4. We use a constant cost of $180000 for

setting up one station in the assembly line, Vj = 180000 for j = 1, 2, . . . , m where

m is an upper bound for the number of stations. When the ratio PRh

Vj
is at its

low level, PRh is a uniform random number from the interval [5,7]. When this
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ratio is at its high level, the interval from which we select the values for PRh is

[9,11]. Using the combinations of these two factors at low and high level, we have

four main clusters for our runs in which these two factors have low-low, low-high,

high-low and high-high levels. We take 5 replications for each cluster so a total

of 20 different runs are taken.

The value of the parameter nh, the number of spot welding operations required

for model h, is a uniform random number from the interval [8,15]. The value of

the parameter Whi, the number of spot welds required to perform operation i

of model h, is also a uniform random number from the interval [6,15]. In all

the runs, we used m = 6 for the upper bound on the number of stations that

can be used in the assembly line. We used a constant value of 3 seconds for the

parameter τj , j = 1, . . . , 6 and a constant value of $10 for Cj, j = 1, . . . , 6 for the

cost of welding tools. The values of the parameters Bj , j = 1, . . . , 6 are uniform

random numbers from the interval [3200,4000]. We also used constant values of

1 seconds and 2 seconds for the time required for a robot in a station to reach to

the position to perform an operation and the time required to perform a single

spot weld, respectively (α = 1, β = 2).

When the number of models is at the low level, we use θ1 = 150000 and

θ2 = 75000 and at the high level, we use θ1 = 100000, θ2 = 50000, θ3 = 50000

and θ4 = 25000 for the values of expected demands. We set the value of the

expected profit for each excess production of model h as PRǫ
h = ⌈PRh · 0.7⌉.

In order to set the values of the cycle time lower bound (γLh ), cycle time upper

bound (γUh ) and target cycle time (γh) parameters for a particular model h, we

use the following procedure. First, we calculate t̄hi, the average time to perform

one spot welding operation of model h. We round 3 · t̄hi to the nearest integer

and use this value for γLh . We round 4 · t̄hi to the nearest integer and use this

value for γUh . The value of the parameter γh is a uniform random number from

the interval [3.3 · γLh , 3.6 · γ
U
h ].

In all of our runs, we assumed that a welding operation can be assigned to

any station (ahij = 1 for h = 1, . . . , g, i = 1, 2, . . . , nh, j = 1, 2, . . . , 6). Generally,

there are additional subcomponents to be assembled to the body components
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inside the robotic cell. These subcomponents should be assembled in a particular

order. Therefore, assembling subcomponents causes a set of operations to precede

some other sets of operations. Hence, for the precedence relations of welding

operations of a model h, we use the (nhxnh) upper left submatrix of the following

precedence matrix.

Table 6.1: Precedence matrix for computational study runs

i\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
3 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
5 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
6 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
8 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
9 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
11 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Having defined the data set that we use in our runs, we now continue with

some numerical results of our computational study. First, we solve each run

with Algorithm 1 and Algorithm 2. Then, we run DICOPT and CPLEX for a

maximum time limit of 2 hours (i.e., 7200 seconds) in order to find solutions for

NLMIP and MIP versions of our instances, respectively. We give the solutions for

our original problems under the names DICOPT 1 and MIP 1. Finally, in order

to improve DICOPT and CPLEX performances, we provide the best Algorithm

1 solutions as initial solutions to our instances and give the results for these

problems under the names DICOPT 2 and MIP 2.

We start our analysis with Algorithm 1 and Algorithm 2 solutions. The

objective function values found by Algorithm 1 and Algorithm 2 can be seen

in Table 6.2. The percentage of increase in the Total Profit values is calculated

by the following formula:

IAlg1−Alg2 =
(Algorithm 2 value)− (Algorithm 1 value)

(Algorithm 1 value)
∗ 100



CHAPTER 6. COMPUTATIONAL STUDY 45

Table 6.2: Total Profit Values for Algorithm 1 and Algorithm 2

Factor

h PR
Vj

Replication Run # Algorithm 1 Algorithm 2 IAlg1−Alg2

1 1 460055 507430 10.3
2 2 460200 557526 21.2

L L 3 3 699150 699150 0.0
4 4 354909 399544 12.6
5 5 583862 622650 6.6
1 6 1443553 1493919 3.5
2 7 1232202 1339032 8.7

L H 3 8 1351146 1509570 11.7
4 9 1321299 1321299 0.0
5 10 1882792 1882792 0.0
1 11 668407 713824 6.8
2 12 478329 583417 22.0

