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ABSTRACT

ADAPTIVE DIGITAL PREDISTORTION FOR
POWER AMPLIFIER LINEARIZATION

Makbule Pehlivan Aslan

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Abdullah Atalar

December 2008

High power amplification of linear modulation schemes which exhibit fluctuat-

ing envelopes, invariably leads to the generation of distortion and intermodulation

products. In order to avoid these effects, maintaining both power and spectral

efficiency, it is necessary to use linearization techniques. By using linearization

techniques, the amplifier can be operated near the saturation with good efficiency

and linearity.

The technique proposed here is predistortion based on a look-up table (LUT)

method using input and output signal envelopes. The predistortion is imple-

mented using a LUT and an address generation block that selects the appropriate

coefficient from the LUT, given the magnitude of the input signal. The testing

of the predistorter is done by using a baseband system model which consists of

a 16-QAM modulator, an upsampler, a raised cosine filter, the predistorter and

a baseband behavioural amplifier model. The performance of the predistorter

with a new LUT update method is evaluated in terms of power efficiency and

spectrum efficiency. MATLAB simulations show that to obtain up to 25-30 dB

improvement in power spectrum is possible and sufficiently large LUT size is

needed to reduce the background noise level. Furthermore, the performance of

the predistorter in the case of an amplifier with memory is also investigated.

The algorithms have been implemented on an FPGA chip. The performance of

the system is as predicted in MATLAB simulations.

Keywords: adaptive digital predistortion, look-up table predistortion, lineariza-

tion, amplifier nonlinearity, spectrum efficiency, FPGA.
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ÖZET

UYARLANABİLİR SAYISAL ÖNBOZMA
KULLANILARAK GÜÇ KUVVETLENDİRİCİLERİNİN

DOĞRUSALLAŞTIRILMASI

Makbule Pehlivan Aslan

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Abdullah Atalar

Aralık 2008

Dalgalanan zarf gösteren doğrusal modülasyon şemalarının güç yükseltilmeleri

kaçınılmaz olarak bozulma ve aramodülasyon ürünlerine sebep olur. Bu etkil-

erden kaçınmak, gücü ve spektral verimi devam ettirmek için doğrusallaştırma

teknikleri kullanılmalıdır. Doğrusallaştırma teknikleri kullanılarak, yükseltici

doyma noktasına yakın yerlerde iyi verim ve doğrusallıkla çalıştırılabilinir. Bu

tezde giriş ve çıkış sinyal zarfları kullanılarak güncellenen tablo temelli sayısal

önbozma yöntemi sunulmaktadır. Ön bozma yöntemi, giriş sinyalinin büyüklüğü

verildiğinde güncelleme tablosundan uygun adresten doğru katsayıyı seçen bir

adres oluşturma bloğu ile gerçekleştirilmiştir. Ön bozma algoritması 16’lık dördün

genlik kipleyici, yukarı örnekleyici, filtre, ön bozma bloğu ve temelbant karakterli

güç yükselticisinden oluşan bir temelbant sistem modeliyle test edilmiştir. Yeni

bir tablo güncelleme metoduna dayanan ön bozma algoritması güç ve spektrum

verimi açısıdan değerlendirilmiştir. Algoritma kullanılarak güç spektrumunda

25-30 dB iyileşme sağlanabileceği ve büyük tablo boyutları kullanılarak bant dışı

gürültü seviyesinin azaltılabileceği gösterilmiştir. Ek olarak, ön bozma algorit-

masının yükselticinin hafızalı olması durumundaki performansı incelenmiştir.

Algoritma bir FPGA çipi ile denenmiş ve performansının MATLAB simulasyon-

larıyla uyuştuğu gözlemlenmiştir.

Anahtar sözcükler : uyarlanabilir sayısal önbozma, taramalı tablo temelli ön

bozma, doğrusallaştırma, amplifikatör doğrusalsızlığı, spektrum verimi, FPGA..
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Chapter 1

INTRODUCTION

1.1 Background

The recent trend in modern information technology has been towards the in-

creased use of portable and handheld devices such as cellular telephones, per-

sonal digital assistants (PDAs), and wireless networks. This trend presents the

need for compact and power efficient radio systems. Typically, the most power

consuming device in a radio system is the power amplifier (PA). Therefore, radio

frequency power amplifiers (PAs) represent the most critical and costly compo-

nent in wireless communication systems today. To be able to accurately decode

most modern digitally modulated signals, linear amplification and frequency con-

version are necessary throughout the transmit and receive portions of the system.

Any amplitude and/or phase distortions on the signal may reduce the ability to

decode these signals properly. Due to the limited amount of available frequency

spectrum, communication channels are quickly becoming crowded. Therefore it is

also necessary to find new and innovative ways to reach these limits and possibly

push them even further. This push towards increased bandwidth usage presents

a need for increased bandwidth efficiency in order to increase system capacities.

The current solution is found in more bandwidth efficient modulation schemes,

which in turn requires highly linear amplification throughout radio architectures.

1



CHAPTER 1. INTRODUCTION 2

Modulation types such as QAM exhibit greatly improved bandwidth efficiency

at the expense of further susceptibility to nonlinearities due to their large non-

constant envelope [6], [22]. This type of modulation techniques that are used

to transmit large amount of data introduce amplitude (AM/AM distortion) and

phase (AM/PM distortion) distortions to the input signal due to their highly

varying envelopes. This distortion problem can be solved by a linear amplifier.

But, several problems arise when the designer requires a linear amplifier in a ra-

dio system. The first major problem is that linear amplifiers are generally very

inefficient in their use of power. The second major problem with the use of linear

amplifiers is the cost factor. Typically, a high efficiency, saturating amplifier is

simply backed-off from the compression point to an input power point that ex-

hibits the required linearity. This back-off method is quite acceptable and is used

widely in industry; however, the cost associated with doing this is high since the

designer is using a more expensive, higher power amplifier to do the job. The

higher power amplifier must be operated at a lower power output, which could

result in a low efficiency and high power dissipation. This problem is solved by

linearization techniques. By applying linearization to the power amplifier, the

linearity is improved, the required backoff is decreased and therefore the effi-

ciency is increased. The idea of linearization is that the power amplifier itself is

designed to be not linear enough in order to achieve good efficiency, after which

the linearity requirements are fulfilled by external linearization.

1.2 Thesis Objective and Outline

Power amplifier linearization techniques can be divided into 3 main groups feed-

back, feedforward and predistortion. Recently, predistortion is the most com-

monly used linearization technique. The aim in the predistortion method is to

introduce inverse nonlinearity before the nonlinear power amplifier that can com-

pensate the AM/AM and AM/PM distortions generated by the amplifier. The

most commonly used form of predistortion method is digital baseband predistor-

tion. In order to compensate the characteristic changes of the power amplifier,

the adaptivity of the predistortion method is very important and preferred. In
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this thesis, a complex gain-based look-up table predistorter is implemented and

tested both in software and in hardware. The outline of the thesis is as follows:

Chapter 2 represents the power amplifier linearization techniques study. Chapter

3 introduces effects of power amplifier nonlinearity and memory in communica-

tions systems. Chapter 4 describes the implementation of the proposed complex

gain-based look-up table predistorter in software. Chapter 5 represents the re-

sponse analysis the of the proposed predistortion method. Chapter 6 represents

the System Generator and FPGA implementations. Finally, Chapter 7 gives the

conclusion and presents possible future work.



Chapter 2

POWER AMPLIFIER

LINEARIZATION

TECHNIQUES STUDY

As it is mentioned in Chapter 1, to obtain both linear amplification and high

power efficiency, a linearizer is required. The linearizer allows the amplifier to be

operated at much higher operating point since the distortion generated by the

amplifier because of the peaks in input signals can be corrected up to the satura-

tion level of the amplifier as shown in Figure 2.1. Any input signal which drives

the amplifier to hard saturation, the resulting distortions cannot be corrected

since any increase in input power beyond this point will not result in an increase

in output power.

A wide range of linearization techniques is available to the modern power

amplifier/ communication system designer. These techniques can be roughly

classified into three groups: (1) Feedback, (2) Feedforward, and (3) Predistortion.

Each of these three groups contains several techniques. These techniques will be

briefly described in the following sections.

4



CHAPTER 2. LINEARIZATION TECHNIQUES 5

Figure 2.1: Performance Improvement of a Power Amplifier with a Linearizer

2.1 Feedback

The simplest method of reducing amplifier distortion is by some form of feedback.

Feedback is used extensively in audio amplifiers and in automatic plant control

but it can also be used to linearize power amplifiers [14]. The Figure 2.2 illustrates

the use of negative feedback around an amplifier with the effect of distortion n(t).

G is the gain of the amplifier and K is the feedback attenuation.

Figure 2.2: Simple Feedback to Linearize Power Amplifiers
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Output: y(t) = G × e(t) + n(t) (2.1)

Feedback: f(t) = y(t)/K (2.2)

Error: e(t) = x(t) − f(t) (2.3)

Therefore,

y(t) = K × (G*x(t)+ n(t))/(G+K) (2.4)

If the amplifier gain is much greater than the feedback ratio G ≫ K, then K +G

approximates to G. So

y(t) = K × x(t) + (K × n(t))/G (2.5)

Therefore, the distortion produced by the main amplifier is reduced by a factor

K/G. The disadvantage of this approach is that the improvement in distortion

performance is at the expense of the gain of the power amplifier and also feedback

needs more bandwidth than signal.

