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ABSTRACT 
 
 

MODELING AND HEURISTIC APPROACHES FOR THE HUB COVERING 

PROBLEM OVER INCOMPLETE HUB NETWORKS 

 
Hatice Çalık 

M.S. in Industrial Engineering 

Advisors: Assoc. Prof. Bahar Yetiş Kara, Assoc. Prof. Oya Ekin Karaşan 

January, 2009 

 

 

Hubs are the accumulation points within the transportation and the telecommunication 

networks that collect and distribute the flow or data, which is originated from a starting point 

and needs to be transferred to a destination point. The main application areas of the hub 

location problem are airline systems, telecommunication network design and cargo delivery 

systems. In the literature, a common treatment of hub location problems is under the 

classification dating back to the location literature. In this classification, four different types 

are identified. Namely, the p-hub median problem, the hub location problem with fixed costs, 

the p-hub center problem, and the hub covering problem in the literature. In most of the hub 

location studies, the hub networks are assumed to be complete; however, the observations on 

the real life cases showed that this may not be the case. Therefore, in this thesis, we relax this 

assumption and focus on the single allocation version of the hub covering problem over 

incomplete hub networks. We propose two new mathematical formulations and a tabu search 

based heuristic algorithm for this problem. We perform several computational experiments on 

the formulations with the CAB data set from the literature and a larger scale network 

corresponding to the cities in Turkey. The results we obtained from our experimentations 

reveals that designing incomplete hub networks to provide service within a given service time 

bound is cost effective in accordance with designing complete hub networks. 

 

Keywords: Hub location problem, hub covering problem, network design  
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ÖZET 

 

EKSİKLİ ANA DAĞITIM ÜSSÜ (ADÜ) AĞLARINDA ADÜ KAPLAMA 

PROBLEMİ İÇİN MODELLEME VE SEZGİSEL YAKLAŞIMLAR 

 

 
Hatice Çalık 

Endüstri Mühendisliği Yüksek Lisans 

Tez Yöneticileri: Doç. Dr. Bahar Yetiş Kara ve Doç. Dr. Oya Ekin Karaşan 

Ocak, 2009 

 

 

ADÜ’ler akışların toplandığı ve yayıldığı çoklu dağıtım sistemlerindeki özel tipteki 

merkezlerdir. ADÜ yer seçimi probleminin temel uygulama alanları havayolu sistemleri, 

haberleşme ağları tasarımı ve kargo taşıma sistemleridir. Literatürde ADÜ yer seçimi 

problemi dört farklı türde çalışılmıştır. Bunlar p-ADÜ ortanca, sabit maliyetli ADÜ yer 

seçimi, p-ADÜ merkez ve ADÜ kaplama problemleridir. ADÜ yer seçimi problemlerinin 

büyük bir bölümünde, tüm ADÜ’lerin birbirlerine doğrudan bağlı oldukları varsayılmaktadır. 

Ancak gözlemlerimiz bunun çoğu zaman doğru olmadığını göstermiştir. Bunun üzerine, biz 

bu varsayımı kaldırdık ve eksikli ADÜ ağlarında tekli atama kuralına bağlı ADÜ kaplama 

problemine odaklandık. Problemimiz için iki tam sayılı programlama modeli ve bir sezgisel 

algoritma önerdik. Sonrasında, literatürde sıkça kullanılan CAB ve daha büyük bir ağ olan 

Türkiye verilerini kullanarak modellerimizin ve algoritmamızın performansını test ettik. Elde 

ettiğimiz sonuçlarda, eksikli ADÜ ağları tasarlamanın doğrudan bağlı ADÜ ağlarına oranla 

daha az maliyetli olduğunu gözlemledik. 

 

Anahtar Kelimeler: ADÜ yer seçimi problemi, ADÜ kaplama problemi, ağ tasarımı 
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Chapter 1 

 

INTRODUCTION 

 

 
The hub location problem is a rather new research area, which is originally 

introduced by O'Kelly (1986a) together with real life examples. This problem arises 

especially in the transportation and telecommunication systems. Hubs are the accumulation 

points on the transportation and the telecommunication systems that collect and distribute the 

flow, data or demand, which is originated from a starting point and needs to be transferred to 

a destination point. In the hubs, the flows that originate from different origins are collected 

and they are grouped according to their destinations. The flows that have the same destination 

are put together and distributed to their destinations. Therefore, direct flows between origin 

and destination pairs are not allowed. This collection and distribution of the flow is referred to 

as ‘hubbing’ in the literature.  

 

The main application areas of the hub location problem are airline systems, 

telecommunication network design and cargo delivery systems. 

 

In the airline systems hubbing is commonly applied to the flight services. An airline 

company that provides service between certain number of cities cannot provide direct flights 

between each city pair since it requires a highly expensive airline network and generates 

traffic congestion. Instead, the airline companies allow indirect flights between the cities that 



2 

 

are too far from each other or have low volume of traffic. Therefore, service can be provided 

for all cities by using a smaller number of aircraft. 

 

The telecommunication networks generally consist of two levels: the backbone 

network and the local access network. The components in the backbone network can be 

considered as the hubs. Each local access point sends and receives its messages via the 

backbone network. The message emanating from a local access point is initially sent to a 

device in the backbone network. After the destination of the message is characterized, it is 

sent to the destination point in the local access network. Therefore, the congestion and the 

high cost that will be caused by direct connections are eliminated.  

 

In the cargo delivery systems, the packages taken from the customers are sent to the 

operation centers. In these operation centers, the parcels are combined according to their 

destinations. Then, each group of parcels is sent to its destination point from these operation 

centers. The operation centers in the cargo delivery systems are considered as hubs.  

 

The first integer programming formulation of the hub location problem, which is a 

quadratic model, is presented by O’Kelly (1987). In this model, p nodes from given n nodes 

should be selected as hubs and the remaining nodes should be allocated to these selected hubs 

so that the total transportation cost is minimized. There are three main assumptions for this 

problem. The first one of these assumptions is that each node should be allocated to exactly 

one hub, which is also known as single allocation in the literature. The hub location problem 

can be classified into two types according to how the demand nodes are allocated to the hubs: 

Single allocation and multiple allocation. If a demand node is restricted to send its flow via a 

single hub, this version of the allocation is called single allocation. On the other hand, if any 

demand node may send its flow via more than one hub, then the multiple allocation comes 

into the picture. Note that the direct flow between non-hub nodes is generally not allowed in 

the hub location problems.  
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Moreover, in this model, it is assumed that there exists a discount factor α  [0,1], 

that provides economies of scale on the inter-hub connections. The real life motivation of this 

assumption follows from the fact that the flow between hubs is sustained with faster and 

larger vehicles or aircrafts. Therefore, the transportation between hubs is less costly and 

requires relatively small amount of time. 

 

Another assumption in the standard hub location problem is the completeness of the 

hub network, that is, each hub node has a direct connection to every other hub node.  

 

The hub location problem is modeled as the p-hub median problem, the hub location 

problem with fixed costs, the p-hub center problem, and the hub covering problem in the 

literature. These models differ mainly on their objectives. In the p-hub median problem, p 

nodes from a given node set are chosen as hubs and the remaining nodes are allocated to these 

hubs and the objective of the problem is to minimize the total transportation cost. This 

problem is presented by O’Kelly (1987). O’Kelly (1992) introduces the hub location problem 

with fixed costs to the literature. In this problem, in addition to the transportation costs, fixed 

costs of operating hub facilities are also included in the objective function; the remaining 

restrictions and requirements are the same as the p-hub median problem. The p-hub center and 

the hub covering problems are proposed by Campbell (1994). The objective of the p-hub 

center problem is either to minimize the maximum transportation cost or the maximum 

travelling time between origin-destination pairs by selecting p hubs from a given node set and 

allocating the remaining nodes to these hubs. The hub covering problem has an inverse 

relationship to the p-hub center problem. The objective of the hub covering problem is to 

minimize the number of hubs to open such that the total transportation cost or the travelling 

time between each origin-destination pair does not exceed a specified value. The objective of 

the hub covering problems might also be to minimize the total cost of transportation and 

operating hub facilities or to maximize the number of nodes covered with a given number of 

hubs.  The details of these problems can be found in the next chapter. 
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In most of the hub location studies the hub networks are assumed to be complete; 

however, the observations on the real life cases showed that this may not be the case. In 

almost all the networks, in order to reach some hub point from another hub point, usage of 

another hub point might be required. In this case another decision is called for, namely, the 

location of the links between hubs. When we think of the cargo delivery systems, sending 

separate trucks from an operation center to all other operation centers is quite costly in terms 

of transportation. Instead, forcing some trucks to visit more than one operation center 

decreases the total transportation cost considerably. 

 

Incomplete hub network is a more obvious concern in airline and telecommunication 

systems. An airline company may schedule several flights from an airport to a large number 

of destinations. Assigning separate aircraft, and accordingly separate air staff for each hub not 

only causes congestion in airports and air networks, but also high operating and transportation 

costs to the company. As a result of this fact, most flights are over some other hubs (airports). 

Also in telecommunication systems, connecting all terminals directly is probably the most 

expensive way of providing good service to the users. Therefore, incomplete networks are the 

matters of real life problems, thus, of network design problems.  

 

In this thesis, we study the single allocation hub covering problem over incomplete 

hub networks. In order to analyze the problem, we focused on the cargo delivery systems. In 

the cargo delivery systems, customer satisfaction is an important concern. Providing high 

quality service with minimum cost is crucial for customer satisfaction in the sector. The cargo 

delivery firms want to minimize their total operating and transportation costs. Other than the 

cost matter, in order to achieve customer satisfaction, the delivery time issue should also be 

considered by the cargo delivery firms. If the delivery time of the parcel is more essential for 

a customer, the customer will most probably choose the service provider that assures the 

shortest delivery time for the parcel even if that service is the most expensive one. Therefore, 

providing quick service for any distance is highly advantageous for the cargo delivery firms. 

With this motivation, the objective of the problem is to provide a high service level such that 
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each parcel is delivered within a specified amount of time with the minimum total 

transportation and operating costs. 