H L 3 13 401048 453502 13.1
4 14 586373 634184 8.2
5 15 657755 723984 10.1
1 16 1516720 1558088 2.7
2 17 1663509 1725291 3.7

H H 3 18 1200298 1272524 6.0
4 19 1042092 1130496 8.5
5 20 1205923 1210876 0.4

In order to obtain the solutions provided in Table 6.2, we use the following

procedure: First, we start with the original cycle time upper bounds for the

models to be produced in the assembly line and obtain the cycle times, the

Total Profit value and the number of stations required in the solution by using

Algorithm 1. In the second step, by using the surrogate problem, we check

whether the obtained cycle times are achievable with less number of stations.

If they are, we calculate the corresponding Total Profit Value. If they are not,

we run the surrogate problem to obtain a better allocation of operations and

lower cycle times with the same number of stations obtained from the solution

of Algorithm 1. The new allocation of operations is the Algorithm 2 solution

and we calculate the corresponding Total Profit value for the new solution. By

setting γ̂Uh = fh− 1, we continue this process until we obtain cycle times that are

less than or equal to the cycle time lower bounds for each model. Table 6.3 is a

summary of this procedure for run #1.

The best Total Profit value found by Algorithm 1 is 460055. In this solution,

the revenue gained as the sum of the individual profits of the parts produced is
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Table 6.3: Calculation of Total Profit Values for Algorithm 1 and Algorithm 2

Algorithm 1 Number of Achievable Algorithm 2
Cycle time Algorithm 1 Total P rofit stations with my − 1 Algorithm 2 Total P rofit

upper bounds cycle times values (my) stations? cycle times values

88 − 88 87 − 86 396069 4 No 76 − 83 507430

86 − 85 81 − 83 453340 4 No 76 − 83 507430
80 − 82 76 − 74 378247 5 No 60 − 68 479839
75 − 73 74 − 70 411340 5 No 60 − 68 479839
73 − 69 68 − 68 460055 5 No 60 − 68 479839
67 − 67 64 − 60 308939 6 No 60 − 55 308939

1522055, a total station cost of 900000 for setting up 5 stations and a total tooling

cost of 162000 are incurred. However, the best Algorithm 2 solution requires 4

stations to be set up in the assembly line. In this solution, a revenue of 1357030

is gained but the total station cost and the total tooling cost decrease to 720000

and 129600, respectively. Although less revenue is gained, a larger Total Profit

value is achieved as a result of the decreases in the cost terms.

As we can see in Table 6.2, except for three runs, by the help of the surrogate

problem, we obtain a significant increase by Algorithm 2 in terms of the objective

function value with respect to Algorithm 1 solutions. More importantly, as we

have mentioned before, it is very difficult to find even a feasible solution for our

problem. However, we are able to find good feasible solutions to our instances

by Algorithm 1 and improve these solutions by Algorithm 2. The results for

DICOPT 1 and MIP 1 instances are given in Table 6.4. The best possible values

given in Tables 6.4 and 6.5 are the Total Profit values of the most promising

nodes in the Branch-and-Bound trees of the corresponding runs.

The results shown in Table 6.4 give us insights about the difficulty of our

problem. DICOPT, a nonlinear solver in GAMS, can not find any feasible solution

to any of our instances in a time limit of 2 hours. In Table 6.4 and the rest of

the tables given in this chapter, NS stands for ‘no solution’. CPLEX also fails to

find even a feasible solution to our instances with 4 models to be produced in the

assembly line. In 9 of the runs with 2 models, CPLEX can find feasible solutions.