2.1.1 Envelope Feedback

Simple envelope feedback has matched envelope detectors coupled to the power

amplifiers input and output ports. A differential amplifier forms amplitude error-

correcting amplifier based on the detected envelope signals. The resulting error is

used to control the gain of the amplifier. This technique has been widely employed

to improve the IMD performance of VHF and UHF solid-state power amplifiers

in the mobile communication industry. The main draw back is that since this

technique performs simple amplitude correction, it starts generation IMD prod-

ucts when the envelope operates in the compression region of the amplifier. The

delays in the detection and signal processing can cause phase differences between

AM and PM processes. This may cause asymmetry IM side bands and may

substantially reduce any correction obtained by amplitude feedback process [1].
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Figure 2.3: Envelope Feedback to Linearize Power Amplifier
[1]

2.1.2 Polar Feedback

The polar feedback technique combines the envelope feedback with an additional

feedback loop to account for phase shift variation through the power amplifier

by dynamically adjusting the phase of the Radio Frequency (RF) input. The

phase correction shown in Figure 2.4 uses a phased locked loop to maintain a

constant phase shift over the amplifiers dynamic range. The two feedback loops

are interdependent, any variation in the AM/AM loop, will produce phase as well

as gain variation and similarly AM/PM will interact with the AM/AM loop if

the insertion loss of the phase shifter varies. It has been reported in the literature

that phase amplifier requires much higher bandwidth, which is a major limiting

factor in the performance of the polar feedback [20].

Figure 2.4: Polar Feedback to Linearize Power Amplifier
[20]
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2.1.3 Cartesian Feedback

The cartesian feedback is similar to polar feedback described previously, however,

the baseband signal information is processed in I and Q form. Therefore the I

and Q channels are well matched, eliminating the problems of different bandwidth

and processing requirements for magnitude and phase paths as in polar feedback.

Figure 2.5: Cartesian Feedback to Linearize Power Amplifier
[15]

Figure 2.5 shows the cartesian feedback loop. The input signal is separated

into I and Q and fed to differential amplifier where input signals is subtracted

from the feedback signal. The error signal is upconverted to RF using a local

oscillator and then combined to produce the complex RF, which is amplified

by the power amplifier. The output of the power amplifier is sampled using a

directional coupler and down converted and separated into I and Q using the same

local oscillator used in up conversion process. The down convert output forms

the feedback to the differential amplifiers. A phase shift network is required to

ensure that the up and down conversion processes are correctly synchronized. The

main advantages of cartesian over polar feedback is that a significant reduction in

bandwidth requirement for the feedback loop allows more reduction of IMD and

secondly simplicity of implementation. The experimental results in the literature
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have shown that 10-30 dB of improvement in IMD performance is achievable,

however the stability criteria limits the maximum bandwidth to a few megahertz

[10][2].

2.2 Feedforward

Figure 2.6: Feedforward Technique to Linearize Power Amplifier
[12]

As shown in Figure 2.6, in the feedforward system the power amplifier is fed

directly with the RF source signal. The delayed sample of the undistorted input

RF signal is compared with an attenuated sample of the power amplifier output.

The error signal is then amplified linearly to the required level and is recombined

with the output, following a delay line in the main signal path, which compen-

sates for the delay in the error amplifier. The error signal cancels the distortion

present in the main path leaving an amplified version of the original signal. The

distortion generated by the power amplifier is cancelled in the feedforward loop

by subtracting the source signal from the power amplifier output. The resulting

error signal is subtracted from the amplifier output RF components. Addition-

ally, it does not require a phase-locked loop to maintain phase correction. The

advantage of feedforward technique is that the bandwidth is determined by fre-

quency response of the couplers, delay lines, and phase shift components, which

can be made to be very stable over a wide operating range. The disadvantage is

the need for error amplifier which will be of a similar size as the main amplifier
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[12]. In theory the feedforward loops can be nested as many times as necessary to

obtain required level of correction. This method is called multi-stage feedforward.

However this method adds cost, complexity, weight and high power dissipation.

2.3 Envelope Elimination and Restoration

The Envelope Elimination and Restoration (EER) technique to linearize the

power amplifier was first proposed by Khan [13] to improve short-wave broadcast

transmitter. The EER has an envelope detector, which extracts the magnitude

information and limiter, which eliminates RF envelope and generates a constant

amplitude phase signal (See Figure 2.7). The magnitude and phase signal are

amplified, with the delay path of two signal matched. The magnitude and phase

are then recombined using switch-mode power amplifier. The experimental re-

sults have shown that EER provides greater than 28 dB of linear output power

with 33-49% efficiency[24].

Figure 2.7: EER Technique to Linearize the Power Amplifier
[24]

It is also possible to introduce feedback to envelope elimination and restoration

technique. The feedback introduced EER can be seen in the literature in [24]

and [21]. However the proposed feedback method causes stability problems and

increases the complexity of the system.
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2.4 Linear amplification with Nonlinear Com-

ponents (LINC)

Linear amplification with Nonlinear Components (LINC) is, different from all

other techniques of linearization of power amplifier, because no feedback from

the output of the power amplifier is used. The power amplifier can be highly

non linear. The theory of operation is that the baseband processing accepts a

gain and phase modulated input signal, and generate two wideband constant

envelope phase modulated signals. These signals are up-converted through two

well matched non linear amplifier chains and summed [11]. The complex signals

are generated such that all undesired out-of-band components are in exact anti-

phase in the two amplifier chains and cancel at the output, while the wanted

components are in phase and reinforced (Figure 2.8).

Figure 2.8: LINC method to Linearize Power Amplifiers
[11]

The generation of two wideband constant envelope phase modulated signals

S1(t) and S2(t) have to be accurate. The DSP technology allows S1(t) and S2(t)

to be generated more accurately. Thus, the linearity performance of the technique

is determined by the gain and phase match between the two amplifiers [26] [8].

The input signal S(t) is complex representation of bandlimited signal and can be

written as

S(t) = a(t) ∗ ejφ(t);0 < a(t) < amax (2.6)

This signal can be split into two signals, S1(t) and S2(t), with modulated phase

and constant amplitudes as described in [8]. This gives:

S1(t) = S(t) − e(t); S2(t) = S(t) + e(t); and|S1(t)| = |S2(t)| = amax; (2.7)
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Where e(t) is in quadrature to the source signals S1(t) and S2(t),

e(t) = j × S(t) ×

√

√

√

√(
amax

2

|S(t)|2
− 1); (2.8)

The output is given by:

Sout(t) = 2GS(t); (2.9)

The quadrature signal e(t) is added to one leg of forward loop and subtracted

from the other leg of forward loop to give a constant envelope signal. The main

disadvantage with this approach is that the characteristics of the two power am-

plifiers used should be as identical as possible. Another problem with LINC is

the bandwidth occupied by the separated signal components S1(t) and S2(t) can

be 10 or more times larger than the original bandwidth [14].

2.5 Combined Analog-Locked Loop Universal

Modulator (CALLUM)

The Combined Analog Locked Loop Universal Modulator (CALLUM) is similar

to the LINC technique where it combines two constant amplitude signals to form

the output signal [25]. CALLUM has two Voltage Controlled Oscillators (VCO)

which generate separate phase modulated vectors of amplitude S and phase φ1

and φ2 as shown in Figure 2.9. The addition of these two vectors results in

gain and phase modulated output vector [5]. The main problem of CALLUM is

stability which limits its use to narrowband applications.
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Figure 2.9: CALLUM Feedback to Linearize Power Amplifier
[5]
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2.6 Predistortion

Predistortion is one of the major linearization techniques. The literature search

shows that from all the linearization techniques that have been developed, the

predistortion is the most commonly used in the new systems today. The main

idea of predistortion technique is to insert a non-linear element called predistorter

of preceding the nonlinear power amplifier which has the inverse transfer char-

acteristics of the power amplifier. Figure 2.10 shows predistortion in its simplest

form [19]. Therefore, the predistortion technique results in a linear input-output

relationship for the predistorter-amplifier combination.

Figure 2.10: Simple Predistortion Technique to Linearize Power Amplifier

Considering the position of the predistorter, predistortion technique can be

divided into three main categories: (1) RF Predistortion, (2) IF predistor-

tion, and (3) Baseband Predistortion.

In linearization techniques, one of the important critical issue is that the char-

acteristics of the power amplifier can be changed by aging, temperature changes

and output load changes. The linearization of the power amplifiers in such a

case, can be achieved by providing the predistortion system adaptive. Therefore

predistortion techniques can also be divided into two categories: (1) Adaptive

Predistortion, (2)Non- Adaptive Predistortion. Adaptation algorithms

can be applied to each of RF, IF and Baseband predistortion techniques, but it

is more commonly applied to baseband predistortion [14]. Therefore Adaptive

Baseband Predistortion is the most commonly used technique in the new systems

today.
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Figure 2.11: RF Predistortion, IF Predistortion, Baseband Predistortion
[14]

2.6.1 RF/IF Predistortion

As it is shown in Figure 2.11 the position of the predistorter in the transmis-

sion path determines the type of the predistortion. In RF predistortion, the

predistorter element operates at the final carrier frequency. In IF predistortion,

the predistorter element operates at a convenient intermediate frequency. The

advantage of the IF predistortion is that same design can be used for range of

carrier frequencies by altering the Local Oscillator (LO) frequency. After predis-

tortion, the signal is upconverted to the final carrier frequency [11]. Since in RF

predistortion the predistorter operates at the final carrier frequency, making it

adaptive is difficult due to its high frequency of operation [14]. Therefore in RF

predistortion the nonlinearity to be cancelled must be known [15]. The advan-

tage of the RF predistorter is its ability to linearize the entire bandwidth of the

power amplifier. Because of this, RF/IF predistortion is ideal to use in wideband

multicarrier systems such as satellite amplifiers or base-station applications [11].

One famous and widely used configuration of RF/IF predistortion is the RF/IF
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cubic predistorter (Figure 2.12).

