
PARALLEL TEXT RETRIEVAL ON
TEMPORALLY VERSIONED DOCUMENT

COLLECTIONS

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of BİLKENT university

in partial fulfillment of the requirements

for the degree of

master of science

By

Özlem Gür

September, 2008

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Cevdet Aykanat(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. A. Enis Çetin

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uğur Güdükbay

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii

ABSTRACT

PARALLEL TEXT RETRIEVAL ON TEMPORALLY
VERSIONED DOCUMENT COLLECTIONS

Özlem Gür

M.S. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

September, 2008

In recent years, as the access to the Internet is getting easier and cheaper, the

amount and the rate of change of the online data presented to the Internet users

are increasing at an astonishing rate. This ever-changing nature of the Inter-

net causes an ever-decaying and replenishing information collection where newly

presented data generally replaces old and sometimes valuable data. There are

many recent studies aiming to preserve this valuable temporal data and size and

number of temporal Web data collections are increasing. We believe that soon,

information retrieval systems responding to time-range queries in a reasonable

amount of time will emerge as a means of accessing vast temporal Web data col-

lections. Due to tremendous size of temporal data and excessive number of query

submissions per unit time, temporal information retrieval systems will have to

utilize parallelism as much as possible.

In parallel systems, in order to index collections using inverted indices, a

strategy on distribution of the inverted indices has to be followed. In this study,

the feasibility of time-based partitioned versus term-based partitioned temporal-

web inverted-indices is analyzed and a novel parallel text retrieval system for

answering temporal web queries is implemented considering the number of queries

processed in unit time. Moreover, we investigate the performance of skip-list

based and randomized-select based ranking schemes on time-based and term-

based partitioned inverted indexes. Finally, we compare time-balanced and size-

balanced time-based partitioning schemes. The experimental results at small

to medium number of processors reveal that for medium to long length queries

time-based partitioning works better.

Keywords: Temporally versioned document collections, parallel text retrieval,

inverted index partitioning, query processing, search engines.

iii

ÖZET

ZAMANSAL SÜRÜMLENDİRİLMİŞ DÖKÜMAN
KOLLEKSİYONLARINDA PARALEL METİN ERİŞİMİ

Özlem Gür

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Eylül, 2008

Son yıllarda, İnternet erişimi giderek kolaylaştıkça ve ucuzladıkça, İnternet

kullanıcılarına sunulan verinin miktarı ve değişim hızı şaşırtıcı boyutlara

ulaşmaktadır. İnternet’in sürekli değişen yapısı, yeni verilerin kimi zaman

önemini kaybetmemiş eski verilerin yerini aldığı, sürekli değişen ve güncellenen bir

bilgi kolleksiyonunu doğurur. Bu önemli zamansal verileri korumayı amaçlayan

çok sayıda yeni çalışma literatürde mevcuttur ve bu çalışmaların sayıları kadar

arşiv boyutları da gün geçtikçe artmaktadır. İnanıyoruz ki, yakın gelecekte,

geniş kapsamlı zamansal ağ veri kolleksiyonlarına erişebilme hedefi doğrultusunda,

makul bir süre zarfında zaman aralığı sorgularına cevap verebilen metin erişimi

sistemleri ortaya çıkacaktır. Zamansal verilerin devasa boyutları ve birim zamana

düşen aşırı miktardaki sorgu sayısı, zamansal bilgi erişimi sistemlerini mümkün

olduğunca paralel uygulamaları kullanmaya itecektir. Paralel sistemlerde, veri

kolleksiyonlarını ters dizin endekslerini kullanarak endekslemek için, ters dizin

endekslerinin dağıtımı üzerine bir strateji izlenmelidir. Bu çalışmada, zamana

göre ve terimlere göre bölümlendirilmiş zamansal ağ ters dizin endekslerinin

yapılabilirliği incelenmiş ve birim zamanda cevaplanan sorgu sayısı göz önünde

bulundurularak, zamansal ağ sorgularını cevaplayabilen yeni bir paralel metin

erişimi sistemi uygulaması sunulmuştur. Ayrıca, atlama listelerini ve rasgele

seçim algoritmalarını kullanarak sorgu sonuçlarını sıralayan yöntemlerin zamana

göre bölümleme şeması üzerindeki performansları karşılaştırılmıştır. Küçük ve

orta sayıdaki işlemciler üzerinde yapılan deneyler, orta ve uzun sorguların zamana

göre bölümlenmiş ters dizinlerde daha iyi sonuç verdiğini ortaya koymuştur.

Anahtar sözcükler : Zamansal sürümlendirilmiş döküman kolleksiyonları, paralel

metin erişimi, ters dizin bölümleme, sorgu işleme, arama motorları.

iv

Acknowledgement

First, I would like to express my gratitude to Prof. Dr. Cevdet Aykanat for his

valuable suggestions, support and guidance throughout my M.S. study.

I would also like to thank Prof. Dr. Enis Çetin and Assoc. Prof. Dr. Uğur

Güdükbay for reading and commenting on this thesis.

I would like to acknowledge Berkant Barla Cambazoğlu for providing the

source codes of Skynet parallel text retrieval system and A. Aylin Tokuç for

extending his work and sharing it with me. She has been a great support as a

respected colleague and a dear friend who used to accompany me during long

working hours till morning.

I also thank Ata Türk for introducing this research topic to me, to Tayfun

Küçükyılmaz for proofreading my thesis and to İ. Sengör Altıngövde and Enver

Kayaaslan for their valuable comments and ideas on improving my thesis. I would

also like to voice my gratitude to İzzet Çağrı Baykan for his patience as an office

mate and to my precious friends M. Cihan Öztürk and Sare Sevil for their moral

support.

Last, but not least, I am grateful to my family who have always been my

tower of strength. Without them, this thesis would have never been complete.

v

To my mother

for her everlasting support and love

vi

Contents

1 Introduction 1

2 Background 4

2.1 Temporal Text Retrieval . 5

2.1.1 Naive Implementations . 5

2.1.2 Space-improving Implementations 6

2.1.3 Query Performance Improving Implementations 7

2.1.4 Both Space and Query Performance Improving Applications 10

3 Implementation 14

3.1 Inverted Indexes for Temporal Document Collections 14

3.2 Query Processing: The Vector-Space Model 15

3.3 Ranking Algorithms . 16

3.4 Parallel Text Retrieval . 20

4 Inverted Index Partitioning 24

vii

CONTENTS viii

4.1 Term-Based Partitioning . 24

4.2 Time-Based Partitioning . 26

4.2.1 Time-Balanced Time-Based Partitioning 27

4.2.2 Size-Balanced Time-Based Partitioning 28

5 Experiments 30

5.1 Preprocessing . 30

5.1.1 Corpus Creator . 31

5.1.2 Corpus Parser . 31

5.1.3 Inverted Index Creator . 32

5.2 Datasets . 33

5.3 Synthetic Temporal Web Query Generation 34

5.4 Experimental Results and Discussion 35

5.4.1 Time-balanced vs. Size-Balanced Time-based Partitioning 36

5.4.2 Term-based vs. Time-based comparison considering

throughput . 37

5.4.3 Term-based vs. Time-based comparison considering aver-

age response time . 46

6 Conclusion and Future Work 55

Bibliography 57

List of Figures

2.1 Approximate temporal coalescing [2]. 12

2.2 Sublist materialization [2]. 13

3.1 The algorithm for TO-s implementations. 17

3.2 The algorithm for TO-d implementations. 18

3.3 The architecture of the Skynet parallel text retrieval system [8]. . 21

5.1 Time-balanced vs Size-balanced throughput comparison for 1X

queries. 36

5.2 Time-balanced vs Size-balanced throughput comparison for 3X

queries. 37

5.3 Term-based vs. Time-based partitioning on Wikipedia for Short

1X queries. 38

5.4 Term-based vs. Time-based partitioning on Wikipedia for Medium

1X queries. 38

5.5 Term-based vs. Time-based partitioning on Wikipedia for Long

1X queries. 39

ix

LIST OF FIGURES x

5.6 Term-based vs. Time-based partitioning on Wiktionary for Short

1X queries. 40

5.7 Term-based vs. Time-based partitioning on Wiktionary for

Medium 1X queries. 41

5.8 Term-based vs. Time-based partitioning on Wiktionary for Long

1X queries. 41

5.9 Term-based vs. Time-based partitioning on Wikipedia for Short

3X queries. 43

5.10 Term-based vs. Time-based partitioning on Wikipedia for Medium

3X queries. 43

5.11 Term-based vs. Time-based partitioning on Wikipedia for Long

3X queries. 44

5.12 Term-based vs. Time-based partitioning on Wiktionary for Short

3X queries. 44

5.13 Term-based vs. Time-based partitioning on Wiktionary for

Medium 3X queries. 45

5.14 Term-based vs. Time-based partitioning on Wiktionary for Long

3X queries. 45

5.15 Term-based vs. Time-based partitioning on Wikipedia for Short

1X queries. 47

5.16 Term-based vs. Time-based partitioning on Wikipedia for Medium

1X queries. 47

5.17 Term-based vs. Time-based partitioning on Wikipedia for Long

1X queries. 49

LIST OF FIGURES xi

5.18 Term-based vs. Time-based partitioning on Wiktionary for Short

1X queries. 49

5.19 Term-based vs. Time-based partitioning on Wiktionary for

Medium 1X queries. 50

5.20 Term-based vs. Time-based partitioning on Wiktionary for Long

1X queries. 50

5.21 Term-based vs. Time-based partitioning on Wikipedia for Short

3X queries. 51

5.22 Term-based vs. Time-based partitioning on Wikipedia for Medium

3X queries. 51

5.23 Term-based vs. Time-based partitioning on Wikipedia for Long

3X queries. 52

5.24 Term-based vs. Time-based partitioning on Wiktionary for Short

3X queries. 52

5.25 Term-based vs. Time-based partitioning on Wiktionary for

Medium 3X queries. 53

5.26 Term-based vs. Time-based partitioning on Wiktionary for Long

3X queries. 53

List of Tables

4.1 Round robin term-based distribution of the toy dataset on two

processors . 26

4.2 Imbalance in size-balanced time-based partitioning 29

5.1 Properties of Wikipedia and Wiktionary versioned document col-

lections . 33

5.2 Query properties . 35

xii

Chapter 1

Introduction

In last few decades, the Internet has become an inseparable part of daily life

and is slowly taking place of libraries. Today, World Wide Web serves thousands,

perhaps millions of users around the world and the number of the Internet users is

rapidly increasing. Additionally, new pages are inserted in the web on daily basis

and the contents of the existing pages are also changing continuously. According

to Brewington and Cybenko [5], the average lifetime of a web page without any

modification or deletion is about 138 days. Cho and Garcia-Molina [15] crawled

720,000 pages for four months and observed that 40% of the web pages changed

within a week where 23% of these pages changed daily. Therefore, the Internet

cannot be seen as a static data repository but an ever-changing highly dynamic

infrastructure.

Time-related information has great importance for fast-changing datasets such

as the Internet. Even before the Internet, libraries used to archive old newspa-

pers in case of a request from library users. These archives served users as a

temporal document collection which can be accessed for finding former material.

