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ABSTRACT

A SURVEY OF MULTIVARIATE GARCH MODELS

Taş, Mustafa Anıl

M.A., Department of Economics

Supervisor: Assist. Prof. Dr. Taner Yiğit

September 2008

This paper reviews the recent developments in the multivariate GARCH

literature. Most common multivariate GARCH models and their properties

are briefly presented.

Keywords: Multivariate GARCH, Volatility
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ÖZET

ÇOK DEĞİŞKENLİ GARCH MODELLERİNİN BİR İNCELEMESİ

Taş, Mustafa Anıl

Yüksek Lisans, İktisat Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Taner Yiğit

Eylül 2008

Bu çalışma çok değişkenli GARCH literatüründeki son gelişmeleri in-

celemiştir. En yaygın çok değişkenli GARCH modelleri ve bunların özellikleri

kısaca sunulmuştur.

Anahtar Kelimeler: Çok Değişkenli GARCH, Volatilite
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CHAPTER I

INTRODUCTION

Volatility modelling has been one of the main objects in financial economet-

rics after the introduction of Autoregressive Conditional Heteroskedasticity

(ARCH) in the seminal paper of Engle (1982). It is now widely accepted

that understanding the relation between the volatilities and covolatilities of

several markets or asset returns are essential. Therefore, univariate models

of volatility are inadequate in that sense.

Multivariate GARCH models are often used in applications of asset pric-

ing and asset allocation. Asset pricing depends on the covariances of assets in

a portfolio and asset allocation is linked to optimal hedging ratios. Bollerslev

et al. (1988), Ng (1991) and Hansson and Hördahl (1998) provide examples

of these applications. Multivariate GARCH models are also used to analyze

volatility and correlation transmission in studies of contagion, see Tse and

Tsui (2002) and Bae et al. (2003).

A multivariate GARCH model should be flexible enough to be able to

explain the dynamics of the conditional variances and covariances. How-

ever, very high flexibility may hurt the parsimony of the model by increasing

the number of parameters. Therefore, the model should be parsimonious

enough to allow for easy estimation and easy interpretation of the parame-

ters. Another important issue in a multivariate GARCH model is ensuring

the positive definiteness of the conditional covariance matrix. One may de-
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rive conditions under which the conditional covariance matrix implied by the

model is positive definite. An alternative is to specify the model such that

positive definiteness is ensured by construction.

This paper is a brief survey of the recent developments in multivari-

ate GARCH modelling. For similar but more comprehensive surveys, see

Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2008). This paper is

organized as follows. In section 2, several multivariate GARCH models are

reviewed. Section 3 is devoted to hypothesis testing in multivariate GARCH

models and section 4 concludes.

2



CHAPTER II

OVERVIEW OF MODELS

Consider a stochastic vector process {yt} with dimension N × 1. Let Ft−1

denote the information set generated by the observed series {yt} until time

t− 1. We have

yt = µt + εt, (1)

with µt is the conditional mean vector and εt is such that

εt = H
1/2
t ηt. (2)

Thus εt is conditionally heteroskedastic given the information set Ft−1. The

N × N matrix Ht is the conditional covariance matrix of yt and ηt is an

i.i.d. vector error process such that E[ηtη
′
t] = I. This defines the standard

multivariate GARCH (MGARCH) framework.

The specification of the matrix process Ht determines the relevant

MGARCH model. There are three approaches to the formulation of Ht:

Parametric, semiparametric and nonparametric formulations. We will mostly

deal with the parametric formulations in the following subsections. These

models are divided into three categories. In the first one, the conditional

covariance matrix Ht is modelled directly. VEC and BEKK models belong

to this category. The models in the second category include the factor mod-

els. These models assume that the process εt is generated by a number of

unobserved heteroskedastic factors. In the third category, the conditional
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variances and correlations are modelled instead of the conditional covari-

ance matrix. This category includes the Constant Conditional Correlation

(CCC) model and its extensions. The semiparametric and nonparametric

approaches are considered in the last subsection. These approaches can off-

set the loss of efficiency of the parametric estimators due to misspecification

of the conditional covariance matrices.

