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ABSTRACT

MULTIMODAL MULTICOMMODITY ROUTING
PROBLEM WITH SCHEDULED SERVICES

Burak Ayar

M.S. in Industrial Engineering

Supervisor: Assist. Prof. Dr. Hande Yaman

November, 2008

We study a multicommodity network flow problem faced by a third party logistics

company that has the possibility of using ground and maritime transportation.

We are given a set of commodities which should be picked up from their origins

at given release times and should be delivered to their destinations no later than

their duedates. The commodities may be carried directly from their origins to

their destinations on trucks, or they may be carried on trucks to a seaport, may

visit several seaports using maritime services, and then to be carried to their des-

tinations on trucks. There is no capacity and time limitation on the use of ground

transportation. However, the maritime services are scheduled in advance and the

company has limitations on the amounts of volume that it can use on each service.

The aim is to determine routes for commodities in order to minimize the sum of

transportation cost and stocking costs at seaports, respecting the capacity and

time related constraints. We call this problem the “Multimodal Multicommod-

ity Routing Problem with Scheduled Services (MMR-S)”. We first prove that the

problem is NP-hard. Next, we propose a first mixed integer programming formu-

lation and strengthen it using variable fixing and valid inequalities. We relax the

capacity constraints in a Lagrangian manner and show that the relaxed problems

decompose into a series of shortest path problems defined on networks augmented

by time for each commodity. The corresponding Lagrangian dual yields a lower

bound, which may be stronger than that of the linear programming relaxation

of our first formulation. Then, we provide an extended formulation whose linear

programming relaxation gives the same bound as the Lagrangian dual. Finally,

we use the Lagrangian relaxation to devise heuristic methods and report the

results of our computational study.

Keywords: Intermodal transportation, multicommodity network flows, time win-

dows, departure times, routing, time-dependent shortest paths.
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ÖZET

ÇOK MODLU TARİFELİ SEFERLERE SAHİP TAŞIMA
ŞEBEKESİNDE ÇOK ÜRÜNLÜ ROTALAMA

PROBLEMİ

Burak Ayar

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Hande Yaman

Kasım, 2008

Bu tez çalışmasında kara ve deniz taşıma alternatiflerine sahip bir üçüncü şahıs

lojistik firmasının çok ürünlü taşıma problemi incelenmiştir. Verilen ürün kümesi

bulunduğu noktalardan verilen zaman içinde direkt kamyonla ya da kamyonla

alınıp limana ulaştırıldıktan sonra gemiyle ya da tarifeli deniz seferlerini kul-

lanarak son limana taşınmalı ve buradan kamyonla varış noktasına (belirtilen

zamandan önce) taşınmalıdır. Kara taşımacılığı ne bir kapasite ne de bir za-

man kısıtı içerir. Bununla birlikte deniz taşıma hizmetleri tarifelidir ve fir-

manın bir seferde kullanabileceği kapasite miktarı belirlenmiştir. Bu çalışmadaki

amaç, belirli bir dönemde firmaya ulaşan taleplerin toplam taşıma ve limanlar-

daki stoklama maliyetini eniyileyen, zaman ve kapasite kısıtlarını sağlayan rota-

ların bulunmasıdır. Bu probleme “Çok Modlu Tarifeli Seferlere Sahip Taşıma

Şebekesinde Çok Ürünlü Rotalama Problemi ” adı verildi. Öncelikle problemin

NP-Zor türü olduğu gösterildi. Daha sonra yeni bir karışık tamsayılı program-

lama modeli oluşturuldu ve değişken sabitleme ve geçerli eşitsizliklerle model

güçlendirildi. Daha sonra doğrusal gevşetmesi ve Lagrangian çifteşi ile aynı sınırı

veren genişletilmiş formulasyon verildi. Son olarak, Lagrangian gevşetmesi kul-

lanılarak sezgisel yöntemler geliştirildi ve sayısal çalışmalar rapor edildi.

Anahtar sözcükler : Çok modlu taşımacılık, çok ürünlü şebeke akışları, zaman

aralıkları, hareket zamanları, rotalama, zamana bağlı en kısa yollar.
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I would like to thank my friends Ali Gökay Erön and Sıtkı Gülten for their

invaluable camaraderie and helpfulness. I thank them all, for their closest conver-

sations and always being ready to listen me carefully and share their invaluable

thoughts.

I would like to thank my friends Zeynep Aydın, Hatice Çalık, Tuğçe Akbaş,
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Chapter 1

Introduction

In today’s highly competitive business world, companies’ oversea commerce have

rapid growth rates. As a result of increased communication and information, a

product may have a high demand in a country thousaunds of kilometers away from

the production centre. Today, we can see many people who wear the products

of the same brand all over the world. It may not be profitable for this brand

to produce in all of these countries. Rather, most of the firms perform their

operations in different countries where they can carry the least-cost production.

Also, it is not required to produce the entire product in one country. In some

sectors like automotive, various parts of an automobile are produced in different

countries and then assembled in a factory which may be in another country. Then

these automobiles are sent to different regions of the world.

Another reason that drives companies to produce outside is the shortage of

resources in their home countries. The industrialized countries face resource drain

problem, which increases the prices of resources because of low supply and high

demand. Companies operating with such scarce resources moved their production

to developing countries where industrialization has not been completed and where

resources are still plenty [28]. As a result, most of the products produced in de-

veloping countries are for developed countries’ markets and so output conveyance

problem arises.

1



CHAPTER 1. INTRODUCTION 2

In order to be competitive, a company must manage its supply chain effi-

ciently. Logistics is a key part of supply chain and its efficient management is

a necessity. 40% to 60% of the total cost of an import commodity belongs to

transportation and warehousing costs all over the world. Also, the percentage

of logistics costs averages 21% of the selling price of a product [30]. Total lo-

gistics costs may constitute an important share of the GDP of a country. For

the advanced industrialized countries such as the U.S., Japan, and Britain, the

logistics cost is about 10%, 11% and 7% of GDP, respectively [27]. In Asia and

Pacific countries, logistics costs average about 11.6% of GDP [27]. For example,

Thailand’s total logistics costs is about 19% of its GDP [27]. These costs make of

17% the GDP of China, which is the 5th biggest and one of the fastest developing

economy in the world [27].

Generally, logistics is not in the core competencies of firms and they choose

to outsource these services. Today’s trend is accepting a logistics company as

a partner. This trend is also called as third-party logistics(3PL). Since this is

a partnership, both sides should look for ways to improve their total operating

costs and gain competitive advantage.

Multimodal Transportation

Until 1980s, commodities were mostly transported from their origins to desti-

nations with only one type of transportation vehicle [31]. Together with the use

of containers in transportation, commodities can be transported without being

directly handled and so be transferred from vehicle to vehicle easily. Now, com-

panies seek less costly routes for transportation by considering the possibility of

using different types of vehicles at different segments of the routes.

According to European Conference of Ministers of Transport, multimodal

transportation is the carriage of goods by at least two different modes of trans-

portation, without any handling of the goods themselves in transshipment be-

tween the modes [25]. The carriage of goods without handling is provided by the

use of containers. Ground transportation with trucks has several disadvantages.

First of all, transportation between countries with no ground connection was

not possible. Second, it could be cost inefficient because of low transportation
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capacities of trucks.

Recently, some countries started to impose limitations on truck transportation

because of accidents on roads. For example, the German government started to

forbid trucks from its autobahns because of high level of accident risk carried by

them [33]. It also decided to encourage rail transportation in inland transporta-

tion whose utilization is low, like all over the world [32]. Another restriction we

can mention as an example is the use of quotas. Every year, Russian government

identifies the number of Turkish licensed trucks that can enter Russia [29].

Additionally, governments encourage the use of alternative transportation

modes to avoid high traffic density on roads and ecological disadvantages, and

to decrease accident risk and noise pollution. Governments try to balance usage

of all transportation options in order to improve the quality of life of their citi-

zens by decreasing the risks and complications. For example, Turkey government

provides tax incentives to sea and rail transportation in order to reach to Euro-

pean Union transportation standards and adapt its transportation policy to EU’s

policy [23].

The logistics operators who experience these enforcements are looking for

alternative options in order to provide high quality, fast, reliable and low cost

services to their customers. Consequently, these service providers are interested

in maritime transportation.

The maritime logistics sector grew rapidly in the last years. The new built

vessels’ capacities are expanded every year to satisfy the growing maritime trans-

portation demand. The increase in demand for maritime transportation can be

explained by its advantages. Firstly, its price. Especially prices for long distance

shipping services are less than drayage services. This advantage is a result of

high capacities of vessels. Second, shipping services are more enviroment friendly.

Also, the risk of accident carried by a ship is less than a truck.

Unless a company is very close to a seaport, it is impossible to directly load

or unload goods. To realize maritime transportation, the commodities are first

transported by trucks or trains from their origins to sea ports. The reverse process
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is realized when commodities arrive at the last sea port on their trip. Since com-

modities are carried by at least two different modes, this type of transportation

is called multimodal transportation.

With efficient design of multimodal routes, important amount of gain in costs

can be realized. However, the design of a multimodal transportation system is

more complex and and more difficult to manage compared to the unimodal one.

Also, there exist more parties in the multimodal transportation and hence it

becomes difficult to satisfy the needs of all sides.

The use of operations research techniques in multimodal transportation deci-

sion process increased in recent years and this attracts the OR researchers and

practitioners in this field. The design of multimodal networks and routing of

commodities on these networks are the two major subjects in this field.

In our research, we are dealing with operational level decisions of a major lo-

gistics company in Turkey that co-operates with the world’s largest sea transport

service providers. We are interested in the routing of demands of this company

on their multimodal network. This company also gives primal and final trans-

portation services called drayage services and direct transportation service from

origins to destinations by trucks.

Our aim is to find the minimum total cost routes for a given commodity set of

logistics company in a given planning horizon, while satisfying some capacity and

time related constraints. A feasible route of a commodity starts when commodity

is ready for transportation and ends when it is delivered to its destination no later

than its due date. There exist two alternatives in order to transport a commodity.

These are multimodal transportation and direct truck transportation options.

In multimodal transportation option, a commodity is first transported to a sea

terminal with trucks. Then, it is transported with at least one sea service and

reaches to last terminal on its trip. The multimodal transportation route of

commodity ends with transporting commodity by trucks from last terminal to its

destination. The second alternative is direct truck transportation. A commodity

can be directly transported by trucks from its origin to destination if it can be

delivered before its due date.
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In our multimodal transportation system, every service leg between ports has

a service time window. The upper bound of this service time window reflects the

cutoff times in seaports. In sea transportation, a container is not accepted to be

transported with a service if it arrives to port after the cutoff time of this service.

After the end of cutoff time, there is an amount of time available for completing

all terminal-related activities of service and then vessel departs from the port at

its scheduled departure time. On the other hand a truck can depart from a port

at any time. We impose no schedules on truck departures and no capacities to

drayage services and direct truck transportation services because according to

our industrial research, any number of trucks can be available for transportation

at any time in any port because of high level of outsourcing alternatives. These

cases are also considered in [6] and [15]. Furthermore, we consider the case

where storage yard of ports have capacity limits and hence, very early arrivals

should be penalized in order to prevent congestion in ports [8].