 

The hub covering problem over incomplete hub networks involves the decision on 

the number of hubs, their locations, the network between them, and the allocation of the 

origins to these hubs so that the travelling time from any origin to any destination is within a 

specified bound. A pair of nodes is considered as covered if the travelling time or the 

travelling cost between them on the network constructed is within a specified value. The hub 

covering problem aims to find the minimum number of hubs to open from the node set so that 

each pair of nodes in the set is covered. When we consider covering in terms of travelling 

time, after deciding on the hubs to open, the travelling time from origin i to destination j will 

be the summation of the travelling time from origin i to the hub it is allocated to, discounted 

travelling time from the hub of origin i to the hub of destination j, and the travelling time 

between destination j and its hub. Since we require this summation to be within a certain 

value, we need to choose the hubs to open accordingly.  

 

Let us consider a network with eight nodes; some of the nodes in this network will be 

chosen as hubs, say nodes 3, 4, 5, and 8 in Figure 1a. Then, the links to be established 

between these hubs will be decided up on and the remaining nodes will be assigned to these 

hubs. Since the aim is to keep the travelling time between any origin-destination pair within a 

specified value, all above decisions need to be taken accordingly. An illustration of the 

incomplete hub network can be seen in Figure 1b. When there exist direct connections 

between each hub pair, then the resulting hub network will be complete as in Figure 1a: 

however, if some hubs are not directly connected, then, the resulting hub network will be 

incomplete as in Figure 1b.  
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(a) Complete hub network (b) Incomplete hub network 

Figure 1: The illustration of complete and incomplete hub networks 

 

When we consider the resulting network of a sample design in Figure 1b, the flow 

that originates from node 1 is initially sent to its operation center, node 4, and then depending 

on its destination point, it is either sent to another operation center or the destination point, 

which is assigned to the same hub with node 1. In Figure 2, one can see the path of the flow 

that originates from node 1 and arrives at node 7. 

 

In this thesis, we propose two new mathematical formulations and a tabu search based 

heuristic algorithm for the single allocation hub covering problem over incomplete hub 

networks. We perform several computational experiments on the formulations with CAB data 

set and on the algorithm with both CAB data set and the Turkish Network. 

 

In Chapter 3, we present a detailed formal description of the single allocation hub 

covering problem over incomplete hub network and we propose two new mathematical 

models for this problem.  
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Figure 2: The illustration of the flow on the resulting network 

 

The hub covering problem is an NP-Hard problem (Kara and Tansel, 2000); therefore, 

solving this problem to optimality for realistic sized instances is quite hard. In fact, even 

finding a feasible solution for this problem is rather challenging. Therefore, in order to be able 

to solve larger problems, we develop a tabu search based heuristic. Chapter 4 describes the 

heuristic algorithm we proposed in detail. In this chapter, we also provide a brief description 

of the tabu search algorithm and related literature. 

 

Chapter 5 includes the results we obtained from the computational experiments 

conducted on the models and the algorithm by using the CAB data, as well as the results of 

the implementation of our algorithm on TR data which has 81 nodes. A detailed analysis of 

the results obtained from these experiments is also included in this chapter. 

 

Finally, we discuss the results we obtained and the further possible improvement 

directions and research topics in the last chapter. In the next chapter, the hub location 

literature is analyzed comprehensively. 



8 

 

Chapter 2 

 

LITERATURE REVIEW 

 

 
The hub location problem involves the selection of the hubs and assignment of the 

origins to the selected hubs. The hub location problem is originally introduced by O'Kelly 

(1986a) together with real life examples. After this study, the single assignment hub location 

problem is described by O'Kelly (1986b). In a single assignment hub location problem, every 

node is required to be assigned to exactly one of the hubs chosen; thus, for a node, which is 

not a hub, the only emanating edge is the one that connects this node with its single hub. 

 

The first integer programming formulation proposed for the hub location problem is a 

quadratic model (O’Kelly, 1987). Quite a while, the literature focused on the linearization of 

the quadratic model proposed in this paper. (Aykin (1995); Campbell (1996); A.T. Ernst and 

M. Krishnamoorthy (1996); O’Kelly et al. (1996); Skorin-Kapov et al. (1996)). In addition to 

the integer programming formulation, two heuristic approaches (HEUR1 and HEUR2) are 

presented O’Kelly (1987).  HEUR1, which is also called as ‘nearest hub allocation rule’, 

basically investigates allocating each node to the nearest hub while HEUR2 investigates the 

idea of assigning each non-hub node to either its first or second nearest hub. These heuristics 

are generally quite effective in providing good upper bounds during complete enumeration of 

hub locations. One can refer to Campbell (1994b), Klincewicz (1998), Campbell et al. (2002), 

and Alumur and Kara (2008) as the surveys on hub location problems. 
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O'Kelly (1987) introduces the Civil Aeronautics Board (CAB) data set data, which is 

based on airline passenger interaction between 25 U.S. cities, to the literature and uses the 

CAB data to test the performance of the heuristics proposed in this study. Ernst and 

Krishnamoorthy (1996) introduce the Australia Post (AP) data set, which consists of 200 

nodes that represent postcode districts in Sydney, Australia. Unlike the CAB data set, the flow 

matrix of the AP data set is not symmetrical. 

 

The hub location models studied in the literature commonly have analogous location 

versions. Throughout this thesis, we classify the hub location problems into four groups: the 

p-hub median problem, the hub location problem with fixed costs, the p-hub center problem 

and the hub covering problem according to their objectives. Campbell (1994a) provides the 

first linear integer programming formulation for the p-hub median problem together with 

mathematical formulations for the hub location problem with fixed costs, the p-hub center and 

the hub covering problem. Both single and multiple allocation cases are studied in this paper.  

 

In the following sections, the hub location literature is analyzed in detail under the p-

hub median problem, the hub location problem with fixed cost, the p-hub center problem, and 

the hub covering problem titles together with the definitions of the related problems. 

 

 

2.1 The p-hub Median Problem 

 
Considering the general setup of the hub location problems, n demand points (origins 

and destinations), the flow wij and the per unit transportation cost cij from origin i to 

destination j, and the discount factor α for hub-to-hub transportation are given. The per unit 

transportation cost from origin i to destination j via hubs k and m is denoted by cik + cmj + αckm. 

Then the total transportation cost from origin i to destination j via hubs k and m is wij x (cik + 

cmj + αckm). The objective of the p-hub median problem is to minimize the total transportation 
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cost under specified hub location constraints, which force each node to be allocated to exactly 

one hub, restrict the number of hubs to be located to p, and avoid the direct connections 

between non-hub nodes. Therefore, p hubs need to be selected from given n nodes and the 

remaining nodes should be allocated to these selected hubs so that the total transportation cost 

is minimized. In this problem, the hub network is assumed to be complete. 

 

The first linear integer programming formulation for the p-hub median problem is 

presented by Campbell (1994a). Both single and multiple allocation cases are studied in this 

paper. Skorin-Kapov et al. (1996) present new formulations for both single and multiple 

allocation p-hub median problems with tighter LP relaxations. The comparisons of these 

formulations with Campbell (1994a) show that for the single allocation case, less number of 

variables were used while for the multiple allocation case, less number of constraints were 

used to obtain tight LP relaxations.  

 

Klincewicz (1991) develops the single exchange and the double exchange heuristics 

(exchange one or two hubs with one or two non-hub nodes) for the problem. Based on 

comparisons of these heuristics with clustering heuristics and enumeration heuristics on 

previous works in the literature, the double exchange heuristic seems quite promising for the 

solution of the p-hub median problem. 

 

Campbell (1996) proposes mathematical formulations for both single allocation and 

multiple allocation p-hub median problems and examines the ways of solving single 

allocation problem by using the solutions obtained from multiple allocation problem. Inherent 

in this approach is the idea that the solution of multiple allocation is a lower bound for the 

single allocation problem. For this purpose, initially a greedy-interchange heuristic is 

developed to obtain multiple allocation solutions and then by using multiple allocation 

solution, two other heuristics are proposed to obtain solutions for the single allocation 

problem. The computational comparisons with Klincewicz (1991) show that these algorithms 

outperform the ones in Klincewicz (1991).  
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Skorin-Kapov and Skorin-Kapov (1994) propose a new heuristic based on tabu search 

algorithm. The computational comparisons in this study show that this algorithm performs 

better than heuristics provided by O'Kelly (1987). 

 

Ernst and Krishnamoorthy (1996) provide a new formulation for single allocation p-

hub median problem which requires less number of variables and constraints; thus, is able to 

solve the problems with larger size in shorter durations. The problem is formulated as a 

multicommodity flow problem, but no computational experiments are conducted for the 

model. They develop a heuristic based on simulated annealing which produces solutions, 

which are comparable in terms of both the quality and the computation time with the tabu 

search algorithm proposed by Skorin-Kapov and Skorin-Kapov (1994). By using the 

upperbounds obtained from this heuristic, they also develop a branch and bound algorithm. 

Both algorithms are tested on CAB data set and Australian Post (AP) data set. 

 

Ernst and Krishnamoorthy (1998) develop an efficient heuristic algorithm based on 

shortest path, an explicit enumeration algorithm, and a linear mixed integer programming 

(MIP) for multiple allocation p-hub median problem. The algorithms use the idea that once 

the hub locations are decided, each pair sends its flow from the shortest path over the selected 

hubs. They also propose an LP based branch and bound algorithm and strengthen the lower 

bound by distinguishing valid inequalities and adding them to the LP.  

 

 

2.2 The Hub Location Problems with Fixed Costs 

 

The p-hub median problem aims to minimize only the transportation costs and does 

not take fixed cost of opening hub facilities into consideration. However, these fixed costs 

might be included in the objective function by defining a decision variable that represents the 

decision of opening hub facilities. In the p-hub median problem the number of hubs to open is 

fixed and given. However, in the hub location problems with fixed costs, the number of hubs 
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to open is not specified, it is decided by the model depending on the fixed costs of selecting a 

node as hub. Therefore, the model will decide the number of hubs to open, which nodes to 

choose as hubs, and the allocation of the non-hub nodes to the selected hubs such that the total 

transportation cost and the operating cost (cost of opening a hub) is minimized. O’Kelly 

(1992) introduces the single allocation version of this problem to the literature and develops a 

quadratic integer programming formulation. Campbell (1994a) provides the first linear 

programming formulations for both single and multiple allocation types of the problem as 

well as capacitated and uncapacitated versions. In the capacitated version of this problem, the 

capacity restrictions are on the flow carried by the links. 

 

Abdinnour-Helm and Verkataramanan (1998) provide a new quadratic integer 

programming model which uses the idea of multicommodity flows and a branch and bound 

algorithm, in which the bounds are obtained by using the underlying network of the problem. 