The number of parameters increases rapidly as the dimension of yt in-

creases. This creates difficulties in the estimation of the models. Therefore,

one of the important objectives in specifying an MGARCH model is to

maintain parsimony and flexibility simultaneously. Another goal is to ensure

the positive definiteness of the conditional covariance matrices. Doing this

through an eigenvalue-eigenvector decomposition is a numerically difficult

problem. The numerical optimization of the likelihood function in the case

of parametric models is another difficulty in constructing an MGARCH

model. The conditional covariance or correlation matrix appearing in the

likelihood function depends on the time index t and has to be inverted

for all t in every iteration of the numerical optimization. This is a both

time consuming and numerically unstable procedure, especially with high

dimensions of yt. Therefore, avoiding excessive inversion of matrices is

another objective in constructing an MGARCH model.

2.1 Models of the Conditional Covariance Matrix

We start by defining the VEC-GARCH model of Bollerslev et al. (1988),

which is the pure multivariate extension of the univariate GARCH model.
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In this model, every conditional variance and covariance is a linear function

of all lagged conditional variances, covariances and lagged squared errors and

cross products of errors. The model is defined as follows

vech(Ht) = c +

q∑
j=1

Ajvech(εt−jε
′
t−j) +

p∑
j=1

Bjvech(Ht−j), (3)

where vech(·) is the operator that stacks the lower triangular portion of a

N × N matrix as a N(N + 1)/2 × 1 vector. Aj and Bj are N(N + 1)/2 ×

N(N + 1)/2 parameter matrices. Although the VEC model is very flexible,

estimation of the parameters is quite demanding. The number of parameters

equals (p + q)(N(N + 1)/2)2 + N(N + 1)/2, which is large unless N is small.

The diagonal VEC (DVEC) model, proposed by Bollerslev et al. (1988),

assumes that Aj and Bj in (3) are diagonal matrices. Each conditional

variance hii,t depends on its own past squared error ε2
i,t−1 and its own lag

hii,t−1. Similarly, each conditional covariance hij,t depends on its own past

cross products of errors εi,t−1, εj,t−1 and its own lag hij,t−1. In this case, the

number of parameters drops down to (p+q+1)N(N +1)/2 but no interaction

is allowed between the different conditional variances and covariances.

As stated previously, estimation of the parameters of the VEC model is

computationally demanding. Assuming that the errors ηt follow multivariate

normal distribution, the log-likelihood of the model (2) has the following form

T∑
t=1

`t(θ) = c− 1

2

T∑
t=1

ln |Ht| −
1

2

T∑
t=1

ε′tH
−1
t εt. (4)

The parameter vector θ is estimated iteratively. It is apparent from (4)

that the conditional covariance matrix Ht has to be inverted for every t at

each iteration. This is a computational burden if the number of observations

and N are large. A second difficulty is to ensure the positive definiteness
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of the covariance matrices. The VEC model can be modified such that the

conditional covariance matrices are positive definite by construction. This

modified model is known as the Baba-Engle-Kraft-Kroner (BEKK) defined

in Engle and Kroner (1995). The model is defined as follows

Ht = CC ′ +

q∑
j=1

K∑
k=1

A′
kjεt−jε

′
t−jAkj +

p∑
j=1

K∑
k=1

B′
kjHt−jBkj, (5)

where Akj, Bkj and C are N × N parameter matrices, and C is lower

triangular. Since CC ′ > 0, positive definiteness of Ht is ensured if H0 is

positive definite.

A simplified version of (5) is the diagonal BEKK where Aj and Bj are

diagonal matrices. The most simplified version of the BEKK model is the

scalar BEKK one with Aj = aI and Bj = bI where a and b are scalars.

Despite the advantage of ensuring positive definiteness of Ht, the estimation

of BEKK model is still a computational difficulty. There are several matrix

inversions in the model. The number of parameters in the full BEKK model

is (p+q)KN2+N(N +1)/2 and (p+q)KN +N(N +1)/2 in the diagonal one,

which are quite large. It is usually assumed p = q = K = 1 in applications

of (5) due to these numerical difficulties.