Researchers, especially historians would like to search in temporal data frequently

in order to have extensive information about the roots of their research topics.

With the growing use of the Internet, there is a common tendency of con-

verting textual data into digital media. Thus, temporal information is even more

1

CHAPTER 1. INTRODUCTION 2

important today for the Internet. Moreover, the Internet also has special prop-

erties that make temporal information valuable to its users. Firstly, the age of

a web page reflects its freshness. The older the page is, the more likely it is to

be outdated. A new page has a higher probability to contain fresh information

and therefore is more reliable. Second, the modification history of a page demon-

strates that page’s reliability. A page which is modified frequently would be more

reliable because its mistakes would be corrected by the users. On the other hand,

a rarely modified page would be less reliable since it lacks verification. Third, in-

sertion/modification date of a web page might reflect valuable information about

that page which is otherwise unavailable. The relation between the content and

temporal properties of a page may lead researchers to mining many useful results.

For the past few decades, there is an ongoing research on temporal repositories

and its applications. Recent studies on temporally versioned document collections

include web browsers that enable elimination of the broken-link problem [16],

visualization of earlier versions of web pages and summarization of web pages

with their revisions [20]. The broken-link problem is particularly severe for search

engines [43], because they might be leading millions of users to a page that no

longer exists. Furthermore, summarization functionality of a browser will give

hints about the characteristics of a web page by displaying the variations in time.

Another challenge concerning temporal databases is the increasing index size

due to the existence of several versions which are generally almost identical. Since

disk space is a scarce resource in computer science that should be used carefully,

index size reduction research receives even more attention. Moreover, reducing

the index size, indirectly leads better temporal query performances. Therefore,

several researchers focused on crawling and efficient storage of versioned document

collections that make use of data redundancy [6, 12, 1, 37, 22, 43]. There are also

several researchers studying on temporal data structures such as the variations of

B-Tree or R-Tree based methods, targeting directly query response time. Most

of these techniques sacrifice a feasible amount of space in order to obtain better

query performance. After all, the Internet users are mainly concerned about the

time required for answering a query [39] rather than the space consumption.

CHAPTER 1. INTRODUCTION 3

Digital documents tend to include temporal information due to increasing

popularity on time-related research. Time-related properties of web documents

are generally extracted from Last Modified tag of HTML files or approximated

based on last crawl date. Moreover, with the increasing use of XML files, time

information is being embedded in documents in a standard format. The increasing

interest in temporal databases also encouraged several institutions to archive the

Web. Internet archive is one of the most well known web repositories among

these institutions and provides more that 85 billion web pages. That makes

roughly one petabyte of temporal data which is growing at a rate of 20 terrabytes

per month [24, 25, 45]. Google, Live Search and Yahoo crawls the web pages

with versioning information as well. Other temporal data repositories include

accounting documents of companies, email servers, version control systems (e.g.

CVS, ClearCase), wikis, Internet forums and blogs [22].

In this work, we propose a method that enables temporal search on temporally

versioned document collections to search engines. Our contributions are twofold:

First, we implemented a novel parallel text retrieval system on temporal document

collections. Second, we partitioned the data among processors in a time-based

fashion. Organization of the rest of the thesis is as following: Chapter 2 gives

a summary of related work about existing text retrieval techniques on tempo-

rally versioned document collections. Chapter 3 explains parallel text retrieval

implementation details, indexing and ranking mechanisms. Then, Chapter 4 an-

alyzes time-balanced and size-balanced time-based partitioning schemes. Chap-

ter 5 displays experimental results including properties of real world Wikipedia

and Wiktionary versioned document collections as well as synthetically generated

temporal queries. Finally, Chapter 6 gives conclusion and future work on how to

improve the suggested partitioning models in this thesis.

Chapter 2

Background

Temporal data is defined as the data that can be linked to a certain time or

period between two moments in time [36]. Temporal web data is a specific type

of temporal data that is an instance of Web resources such as web pages, images

or videos. Time related information of temporal web data is estimated from last

crawl dates or Last Modified field of HTML files or obtained from time stamp

field of XML files.

In this chapter, we will discuss the studies on temporal text retrieval which

is a relatively recent application on temporal data. We clustered the research

on temporal text retrieval based on space/time efficiency considerations. First,

we will mention naive approaches that aims neither space nor time utilization.

Second, we will analyze space-improving approaches that aim at index size re-

duction/compression. Then, we analyze studies which are mainly concerned with

optimizing query response time. Finally, we will try to explain studies that exploit

both space and time utilization.

4

CHAPTER 2. BACKGROUND 5

2.1 Temporal Text Retrieval

The studies on temporal text retrieval could be classified under four main groups

based on space or time utilization: (1) naive, (2) space-improving, (3) query

performance improving and (4) both space and query performance improving

implementations. We will discuss the studies under each group in the given

order.

2.1.1 Naive Implementations

Michael Stack from Internet Archive, published a study on indexing and search-

ing small-to-medium sized temporal document collections on Nutch search en-

gine [41]. Their implementation is extremely naive that suggests neither space

nor query response time improvements. Indexing their small document collection

that consists of about 1 million documents on one machine using single disc took

more than 40 hours although the resulting index file is only 1.1 GB. The slowness

of indexing phase is claimed to be due to parsing PDF files in the collection.

Indexing medium sized document collection is performed on 2 machines in a dis-

tributed manner. Generation of an index file of size 5.2 GB took 99 hours, 86.4

hours of which was due to segmentation. Using these index files, they could only

answer 1 query per second on average.

Another naive approach for searching among temporally versioned document

collections is a Portuguese Web search engine called tumba! [40]. Tumba! is a

temporal search engine specially built for Portuguese users. They implemented

a parallel information retrieval system on temporally versioned Portuguese Web

documents. However, they do not offer any special indexing scheme or query pro-

cessing algorithm exploiting temporal information. They used Oracle’s SIDRA

tool for indexing and distributing data among processors by term-based parti-

tioning. They used Vector-space model for generating scores of resulting docu-

ments/versions. They treat each version as a separate document and perform the

CHAPTER 2. BACKGROUND 6

search among this huge document collection containing highly redundant infor-

mation.

2.1.2 Space-improving Implementations

One of the earliest suggestions on reducing space consumption in versioned doc-

ument collections is explained in Anick and Flynn’s paper [1]. They used time

stamps of versions as version identifier, but this is not applicable to transac-

tion based document collections where several versions could have the same time

stamp. They proposed storing current versions of documents and storing the

differences of the earlier versions as backward deltas where backward delta is the

difference between two versions of the same document. This approach reduces the

index size but increases the access cost to older versions. To be able to support

temporal querying, they suggested a similar approach for indexes. They based

the full-text index on bitmaps for current versions’ terms and used delta change

records’ indexes to go backward in time. As expected, this approach performs

well on queries at current time but is costly for historical queries.

Another work on optimizing space consumption on temporally versioned doc-

ument collections is very recent and aims building a search engine on historical

events. In order to reduce the index size, they selected documents with a certain

format that includes at least a title and a few sentences. Furthermore, instead

of indexing whole document, they only indexed titles and key sentences. As a

side-effect, they compromise accuracy for the sake of significant space gain. We

believe that search engines could present this approach as an option. If the ac-

curacy of the results is not critical, the user might prefer searching in a partially

indexed document collection. In this paper, Huang, Zhu and Li [23] also provided

replica detection and clustering the results for display purposes.

Herscovici, Lempel and Yogev [22] also studied on space utilization in tempo-

ral document collections. In this work, by solving multiple sequence alignment

problem, temporal document collections with a high redundancy rate are indexed.

They used a variation of multiple sequence alignment problem to implement a

CHAPTER 2. BACKGROUND 7

greedy, polynomial time algorithm. The results on two real-life corpora demon-

strate 81% improvement compared to the naive approach where all versions are

indexed separately. Although the amount of reduction in the index size is signif-

icant, time required for indexing increased considerably. Therefore, this schema

is only applicable where the amount of data to be indexed per unit time is not

excessive. Although they allowed temporal queries, they did not report query

response time values.

In the last work on space utilization that will be explained in this thesis, Zhang

and Suel [45] deals with redundancy in large textual collections. First, they split

versions into a number of fragments using content-dependant string partitioning

methods such as winnowing and Karp-Rabin partitioning. Then, they index these

fragments instead of indexing whole version. They compared global sharing and

local sharing schemes where in the former scheme, a version is allowed to contain

a fragment of another document’s version and in the latter, a version consists

of fragments of the same document’s versions. They carried the experiments on

search engine query logs and large collections which are generated after multiple

crawls. According to the results, their approach causes significant index size

reduction. Moreover, the first scheme, global sharing, performs 40%-50% better

than local sharing.

2.1.3 Query Performance Improving Implementations

Before explaining query-performance based approaches on temporal text collec-

tions, let us define three main temporal query types that are used in these studies.

(1) Given a contiguous time interval T, find all versions in this interval.

(2) Given a set of keywords and a contiguous time interval T, find all versions

in T containing these keywords.

(3) Given a set of keywords, find all versions containing these keywords.

Salzberg [39] gave the definition of three query types for specific instances

CHAPTER 2. BACKGROUND 8

of the three cases above. In time-only queries (1), if a time instant is given

instead of a time interval, this type of query is called pure-timeslice query. In

the same manner, if a time instant is given in time-key queries (2), it is called

range-timeslice queries. In key-only queries (3), if only one keyword is given, then

it is called a pure-key query.

In this section, we will explain five mechanisms for improving query perfor-

mance in the chronological order of publishing dates.

Leung and Muntz [29] worked on temporal data fragmentation, temporal

query processing and query optimization in multiprocessor database machines.

Although, they did not work on text retrieval, their approach is applicable to Web.

Basically, data fragmentation in temporal databases corresponds to data parti-

tioning in parallel architectures. They mentioned three fragmentation schemes:

(1) round-robin, (2) hashing and (3) range-partitioning. For round-robin dis-

tribution scheme, they split the time interval into k pieces and assigned the ith

interval to the processor (i mod k). The hashing scheme maps intervals to proces-

sors based on their hash value. In this study, they implemented range-partitioning

which is assigning a contiguous group of intervals to the same processor. They

chose range-based partitioning because they expected range-based partitioning

to work best due to implicitly clustered distribution of the records. Actually, we

implemented two variations of range-partitioning scheme in our study which will

be explained in detail in Chapter 4. Leung and Muntz [29] tried assigning time

intervals to processors based on either start or end times. However, since both

choices introduce asymmetry, they both caused imbalance.

The next study on query performance on temporal collections is done by Ra-

maswamy [37]. They implemented an extended version of the Time List [39].

Instead of complex data structures, they preferred a simple B+ tree. A tempo-

ral object is characterized by a key and a time interval. They divided the data

into window lists by partitioning the time interval. Since there will be versions

spanning more than one time interval, some of these versions will be redundantly

stored into different window lists. The temporal objects are inserted into a B+

tree based on the object’s key and the starting point of its window list. This

CHAPTER 2. BACKGROUND 9

structure works well for pure time-slice and pure key-timeslice queries but updat-

ing the structure is troublesome. Construction of window lists is very similar to

our time-based partitioning scheme.