In addition to the branch and bound algorithm, they also develop a genetic algorithm, which 

finds solutions quickly and efficiently. Abdinnour-Helm (1998) presents a new heuristic 

algorithm, which is a combination of genetic algorithm and tabu search. The algorithm locates 

the hubs by using genetic algorithm and construct solutions by nearest allocation, then; these 

solutions are improved by tabu search. The comparisons with genetic algorithm in 

Abdinnour-Helm and Verkataramanan (1998) show that this algorithm outperforms the one in 

Abdinnour-Helm and Verkataramanan (1998). Topçuoğlu et al. (2005) consider the single 

allocation hub location problem with fixed costs and develop a genetic algorithm for the 

problem.  This algorithm performs better than the one in Abdinnour-Helm (1998) on the tests 

conducted over the CAB and the AP data sets. 

 

Ernst and Krishnamoorthy (1999) study the capacitated version of the single allocation 

hub location problem with fixed costs and provide two new formulations for the problem. The 

capacity restrictions are on the amount of flows passing through hubs. In addition to the 

formulations for the problem, two heuristics based on single allocation and random descent 

are developed for obtaining upper bounds to be used in branch and bound method. The 
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computational experiments show that random descent based algorithm performs better in 

small and medium sized problems. 

 

 

2.3 The p-hub Center Problem 

 

The p-hub center problem is a minimax type problem and the objective might be either 

minimizing the maximum cost or the maximum travelling time between any origin destination 

pair.  The center problems have important applications such as locating emergency service 

facilities and vehicles. When the objective of the p-hub center problem might be to minimize 

the maximum travelling time between each origin destination pair, the decisions of the 

problem are the locations of p hubs and the assignment of other nodes to these hubs so that 

the maximum travelling time between origin-destination pairs is minimized. 

 

The first formulation for the p-hub center problem is proposed by Campbell (1994a). 

Although the original formulation is quadratic, a linearization of this model is also presented 

in the paper. 

 

Kara and Tansel (2000) focus on the single allocation p-hub center problem and 

provide three different linearizations of the formulation in Campbell (1994a). They also 

include a new formulation for the p-hub center problem and the linearization of this 

formulation outperforms all the linearizations of the previous model of Campbell (1994a). 

 

Pamuk and Sepil (2001) develop a single-relocation heuristic for the single allocation 

p-hub center problem and to avoid getting stuck at the local optima they adapt tabu search to 

their algorithm.  

 

Ernst et al. (2002) focus on multiple allocation p-hub center problem and propose two 

new formulations together with a heuristic for both single and multiple allocation versions. In 
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addition, a branch and bound algorithm based on shortest path is developed for the multiple 

allocation p-hub center problem, and this algorithm is quite similar to the one in Ernst and 

Krishnamoorthy (1998). 

 

 

2.4 The Hub Covering Problem 

 

In covering problems, some cost or time parameters are restricted to a specified value 

due to the resource limitations or for customer satisfaction. Some variations of the hub 

covering problem might be minimizing the total cost under the restriction of the travelling 

time for any origin-destination pair, or minimizing the number of facilities opened by 

restricting the travelling cost of each origin-destination pair. The objective of the hub 

covering problem might be to minimize the number of hubs to open so that the total 

transportation cost is within a specific value. Then the model needs to decide the number and 

location of the hubs together with the allocation of non-hub nodes to these selected hubs. 

Moreover, the objective of the hub covering problem might also be to minimize the total cost 

as well. When we consider the cargo delivery systems, the firms might want to establish a 

network structure that will enable service for each origin-destination pair in certain time 

period, say 24 hours, with minimum total cost (cost of transportation and operating hubs). 

 

The first MIP formulation for the hub covering problem is developed by Campbell 

(1994a), which mainly studies the hub set-covering problem and the maximal hub-covering 

problem. The hub set-covering problem locates hubs to cover all nodes such that the cost for 

operating hubs is minimized while the maximal hub-covering problem aims to maximize the 

number of nodes covered with given number of hubs. A node is covered if it is close enough 

to the hubs so that hubs can serve these nodes within specified parameters such as maximum 

delivery time.  

Campbell (1994a) introduces the hub covering problem to the literature with a 

quadratic IP model, then he also develops linear models for the problem, but the first 
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computational results are presented by Kara and Tansel (2003). Kara and Tansel (2003) focus 

on the single allocation hub set-covering problem. They provide three different linearizations 

of the original quadratic model together with a new linear model and test the performance of 

these models on the CAB data. The comparisons on these models show that the new model 

outperforms the other linear models. 

 

Wagner (2004) considers the single and multiple allocation hub covering problem and 

proposes new formulations for both of them as well as some preprocessing techniques. Since 

these techniques eliminate some hub assignments, the models require less number of variables 

and constraints than the one in Kara and Tansel (2003).  

 

Ernst et al. (2005) studies the single and the multiple allocation hub set covering 

problem and provide a new formulation for the single allocation problem which is similar to 

the one presented in Ernst et al. (2002), and two new formulations for the multiple allocation 

together with an implicit enumeration method. The comparisons of the model for the single 

allocation hub set-covering problem with the one proposed by Kara and Tansel (2003) 

indicates that the formulation of Ernst et al. (2005) performs better in terms of CPU time. 

 

Hamacher and Meyer (2006) consider different formulations of the hub covering 

problem and pinpoint some facet-defining valid inequalities. They also provide a solution 

methodology for the p-hub center problem that solves the hub set-covering problem for a 

cover radius T (T is the time bound for the hub-set covering problem) by iteratively reducing 

it. 

 

In this thesis, we analyze the single allocation hub covering problem by relaxing the 

complete hub network assumption and we provide two new mathematical formulations, of 

which the objective function includes the fixed costs of opening hubs. Moreover, in order to 

be able to solve realistically sized problems, we develop an effective tabu search based 

heuristic algorithm and conduct several computational experiments on both the formulations 

and the algorithm.  
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Chapter 3 

 

MATHEMATICAL FORMULATIONS 

 

 
Most of the studies in the hub location literature concentrate on the p-hub median 

problem and there are only a few studies that focus on the hub covering problem. The 

application area of the hub covering problem is especially the cargo delivery systems and the 

objective of the problem is to select the minimum number of operation centers (hubs) such 

that the transportation time between each origin destination pair is within the specified time 

bound.  

 

In this study, we focus on a different version of the hub covering problem. In our 

problem, not necessarily all the operation centers have direct connections between each other; 

therefore, some of the connections between operation centers can be established via other 

operation centers. Thus, the network between the hubs can be incomplete or complete 

depending on the need. We consider the single allocation case of the problem. Therefore, no 

direct connections between two demand points (non-hub nodes) are allowed and one demand 

point can be connected to exactly one operation center.  

 

The motivation follows from the fact that for most of the customers of the cargo 

delivery systems rather than the cost of the carriage, the delivery time of the cargo is also 

important especially when the perishable items are considered. Therefore, from the cargo 

companies’ point of view, establishing a transportation network, which aims to deliver any 
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item in certain amount of time period, is welcome since it increases the customer satisfaction 

and revenue accordingly. Furthermore, unlike the completeness assumption of the hub 

networks, the cargo companies prefer not to connect each operation center directly, but link 

some of them over other operation centers. Therefore, investigating the problem over 

incomplete hub networks is meaningful as well. 

 

The mathematical description of the problem is as follows: 

 

Let a node set N with n nodes and a potential hub set H (subset of N) with h nodes be 

given. The model selects some number of hubs from the potential hub set H, constructs the 

links between the hub nodes and allocates the remaining nodes in N to these selected hubs 

based on the single allocation requirements so that the time required to transport a unit flow 

from any origin to any destination is less than a predetermined time bound T and the total cost 

of opening hubs and establishing hub links is minimized.  

 

We modeled the problem with two different approaches. The main difference of these 

two approaches is the way we define the four indexed decision variable of the models. In the 

second model, we restrict the four indexed decision variable defined on the hub network only 

while we do not impose such a restriction for the first model. Before observing the details of 

the models in the forthcoming sections, we define the parameters of the models as follows:  

 

fkm : Fixed cost of opening a hub link between nodes k∈H and m∈H 

fhk: Fixed cost of opening a hub at node k∈H 

tij Travel time from node i∈N to node j∈N  

T : Given time bound 

α : Economies of scale time discount factor for hub-to-hub connections 
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An important note here is that the time discount factor, α ∈[0,1], is different than the 

cost discount factor; and it is expected to be close to 1. One can see the illustration of the 

parameters in Figure 3. 

 

 

Figure 3: Parameters of the models 

 

 

3.1. New Model for the Hub Covering Problem over Incomplete 

Hub Networks 

 

We define the decision variables of the first model as follows: 

 

Xik= 1 if node i∈N is allocated to a hub at node k∈H; 0 otherwise 

Ykm = 1 if there is a hub arc between hub k∈H and hub m∈H (k ≠ m); 0 otherwise 

 = 1 if the arc (k,m) is used on the path from node  to node ; 0 

otherwise  
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Observe that if the variable Xkk= 1 for some k∈H, then, it means that node k is a hub. 

See also Figure 4 for the illustration of the variables. 

 

 
Figure 4: Variables of the first model 

 

The objective function of our mathematical model minimizes the total cost of 

establishing hubs and hub links, and with the previously defined parameters and decision 

variables, our model can be expressed as follows: 

 

Minimize 
 

 

 

Subject to 
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In the objective function, the first term represents the sum of the individual fixed costs 

of establishing hub links; and the second term represents the total cost of establishing hubs. 

 

Since we model the single allocation case of the problem, constraints (2) and (15) 

ensure that every node is allocated to exactly one hub node. By constraint (3), if node i∈N is 

allocated to node k∈H, then, node k∈H is forced to be a hub node; therefore, a node cannot 

be allocated to another node unless it is a hub node.  

 

Constraints (4), (5), and (16) force the nodes that have a direct hub arc between each 

other to be hubs and constraint (6) implies that once a link between two hubs is constructed, it 

will serve for both directions. 

 

When travelling on a path from origin i∈N to destination j∈N, the number of outgoing 

arcs from the origin and the number of incoming arcs to destination is restricted to 1 by 

constraints (7) and (8), respectively. On the other hand, the flow balance on the nodes rather 

than origin and destination is satisfied by constraint (9), by equating the incoming flow to 

such a node to outgoing flow from that node.  