In this thesis, we study the problem faced by a 3PL company operating on

an multimodal network. Given the demand over the planning horizon, the aim is

to identify cost efficient transportation routes that are compatible with schedules

of the selected transportation modes. We call the problem ”Multimodal Mul-

ticommodity Routing Problem with Scheduled Services(MMR-S)” and propose a

mathematical model for it. After proposing the model, we first try the exact solu-

tion approaches. After this attempt, we look for heuristic approaches. For having

an idea about the quality of heuristic solutions, we aim to generate strong lower

bounds. For these, we generate some valid inequalities in order to strengthen

the LP relaxation of the model and also apply Lagrangian relaxation techniques.

Two heuristic solution approaches are implemented. MMR-S is both solved on

the network of the logistics company with data provided from the same source and

solved on randomly generated networks with generated data. The computational

results are reported and the best solution approaches are given.

The remainder of the thesis is organized as follows:

In Chapter 2, we provide a review of the literature on multimodal network
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problems. The studies on the design of the multimodal service network prob-

lems are reviewed in the first part of the chapter. Then, single commodity and

multicommodity routing on multimodal networks are analyzed.

In Chapter 3, first we define our problem and propose a new mixed integer

linear program. Then, we perform variable fixing and add valid inequalities to

the proposed model to improve the lower bound and running times for problem

instances.

Chapter 4 is organized in two parts. In the first part, we apply Lagrangian re-

laxation to our model. We describe how we solve the Lagrangian relaxed problem.

In the second part, we give an extended formulation.

In Chapter 5, we propose heuristics to get near-optimal solutions for large size

networks and higher number of commodities that can not be solved in reasonable

running times.

We report the results of our computational study in Chapter 6. First, we

give the comparisons between two formulations. We analyze the effects of node

and arc sizes and capacities of arcs on the efficiency of the formulations. Also,

efficiency of variable fixing and valid inequalities is discussed. Finally, comparison

of heuristics and lower bounds are given.

In Chapter 7, we conclude the thesis by giving an overall summary of our con-

tribution to the existing literature and suggesting some possible future research

directions.



Chapter 2

Literature Survey

The literature on the use of OR techniques in multimodal transportation is quite

limited. However, the number of published papers has been increasing since 2000s.

In their review, Macharis and Bontekoning [14] classify the studies in this field

using two criteria : type of operator and time horizon of operations. They identify

four types of operators : drayage, terminal, network and multimodal, which are

based on four main activities in multimodal operations. Three different time

horizons according to level of planning are strategic, tactical and operational.

According to this classification, our problem is an operational level planning

problem which is faced by a intermodal service operator. Also, the authors remark

that this category is one of the least studied.

We first review multimodal service network design literature. Then, we ana-

lyze the literature on multimodal routing problem. Since multicommodity routing

on multimodal network problem is a relatively new topic, both single and multi-

commodity studies are reviewed in the second part.

7



CHAPTER 2. LITERATURE SURVEY 8

2.1 Multimodal Service Network Design Prob-

lem Literature

Service network design problems are long-term planning problems which aim

at minimizing fixed costs of installing network and long term variable costs of

operations. The fixed costs may be associated with installing a new terminal or

a new crane, purchasing a new vessel, wagon or a truck.

An early work on multicommodity multimode transportation service network

design problems is by Crainic and Rousseau [9]. They work on both strategic

and tactical level planning problems when supply level of transportation services

and the itineraries of the demands are controlled by the same authority. A gen-

eral modelling framework is designed to integrate problems in these levels. The

objective of this framework is improving the performance of the transportation

system by minimizing the total operating and delay costs and maximizing the

service quality. They formulate a nonlinear mixed integer programming model

and describe an algorithm based on decomposition and column generation prin-

ciples combined with some heuristic approaches to improve the algorithm’s per-

formance. The algorithm is a two step procedure where first, given a fixed level

of demand, optimal frequencies of the available services are determined and then

the optimal routes are generated. The algorithm is tested on the two data set

supplied by Canadian National Railways.

Guelat, Florian and Crainic [11] develop an uncapacitated multimode mul-

tiproduct assignment model for strategic planning of freight flows appropriate

for national and regional transportation systems. The model is a mixed integer

linear model based on path formulation. Modes are defined as types of vehicles

used. Various mode alternatives between two terminals are represented using

parallel arcs between these terminals. The transfers between modes at a terminal

are modeled by adding artificial nodes and arcs to the physical network. They

assume that cost of transporting a commodity on an arc depends on the flows

of arcs that share same tail and head nodes in both orientations. The structure

of their model allows decomposition by commodity and they solve each linear
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subproblem by an algorithm which is a modification of Djikstra’s label setting

algorithm. They apply their study on data from Brazilian freight transportation

network.

Andersen, Crainic and Christiansen [1] focus on the issue of management

of assets, that is vehicle fleets used in operations, while designing the service

network. Their model includes adaptation of new and existing services and man-

agement of vehicles. The internal and external services are linked at intermodal

terminals so intermodal operations take place at these terminals. The objective

of their model is minimizing the total time spent of the demand in the system

by determining the optimal departure times of integral services with a given level

of demand. All demand within the given time period must be transported and

services selected for transportation of demand must be covered by vehicles. The

application of the model is on Polcorridor study (Polcorridor 2006) and solved by

using a mixed integer software with adding some constraints to strengthen the

model. Also, they make various scenario analysis related with the integration of

different service systems.

Vasiliauskas [17] models the national multimodal freight transportation net-

work of Lithuania. He develops the model by integrating partical modal networks

into a general intermodal network through identifying optimal transfer terminals

in road, railroad and water networks. Then he determines the demands’ optimal

routes between origin destination pairs with simple shortest path algorithms.

Also, he deals with the design of terminal operations.

As we have seen, in most of multimodal service network design problems,

reserachers initially develop the network according to given level of demand and

after that they develop the optimal routes of these demands on new developed

service network. Because of this characteristic, the design and routing problems

are combined with each other in multimodal concept.
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2.2 Multimodal Routing Problem Literature

In the earliest studies in multimodal routing, the researchers either do not relate

themselves with time aspects of the problem or they do not directly place them to

their models. One of the study in the earliest literature of developing multimodal

routes of commodities is by Barnhart and Ratliff [3]. They consider transporta-

tion of commodities on an uncapacitated rail-truck combined network. In their

study a commodity can be transported directly by truck from its origin to desti-

nation or by truck from origin to a rail terminal, then by train over the railway

network and lastly from last train terminal to its destination again by truck. This

structure resembles to the service offerings of our logistics company. They model

the problem upon two types of cost plan on rails which are per trailer rail cost

and per flatcar rail cost. Network representations are given for both types of cost

plan. They discuss extensions their of model to deal with schedule requirements

and flatcar configurations.

Bookbinder and Fox [4] find optimal intermodal routes for Canada-Mexico

shipments under NAFTA. The network is composed of cities from Mexico, Canada

and U.S. whose trade volume are high and also services between these cities.

They analyze the total trade between two countries and offer the most promising

transportation alternatives. The water, rail and road links added between the

nodes in the network are selected from services of carriers that meet some criteria.

They formulate their problem with the objective of minimizing total cost of the

route of every shipment.

Nozick and Morlok [16] present a model for medium-term operations plan-

ning for a multimodal rail-truck service. The work is motivated from the need

of integrating various elements of rail intermodal operations to enhance service

quality and to improve operating efficiency and asset utilization. They discuss

the schedules of train services, various service classes in railroad segments and

available times of goods for movement. They take into account these character-

istics of the transportation systems in the modelling process. Also, the needs for

empty trailer and flatcar repositioning are considered. They propose an integer

programming formulation that aims to find time and equipment feasible routes for
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demands and that satisfy the desired service level with minimum transportation

and repositioning costs. A heuristic initialized with the LP relaxed solution is

developed. The tests on data sets provided from several U.S. rail transportation

companies are given.

Kim, Barnhart, Ware and Reinhardt [12] work on multimodal express package

delivery problem. The objective of their model is minimizing movement costs of

packages under tight service windows at hubs and airport terminals and limited

capacity of hubs and vehicles. The service time windows at hubs reflect the time

periods that a hub can sort packages. Every airport terminal has time limits that

denote the latest arrival time of cargo to terminal for using the desired service.

Service types are differentiated in terms of speed. They solve the problem using

Dantzig- Wolfe decomposition.

Kozan [13] deals with operations on multimodal terminals. He studies the

optimization of the total elapsed time for transferring containers between two

modes in a terminal. An analytical model is proposed and applied to a seaport

terminal in Australia.

Choong, Cole and Kutanoglu [8] discuss the effects of planning period length

on empty container management for multimodal transportation networks. Plan-

ning period length is an important concept because transportation cost of empty

containers by barge is very small and negligible, however, this transportation

option is slow. They give an integer program and apply it to case of potential-

barge-transportation operations within the Mississipi river.

We also review the literature on finding a cost optimal or a time optimal

path for a single commodity on a multimodal, scheduled network because it is a

subproblem of our problem. The solution efforts on this subproblem are based

on extending classical shortest path solution procedures.

Ziliaskopoulos and Wardell [18] are interested in finding least travel time paths

on multimodal transportation networks. The delays realized during the change

of modes are considered in the total travel time. One of the example to this type

of delays is time spent during the search for a parking place for a truck when



CHAPTER 2. LITERATURE SURVEY 12

this truck arrives at a seaport to transfer containers to a vessel in the port or to

the storage area of the port. They also take into account the fixed schedules of

available transportation alternatives while designing their solution methodology.

They give an optimality condition which is an extension of Bellman optimal-

ity condition and construct their algorithm based on this developed optimality

principle.

Boussedjra, Bloch and El Moudni [5] develop an exact method to find the

least travel time path between an o-d pair in a time-dependent multimodal trans-

portation network. They use a second criterion if there exists a tie between two

solutions. The solution with less transshipments is selected. In the solution pro-

cess, while exploring the graph for the minimum travel time path they use a

bidirectional research strategy which are from origin node to forward and from

destination node to backward. Every node in the graph has two labels. At each

iteration of the method, a label correcting method based on Bellman optimality

conditions updates these labels. Also, at each iteration some feasibility conditions

for paths are checked in order to eliminate infeasible ones. These feasibility con-

ditions are related with : arrival time of a path to destination node because of the

scheduled arrival time to destination node; arrival times to intermediate nodes

because of the scheduled departure times of conveying vehicles from terminals;

and the total travel time of the path. Their algorithm is an extended version

of algorithm developed in [18]. The enhanced method is tested on networks

with various sizes and compared with results obtained with branch and bound

method. The results show that the developed method is superior to branch and

bound method in terms of CPU times.

A latest study on determining the routes of commodities on international mul-

timodal networks is by Chang [7]. He formulates the problem as a multiobjective

multimodal multicommodity flow problem with time windows and concave costs.