Figure 2.12: (a)RF Cubic Predistorter, (b)IF Cubic Predistorter
[14]

It is based on 3rd order intermodulation product cancellation. The input sig-

nal is split into two paths. The first path only delays the input signal. The second

path has a a cubic (3rd order) nonlinearity, variable phase shifter and attenuator

and an auxiliary amplifier. The delay in the first path achieves synchronization

between the two paths. The cubic nonlinearity provides a compressive input-

output characteristic. The phase shifter and attenuator adjust the phase and

amplitude to achieve cancellation of the distortion. The auxiliary amplifier com-

pensates for the significant attenuation introduced by the cubic element. By

proper adjustment of the phase, the compressive characteristic provided by the

cubic nonlinearity is subtracted from the input signal to obtain an expansive

characteristic. This expansive characteristic will compensate for the compressive

characteristic of the power amplifier [14]. Several examples of cubic predistorter

can be seen in [11].
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2.6.2 Baseband Predistortion

In baseband predistortion, predistortion is applied to the baseband signal to be

transmitted. In the implementation of baseband predistorters, generally Digital

Signal Processors (DSP), FPGAs (Field Programmable Gate Arrays) or ASICs

(Application Specific Integrated Circuits) are used. Therefore baseband predis-

tortion generally means digital baseband predistortion.

Figure 2.13: Adaptive Digital Baseband Predistortion
[14]

The adaptive version of digital baseband predistortion is called adaptive digi-

tal baseband predistortion. Since the proposed predistortion method in this thesis

is Adaptive Digital Predistortion, this method will be examined in detail. As

it is depicted in Figure 2.13, the predistorter distorts the modulated signal. The

output of the predistorter is converted to analog form by using D/A convert-

ers. The resulting signal is modulated onto the RF carrier and then amplified by

the power amplifier. The power amplifier output is sampled, demodulated back

into baseband, converted to digital form by using A/D converters and used to

adapt the predistorter characteristic [14]. Digital baseband predistorters can be

categorized by some operational criteria.
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2.6.2.1 Baseband Predistortion According to the Position of the Pre-

distorter

Signal Predistorters: Signal Predistorters apply predistortion after the mod-

ulation of the signal. They are generally modulation independent, but their

adaptation is slow [14].

Data Predistorters: Data Predistorters operate to compensate the dis-

tortion of the constellation diagram. They are generally modulation dependent,

their adaptation is faster than signal predistorters.

2.6.2.2 Baseband Predistortion According to the Characteristics of

the Power Amplifier

Predistorters without memory: The predistortion has no memory, the

adaptation algorithm of the predistorter depends only on the current value of the

input. Therefore, memoryless predistorters are unsuccessful to compensate for

nonlinearity effects of power amplifiers with memory.

Predistorters with memory: The predistortion has memory, the adap-

tation algorithm of the predistorter depends not only on the current value of

the input but also the past values. Therefore, predistorters with memory can

compensate for nonlinearity effects of power amplifiers with memory.

2.6.2.3 Baseband Predistortion According to the Characteristics of

the Predistortion

LUT (Look-up table) Predistortion: The predistortion characteristics are

stored in a LUT. Different adaptation algorithms can be used in such a way that,

every entry of the LUT has to be updated and the addressing of the LUT can be

based on the amplitude or the power of the input signal.
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Parametric Predistorters: The predistortion is implemented as a non-

linear function such as a polynomial, Volterra series, spline etc. During the

adaptation of the used algorithm only the parameters of the nonlinear function

should be updated.

2.6.2.4 Baseband Predistortion According to the Adaptation of the

Predistorter

Direct Predistorter Adaptation:

Figure 2.14: Direct Predistorter Adaptation
[14]

The main aim in the direct predistorter adaptation architecture (Figure 2.14),

is to adjust predistorter in order to minimize the error between the attenuated

output of the amplifier z′pa and the original input signal z. Since A is a nonlinear

function, Fpre which should be the inverse of A to provide linearity [14] .

Postdistorter Adaptation

The predistortion using postdistorter adaptation (Figure 2.15) is based on the

direct identification of the power amplifier inverse using the input and attenuated
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Figure 2.15: Predistortion using Postdistorter Adaptation
[14]

output of the power amplifier [14]. For the linearity to be satisfied the optimum

solution in the Figure 2.15 is Fpost(z)=A−1 ∗ (G0z). Fpost is obtained by iterative

error minimization techniques and since Fpre is an exact copy of Fpost, Fpre is also

obtained.

Power Amplifier Modeling with Consecutive inverse estimation:

Figure 2.16: PA Modeling with Consecutive Inverse Estimation
[14]

Power amplifier modeling with consecutive inverse estimation (Figure 2.16),

uses the power amplifier input zp and output zpa to calculate the power amplifier

characteristic estimate A′ and then this forward power amplifier model is used to

calculate the power amplifier inverse Fpre [14].
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This thesis proposes a method of LUT predistortion using direct predistorter

adaptation. The following section will describe different direct predistorter adap-

tation algorithms found in the literature for LUT predistorters.

2.6.3 LUT Predistorters with Direct Predistortion Adap-

tation

The LUT predistorters can be classified as mapping predistorters and gain-based

predistorters. Gain-based predistorters can be further classified as polar predis-

torters and complex gain predistorters.

Complex Gain Based Predistorter:

Figure 2.17: Complex Gain Based Predistorter
[3]

Complex gain based predistorter shown in Figure 2.17 was proposed in [3]

by Cavers. In this method, there is a one dimensional LUT that has entries of

complex gain values. The predistortion is obtained by complex multiplication

of the input signal and the corresponding predistorter complex gain component.

The LUT is addressed by the squared magnitude of the input signal which gives

a uniform distribution of the table entries in terms of power [26].

Let i(n) denotes the input signal and Gpre(|i(n)|2) denotes the corresponding

predistorter gain component. A denotes the input power dependent complex gain
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of the power amplifier and A0 denotes the desired linear gain. Then, in order the

linearity to be satisfied for all input power levels the following equation 2.10

should be satisfied [14].

i(n) ∗ Gpre(|i(n)|2) ∗ A(|i(n)|2|Gpre(|i(n)|2)|2) = A0 ∗ i(n); (2.10)

For the above equation to be satisfied entries of the LUT should be adjusted

adaptively. There are two different adaptation algorithms explained in [14]. The

first one is the secant adaptation algorithm which has LUT update equation

of 2.11 and the second one is the successive substitutions adaptation algorithm

which has the LUT update equation of 2.12.

Gpre,i(k + 1) = Gpre,i(k) + α
e(k) (Gpre,i(k − 1) − Gpre,i(k))

e(k) − e(k − 1)
(2.11)

where α is iteration constant, k is the iteration index and e(k) is the error signal

(the difference between the power amplifier output and the desired output linear

output) for kth iteration of ith LUT entry [4].

Gpre,i(k + 1) = Gpre,i(k)[1 − µ(
zpa(k) − A0z(k)

zpa(k)
)] (2.12)

where µ is a convergence constant smaller than 1, z(k) is the input to the predis-

torter and zpa is the output of the power amplifier.

Polar Predistorter:

Figure 2.18 shows the block diagram of a polar predistorter. As it is seen in

the figure, there are two one dimensional LUTs. One of them contains magnitude

gain values and the other contains phase rotation values. Polar predistorter differs

from complex gain based predistorter since it stores complex gain values in polar

form instead of cartesian form.

Similar to complex gain based predistorter the predistortion is obtained by

complex multiplication of the input signal and the corresponding predistorter
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Figure 2.18: Polar Predistorter

complex gain component. In order to apply multiplication it is necessary to

convert LUTs entries from polar to rectangular form. Therefore as indicated in

the Figure 2.18 it is necessary to use rectangular-to-polar and polar-to-rectangular

transformations. This transformations causes complexities in implementation. As

in the case of complex gain based predistorter, different adaptation algorithms

can be used to update the LUTs. One of the adaptation algorithm found in the

literature is the following [9]:

Gpre,i(k + 1) = Gpre,i(k) + µg(A0|z(n)| − |zpa(n)|) (2.13)

φpre,i(k + 1) = φpre,i(k) + µφ(arg(z(n)) − arg(zpa(n))) (2.14)

where Gpre and φpre denote for magnitude gain table characteristic and phase gain

table characteristic respectively. A0 is the desired linear gain, z(n) is the input

signal, zpa(n) is the output of the power amplifier, µg is the convergence constant

for amplitude correction, µφ is the convergence constant for phase correction and

k is the iteration index of the ith LUT entry [9].
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Mapping Predistorter:

Mapping predistorter was the first powerful digital predistorter based on a

look-up table method, reported by Nagata [16]. Figure 2.19 shows the block

diagram of the mapping predistorter. In mapping predistorter method, a two-

dimensional LUT is used to map complex input signal to a new complex signal.

The sum of the input signal and the LUT output approximates the inverse char-

acteristics of the power amplifier. The amplifier output signal is synchronously

demodulated and compared with the input signal [26]. The table entries are

updated according to the results of this comparison.

Figure 2.19: Mapping Predistorter
[25]

Figure 2.20: Mapping Procedure of Mapping Predistorter
[25]

Figure 2.20 shows the mapping operation of the predistorter. In the figure,
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a(n) is the predistorter input, p(a(n)) is the correction generated by the predis-

torter and o(n) is the output signal.

a(n) = aI(n) + jaQ(n);

p(a(n)) = pI(a(n)) + jpQ(a(n));

o(n) = a(n) + p(a(n)) = a(n) + p(aI(n), aQ(n));

oI(n) = aI(n) + pI(aI(n), aQ(n));

oQ(n) = aQ(n) + pQ(aI(n), aQ(n));

The above equations indicate that the I component and Q component cor-

rection values, pI and pQ, generated by the predistorter are functions of both

the I and Q components of the input signal, aI and aQ, therefore the algorithm

requires 2D LUT that are indexed by using both the I and Q components of the

input signal. The adaptation algorithm of the mapping predistorter is as follows:

pij(k + 1) = pij(k) + µ(a(n) −
apa(n)

G
) (2.15)

where a(n) is the predistorter input signal and apa(n) is amplifier output, signalk

is the number of iteration of the LUT cell which has index (i, j), µ is the con-

vergence constant and G is the desired amplifier gain. The disadvantage of the

mapping predistorter is its requirements of a large size LUT and its low adapta-

tion speed.