A recent model proposed by Kawakatsu (2006) is the matrix exponential

GARCH (ME-GARCH) model which eliminates parameter restrictions to

ensure positive definiteness of Ht. It is a generalization of the univariate

exponential GARCH (E-GARCH) model proposed by Nelson (1991). The
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ME-GARCH model is defined as follows

vech(ln Ht −C) =

q∑
i=1

Aiηt−i +

q∑
i=1

Fi(|ηt−i| − E|ηt−i|)

+

p∑
i=1

Bivech(ln Ht−i −C), (6)

where C is a symmetric N × N matrix and Ai, Bi and Fi are parameter

matrices of sizes N(N + 1)/2 × N , N(N + 1)/2 × N(N + 1)/2 and N(N +

1)/2×N respectively. For any symmetric matrix S, the matrix exponential

is defined as

exp(S) =
∞∑
i=0

Si

i!
, (7)

which is positive definite. This implies that the covariance matrix Ht

is positive definite thus there is no need to impose restrictions on the

parameters to ensure positive definiteness. Since the ME-GARCH model

also contains a large number of parameters, the need for more parsimonious

models is still alive.

2.2 Factor Models

Factor models state that εt is generated by a number of underlying condi-

tionally heteroscedastic factors that follow a GARCH type process. The first

factor GARCH (F-GARCH) model is introduced by Engle et al. (1990).

They assume that Ht is generated by K (< N) underlying factors fk,t. The

model is defined as follows

Ht = Ω +
K∑

k=1

wkw
′
kfk,t, (8)

where Ω is an N × N positive semidefinite matrix, wk is a set of N × 1

vectors of factor weights which are linearly independent from each other for
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k = 1, . . . , K. The factors fk,t are assumed to follow a first order GARCH

process:

fk,t = wk + αk(γ
′
kεt−1)

2 + βkfk,t−1, (9)

where wk, αk and βk are scalars and γk is an N × 1 vector of weights. There

is no restriction on the correlations of factors with each other. If the factors

are correlated significantly, several of them yield the same information. If

they are uncorrelated, each of them capture a different characteristic of the

data. In this case, it is assumed that εt is linked to uncorrelated factors, zt

through a linear, invertible transformation matrix W :

εt = Wzt, (10)

where W is a nonsingular N × N matrix. The factors zt are assumed to

follow a GARCH process.

The Generalized Orthogonal GARCH (GO-GARCH) model of van der

Weide (2002) is an extension of the Orthogonal GARCH (O-GARCH) model

of Alexander and Chibumba (1997). In the GO-GARCH model, the trans-

formation matrix W is invertible but not required to be orthogonal. The un-

correlated factors zt have unit unconditional variances, that is, E[ztz
′
t] = I.

The factors are conditionally heteroskedastic and follow a GARCH process.

The N×N diagonal matrix of conditional variances of zt is defined as follows

Hz
t = (I −A−B) + A� (zt−1z

′
t−1) + BHz

t−1, (11)

where A and B are diagonal N × N parameter matrices and � is the ele-

mentwise (Hadamard) product of two matrices.

Vrontos et al. (2003) suggested a slightly different model called the Full

Factor GARCH (FF-GARCH) model. In this model, the N ×N transforma-
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tion matrix W is assumed to be triangular with ones on the main diagonal.

The parameters in W are estimated directly using the conditional informa-

tion. This model is computationally more feasible but also restrictive in the

sense that some relationships between the factors and the errors are ignored.

A recent model by Lane and Saikkonen (2007) is the Generalized Or-

thogonal Factor GARCH (GOF-GARCH) model which assumes that the

transformation matrix W is decomposed using the polar decomposition:

W = CV , (12)

where C is a symmetric positive definite N × N matrix and V is an

orthogonal N ×N matrix. Since E[εtε
′
t] = WW ′ = CC ′, the matrix C can

be estimated using the spectral decomposition C = UΛ1/2U ′. The columns

of U are the eigenvectors of E[εtε
′
t] and the diagonal matrix Λ contains its

eigenvalues. Estimation of V requires the use of conditional information.