However, except run # 8, all of these solutions are worse than Algorithm 1

solutions in terms of objective function values. Furthermore, Algorithm 2 finds
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Table 6.4: Total Profit Values for DICOPT 1 and MIP 1

Run # DICOPT 1 MIP 1 Best Possible CPU T ime

1 NS 120319 862639 7200
2 NS 257418 817886 7200
3 NS NS NS 7200
4 NS 283783 731878 7200
5 NS 396215 949257 7200
6 NS 1339492 1825492 7200
7 NS 1199099 1605362 7200
8 NS 1439515 1796122 7200
9 NS 598773 1671504 7200
10 NS 1715819 2117107 7200
11 NS NS NS 7200
12 NS NS NS 7200
13 NS NS NS 7200
14 NS NS NS 7200
15 NS NS NS 7200
16 NS NS NS 7200
17 NS NS NS 7200
18 NS NS NS 7200
19 NS NS NS 7200
20 NS NS NS 7200

solutions with larger objective function values for all the instances for which

CPLEX can find a feasible solution in a time limit of 2 hours (or 7200 seconds).

We continue our analysis with DICOPT 2 and MIP 2 solutions, in which

we provide the Algorithm 1 solutions as initial solutions to our instances. By

providing initial feasible solutions to DICOPT and CPLEX for our runs, we aim

to reduce the search space and search time of our runs. Initial solution values

will constitute a lower bound for our objective function value and we expect to

obtain better results than those that are achievable by DICOPT 1 and MIP 1.

Table 6.5 shows DICOPT 2 and MIP 2 solutions to our instances.

As we can see from Table 6.5, except run # 8, MIP 2 solutions are better

than MIP 1 solutions, which were given in Table 6.4. In other words, providing

the Algorithm 1 solutions of our runs to CPLEX as initial solutions helps us

to improve CPLEX results in 95% of our problem instances. As a result of the

complexity and difficulty of our problem, still none of the solution values found

by MIP 2 is better than the solution that we are able to find by Algorithm 2.
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Table 6.5: Total Profit Values for DICOPT 2 and MIP 2

Run # DICOPT 2 MIP 2 Best Possible CPU T ime

1 NS 478044 792832 7200
2 NS 536910 760823 7200
3 NS 699150 943616 7200
4 NS 354909 687143 7200
5 NS 583862 951209 7200
6 NS 1465125 1754679 7200
7 NS 1312737 1568786 7200
8 NS 1401586 1718384 7200
9 NS 1321299 1615406 7200
10 NS 1882792 2117928 7200
11 NS 668407 957151 7200
12 NS 478329 809448 7200
13 NS 401048 846789 7200
14 NS 586373 894127 7200
15 NS 657755 954369 7200
16 NS 1516720 1783367 7200
17 NS 1663509 1999991 7200
18 NS 1200298 1598373 7200
19 NS 1042092 1460130 7200
20 NS 1205923 1549724 7200

Another important improvement that we achieve by providing initial solutions

is that we can significantly reduce the gap between the best possible values and

the solutions that CPLEX find in 2 hours. One of the main reasons for these

improvements is that except one instance, Algorithm 1 solutions are better than

MIP 1 solutions in terms of objective function values. Another reason is that

providing an initial solution help to reduce the search space for our instances.

Table 6.6 shows MIP 1 and MIP 2 gaps, which are the differences between the

best possible values and the Total Profit values of the best integer solutions found

for the corresponding runs. The percentage of decrease in gaps is calculated by

the following formula:

GMIP1−MIP2 =
(MIP 1 gap)− (MIP 2 gap)

(MIP 1 gap)
∗ 100

Providing initial solutions to CPLEX helps to obtain an average of 42.2%

decrease in the gaps. Such decreases in the gaps between the best possible values

and the solutions found help us to ensure that we get closer to the optimal values

by providing initial solutions to CPLEX.
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Table 6.6: Gap values for MIP 1 and MIP 2

Run # MIP 1 gap MIP 2 gap GMIP1−MIP2

1 742320 314788 57.6
2 560468 223913 60.1
3 − 244466 −
4 448095 332234 25.9
5 553042 367347 33.6
6 486000 289554 40.4
7 406263 256049 37.0
8 356607 316798 11.2
9 1072731 294107 72.6
10 401288 235136 41.4
11 − 288744 −
12 − 331119 −
13 − 445741 −
14 − 307754 −
15 − 296614 −
16 − 266647 −
17 − 336482 −
18 − 398075 −
19 − 418038 −
20 − 343801 −