A relatively recent study on speeding up query processing is V2 temporal

text-index proposed by Nørv̊ag and Nybø [35]. In this model, a version of a

document is characterized by its version ID (VID). A document-to-page mapping

is stored in a B-tree based index. All versions are indexed in an efficient way such

that average storage cost per posting is close to two bytes. Another index called

VIDPI is used for version to validity period (start time - end time) mapping.

While answering of a temporal query, all versions containing query terms are

retrieved from the database. Then, the versions with intersecting time intervals

are selected. This approach performs well in general since the version to validity

time mapping is assumed to be in memory.

Another research on reducing query response time in temporally versioned

document collections proposed interval based temporal text-index (ITTX) [35].

In this work, authors improved V2 temporal text-index. Recall that even if a

term ti exists in all versions of a document, a different posting is stored in the

V2 index. Therefore, in ITTX, they decided to index the data in the following

format: (w, DID, DV IDi, DV IDj, ts, te) where w is the score of the version, DID

is the document id, DV IDi is the version ID of the document’s first version that

contains ti, DV IDj is the version ID of the last version that contains ti, ts is the

start time of DV IDi and te is the end time of the DV IDj. They made further

improvements by removing DV IDi and DV IDj from the postings. They called

this improved index file version as ITTX/ND. As the document collection gets

bigger, V2 is no longer usable because version to validity time mapping would

not fit into the memory. However, ITTX and ITTX/ND could still be used on

tremendously gigantic document collections. Moreover, ITTX and ITTX/ND

perform better when updating index files or answering temporal queries. As

expected, they also generate smaller indexes compared to V2.

The last study that we will mention is the most recent work that we know of

and also the best performing method of the last four methods. DyST, a dynamic

CHAPTER 2. BACKGROUND 10

and scalable temporal text index, is a two-level indexing scheme where the first

level is called ITTX/ND and the second level is called temporal posting subindex

(TPI) [32]. When a version is inserted into the database, it is also inserted into

the first level, ITTX/ND. When a term’s posting list size exceeds a threshold, it

is migrated to the second level, TPI. To put it simply, frequent terms are moved

to TPI, while rare and moderately-frequent terms are kept in ITTX/ND. Since

ITTX/ND is explained in the previous paragraph, we will only explain TPI here.

TPI search tree is a variant of monotonic B+ tree. It uses four times as much space

as inverted index but it reduces the cost of snapshot search considerably. The

trade-off between the cost of a four times bigger index file and query performance

is open to question.

2.1.4 Both Space and Query Performance Improving Ap-

plications

In this section, we are going to summarize three studies which exploit both in-

dex size reduction and query performance optimization on temporal document

collections.

First, Tsotras and Kangelaris’s snapshot index, which uses O(n/b) space and

O(logb(n) + |s(t)/b|) I/O for query time, will be examined [43]. Note that n is

the number of changes on temporal objects, b is the I/O transfer size and s(t)

denotes the size of the answer set. They presented an access method for timeslice

queries that reconstructs the past states of time evolving object collections. They

represented time as a set of integers which improved performance while worsening

accuracy. They kept temporal objects in blocks. They defined usefulness 1,

usefulness 2 for each block and a usefulness parameter α common to all blocks.

Usefulness 1 is determined by the temporal object with the minimum start time in

that block. Similarly, usefulness 2 is determined by the temporal object with the

maximum start time in that block. The usefulness parameter α is used to tune

the number of documents in usefulness part 2, in order to trade off between space

consumption and query performance. When a block is full, its usefulness period

CHAPTER 2. BACKGROUND 11

ends and the alive objects which are not yet to be deleted, are copied to the next

block. In order to experiment on this method, they created a synthetic temporal

dataset. The results also proved that space utilization and query performance

could be tuned by playing with the usefulness parameter α.

Second, Chien et al. proposed three indexing schemes for supporting complex

temporal XML queries [12]. In their earlier studies they proposed Usefulness

Based Copy Control (UBCC) [13, 14]. UBCC is a storage scheme based on use-

fulness. Usefulness of a page is the percentage of the size of the undeleted objects

in that page at a certain time. When the usefulness drops below a usefulness

parameter which is set to 0.5 for the experiments, all the versions of this page

are copied to another page. In their latest work, they proposed three indexing

schemes to improve UBCC: single Multiversion B-tree, UBCC with Multiversion

B-Tree and UBCC with Multiversion R-tree. They also proposed SPaR to im-

prove the versioning schemes of their earlier works in order to support complex

temporal queries. SPaR keeps start times and end times of versions. They store

versions as a combination of objects. During query processing, instead of search-

ing among versions, they search in objects and call this partial version retrieval.

This approach also allows querying only a portion of a version such as search in

the conclusion or search from chapter 1 to 4. The experiments are performed

on a synthetic document collection with 1000 revisions that consist of 10,000 ob-

jects where 10% of each revision is modified to generate the next one. For both

check-in time and index sizes, third scheme performed best by far.

The last and most recent study we will mention in this section is Berberich

et. al.’s time-travel text search [2, 3, 4]. They modify the inverted file to include

the valid time interval of each posting in addition the version id and weight.

In this study, pure timeslice queries are evaluated. In order to utilize space

consumption, they propose temporal coalescing which merges the scores of a

posting in different versions of a document if the variation in the score is within an

acceptable range. This approach reduces the index size up to 60% but accuracy is

compromised [3]. However, they claim that top 10 query results are not noticeably

affected. Moreover, since searching in smaller index file will be faster, it indirectly

improves query performance.

CHAPTER 2. BACKGROUND 12

Figure 2.1: Approximate temporal coalescing [2].

The posting list Ii of term ti is depicted in Figure 2.1 [3].The horizontal line

segments represent each posting in Ii. If two postings pj and pj+1 such that pj.v

and pj+1.v are two different versions of the same document and pj.e = pj+1.s,

then, the relative error is calculated as errrel(pj, pj+1) = |pj.s− pj+1.s| / |pj|. If

errrel(pj, pj+1) ≤ ε, then pj and pj+1 are coalesced.

They also propose sublist materialization technique which increases query per-

formance by time-based partitioning the inverted index. However, this technique

increases the index size considerably. They use a modified version of OKAPI to

calculate scores of query results. Below, in Figure 2.2 [3], sublist materialization

of three documents are shown. Documents d1, d2 and d3 have four, three and

three versions, respectively. Although Berberich, et.al, proposed a time-based

partitioning, they did not restrict the granularity of partitioning. If the time axis

is divided into largest number of segments, space consumption will be huge but

optimal query performance will be gained. If ∀ti : i = 1, 2, .., 9, a partition Pi

is created, then P1 = {v1, v5, v8}, P2 = {v2, v5, v8}, ..., P9 = {v7, v10}. In the

case of a time-based partitioned inverted indexes with maximum granularity, only

the required number of postings will be fetched from the disk. Therefore, query

response time will be maximized at the expense of enormous space consumption

due to replicated versions in different inverted index partitions.

Additionally, they proposed performance and space guarantee approaches.

For the experiments, they used Wikipedia and UKGOV datasets. They gener-

ated synthetic queries by selecting a set of keywords and a random date from each

CHAPTER 2. BACKGROUND 13

Figure 2.2: Sublist materialization [2].

week in the dataset. By allowing a 10% reduction in query performance, they

improved space consumption by an order of magnitude. Similarly, by allowing

three times more space consumption, they improved query performance by an

order of magnitude. Although temporal coalescing results drops accuracy of the

results, top 10 results are claimed to not be affected. While comparing the accu-

racy of the resulting versions, they used Kendall’s method. When the tolerance

is set to 5%, for top-100 results, Kendall’s τ is calculated as 0.85. Although, they

consider this result to reveal strong agreement in the order of results, it is open

to question, particularly if the user is expecting high accuracy.

Chapter 3

Implementation

In shared-nothing parallel text retrieval systems, in order to process user queries,

generation of an index file, partitioning it among processors, obtaining document

scores and returning the desired number of results to the user in sorted order are

required. In this chapter, we will explain generation of inverted indexes for tem-

poral document collections, query processing, ranking the resulting documents

and parallel text retrieval implementation details, respectively.

3.1 Inverted Indexes for Temporal Document

Collections

The main functionality of a text retrieval system is processing user queries and

providing a set of relevant documents to the user. For extremely small document

collections, these queries could be answered by simply passing over whole text

sequentially [41]. However, as the collection size grows, full text search turns to

be infeasible and an intermediary representation of the collection (i.e., indexing

mechanism) becomes necessary. In traditional text retrieval systems, inverted

indexes are almost always preferred to other index structures such as signature

files and suffix arrays [40]. Therefore, we used a modified version of inverted

14

CHAPTER 3. IMPLEMENTATION 15

indexes that is applicable to temporal document collections [37].

First, let us describe inverted index file structure. An inverted index consists

of a set of inverted lists L = {I1, I2, . . . , IT}, where T = |T | is the vocabulary

size T of the indexed document collection V , and an pointer to the heads of

the inverted lists. Since our collection contains different versions of a set of

documents, we treat each version as a separate document and index them one

by one. The pointers to the inverted lists are kept in the index which is usually

small enough to fit into the main memory. However, inverted lists are stored on

the disk increasing access cost. An inverted list Ii∈L is associated with a term

ti ∈ T and contains entries (called postings) for the documents containing the

term ti. In a traditional inverted index structure, a posting p∈Ii has a version

id field p.v= j and a weight field p.w=w(ti, vj) for a version vj in which term ti

appears where the value of w(ti, vj) shows the degree of relevance between ti and

vj using some metric.

However, to be able to use inverted indexes on temporally versioned document

collections, we extended posting structure such that p also contains start time

field p.s=sj and end time field p.e=ej of the version vj [37].

3.2 Query Processing: The Vector-Space Model

While processing a query, picking the related documents and presenting them

to the user in the order of document’s similarity to the query is important. In

order to achieve this goal, many models such as boolean, vector-space, fuzzy set

and probabilistic models are proposed [40]. The vector-space model is the most

widely accepted model due to its simplicity, robustness, speed and ability to catch

partial matches [42].

Below, the cosine similarity sim(Q, vj) between a query ={tq1 , tq2 , . . . , tqQ
} of

size Q and a document vj which is used in the vector-space model is given

CHAPTER 3. IMPLEMENTATION 16

sim(Q, vj) =

∑Q
i=1 w(tqi

, vj)√∑Q
i=1 w(tqi

, vj)2
, (3.1)

assuming all query terms have equal importance. In order to compute the weight

w(ti, vj) of a term ti in a document vj, the tf-idf (term frequency- inverse document

frequency) weighting scheme [42] is usually used.

w(ti, vj) =
f(ti, vj)√
|vj|

× ln
V

f(ti)
, (3.2)

where f(ti, vj) is the frequency of term ti in version vj, |vj| is the total number

of terms in vj, f(ti) is the number of versions containing ti, and V is the number

of versions in the collection. In this study, the tf-idf weighting scheme is used

together with the vector-space model [40].