2.3 Models of Conditional Variances and Correlations

The models in this section are based on the decomposition of the conditional

covariance matrix into conditional standard deviations and correlations. The

most basic one of these type of models is the Constant Conditional Corre-

lation GARCH (CCC-GARCH) model of Bollerslev (1990). This model as-

sumes that the conditional correlation matrix is constant, so the conditional

covariance matrix is defined as follows

Ht = DtPDt, (13)

where

Dt = diag(h
1/2
1t , . . . , h

1/2
Nt ), (14)
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and P = [ρij] is positive definite with ρii = 1, i = 1, . . . , N . Then the off-

diagonal elements of the conditional covariance matrix are defined as follows

[Ht]ij = h
1/2
it h

1/2
jt ρij, i 6= j, (15)

where 1 ≤ i, j ≤ N . The conditional variances are usually modelled as a

GARCH(p, q) model:

ht = ω +

q∑
j=1

Ajε
(2)
t−j +

p∑
j=1

Bjht−j, (16)

where ω is N × 1 vector, Aj and Bj are diagonal N × N matrices, and

ε
(2)
t = εt� εt. When the conditional correlation matrix P is positive definite

and the elements of ω and the diagonal elements of Aj and Bj are positive,

the conditional covariance matrix Ht is positive definite.

Jeantheau (1998) suggested an extension of the CCC-GARCH model,

called the Extended CCC-GARCH (ECCC-GARCH) model in which the

matrices Aj and Bj in (16) are not required to be diagonal. Then the past

squared errors and variances of all series appear in each conditional variance

equation. For instance, in the first order ECCC-GARCH model, the ith

variance equation is defined as follows

hit = ωi + a11ε
2
1,t−1 + · · ·+ a1Nε2

N,t−1 + b11h1,t−1 + · · ·+ b1NhN,t−1,

i = 1, . . . , N. (17)

This extended structure provides a more comprehensive explanation of the

autocorrelations between squared observed errors.

After the decomposition in (13), the log-likelihood in (4) takes the fol-
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lowing simple form

T∑
t=1

`t(θ) =c− 1

2

T∑
t=1

N∑
i=1

ln |hit| −
1

2

T∑
t=1

log |P |

− 1

2

T∑
t=1

ε′tD
−1
t P−1D−1

t εt. (18)

It is seen from (18) that the conditional correlation matrix has to be inverted

only once per iteration during estimation.

The CCC-GARCH model does not seem realistic because of the assump-

tion of constant conditional correlations. The model can be improved by

allowing the conditional correlation matrix in (13) to vary with time:

Ht = DtPtDt. (19)

In this case, the positive definiteness of Ht is satisfied if ht is properly spec-

ified and the conditional correlation matrix Pt is positive definite for all t.

Furthermore, a computational difficulty arises since the conditional correla-

tion matrix has to be inverted for all t during every iteration.

Tse and Tsui (2002) proposed the Varying Correlation GARCH (VC-

GARCH) model in which the conditional correlation matrix follows a

GARCH process. In this model, Pt is a function of Pt−1 and a set of es-

timated correlations:

Pt = (1− a− b)S + aSt−1 + bPt−1, (20)

where S is a contant, positive definite matrix with ones on the diagonal, a

and b are nonnegative scalars such that a+b ≤ 1. The matrix St−1 is a sample

correlation matrix of the past M standardized residuals υ̂t−1, . . . , υ̂t−M where

υ̂t−j = D̂−1
t−jεt−j, j = 1, . . . ,M . The conditional correlation matrix Pt is

positive definite provided that P0 and St−1 are positive definite.
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A similar model by Engle (2002) is the Dynamic Conditional Correlation

GARCH (DCC-GARCH) model. The conditional correlation matrix of the

DCC-GARCH model is defined as follows

Pt = (I �Qt)
−1/2Qt(I �Qt)

−1/2, (21)

where the matrix process Qt is defined as

Qt = (1− a− b)S + aυt−1υ
′
t−1 + bQt−1. (22)

Here a is a positive and b a nonnegative scalar such that a + b < 1, S is

the unconditional correlation matrix of the standardized errors υt and Q0 is

positive definite.