 

While travelling from an origin i∈N to a destination j∈N, if an arc (k,m), of which 

neither i nor j is an end point, is traversed, then, this arc should be a hub arc (10). If instead an 

additional node is traversed, this node should be a hub and needs to be directly connected to 

origin in the case of constraint (11) and to destination in the case of constraint (12). However, 

if a direct arc between the origin and the destination is travelled, then, either both of them 

should be a hub with a direct hub, or at least one of them should be a hub and the other one 

should be allocated to this one (13). For the pictorial explanation of the constraints (10), (11) 

and (13) see Figure 5. One can easily see that the related picture for constraint (12) is quite 

similar to the one for constraint (11). 
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In the first term of constraint (14), the travelling time of all the links traversed while 

going from origin i∈N to destination j∈N is multiplied with the discount factor α and 

summed,  then, the ones which are not hub links are subtracted and added as normal links to 

the summation; consequently, this summation is restricted to be within the time bound . 

 

 
Figure 5: Link variations on paths 

 

 We additionally construct three valid inequalities for our model as follows: 
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The first valid inequality implies that, if there exists a direct hub arc between two 

nodes, then, this arc has to be used while going from one of these nodes to the other one. 

Similar implications are obtained for the arcs between non-hub nodes and hubs by constraints 

(19) and (20). 

 

Our first mathematical model consists of the objective function (1) and the constraints 

(2)–(20). Assuming that h = n, the model has O(n4) binary variables and O(n4) constraints.  

 

 

3.2. The Model with Path Variables Restricted to the Hub 

Network 

 
After constructing the first model, we noticed that we do not need to keep the 

information of the whole path from an origin to a destination. Since the information of 

starting and the ending nodes are known by the allocation variables, the only lacking 

information is the path traversed in the hub network. In order to use the advantage of this fact, 

we define the path variables, , over the hub network in our second model. We also make a 

slight change in the description of the Ykm variable, by defining them for k < m. The Xik and 

Xkk variables are defined in the same way as the first model. The formal definition of Ykm and 

 are as follows: 

 

Ykm = 1 if there is a hub link between hub k and hub m (k < m); 0 otherwise 

 = 1 if the hub link {k,m} is used on the path from hub i to hub j in the direction 

from k to m; 0 otherwise 

rk = radius of hub k 
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We define the decision variable, radius r, similarly to the one used in Ernst et al. 

(2005). The radius of a hub represents the time value that is greater than or equal to the 

travelling time from that hub to the any node allocated to it. We need radius values of the 

hubs in this model because we define the path variables restricted to hubs. Thus, in order to 

check if travelling time between any origin and destination pair is within the time bound, 

instead of considering each node allocated to a certain hub, checking only the radius values of 

the hubs provides the sufficient information. 

 

The objective function of this model is exactly the same with the previous model and 

the first set of constraints model involves the constraints (2), (3), and (15) from the previous 

model. The other constraints of this mathematical model can be described as follows: 

 

Minimize  (1) 

Subject to  

(2), (3), (15) 
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This time we define constraints (4’) and (5’) in accordance with the new definition of 

the Ykm variable. By constraint (21) if a hub link is to be used for a given origin-destination 

hub pair, that hub link has to be established. This constraint also ensures that at most one of  

 and  can be one since they need to provide a simple directed path. By constraints 

(16’) and (17’) path variables and the hub link decision variables are required to be binary.   

 

Constraints (22), (23) and (24) are the flow balance constraints in the hub network. 

These constraints ensure that every hub node sends and receives one unit of flow, and the 

connectivity in the hub network is established. By constraint (22), if both nodes k and j are 

hubs, then the origin hub k sends one unit of flow to the destination hub j in the hub network. 

By constraint (23), if nodes i and k are both hub nodes, then the destination hub k receives one 

unit of flow from the origin hub i in the hub network. In the case where hub node k is neither 
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the origin nor the destination, the incoming flow must equal the outgoing flow, by constraint 

(24). In this model, we route the flow only in the hub network; thus, constraints (25) and (26) 

ensure that the origin and destination nodes can only be hub nodes.  

 

For each hub, the maximum travel time between that hub and the nodes that are 

allocated to it is calculated by the r variable in constraint (27). By the time bound constraint 

(28), for each pair of hubs, the radii of these hubs plus the discounted total travel time 

between these hubs using the established hub links must not be greater than the given time 

bound, T.  

 

In order to explain this mathematical model thoroughly, let us consider the example 

illustrated in Figure 6. 

 

Let Figure 6 represent the resulting network of a potential solution. According to this 

solution, X33 = X44 = X66 = X77 = 1 implying that nodes 3, 4, 6, and 7 are chosen as hub nodes. 

The variables X13 = X23 = X54 = X86 = X97 = 1 represent the allocations of the non-hub nodes to 

the hub nodes. Moreover, Y34 = Y36 = Y47 = Y67 = 1 indicate the constructed hub links. All other 

X and Y variables have zero values at this solution. 

 

Figure 6: The resulting network of a solution 
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All of the Z variables associated with the nodes 1, 2, 5, 8, and 9 are forced to be zero 

by constraint (25) and (26). By constraints (22), (23), and (24) each of the hub nodes sends 

one unit of flow to all other hub nodes. Consider the flow from hub node 3 to hub node 7. 

Hub node 3 sends one unit of flow to hub node 7 in the network by constraint (22). Thus 

either Z34
37 or Z36

37 must be equal to 1. Similarly, hub node 7 must receive one unit of flow 

from hub node 3 by constraint (23). Thus, either Z47
37 or Z67

37 must be equal to 1. By 

constraint (24), the incoming flow must be equal to the outgoing flow for rest of the Zkm
37 

variables. Note that by constraint (21), for some hub link {i,j}, either one of Zkm
37 and 

Zmk
37can take on the value one. Thus, there exist exactly 2 possible paths from hub node 3 to 

hub node 7. First one is by using hub arcs (3,6) and (6,7) and the second one is by using hub 

arcs (3,4) and (4,7). The model decides which path to choose by using the time bound 

constraint (28). Assume that αt34Z34
37 + αt47Z47

37 + r3 + r7 > T and αt36Z36
37 + αt67Z67

37 + r3 + r7 

≤ T. Then the model lets Z36
37 = Z67

37 = 1 and all other Zkm 
37 variables to be zero. 

 

The second mathematical model consists of the objective function (1) and the 

constraints (2), (3), (4’), (5’), (21)-(30), (15), (15’) and (17’). Assuming that h = n, the model 

has O(n4) binary variables and O(n4) constraints.  

 

As expected, for greater values of n, the models result in a large number of variables 

and constraints, which will make them harder to solve to optimality. Thus, we propose a tabu-

based heuristic for our model in the next section. 
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Chapter 4 

 

TABU SEARCH BASED HEURISTIC 

ALGORITHM 

 

 
It is a well known fact that most of the NP-Complete problems cannot be solved to 

optimality for realistically sized instances. For the problem that we are studying, even finding 

a feasible solution is challenging. Therefore, we decided to develop a heuristic algorithm for 

our problem to be able to solve large problems. In order to avoid getting stuck at local optima, 

we employed ideas from the well-known tabu search heuristic methodology. A brief 

description of the tabu search methodology and related literature can be found in the 

following section. 

 

 

4.1 A Brief Description of Tabu Search 

 
Tabu search is a meta-heuristic, which avoids getting stuck at the local optima despite 

it explores the solutions with a local search procedure. The term tabu search is originated by 

Glover (1986) which introduces the term meta-heuristic. Tabu search incorporates the 

adaptive memory and the responsive exploration in solving problems. The adaptive memory 
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feature allows searching the solution space efficiently and effectively since the movements 

are performed according to the information collected during the search. The prominence of 

the responsive exploration arises from the idea that bad movements might produce better 

results than the good ones. A broad investigation of Tabu Search methodology can be found 

in the book by Glover and Laguna (1997).  

 

The TS methodology is widely used in solving hard optimization problems such as 

scheduling, telecommunication, network design, and location problems. Since the hub 

location is a rather new research area, only a few implementions of TS algorithm for the hub 

location problems are available in the literature. Skorin-Kapov and Skorin Kapov (1994) 

propose a heuristic method based on tabu search for the p-hub median problem. Abdinnour-

Helm (1998) presents a heuristic algorithm, which is a combination of genetic algorithm and 

tabu search for the hub location problem with fixed costs. Pamuk and Sepil (2001) develop a 

single-relocation algorithm with tabu search for the p-hub center problem. There exists no 

implementation of tabu search methodology for the hub covering problem in the literature. 

Thus, our study is the pioneering work in this respect. In the following section, we explain the 

general structure of our heuristic algorithm. 

  

4.2 General Structure of the Proposed Heuristic Algorithm 
 

The tabu search based heuristic algorithm we proposed mainly consists of the 

construction and the improvement phases. Initially, the algorithm aims to construct several 

feasible solutions for the problem and after obtaining these feasible solutions, it looks for 

possible improvements on these solutions. The improvement on a feasible solution basically 

means a decrement on the total cost by removing some hub links from this solution without 

violating the feasibility. In fact, removing some links from some solution may create a new 

solution; therefore, we can also define improvement as searching for new feasible solutions 

that brings smaller cost values. 
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The algorithm starts with choosing a set of initial hub locations. For this purpose, a 

strategy, which is based on a relationship between the time distances of the nodes to each 

other and the specified time bound value, is developed. After a set of initial hub locations is 

chosen, the algorithm allocates the rest of the nodes to these hubs according to the allocation 

strategies that we develop and it constructs the hub network. The algorithm does not start with 

a complete solution but with a partial solution that can be either feasible or infeasible. This 

partial solution is a set of hubs and it does not guarantee a feasible allocation construction for 

further steps. In order to construct complete solutions from this partial solution, three different 

construction methods, which are based on different allocation strategies, are used. In each of 

these allocation strategies, initially a complete network is constructed between the selected 

hubs and feasible allocations are searched over this complete network. As mentioned earlier, 

when a feasible solution is obtained, the search for better feasible solutions starts in the 

improvement phase. For this purpose, the hub links that do not lead to infeasibility when 

removed are taken off from the hub network.  