Chapter 3

EFFECTS OF POWER

AMPLIFIER NONLINEARITY

AND MEMORY in

COMMUNICATIONS

SYSTEMS

This chapter describes the effects of power amplifier nonlinearity and memory.

Common measures of power amplifier nonlinearity will be described in the first

section. The second section will describe the common effects of power ampli-

fier nonlinearity like harmonic distortion, spectral regrowth and intermodulation

distortion. And finally the memory effects of power amplifiers will be presented.

26
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3.1 Common Measures of Power Amplifier Non-

linearity

The two commonly used measures to describe nonlinearities of a power amplifier

are 1dB compression point and third order intercept point [15]. In the following

subsections, these two measures are described.

If a power amplifier is weakly nonlinear and has no memory, its input output

relationship can be described by a polynomial with real coefficients:

y(t) =
∞
∑

n=1

cn(x(t))n = c1x(t) + c2(x(t))2 + c3(x(t))3 + ....... (3.1)

where c1 is the linear small-signal gain of the amplifier, x(t) is the input signal

and y(t) is the output signal. This polynomial model will be truncated to order

3 in the following subsections to find formulas for 1 dB compression point and

3rd order intercept point.

3.1.1 1 dB Compression Point

1 dB compression point is defined as the power level where the gain of the am-

plifier deviates from the linear small signal gain by 1 dB. As the input power to

an amplifier is increased, the amplifier enters its nonlinear region and the gain of

the amplifier starts to decrease from its small signal value. The 1 dB compres-

sion point is reached when the compression in the gain reaches 1 dB. The 1 dB

compression point (P1dB) can be input power (IP1dB) or output power (OP1dB)

referred and is usually given in units of dBm [15]. To measure the 1 dB compres-

sion point, a single tone signal x(t) = Acos(w0t) is applied to the power amplifier

and the amplitude A is increased from zero to higher values. If the nonlinear

characteristic of the amplifier is given by 3.2 up to third order, the corresponding

output signal will be :

y(t) =
1

2
c2A

2 +(c1A+
3

4
c3A

3)cos(w0t)+
1

2
c2A

2cos(2w0t)+
1

4
c3A

3cos(3w0t) (3.2)
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The gain at the fundamental frequency is given by c1 + 3

4
c3A

2. c3 is nega-

tive and as a result, when the input amplitude A increases, the gain decreases.

For small values of A, c1 ≫ 3

4
c3A

2 and as a result, a linear gain of c1 is ob-

tained. As A increases, the gain compresses and when it compresses by 1

dB, the 1 dB compression point is reached. At the 1 dB compression point,

20log
(

c1
c1+

3
4
c3A2

)

= 1 and the input amplitude at the 1 dB compression point is

Ain1dB =

√

4

3

∣

∣

∣

c1
c3

∣

∣

∣ (1 − 10−
1
20 ). The following figure illustrates the 1 dB compres-

sion point graphically.

Figure 3.1: 1 dB Compression Point

3.1.2 Third order intercept point

If a two-tone signal x(t) = Acos(w1t) + Acos(w2t) (w2 > w1) is given as input to

a nonlinear power amplifier, two main groups of distortion can be distinguished

at the amplifier output. They are intermodulation products and harmonics [14].

The harmonics are produced at frequencies nw1 and mw2 (n,m are integers)

which are multiples of the fundamental frequencies w1 and w2. The harmonic

products are typically out-of-band and they can be eliminated by filtering. The

intermodulation products are produced at frequencies ±nw1 ± mw2. |m| + |n|
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is called the order of the intermodulation products. Even-order intermodula-

tion products are not so harmful because they are out-of-band and they can be

eliminated by filtering. The odd-order intermodulation products are more harm-

ful because many of them are in-band. Among the odd-order intermodulation

products, the third order intermodulation products at frequencies 2w1 − w2 and

2w2−w1 have the most important influence because they are the intermodulation

products which are closest to the fundamental frequencies w1 and w2.

The third order intercept is defined as the point where third order intermod-

ulation products (components at 2w1 −w2 and 2w2 −w1) at the amplifier output

are equal in power to the fundamental components (w1 and w2) when the ampli-

fier input is a two-tone signal. The third order intercept point is illustrated in

the Figure 3.2.

Figure 3.2: Third order intercept point

As seen in the figure, before compression both the power of fundamental tones

and third order intermodulation products increase linearly with increasing power.

For high input powers compression occurs. If the linear portions of both curves

are extrapolated and intersected as seen in the figure, the third order intercept

point is obtained.

If the input x(t) is x(t) = Acos(w1t) + Acos(w2t), then the corresponding
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output y(t) = c1x(t)+c2(x(t))2+c3(x(t))3 contains a lot of frequency components.

The important ones are the frequency components at w1, w2, 2w1 − w2 and

2w2 −w1. The amplitude of the frequency components at w1, w2 is c1A + 9

4
c3A

3.

The term 9

4
c3A

3 causes compression for high input powers and it can be ignored

in the calculation of the IP3 point. The amplitude of the frequency components

at 2w1−w2, 2w2−w1 is 3

4
c3A

3. At the third order intercept point, c1A and 3

4
c3A

3

should be equal to each other. Then the the input amplitude at the third order

intercept point is found as:

AinIP3 =

√

4

3

∣

∣

∣

∣

c1

c3

∣

∣

∣

∣

(3.3)

The third order intercept point can be input power or output power referred.

If input power is used, it is called input third order intercept point and denoted

by IIP3. If output power is used, it is called output third order intercept point

and denoted by OIP3.

The 1 dB compression point and the third order intercept point are impor-

tant parameters to characterize the nonlinearities of power amplifiers. They are

generally provided by the amplifier manufacturers and they can be obtained by

relatively simple measurements (single tone test [input = Acos(w0t)] and two

tone test [input = Acos(w1t)+ = Acos(w2t)]) [14].

3.2 Effects of Power Amplifier Nonlinearity

In the following subsections, the nonlinear effects harmonic distortion, spectral

regrowth and intermodulation distortion will be described.
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3.2.1 Harmonic Distortion

When a single-tone signal at frequency w0 is given as input to a nonlinear power

amplifier, at the output of the amplifier we not only observe the excitation fre-

quency w0 but also the harmonic components at nw0 (n integer) due to the

nonlinearity of the power amplifier. This generation of harmonics of the excita-

tion frequency by the nonlinear power amplifier is called harmonic distortion and

the harmonic at frequency nw0 is called nth harmonic. THD (Total Harmonic

Distortion) is a measure of Harmonic distortion which is defined as the ratio

of the square roots of total harmonic output power to the output power at the

fundamental signal.

3.2.2 Spectral Regrowth

The spectrum of the input signal to a power amplifier need not necessarily con-

tain only discrete frequencies. If this input signal is a modulated signal that is

commonly found in telecommunication systems, its spectrum will probably con-

tain a continuous band of frequencies instead of discrete frequencies. When such

a signal containing a continuous band of frequencies passes through a nonlinear

power amplifier, this continuous band widens. This widening is called spectral

regrowth. The figure 3.3 illustrates spectral regrowth of a signal caused by a

nonlinear amplifier.

Due to spectral regrowth, leakage into adjacent bands (channels) occurs. This

leakage causes interference for the adjacent channel and is called adjacent channel

interference. Figure 3.4 illustrates adjacent channel interference. An important

measure of adjacent channel interference is ACPR (Adjacent Channel Power

Ratio). ACPR can be defined as total adjacent channel power ratio (ACPRT ),

which is the ratio of total output power measured in the main channel to the

total power integrated in the lower and upper adjacent channel bands.
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Figure 3.3: Spectral Regrowth

Figure 3.4: Adjacent Channel Interference
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3.2.3 Intermodulation Distortion

When a multi-tone signal (containing more than one fundamental frequency) is

given as input to a nonlinear power amplifier, at the output of the amplifier we

only only observe the excitation frequencies and their harmonics but also the

linear combinations of the excitation frequencies. For instance if the input is a

two-tone signal (cosw1; cosw2), at the output we will observe the harmonics nw1

and mw2 and also the components at the frequencies ±mw2 ± nw1. These linear

combinations of the excitation frequencies are called intermodulation products

and this type of distortion is called intermodulation distortion. k = |m| + |n| is

the order of the intermodulation distortion and the corresponding intermodula-

tion products at frequencies ±mw2±nw1 are called the kth order intermodulation

products. An important measure of intermodulation distortion is IMR (intermod-

ulation ratio) which is defined as the ratio of the fundamental output power to

the intermodulation distortion output power.

3.3 Memory Effects in Power amplifiers and the

Modeling of the Memory Effect

3.3.1 Memory Effects in Power Amplifiers

Memory effects are defined as changes in the amplitude and phase of distortion

components caused by changes in modulation frequency. Mechanisms with dif-

ferent time-constants, mainly related to the biasing system and heat-generation

cause spectral regrowth and sideband asymmetries. This can be observed both for

analog signals as IMD asymmetry and for digitally modulated signals as regrowth

asymmetry (Figure 3.5).

Much work on memory-effects is related to behavioral modeling of power

amplifiers. These models will be described in the following sections. Sources

of memory effects can be classified as electrical and thermal. We will basically
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Figure 3.5: IMD Asymmetry and Regrowth Asymmetry Effects of Memory

consider electrical memory effects.

As stated in section 3.1.2 the the amplitude for both the lower and up-

per third order intermodulation (IM3) sidebands can be written as 3

4
c3A

3 for

the input x(t) = Acos(w1t) + Acos(w2t), and the corresponding output y(t) =

c1x(t) + c2(x(t))2 + c3(x(t))3. It is seen from these equations that the amplitude

of IM3 sidebands increases exactly to the third power of the input amplitude.