Both the VC-GARCH and DCC-GARCH models assume that the condi-

tional correlation matrix is a function of past errors εt−j. There is another

class of models that constructs the conditional correlation matrix using an

exogeneous variable. This variable may be either an observed variable or a

latent variable. The first one of these models is the Smooth Transition Condi-

tional Correlation GARCH (STCC-GARCH) by Silvennoinen and Teräsvirta

(2005). They state that the conditional correlation matrix varies between two

extreme states according to a transition variable:

Pt = (1−G(st))P(1) + G(st)P(2), (23)

where P(1) and P(2) are positive definite extreme correlation matrices and

G(·) : R → (0, 1) is a monotonic function of an observable transition variable

st. The function G(·) is defined as follows

G(st) =
(
1 + e−γ(st−c)

)−1
, γ > 0, (24)
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where γ and c are the speed and location parameters respectively. The STCC-

GARCH model has N(N−1)+2 parameters excluding the univariate GARCH

equations. It is important to note that Pt is positive definite since P(1)

and P(2) are positive definite. The transition variable st is chosen properly

according to the application. A special case occurs when st is calendar time.

This model is known as the Time Varying Conditional Correlation GARCH

(TVCC-GARCH) introduced by Berben and Jansen (2005).

The Double Smooth Transition Conditional Correlation GARCH

(DSTCC-GARCH) model by Silvennoinen and Teräsvirta (2007) extends the

STCC-GARCH model by allowing a variation between two STCC-GARCH

models:

Pt =(1−G2(s2t)){(1−G1(s1t))P(11) + G1(s1t)P(21)}

+ G2(s2t){(1−G1(s1t))P(12) + G(s1t)P(22)}. (25)

If one of the transition variables is calendar time, the model is known

as the Time Varying Smooth Transition Conditional Correlation GARCH

(TVSTCC-GARCH) model. This model allows the extreme states to vary

with time, thus enhances flexibility. However, the number of parameters, ex-

cluding the univariate GARCH equations, increases to 2N(N − 1) + 4 which

is inconvenient in very large dimensions.

A recent model by Pelletier (2006) is the Regime Switching Dynamic

Correlation GARCH (RSDC-GARCH) model which assumes constant con-

ditional correlations within a regime. The conditional correlation matrix is

defined as follows

Pt =
R∑

r=1

I{∆t=r}P(r), (26)
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where ∆t is a Markov chain that can take R possible values, I is the indicator

function and P(r), r = 1, . . . , R are positive definite regime specific correlation

matrices. The correlation component of the model has RN(N−1)/2−R(R−

1) parameters. The model can be restricted to have less parameters such

that R possible states are linear combinations of a state of zero correlations

and that of high correlations. The restricted conditional correlations can be

defined explicitly as follows

Pt = (1− λ(∆t))I + λ(∆t)P , (27)

where I is the identity matrix meaning zero correlations, P is the correlation

matrix with highly correlated states and λ(·) : {1, . . . , R} → [0, 1] is a

monotonic function of ∆t. The conditional correlation matrix is positive

definite at each point in time by construction both in the restricted and

unrestricted model.

2.4 Nonparametric and Semiparametric Models

Parametric MGARCH models are usually preferred in applications because

of their advantage both in estimation and interpretation of parameters. The

quasi-maximum likelihood (QML) estimator is consistent when the errors

are assumed multivariate normal. However, this is a very restrictive assump-

tion. Serious efficiency losses occur if the data is not normally distributed.

Semiparametric models are invariant to distributional misspecification while

preserving consistency and interpretability. Nonparametric models does not

perform well in estimation due to the curse of dimensionality.

Hafner and Rombouts (2007) specify a parametric MGARCH model for
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the conditional covariance structure but estimate the error distribution non-

parametrically. Then the log-likelihood becomes:

T∑
t=1

`t(θ) = c− 1

2

T∑
t=1

ln |Ht|+
T∑

t=1

ln g(H
−1/2
t εt), (28)

where g(·) is the density function of the standardized residuals ηt such that

E[ηt] = 0 and E[ηtη
′
t] = I. In this semiparametric model, nonparametric er-

ror distribution offsets some of the misspecification of conditional covariance

structure.

In a similar model by Long and Ullah (2005), a parametric model is

estimated and the estimated standardized residuals η̂t are extracted. Then

the conditional covariance matrix is estimated using the Nadaraya-Watson

estimator:

Ht = Ĥ
1/2
t

∑T
τ=1 η̂tη̂

′
tKh(sτ − st)∑T

τ=1 Kh(sτ − st)
Ĥ

1/2
t , (29)

where Ĥt is the conditional covariance matrix estimated parametrically form

an MGARCH model, st is the conditioning variable, K(·) is a kernel function

and h is the bandwidth parameter. The semiparametric estimator Ht is also

positive definite since Ĥt is positive definite.