In a traditional sequential text retrieval system, a query is processed in several

stage. In order to process a a user query Q={tq1 , tq2 , . . . , tqQ
}, each query term

tqi
is processed one by one as follows. First, inverted list of term tqi

is Iqi
is

fetched from the disk. All postings in Iqi
are traversed, and the weight p.w in

each posting p ∈ Iqi
is added to the score accumulator for document p.v if the

time interval of the query intersects with the validity time interval of the posting

being processed. Once all inverted lists are processed, versions are sorted by using

a ranking algorithm, and the versions with the highest scores are returned to the

user.

3.3 Ranking Algorithms

The primary task of a temporal search engine is after receiving a temporal web

query, present relevant versions to the user in sorted order by version to query

similarities. As explained in the previous section, similarity calculations are per-

formed using cosine similarity with the vector space model. After calculating

the similarity scores of versions, a temporal search engine sorts the scores and

CHAPTER 3. IMPLEMENTATION 17

displays top s results to the user. In this study, we also addressed efficient sorting

of the resultant versions.

There are two different ranking techniques used in this study: randomized-

select based ranking and skip-list & min-heap based ranking. Both of these

techniques first selects most relevant s versions and then sorts these s versions by

quick sort. The difference comes in the selection phase. Compared to the naive

case where all version scores are sorted and then top s versions are displayed,

this approach increases the query response time by an order of magnitude [9].

This improvement emphasizes the importance of ranking algorithms pointing to

the huge cost introduced by sorting. See Figure 3.1 for the pseudocode of TOs

algorithms and Figure 3.2 for pseudocode of TOd algorithms [8].

TO-s(Q, A)
for each accumulator ai∈A do

INITIALIZE ai as ai.v= i and ai.s=0
for each query term tqj

∈Q do
for each posting p∈Iqj

do
if [p.s, p.e] ∩ [qj.s, qj.e] 6= ∅ then

UPDATE ap.v.s as ap.v.s+p.w
Stop =∅
INSERT the accumulators having the top s scores into Stop

SORT the accumulators in Stop in decreasing order of their scores
RETURN Stop

Figure 3.1: The algorithm for TO-s implementations.

Cambazoglu and Aykanat [9] divided the phases of query processing imple-

mentation into 5 parts: creation, update, extraction, selection and sorting. In

the creation phase, each version vi is associated with an accumulator ai. Based

on the application, space required for accumulators might be dynamically allo-

cated. In the update phase, when the posting p is being processed, the score of

the corresponding accumulator is updated, i.e., ai.s = ai.s + p.w where p.v = i.

The extraction phase selects nonzero accumulators, i.e., ai.s 6= 0. In the selection

phase, the accumulators with top s scores are selected. Finally, in the sorting

phase, the selected s scores are sorted in decreasing order.

CHAPTER 3. IMPLEMENTATION 18

TO-d(Q, V)
for each query term tqi

∈Q do
for each posting p∈Iqi

do
if [p.s, p.e] ∩ [qi.s, qi.e] 6= ∅ then

if ∃ an accumulator a∈V with a.v=p.v then
UPDATE a.s as a.s+p.w

else
ALLOCATE a new accumulator a
INITIALIZE a as a.v=p.v and a.s=p.w
V=V∪{a}

Stop =∅
for each a∈D do

SELECT(Stop, a)
SORT the accumulators in Stop in decreasing order of their scores
RETURN Stop

SELECT(S, a)
if |S|<s then

S=S∪{a}
else

LOCATE asmin, the accumulator with the minimum score in S
if a.s>asmin.s then

S=(S−{asmin})∪{a}

Figure 3.2: The algorithm for TO-d implementations.

We selected term-ordered static method 4 (TOs4) which is called randomized-

based ranking and term-ordered dynamic method 3 (TOd3) which is called skip-

list based ranking throughout this study. Since we took term-based partitioning

scheme to compare with our time-based partitioning proposal, we decided to se-

lect one static and one dynamic method among the well performing term ordered

methods. According to the results and complexity analysis presented by Cam-

bazoglu and Aykanat [9], TOs4 and TOd3 are proper candidates for queries with

smaller number of keywords. Please note that our query sets consist of lesser

number of keywords compared to their query sets. Details regarding the query

sets will be given in Section 5.3.

In term-ordered processing, each term’s posting list is processed one by one.

CHAPTER 3. IMPLEMENTATION 19

There is an accumulator associated with each version in the collection. In im-

plementations with static accumulator allocation (TOs), an accumulator for each

version is allocated statically. However, in implementations where accumulators

are dynamically allocated (TOd), at most e accumulators are allocated where e

is the length of the posting list being processed. If the number of versions in the

collection is huge, TOd saves significant amount of space.

Other than the allocation of accumulators, the main difference between Tos4

and TOd3 is the selection phase. First, let us explain the details of randomized-

select based ranking algorithm (TOs4). In the implementation of this method,

median-of-medians algorithm could be used for selection due to its linear time

worst case complexity. However, although randomized-selection algorithm has ex-

pected linear time complexity, Cambazoglu and Aykanat preferred implementing

randomized-selection due to its run-time efficiency in practice. After the accu-

mulator with the sth biggest score (as) is found by randomized select in expected

linear time, we pass over the accumulators array and extract all accumulators hav-

ing a bigger score than as.s. Then, these s accumulators are sorted in decreasing

order in O(slgs) time. As a result, the overall complexity of randomized-select

based ranking algorithm is O(D + slgs) [9].

Second, let us explain the working principle of skip-list & min-heap based

ranking algorithm, TOd3. In this method, Cambazoglu and Aykanat used a skip

list to store accumulators. Their skip list implementation could be considered as

a variation of linked list with forward and backward pointers for several levels on

the top. Note that in order to have a logarithmic search complexity, the number

of levels at a time is probabilistically kept proportional to lg(k) where k is the

number of elements in the skip-list at that time instant. Although skip lists have

bad worst-case complexities, due to good expected-time complexities for search

and insertion, they perform well in practice.

During the execution of TOd3, when a posting p such that p.v = i is processed,

accumulator ai needs to be updated. If ai is already inserted into the skip list,

then its score is updated such that ai.s = ai.s + p.w. Otherwise, ai is inserted

into the skip list with ai.s = p.w. The accumulators in the skip list are ordered

CHAPTER 3. IMPLEMENTATION 20

by their version ids. Therefore, the proper place for inserting ai has to be found

first. Searching for ai’s place has logarithmic time complexity and insertion takes

constant time due to linked-list like data structure. Once all posting lists are

processed, the accumulators in the skip list are inserted into a min-heap of size

s. Recall that s is the maximum number of desired versions to be returned to

the user. Then all accumulators in the skip list are inserted into the min-heap

one by one. If an accumulator ai has a greater score compared to the root of the

min-heap, the root is extracted and ai is inserted into the heap. Finally, the s

versions in the min-heap are returned to the user.

Although, selection and sorting has O(s lg s) time complexity, because of the

high worst case complexity of update process, the overall complexity of TOd3

becomes O(u lg e), where u is the total number of postings in all query terms

and e is the total number of distinct postings in all query terms.

3.4 Parallel Text Retrieval

Skynet parallel text retrieval system which is created by Cambazoglu [8] and

extended by Tokuc [42], is further enhanced in order support search on temporal

document collections. For this purpose, a master-client type architecture, which

is named as ABC-server, is implemented in C using LAM/MPI [7]. Currently,

ABC-server runs on a 48-node Beowulf PC cluster, located in the Computer

Engineering Department of Bilkent University.

In parallel architectures, there are two main categories for query processing

applications: Inter-query parallelism and Intra-query parallelism [11]. In Inter-

query parallelism, after collecting a bunch of queries, CB selects the ISs that will

be solely responsible for answering each query. In other words, each IS acts as an

independent search engine in this schema. However, in Intra-query parallelism,

a single query may be answered by several ISs. In this study, we implemented

Intra-query parallelism due to its tendency to exploit parallelism better.

As seen in Figure 3.3, in this architecture, there is a master called Central

CHAPTER 3. IMPLEMENTATION 21

Broker (CB), a Query Submitter (QS) to simulate users and K Index Servers

(IS) responsible for processing the query. CB collects the incoming user queries

represented by QS, and redirects them to the ISs which are nodes of the PC

cluster. The ISs generate partial answer sets (PASs) to the received queries,

using the their partition of the inverted index stored in their local disk. The

generated PASs are then merged into a global answer set by the CB, to be sent

to the user.

Figure 3.3: The architecture of the Skynet parallel text retrieval system [8].

When the program starts, CB needs to initialize some of its data structures.

First, CB reads the .info file to set the number of versions, documents, terms in the

dataset. Then, after reading .terms file, it creates a trie in which the terms and

term ids are kept. When a user, which is represented by QS, submits a query qs,

the id of a query term is accessed in O(w) time where w is the length of that term.

After reading .tmap or .cmap files, an array to store the version to document

mapping is created. Afterwards, by reading .r2p input file, CB allocates another

array to store version to document mapping. Finally, after creating receive buffers

and allocating memory to keep memory, time and communication statistics, CB

initializes a TCP port over which the queries will be submitted. Index servers

also initialize their send buffers, accumulators and other data structures to store

statistical information. Both CB and the ISs use first-in first-out (FIFO) queues

for processing user queries.

CHAPTER 3. IMPLEMENTATION 22

CB inserts two different types of items into its queue: queries and PASs. When

CB receives a query from a user, it inserts the query into the queue as a query

type item. After CB dequeues a query type item from the queue and processes

it, it identifies the responsible ISs for that query and records the number of ISs

that a part of this query (subquery) will be sent to. Then, a packet that consists

of subquery terms as well as query id and the query time interval is sent to the

responsible index servers. Please note that in time-based partitioning scheme,

subqueries refer to queries and whole query is sent to all responsible ISs.

An IS periodically checks for incoming subqueries from CB. If a subquery is

received, it is enqueued as a subquery item to the queue of that IS. After the

subquery is dequeued from the queue, the index server inspects if any subquery

term reside in its local term list. If none of the terms appears in its local index,

it replies with an empty packet to the central broker. Otherwise, corresponding

posting lists are read and related accumulators’ scores are updates. Each IS has

a static array that will contain an accumulator for each version in the collection.

Another highly deployed technique for storing accumulator arrays is the use of a

dynamic accumulator array where an accumulator is inserted only if the weight

of the corresponding posting is larger than a determined threshold (accumulator

limiting).

In the ABC-server implementation, the number of accumulators to be stored

is not limited but in the term-based partitioning case, the number of accumula-

tors to be sent through the network are limited since the network becomes the

bottleneck. In term-based partitioning scheme, this limit is set to 1% of the total

number of versions in the system and in time-based partitioning scheme, it is set

to the maximum number of versions requested by the user for display. Be aware

that accumulator restriction decreases the accuracy of term-based partitioning

scheme but it does not affect the accuracy of time-based partitioning scheme. In

other words, as long as accuracy is concerned, time-based partitioning is superior

to term-based partitioning.