Unfortunately, the power amplifiers with memory do not behave like this. For

example, the envelope signal (w2 w1) and the upper two-tone signal (w2) will be

mixed with the second-order nonlinearity, which results in the generation of an

IM3 signal in addition to the IM3 component with the amplitude of 3

4
c3A

3. Sim-

ilarly, the second harmonic of the upper input signal (2w2) and the lower input

signal from the negative frequency side (−w1) will produce an IM3 signal. As a

result, IM3 sidebands are affected not only by fundamental voltage waveforms,

but also by the voltage waveforms at the frequency of the envelope (w2 −w1). In

addition, the second harmonics (2w1 and 2w2) also affect the IM3 sidebands. The

greatest part of the distortion is produced by third-order distortion mechanisms,

which are affected by fundamental impedance. However, second-order mecha-

nisms generated by the envelope and second harmonic frequencies also have a

significant effect on IM3 distortion and causes asymmetries in IM3 components

and spectral regrowth. Since the linearities of the circuit components can be

considered as current sources, their voltage waveforms can be affected by node

impedances [27]. Node impedances consist of two parts: internal impedance of

the amplifier and external impedance. External impedance also comprises two
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parts: the impedance of the matching network and that of the bias network. The

combined effects of these impedances must be considered in the design of well-

behaving node impedances. It is mentioned in literature that the major part of

the memory is produced by envelope impedances. Envelope frequency varies from

dc to the maximum modulation frequency, which can be as high as a few mega-

hertz. Therefore, minimizing memory effect is a critical issue in the design of the

power amplifier. The output impedance, for example, must be constant or very

low over this region in order to avoid memory effects. The reason of considering

memory effect in this thesis is that that memory effects is a serious limitation on

the maximum achievable cancellation performance of the linearization method.

3.3.2 Modeling of the Memory Effect

A nonlinear power amplifier with memory can be represented by Volterra series or

linear time-invariant (LTI) system followed by a memoryless nonlinearity known

as Hammerstein model or Nonlinear tapped delay line (NTDL).

3.3.2.1 Volterra Memory Model

A truncated discrete time domain Volterra model for power amplifier has the

form :

y(n)= h0 +
∑m−1

ki=0 hi(ki)x(n − ki)

+
∑m−1

ki=0

∑m−1

k2=0 h2(ki, k2)x(n − ki)x(n − k2) + ........

+
∑m−1

ki=0 .....
∑m−1

kp=0 hp(ki, ....., kp)x(n − ki)......x(n − kp)

where h0 is a constant and hj(ki, .....kj) are the set of jth order Volterra Kernel

coefficients [18].

Literature shows that implementing Volterra predistorter is computationally

intensive and in addition, an accurate inverse of Volterra system is difficult to

obtain and the jth order inverse is only an approximation.
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Zhus [28] simulation for third order Volterra based linearizer shows about 10

dB improvements in the IMD performance of the power amplifier with the signal

bandwidth of approximately 4 MHz. The reason for only a 10 dB improvement

may be attributed to the fact that an exact inverse for Volterra model is difficult

to attain.

3.3.2.2 Hammerstein Memory Model

Hammerstein predistorter model is represented by the equation:

z(n) =
P

∑

p=1

apz(n − p) +
Q

∑

q=0

bq







(k−1)
2

∑

k=0

c2k+1y(n − p) |y(n − q)|2k





 (3.4)

where the y(n) is the input and z(n) is the output and the algorithm computes

the ap, bqand c2k+1 coefficients.

A hammerstein predistorter model example can be found in [7]. The adaptive

Hammerstein predistorter in [7] uses an indirect learning architecture and consists

of predistorter trainer and a predistorter, the LTI portion is implemented using a

FIR filter. An iterative estimation algorithm in the predistorter trainer computes

the inverse model of power amplifier and copies the coefficients in the predistorter

in the forward path until loop converges. [7] states over 35 dB of improvement

in the IMD performance of the power amplifier.

3.3.2.3 Nonlinear Tapped Delay Line Memory Model

The memory is characterized in the power amplifier as hysteresis in AM/AM

and AM/PM curves and can be represented by a tapped delay line polynomial

as shown in figure 3.6. The hysteresis in the power amplifier is represented by

complex gain polynomial at each tap. The polynomial at each tap is of odd order

to ensure the amplifier is compressed by the same amount for both positive and

negative voltages. The amplifier with memory can be represented by:
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y(k) =
m=M
∑

m=0

zk−m

p
∑

j=0

Aj |zk−m|
j−1 (3.5)

The p is the order of the polynomial and Ajs are complex coefficients.

Figure 3.6: NTDL Power Amplifier Model

An adaptive NTDL predistorter uses an indirect learning architecture as

shown in Figure 3.6 and consists of a trainer NTDL and a predistorter NTDL

[17]. Each tap in the NTDL predistorter is a look-up table. A polynomial fit is

performed by the trainer. The trainer first estimates inverse nonlinear parame-

ters of the power amplifier and calculates the coefficients for the polynomial in

the NTDL. The trainer then fits the polynomial in the look-up table for each tap

in the predistorter. In [17], the simulation results show that for 3-tap 6th order

polynomial, the IMD performance is improved by 30 dB for a 2-carrier WCDMA

which has a signal bandwidth of 10MHz.



Chapter 4

IMPLEMENTATION of a

COMPLEX GAIN BASED

LOOK-UP TABLE

PREDISTORTER in software

This chapter describes the implementation of complex gain based predistorter in

Matlab and Simulink. In the implementation Communications Blockset, Signal

Processing Blockset and Memoryless Nonlinearity Blockset are used.

The proposed model is a baseband system model. Each element of the system

will be described in detail in the following sections. After the description of the

system elements, the simulation results will be presented.

4.1 Complex Gain-Based Predistorter Matlab

Model

The simulated baseband communication transmitter model is shown in Figure

4.1. Each of the element in the model is represented by its baseband equivalent.

38



CHAPTER 4. PREDISTORTER MATLAB IMPLEMENTATION 39

Figure 4.1: Simulated System Model

4.1.1 Random Integer Generator

The Random Integer generator block generates uniformly distributed random

integers in the range [0,M − 1], where M is used as 16 in the simulations. Since

M is chosen as a scalar, then all output random variables are independent and

identically distributed (i.i.d). The output signal can be a frame-based matrix or

a sample-based row or column vector. Since the system is a sample-based model,

the output of the Random Integer Generator is chosen as a sample-based one

dimensional array.

4.1.2 Rectangular QAM Modulator

QAM stands for quadrature amplitude modulation which conveys data by chang-

ing (modulating) the amplitude of two carrier waves. These two waves, usually

sinusoids, are out of phase with each other by 90 and are thus called quadrature

carriers. These two carriers are called I and Q channels. The carrier of I (in

phase) channel is a cosine wave while the carrier of Q (quadrature) channel is a

sine wave. So by amplitude modulating I and Q channels, quadrature amplitude

modulation is obtained. The type of the QAM modulation depends on the num-

ber of points in their constellation. If the constellation contains M points, it is

called M-QAM modulation. All the constellation points of M-QAM modulation

are complex numbers. The real parts of the constellation points represent the

I channel modulation and the imaginary parts of the constellation points repre-

sent the Q channel modulation. The modulator used in the simulink model is

16 − QAM modulator. In the constellation, a Gray coded bit-assignment is also

given so that adjacent elements differ only by one bit. After the modulation of

the input signal it is necessary to apply upsampling and pulse- shaping filtering in
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order to limit the bandwidth of the transmitted signal. Both of the requirements

are satisfied by using a Raised Cosine Transmit Filter.

4.1.3 Raised Cosine Transmit Filter

In telecommunication, intersymbol interference (ISI) is a form of distortion of a

signal in which one symbol interferes with subsequent symbols. Raised cosine

filters are widely used to eliminate ISI. The raised-cosine filter is an implementa-

tion of a low-pass Nyquist filter, one that has the property of vestigial symmetry.

This means that its spectrum exhibits odd symmetry about 1

2T
, where T is the

symbol-period of the communications system. Its impulse response description is

given by:

h(t) =
sin(π t

T
)

πt
T

∗
cos(πRt

T
)

1 − 4R2t2

T 2

(4.1)

As seen in the Equation 4.1 the raised cosine filter is characterized by two

values; R, the roll-off factor, and T , the reciprocal of the symbol-rate. The roll-

off factor, R, is a measure of the excess bandwidth of the filter, i.e. the bandwidth

occupied beyond the Nyquist bandwidth of 1

2T
. If we denote the excess bandwidth

as ∆f , then: R = 2T∆f .

The AM/AM parameters, αa and βa are used to compute the amplitude gain

for an input signal. The Figure 4.2 shows the amplitude response as R is varied

between 0 and 1, and the corresponding effect on the impulse response. As can

be seen, the time-domain ripple level increases as R decreases. This shows that

the excess bandwidth of the filter can be reduced, but only at the expense of an

elongated impulse response. Raised cosine filter blockset used in the simulation

also allow applying upsampling. By setting upsampling factor N , N − 1 zeros

are inserted between consecutive complex information signals coming from the

16 − QAM modulator. By upsampling sampling frequency increases by a factor

of N . The increment of the sampling frequency also increases the observable

spectral range that we need in order to observe out-of-band spectral components.
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In the proposed simulation model N is equal to 24 and R is equal to 0.2.