The multiobjectives of the problem are minimizing the total cost and total time

of the routes of shipments. The transportation cost on each link is designed as

concave piecewise linear function of total flow on that link. He incorporates the

transportation mode schedules and delivery times of commodities to the model.

A time window associated with each node on the network defines the earliest and
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latest arrival time to that node in order to use associated services originated from

this node. A commodity departs from a node at the end of the service period

or leaves the node at a scheduled departure time if exists. Also, transportation

capacities for every range of cost curve are established to each link. In the formu-

lation, he allows the splitting of demand between an origin destination pair, that

is, demand can be transported from its origin to destination with more than one

route. The solution procedure used is combination of several methodologies that

are respective implementations of relaxation, separation, decomposition, shortest

path and reoptimization. They test the solution approach on a small and large

network.

One of the other study that highly correlates with our study is by Moccia,

Cordeau, Laporte, Ropke and Valentini [15]. They solve a multicommodity rout-

ing problem on a multimodal network. Time windows are included in order to

model opening hours of terminals and pickup and delivery time slots for demands.

The services are differentiated in terms of departure time and cost function. They

give a network representation by exploding the physical network. Column gen-

eration algorithms are designed to get lower bounds and they are combined with

heuristics to get feasible solutions. They apply solution procedures to data ob-

tained from a freight forwarder operating on Italian market.

Since maritime transportation constitutes a major part of multimodal trans-

portation system in our problem, an overview of it is needed. Maritime trans-

portation is not the major transportation mode worldwide, on the other hand

there exists fast growth in the amount of cargo transported with vessels and

capacity of ships. Within containerization, shippers prefer to use maritime trans-

portation, especially in long hauls. Various type of vessels are produced in order

to satisfy maritime transportation demand of various sides. In chapter 4 of [20],

authors give terms used in OR-applications in maritime transportation, problems

in strategic, tactical and operational planning, models and solution approaches.



Chapter 3

Model Development

In this chapter, we formalize our problem definition, prove its complexity, give a

mixed integer programming formulation and derive some valid inequalities.

In our problem, we are given the commodity set of company over a given

horizon where each commodity ahould be taken on their ready times and to be

delivered to their destinations no later than their due dates. A commodity can

be transported either directly by trucks or combination of truck and maritime

services. In this combined route, commodities firstly carried from their origins to

seaports, then transported on maritime services and from last sea port, again they

are transported with trucks to their destination point. The truck transportation

services has no schedules and capacity limitations. On the other hand, maritime

services has schedules. There exist a time window for each service which reflects

the start time and cutoff time for processing of the related maritime service.

A commodity can arrive to port earlier than start time of the service but it is

stocked on the port againist a fee. However, it can not use the maritime service if

it arrives to port later than cutoff time of time of service. Also, maritime services

are capacitated. Our problem is finding the time feasible transportation routes

of commodity set that gives us the minimum total transportation and stocking

costs.

14
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3.1 Mathematical Model Formulation

We are given a directed network G = (N, A) which possibly contains parallel arcs.

Each node in this network corresponds to a seaport and each arc corresponds to

a scheduled maritime service.

First, we define the parameters related with the arc set of G. Let a ∈ A. The

tail of a is denoted by s(a) and the head of a is denoted by t(a). We denote

by ca the variable cost of transporting and loading and unloading a unit volume

with service a. τa denotes the travel time and ua denotes capacity of service a.

The last two parameters for arc set A are related with time windows. The time

window for arc a is defined by [ea, la] where ea is the earliest time for the start

of service a at node s(a) and la is the cutoff time at node s(a) to use service a.

A commodity that arrives to port s(a) before ea should wait in the storage area

of s(a) and pay a fee for using the storage area. This fee is increasing linearly

with the time a commodity waits at the storage area. On the other hand, arrival

before la is a strict constraint and means a commodity has no chance to use a if

it arrives at port after la.

We denote by pi the cost of stocking a unit volume at seaport i ∈ N .

The company’s demands on the given time period is denoted by set K where

each item k has an origin o(k), destination d(k), demand w(k), release time r(k)

and duedate q(k). The set K ′ ⊆ K denotes the set of commodities which can wait

until their pickup times at their origins at no cost. The remaining commodities

should be picked up exactly at their release times.

For k ∈ K, let co(k)d(k) denote the cost of transporting commodity k from its

origin to its destination directly using trucks. For k ∈ K and i ∈ N , let co(k)i

denote the cost for carrying commodity k from its origin to seaport i, and cid(k)

denote the cost for carrying commodity k from seaport i to its destination directly

using trucks.

We assume that there does not exist a capacity restriction on drayage services

and that all cost factors are nonnegative and co(k)i + cid(k) ≥ co(k)d(k) for all k ∈ K
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and i ∈ N .

Finally, τo(k)i denotes the travel time from the origin to seaport i , τid(k) denotes

the travel time from seaport i to the destination node and τo(k)d(k) denotes the

travel time of direct transportation from the origin to the destination by truck.

These parameters also include the loading times at the origins of the services and

the unloading times at the destination of the services. We assume that there does

not exist schedules for drayage services.

After the definition of parameters, now we introduce the variables used to

formulate the problem. For k ∈ K, yk is 1 if commodity k is transported directly

from its origin to its destination on trucks and 0 otherwise. For k ∈ K and i ∈ N ,

xk
o(k)i is 1 if commodity k is carried from its origin to seaport i using trucks and 0

otherwise and xk
id(k) is 1 if commodity k is carried from seaport i to its destination

using trucks and 0 otherwise. For k ∈ K and a ∈ A, xk
a is 1 if commodity k uses

maritime service a and 0 otherwise.

Finally, for k ∈ K and i ∈ N , vk
i denotes the arrival time of commodity k

at seaport i if this seaport is visited by this commodity and zk
i is the amount of

time that commodity k is stocked at seaport i.

Using the decision variables above, we derive the following mixed integer pro-

gramming formulation called ILP-1.

(ILP-1)

min
∑

k∈K w(k)

[∑
j∈N co(k)jx

k
o(k)j +

∑
a∈A cax

k
a +

∑
j∈N cjd(k)x

k
jd(k) +

co(k)d(k)y
k +

∑
i∈N piz

k
i

]

s.t.∑
j∈N xk

o(k)j + yk = 1

∀k ∈ K (3.1)∑
a∈A:t(a)=i x

k
a + xk

o(k)i −
∑

a∈A:s(a)=i x
k
a − xk

id(k) = 0

∀k ∈ K, i ∈ N (3.2)
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∑
j∈N xk

jd(k) + yk = 1

∀k ∈ K (3.3)∑
a∈A:t(a)=i x

k
a + xk

o(k)i ≤ 1− yk

∀k ∈ K, i ∈ N (3.4)∑
k∈K w(k)xk

a ≤ ua

∀a ∈ A (3.5)

vk
i =

∑
a∈A:t(a)=i(la + τa)x

k
a + (r(k) + τo(k)i)x

k
o(k)i

∀k ∈ K, i ∈ N (3.6)

zk
i ≥

∑
a∈A:s(a)=i eax

k
a − vk

i

∀k ∈ K \ K ′, i ∈ N (3.7)

zk
i ≥

∑
a∈A:s(a)=i eax

k
a − vk

i −Mxo(k)i

∀k ∈ K ′, i ∈ N (3.8)

vk
i ≤

∑
a∈A:s(a)=i lax

k
a + (q(k)− τid(k))x

k
id(k)

∀k ∈ K, i ∈ N (3.9)

r(k) + τo(k)d(k)y
k ≤ q(k)

∀k ∈ K (3.10)

xk
o(k)i ∈ {0, 1}

∀k ∈ K, i ∈ N (3.11)

xk
id(k) ∈ {0, 1}

∀k ∈ K, i ∈ N (3.12)

xk
a ∈ {0, 1}

∀k ∈ K, a ∈ A (3.13)

yk ∈ {0, 1}
∀k ∈ K (3.14)

vk
i ≥ 0

∀k ∈ K, i ∈ N (3.15)

zk
i ≥ 0

∀k ∈ K, i ∈ N (3.16)

Constraints (3.1), (3.2) and (3.3) are flow conservation constraints. Constraint

(3.1) and (3.3) ensure that the transportation path of a commodity must start at

its origin and ends at its destination, respectively. Constraint (3.2) ensures that
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a commodity can either come to a seaport with a maritime service or with truck

from its origin. Also, it either leaves a seaport with a maritime service or with

truck to its destination. Constraint (3.4) is designed to eliminate cycles which

could arise due to time restrictions(note here that cycles which do not intersect the

path can not appear in the optimal solutions when costs are positive). Constraint

(3.5) ensures that total volume to be transported on a service can not exceed the

capacity of the service.

The arrival times of commodities to sea port terminals are provided by (3.6).

If commodity k arrives at seaport i using service a, then it leaves the origin

seaport s(a) at time la and travels for τa time units and hence arrives at i at time

la + τa. If seaport i is the first seaport that commodity k visits, i.e., if commodity

k leaves its origin and comes to i using trucks, then r(k) is the time trucks leave

the origin node and τo(k)i is the trip time. If commodity k does not visit seaport

i then its arrival time is taken to be zero.

If a commodity k arrives at seaport i before loading starts for its service, then

it is stocked at the seaport. Constraint (3.7) computes the amount of time for

which commodity k is stocked at seaport i.

Constraint (3.8) is designed for customers that have depots. If commodity

arrives to source seaport of the first maritime service on its transportation path

before the start time of the maritime service, then rather than leaving its origin

at its release time, it can be stocked at the depot of its origin and leave later than

release time. This means early arrival is prevented and the stocking cost at first

ports will not be incurred. Here, M = max{ea : a ∈ A}.

Constraints (3.9) ensure that the commodities arrive within the time window

of the service they would like to use and that they arrive at their destinations

no later than the due dates. Finally, constraints (3.10) avoid direct shipments

by trucks if the commodity cannot be on time using this transportation mode.

These constraints can be dropped by setting yk = 0 for commodities k ∈ K such

that r(k) + τo(k)d(k) > q(k).
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The remaining constraints (3.11), (3.12), (3.13), (3.14), (3.15) and (3.16) de-

fine the types of decision variables.

3.2 Complexity

Now, we look at the complexity of the problem and give the proof of its complex-

ity.

We define the decision version of the problem MMR-S as follows. Given the

parameters of the problem and a scalar γ0, does there exist a feasible solution

with cost not more than γ0? Next, we prove that this problem is NP-complete

using a polynomial reduction from the 0-1 knapsack problem.

Proposition 1 The decision version of MMR-S is NP-complete.

Proof. Consider the decision version of the 0-1 knapsack problem. Given a set I,

nonnegative integers αi and βi for each i ∈ I and two positive scalars α0 and β0,

does there exist a subset S ⊆ I such that
∑

i∈S αi ≤ α0 and
∑

i∈S βi ≥ β0? This

problem is NP-complete, see [21] even when αi = βi for all i ∈ I.