Up until now, we were able to show that in all of the instances, we can find

better solutions with Algorithm 2 than the ones that can be found by CPLEX

with or without initial solutions. While finding better solutions is still meaningful,

there is also another point that we should take into consideration. This another

important point is the time that we spent to solve our instances. In Table 6.7,

we give a comparison of the objective function values and solution times that we

spent to solve our instances between Algorithm 2 and CPLEX. Although very

few, there may be instances in which MIP 1 can find a solution that is better than

the one that can be found by MIP 2 in terms of Total Profit value. Therefore,

while comparing Algorithm 2 and CPLEX, we take the best of MIP 1 and MIP

2 solutions for the corresponding runs. The percentage of the difference in Total

Profit Values between CPLEX and Algorithm 2 solutions is calculated by the

following formula:

DCPLEX−Alg2 =
(Algorithm 2 value)− (Best of MIP 1 and MIP 2 value)

(Best of MIP 1 and MIP 2 value)
∗ 100

As we mentioned before, we run DICOPT and CPLEX for 2 hours for each
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Table 6.7: Total Profit Values and CPU Times for CPLEX and Algorithm 2

Best of MIP Alg 2
Run # MIP 1 and MIP 2 CPU T ime Alg 2 CPU T ime DCPLEX−Alg2

1 478044 7200 507430 3.5 6.2
2 536910 7200 557526 2.7 3.8
3 699150 7200 699150 5.6 0.0
4 354909 7200 399544 3.0 12.6
5 583862 7200 622650 3.8 6.6
6 1465125 7200 1493919 2.8 2.0
7 1312737 7200 1339032 2.7 2.0
8 1439515 7200 1509570 2.3 4.9
9 1321299 7200 1321299 4.0 0.0
10 1882792 7200 1882792 2.2 0.0
11 668407 7200 713824 8.4 6.8
12 478329 7200 583417 13.4 22.0
13 401048 7200 453502 263.6 13.1
14 586373 7200 634184 7.1 8.2
15 657755 7200 723984 14.6 10.1
16 1516720 7200 1558088 4.2 2.7
17 1663509 7200 1725291 8.4 3.7
18 1200298 7200 1272524 32.9 6.0
19 1042092 7200 1130496 363.3 8.5
20 1205923 7200 1210876 214.6 0.4

of the DICOPT 1, MIP 1, DICOPT 2 and MIP 2 versions of our 20 runs. By

Algorithm 2, we are able to find solutions that are on the average 6.0% better

than the corresponding best of MIP 1 and MIP 2 solutions in terms of the Total

Profit value. In addition to finding better solutions to our instances, Table 6.7

shows that Algorithm 2 performs much better in terms of CPU times with respect

to DICOPT or CPLEX. A relatively large number of stations required to obtain

a solution y found by Algorithm 1 increases the search space and search time of

our surrogate problem, resulting in relatively greater CPU times in some of the

runs (i.e., runs 13, 19 and 20).

In order to find the optimal Total Profit values, we abolished the CPU time

restriction and ran CPLEX on a computer with 8 GB memory, Xeon 2.66 GHZ

CPU and Linux operating system for the first MIP 2 runs of the first two clusters,

in which the number of models is equal to 2 and the problems are relatively easier

to be solved by CPLEX. However, after 72660 seconds (20 hours and 11 minutes)
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and 45840 seconds (12 hours and 44 minutes) for the runs 1 and 6 respectively,

CPLEX terminated due to ’out of memory’ error since the tree sizes grew to 4.5

GB. The best integer solution found for run 1 was 507430, which is also the Total

Profit value that we found by Algorithm 2. The upper bound for the Total Profit

value for run 1 was 536671, which implies a 5.7% of gap between the best solution

found and the best possible solution in terms of the Total Profit value. The best

solution found for run 6 had a Total Profit value of 1509221, which is only 1%

better than the Total Profit value that we found by Algorithm 2. The upper

bound for the Total Profit value for run 6 was 1546606, which implies a 2.5%

of gap between the best solution found and the best possible solution in terms

of the Total Profit value. Looking at these results and Example 3 provided in

section 4.2, we can say that Algorithm 2 is capable of finding very good solutions

to instances of our problem. Also, it would probably take several days to solve

the MIP versions of our runs to optimality by CPLEX.

As we mentioned before, the values of the two factors, the number of differ-

ent models to be produced in the assembly line and the the ratio PRh

Vj
play an

important role for the Total Profit values of our solutions and the Heuristic, DI-

COPT and CPLEX performances. Table 6.8 is a summary of the cluster based

evaluation of Algorithm 1, Algorithm 2 and CPLEX.