Figure 4.2: Raised Cosine Filter Response with varying R

4.1.4 Saleh Model Memoryless Nonlinearity

For an ideal linear amplifier there is a linear relationship between input power

output power. But unfortunately, this is not the case in real systems. Figure 2.1

shows that as the input amplitude increases, the linear behaviour of the ampli-

fier is disturbed, amplifier gain compresses and starts to decrease. As the input

power increases, the output power takes values smaller than the ideal linearly

amplified value. This behaviour of the amplifier is called AM/AM characteristics

of the amplifier. Additionally, ideal linear amplifier inserts a zero phase shift or a

constant phase shift to the input signal at all its power levels. Once again unfor-

tunately, this is not the case in real systems. As the input power increases, the

phase shift applied to the input signal by the amplifier changes. This behaviour

of the amplifier is called AM/PM characteristics of the amplifier.

The AM/AM and AM/PM responses of a power amplifier can be measured

by applying a single tone input signal to the amplifier and sweeping the power of

this input signal. A model can then be fitted to the measured data [14]. There are

several models in the literature used for modeling power amplifier AM/AM and

AM/PM responses. These are Saleh model, Rapp model, third order polynomial

model and arctan model. In this thesis the proposed memoryless nonlinearity
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model is the Saleh Model. Saleh model uses the following equations to model

AM/AM and AM/PM responses of a power amplifier:

FAM/AM(u) =
αa ∗ u

1 + βa ∗ u2
(4.2)

FAM/PM(u) =
αp ∗ u2

1 + βp ∗ u2
(4.3)

The AM/AM parameters, αa and βa are used to compute the amplitude gain

for an input signal. The AM/PM parameters, αp and βp are used to compute the

phase change for an input signal. U represents the magnitude of the scaled signal.

The following Figure 4.3 is an example of AM/AM conversion and AM/PM

conversion of the Saleh model nonlinearity.

Figure 4.3: AM/AM and AM/PM characteristics of a Saleh Model
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Figure 4.4: The Nonlinearity Generated by Saleh Model
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In Figure 4.4, it is possible to see the effect of the memoryless nonlinearity

block on a signal modulated by 16−QAM . It is easy to observe from the figure

that both the amplitude gain and the phase shift are not constant for all input

amplitude levels.

4.1.5 Adaptive Digital Baseband Predistorter

As indicated in Chapter 2, this thesis proposes a method of LUT predistortion

using direct predistorter adaptation. The following section will describe the pro-

posed predistortion method in detail in terms of predistorter table, table address-

ing, table adaptation and delay adjustment estimation.

4.1.5.1 Predistorter Table and Table Addressing

In the literature, it is observed that almost in all methods the LUT is addressed by

the magnitude of the source signal so the error is distributed throughout the table,

so more accurate predistortion output is obtained at all power levels. However,

since magnitude squared is easier to calculate, this may also be used to address

the table. The magnitude squared addressing is called power addressing in the

literature. The power addressing concentrates the entries to high amplitudes thus

making low amplitude coarse. This is acceptable since majority of distortion

is caused when the amplifier is operated close to the compression region. The

sensitivity of the algorithm to both magnitude addressing and power addressing

will be presented in Chapter 5. The Figure 4.5 shows the address calculation of

the LUT. Either the magnitude or the magnitude square of the input is calculated

and the result is used to address the complex gain LUT.
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Figure 4.5: Look-up Table Address Calculation
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4.1.5.2 Look-up Table Adaptation

There are various techniques described in the literature for adaptation of look-

up table entries, such as linear convergence, secant method and rotate and scale

method. The method of adaptation selected will determine speed of convergence,

stability of the system, and computation load.

The linear convergence is based on classical feedback theory, and it is compu-

tationally simplest and the least stable for adaptation look-up table entries. The

error (Verr(t) = Vmod(t)−Vfb(t)) in linear convergence is modified by the adapta-

tion constant ”a” and resulting Ve(t) is summed with the previous entry in the ta-

ble Fi(k)[Re(Ve), Im(Ve)]. The new entry in the table is Fi(k+1)[Re(Ve), Im(Ve)]

and is stored at the magnitude envelope address of Vmod(t) (see Figure 4.6). This

iteration update occurs every time the modulating signal envelope passes through

a given table entry. The subscript ”i” represents a specific entry in the table and

k represents the kth iteration. The adaptation constant ”a” is generally selected

to be less than unity and controls the rate of convergence [19].

Figure 4.6: Linear Convergence Model
[19]

The secant adaptation method is based on a straight line approximation. The

function f(x) is being approximated by a straight line which is an extrapolation

based on the two points xi and xi−1. Using some geometry the Equation 4.4 is

obtained.
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f(xi)

xi − xi+1

=
f(xi−1)

xi−1 − xi + 1
; (4.4)

Applying the secant method of convergence for adaptation of look-up table entries

is given by the following equation,

Fi(k + 1) =
Fi(k − 1)eg(F (k)) − Fi(k)eg(F (k − 1))

eg(F (k)) − eg(Fi(k − 1))
; (4.5)

where Fi(k) is the kth iteration of look-up table entry i and eg is the quantization

error at the PA output. For detailed derivation of Equation 4.5 refer to [3].

The rotate and scale method of adaptation is used for polar tables and is

similar to the linear convergence method described above. Rearrangement of

equation (Verr(t) = Vmod(t) − Vfb(t)) gives:

|Verr(t)| = |Vmod(t)| − |Vfb(t)|; (4.6)

6 Verr(t) = 6 Vmod(t) − 6 Vfb(t); (4.7)

The gain and phase look-up table entry update at kth iteration is given by:

Fi(k + 1)(|Ve|) = Fi(k)(|Ve|) + a|Verr|; (4.8)

Fi(k + 1)(6 Ve) = Fi(k)(6 Ve) + a 6 Verr; (4.9)

Cavers states in [3] that the linear convergence method reported by Nagata

[16] is the best so far of the linear convergence methods. In favor of this adaptation

algorithm is the low computational load: each iteration requires three complex

additions, a real by complex multiplication and no divisions. On the other hand,

the number of iteration required is very high compared to the secant method [3].

Cavers also states that each table entry needs about ten iterations for convergence

in the secant method of adaptation. The drawback of the secant method is its

computational load. From equation 4.5, each iteration requires two complex

additions, four complex multiplications, and two complex by real divisions.
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The proposed table adaptation method is similar but different than the ones

in the literature. It is first proposed by Burak Şekerlisoy [23].

The Figure 4.7 shows the overall matlab model.

Figure 4.7: Complex Gain-Based Predistorter Matlab Model

The complex envelope of the input Va and the output Vpa of the power amplifier

are related by:

Vpa = Va(t) ∗ G[|Va(t)|
2]; (4.10)

where G[|Va(t)|
2] is the complex gain of the amplifier. The gain function from

the look-up table is multiplied with modulated input signal.

Va(t) = Vmod(t) ∗ F [|Vmod(t)|
2]; (4.11)

where F [|Vmod(t)|
2] is the complex gain of the predistorter stored in the LUT .

For the adaptation of look-up table the following Equation 4.12 is used. Then,

The updated table entry is:

Fi(k + 1) = Fi(k) + α(Vfb(t) − Vmod(t))(−conj(Vmod(t)); (4.12)

Where Fi(k) is the ith table entry in kth iteration and α is the adaptation constant.

The proposed algorithm requires complex multiplications and additions, but no

divisions. This decreases the computational load.



CHAPTER 4. PREDISTORTER MATLAB IMPLEMENTATION 49

4.1.5.3 Delay Adjustment Estimation

The propagation delays in transmit and receive path results (see Figure 4.8) in

the sampled feedback signal Vfb(n) being of later time interval then the input

complex signal Vmod(n). This delay has to be accurately computed so the time

aligned Vfb(n) and Vmod(n) can be compared to generate the error vector Ve(n).

If the delay is not computed accurately, then the adaptation tables will have

noise distortion component in the tables resulting in a less accurate inverse table.

Therefore, the distortion products generated by the power amplifier will not be

cancelled resulting in a non optimal predistortion correction. A simple method

for compensation of delay in feedback sample Vfb(n) is to delay the input sample

Vmod(n) by the required number of samples before a comparison is made between

the input and the feedback samples.

Figure 4.8: Delay Adjustment Estimation

There are several techniques described in the literature to compute the delay

which exits in the forward and the feedback paths of the PA chain. A common

technique to determine the delay requires the use of cross correlation between

the input Vmod(n) and the feedback Vfb(n) samples to determine the delay. This

method requires a block of input and feedback samples to be stored. The cross

correlation of the two series is calculated. The cross correlation of Vmod and Vfb(n)

in discrete time domain is defined as:
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RVmodVfb
[n] =

1

N

n+N−1
∑

k=n

Vmod[k − n]Vfb[k] =
1

N

N−1
∑

m=0

Vmod[m]Vfb[m + n],m ≥ 0;

(4.13)

The sum will be maximum when the two samples’ streams line up. Therefore,

delay between the two signals is from origin to time where the peak occurs in

their cross correlation as shown in Figure 4.9.

Figure 4.9: Cross Correlation Block Diagram
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Other techniques employed for delay estimation are by comparing the slope

of the magnitude of the input and feedback to determine direction of delay ad-

justment. The amount of delay di at time ti can be examined by the following

relation between a signal q(t) and its delayed version q(t-r).

di = di−1 + sgn[(q(ti) − q(ti − di−1))] if q′(ti) >Threshold

di = di−1 − sgn[(q(ti) − q(ti − di−1))] if q′(ti) <-Threshold

The details of the above method can be found in [16]. This method of delay

estimation is also applied to the proposed predistortion method. Because the

high number of iteration requirement of the method, it is decided to use cross

correlation method for the rest of the implementation.

In this chapter the model used and the methods of the table addressing,

table adaptation and delay adjustment are explained. The following chapter will

demonstrate the simulation results and response analysis of the predistorter.