Suppose that there are only two seaports 1 and 2, and that there is a single

service from 1 to 2 with capacity α0. For each item i in set I, define a commodity

from node 1 to node 2 with demand volume equal to αi. The release time is 0

and the duedate is 1 for all commodities. Commodities can be transported at

no cost and no time from their origins to seaport 1 and from seaport 2 to their

destinations. The maritime service starts at time 0 and ends at time 1. The unit

cost of using the service is equal to 1 and the unit cost of delivering a commodity

using trucks is 2. Under this specification of parameters, the MMR-S reduces

to the problem of finding a minimum cost partition of the set of commodities

I into two sets S and I \ S such that commodities S are transported using

the maritime service and commodities I \ S are transported using trucks. Such

a partition is feasible if
∑

i∈S αi ≤ α0. The cost of the associated solution is∑
i∈S αi +

∑
i∈I\S 2αi = 2

∑
i∈I αi −

∑
i∈S αi. Let γ0 = 2

∑
i∈I αi − β0.
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Then, there exists a solution to the decision version of 0-1 knapsack problem

with βi = αi for all i ∈ I if and only if there exists a solution to the decision

version of the problem MMR-S. �

3.3 Variable Fixing

In this section, we present some simple results to reduce the problem size by

fixing some of the variables in the model.

Proposition 2 Let k ∈ K and a ∈ A. Every feasible solution satisfies xk
a = 0 if

w(k) > ua or la < r(k).

Proof. If the demand volume of a commodity exceeds the capacity of a service

or if the ready time of a commodity is later than the cutoff time of a service, then

clearly, this commodity cannot use that service. �

The next result is about time characteristic of model. We solve |K| shortest

path like problems by applying a modification of Djikstra’s label correcting algo-

rithm(see Algorithm 1). We find shortest time paths to all nodes in the graph

that gives us the earliest arrival time of a commodity to a node in the graph.

We denote this as Ek
i , which means earliest arrival time of commodity k to node

i. We do not give the proof of Algorithm 1 because it can be proved same as

Djikstra’s algorithm.

Proposition 3 Let k ∈ K and a ∈ A. Every feasible solution satisfies xk
a = 0 if

Ek
s(a) > la .

Proof. If a commodity’s earliest time to reach a terminal is later than the

cutoff time of a service originating from this terminal, then we can not transport

this commodity on that arc. �
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Algorithm 1 Earliest Arrivals-for a given k ∈ K

Initialize two lists, Temporary and Permanent
for all i ∈ N ∪ {o(k)}

if i = o(k) then
Ek

i ← r(k)
else
Ek

i ←∞
endif

Insert all i ∈ N ∪ {o(k)} to Temporary list
while Temporary list 6=∅ do

Select node i∗ from Temporary list such that Ek
i∗ =

min
{
Ek

i : i ∈ Temporarylist
}
(break ties arbitrarily)

Insert i∗ to Permanent list, delete from Temporary list
if i∗ = o(k) then

for all j ∈ N such that τo(k)j 6=∞
if Ek

j > Ek
o(k) + τo(k)j

Ek
j ← Ek

o(k) + τo(k)j

endif
else

for all a ∈ A such that s(a) = i∗

if Ek
i∗ ≤ la and Ek

t(a) > la + τa

Ek
t(a) ← la + τa

endif
endif

end while
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By applying variable fixing, we may reduce the size of our model with the aim

of reaching the optimal solutions in shorter times or getting better lower bounds

by strengthening the LP relaxation.

3.4 Valid Inequalities

In this section, we try to generate valid inequalities based on time restrictions. Let

F denote the set of feasible solutions to model ILP-1. Consider commodity k ∈ K

and seaport i ∈ N . If commodity k travels directly from its origin node o(k) to

the seaport i, then it arrives there at time r(k)+ τo(k)i. Then it is not possible for

this commodity to use any service that starts at node i for which the cutoff time

is earlier than r(k) + τo(k)i. The set Hk
i = {a ∈ A : s(a) = i, r(k) + τo(k)i > la} is

the set of such services.

Similarly, if commodity k travels from seaport i directly to its destination

d(k), then it should be ready to depart from i the latest at time q(k) − τid(k).

Hence any service a which arrives at seaport i later than this time cannot be

used by commodity k. Dk
i = {a ∈ A : t(a) = i, la + τa + τid(k) > q(k)}.

Proposition 4 For k ∈ K and i ∈ N , the inequalities

xk
o(k)i+

∑
a∈Hk

i
xk

a ≤ 1−yk (3.17)

and

xk
id(k)+

∑
a∈Dk

i
xk

a ≤ 1−yk (3.18)

are valid for F .

Proof. We give the proof for inequality (3.17). For commodity k ∈ K, if

yk = 1, then commodity k is transported from its origin to its destination directly

on trucks and hence all associated x variables are zero. Otherwise, if xk
oki = 1,

then by definition of set Hk
i , commodity k cannot use any service in this set and

hence
∑

a∈Hk
i
xk

a = 0. Finally, if yk = 0 and xk
oki = 0, then

∑
a∈Hk

i
xk

a ≤ 1 as
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commodity k has to be carried on a simple path. The proof for inequality (3.18)

is similar. �

For a ∈ A, define ∆+
a = {a′ : s(a

′
) = t(a), la + τa > la′} and ∆−

a = {a′ :

t(a
′
) = t(a), la′ + τa′ ≥ la + τa}. Notice that if a commodity k uses service a,

then the time it reaches t(a) is la + τa. If a
′
is a service that starts at node t(a)

and if the latest allowable time for this service is earlier than la + τa, then the

commodity cannot use this service. The set ∆+
a is the set of services that start

at node t(a) and that cannot be used if service a is used to reach node t(a). The

set ∆−
a is the set of services that arrive at node t(a) not earlier than service a.

Proposition 5 Let k ∈ K and a ∈ A.

If r(k) + τo(k)t(a) ≤ la + τa and la + τa + τt(a)(dk) ≤ q(k), the inequality

∑
a′∈∆−

a
xk

a′
+

∑
a′∈∆+

a
xk

a′
≤ 1−yk (3.19)

is valid for F .

If r(k) + τo(k)t(a) > la + τa and la + τa + τt(a)(dk) ≤ q(k), the inequality

xk
o(k)t(a)+

∑
a′∈∆−

a
xk

a′
+

∑
a′∈∆+

a
xk

a′
≤ 1−yk (3.20)

is valid for F .

If r(k) + τo(k)t(a) ≤ la + τa and la + τa + τt(a)d(k) > q(k), the inequality

∑
a′∈∆−

a
xk

a′
+

∑
a
′∈∆+

a
xk

a′
+xk

t(a)d(k)+ ≤ 1−yk (3.21)

is valid for F .

If r(k) + τo(k)t(a) > la + τa and la + τa + τt(a)d(k) > q(k), the inequality
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xk
o(k)t(a) +

∑
a′∈∆−

a
xk

a′
+

∑
a′∈∆+

a
xk

a′
+xk

t(a)d(k)+ ≤ 1− yk (3.22)

is valid for F .

Proof. We give the proof for inequality (3.20). If yk = 1, then the vector xk is

a zero vector. If yk = 0 and xk
a = 1, then

∑
a′∈∆+

a
xk

a′
= 0 since service a arrives at

seaport ta later than the latest allowable time for these services, xk
tadk

= 0 since it

is not possible to meet the duedate as la+τa+τtadk
> qk, xk

okta+
∑

a′∈∆−
a \{a} xk

a′
= 0

since commodity k arrives at seaport ta using service a and cannot use any other

service that ends at the same seaport and cannot be carried to this seaport from

its origin. Finally, if yk = 0 and xk
a = 0, then we know that xk

okta +
∑

a′∈∆−
a

xk
a′
≤ 1

and
∑

a′∈∆+
a

xk
a′

+ xk
tadk
≤ 1 since commodity k can arrive at and leave seaport ta

at most once. Moreover, all services in set ∆−
a arrive at ta to late to be able to use

any service from set ∆+
a or for the commodity to be delivered to its destination

on time. Hence at most one of the sums xk
okta +

∑
a′∈∆−

a
xk

a′
and

∑
a′∈∆+

a
xk

a′
+xk

tadk

can be 1. �



Chapter 4

Lagrangian Relaxation & The

Extended Formulation

In the first part of this chapter, we present a Lagrangian relaxation for MMR-S.

In the second part, we give an extended formulation to our problem which is an

integer multicommodity network flow(IMNF) problem defined on a special graph.

4.1 Lagrangian Relaxation of ILP-1

The Lagrangian relaxation is a popular approach among OR practitioners and

widely used in the solution process of hard combinatorial optimization problems.

The idea behind the Lagrangian relaxation is to remove the complicating con-

straint/constraints from the constraint set, to add them to the objective function

by penalizing their violation and then to solve the easier problem with remaining

constraints.

It is important to decide which constraints are complicating before applying

the Lagrangian relaxation technique. We relax the capacity constraints (3.5) in

our problem as these are the only constraints that link all commodities together.

Let αa be the Lagrange multiplier associated with constraint (3.5) for service

25
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a ∈ A. For a given vector α ≥ 0, the relaxed problem disaggregates into |K|
problems as follows.

LR(α) = −
∑

a∈A αaua +
∑

k∈K:r(k)+τo(k)d(k)≤q(k) w(k) min{LRk(α), co(k)d(k)}
+

∑
k∈K:r(k)+τo(k)d(k)>q(k) w(k)LRk(α)

where

LRk(α) = min
∑

j∈N co(k)jx
k
o(k)j +

∑
a∈A(ca + αa)x

k
a +

∑
j∈N cjd(k)x

k
jd(k) +∑

i∈N piz
k
i

s.t.∑
i∈N xk

o(k)i = 1

(4.1)∑
a∈A:t(a)=i x

k
a + xk

o(k)i −
∑

a∈A:s(a)=i x
k
a − xk

id(k) = 0

∀i ∈ N (4.2)∑
i∈N xk

id(k) = 1

(4.3)∑
a∈A:t(a)=i x

k
a + xk

o(k)i ≤ 1

∀i ∈ N (4.4)

vk
i =

∑
a∈A:t(a)=i(la + τa)x

k
a + (r(k) + τo(k)i)x

k
o(k)i

∀i ∈ N (4.5)

zk
i ≥

∑
a∈A:s(a)=i eax

k
a − vk

i

∀i ∈ N (4.6)

vk
i ≤

∑
a∈A:s(a)=i lax

k
a + (q(k)− τid(k))x

k
id(k)

∀i ∈ N (4.7)

xk
o(k)i, x

k
id(k) ∈ {0, 1}

∀i ∈ N (4.8)

xk
a ∈ {0, 1}

∀a ∈ A (4.9)

zk
i ≥ 0

∀i ∈ N (4.10)
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In LRk(α), direct truck transportation option is not included because it is

inserted to LR(α). For commodities which direct truck transportation is feasible,

we select the minimum cost route, minimum multimodal(if exists) or direct truck

transportation route. For the remaining constraints, direct truck transportation

is not time feasible so it is not included.

The aim of the problem is to find a simple path from origin of commodity k

to its destination which minimizes the sum of transportation and stocking costs

using scheduled services. The cost of using service a ∈ A is equal to ca + αa.