 

The construction phase is performed for a specified number (NeighIteration) of 

random neighbors of a set of hub locations. These neighbors are obtained by random 

exchange of a hub node with a non-hub node. The neighbor that provides a feasible solution 

with the best objective function value is selected for the next move. If no feasible solution can 

be obtained within 2*NeighIteration neighbor traversals, a neighbor is selected randomly for 

the next move even if it is infeasible. Thus, our algorithm allows moving to infeasible 

neighbors of a solution. 

 

The construction and improvement stages are performed at each move and the best 

among all the feasible solutions produced by the algorithm is reported. To sum up, the 

algorithm tries to find new solutions initially by changing the hub set, then by constructing the 

allocations, and, finally, by reducing the hub connectivity. 

 

In order to avoid getting stuck at a local optimum solution, both worse and better 

feasible solutions are accepted in moving to a neighbor unless they constitute a tabu move 
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(movement to the forbidden neighborhood). Incidentally, a list of tabu moves is kept to 

prevent cycling.  

 

We provide formal and detailed descriptions of the steps of the algorithm below.   

 

Solution: In a solution, all hub locations and allocations are determined, and the hub 

network is constructed, but its feasibility is not guaranteed. 

 

Feasible solution: A solution is feasible if it guarantees that the shortest travel time 

from each origin to each destination is within the time bound. 

 

Move: At each iteration of the tabu search, a base hub set is chosen to identify the 

solutions that might be obtained from its neighborhoods. At the beginning, this hub set is 

chosen from the initial hub locations set. During the following iterations, this hub set is 

chosen from the neighborhood of the base hub set of the previous iteration, with some criteria. 

The selection of the base hub set represents a move in the algorithm. 

 

Initial hub locations: Finding a starting feasible solution for the hub covering problem 

is difficult when the time bound value is tight. Therefore, instead of starting the algorithm 

with a feasible solution, initially we construct several initial hub sets via a strategy we 

developed and then, by selecting one of these hub sets we try to generate feasible solutions by 

traversing neighbors of this base hub set.  

 

Neighborhood: We define neighborhoods of solutions over the hub sets. A neighbor of 

a hub set Hi is another hub set Hj obtained by exchanging the role of exactly one of the hubs 

of Hi with a non-hub node. At each iteration of the algorithm, a specified number 

(NeighIteration) of random neighbors of the related hub set are generated as candidates for 

the next move.  
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Construction of the initial hub sets: 

 

During the formation of initial hub sets, initially an nxn covering matrix = [aij], is 

constructed as follows:  

 

aij=  

 

where T is the time bound.  

 

For each node i∈N, the following steps are repeated: node i is selected as a hub and 

the nodes that are not covered by node i are collected in a set.  Among the remaining nodes, 

the node that covers the elements of this set the most is selected as another hub (if more than 

one such node exists, the remaining steps are followed for each case) and the covered 

elements are removed from the set.  

 

Until all nodes are covered, the node that covers the uncovered set the most is selected 

as the hub and the elements covered by this hub are removed from the set. At the end of this 

process, at least one or more hub sets, which possibly contain different number of nodes, are 

created. Among the constructed hub sets, the ones that contains the minimum number of hubs, 

are selected and included in the initial hub locations set, say locationsSet, of the algorithm. 

Note that, for each of the elements of this set, although the allocations to hubs are within the 

time bound, the locations are not guaranteed to provide feasible solutions.  

 

Selection of the base hub sets: 

 

While the time limit is not exceeded, each hub set in locationsSet is chosen as the base 

hub set of the algorithm. If the tabu iteration limit is reached for a base hub set with no 
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feasible solution, a randomly selected node is added to this base hub set, increasing the set 

size by one, and the same steps are repeated until a feasible solution is obtained unless the 

time limit is exceeded. If all the elements of locationsSet are traversed before the time limit, 

algorithm continues to select them for one more time. 

 

 

Solution Construction: 

 

When the locations of the hubs are determined, in order to construct feasible solutions 

with this given set of hubs, we perform three different allocation strategies: Type I, Type II, 

and Type III allocation. During all the allocation strategies, the feasibility of the solutions is 

determined by checking the time bound constraints of the problem. At the beginning of each 

allocation strategy, the hub network is assumed to be complete. As soon as a feasible solution 

is obtained at the end of any allocation strategy, the algorithm focuses on the hub network. To 

obtain better feasible solutions with the given allocations, hub links are removed randomly 

from the complete hub network. If the removal of a link leads to infeasibility, that link is 

added back to the solution, and another hub link is chosen, again randomly, to be removed. 

We describe our three allocation strategies as follows: 

 

 

Type I allocation 

 

In this strategy, as a starting point, the allocations are decided using the nearest 

allocation heuristic HEUR1 of O’Kelly (1987), i.e., every non-hub node is allocated to its 

nearest hub node. We then concentrate on the hub with the largest radius, with respect to the 

nearest allocation strategy. We allocate all non-hub nodes to the hub with the largest radius, as 

long as this allocation does not increase the radius of this hub. In this way, the radii of some 

hubs may decrease, while the largest radius in the network stays constant, and the chance of 

reaching feasible solutions increases. If no feasible solution can be obtained with this 

allocation strategy, two additional processes are performed respectively: Initially, the radii of 
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all hubs are calculated, and, for each hub, the nodes allocated to it are distributed to the other 

hubs, as long as their radii do not increase. In the second process, all the nodes are first 

allocated to their nearest hub. Then, for each hub h, the following steps are repeated: the node 

i that determines the radius value of h is removed from the network. Now, since we removed 

node i from the network, another node, say node j, will determine the radius of hub h. 

Afterwards, the feasibility of the network is checked and in this network, if the shortest path 

from j to any other node is not within time bound, then, j is also removed from the network 

and the feasibility is checked for the new network with n-2 nodes. When the network is 

feasible, the search of hubs for nodes i and j to be allocated begins. We need to allocate nodes 

i and j to some hub nodes since we are to obtain a feasible solution for the problem with all 

nodes. Note that i and j are allowed to be allocated to different hubs. If one of them cannot be 

allocated to a new hub k such that the feasibility is not violated, then, another hub h is chosen 

for the same process starting from nearest allocation of all nodes. In this process, we remove 

at most two nodes, which are allocated to hub h, from the network. 

  

 

Type II allocation 

 

In this strategy, first, we calculate a value that we call the potential radius for each 

hub. The potential radius is the maximum possible radius value for a hub node that will not 

exceed the given service time bound, T. In the beginning, without any allocations, since we 

constructed a complete hub network, the potential radius value of any hub is T – α * (the 

maximum travel time from that hub to another hub). We allocate each non-hub node, starting 

from the non-hub node with the smallest index, to a randomly chosen hub to which the travel 

time is no more than the calculated potential radius. When a non-hub node is allocated to a 

hub, the potential radii of all other hubs are updated accordingly. If, at some point there is no 

feasible allocation for a non-hub node, we discontinue this strategy. 
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Type III allocation 

 

In this strategy, all non-hub nodes are first allocated to only one hub, say h1, in the hub 

set. If this allocation is not feasible, the non-hub node that determines the radius of h1 is 

allocated to another hub, h2 (for the beginning h1 is the hub with the smallest index and h2 is 

the hub with the second smallest index). All non-hub nodes allocated to h1 are selected one by 

one, in decreasing order of travel time to hub h1, until the feasibility is reached or until all 

non-hub nodes are allocated to h2. If feasibility is not achieved by any allocation from h1 to h2, 

allocations from h1 to h3, h4…, from h2 to h3, h4… and all other combinations are checked, that 

is, all non-hub nodes will be allocated to h1 and then from h1 to h3, one by one, from h1 to h4, 

one by one. Then, all non-hub nodes will be allocated to h2 and then from h2 to h3, one by one, 

from h2 to h4, one by one, and so on. Note that the Type III allocation strategy restricts all 

allocations to, at most, two hubs. 

 

During the experiments we conducted on the individual allocation strategies, we 

observed that the least time-consuming strategy is Type I allocation, while the most time-

consuming one is Type II allocation. On the other hand, Type II and Type III allocations may 

produce feasible solutions when no feasible solution can be obtained via Type I allocation. 

Therefore, in order to obtain good solutions in reasonable amounts of time, we primarily 

perform Type I allocation for each hub set. If no feasible solution can be obtained by this 

strategy, Type II allocation is applied. The Type III allocation strategy is required, only if 

feasibility is not achieved with the first two strategies.  

 

Feasibility Check: 

 

The feasibility of a constructed solution is checked as follows: initially a configuration 

matrix corresponding to the hub network of the solution is constructed. In this matrix, the 

indices corresponding to the links opened between the hubs have their time value multiplied 

by the discount factor, and the other indices have an infinite value. Then, the radius values of 
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the hubs are calculated. Two conditions must be satisfied for a feasible solution: i) traversing 

any radius twice should take no more than the time bound, and ii) for each hub pair hi and hj, 

the summation of r(hi), r(hj), and the shortest path between hi and hj times α should be no 

greater than the time bound T, where r(hi) is the radius value of hub hi. The shortest path 

between hi and hj is calculated by using the configuration matrix as the distance matrix in 

Dijsktra’s algorithm (Ahuja et al., 1993). 

 

Tabu search iterations: 

 

The search starts with an initial hub set. At any iteration, the algorithm moves to a 

neighbor hub set with the best feasible solution. If no feasible solution is found within 

NeighIteration neighbors of a hub set, another subset of NeighIteration neighbors is generated 

and searched. If still no feasible solution is found within these neighbors, a random infeasible 

neighbor is chosen for the next hub set. In order to prevent cycling, the same node exchanges 

are avoided for a certain number of iterations, which is called tabu tenure in the literature 

(Glover and Laguna, 1997). If no feasible solution is found within the specified number of 

tabu iterations, another hub is randomly added to the hub set, and the same steps are followed. 

The algorithm continues to randomly select base hub sets and traverse their neighbors until a 

specified time limit is reached.  

 

We present a flow chart of the algorithm in Figure 7. 
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Figure 7: The flowchart of the heuristic algorithm 
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4.3 Illustration of the Algorithm with Examples 

 

In order to describe the steps of the algorithm more practically, we provide 

explanations on a sample instance of the problem from the CAB data where n=10, α=0.2, 

T=1118 and the time matrix is as follows; 

 

 

 

Construction of the initial hub sets: 

 

The related covering matrix for this instance of the problem will be as follows: 
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Selection of the initial hub node: 

 

In order to produce more initial hub sets, for each node we will repeat the same initial 

hub sets construction steps, which start with choosing that node as the initial hub. When we 

choose the initial hub as node 1, then, the hub set = {1} and the uncovered nodes set={2, 3, 4, 

7, 8, 9, 10}. 
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Now, node 2 and node 9 are the ones that cover the remaining elements the most. 