Chapter 5

RESPONSE ANALYSIS of the

proposed PREDISTORTER

Response analysis of the predistorter is performed to determine which parameters

of the adaptive digital predistortion system improves or degrades the distortion

correction performance. The distortion improvement in power spectrum is ac-

cepted as the main criterion. The predistorter response to adaptation constant,

table addressing, table size, input-output delay alignment, memory effect and the

number of iteration are examined. The results will be presented in the following

sections.

5.1 Response of the Predistorter to Adaptation

Constant(α)

As mentioned in Chapter 4, the LUT adaptation algorithm is Fi(k+1) = Fi(k)+

α(Vfb(t) − Vmod(t))(−conj(Vmod(t)), where α is called the adaptation constant.

The adaptation constant α is generally selected to be less than unity (0 < α < 1).

The adaptation constant controls the rate of convergence. If the α is large then

there exists a possibility that the table entries will not converge, but oscillate

52
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and result in an unstable system. If the adaptation constant α is small then the

adaptation time gets longer and with less number of iteration we may get worse

distortion improvement. The Figure 5.1 shows the algorithm response to constant

α.
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Figure 5.1: Sensitivity to Adaptation Constant

It is observed that the optimum value for the adaptation constant is around

0.5. The optimal value of α leads to an approximately 10 dB of additional im-

provement in the performance of the predistorter as compared to α = 0.1 and

α = 0.9 cases. For all other response analysis the adaptation constant α is chosen

as 0.5.

5.2 Response of the Predistorter to the Table

Addressing

In Chapter 4 the two addressing methods (power addressing and linear address-

ing) are presented. The look-up table is addressed by linear method addressing
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where the magnitude of the source signal is used and power method of addressing

where the magnitude square of the source signal is used. The figure 5.2 shows

the algorithm response to these two different table addressing methods.
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Figure 5.2: Sensitivity to Table Addressing

Since the majority of distortion is caused when the amplifier is operated close

to the compression region. Then the power method of addressing concentrates

high amplitude table entries thus making low amplitude coarse. Figure 5.2 shows

that power method of addressing leads to an approximately 6 dB of additional

improvement in the performance of the predistorter.

5.3 Response of the Predistorter to Table Size

The number of entries of the LUT is called table size and it is an important

parameter in terms of predistorter gain component convergence and adaptation

time. The adaptation table size is adjusted in steps of 32 entries, 128 entries and

256 entries. Figure 5.3 shows the improvement in the spectral response with a
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digital predistorter using a look-up-table size of 32. Notice that the background

noise level is increased compared to the original waveform. The background noise

originates from discontinuities in the predistortion function. It is expected that

increasing the table size will reduce the size of discontinuities and hence the

background level.

Figure 5.3: Simulated output spectrum with and without predistortion for the
QAM input signal for a LUT size of 32.

We note that long sequences of input data need to be used to achieve conver-

gence of the algorithm. This involves Matlab runs of couple of hours on a modern

computer.
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Figure 5.4: Simulated output spectrum with and without predistortion for the
QAM input signal for a LUT size of 128.

Figure 5.5: Simulated output spectrum with and without predistortion for the
QAM input signal for a LUT size of 256.
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Figure 5.4 shows simulation results for a look-up-table size of 128. Indeed,

the background noise level in this case is improved by about 5 dB. Figure 5.5 is

for similar results for a table size of 256. The background level here is another 5

dB below. For small table sizes, the input amplitude range addressed to the same

entry increases and this situation causes discontinuities and background noise.

It is shown with Matlab simulations that it is possible to obtain up to 25 dB

improvement in power spectrum and sufficiently large look-up-table needs to used

to reduce the background noise level and the discontinuities in the predistortion

function.

5.4 Response of the Predistorter to Delay

Alignment

The simulation model is a sample-based system. There is integer number of de-

lays between the input signal from the tone generator and the feedback from the

PA. Chapter 4 explains that cross correlation between the input Vmod(n) and the

feedback Vfb(n) is used to determine the delay. In a real system delay will not

be an integer multiple of sample period. Let’s say that the real delay component

is the addition an integer multiple of and a fractional multiple of sample period.

Since the cross correlation method manages to find the integer multiple part of

the delay, misalignment by half sample is accepted as the worst case for the frac-

tional multiple part. The impact on power spectrum if the input and feedback

are misaligned by half sample is shown in Figure 5.6. The comparison between

Figure 5.6 and no fractional delay case shown in Figure 5.7 indicates that mis-

alignment by half sample degrades the distortion improvement performance by

approximately 15 dB.

We have also observed that in order to maintain sufficient linearity improve-

ment the alignment should be within 1

80
of sample period. It is shown in Figure

5.8, if the alignment is within 1

80
of sample period 25 dB distortion improvement

can be achieved, otherwise the improvement decreases to 10 dB. Nagata states



CHAPTER 5. RESPONSE ANALYSIS 58

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
10

20

30

40

50

60

70

80

90

Normalized Frequency(Hz)

P
ow

er
/F

re
qu

en
cy

(d
B

/H
z)

Power Spectral Density

Figure 5.6: Simulated output spectrum with 0.5 ∗ Ts delay between input and
feedback signals.

in [16] that even if the predistortion on the main path is perfect, the comparator

detects a pseudo-error in the case of a small analog delay . Then, the contents

of the predistorting signal table are updated by mistake according to the pseudo-

errors. Nagata observed that the time delay should be less than 1/64 of a symbol

duration. We can conclude that the delay should be made small enough to avoid

such an undesirable operation. The result that is obtained is reasonable.

To reduce the improvement decrement, the input and feedback samples are

interpolated by a predefined factor to increase the accuracy of time delay estima-

tion. The cross correlation is calculated after the interpolation of the samples,

thus 25 dB spectral improvement is maintained even if the delay between the

input and the feedback signals has fractional sample time component in it.
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Figure 5.7: Simulated output spectrum with no delay between input and feedback
signals.
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5.5 Response of the Predistorter to Memory Ef-

fect

As mentioned in Chapter 2 the memoryless predistorters, which has the adapta-

tion algorithm that depends only on the current value of the input are unsuccessful

to compensate for nonlinearity effects of power amplifiers with memory (means

that the output of the amplifier at time instant t depends not only on the input at

time instant t but also the previous inputs at time instants before t). To observe

the response of the predistorter algorithm to memory effect, Nonlinear Tapped

Delay Line Memory Model described in 3.3.2.3 is used. The used NTDL model

is a 3-tap 5th order polynomial presented in Figure 5.9.

Figure 5.9: The proposed NDTL Power Amplifier Model

The following Figure 5.10 shows the performance of the memoryless predis-

torter with NDTL power amplifier model. The asymmetry in the power spectrum

of the NDTL power amplifier output due to the memory effect can be seen in

the figure. The figure 5.10 indicates that it is difficult to cancel the distortion

component of power amplifier with memory using predistortion without memory.

One possible way of increasing the improvement again, is to use more than one

LUT that is addressed by the magnitude square of the previous input samples.

The same adaptation method is used for the other LUTs, but the adaptation
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Figure 5.10: Memoryless Predistorter Performance with NTDL Power Amplifier

constant is chosen smaller because following LUTs are wanted to have smaller

table entry changes than the previous LUTs has. Figure 5.11 shows the newly

used matlab model of the predistorter with memory.

As it is seen in Figure 5.12 we have managed to increase the distortion im-

provement of 20 dB as compared to the case with memoryless predistorter and

amplifier with memory, when two LUTs are used to characterize the memory of

the predistorter. Figure 5.13 represents extra 10 dB improvement when three

LUTs are used. It is observed that depending on the memory characteristics

of the power amplifier, increasing the number of LUTs provides more improve-

ment but requires more space for the LUTs and more convergence time for the

adaptation of LUTs’s entries.
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Figure 5.11: Matlab Model of Predistorter with Memory

Figure 5.12: Memoryless Predistorter Performance with Power Amplifier with
Memory
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Figure 5.13: Memoryless Predistorter Performance with Power Amplifier with
Memory
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5.6 Response of the Predistorter to the number

of Iteration

As mentioned in chapter 4, the subscript ”i” represents a specific entry in the

table and k represents the kth iteration of the adaptation algorithm Fi(k + 1) =

Fi(k) + α(Vfb(t) − Vmod(t))(−conj(Vmod(t)). Since the adaptation algorithm is

iterative several number of input samples are needed for each entry of the table

in order to provide the convergence of the corresponding predistorter complex

gain value. The figure 5.6 represents the graph of number of input samples for

each entry and corresponding predistorter gain component stored in that entry.

It is observed from the figure that at least nine input samples should be addressed

to the same entry in order to correctly set the gain component in that entry. As

mentioned in section 4.1.5.2, Cavers [3] states that each table entry needs about

ten iterations for convergence in the secant method. Since the new algorithm

needs about nine iterations for convergence and has less computational load, it

is efficient is terms of convergence time and computational load compared to the

secant method of adaptation.
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Figure 5.14: Response of the Predistorter without memory to the number of
iteration
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As it is mentioned in the previous section, if the amplifier has memory and

predistortion with memory is used for the elimination of distortion components,

adaptation time increases. The number input samples should be addressed to the

same entry in order to correctly set the gain component in that entry increases

as well. It is observed from figure 5.6 that at least twenty four input samples are

needed for the convergence of the corresponding LUT entry gain component.

Figure 5.15: Response of the Predistorter with Memory to the number of iteration



Chapter 6

IMPLEMENTATION in

SYSTEM GENERATOR and

FPGA BOARD

6.1 System Generator Model

The system generator model is used to demonstrate the proposed digital predis-

tortion method. The Xilinx System Generator for DSP is a plug-in to Simulink

that enables designers to develop high-performance DSP systems for Xilinx FP-

GAs. Designers can design and simulate a system using MATLAB, Simulink,

and Xilinx library of bit/cycle-true models. The tool will then automatically

generate synthesizable Hardware Description Language (HDL) code mapped to

Xilinx pre-optimized algorithms. As a result, the system generator is used for

design verification upon real time implementation. Figure 6.1 shows the system

generator model. The SIMULINK model consisted of three major blocks: QAM

signal generation, predistorter (which has address generation, delay adjustment,

complex multiplier blocks in it), PA non linearity.