We can not solve the subproblems by finding a shortest path in G. The reason

is that because of stocking times and cutoff times a shortest path may not satisfy

the Bellman optimality conditions [19] which is the base of most of the classical

shortest path algorithms. Suppose that there exists a shortest path φ from an

origin node o to a destination node d in our network. Also, suppose that node i is

in φ. As indicated in Bellman optimality conditions [19] , if φ is the shortest path

from o to d and i is in φ, then the path from o to i and i to d must be shortest.

But that may not be the case for our problem. In our problem, we see that if

there exist a minimum cost path from an origin node to a destination node and

any other node different from origin and destination nodes is in this lowest cost

path, then the paths from source to that node and from that node to sink node

may not be the minimum cost paths. We explain a possible case with an example

below.

Suppose there exists only two paths from origin to node i, namely p1 and

p2. Also, suppose there exists only two paths originating from node i, p3 and p4

which end at the destination of related commodity. Assume cost of p1 is 10, p2

is 12 , p3 is 9 and p4 is 14 liras. Also, assume that commodity transported on

p1 arrives later than p2 and if commodity will be transported on p1, it can not

be transported from node i to the destination on p3 due to time conditions. In

other words, cutoff time of the first service used on p3 is greater than the arrival

time of the path p1 to the node i. Suppose we apply one of the shortest path

algorithms that runs according to Bellman optimality conditions. When it labels
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Figure 4.1: A case not satisfies Bellman Optimalitiy Conditions

node i, since p1 has less cost than p2, i will be labeled as cost of p1. On the other

hand, after this point, we can not use p3 because of time infeasibility, so we have

to use p4. As a result, we have total cost of transporting commodity from the

origin to the destination as costp1 + costp4, that is 24. However, we have a less

cost o-d path if we first use p2 and then p3. In that case, total cost is 21. As we

see, node i is in the shortest path but it does not mean from the origin to node i

is the shortest one.

The above problem can be solved using a shortest path algorithm on an acyclic

graph. We define the auxiliary graph Gk = (Nk, Ak) with procedure given in Al-

gorithm 2. If we assume that all travel times are positive, then the graph Gk is

acyclic and can be lexicographically ordered by sorting the nodes nodeNo in non-

decreasing order of timeIndex(nodeNo). The maximum node number in graph

Gk is |A|. Notice that a path from node o(k) to node d(k) in this graph is a

simple path which satisfies all time restrictions, i.e., such a path corresponds to

a trip that starts at the origin o(k) at time r(k) and ends at the destination d(k)

no later than time q(k), and arrives at the origin seaport of each service on its

trip before its cutoff time.
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Algorithm 2 Graph Generation for commodity k ∈ K

nodeNo = 0;
arcNo = 0;
List1 := ∅
label origin node as node 0, timeIndex(0) := r(k), real(0) := o(k)
nodeNo := nodeNo + 1
for i = 1 : |N |

if τo(k)i 6=∞
timeIndex(nodeNo) := r(k) + τo(k)i, real(nodeNo) := i
head(arcNo) := 0, tail(arcNo) := nodeNo,
cost(arcNo) := co(k)i

Insert nodeNo to List1
nodeNo := nodeNo + 1, arcNo := arcNo + 1

whileList1 6= ∅
select first node in List1, currentNode
for all arcs a in A such that s(a) := real(currentNode)

if la ≥ timeIndex(currentNode)
if ea > timeIndex(currentNode)

timeIndex(nodeNo) := la + τa if it has not been initialized
arcNo, head(arcNo) := currentNode, tail(arcNo) := nodeNo, cost(arcNo)

:= preal(currentnode) ∗ (ea − timeIndex(currentNode)) + ca + αa

Insert nodeNo to List1
nodeNo := nodeNo + 1, arcNo := arcNo + 1

else ea ≤ timeIndex(currentNode)
Initialize a new node numbered as nodeNo and timeIndex(nodeNo) :=

la + τa if it has not been initialized
Initialize a new arc numbered as arcNo, head(arcNo) := currentNode,

tail(arcNo) := nodeNo, cost(arcNo) := ca + αa

nodeNo := nodeNo + 1, arcNo := arcNo + 1
Insert nodeNo to List1

delete currentNode from List1
endwhile
for i = 1 : |N |

if τid(k) 6=∞
for all node j in new graph such that real(j) := i
if timeIndex(j) + τid(k) ≤ q(k)
timeIndex(nodeNo) = timeIndex(j) + τid(k), real(nodeNo) := d(k)
head(arcNo) := j, tail(arcNo) := nodeNo,
cost(arcNo) := cid(k)

nodeNo := nodeNo + 1; arcNo := arcNo + 1
if r(k) + τo(k)d(k) ≤ q(k)

timeIndex(nodeNo) := r(k) + τo(k)d(k), real(nodeNo) := d(k)
head(arcNo) := 0, tail(arcNo) := nodeNo,
cost(arcNo) := co(k)d(k)
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We explain Algorithm 2 with a simple example briefly. Suppose in the original

graph there exists 3 ports, 1,2 and 3 and 3 services, 1, s(1) = 1, t(1) = 2, 2,

s(2)=1, t(2)=3 and 3, s(3) = 2 and t(3)=3. In order to generate Gk, we first

start with adding origin node o(k). Suppose we can only reach from origin of

commodity k to seaport 1 and 2. Then, we generate two nodes, (1, r(k) + τo(k)1)

and (2, r(k)+ τo(k)2). The unit volume transportation cost on these arcs are co(k)1

and co(k)2 respectively.

Next, we develop maritime services. Consider, r(k) + τo(k)1 < e1. Then we

develop node (2, l1 + τ1) and an arc from (1, r(k)+ τo(k)1) to node (2, l1 + τ1) with

cost c1 + p1(e1 − r(k) − τo(k)1) + α1. Suppose r(k) + τo(k)1 > l2. Then we do

not add an arc for service 2. Consider l1 + τ1 ≥ e3 and l1 + τ1 ≤ l3. Then, first

we develop node (3, l3 + τ3) and add an arc from node (2, l1 + τ1) to (3, l3 + τ3)

with cost c3 + α3. Also, assume r(k) + τo(k)2 < e3. So, we add an arc from node

(2, r(k)+ τo(k2)) to node (3, l3 + τ3) with cost c3 +p2(e3− r(k)− τo(k)2)+α3. Now,

we add arcs from sea ports to destination. Suppose we can only reach destination

from node 3. Also, suppose that l3 + τ3 + τ3d(k) ≤ q(k). Then we add an arc

from (3, l3 + τ3) to destination node with cost c3d(k). Assume that direct truck

transportation is infeasible for commodity k so we do not add any arc from origin

to destination corresponds to direct truck transportation option. Now, our graph

for commodity k is ready.

Now LRk(α) is equal to the length of a shortest path from the origin o(k) to

the destination d(k) in graph Gk. Hence LR(α) can be computed efficiently.

For getting the solution of LRk(α), we apply the shortest path algorithm

designed for acyclic digraphs which runs in O(nlogn) [19] where n = |N |.

The other requirement is to find the best Lagrangian multipliers for the relaxed

constraints. There are several techniques to find the best Lagrangian multipliers.

Among these, we use the subgradient approach for solving the Lagrangian dual

problem. The algorithm is given in Algorithm 3.

We start with assigning 0 to all Lagrangian multipliers. Then at each La-

grangian step we solve the Lagrangian relaxed problem and check whether it is
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Algorithm 3 Subgradient

σ ← 2, α← 0, noimp← 0
lb← 0 and ub←∞
while σ > 10−2 and ub−lb

lb
< 0, 01 do

Compute LR(α) and let x be the optimal solution
if

∑
k∈K w(k)xk

a ≤ ua and αa(
∑

k∈K w(k)xk
a − ua) = 0 for all a ∈ A then

STOP, (x, y, z, v) is optimal for MMR-S
else

if LR(α) > lb then
lb← LR(α)
noimp← 0

else
increment noimp

end if
xf ← Heuristic(x)
if Cost(xf ) < ub then

ub← Cost(xf )
end if
if noimp > 15 then

noimp← 0
σ ← σ/2

end if
end if
s← σ(ub−LR(α))∑

a∈A(
∑

k∈K w(k)xk
a−ua)2

αa ← max{0, αa + s(
∑

k∈K w(k)xk
a − ua) } for all a ∈ A

end while
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feasible to our original problem and satisfies complementary slackness conditions

or not . If it is feasible and satisfies complementary slackness conditions, we

stop otherwise we update the lower bound if the value of the Lagrangian relaxed

problem is better than current lower bound. After, we apply some heuristic tech-

niques in order to get a feasible solution from the solution of the Lagrangian

relaxed problem. We will update upper bound if we get a better feasible solu-

tion from the current best. The step size-s- is calculated and finally Lagrangian

multipliers are updated.

4.2 The Extended Formulation

The Lagrangian dual bound is LD = maxα≥0 LR(α). This bound is at least as

good as the linear programming bound of model ILP-1. As the subproblems are

shortest path problems, we can derive an extended formulation which yields the

same bound as the Lagrangian dual.

In this section, we give the mathematical formulation of the extended model.

Then, we give a proof about the equality of lower bounds obtained from the

Lagrangian dual and the linear relaxation of the extended formulation.

For each commodity k ∈ K, we define a graph where a simple path from

origin o(k) to d(k) defines a trip which starts at o(k), ends at d(k), does not visit

any node more than once, and respects all time restrictions. We define the costs

of arcs on the new graph in such a way that the sum of costs of arcs on a path is

equal to the transportation and stocking cost for the corresponding trip. Hence

the problem MMR-S then is equivalent to the problem of finding a path for each

commodity k such that the capacity constraints are satisfied.

For each k ∈ K, we define the following graph G
′

k = (Nk, A
′

k). The set A
′

k

consists of arcs of Ok and Dk and a set of service arcs S
′

k defined as follows.

For each service a ∈ A and nodes (i1, j1) and (i2, j2) in Nk such that s(a) = i1,

t(a) = i2, j1 ≤ la and la + τa = j2, we add an arc ω from node (i1, j1) to

node (i2, j2) with cost σω = ca + pi1(ea − j1)
+ and capacity υω = ua. We define
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service(ω) = a.

Let k ∈ K. For arc (o(k), (i, r(k) + τo(k)i)) ∈ Ok, let fk
o(k),(i,r(k)+τo(k)i)

be 1

if commodity k travels directly from its origin to seaport i and arrives there at

time r(k) + τo(k)i and 0 otherwise. For arc ((i, j), d(k)) ∈ Dk, let fk
(i,j),d(k) be 1

if commodity k arrives at seaport i at time j and travels from i directly to its

destination and 0 otherwise. Finally, for arc ω ∈ S
′

k from node (i1, j1) to (i2, j2),

we define fk
ω to be 1 if commodity k arrives at seaport i1 at time j1 and uses

service service(ω) that starts at sepaort i1 and arrives at seaport i2 at time j2

and 0 otherwise.