Then, we select node 2 as the second hub: hub set = {1, 2}, uncovered nodes set = {4, 7, 8, 

10} 

 

 
 

At the end, starting with node 1 and choosing node 2 as the second provides the hub 

set {1, 2, 7, 4, 8}. The way that nodes are covered by the hub set {1, 2, 7, 4, 8} can be seen in 

Figure 8. 

 

 

Figure 8: The coverage of the hubs while obtaining hub set {1, 2, 7, 4, 8} 



41 

 

 

We will repeat the same procedures by choosing nodes 2, 3,…, 10 as the initial hub, 

respectively. When we start with node 6 as the initial hub and pick node 7 as the second hub, 

the hub set {6, 7, 8} will be constructed while picking node 10 as the second hub will give the 

hub set {6, 8, 10} (Observe how the nodes are covered by the hub set {6, 7, 8} from Figure 

9). No other choice establishes a hub set with less number of elements. Therefore, among all 

the hub sets produced, the ones with three hubs will be selected for the further steps (selection 

of the base hub set).  

 

 

Figure 9: The coverage of the hubs while obtaining hub set {6, 7, 8}  

 

When we apply Type I allocation to the hub set {6, 7, 8} that we obtained from the 

previous steps, it results as follows: after the nearest allocation, nodes 1,2,3,4,5 and 9 are 

allocated to hub node 6 and node 10 is allocated to hub node 7. Then, the radius values 

r6=559, r7=222, and r8=0 (See Figure 10). 
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Figure 10: The solution obtained after the nearest allocation 

 

The largest radius value belongs to hub node 6. When we try to allocate node 10, 

which is currently assigned to hub node 7, to hub node 6, we see that this action increases the 

radius of hub node 6. Therefore, we do not change the allocation of node 10. Now, we check 

the feasibility of the obtained solution. The complete hub network with discounted time 

values is as follows: 

 

 
 

Then,  

 

r6 + r7 + αt67 = 559 + 222 + 202 = 983 

r6 + r8 + αt68 = 559 + 0 + 243.4 = 802.4 

r7 + r8 + αt78 = 222 + 0 + 132.8 = 354.8 

 

which means that the obtained solution is feasible. Since we obtained a feasible solution, we 

start searching for hub links that do not lead to infeasibility when removed from the network 
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and we do not consider Type II and Type III allocation strategies for this base hub set. If we 

remove link {7,8} from the solution, then the total travelling time from node 8 to node 10 is r7 

+ αt67 + αt68 = 222 + 202 + 243.4 = 667.4. Since the other pairs are already feasible, this 

solution is also a feasible solution (see Figure 11 for the new solution). 

 

 

Figure 11: The solution with incomplete hub network 

 

In order to illustrate the steps of the second process of Type I allocation, let us 

consider the instance with the same set of nodes with α=0.4 and T=970. When we construct 

the initial hub sets, the initial hub sets with minimum size will have four elements and {3, 5, 

7, 8} will be one of them. When we apply the same Type I allocation procedure to this hub 

set, before moving to the second process of Type I allocation, we obtain the following 

infeasible solution on hand: H3={2, 3}, H5={1, 4, 5, 6, 9}, H7={7, 10}and H8={8}, where Hi 

represents the set of nodes allocated to hub i. Then, r3=370, r5=373, r7=222 and r8=0. 

Furthermore, we recognize that none of the non-hub nodes can be allocated to another hub 

node without increasing the radius value of that hub (See Figure 12). Therefore, we continue 

with the second process and remove node 2 from the network.  Since the removal of node 2 

achieves the feasibility in the network, we stop removing nodes and start looking for a 

feasible allocation for node 2. If we allocate node 2 to hub node 5, r5 increases to 430 but the 

solution remains feasible. Thus, we obtain a feasible solution via Type I allocation (See 

Figure 13 for the feasible solution). 
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Figure 12: Infeasible solution obtained before the second process of Type I allocation 

 

 

Figure 13: Feasible solution obtained after the second process of Type I allocation 

 

Now, let us apply Type II allocation to hub set {3, 5, 7, 8} for this instance.  

 

αtij 
 

potential radius 

 
3 5 7 8 

  
3 0.0 300.8 617.2 706.4 

 
263.6 

5 300.8 0.0 317.2 432.4 
 

537.6 

7 617.2 317.2 0.0 265.6 
 

352.8 

8 706.4 432.4 265.6 0.0 
 

263.6 
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We start allocating the non-hub nodes from the non-hub node with the smallest index, 

thus, we pick node 1, allocate it to node 5 and update the potential radius values accordingly.  

 

 potential radius 

 
 

3 263,6 

5 537,6 

7 279,8 

8 164,6 

 

All other non-hub nodes except node 10 will be assigned to hub node 5 and node 10 

will be assigned to node 7 at the end of this allocation strategy. 

 

Finally, in order to illustrate Type III allocation strategy, we are going to examine the 

same hub set of the same instance. Initially, we allocate all the non-hub nodes to hub node 3. 

In this case, node 10 determines the radius of hub node 3 (See Figure 14).  

 

 

Figure 14: The solution obtained after all non-hub nodes are allocated to hub node 3 

 

Since this solution is infeasible, we allocate node 10 to hub node 5. Then, the radius of 

hub node 3 is determined by node 1 (See Figure 15); however, we still cannot obtain a 

feasible solution. Thus, we allocate also node 1 to hub node 5. By repeating this procedure, 
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we allocate all non-hub nodes to hub node 5 (Figure 16). Since we cannot achieve feasibility, 

we reallocate the non-hub nodes to hub node 3, and then allocate them from hub node 3 to 

hub node 7, one by one; then to hub node 8.  

 

 

Figure 15: The solution obtained after node 10 is allocated to hub node 5 

 

 

 

Figure 16: The solution obtained after all non-hub nodes are allocated to hub node 5 

 

Then, we turn back to the beginning and assign all non-hub nodes to hub node 5. In 

this case, assigning node 10 to hub node 7 produces the feasible solution in Figure 13. Note 

that all three solutions we obtained from different allocation strategies for the same instance 

are exactly the same. However, since our algorithm moves to another hub set after obtaining a 
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feasible solution via Type I allocation, it does not consume extra time for searching this 

solution with other allocation strategies.  
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Chapter 5 

 

COMPUTATIONAL RESULTS  

 

 
In order to test the performance of our models and heuristic, we performed several 

experiments primarily over the CAB data. Since no real time data is provided for the CAB 

data set, similar to other hub covering studies in the literature, we used distance values for 

time data in our computations by setting the time value between two points directly equal to 

the distance value between them (tij = dij where dij is the distance between node i and node j). 

In addition, in order to see the performance of our heuristic for larger data, we conducted 

additional experiments on TR data, which consists of 81 cities in Turkey. Furthermore, we 

took the fixed cost of opening hub facilities fhk=100 and fixed for all nodes (O’Kelly, 1992) 

for the experiments on the CAB data. 

 

In addition to the fixed cost of opening hub facilities, in order to be able to establish 

incomplete hub networks, we also need fixed costs for hub links to include in the objective 

function. The fixed cost value of a hub link between two nodes depends on both the travel 

distance and the flow between these nodes in several applications of the hub location problem. 

By including flow in the fixed cost value, operational costs can also be reflected to the 

solution.   In reality, the distance between two nodes directly affects the cost of establishing a 

link between them while the flow value between them inversely affects this cost value. 

Following from this fact, we introduced a more realistic data set to the literature by 

calculating the fixed cost of a hub link between node i and node j as follows:  
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where dij is the distance between nodes i and j, and wij is the flow between nodes i and j. 

 

For our computations, we assumed H=N in all of the test instances. For the rest of the 

parameters, we used the values reported in Table 1. As can be seen from Table 1, during our 

computations we used all α values from the hub literature for the CAB data set. 

 

Each value in the last five columns of Table 1 represents the time bound value for an 

instance. The instances in Table 1 include both tight and loose time bound values. Kara and 

Tansel provided the optimal values of p-hub center model over complete hub networks for the 

15 instances for p=2, 3, 4 and α= 0.2, 0.4, 0.6, 0.8, 1.0 combinations. These values correspond 

to the highest possible bounds for our problem since they correspond to complete hub 

networks. However, since our problem is a covering problem we take these 15 instances as 

our time bounds. In our instances, for each n and α combination we provide one tightest 

bound that represents the optimal value of the p-hub center problem where p=4 for that n and 

α combination. We also included the bounds that will provide solutions with p=2 and 3. Then, 

since we wanted to create 5 instances for each n and α combination, we created two additional 

bounds, which are calculated as follows: we take the average of the tight bounds for two 

consecutive p values for a specified α, and we obtain a loose bound for the larger p value for 

that α. For instance, for n=10 and α= 0.2, 1425 is the optimal value when p=2 and 1118 is the 

optimal value when p=3 for p-hub center problem. By taking the average of 1425 and 1118, 

we obtain a new time bound value equal to 1271.5. Since 1271.5 is smaller than the tight 

bound for p=2, no feasible solution with p=2 can be obtained with this bound, however, since 

it is greater than 1118, it represents a loose bound for the solution with p=3. In the same 

manner, 975 is a loose bound for p=4. 
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We solved our integer programming models by using CPLEX 10.1 on a personal 

computer with a 2.00 GHz Intel Core 2 Duo processor and 2 GB of RAM. We solved our first 

model for all the CAB instances for n=10 and n=15 and second model for all instances listed 

in Table 1. While solving the models, we limited the CPU time to two hours on CPLEX. In 

order to test the performance of our heuristic algorithm we applied it to the same CAB 

instances.  

 

In our computations with the CAB data set we used a tabu list with a size of 5, the 

number of tabu iterations was 500, the number of neighbors to be detected at each iteration 

(NeighIteration) was 50 and the time limit was 100 seconds for the instance with 10 nodes 

and 600 seconds for the instances with 15 and 20 nodes. Table 2 reports the results obtained 

from the first model, the second model and the heuristic with 10 nodes.  