Table 6.8: Solution Analysis for Problem Clusters

Factor IAlg1−Alg2 DAlg1−CPLEX DCPLEX−Alg2

h PR
Vj

Min Ave Max Min Ave Max Min Ave Max

L L 0.0 10.1 21.2 0.0 4.1 16.7 0.0 5.8 12.6
L H 0.0 4.9 11.7 0.0 2.9 6.5 0.0 1.8 4.9
H L 6.8 12.0 22.0 0.0 0.0 0.0 6.8 12.0 22.0
H H 0.4 4.3 8.5 0.0 0.0 0.0 0.4 4.3 8.5

When the number of models is at its low level, Algorithm 1 sometimes works

as well as Algorithm 2. However, in all of the runs with the number of models at

the high level, we obtain better results with Algorithm 2 because as the number of

models increase, the total number of operations increase and hence the probability

of improving Algorithm 1 allocations by the surrogate problem and obtaining

better solutions increase. The improvements are more significant especially in the
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runs with low PRh

Vj
ratios because the Total Profit values are relatively smaller

when PRh

Vj
ratios are at the low level and as a result, improvements on Algorithm

1 solutions in terms of Total Profit values correspond to higher percentages. In

addition to this, CPLEX can improve the initial solutions found by Algorithm 1

in 5 of the 10 runs with low number of models and fails to improve any of the

solutions found by Algorithm 1 for the runs with high number of models. Again,

CPLEX improvements on Algorithm 1 solutions are more significant when the

ratio PRh

Vj
is at its low level. Moreover, except for 3 runs, Algorithm 2 finds better

solutions than CPLEX in terms of the Total profit values and the differences

between Algorithm 2 and CPLEX solutions are more significant in the runs with

low PRh

Vj
ratios. The reason of why Algorithm 2 can not find a better solution

than CPLEX solutions in 3 of the runs is that in these 3 runs, Algorithm 1 and

Algorithm 2 Total Profit values are the same and that CPLEX takes Algorithm

1 solutions as initial feasible solutions.

In summary, in this chapter of our study, we tested the performance of our

heuristic algorithm on some instances of our problem that are created randomly.

The results of the comparison between our heuristic and GAMS solvers DICOPT

and CPLEX showed that our heuristic is very efficient in terms of the CPU time

and the quality of the solutions found. The next chapter of this thesis is devoted

to concluding remarks.
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Conclusion

In this study, we considered a mixed-model assembly line design problem with

the objective of maximizing the total profit that would be gained from the as-

sembly line. In the assembly line, different models are produced in an intermixed

sequence. Due to the similarities between the production processes of different

models, setup times are not present. Instead of assuming continuous production,

we dealt with designing an assembly line that works 24 hours a day in three 8-

hour shifts. We considered a 10-minute break between the shifts and a 30-minute

lunch break and two 10-minute tea breaks in each shift. Considering limited tool

lives for the tools used for production in the assembly line gives rise to the neces-

sity of determining the replacement times of the tools. In many industries, tool

change related assembly line stoppages result in loss of production and so are

very costly. In our study, we eliminate such a problem by restricting tool changes

to be performed only in the aforementioned breaks.

We first formulated our assembly line design problem as a Nonlinear Mixed

Integer Programming (NLMIP) model and tried to solve our problem with DI-

COPT. Due to the size and difficulty of our problem, DICOPT failed to find a

feasible solution to any one of the generated instances, which we think closely

represent real life problems that we have observed during our collaboration with

the automotive industry. Therefore, we linearized our problem and tried to solve
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the Mixed Integer Programming (MIP) version of our problem by CPLEX. How-

ever, CPLEX also failed to solve our problem in the preset time limit and could

not find even a feasible solution for several instances.

Upon not obtaining optimal solutions from DICOPT and CPLEX (we may

not even have a feasible solution for larger problem instances), we developed

a heuristic algorithm to obtain a set of feasible solutions. Finding alternative

solutions rather than a single solution allows us to perform a search for the

best solution. In addition to this, we improved our heuristic by incorporating

a surrogate problem and obtained a stronger heuristic, which performed better

in terms of objective function values of the solutions found. We compared the

results of the heuristic algorithms given in Sections 4.1 (Algorithm 1) and 4.2

(Algorithm 2) with commercial solvers DICOPT and CPLEX. We also provided

the best Algorithm 1 solutions as initial solutions to DICOPT and CPLEX in

order to increase their performances. By doing so, we observed that CPLEX

could find better solutions in terms of the objective function value and the gap

between the objective function values of the best integer solution found and the

best possible solution decreased. However, Algorithm 2 outperformed DICOPT

and CPLEX in many instances and proved to be very efficient in terms of the

solution times and the objective function values of the solutions found.