Let δ−(k, i1, j1) and δ+(k, i1, j1) be the sets of incoming and outgoing arcs of

node (i1, j1) ∈ Nk in graph G
′

k. The extended formulation, ILP-2 is as follows.

(ILP-2)

min
∑

k∈K w(k)

[∑
(o(k),(i,r(k)+τo(k)i))∈Ok

co(k)if
k
o(k),(i,r(k)+τo(k)i)

+
∑

ω∈S
′
k
σωfk

ω +∑
((i,j),d(k))∈Dk

cid(k)f
k
(i,j),d(k) + co(k)d(k)y

k

]
s.t.∑

(o(k),(i,r(k)+τo(k)i))∈Ok
fk

o(k),(i,r(k)+τo(k)i)
+ yk = 1

∀k ∈ K (4.11)∑
ω∈δ+(k,i1,j1) fk

ω −
∑

ω∈δ−(k,i1,j1) fk
ω = 0

∀k ∈ K, (i1, j1) ∈ Nk (4.12)∑
((i,j),d(k))∈Dk

fk
(i,j),d(k) + yk = 1

∀k ∈ K (4.13)∑
k∈K w(k)

∑
ω∈S

′
k:service(ω)=a fk

ω ≤ ua

∀a ∈ A (4.14)

r(k) + τo(k)d(k)y
k ≤ q(k)

∀k ∈ K (4.15)

fk
o(k),(i,r(k)+τo(k)i)

∈ {0, 1}
∀k ∈ K, (o(k), (i, r(k)+τo(k)i)) ∈ Ok (4.16)

fk
(i,j),d(k) ∈ {0, 1}

∀k ∈ K, ((i, j), d(k)) ∈ Dk (4.17)
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fk
ω ∈ {0, 1}

∀k ∈ K, ω ∈ S
′

k (4.18)

yk ∈ {0, 1}
∀k ∈ K (4.19)

Proposition 6 The linear programming bound of ILP-2 is equal to the La-

grangian dual bound LD and is at least as good as the linear programming bound

of ILP-1.

Proof. Clearly, the Lagrangian dual bound LD is at least as good as the linear

programming bound of ILP-1. In the sequel, we prove that it is equal to the

linear programming bound of ILP-2.

First observe that LR(α) = −
∑

a∈A αaua +
∑

k∈K w(k)LR
k
(α) where

LR
k
(α) = min

∑
(o(k),(i,r(k)+τo(k)i))∈Ok

co(k)if
k
o(k),(i,r(k)+τo(k)i)

+
∑

ω∈S
′
k
(σω + αservice(ω))f

k
ω

+
∑

((i,j),d(k))∈Dk
cid(k)f

k
(i,j),d(k) + co(k)d(k)y

k

s.t.∑
(o(k),(i,r(k)+τo(k)i))∈Ok

fk
o(k),(i,r(k)+τo(k)i)

+ yk = 1

(4.10)∑
ω∈δ+(k,i1,j1) fk

ω −
∑

ω∈δ−(k,i1,j1) fk
ω = 0

∀(i1, j1) ∈ Nk (4.11)∑
((i,j),d(k))∈Dk

fk
(i,j),d(k) + yk = 1

(4.12)

fk
o(k),(i,r(k)+τo(k)i)

∈ {0, 1}
∀(o(k), (i, r(k) + τo(k)i)) ∈ Ok

fk
(i,j),d(k) ∈ {0, 1}

∀((i, j), d(k)) ∈ Dk

fk
ω ∈ {0, 1}

∀ω ∈ S
′

k

yk ∈ {0, 1}
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As the above problem is a shortest path problem, it has the linearity property

and the convex hull of its feasible solutions is described by constraints (4.10)-

(4.12) and nonnegativity constraints on variables. Hence the Lagrangian dual

bound LD is equal to the linear programming bound of ILP-2. �



Chapter 5

Heuristics

We solve the Lagrangian dual problem using the subgradient algorithm given

in Algorithm 3. At each iteration of the algorithm where we solve a relaxed

problem, we check whether the optimal solution is feasible and has cost less than

the current upper bound. If the optimal solution is not feasible, then we call a

heuristic algorithm which tries to generate a feasible solution starting with the

optimal solution of the relaxed problem.

We propose two heuristic approaches. The first heuristic works as follows.

Suppose we solve the |K| shortest path problems and we have an infeasible solu-

tion.

Let x be the optimal solution of the relaxed problem and Π = {a ∈ A :∑
k∈K : xk

a=1 w(k) > ua}. So, Π is the set of overcapacitated arcs. Also, for a ∈ Π,

Υa = {k ∈ K : xk
a = 1} is the set of commodities that use arc a.

We need to decide which commodities will be forced out from a ∈ Π and will

be assigned to new paths. We try four different commodity selection procedures.

In all alternatives, for each a ∈ Π we define a set called Ωa which keeps the

commodities that will be banned from a.

In our first commodity selection procedure, for each a ∈ Π we first select

commodity k∗ such that w(k∗) = min{w(k) : k ∈ Υa}, then add it to Ωa. The

36
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motivation in order to start selection from the commodity with the minimum

demand is the expectation of less waiting costs at terminals if the commodity

will be assigned to a new intermodal path and less direct truck transportation

cost if the commodity will be assigned to direct truck transportation.

After selecting the commodity k∗, we perform a feasibility check operation. If∑
k∈Υa

w(k) − w(k∗) ≤ ua then we proceed to next a ∈ Π. If not, we select the

commodity k∗∗, which has the second minimum demand and repeat the feasibil-

ity check procedure above. We proceed by selecting third, fourth, .. minimum

demand commodity until total flow on a does not exceed its capacity.

The second criterion we adapt to select the commodities is the number of in-

feasible arcs in a commodity’s current path. For a ∈ Π, we start with commodity

k∗ ∈ Υa, whose number of infeasible arcs on its path in the solution x is largest. If

there is a tie between commodities, then we select the one with smaller demand.

Then, we add selected commodity to Ωa. We apply the same feasibility check as

described above.

The third criterion used is the decrease in the number of infeasible arcs if we

reroute a commodity. We calculate these values for each k ∈ K and then for each

a ∈ Π, we start by the commodity k∗ ∈ Υa with largest value.

The last criterion taken in commodity selection process is as follows. For

k ∈ K, we calculate how much volume we will gain if we reroute k. For a ∈ Π

such that k∗ ∈ Υa, if we reroute k∗, we gain min{
∑

k∈Υa
w(k)− ua, w(k∗)} on a.

After calculating total gains for all commodities, for a ∈ Π we start with k∗ ∈ Υa

which has largest gain, add it to Ωa and proceed as before until a becomes feasible.

After developing Ωa for a ∈ Π with one of the alternative ways, first we

calculate the residual capacities of the arcs by the following. For each k ∈ K,

if k /∈ Ωa, for all a ∈ Π, then we assign k to its path in x. We decrease the

capacities of arcs on the path of k by w(k). If there exists a ∈ Π such that

k ∈ Ωa, this means k wil be rerouted and no capacity adjustment is done. The

residual capacities of arcs are named as rua.
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Let K∗ be the set of commodities which will be rerouted, K∗ = ∪a∈ΠΩa. We

adapt the graphs for commodities k ∈ K∗. This adaptation is done by extracting

arc a from graph k ∈ K∗ if k ∈ Ωa or if rua < w(k). Then we solve shortest

path problems for all commodities k ∈ K∗. This two-step procedure is called as

rerouting.

Our procedure may not end because of the fact that there may exist new

overcapacitated arcs after rerouting. We perform rerouting procedure 2 or 3

times according to capacity factor used in the associated network.

After the last rerouting, we determine the sets Π and Υa for a ∈ Π and solve

an optimization problem in order to decide which commodities will be assigned

to direct truck transportation. We define K∗∗ = ∪a∈ΠΥa.

Let µk be 1 if commodity k ∈ K∗∗ will be assigned to direct transportation

option and 0 otherwise. Let optcostk denote the cost of the last assigned path of

commodity k and useda be the total volume assigned to service a ∈ A at the end

of the last rerouting procedure.

We solve the following problem.

min
∑

k∈K∗∗ w(k)(co(k)d(k) − optcostk)µk

s.t.∑
k∈Υa

w(k)µk ≥ useda − rua

∀a ∈ Π (5.1)

µk ∈ {0, 1}
∀k ∈ K∗∗ (5.2)

If, in the optimal solution, we have µk = 1 for commodity k, then commodity

k is carried directly from its origin to its destination using trucks.

The resulting solution is a feasible solution to our original problem.

The other heuristic works as follows. First, we develop Π. Let us define two
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sets B1 and B2. For k ∈ K, if there exists a ∈ Π such that xk
a = 1 then insert

k to B1. Otherwise, insert it to B2. Now, we adapt the capacities of arcs in the

problem. For a ∈ A, ua = ua −
∑

k∈K : xk
a=1, k∈B2

w(k). Then, we formulate the

original problem with all k ∈ B1 and new capacities and solve optimality. The

resulting solution is a feasible solution.



Chapter 6

Computational Results

In this chapter, we first describe the test data and then we present the results

obtained by solving the integer models. Finally, we report the lower bounds

obtained from the Lagrangian relaxation and the results of the heuristics.

6.1 Input Data and Solution Methodology

We use two service networks in our computational study. The first one is the com-

pany’s network which is composed of 34 important sea ports in Europe, Russia,

China, Hong Kong, Singapur and Malaysia and 167 services of the world’s ma-

jor sea transportation operators in the world like MSC, Hanjin Shipping, Emes,

Grimaldi and Hapag-Lloyd (see figure 6.1). The schedule of services is obtained

from the company. This schedule is for services provided in March 2008. Also,

capacities allocated to our company are given.

The other parameters we obtained from the company are sea transportation

prices, truck transportation prices from various cities to nearest sea terminals(i.e.

from Ankara to Mersin and İstanbul), direct truck transportation prices, loading

and unloading (both to truck and to vessel) costs at terminals and also stocking

costs at seaports. The company’s sea transportation price index is the index

40
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which is valid in March 2008 and the truck transportation price index is valid

between January 1, 2008 to June 30, 2008. Stocking costs may change from

terminal to terminal, we take an average value of pi = 8.5 liras per day for all

terminals.
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We named company’s graph as O1 and random graph as O2.

For the instances on network O1, we randomly generate the demands. For

the other network instances, we generate all data randomly.

For every graph, we generate 4 problem core instances in which |K| equals to

400, 600, 800 and 1000. w(k) is uniformly distributed over the interval [50, 250],

co(k)d(k) is uniformly distributed over the interval [1200, 3500], co(k)i and cid(k) are

uniformly distributed over the interval [100, 600], τo(k)i and τid(k) are uniformly

distributed over the interval [1/10, 5/2], τo(k)d(k) is uniformly distributed over

the interval [7, 25], r(k) and q(k) are uniformly distributed over the intervals

[1, 10] and [20, 35] respectively. This parameters are obtained from company for

instances in O1 network.