When processing the subquery is finished, IS selects top s accumulators from

the accumulator array by using either expected linear time randomized-select

CHAPTER 3. IMPLEMENTATION 23

based or skip-list based ranking algorithm. Selected accumulators are sorted by

version ids and then, the prepared partial answer set is copied to the sending

buffer. Since immediate send is used, IS waits until there exists no ongoing

send operation to guarantee that the correct buffer is being sent. The static

accumulator array is cleared for future use and contents of the sending buffer is

sent to central broker by non-blocking send operation (Isend).

CB periodically checks for incoming packets from ISs. When a PAS is received

from ISi, the content is inserted into CB’s queue to be processed later. When a

PAS is dequeued from the queue, CB merges it with other PASs received from

the rest of the index servers which are responsible for that query too. The merge

operation assumes sorted PASs by version ids.

After the merge operation, CB compares the number of sent subqueries for

query qi and the number of PASs received for qi. If all expected PASs are received,

the merge operation is carried to generate the final answer set. Top s accumula-

tors are extracted from the final answer set by randomized-selection method and

presented to the user.

Chapter 4

Inverted Index Partitioning

Inverted index partitioning has a crucial effect on the efficiency of a parallel text

retrieval system such that the organization of the inverted index determines both

disk access and network cost of the system. Therefore, the main focus of this thesis

will be efficient inverted index partitioning on a shared-nothing architecture [11].

We proposed a time-based partitioning scheme for efficiently answering time-key

queries explained in Section 2.1.3. To our knowledge, this is the first study that

addresses answering this query type using a parallel architecture, on temporal

web data.

In this chapter, first, we will explain a traditional partitioning scheme adapted

to temporal web data: term-based partitioning. Later, we will explain the details

of proposed time-based inverted index partitioning schema with two different

document to processor mapping strategies. Please refer to Chapter 5 for the

detailed performance analysis of these partitioning methods.

4.1 Term-Based Partitioning

In a traditional term-based partitioning scheme, terms are alphabetically sorted

and then distributed to the processors in a round-robin fashion. The partitioning

24

CHAPTER 4. INVERTED INDEX PARTITIONING 25

info is kept in a mapping file having .cmap extension. Term-based partitioning is

also called column-based partitioning because the relationship between versions

and the terms they contain can also be displayed as a matrix where rows and

columns represent versions and terms, respectively.

In a shared-nothing parallel architecture, the inverted index should be par-

titioned taking size balance into account. The load imbalance between the IS

with the largest inverted index partition and the IS with the smallest inverted

index partition should be kept at a minimum possible level. If there are |P|
posting entries in the global inverted index, each index server Sj in the set

S = {S1, S2, . . . , SK} of K index servers should keep an approximately equal

amount of posting entries as shown by

SLoad(Sj) ' |P|
K

, for 1 ≤ j ≤ K, (4.1)

where SLoad(Sj) is the storage load of index server Sj [10].

Round-robin distribution results in an acceptable load imbalance. Therefore,

we used round-robin distribution in our implementation. In term-based distribu-

tion, each index server is responsible with a set of terms. Since the query terms

will be partitioned into subqueries by the central broker, intra-query parallelism is

achieved and query processing task could be divided into smaller units. Moreover,

as different queries employ different index servers, the number of idle processors

at a time will be smaller leading to a high level of concurrency and maximized

processor utilization. Although, term-based distribution minimizes the number

of disk accesses, due to the transfer of partial answer sets, redundant commu-

nication takes place. If the network is the bottleneck in the parallel system,

term-based distribution is expected not to perform well [8]. In Table 4.1, term-

based distribution of a toy dataset with 6 versions and 8 terms, on 2 processors

is depicted.

CHAPTER 4. INVERTED INDEX PARTITIONING 26

Table 4.1: Round robin term-based distribution of the toy dataset on two pro-
cessors

t0 t1 t2 t3 t4 t5 t6 t7
v0 S0 S1 S0

v1 S1 S0 S0 S1

v2 S0 S0 S1

v3 S0 S1 S1 S0 S0

v4 S0 S1 S1

v5 S0 S1 S0

4.2 Time-Based Partitioning

In the proposed time-based partitioning scheme, inverted indexes are partitioned

by partitioning the time axis. In order to partition an inverted index, first we

generate a mapping file that contains the points on the time axis to be used for

partitioning. We proposed two generation schemes that will be explained in detail

in the following subsections.

Once the mapping file is generated such that T = {t1, t2, ..., tK+1} such that

ti is the ith chosen instant on the time axis and K is the number of resultant

partitions. Si will have the version vj if and only if their time intervals intersect,

such that: ti < vj.e & ti+1 > vj.s. This equation is the negation of the case

where the two intervals does not intersect. If the start time of the former is

greater than the end time of the latter or the end time of the former is smaller

than the start time of the latter, their time intervals obviously do not intersect.

Since the validity time interval of a version might intersect with the time interval

of more than one processors, redundant information is allowed. Actually, this

strategy is very similar to Berberich et al.’s [4] sublist materialization. However,

the mapping files introduce a difference that significantly affects the performance.

When, central broker receives a query qi from users, it checks the time interval

of the query and sends the whole query to the processors whose time intervals

intersect with the validity time interval of qi.

CHAPTER 4. INVERTED INDEX PARTITIONING 27

4.2.1 Time-Balanced Time-Based Partitioning

Time-balanced time-based partitioning scheme, aims dividing the time axis into

equal intervals. If there are K processors in the parallel architecture, the time

axis starting from the minimum start time of all versions to maximum start time

of all versions will be divided into K parts. As the ending point of the time axis,

we do not choose the current time because this will lead to a worse load balance

since there will be no versions inserted into the system after the last crawl date.

In our experiments, we had a static dataset where no modifications are allowed

after the creation of the inverted index. For different applications that require

continuous insertion, deletion and updates, the upper bound of the time axis

should be set to a higher value.

After the lower and upper bounds of the time axis are determined, time axis

is simply divided into K equal parts such that:

tK+1 − tK = tK − tK−1 = ... = t2 − t1 (4.2)

If the distribution of query time intervals is even, meaning that the probabilities of

intersection with the processors’ time intervals were to be equal, this partitioning

scheme would perform well. However, this is not the case in practice. The

number of versions in a unit time interval increases as the time interval gets

close to now. For this reason, the queries are expected to be skewed towards

now. Moreover, due to the uneven distribution of versions among processors,

a significant load imbalance is observed. During the time-balanced time-based

partitioning on 8 processors, the imbalance values which are calculated by the

Equation 4.3 are observed to be %126 and %263 in Wikipedia and Wiktionary

datasets, respectively. Processor idle time is expected to increase with imbalance

causing a huge decrease in query performance. Therefore, another time-based

partitioning scheme is proposed in Section 4.2.2.

imbalance =
max(size(L))− avg(size(L))

avg(size(L))
× 100 (4.3)

CHAPTER 4. INVERTED INDEX PARTITIONING 28

4.2.2 Size-Balanced Time-Based Partitioning

Assuming that the amount of queries coming from a time interval is proportional

to the total size of the alive versions in that time interval, we proposed a heuristic

that will roughly balance the inverted index files in each processor. First, we

calculate the size of each index file if we were to create a partition for each week,

without actually creating inverted index partitions. Then, by trying to balance

the total sizes of the index files assigned to each processor, we assign consecutive

weeks to processors.

In order to size-wise balance the inverted index partitions, starting from the

most recent index file we start assigning each index file’s week to a processor.

Once the threshold, which is calculated as the total of inverted index partition

sizes divided by K, is exceeded, we start assigning weeks to another processor. If

at least one processor remains empty, we gradually decrease the threshold until no

processor remains empty. If we do not play with the threshold, empty processors

might remain especially when the number of processors increase. This problem

occurs because the total size of merged index partitions is not conserved. If we

were to merge inverted index partition Li with Lj to create a resultant inverted

index LR, size(LR) ≤ size(Li) + size(Lj). This inequality might seem unclear

at first glance but recall that if a posting p appears in both Li and Lj, then it

will appear in LR only once. Therefore, especially as the number of weeks in

the dataset increase, the difference between size(LR) and size(Li) + size(Lj) gets

bigger.

With the help of this scheme, the processor whose time interval is closest to

the current date (now), SK , will have the narrowest time interval, because the

number of versions alive in this interval is expected to be the largest. Moreover,

since the majority of the queries are expected to be close to now, SK will be

assigned more queries unless its time interval is kept shorter. As a result, this

mapping strategy not only balances the inverted index sizes in each processor,

but also probabilistically balances the number of queries assigned per processor.

Table 4.2 displays the imbalance ratios which is calculated by Equation 4.3.

CHAPTER 4. INVERTED INDEX PARTITIONING 29

Table 4.2: Imbalance in size-balanced time-based partitioning

of processors Wikipedia Wiktionary
2 21 1
4 25 13
8 44 26
16 52 34
24 51 32
32 51 40

The imbalance ratios of time-balanced and size-balanced time-based partition-

ing schemes differ by an order of magnitude particularly on Wiktionary dataset.

Therefore, the rest of the experiments are carried using size-balanced partition-

ing scheme. The imbalance in Wiktionary dataset seem to be smaller due to its

larger time span (2411 days) compared to Wikipedia’s time span of 1619 days.

Furthermore, imbalance increases with the number of processors since dividing

the total number of days into more partitions is more difficult.

Chapter 5

Experiments

The hardware platform used in the experiments is a 48-node PC cluster inter-

connected by a Gigabit Ethernet switch. Each node has an Intel Pentium IV 3.0

GHz processor, 1 GB of RAM, and runs Mandrake Linux, version 10.1. [8].

In this chapter, we first explain how to create inverted index files step by step

including the properties of resultant inverted index partitions. Then, we mention

the Wikipedia and Wiktionary temporal datasets used in this study. Next, syn-

thetic temporal web query generation and query properties are explained. Finally,

we compare the performances of proposed time-based partitioning schemes with

traditional term-based partitioning and further discuss their effects of ranking

algorithms.

5.1 Preprocessing

Before the emergence of parallel text retrieval systems, search engines used to

implement sequential text retrieval systems. Preprocessing stage of both systems

are still quite similar. Below, we explain the creation of inverted indexes which

are used for parallel query processing. We also present the properties of inverted

index partitions which will have a significant effect on experimental results.

30

CHAPTER 5. EXPERIMENTS 31

5.1.1 Corpus Creator

The primary task of the corpus creator is transforming given versioned document

collection into a common and standard format. It removes whitespace characters

and eliminates punctuation from the content. Then, case folding is applied on

the remaining alphanumeric character groups and the resultant data is stored in

ASCII format in a file with .corpus extension. Corpus creator not only makes

corpus parser’s task easier but also reduces the collection size. Furthermore, it

provides robustness since for different versioned document collections, writing a

different corpus creator will be sufficient.

5.1.2 Corpus Parser

After corpus creator converts the data collection into a common and standard

format, corpus parser generates the document matrix and other informative files

needed for query processing. The file with .corpus extension is given to corpus

parser as an input file. Corpus Parser first eliminates the stop words provided by

the Brown Corpus [30], as well as the terms that consist of a single letter and

extremely long terms. Then, it generates the output files with .info, .terms, .revs,

.r2p and .DV file extension.