 

n α T 

10 

0.2 1425 1271.5 1118 975 832 

0.4 1627 1406 1185 1077.5 970 

0.6 1758 1572.5 1387 1267.5 1148 

0.8 1758 1673.5 1589 1523 1457 

1 1839 1815 1791 1778.5 1766 

15 

0.2 2004 1877 1750 1546 1342 

0.4 2162 1961 1760 1598 1436 

0.6 2214 2029 1844 1800 1756 

0.8 2424 2294.5 2165 2122.5 2080 

1 2611 2605.5 2600 2600 2600 

20 

0.2 1892 1720.5 1549 1452.5 1356 

0.4 2162 1961 1760 1616.5 1473 

0.6 2278 2137 1996 1915.5 1835 

0.8 2508 2386 2264 2209 2154 

1 2611 2605.5 2600 2600 2600 

 

Table 1: Test bed for the CAB data set. 
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In Table 2, the third column presents the optimum objective function value and the 

columns under “Model 1” and “Model 2” present the CPU time requirement in seconds for 

the first model and the second model, respectively. The CPU values are the ones reported by 

CPLEX. The columns under Model 1 represent the CPU time requirement for the first model 

without valid inequalities and with valid inequalities, respectively. The objective function 

value and the gap of the heuristic from the best known solution are reported under “Tabu 

Heuristic”. The column labeled Bcpu reports the CPU time when the best solution is obtained 

by the heuristic algorithm for the first time. In the last column of this table, the number of hub 

links opened in the best solution found by the heuristic is reported in order to observe the 

solutions with incomplete hub network. The average and maximum CPU time requirements in 

seconds, for both the models and our heuristic are listed in the last two rows of Table 2 as 

well. 

 

 The experimentations we performed on the individual valid inequalities for the first 

model revealed that by including all three valid inequalities in the first model we obtain better 

results in terms CPU time when compared to including each inequality individually. 

Furthermore, when the valid inequalities (18) and (19) or (18) and (20) are inserted in the first 

model, the model performs as good as the one with all valid inequalities. On the other hand, 

including only the constraints (19) and (20) in the model performs worse than the case with 

three valid inequalities. Therefore, we decided to include all valid inequalities in the first 

model.  

  

Note from Table 2 that CPLEX solved all the instances with 10 nodes optimally in an 

average of 52 seconds of CPU time requirement for the first model without inequalities and 

thirty-eight seconds of CPU time requirement for the first model with valid inequalities while 

it took a little less than six seconds of CPU time requirement for the second model. When we 

compare the results for the first model with inequalities and without inequalities, we observe 

that on the average the model with valid inequalities perform better in terms of CPU time  
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Test Bed   

Model 1 

Model 2 Tabu Heuristic without v.e. with v.e. 

α T Obj. 
CPU Time 

(sec) 

CPU 
Time 
(sec) 

CPU 
Time 
(sec) Obj. 

Bcpu 
(sec) Gap  

Number of 
Hub Links 

0.2 1425 206.374 1.612 1.564 1.892 206.374 0.141 0 1 

0.2 1271.5 306.631 3.990 1.085 2.422 306.631 0.752 0 2 

0.2 1118 308.195 0.260 0.691 1.070 308.195 0.327 0 2 

0.2 975 413.927 27.710 1.532 1.827 413.927 1.805 0 3 

0.2 832 423.804 69.066 3.772 2.380 423.804 0.248 0 4 

0.4 1627 206.374 3.473 1.985 3.725 206.374 0.147 0 1 

0.4 1406 306.631 32.376 8.341 2.576 306.631 2.152 0 2 

0.4 1185 317.359 1.881 14.255 1.746 317.359 0.189 0 2 

0.4 1077.5 413.927 39.141 1.800 1.836 413.927 3.431 0 3 

0.4 970 435.865 12.328 19.670 2.637 435.865 1.961 0 4 

0.6 1758 221.938 85.587 33.573 5.331 221.938 0.508 0 1 

0.6 1572.5 308.195 45.378 21.166 4.151 308.195 2.857 0 2 

0.6 1387 319.180 71.260 25.679 4.800 319.180 1.916 0 3 

0.6 1267.5 435.865 100.286 104.176 15.409 435.865 6.345 0 4 

0.6 1148 444.084 37.712 11.435 9.061 444.084 4.534 0 5 

0.8 1758 221.938 16.415 25.548 2.838 221.938 0.147 0 1 

0.8 1673.5 313.089 23.489 27.352 9.677 313.089 2.102 0 3 

0.8 1589 319.180 26.514 52.791 8.314 319.180 1.977 0 3 

0.8 1523 413.037 163.259 80.705 14.646 413.037 5.741 0 4 

0.8 1457 453.790 166.612 168.035 19.630 453.790 5.586 0 6 

1 1839 201.867 6.519 2.812 1.605 201.867 0.649 0 1 

1 1815 306.828 75.028 75.491 6.466 306.828 1.929 0 3 

1 1791 319.180 57.171 36.827 5.360 319.180 2.046 0 3 

1 1778.5 413.037 99.607 114.166 11.694 413.037 5.987 0 5 

1 1766 422.742 75.664 69.780 11.857 422.742 5.639 0 6 

                    

Average   51.753 37.648 5.879   2.365 0   

Maximum   166.612 168.035 19.630   6.345 0   

 
 

Table 2:  Computational comparison of Model 1, Model 2 and the heuristic for n=10. 



53 

 

requirements. Although the first model performed slightly better in terms of CPU time for 

some of the instances, the second model outperformed the first model in terms of CPU time 

on the average. The maximum CPU time requirement for this network by Model 1 was 

around 168 seconds while it was less than 20 seconds for Model 2. Thus, Model 2 performs 

better in terms of maximum CPU time requirement as well. Furthermore, our heuristic was 

able to solve all 10 node instances optimally. Observe from Table 2 that on the average the 

heuristic is able to find the optimal solutions in less than 3 seconds.  

 

For the instances with 15 and 20 nodes we only report the results obtained from the 

second model and the heuristic since the first model performs considerably worse than the 

second model.  

 

The comparison of the results obtained from the second model and the heuristic with 

15 nodes is reported in Table 3. As it can be seen from Table 3, when the number of nodes 

becomes 15, the average CPU time requirement of the second model goes up to nine minutes, 

with a maximum value of about 49 minutes. These considerably large CPU time values 

actually indicate that, even with a small number of nodes, it is hard to solve this problem to 

optimality with the models proposed. On the other hand, our heuristic was able to obtain the 

optimal solutions at 21 out of the 23 instances with 15 nodes. At the other instances, in which 

our heuristic was not able to obtain the optimal solutions, the gap of the heuristic from the  

optimal was 0.49 % on the average. In addition, our heuristic was able to find the best 

objective values in less than seven CPU seconds on the average and with a maximum CPU 

time requirement of less than fifty-eight seconds. 

 

 From Table 2 and 3, we observe that the CPU time requirements for the instances with 

α=0.2 and 0.4 are generally smaller when compared to the instances with larger α values for 

both models. This can be explained as follows: since the time bound values in our 

experimentation are relatively small for α=0.2 and 0.4, most of the allocation possibilities are 

infeasible and thus, are readily eliminated hence decreasing the remaining feasible search 

space. As a justification of this, note that in most of the solutions corresponding to small α  
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Test Bed Model 2 Tabu Heuristic 

α T Obj. 
CPU Time 

(sec) Obj. Bcpu (sec) Gap 
Number of 
Hub Links 

0.2 2004 221.938 46.122 221.938 0.251 0 1 

0.2 1877 301.698 29.151 301.698 0.736 0 2 

0.2 1750 307.941 48.007 307.941 4.264 0 2 

0.2 1546 405.821 144.628 406.225 3.921 0.10 3 

0.2 1342 413.026 108.052 413.026 57.378 0 3 

0.4 2162 210.057 43.626 210.057 0.176 0 1 

0.4 1961 301.265 26.515 301.265 5.263 0 2 

0.4 1760 313.450 55.393 313.450 2.402 0 2 

0.4 1598 408.281 202.490 408.281 3.185 0 3 

0.4 1436 424.826 524.280 424.826 1.426 0 3 

0.6 2214 210.057 39.990 210.057 0.179 0 1 

0.6 2029 301.698 38.293 301.698 3.299 0 2 

0.6 1844 323.578 728.059 323.578 1.079 0 3 

0.6 1800 417.946 1.148.998 417.946 6.618 0 4 

0.6 1756 419.459 1.118.715 423.162 6.433 0.88 5 

0.8 2424 209.334 168.332 209.334 0.191 0 1 

0.8 2294.5 311.362 223.915 311.362 3.290 0 3 

0.8 2165 332.650 690.407 332.650 3.085 0 3 

0.8 2122.5 424.225 2.943.998 424.225 10.193 0 3 

0.8 2080 427.929 1.904.888 427.929 20.465 0 4 

1 2611 202.814 49.559 202.814 0.184 0 1 

1 2605.5 304.110 607.270 304.110 3.982 0 3 

1 2600 304.110 1220.41 304.110 3.729 0 3 

                

Average   526.569   6.162 0.04   

Maximum   2.943.998   57.378 0.88   

 

Table 3:  Computational comparison of Model 2 and the heuristic for n=15. 
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values, the critical path is determined by the tours from an origin to its hub and then back to 

the origin. Another observation is that when the time bound value is small, for some of the 

nodes, two times the undiscounted travelling time to any other node does not remain within 

the time bound. Therefore, that node cannot be allocated to any node and any node cannot be 

allocated to that node. Then, this node has to be selected as hub and all combinations that do 

not include this hub need to be eliminated. For instance, for n=10 in the CAB data, the 

travelling time between node 8 and the closest node to node 8 is 552. Therefore, for any 

instance with time bound value less than 1104, node 8 has to be selected as hub. Similarly, 

when n=15, the travelling time to the closest node from node 12 is 839; thus, for any instance 

with time bound value less than 1678, node 12 has to be selected as hub. 

 

The results obtained from the tests on the instances with 20 nodes from the CAB data 

set are reported in Table 4. In 13 out of the 23 instances with 20 nodes the model was not able 

to obtain optimal solutions within two hours of CPU time. Since the model even could not 

find an initial feasible solution for some of the instances, we included lower bound values for 

each instance as well together with the value of the best integer solution found and its gap 

reported by CPLEX. For the instances that no feasible solution is obtained, the gap of our 

heuristic was calculated from the lower bounds reported. These estimated gaps, indicated with 

an asterisk (*) in Table 4, are naturally expected to be much higher than the actual optimality 

gaps of the heuristic. 