The O2 network which includes 66 nodes and 1200 arcs. The characteristics

of arcs are generated as follows. ea is uniformly distributed over the interval

[1, 26], la is the sum of ea and a random variable which is uniformly distributed

over the interval [1, 2], ua is uniformly distributed over the interval [100, 350], τa

is uniformly distributed over the interval [2, 12], ca = 100τa and pi is uniformly

distributed over the interval [5, 10].

We also derive 2 more test instances from each core instance by multiplying

the capacities of the arcs in the network with factors 1.5 and 3. As a result, we

have 24 problem instances for testing our various solution approaches. A problem

is named as name of the graph-capacity multiplier-number of commodities.

We coded our models using JAVA programming language in ILOG Concert

Technology in order to solve models by CPLEX 11.0. Also, algorithms and heuris-

tic approaches are coded in JAVA programming language. All runs are taken on

a 2.67 Ghz 2×Quadcore Xeon Processor with 8 GB Ram.
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6.2 Comparison of Models

In this section, we will give the comparison between our models in terms of LP

relaxation gap, CPU times(in seconds) and number of branch and cut nodes.

Also, the effects of variable fixing and valid inequalities are analyzed. We try to

analyze which formulation is better in which cases.

We note that in model ILP-2, we apply variable fixing as follows. For k ∈ K

and a ∈ A, if w(k) > ua then commodity k can not use service a.

We impose a time limit of one hour. For problems that are not solved op-

timality in one hour, we report the remaining percentage gap in paranthesis in

tables reporting CPU times.

In the sequel, ”ILP-1 + v” refers the model valid inequlities added to ILP-

1, ”ILP-1+p” represents the model ILP-1 with variable fixing, and ”ILP-1.2”

corresponds to model ILP-1 with valid inequalities and variable fixing.

We start with instances on company’s network(O1).

CPU seconds for O1 instances
Instance

No ILP-1 ILP-1 + v ILP-1 + p ILP-1.2 ILP-2

O1-1-400 480.6 38.7 441.5 37.9 4.4
O1-1-600 1h*(0.18) 58.0 1h*(0.16) 57.9 42.8
O1-1-800 1h*(0.44) 76.0 1h*(0.44) 67.4 197.9
O1-1-1000 1h*(0.39) 109.3 1h*(0.38) 108.6 1h*(0.02)
O1-1.5-400 812.4 47.5 779.3 38.7 18.1
O1-1.5-600 1h*(0.58) 80.1 1h*(0.58) 64.6 334.2
O1-1.5-800 1h*(18.13) 108.7 1h*(18.13) 105.6 1h*(0.05)
O1-1.5-1000 1h*(21.12) 155.8 1h*(21.10) 194.4 1h*(0.11)
O1-3-400 1131.4 47.4 1022.2 46.2 31.5
O1-3-600 1h*(1.74) 94.7 1h*(1.74) 75.5 1h*(0.13)
O1-3-800 1h*(2.44) 137.4 1h*(2.44) 138.3 1h*(0.21)
O1-3-1000 1h*(4.28) 303.3 1h*(4.28) 240.9 1h*(0.24)

*could not reach
to optimal

Table 6.1:
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LP gaps(%) for O1 instances
Instance

No ILP-1 ILP-1 + v ILP-1 + p ILP-1.2 ILP-2

O1-1-400 22.52 18.12 5.64 1.72 0.53
O1-1-600 16.35 13.63 4.92 1.76 0.40
O1-1-800 13.40 11.23 5.11 2.41 1.00
O1-1-1000 11.39 9.96 4.79 2.74 1.74
average 15.91 13.24 5.12 2.16 0.67

O1-1.5-400 19.56 12.69 12.38 2.59 1.71
O1-1.5-600 14.73 10.27 10.45 3.90 1.68
O1-1.5-800 12.36 8.73 9.53 4.77 1.71
O1-1.5-1000 10.44 7.81 8.18 4.82 1.73

average 14.28 9.72 10.11 3.75 1.61
O1-3-400 16.91 4.08 16.87 4.06 1.04
O1-3-600 13.52 4.24 13.50 4.22 0.75
O1-3-800 12.59 5.10 12.55 5.08 0.81
O1-3-1000 11.08 5.35 11.02 5.30 0.86
average 13.53 4.69 13.48 4.68 0.87

overall average 14.56 9.32 9.58 3.53 1.05

Table 6.2:

One of the most important comparison between the performance of two mod-

els is CPU times spend for reaching exact solutions. For this, we need to analyze

Table 6.1. Regardless of the value of the capacity factor, we can not reach op-

timality with ILP-1 in less than one hour on instances with high number of

commodities. On the other hand, with ILP-1.2 which includes variable fixing and

valid inequlities, we can reach optimality for all instances in O1 network. The

longest solution time is about 4 minutes. Comparing the results of ILP-1 with

ILP-1+v and ILP-1+p, we see that rather than variable fixing, valid inequalities

help us to reach exact solutions quickly.

In the last column of Table 6.1, we see the solution times with ILP-2. We see

that as the capacity factor increases, the solution times of ILP-2 increase. Also,

the number of instances for which ILP-2 can not reach optimality increases with

increasing capacity factor. The instances for which it can not reach optimality,

the remaining gaps increase as the capacity factor increases.

In the comparison between ILP-1.2 and ILP-2, results show that ILP-2 is
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Number of nodes for O1 instances
Instance

No ILP-1 ILP-1 + v ILP-1 + p ILP-1.2 ILP-2

O1-1-400 830 0 786 0 0
O1-1-600 -* 0 -* 0 1252
O1-1-800 -* 0 -* 0 5235
O1-1-1000 -* 67 -* 67 -*
O1-1.5-400 1054 0 992 0 1520
O1-1.5-600 -* 1 -* 1 10195
O1-1.5-800 -* 1 -* 1 -*
O1-1.5-1000 -* 409 -* 409 -*
O1-3-400 2887 10 2887 10 2729
O1-3-600 -* 96 -* 96 -*
O1-3-800 -* 221 -* 201 -*
O1-3-1000 -* 1259 -* 1252 -*

*could not reach
to optimal

Table 6.3:

faster than ILP-1.2 on instances with 400 and 600 commodities with capacity

factor 1, and it is faster with 400 commodities with 1.5 and 3 capacity factors.

But the differences are not too large. On the other hand, in instances with larger

number of commodities, ILP-2 can not reach optimality but ILP-1.2 does at most

within 4 minutes.

Another criterion we use in our comparison is LP gaps of the models. We

start with analyzing the effects of variable fixing and valid inequalities and then

proceed with comparison of ILP-1.2 and ILP-2. We calculate these gaps by

100*(optimal-relaxed)/optimal.

From Table 6.2, we see that LP relaxation gap average is about 15% for model

ILP-1. The gap varies between 10% and 23% in instances on O1. Variable fixing

performs better than valid inequalities in O1-1 network instances because of the

tight capacities. On average, it improves LP gap by about 11%, on the other hand

valid inequalities improve by about 3%. But when we increase the capacity of

services in O1, then valid inequalities become more efficient than variable fixing.

The improvement provided by variable fixing is about 0.1% with capacity factor 3.
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The effect of variable fixing decreases with increasing capacities. This is expected

since the fixing, xk
a = 0 if w(k) > ua, loses its efficiency.

We analyze the LP gaps of ILP-1.2, and we see that we improve the gap about

11% on the average. With LP relaxation of ILP-1.2, we are now at most 5.3%

far from the optimal value. The gaps obtained from the LP relaxation of ILP-2

is 1% on the average. The maximum deviation with ILP-2 is 1.74%.

We compare the LP gaps of ILP-1.2 and ILP-2 and we see that in all instances,

ILP-2 gives better LP relaxation results than ILP-1.2.

From Table 6.3, we see that number of nodes reduces to 0 with variable fixing

and valid inequalities for instances O1-1-400, O1-1-600, 01-1-800 and O1-1.5-400.

Also, it reduces with variable fixing and valid inequalities for other instances.

Now, we will give and analyze the results obtained from solving instances on

the randomly generated network O2. This network contains about 7 times more

arcs than the original graph.

CPU seconds for O2 instances
Instance

No ILP-1 ILP-1 + v ILP-1 + p ILP-1.2 ILP-2

O2-1-400 240.9 111.5 232.8 101.9 272.1
O2-1-600 1h*(0.78) 166.4 1h*(0.78) 183.7 298.2
O2-1-800 1h*(2.58) 231.1 1h*(2.58) 247.1 503.9
O2-1-1000 1h*(4.04) 335.0 1h*(4.04) 346.2 552.4
O2-1.5-400 209.1 110.9 198.1 99.3 269.1
O2-1.5-600 3211.9 151.2 3054.3 136.4 378.5
O2-1.5-800 1h*(1.12) 227.0 1h*(1.12) 219.2 468.2
O2-1.5-1000 1h*(2.74) 240.6 1h*(2.74) 231.5 548.1
O2-3-400 232.3 103.6 229.1 101.2 254.0
O2-3-600 667.1 162.4 663.0 160.8 362.7
O2-3-800 1h*(0.60) 188.2 1h* 185.3 476.7
O2-3-1000 1h*(0.84) 418.7 1h* 414.2 572.3

*could not reach
to optimal

Table 6.4:

With model ILP-1, we can not reach optimality in less than one hour in many
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LP gaps(%) for O2 instances
Instance

No ILP-1 ILP-1 + v ILP-1 + p ILP-1.2 ILP-2

O2-1-400 43.48 40.47 8.78 4.08 0.84
O2-1-600 40.22 37.27 9.72 5.07 1.28
O2-1-800 35.55 32.02 10.31 8.26 1.82
O2-1-1000 33.61 28.66 10.79 9.20 2.36
average 38.26 34.89 9.63 6.42 1.57

O2-1.5-400 15.97 10.69 14.85 10.38 0.26
O2-1.5-600 14.91 7.59 14.22 7.41 0.31
O2-1.5-800 14.86 8.67 14.37 8.53 0.53
O2-1.5-1000 14.85 13.01 14.48 12.91 0.50

average 15.19 9.59 14.41 9.78 0.4
O2-3-400 15.84 10.55 14.59 10.13 0.03
O2-3-600 14.54 7.17 13.77 6.91 0.01
O2-3-800 14.35 7.80 13.79 7.61 0.01
O2-3-1000 14.68 8.79 14.26 8.65 0.03
average 14.84 8.65 13.56 8.46 0.02

overall average 22.76 17.71 12.53 8.22 0.67

Table 6.5:

of the instances in O2. The number of opened branch-and-cut nodes increases

as we increase the number of commodities and this results increase in of solution

times. With variable fixing and valid inequalities, the number of opened nodes

decreases and this results in improvements of solution times.

According to results in O2 network, ILP-1.2 again performs better than ILP-2

in terms of CPU times. Although in some instances opened nodes are more in

ILP-1.2, it is faster than ILP-2.

An interesting point is the LP relaxation gaps of ILP-1 with tight capacities.

From Table 6.5, it is seen that average gap of instances with capacity factor 1 is

about 39%. With efforts, we decrease this gap to 6.5%.