The existing studies in the literature overlook the limited lives of the tools

that are used for production and hence ignore tool change decisions. However,

in most of the industries, the tools that are used for production have limited

tool lives. As we saw in Chapter 5, assembly lines may suffer from tool change

related stoppages unless the tool lives are taken into consideration while allocating

operations to the stations in the assembly line. Moreover, real-life assembly line

problem formulations may take a very long time to be solved by commercial

solvers. Hence, by representing a more realistic production environment and

with the efficient solution techniques provided, we hope that our study will be a

remarkable contribution to the existing literature.

Our study is the first one to consider tool changes in the assembly lines and

to eliminate the tool change related line stoppages. For future research, this
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study can be extended to the cases in which there may be multiple robots in the

stations of the assembly line. Our problem is more applicable on the existing

assembly lines, which are subject to model changes. But, if an assembly line is to

be set up for the first time, tool selection decision can be added to our problem

by incorporating tool selection decision variables. Furthermore, as Gultekin et

al. [11] did, flexibility can be added to the scope of our study by considering

controllable processing times instead of using deterministic processing times for

the assembly line operations. In addition to these, by adding assembly line setup

times for the models to be produced, our problem can be converted to a multi-

model assembly line problem, in which an additional sequencing problem will

arise.
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Appendix A

Nomenclature

Problem Parameters

Vj: cost of setting up station j, j ∈M .

nh: number of operations to be performed to produce model h, h ∈ G.

Whi: number of spot welds required to perform operation i of model h, i ∈ Nh,

h ∈ G.

Bj : total number of spot welds such that the welding tool in station j ∈M can

process.

Cj: cost of the welding tool in stationj, j ∈M .

θh: yearly expected demand for model h, h ∈ G.

γh: target cycle time for model h to meet the yearly expected demand θh, h ∈ G.

γLh : lower bound for the actual cycle time of model h, h ∈ G.

γUh : upper bound for the actual cycle time of model h, h ∈ G.

PRh: profit contributed by each component of model h produced, h ∈ G.

PRǫ
h: profit contributed by each excess component of model h produced, h ∈ G.

ahij = 1, if operation i ∈ Nh of model h ∈ G can be assigned to station j ∈M ;

and 0, otherwise.

phik = 1, if operation i ∈ Nh of model h ∈ G precedes operation k ∈ Nh

of model h ∈ G; and 0, otherwise.

thi: the time required to perform operation i ∈ Nh of model h ∈ G.

Dq: available tool change time in tool change period q, q = 1, 2, . . . , U .
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K: time required to prepare for welding tool changes.

µ: time required to replace a single welding tool.

α: time required for a robot to reach to the position to perform an operation.

β: time required to process a single spot weld.

τj : time required for the robot in station j ∈M to begin and finalize the

allocated operations.

ψh: proportion of time that should be allocated to the production of model h.

ρ: constant used to convert total tooling cost to yearly tooling cost.

η: constant used to convert total station cost to yearly station cost.

Decision Variables

Rjq: remaining number of spot welds such that the welding tool in station j can

process after tool change period q, j = 1, 2, . . . , m, q = 1, 2, . . . , U .

fh: actual cycle time for model h.

σj : 1, if station j ∈M is used in the assembly line; and 0, otherwise.

xhij = 1, if operation i ∈ Nh of model h ∈ G is assigned to station j ∈M ;

and 0, otherwise.

zjq = 1, if tool in station j ∈M is changed in tool change period q,

q = 1, 2, . . . , U ; and 0, otherwise.

ωh: variable that is used to linearize 1
fh

.

AOh, BOh, λ
1
h, λ

2
h, yh: variables used to linearize the objective function.

ehij: variable used to linearize xhij · ωh.

F : a large number used for linearization.

Ojq: variable used to linearize Rj(q−1) · zjq.

πhijq: variable used to linearize ehij · zjq.
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