The .info displays total term count, total distinct term count, total version

count and total document count in the collection. The .terms file keeps track

of each term ti’s name, id, the number of distinct documents ti appears in, the

number of distinct revisions ti appears in and the total number of ti’s occurrence

in the whole collection. The .revs file is responsible for storing an entry for each

version where each entry consists of a version id vi, total number of terms in vi,

total number of distinct terms in vi, the exact (not discrete) time stamp of vi and

the title of vi. Although, both of our real life data collections have one title for

each document that is common to all of its versions, in order to not to restrict

the application to one title per document, we stored the title of each version

separately. The .r2p file is a binary file that stores version-to-document mapping.

Since its size is negligibly small, we stored a document id for each version. It

CHAPTER 5. EXPERIMENTS 32

could be also stored in a compressed by rows (CBR) format to save from the

space, though it is not worthy in our implementation.

Then document matrices with .DV extension are generated. The .DV file

keeps a version vector for each version in the collection. A version vector V Vi

consists of the (term id, frequency) pairs of all distinct terms that appears in

vi. The .DV file is an input file for the following module, that is inverted index

creator.

5.1.3 Inverted Index Creator

For fast query processing, the collections are kept in the inverted index format

where a posting list for each term is stored. Term ti’s posting list contains a

version id, start time, end time and weight for each distinct version ti appears

in. The weight of a posting is calculated by the tf-idf weighting. Note that since

the granularity of time information is too fine, we only used the year, month and

day information to represent the time information. Time is denoted by an integer

that counts the total number of days passed since a predefined base date which

is guaranteed to be earlier than the insertion date of the very first version in the

collection.

Inverted index creator reads .info, .revs, .r2p, .terms and .DV files to generate

the IDV files. Due to memory constraints, the program might need to write a

portion of the .IDV file and then read the .DV file again. A memory allocation

constraint in the header file should be set considering the RAM of the machine

that is responsible for inverted index creation. Moreover, by setting the global

constants in the header file, the posting lists could be kept in version id, weight

or start time order. The default choice is keeping the posting lists in increasing

version id order. The version ids are unique among documents and the version

ids of a document with a greater document id are guaranteed to be greater than

the versions ids of a document with a smaller document id.

Inverted index creator generates two binary output files: .IDV file and .IDVi

CHAPTER 5. EXPERIMENTS 33

file. The former is used for storing posting lists while the latter is used for

accessing each posting list in one disk access. The file with .IDVi extension keeps

a record for each term ti where each record consists of the distinct number of

versions ti appears in, the file ID of the IDV file that keeps ti’s posting list and

a pointer to the location of ti’s posting list. Note that, inverted index creator

could create more than one .IDV file since opening large files whose size exceed

2 GB is problematic. In order to be able to open large files, while compiling we

set -D FILE OFFSET BITS variable to 64 and used a single IDV file. Another

solution is using fopen64() method instead of fopen() method.

5.2 Datasets

In the experiments, we used two real life temporal document collections: English

Wikipedia [18] and English Wiktionary [19]. Both Wikipedia and Wiktionary are

wikis meaning that their content is under the GNU Free Documentation Licence

and the users are allowed to edit the content of their pages.

Table 5.1: Properties of Wikipedia and Wiktionary versioned document collec-
tions

Wikipedia Wiktionary
Size [GB] 7.88 28.92

Preprocessed size [GB] 7.32 23.62
DV size [GB] 1.60 5.0
IDV size [GB] 2.54 7.53

of documents 109,690 720,660
of versions 408,203 3,099,270
of terms 580,071,671 1,899,914,288

of distinct terms 1,454,684 3,192,040

Table 5.1 presents the properties of these document collections. Wikipedia

and Wiktionary store not only the last modified version but also the history of

each page. Therefore, they provide real-life temporal document collections which

is exactly what we are looking for. The XML dump of Wikipedia is retrieved on

CHAPTER 5. EXPERIMENTS 34

3rd of November 2007 and the XML dump of Wiktionary is retrieved on 20th of

November 2007.

5.3 Synthetic Temporal Web Query Generation

This module uses .DV file to generate temporal queries. Each query consists of

a set of keywords and a time interval, which is classified as time-key queries by

Salzberg [39]. We define three query lengths such that short queries contain 1-3

keywords, medium queries contain 4-6 keywords and long queries contain 7-10

keywords. We generate three different query files for each query type. Each file

contains 1500 queries.

In order to select proper terms from the .DV file, query generator needs to

find a version containing sufficient number of candidate terms. Therefore, first, it

calculates the proper number of terms that could be included in a query for each

version. At this point, if a term frequency threshold is given, query generator

will nominate a term ti only if ti’s frequency is above the threshold. Similarly,

if a version threshold is given, query generator will nominate a version vi only

if the percentage of vi’s term count in the collection exceeds the threshold. If

no threshold is given, all the terms in each version are considered as proper

candidates.

After the number of candidate terms in each version is calculated, the number

of query terms for each query is decided using a random number generator. For

example, for short queries, an integer between [1, 3] is chosen for each one of 1500

queries. Afterwards, a version vi that has sufficient number of candidate terms

is randomly selected from the collection. Then, required number of terms are

randomly selected among the candidate terms of vi. This process is repeated

1500 times for each query.

Selecting a proper time interval for each query is another challenge. We

generated two types of temporal queries based on their time intervals: 1X and

3X queries. For 1X queries, once vi is selected for generating a query, the validity

CHAPTER 5. EXPERIMENTS 35

time interval of vi is taken with the terms selected among vi’s terms. We believe

that this will be a realistic approach since the queries are more likely to come

from an interval that has more alive versions. For the 3X queries, we simply

multiply vi’s time interval by 3. In other words, let δ = vi.e - vi.s, then, the

query’s time interval would be [vi.s - δ, vi.e + δ].

The minimum, maximum and average time interval lengths of each query type

is shown in Table 5.2. The total time span of Wikipedia and Wiktionary corpora

are 1619 and 2411 days, respectively. Also, recall that each query file consists of

1500 queries.

Table 5.2: Query properties

1X [days] 3X [days]
min max avg min max avg # of terms

Wikipedia Short 0 1112 108.47 0 1619 554.01 1-3
Medium 0 1127 114.29 0 1619 531.71 4-6
Long 0 877 103.65 0 1619 488.61 7-10

Wiktionary Short 0 1760 104.74 0 2411 684.05 1-3
Medium 0 873 85.77 0 2411 668.72 4-6
Long 0 1432 88.98 0 2411 673.07 7-10

5.4 Experimental Results and Discussion

In this section, we present and analyze the results of the experiments on the

effects of temporal inverted index partitioning schemes on parallel systems. The

experiments are carried on Skynet, on 2, 4, 8, 16, 24 and 32 processors, in addition

to a central broker and a query submitter. First, we compare size-balanced and

time-balanced time-based partitioning performances. Afterwards, we compare

the throughput, which is defined as the number of processed queries per second,

for both term-based and time-based partitioning. Finally, we compare the average

response time for time-based and term-based partitioning schemes and comment

on the results.

CHAPTER 5. EXPERIMENTS 36

5.4.1 Time-balanced vs. Size-Balanced Time-based Par-
titioning

The experiments comparing time-balanced with size-balanced time-based par-

titioning schemes are carried on 8 processors. The parallel text retrieval sys-

tem processed short, medium and long queries of both 1X and 3X query types,

on Wikipedia and Wiktionary temporal document collections. Queries are pro-

cessed once by TOd3 (Skip-list based) ranking algorithm and once by using TOs4

(Randomized-select based algorithm).

As clearly seen from Figures 5.1 and 5.2, size-balanced time-based partition-

ing works better for all cases. This is and expected result since size-balanced

partitioning tends to balance the size of the inverted index partition at each pro-

cessor. While balancing the inverted index size, it also indirectly and statistically

balances the number of queries assigned per processor since the more documents

are the more queries are received. The number of queries served at each processor

is an indicator of the work load per processor. Since size-balanced partitioning is

expected to distribute the data and tasks more evenly, it is expected to perform

better. Therefore, for other experiments we only used size-balanced time-based

partitioning.

Figure 5.1: Time-balanced vs Size-balanced throughput comparison for 1X
queries.

CHAPTER 5. EXPERIMENTS 37

Figure 5.2: Time-balanced vs Size-balanced throughput comparison for 3X
queries.

5.4.2 Term-based vs. Time-based comparison considering
throughput

Figures 5.3 to 5.5 shown below display the results of processing 1X type queries

on Wikipedia temporal document collection. Since we have three query sets with

1-3, 4-6 and 7-10 query terms for each query, this experiment is repeated three

times on 2 to 32 processors. All these figures suggest that term-based partitioning

performs better than time-based partitioning on Wikipedia corpus. Moreover,

TOs4 seems to work better than TOd3 almost always in these three graphs with

the exception of short query processing results of 24 and 32 processors.

For queries with a longer time interval, term-based partitioning is expected

to perform better. Similarly, for queries with many terms, time-based partition-

ing scheme is expected to produce higher throughput rates (query/sec). The

experiments with short queries meet the expectations and reveal that term-based

partitioning works better in this case. However, in medium and long queries,

term-based partitioning still performs better unexpectedly. The main reason be-

hind this result is suspected to be related with the query properties and corpus

properties in Tables 5.1 and 5.2. Although the average time interval per query

barely exceeds 100 days in both Wikipedia and Wiktionary queries, the time

spanned by Wiktionary is 50% longer than Wikipedia. Therefore,in time-based

CHAPTER 5. EXPERIMENTS 38

Figure 5.3: Term-based vs. Time-based partitioning on Wikipedia for Short 1X
queries.

Figure 5.4: Term-based vs. Time-based partitioning on Wikipedia for Medium
1X queries.

CHAPTER 5. EXPERIMENTS 39

Figure 5.5: Term-based vs. Time-based partitioning on Wikipedia for Long 1X
queries.

partitioning scheme, two queries with the same validity time intervals is likely to

be sent to more processors on Wikipedia dataset. However, in term-based parti-

tioning case, the number of responsible processors for that query will not differ

significantly. Therefore, time-based partitioning is expected to perform worse on

Wikipedia dataset due to its short time span.

However, this cannot be the only reason of better term-based partitioning

performance in Wikipedia dataset because even if the time interval triples, term-

based partitioning still performs better. The size of the inverted index signif-

icantly affects query performance on term-based partitioning since the posting

length increases with increasing index size. As the posting lists gets longer, the

number of postings fetched from the disk even if they do not contribute to the an-

swer set, increase. In other words, with increasing posting list length, the amount

of redundant work done in term-based partitioning increase. Therefore, the pro-

posed time-based partitioning scheme scales better than term-based partitioning.

As for the Wiktionary dataset, which is almost three times larger than

CHAPTER 5. EXPERIMENTS 40

Wikipedia dataset, time-based partitioning almost always perform better, even

for the short query types. As the number of query terms increase, the number

of active index servers in term-based partitioning scheme will increase. However,

as long as the query’s time interval is kept constant, the number of index servers

responsible for answering that query does not change in time-based partitioning.