Hafner et al. (2006) suggest the Semi-Parametric Conditional Correla-

tion GARCH (SPCC-GARCH) model in which the conditional variances are

modelled parametrically by a univariate GARCH model. Then the condi-

tional correlations Pt are estimated using a transformed Nadaraya-Watson

estimator:

Pt = (I �Qt)
−1/2Qt(I �Qt)

−1/2, (30)

where

Qt =

∑T
τ=1 υ̂tυ̂

′
tKh(sτ − st)∑T

τ=1 Kh(sτ − st)
. (31)
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In (31), υ̂t = D̂−1
t εt is the vector of the standardized residuals, st is a condi-

tioning variable, K(·) is a kernel function and h is the bandwidth parameter.

Long and Ullah (2005) also suggest a full nonparametric model which

is not an MGARCH model but a parameter free multivariate model. The

conditional covariance matrix estimator is defined as follows

Ht =

∑T
τ=1 εtε

′
tKh(sτ − st)∑T

τ=1 Kh(sτ − st)
, (32)

where st is a conditioning variable, K(·) is a kernel function and h is the

bandwidth parameter. The positive definiteness of Ht is ensured in this

model.
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CHAPTER III

HYPOTHESIS TESTING

General misspecification tests are used to check the adequacy of an esti-

mated model. Ling and Li (1997) proposed a misspecification test which is

applicable for many GARCH models. The test statistic is defined as follows

Q(k) = Tγ ′
kΩ̂

−1
k γk, (33)

where γk = (γ1, . . . , γk)
′ with

γj =

∑T
t=j+1(ε

′
tĤ

−1
t εt −N)(ε′t−jĤ

−1
t−jεt−j −N)∑T

t=1(ε
′
tĤ

−1
t εt −N)2

, j = 1, . . . , k, (34)

Ĥt is an estimator of Ht and Ω̂k is the estimated covariance matrix of γk.

The null hypothesis is H0 = ηt ∼ i.i.d.(0, I) meaning that the GARCH

model is corectly specified. Under the null hypothesis, the test statistic

in (33) has an asymptotic χ2 distribution with k degrees of freedom. Since

E[ε′tH
−1
t εt] = N under the null, then (34) boils down to the jth order sample

autocorrelation between ε′tH
−1
t εt = η′

tηt and ε′t−jH
−1
t−jεt−j = η′

t−jηt−j. This

test is a generalization of the univariate portmanteau test of Li and Mak

(1994).

The CCC-GARCH model assumes that the conditional correlation matrix

is constant. Therefore, it is crucial to test whether this is statistically true.

The Lagrange multiplier (LM) test by Tse (2000) adopts the null hypothesis

of constant correlations against the following alternative

Pt = P + ∆� εt−1ε
′
t−1, (35)
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where ∆ is a symmetric matrix with zeros on the main diagonal. The null hy-

pothesis can be expressed as ∆ = 0. Under the alternative, the correlations

depend on the previous observations.
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CHAPTER IV

CONCLUSION

This paper analyzes a number of multivariate GARCH models. The VEC

model can be considered as the base model. However, this model contains

too many parameters which leads to inapplicability especially in large dimen-

sions. The BEKK model is developed as an alternative to the VEC model.

Despite its flexibility, the BEKK model is still not parsimonious enough.

Diagonal VEC and BEKK models are much more parsimonious but very

restrictive for the cross dynamics. Another set of alternatives is the factor

GARCH models which allow the conditional variances and covariances to

depend on their lagged values.

Direct modelling of conditional covariances through conditional variances

and correlations leads to a number of new models which are more popular

now. The conditional correlation models are more feasible both in estimation

and interpretation of parameters. The DCC-GARCH model is more realistic

than the CCC-GARCH model since the conditional correlations are time

varying. Recent research has focused on modelling the conditional correlation

matrix with utmost flexibility and parsimony.
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