 

Observe from Table 4 that the model was able to obtain optimal solutions in 10 out of 

the 23 instances for 20 nodes within the time limit we imposed. Our heuristic was able to 

solve nine of these ten instances optimally and in the other single instance, the gap of our 

heuristic from the optimal value was 0.80%. In the other instances that we could not obtain 

the optimal solution, the gap of our heuristic from the lower bound was 31.30% on the 

average.  

 

Note from Tables 2, 3, and 4 that our heuristic solved 55 of the 71 CAB instances 

optimally. From the remaining instances, in only three of them the model was able to find the  
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Test Bed Model 2 Tabu Heuristic 

α T Obj. 
CPU Time 

(sec) Gap (%) 
Lower 
Bound Obj. Bcpu (sec) Gap (%) 

Number of 
Hub Links 

0.2 1892 236.454 532.03 0 236.454 236.454 0.213 0 1 

0.2 1720.5 338.609 515.991 0 338.609 338.609 5.580 0 2 

0.2 1549 365.989 3.196.707 0 365.989 365.989 0.405 0 3 

0.2 1452.5 405.031 4.281.201 0 405.031 408.281 47.784 0.80 3 

0.2 1356 513.635 7200 21.42 403.624 415.621 131.648 2.89* 3 

0.4 2162 247.777 2.373.811 0 247.777 247.777 0.227 0 1 

0.4 1961 303.825 917.251 0 303.825 303.825 13.463 0 2 

0.4 1760 355.593 2.494.244 0 355.593 355.593 2.516 0 2 

0.4 1616.5 619.423 7200 44.85 341.644 416.408 9.529 17.95* 4 

0.4 1473 858.353 7200 53.97 395.067 521.085 494.676 24.18* 6 

0.6 2278 252.748 4.552.373 0 252.748 252.748 0.216 0 1 

0.6 2137 340.369 7200 22.40 264.115 340.369 7.208 22.40* 3 

0.6 1996 497.862 7200 50.60 245.938 355.593 6.224 30.84* 2 

0.6 1915.5 4.699.047 7200 36.62 297.811 427.223 28.833 30.29* 2 

0.6 1835 6.148.686 7200 51.21 300.000 427.946 27.645 29.90* 4 

0.8 2508 2.028.139 2.867.445 0 202.814 202.814 0.452 0 1 

0.8 2386 3.065.502 7200 34.51 200.753 302.896 9.750 33.72* 2 

0.8 2264 560.239 7200 63.61 203.844 361.692 5.005 43.64* 3 

0.8 2209 N/A 7200 N/A 200.000 406.064 13.579 50.75* 5 

0.8 2154 N/A 7200 N/A 200.000 415.162 62.126 51.83* 4 

1 2611 202.814 6.714.423 0 202.814 202.814 0.212 0 1 

1 2605.5 N/A 7200 N/A 200.000 304.110 5.266 34.23* 3 

1 2600 N/A 7200 N/A 200.000 304.110 5.660 34.23* 3 

                    

Average   5.306.325 19.96     38.851 17.72   

Maximum   7200 63.61     494.676 51.83*   

 

Table 4:  Computational comparison of Model 2 and the heuristic for n=20.
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optimal solution and, the average gap of our heuristic in these three instances was 0.59%. In 

the remaining 13 instances we do not know how close our heuristic is to the optimal.  

 

In order to be able to observe the incomplete hub network solutions, we included the 

number of hub links in the solutions in the last columns of the Table 2, 3, and 4. Excluding 

the five instances with p = 2, where constructing an incomplete hub network solution is 

impossible, we obtained incomplete hub networks at 39 out of 71 instances.  In general, the  

factor that forces the completeness of the hub network in the solutions was the tightness of the 

time bound values. From these results one can easily observe that designing complete hub 

networks to provide service within a given service time bound is not cost effective, in many 

cases. 

 

Besides the experimentations on the CAB data set, we tested our heuristic on the 

Turkish network as well to observe its performance on larger networks. The Turkish network 

has 81 nodes, and all nodes are chosen as candidate hub nodes for our computations. The time 

discount factor on the Turkish network with ground transportation was found to be 0.9 (Tan 

and Kara, 2007). Thus, we assumed α = 0.9 for all of the Turkish network instances. The 

fixed costs for opening hubs and hub links in the Turkish network were also obtained from 

Tan and Kara (2007). 

 

For the Turkish network, we set the size of the tabu list as 5, the number of tabu 

iterations as 200, and the number of neighborhoods to be detected at each iteration 

(NeighIteration) as 100. All other parameter values of the test problems can be found in Table 

5 together with the corresponding solutions. 

 

Observe from Table 5 that we increased the time limit as the time bound got tighter 

and the tighter time bound values resulted in larger number of hubs and hub links in the 

solutions we obtained. On the average, we were able to obtain best solutions (the solutions 
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retuned by the algorithm) on the Turkish network in 25 minutes. For the last instance in Table 

5, the CPU time that the best solution is obtained for the first time is larger than the time limit 

we impose to the algorithm. The reason for this is that we do not interrupt the neighborhood 

search at any iteration, therefore, when we stop at some iteration of the algorithm, the time 

consumed might be slightly larger than the time limit. Excluding the ones with p=2, the 

solution we obtained provided incomplete hub network in 6 out of the 13 instances. Even 

though we do not know much about the quality of our solutions on the Turkish network, this 

network is the largest data set that has been tested with incomplete hub network design 

problems. In reality, obtaining optimal solutions on such a large network is difficult even with 

complete hub networks.  

 

T 
CPU 
Time 
(min.) 

Bcpu 
(min.) 

Number 
of Hubs 

Number 
of Hub 
Links 

1880 10 1.065 2 1 

1870 10 1.115 2 1 

1860 30 16.554 3 3 

1850 30 3.266 3 2 

1840 30 8.899 3 2 

1830 30 28.751 3 2 

1820 30 1.825 3 3 

1810 60 23.244 3 3 

1800 60 4.753 4 6 

1790 60 52.824 5 7 

1780 90 84.073 5 10 

1770 90 7.356 5 8 

1760 90 91.828 7 15 

Average CPU 
Time (min.) 47.692 25.043   

 

Table 5: Computational results of the heuristic on the Turkish network. 
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When we consider the networks obtained from the instances in Table 5, we observe 

that as the time bound gets smaller, the cities that are relatively far from each other are 

selected as hubs. The reason for this might be that when hubs are chosen in this manner, the 

total discounted travelling time increases and the possibility of decreasing the travelling time 

between the pairs that are far from each other increases. 

 

When we consider the solutions obtained for T=1840 and T=1820 in Figure 17, we 

observe that Ankara, Sivas, and Hakkari are selected as hubs. Note that the hub network is 

incomplete when T=1840; however, this solution with incomplete hub network does not 

provide a feasible allocation when T=1820, instead a feasible solution with the complete hub 

network of the same hubs can be obtained for T=1820.  

 

For the instances with time bound larger than or equal to 1820, the hubs are generally 

located in the central and eastern regions of Turkey; however, when T is less than or equal to 

1800, some of the hubs are selected from the western regions.  

 

  

(a) T=1840 (b)  T=1820 

 

 
 

3 Afyon 30 Hakkari 
6 Ankara 47 Mardin 

17 Çanakkale 58 Sivas 
24 Erzincan 66 Yozgat 

 

(c)  T=1770 

Figure 17: The resulting hub network on TR data for T=1840, 1820, and 1770. 
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Chapter 6 
 

CONCLUSIONS AND FUTURE 

RESEARCH DIRECTIONS 

 

 
In this thesis, we studied the single allocation hub covering problem over incomplete 

hub networks. We presented two O(n4) integer programming formulations for the problem. In 

the latter one of these models, we defined the four-indexed variable over hub links while in 

the former one we did not impose such a restriction.   

 

In order to solve realistically sized instances, we proposed a tabu search based 

heuristic algorithm. Considering the fact that in contrast to other hub location problems, 

constructing feasible solutions for the hub covering problem, especially with tight time 

bounds, is challenging, we proposed and tested three different allocation strategies for 

constructing feasible solutions. In order to decide the size of the starting hub locations set, we 

developed a preliminary construction stage that is employed at the very beginning of the 

algorithm. To the best of our knowledge, the heuristic we developed is the first one in the 

literature that is proposed for the hub covering problem.  

 

We tested both models and the heuristic with CAB data set. We reported only the 

results with 10 nodes for the first model and compared these results with the ones obtained 
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from the second model and the heuristic. We observed that the second model outperforms the 

first model in terms average CPU time requirement. Moreover, the heuristic was able to find 

optimal solutions in short CPU times on the average; however, we let the heuristic run for 

longer time in order to achieve stability in the results.  

 

For the instances with 15 and 20 nodes we just performed tests on the second model 

and the heuristic. Although the heuristic was able to find the best solutions in much shorter 

time than the model on the average for 15 nodes, due to the same reasoning for stability, we 

let the algorithm run for longer time. When n=20, the model was not able to obtain optimal 

solutions within two hours for several instances. For those instances we compared our 

heuristic with the lower bound obtained from the CPLEX.   

 

We tested our heuristic algorithm on the Turkish network as well. The computational 

times of our heuristic on the Turkish network were reasonable for such a large network, even 

with tight time bounds. Since we did not know the optimal solutions for the test instances in 

the Turkish Network, we were not able to comment on the quality of the solutions of our 

heuristic. One can note that the Turkish network, with 81 nodes, is the largest data set in the 

literature that is to be tested with incomplete hub network design problems. 

 

In most of the instances that performed experimentations, the hub networks 

constructed in the best solutions were incomplete. Thus, the results we obtained from these 

experimentations revealed that designing complete hub networks is not cost effective in many 

cases. 

 

As a future direction, the multiple allocation case of this problem can be considered in 

the similar scope of this study. In addition to developing integer programming formulations, 

the heuristic algorithm we proposed can be adapted to the multiple allocation version of the 

problem. One can also try to find optimal solutions for larger problems by finding valid 

inequalities and developing new modeling approaches.  
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Furthermore, different heuristic and exact algorithms might be adapted for the problem 

we studied. In the hub center literature, genetic algorithm approach is commonly used in 

recent studies. The genetic algorithm approach as well as other metaheuristics might be 

adjusted for the hub covering problem over incomplete hub networks.  
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