Increasing number of responsible index servers imply increasing communication

cost in the network as well as increasing number of disk accesses. Therefore, as

queries get longer in terms of number of keywords contained, time-based parti-

tioning results in better throughput values compared to term-based partitioning.

The effect of partitioning on the performance of ranking algorithms is clearly

seen from Figures 5.6 to 5.8. Fixing either TOs4 or TOd3 ranking algorithm, com-

pared to term-based partitioning, time based partitioning increases the through-

put at all cases seen below. However, regardless of the partitioning scheme, TOd3

performs worse than TOs4, in spite of the fact that in sequential implementation

results, TOd3 performs better and has a smaller time complexity.

Figure 5.6: Term-based vs. Time-based partitioning on Wiktionary for Short 1X
queries.

The decreasing performance of TOd3 in parallel implementation is due to the

CHAPTER 5. EXPERIMENTS 41

Figure 5.7: Term-based vs. Time-based partitioning on Wiktionary for Medium
1X queries.

Figure 5.8: Term-based vs. Time-based partitioning on Wiktionary for Long 1X
queries.

CHAPTER 5. EXPERIMENTS 42

different query lengths used in sequential and parallel implementations. Cam-

bazoglu and Aykanat [9] assigned 1 to 5, 6 to 25 and 26 to 250 terms for short,

medium and long queries, respectively. On the other hand, since we expect signif-

icantly fewer number of terms in web queries, 1 to 3, 4 to 6 and 7 to 10 queries are

assigned to each query type, in the given order. As the number of query terms

increase, the effect of TOd3 on query performance becomes visible due to the

data structures used in the implementation of TOd3, which is explained in detail

in section 3.3. If there are only a few accumulators in the skip list, the effect of

logarithmic search is not reflected to the results. In other words, the overhead

introduced due to skip-list data structure cannot be amortized by logarithmic

search functionality if there is not enough number of accumulators.

In term-based partitioning, at each processor (or index server) Si, the number

of accumulators inserted into skip list is directly related to the
∑n

i=1(length(Ii))

where n is the number of terms assigned to Si and Ii is the posting list of term ti.

If
∑n

i=1(length(Ii)) has a small value, then statistically logarithmic search, insert

and update costs does not amortize the overhead cost paid for the skip list data

structure. Therefore, since we used shorter queries and generated even shorter

subqueries in term-based partitioning or reduced the length of posting lists in

time-based partitioning, we significantly reduced
∑n

i=1. Sending smaller packets

for query distribution or decreasing the disk access cost by reducing the posting

list size is desirable to increase efficiency. However, as a side-effect, performance

of TOd3 ranking algorithm is sacrificed.

Next, let us present experimental results for 3X query type. As seen from the

graphs, increasing the validity time interval of temporal web queries has very little

effect on the query performance of term-based partitioning scheme. The small

decrease in throughput is only due to the increasing number of versions in the

answer set as the time span of the query triples. However, it severely effects time-

based partitioning results since the number of active processors increases with

increasing time interval length. Regarding Wikipedia experiments, term-based

partitioning still works better than time-based partitioning but the growing gap

between the throughput values becomes more clear particularly as the number of

processors increases.

CHAPTER 5. EXPERIMENTS 43

Figure 5.9: Term-based vs. Time-based partitioning on Wikipedia for Short 3X
queries.

Figure 5.10: Term-based vs. Time-based partitioning on Wikipedia for Medium
3X queries.

CHAPTER 5. EXPERIMENTS 44

Figure 5.11: Term-based vs. Time-based partitioning on Wikipedia for Long 3X
queries.

Figure 5.12: Term-based vs. Time-based partitioning on Wiktionary for Short
3X queries.

CHAPTER 5. EXPERIMENTS 45

Figure 5.13: Term-based vs. Time-based partitioning on Wiktionary for Medium
3X queries.

Figure 5.14: Term-based vs. Time-based partitioning on Wiktionary for Long 3X
queries.

CHAPTER 5. EXPERIMENTS 46

The 3X experiments on Wiktionary dataset also reveal that time-based

throughput rates surpasses term-based throughput rates. However, compared

to 1X query results, 3X throughput rates are lower, as expected. In this experi-

mental setup, TOs4 performs better again.

5.4.3 Term-based vs. Time-based comparison considering
average response time

In section 5.4.2, we base our comparison on throughput, the number of queries

per second. In this section, we analyze the same set of experiments based on

average query response time values. Although, an exact equation that relates

throughput with average response time cannot be expressed, throughput and

average response time could be considered as inversely related in some sense.

Throughput is calculated as throughput = Nq/(Te − Ts) where Nq is the number

of queries processed, which is set to 1500 in this experiment, Ts is the time instant

when the first query is sent to a processor and Te is the time instant when the last

query is answered by the latest processor. Average response time art is calculated

as art =
∑Nq

i=0 Ri/Nq where Ri is the response time of query qi. Therefore, unless

processor idle time is high, average response time is expected to decrease with

increasing throughput rates.

Comparing Figures 5.15 to 5.26 with the figures of section 5.4.2, average re-

sponse time is almost always inversely proportional with throughput except for

2 processor experiments using 1X Short queries on Wikipedia data. Although

time-based partitioning has a smaller average response time, its throughput is

lower compared to term-based partitioning. This implies that time-based parti-

tioning causes idling time of processors to increase particularly when there are

fewer processors.

Actually, this is an expected result because term-based partitioning in a round-

robin fashion distributes the terms among processors such that the likeliness of

any term appearing in a query is close to one another. Furthermore, by chang-

ing the mapping parameter of term-based distribution, terms could be sorted by

CHAPTER 5. EXPERIMENTS 47

Figure 5.15: Term-based vs. Time-based partitioning on Wikipedia for Short 1X
queries.

Figure 5.16: Term-based vs. Time-based partitioning on Wikipedia for Medium
1X queries.

CHAPTER 5. EXPERIMENTS 48

their frequencies instead of alphabetical sorting and then round-robin distribu-

tion could be carried on. However, in time-based distribution, the queries are

statistically more like to come from a recent time period. Since our time-based

distribution scheme assigns contiguous time intervals to each processor, round-

robin distribution of time intervals is not possible. This challenge leads to an

increase in idling time of processors which are responsible from older time inter-

vals.

Considering the average response times on Wiktionary dataset, the same pro-

cessor idling problem is seen in short queries at 24 and 32 processors. However,

in this case, we see the problem at 24 and 32 processors instead of 2 processors.

Recall that in the earlier occurrence of decreasing throughput with decreasing

average response time, term-based partitioning was giving better throughput.

However, in this case, although time-based partitioning gives worse average re-

sponse time, the throughput is better than term-based partitioning. This means,

at high number of processors, time-based partitioning reduces the idling time of

processors.

The experiments on 3X queries displayed below show that, as the validity

time interval of temporal web queries increase, the performance of time-based

partitioning diminishes significantly. As far as term-based partitioning is con-

cerned, increasing the validity time interval of queries has very little effect on its

performance. That little effect is actually due to increasing answer set as the

query’s validity time interval increases.

Apart from comparing experiments carried on different datasets, query types,

query lengths and partitioning schemes; the effect of the number of processors

should also be analyzed. If the number of processors are increased gradually while

keeping the amount of data and tasks constant (in this experiment data is the

inverted index and tasks are queries to be processed), after a certain point parallel

performance will start decreasing [26]. The reason of decreasing performance is

due to the increasing volume of communication and/or increasing amount of total

work done by the processors. In these experiments, in the term-based partition-

ing scheme, as the number of processors increase the volume of communication

CHAPTER 5. EXPERIMENTS 49

Figure 5.17: Term-based vs. Time-based partitioning on Wikipedia for Long 1X
queries.

Figure 5.18: Term-based vs. Time-based partitioning on Wiktionary for Short
1X queries.

CHAPTER 5. EXPERIMENTS 50

Figure 5.19: Term-based vs. Time-based partitioning on Wiktionary for Medium
1X queries.

Figure 5.20: Term-based vs. Time-based partitioning on Wiktionary for Long 1X
queries.

CHAPTER 5. EXPERIMENTS 51

Figure 5.21: Term-based vs. Time-based partitioning on Wikipedia for Short 3X
queries.

Figure 5.22: Term-based vs. Time-based partitioning on Wikipedia for Medium
3X queries.

CHAPTER 5. EXPERIMENTS 52

Figure 5.23: Term-based vs. Time-based partitioning on Wikipedia for Long 3X
queries.

Figure 5.24: Term-based vs. Time-based partitioning on Wiktionary for Short
3X queries.

CHAPTER 5. EXPERIMENTS 53

Figure 5.25: Term-based vs. Time-based partitioning on Wiktionary for Medium
3X queries.

Figure 5.26: Term-based vs. Time-based partitioning on Wiktionary for Long 3X
queries.

CHAPTER 5. EXPERIMENTS 54

increase. Furthermore, although the total number of disk accesses remains con-

stant, total number of accumulators to be selected and sorted in each processor

increases as well.

On the other hand, in time-based partitioning scheme, as the number of pro-

cessors increase total volume of communication increases since the number of

processors with intersecting time intervals increase. Similar to term-based parti-

tioning total number of accumulators to be selected and sorted in each processor

increases and additionally the number of disk accesses in time-based partitioning

scheme increases as well. Therefore, as depicted in the figures, after a certain

number of processors, throughput starts decreasing.

However, the turning point changes based on the total size of inverted indexes,

the total number of query terms and the length of the query time interval. Since

the size of Wiktionary dataset is bigger, the turning point on this collection is

observed to be later than Wikipedia. The total number of query terms affects

the turning point on only term-based partitioning scheme because as the number

of terms increase, the number of disk accesses which is an indication of the total

number of tasks increases. Due to the same reasoning, the turning point of

time-based partitioning is affected as well. As the query time interval increases,

the turning point of time-based partitioning is pulled back significantly due to

the increasing number of processors which will be responsible for answering that

query. However, the time interval has almost no effect on term-based partitioning

scheme. To sum up, Wiktionary corpus, time-based partitioning scheme, short

and 3X queries are more likely to have earlier turning points.

Chapter 6

Conclusion and Future Work

There have been several studies on temporal text retrieval. However, as pointed in

temporal text-retrieval researches, sequential systems are far from being sufficient

on today’s vast amount of temporal data. This makes employment of parallel

and distributed systems a necessity on temporal text retrieval. In this work,

we tried to contribute to temporal text retrieval’s scientific progress in a small

way. To the best of our knowledge, this is the first study that exploits the

problem of answering time-interval web queries on temporal document collections

on a parallel architecture. In particular, we proposed a parallel text retrieval

system which is able to answer time-interval web queries on temporally versioned

document collections.

In order to implement a parallel text retrieval system, we should change the

classical structure of the inverted index data structure so that the time-related

information can also be represented within the index. As a second contribution,

we propose two time-based partitioning schemes: time-balanced and size-balanced

partitioning. The former method partitions the dataset equally according to

timeslice, while the latter aims to balance the storage cost at each index server.