67



CHAPTER 6. PREDISTORTER REAL-TIME IMPLEMENTATION 68

Figure 6.1: System Generator Model
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The signal generation block can be programmed to generate any number of

adjustable power complex tones. The complex tones are fed to the predistorter

block. The address generator block in predistorter block computes the magnitude

square of the complex waveform and scales it to address the specified size of the

adaptation look-up table. The delay adjust block delays the complex waveform

for the required number of samples so that the time alignment between the in-

put complex tones and power amplifier (PA) distorted output complex tones is

achieved. The complex multiplier block multiplies the input complex tones with

the complex gain values stored in the look-up tables. Therefore predistorting

the input to the power amplifier so as to cancel the distortion generated by the

power amplifier. The adaptation tables consist of a RAM addressed by the mag-

nitude of the complex input tones and supplies correction vectors to the complex

multipliers which pre-distorts the complex input tones fed to the PA. Figure 6.2

shows the power amplifier output spectrum of system generator model with and

without predistorter. The spectrum improvement shown in figure 6.2 is obtained

when the adaptation constant α is equal to 0.5 and the LUT is addressed by the

most significant eighth bits of the calculated magnitude square of the input.

Figure 6.2: Output Power Spectrum of System Generator Model
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6.2 FPGA Implementation

We have implemented the algorithm on a modern FPGA chip. Figure 6.3 shows

the block diagram of the implemented system. D/A converter connected to the

FPGA operated with a speed of 100M samples/second. The constructed FPGA

system worked also at the same speed.The used modulation scheme is 16-APSK

(Amplitude and Phase Shift Keying). The performance of the system is as pre-

dicted in Matlab simulations.

Figure 6.3: Block diagram of the system as implemented on a modern FPGA
chip

Output spectral density of the power amplifier is measured before the digital

predistortion is turned on. Figure 6.4 shows the spectrum analyzer display of

the Vfb signal (downconverted power amplifier output) for a table size of 64.

Obviously, there is a great IM3 distortion as observed in the spectrum display.

Figure 6.5 shows the spectrum when the digital predistortion is turned on. The

algorithm converges very rapidly and an improvement in neighboring channels is

obtained. We note that there is degradation in the background level of the signal

due to the small look-up-table size.

The predistorter presented here, provides power efficiency as well as spectral

efficiency. As it is mentioned in chapter 5 to improve the background noise level

larger size of LUT should be used.
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Figure 6.4: Spectrum Analyzer Display of the Power Amplifier Output without
Predistortion

Figure 6.5: Spectrum Analyzer Display of the Power Amplifier Output with Pre-
distortion



Chapter 7

CONCLUSION AND FUTURE

WORK

The survey of the common linearization techniques shows that the adaptive digital

predistortion method was the most suitable in terms of bandwidth, correction

achievable, weight and complexity for the proposed power amplifier architecture.

In this thesis, an adaptive complex gain based look-up table predistorter was

implemented and tested. The implementation was done by using Matlab and

Simulink Communications Blockset, Signal Processing Blockset and Memoryless

Nonlinearity Blockset and System Generator Xilinx Blockset. The testing of

the predistorter is done by using a baseband system model which consists of a

16-QAM modulator, an upsampler, a raised cosine filter, the predistorter and a

baseband behavioral amplifier model. The amplifier model used is SALEH model.

The details of the simulated model was described in chapter 4. It is shown with

Matlab simulations that to obtain up to 25-30 dB improvement in power spectrum

is possible.

Response analysis of the predistorter parameters presented in chapter 5 shows

that the adaptation constant α should be around 0.5. If α is large then the table

entries may not converge, but oscillate and result in an unstable system. If α is

small then the adaptation time gets longer and with less number of iteration we
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may get worse distortion improvement. Response to the table addressing analysis

shows that power method of addressing (the magnitude square of the source

signal addressing) provides better output power spectrum than linear method of

addressing (the magnitude of the source signal addressing) since power method

of addressing causes low amplitude coarse. Response to table size analysis shows

that increasing the table size reduces the size of discontinuities and hence the

background level, but inevitably increases the adaptation time. Response to

delay alignment analysis shows that to maintain sufficient linearity improvement

the alignment should be within 1

80
of sample period, otherwise the improvement

in power spectrum drops to around 10dB. The performance of the algorithm with

an NTDL amplifier model that has memory is also investigated. As expected the

improvement decreases. A new method of increasing the improvement again,

is to use more than one LUT that is addressed by the magnitude square of

the previous input samples and is adapted by the same adaptation algorithm.

It is observed that the distortion improvement of extra 25 dB as compared to

memoryless predistorter is possible.

System generator model is used for design verification upon real time imple-

mentation. By considering all possible real time implementation effects such as

bit representations, signs etc. The system generator model results show that the

algorithm manages to decrease IM3 products and causes background noise level

depending on the table size. We have implemented the algorithms on a modern

FPGA chip. D/A converter connected to the FPGA operated with a speed of

100M samples/second. The used modulation scheme is 16-APSK (Amplitude and

Phase Shift Keying). The performance of the system is as predicted in Matlab

simulations. Close to 20dB IM3 improvement is achieved. As a conclusion,the

predistorter presented in this thesis provides power efficiency as well as spec-

tral efficiency. As an advantage it has a simple adaptation algorithm and its

complexity is less, therefore it is easy to implement.

Future work related to this thesis can be at first, developing the algorithm

such that its sensitivity to analog time mismatch decreases and the background

noise level occurred with small LUT size also decreases. Another possible future

work is the detailed analysis of FPGA implementation. The figure 7.1 represents
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Figure 7.1: The FPGA model as future work

the planned new FPGA model implementation.



Bibliography

[1] T. Arthanake and T. Wood. Linear Amplification using Envelope Feedback.

IEE Electronics Letters, 31:2023–2024, 1995.

[2] J. S. Cardinal and F. M. Ghannouchi. A new Adaptive Double Envelope

Feedback (ADEF) Linearizer for Solid State Power Amplifier. IEEE Trans-

actions on Microwave Theory and Techniques, 43:1508 1515, 1995.

[3] J. K. Cavers. A Linearizing Predistorter with Fast Adaptation. in Proc.

IEEE 40th Vehicular Tech. Conf., Orlando, FL, 45:4147, 1990.

[4] J. K. Cavers. Amplifier Linearization by Adaptive Predistortion. U.S. Patent

5 049 832, 1991.

[5] K. Y. Chan and A. Bateman. Analytical and Measured Performance of

Combined Analogue Locked Loop Universal Modulator (CALLUM). IEE

Proc-Commun., 142:297–306, 1995.

[6] S. C. Cripps. RF Power Amplifiers for Wireless Communications. Artech

House, Inc., Norwood, MA, USA, 2006.

[7] L. Ding, G. T. Zhou, and R. Raviv. A Hammerstein Predistorter Lineariza-

tion Design Based on the Indirect Learning Architecture. Proc. IEEE In-

ternational Conference on Acoustics, Speech, and Signal Processing, 3:2689–

2692, 2002.

[8] S. A. Hetzel, A. Bateman, and J. P. Mcgeehan. LINC Transmitter. Electronic

Letters, 27:133–137, 1991.

75



BIBLIOGRAPHY 76

[9] W. G. Jeon, K. H. Chang, and Y. S. Cho. An Adaptive Data Predistorter

for Compensation of Nonlinear Distortion in OFDM systems. IEEE Trans-

actions on Communications, 45:11671171, 1997.

[10] M. Johansson and L. Sundström. Linerisation of RF Multicarrier Amplifier

using Cartesian Feedback. Electronics Letters, 30:1110 1112, 1994.

[11] P. B. Kenington. High Linearity RF Amplifier Design. Norwood, MA:Artech

House, 2000.

[12] P. B. Kenington and D. W. Bennett. Linear Distortion Correction using a

Feedforward System. IEEE Transactions on Vehicular Technology, 45:474–

480, 1996.

[13] L. Khan. Single-sided Transmission by Envelope Elimination and Restora-

tion. Proceedings of the IRE, 40:803–806, 1952.

[14] R. Marsalek. Power Amplifier Linearization using Digital Baseband Adaptive

Predistortion, 2003.

[15] K. Miehle. A New Linearization Method for Cancellation of Third Or-

der Distortion. Masters thesis, The University of North Carolina at Char-

lotte,Charlotte, 2003.

[16] Y. Nagata. Linear Amplification Technique for Digital Mobile Communica-

tions. in Proc. IEEE 39th Vehicular Tech. Conf., 1:159164, 1989.

[17] M. A. Nizamuddin, P. J. Balister, W. H. Tranter, and J. H. Reed. Nonlinear

Tapped Delay Line Digital Predistorter for Power Amplifiers with Memory.

Wireless Communications and Networking, 2003. WCNC 2003. 2003 IEEE,

1:607–611, 2003.

[18] T. Ogunfunmi and S. Chang. Second-order Adaptive Volterra System Iden-

tification Based on Discrete Nonlinear Wiener Model. IEE Proc-Vis. Image

Signal Process., 148:21–29, 2001.

[19] J. Patel. Adaptive Digital Predistortion Linearizer for Power Amplifiers in

Military UHF Satellite. College of Engineering University of South Florida,

2004.



BIBLIOGRAPHY 77

[20] V. Petrovic and W. Gosling. Polar Loop Transmitter, 1979.

[21] F. H. Raab. L-band Transmitter using Kahn EER Technique. IEEE Trans.

Microwave Theory Tech., 46:22202225, 1998.

[22] T. S. Rappaport. Wireless Communications: Principles and Practice (2nd

Edition). Prentice Hall PTR, December 2001.
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