In O2, LP gaps with ILP-1 decrease when we increase the capacities of the

services in the network. This also holds in O1. The LP gaps and capacity factors

move reversely. This is not the case for ILP-1.2.
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Number of nodes for O2 instances
Instance

No ILP-1 ILP-1 + v ILP-1 + p ILP-1.2 ILP-2

O2-1-400 1640 0 1589 0 0
O2-1-600 -* 0 -* 0 0
O2-1-800 -* 0 -* 0 0
O2-1-1000 -* 0 -* 0 0
O2-1.5-400 69 0 69 0 0
O2-1.5-600 495 0 487 0 0
O2-1.5-800 -* 33 -* 33 0
O2-1.5-1000 -* 228 -* 228 0
O2-3-400 0 0 0 0 0
O2-3-600 10 0 10 0 0
O2-3-800 -* 28 -* 28 0
O2-3-1000 -* 111 -* 111 0

*could not reach
to optimal

Table 6.6:

We analyzed solutions of some instances and we have seen that when ca-

pacities are tight, many commodities could not be transported on their shortest

paths in IP solutions because of insufficient capacities. On the other hand, some

proportion of commodities are transported on shortest paths in LP relaxation

solutions. When we increase capacities, the number of commodities transported

on their shortest paths increase because now most of the arcs in the system have

sufficient capacities. Also, these commodities are fully transported on their short-

est paths in LP relaxation solution. So, gaps are decreasing with the increase in

the number of commodities transported on their optimal paths.

We can conclude that ILP-1.2 performs better than extended formulation

ILP-2 in terms of solution times. The generated valid inequalities work well and

improve the solution times.

The variable fixing efforts work well with tight capacities. On the other hand,

their benefit decreases with the increase in capacities. We think that efficiency

of variable fixing is directly related with the characteristics of network and com-

modities.
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The LP gaps obtained with ILP-2 are better than gaps obtained with ILP-1.2

in spite of our strengthening efforts.

6.3 Lower Bounds and Heuristic Results

In this section, we will give the lower and upper bounds obtained with different

heuristic procedures. The results are deviations from the optimal values and given

as percentages. Also, the number of iterations performed with each heuristic is

given. We run all heuristics for 15 minutes in all instances.

In the sequel, by ”Heuristic1-a”, ”Heuristic1-b”, ”Heuristic1-c” and

”Heuristic1-d”, we mean the application of first, second, third and fourth al-

ternatives given in the first heuristic.

We start with solutions obtained on company’s network.

Heuristic1-a Heuristic1-b Heuristic1-c Heuristic1-d Heuristic2
Instance

No. LB UB LB UB LB UB LB UB LB UB

O1-1-400 0.65 2.17 0.84 2.33 0.58 0.95 0.63 1.35 1.32 0.70
O1-1-600 0.74 1.66 0.52 2.27 0.71 1.68 0.71 1.56 0.85 0.45
O1-1-800 2.13 1.61 2.03 2.24 1.99 1.86 1.97 1.63 2.09 0.88
O1-1-1000 1.46 2.04 1.85 1.95 1.06 1.56 1.55 1.67 1.77 1.01
O1-1.5-400 2.31 1.19 2.00 1.31 2.08 1.02 1.85 1.14 2.38 0.59
O1-1.5-600 2.29 1.51 2.23 1.45 2.16 1.56 2.03 1.35 2.29 0.75
O1-1.5-800 2.31 1.89 2.35 1.81 2.29 1.54 2.23 1.36 2.51 0.74
O1-1.5-1000 2.69 2.13 2.64 2.01 2.52 1.86 2.42 1.92 2.91 1.12
O1-3-400 1.75 1.08 1.71 0.97 1.68 1.14 1.52 1.12 1.83 0.83
O1-3-600 1.95 1.26 1.90 1.09 1.73 1.13 1.67 1.18 1.80 0.89
O1-3-800 2.07 1.39 1.97 1.50 1.95 1.44 1.88 1.26 2.25 1.14
O1-3-1000 2.08 1.89 2.02 1.78 1.96 1.85 1.99 1.77 2.03 1.15

Table 6.7: Deviation of upper and lower bounds from the optimal solution values
for O1 instances

In the instances on the company’s graph, it is seen that the best upper bound

obtained is at most 1.15% far from the optimal value.
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Number of iterations for O1 instances
Instance

No. Heur1-a Heur1-b Heur1-c Heur1-d Heur2

O1-1-400 426 418 415 419 328
O1-1-600 284 279 277 279 219
O1-1-800 213 209 208 210 164
O1-1-1000 170 167 166 168 131
O1-1.5-400 498 485 476 480 341
O1-1.5-600 332 323 317 320 227
O1-1.5-800 249 243 238 240 171
O1-1.5-1000 199 194 190 192 136
O1-3-400 509 492 485 488 359
O1-3-600 339 328 323 325 239
O1-3-800 255 246 243 244 180
01-3-1000 204 197 194 195 141

Table 6.8:

In all instances, Heuristic 2 gives the best upper bound. The reason be-

hind this is that we solve the remaining problem to optimality on generated

residual network for the commodities using overcapacitated arcs in heuristic 2.

On the other hand, generally lower bounds obtained from Lagrangian relaxation

with Heuristic 2 are worse probably because the number of iterations done with

Heuristic 2 in 15 minutes is less than Heuristic 1. Solving remaining problem to

optimality consumes more time.

The results obtained for the randomly generated network are similar to the

results obtained for the O1 network. In all networks, generally, heuristics per-

formance decreases with increase in capacities. We think that the number of

commodities transported on multimodal paths increases with the increase in ca-

pacities. We perform 2 or 3 rerouting procedure but it may not be sufficient to

reach better solutions. Also, it is difficult to find a common criterion for decid-

ing which commodities will be extracted from overcapacitated arcs. The good

criterion may change from one arc to another.

The gap of the lower bounds we obtain by Lagrangian relaxation is between

1.5% and 3%. We conclude that this is a result of slow convergence of subgradient

approach.
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The iterations taken with subgradient algorithm decreases with the increase

in the network size and number of commodities. On the other hand, iteration

number increases with the increase of capacities. When we increase capacities, the

number of infeasible arcs decreases. So, the time consumed during the heuristic

process decrease.

Heuristic1-a Heuristic1-b Heuristic1-c Heuristic1-d Heuristic2
Instance

No. LB UB LB UB LB UB LB UB LB UB

O2-1-400 1.28 1.94 0.97 1.67 1.18 1.90 1.19 1.93 1.72 0.87
O2-1-600 2.88 1.81 2.37 1.62 2.44 1.26 1.36 1.94 2.16 0.90
O2-1-800 1.99 2.02 1.96 1.76 1.96 1.87 1.97 2.25 2.45 1.45
O2-1-1000 2.67 2.17 2.76 2.26 2.64 2.38 2.77 2.24 3.14 1.74
O2-1.5-400 1.56 1.45 1.58 1.27 0.97 1.58 0.93 1.87 1.80 1.22
O2-1.5-600 1.53 1.69 1.05 1.93 1.04 1.99 1.03 1.82 1.74 1.76
O2-1.5-800 1.38 2.24 1.04 2.30 1.02 2.05 1.03 2.21 1.41 2.03
O2-1.5-1000 1.16 1.94 1.36 2.03 1.52 1.96 1.30 2.21 1.31 1.66
O2-3-400 1.25 2.03 1.23 1.84 1.09 1.78 0.74 2.20 1.31 1.36
O2-3-600 2.17 2.02 2.01 2.11 1.60 2.22 1.37 1.91 1.79 1.64
O2-3-800 1.58 2.38 1.50 2.10 1.46 2.13 1.44 2.22 1.60 2.13
O2-3-1000 1.31 2.10 1.49 1.94 1.49 2.24 1.24 2.20 1.37 1.65

Table 6.9: Deviation of upper and lower bounds from the optimal solution values
for O2 instances
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Number of iterations for O2 instances
Instance

No. Heur1-a Heur1-b Heur1-c Heur1-d Heur2

O2-1-400 108 99 97 97 46
O2-1-600 72 66 65 66 31
O2-1-800 54 50 49 50 23
O2-1-100 43 40 39 39 18

O2-1.5-400 137 126 123 128 65
O2-1.5-600 91 84 82 85 43
O2-1.5-800 69 63 62 64 33
O2-1.5-100 55 50 49 52 26
O2-3-400 141 129 125 124 67
O2-3-600 94 86 83 83 45
O2-3-800 71 65 63 62 34
O2-3-100 56 52 50 50 27

Table 6.10:



Chapter 7

Conclusion and Future Research

In this thesis, we consider a multimodal transportation network with scheduled

services. The problem is minimizing the total cost of routing a given set of

demands of a logistics company over a planning horizon by satisfying capacity

and time-related constraints on this network. The truck-vessel combination and

direct truck transportation routes are allowed on the transportation network.

First, we developed an integer linear model ILP-1, in order to solve our prob-

lem exactly. ILP-1 could not reach optimality for problems with large number

of commodities and also networks with large number of arcs in reasonable times.

We performed variable fixing and then add valid inequalities to ILP-1 to get

optimal solutions in shorter times. The resulting model is called ILP-1.2. We

reached optimality with the improved model ILP-1.2 in less than 10 minutes for

all instances in our computational study.

We also applied Lagrangian relaxation to obtain tighter lower bounds and

devise heuristic algorithms. We relaxed the capacity constraints in our problem

and we get |K| subproblems in order to solve the Lagrangian relaxed problem.

To solve each subproblem, we developed a technique that starts with a graph

generation procedure for each commodity and continues with application of a

shortest path algorithm designed for acyclic graphs.

54
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Then, we developed an extended formulation, ILP-2 to our problem. This

model is formulated on new graphs generated from the original graph. All time

related characteristics are included in the new graph generation procedure. Then,

we formulate our problem as an integer multicommodity network flow problem.

Finally, we propose two heuristics based on Lagrangian relaxation.

We compared the performance of our models in terms of CPU times, LP

lower bounds. Also, we compare the performances of heuristics and lower bounds

obtained from Lagrangian relaxation.

We conclude that our first model strengthened with variable fixing and valid

inequalities beats our extended model in terms of CPU times in our instances.

The heuristics performances varied according to the capacity levels of services.

Generally, the cost of the best feasible solution is at most 2% far away from the

cost of optimal. In all instances we solved, heuristic 2 gives the best feasible

solution.

We believe that more work can be done on deriving valid inequalities to

strength both formulations. Also, different heuristic approaches may be inter-

esting to develop.

Further research can incorporate various mode alternatives to the model. Rail

and air transportation services can be added to transportation alternatives port-

folio.

Another future research direction is related with the cost structure of the

problem. Rather than linear cost functions, piecewise linear cost functions may

be used to model transportation costs.

Our problem is related with operational level decisions in the logistics com-

pany and can be combined with tactical level decisions. With routing, the most

required services can be identified and using the information gathered from rout-

ing, company can identify for which services they demand further capacity from

shippers.
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[30] Worldbank Reports, www.info.worldbank.org

[31] www.en.wikipedia.org, source: Association of American Railroads.

[32] www.lojistikhaber.com

[33] www.nomegatrucks.eu