According to our experiments on two real life temporal document collections, we

observe that size-balanced partitioning leads better results since the queries have

a tendency to be related with more recent time intervals.

We also compare the performances of size-balanced time-based partitioning

55

CHAPTER 6. CONCLUSION AND FUTURE WORK 56

scheme with traditional term-based round-robin partitioning scheme. The exper-

imental results revealed that for long time-interval queries having fewer terms,

term-based partitioning yields better results. On the other hand, if the queries

contain a short time-interval and many terms, time-based partitioning performs

better. As the size of the document collection increase, the performance of time-

based partitioning exceeds term-based partitioning. Furthermore, time-based

partitioning calculates exact scores while in term-based partitioning, there might

be small variations in the order of top s versions. We also investigated parallel

performances of two term ordered ranking methods TOs4 and TOd3 and found

out that although TOd3 performs better in sequential implementations, TOs4

utilizes parallelism better than TOd3.

Our future plans include, storing versions as a set of fragments to reduce total

inverted index size, implementing document ordered ranking algorithms on a par-

allel architecture and distributing versions among processors by their start/end

times. We believe that index size reduction will implicitly improve query per-

formance by considerably reducing the amount of data to be searched in. Fur-

thermore, document ordered ranking algorithms are expected to perform better

in time-based partitioning algorithms due to their resemblance with document-

based partitioning.

Bibliography

[1] Anick, P. G., and Flynn, R. A. (1992). “Versioning a Full-Text Information

Retrieval System,” in Proceedings of the 15th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval

(SIGIR ’92), pp. 98-111.

[2] Berberich, K., Bedathur, S., Neumann, T., and Weikum, G. (2007). “A

Time Machine for Text Search,” in Proceedings of the 30th Annual Inter-

national ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval (SIGIR ’07), pp. 519-526.

[3] Berberich, K., Bedathur, S., Neumann, T., and Weikum, G. (2007). “Flux-

Capacitor: Efficient Time-travel Text Search,” in Proceedings of the 33rd

International Conference on Very Large Data Bases (VLDB ’07), pp.

1414-1417.

[4] Berberich, K., Bedathur, S., Neumann, T., and Weikum, G. (2007), “A

Time Machine for Text Search,” Technical Report, No. MPI-I-2007-5-002,

Max-Planck Institute for Informatics.

[5] Brewington, B. E., and Cybenko, G. (2000). “How Dynamic Is the Web?,

Computer Networks, 33:257-276.

[6] Broder, A. Z., Iron, N., Fontoura, M., Herscovici, M., Lempel, R., McPher-

son, J., Qi, R., and Shekita, J. (2006). “Indexing Shared Content in In-

formation Retrieval Systems,” in Lecture Notes in Computer Science, Vol.

3896, (Proceedings of Advances in Database Technology (EDBT)), pp. 313-

330.

57

BIBLIOGRAPHY 58

[7] Burns, G., Daoud, R., and Vaigl, J. (1994). “LAM: an Open Cluster Envi-

ronment for MPI,” in Proceedings of the Supercomputing Symposium, pp.

379-386.

[8] Cambazoglu, B. B. (2006). “Models and Algorithms for Parallel Text Re-

trieval,” Ph.D. Thesis, Department of Computer Engineering, Bilkent Uni-

versity.

[9] Cambazoglu, B. B., and Aykanat, C. (2006). “Performance of Query Pro-

cessing Implementations in Ranking-based Text Retrieval Systems Using

Inverted Indices,” Information Processing and Management: an Interna-

tional Journal, 42:875-898.

[10] Cambazoglu, B. B., and Aykanat, C. (2006). “Effect of Inverted Partition-

ing Schemes on Performance of Query Processing in Parallel Text Retrieval

Systems,” in Lecture Notes in Computer Science, Vol. 4263, pp. 717-725.

[11] Catal, A. (2003). “Parallel Text Retrieval on PC Clusters,” M.S. Thesis,

Department of Computer Engineering, Bilkent University.

[12] Chien, S.-Y., Tsotras, V. J., Zaniolo, C., and Zhang, D. (2002). “Efficient

Complex Query Support for Multiversion XML Documents,” in Proceed-

ings of the 8th International Conference on Extending Database Technol-

ogy: Advances in Database Technology (EDBT), pp. 161-178.

[13] Chien, S.-Y., Tsotras, V. J., and Zaniolo, C. (2001). “Efficient Manage-

ment of Multiversion Documents by Object Referencing,” in Proceedings

of the 27th International Conference on Very Large Data Bases (VLDB

’01), pp. 291-300.

[14] Chien, S.-Y., Tsotras, V. J., and Zaniolo, C. (2000). “Version Management

of XML Documents,” in Lecture Notes In Computer Science, Vol. 1997,

(Selected papers from the 3rd International Workshop WebDB 2000 on

The World Wide Web and Databases),

pp. 184-200.

BIBLIOGRAPHY 59

[15] Cho, J., and Garcia-Molina, H. (Sep. 2000). “The Evolution of the Web

and Implications for an Incremental Crawler,” in Proceedings of the 26th

International Conference on Very Large Databases (VLDB ’00), pp. 200-

209.

[16] Dalling, T. (1998). “Versioning of Web Resources,” B.S. Thesis. Depart-

ment of Computer Science, James Cook University of North Queensland.

[17] Elmasri, R., Wuu, G. T. J., and Kim, Y.-J. (1990). “The Time Index: An

Access Structure for Temporal Data,” in Proceedings of the 16th Interna-

tional Conference on Very Large Databases (VLDB ’00), pp. 296-303.

[18] English Wikipedia. http://en.wikipedia.org/.

[19] English Wiktionary. http://en.wiktionary.org/.

[20] Jatowt, A., Kawai, Y. and Tanaka, K. (2008). “Visualizing Historical Con-

tent of Web Pages,” in Proceeding of the 17th International Conference on

World Wide Web, pp. 1221-1222.

[21] Gunadhi, H., and Segev, A. (1993). “Efficient Indexing Methods for Tem-

poral Relations,” IEEE Transactions on Knowledge and Data Engineering,

5:496-509.

[22] Hersovici, M., Lempel, R., and Yogev, S. (2007). “Efficient Indexing of

Versioned Document Sequences,” Lecture Notes in Computer Science, Vol.

4425, pp.76-87.

[23] Huang, L., Zhu, J.J.H. and Li, X. (2008). “HisTrace: Building a Search

Engine of Historical Events,” in Proceeding of the 17th International Con-

ference on World Wide Web, pp. 1155-1156.

[24] Internet Archive. http://www.archive.org/.

[25] Jatowt, A., Kawai, Y., Nakamura, S., Kidawara, Y. and Tanaka, K. (2006).

“Journey to the Past: Proposal for a Past Web Browser,” in Proceedings

of the 17th Conference on Hypertext and Hypermedia, pp. 134-144.

BIBLIOGRAPHY 60

[26] Grama, A., Gupta, A., Karypis, G. and Kumar, V. (2003). Introduction

to Parallel Computing, 2nd ed. Addison-Wesley.

[27] Kouramajian, V., Kamel, I., Elmasri, R. and Waheed, S. (1994). “The

Time Index+: an Incremental Access Structure for Temporal Databases,”

in Proceedings of the 3rd International Conference on Information and

Knowledge Management (CIKM), pp. 1-12.

[28] Lawrence, S., and Giles, C. L. (1999). “Accessibility of information on the

Web,” Intelligence, Vol. 11, pp. 32-39.

[29] Leung, T. Y., and Muntz, R. R. (1992). “Temporal Query Processing and

Optimization in Multiprocessor Database Machines,” in Proceedings of the

18th International Conference on Very Large Data Bases (VLDB ’92), pp.

383-394.

[30] Francis, W. N., and Kucera, H. (Jan., 1983). “Frequency Analysis of En-

glish Usage: Lexicon and Grammar,” PHoughton Mifflin . ISBN 0-395-

32250-2.

[31] Nørv̊ag, K., and Nybø, A. O. (2004). “Creating Synthetic Tem-

poral Document Collections”, Technical Report IDI 6/2004,

Norwegian University of Science and Technology, Available at

http://www.idi.ntnu.no/grupper/DB-grp/.

[32] Nørv̊ag, K., and Nybø, A. O. (2004). “DyST: Dynamic and

Scalable Temporal Text Indexing”, Technical Report IDI 10/2004,

Norwegian University of Science and Technology, Available at

http://www.idi.ntnu.no/grupper/DB-grp/.

[33] Nørv̊ag, K., and Nybø, A. O. (2004). “Improving Space-efficiency

in Temporal Text-indexing”, Technical Report IDI 7/2004, Nor-

wegian University of Science and Technology, Available at

http://www.idi.ntnu.no/grupper/DB-grp/.

[34] Nørv̊ag, K., and Nybø, A. O. (2003). “Space-efficient Support for Temporal

Text-indexing in a Document Archive Context”, in Proceedings of the 7th

European Conference on Digital Libraries (ECDL), pp. 511-522.

BIBLIOGRAPHY 61

[35] Nørv̊ag, K., and Nybø, A. O. (2004). “Supporting Temporal Text-

containment Queries in Temporal Document Databases”, Journal of Data

and Knowledge Engineering, 49:105-125.

[36] Pearsoned Education. http://wps.pearsoned.co.uk/.

[37] Ramaswamy, S. (1997). “Efficient Indexing for Constraint and Tempo-

ral Databases”, in Proceedings of the 6th International Conference on

Database Theory (ICDT 97), pp. 419-431.

[38] Salton, G., and McGill, M. J. (1983). Introduction to Modern Information

Retrieval, New York: McGraw-Hill.

[39] Salzberg, B., and Tsotras V. J. (1999). “Comparison of Access Methods

for Time-Evolving Data”, ACM Computing Surveys, 31(2): 158-221.

[40] Silva, M. J. (2003). “The Case for a Portuguese Web Search En-

gine”, in Proceedings of ICWI-2003, the IADIS International Conference

WWW/Internet, pp. 411-418.

[41] Stack, M. (2005). “Full Text Search of Web Archive Collections”, in in

Proceedings of the 5th International Web Archiving Workshop (IWAW).

[42] Tokuc, A. A. (2008). “Performance Comparison of Query Evaluation Tech-

niques in Parallel Text Retrieval Systems,” M.S. Thesis, Department of

Computer Engineering, Bilkent University.

[43] Tsotras, V. J., and Kangelaris, N. (1995). “The Snapshot Index: An I/O-

Optimal Access Method for Timeslice Queries”, Information Systems Vol.

20, Issue 3, pp. 237-260.

[44] Witten, I. H., Moffat, A. and Bell, T. C. 1999. Managing Gigabytes: Com-

pressing and Indexing Documents and Images (2nd ed.). San Francisco,

CA: Morgan Kaufmann.

[45] Zhang, J., and Suel, T. (2007). “Efficient Search in Large Textual Collec-

tions with Redundancy”, in Proceeding of the 16th International Confer-

ence on World Wide Web, pp. 411-420.

