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ABSTRACT

PERFORMANCE COMPARISON OF QUERY
EVALUATION TECHNIQUES IN PARALLEL TEXT

RETRIEVAL SYSTEMS

A. Aylin Tokuç

M.S. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

September, 2008

Today’s state-of-the-art search engines utilize the inverted index data structure

for fast text retrieval on large document collections. To parallelize the retrieval

process, the inverted index should be distributed among multiple index servers.

Generally the distribution of the inverted index is done in either a term-based or a

document-based fashion. The performances of both schemes depend on the total

number of disk accesses and the total volume of communication in the system.

The classical approach for both distributions is to use the Central Broker

Query Evaluation Scheme (CB) for parallel text retrieval. It is known that in this

approach the central broker is heavily loaded and becomes a bottleneck. Recently,

an alternative query evaluation technique, named Pipelined Query Evaluation

Scheme (PPL), has been proposed to alleviate this problem by performing the

merge operation on the index servers. In this study, we analyze the scalability

and relative performances of the CB and PPL under various query loads to report

the benefits and drawbacks of each method.

Keywords: parallel text retrieval, central broker query evaluation, pipelined query

evaluation, term-based distribution, document-based distrribution.
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ÖZET

PARALEL METİN ERİŞİM SİSTEMLERİNDE SORGU

İŞLEME TEKNİKLERİNİN KARSILAŞTIRILMASI

A. Aylin Tokuç

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Eylül, 2008

Günümüz modern aǧ arama motorları, büyük döküman kolleksiyonlarında hızlı

metin erişimi yapabilmek için ters dizin yapısını kullanırlar. Erişim işleminin

paralalleştirilmesi için ters dizinin, dizin sunucular arasında daǧıtılması gerek-

mektedir. Ters dizinin daǧıtımı genellikle terim-bazlı ya da döküman-bazlı olarak

yapılır. Her iki daǧıtım şeklinin de performansı sistemdeki toplam disk erişimi

sayısına ve toplam iletişim hacmine baǧlıdır.

Paralel metin erişiminde klasik yöntem her iki daǧıtım yöntemi için de

Merkezi Simsar Sorgu İşleme Yöntemi’ni kullanmaktır. Bu yöntemde merkezi

simsarın birleştirme işlemlerinden dolayı çok yüklenerek işlem hızını belirleyen

darboǧaz konumuna geldiǧi bilinmektedir. Yakın geçmişte birleştirme işleminin

dizin sunucularda gerçekleştirilmesine dayalı, Boru Hattı Sorgu İşleme Yntemi

alternatif bir metod olarak önerilmiştir. Bu çalışmada Merkezi Simsar ve Boru

Hattı Sorgu İşleme Yöntemleri’nin ölçeklenebilirlik ve göreceli performanslarını

çözümleyip, deǧişken sorgu aǧırlıklarında lehte ve alehte özelliklerini ortaya

çıkaracaǧız.

Anahtar sözcükler : paralel metin işleme, merkezi simsar sorgu işleme, boru hattı

sorgu işleme, terim-bazlı daǧıtım, döküman-bazlı daǧıtım.
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Chapter 1

Introduction

The growing use of the internet has a significant influence on text retrieval sys-

tems. The size of the text collection available online is growing at an astonishing

rate. At the same time, the number of users and the queries submitted to the

text retrieval systems are increasing very rapidly. The staggering increase in the

data volume and query processing load create new challenges for text retrieval

research. In order to satisfy user needs when large volumes of data is being pro-

cessed, usage of parallel methods become inevitable. Parallel frameworks provide

better average response times and higher throughput rates compared to sequential

methods.

Most common method for storing large document collections is using inverted

indexes. In the inverted index data structure, there is an associated list of doc-

uments for each term. These lists of documents are also called posting/inverted

lists. To parallelize the retrieval process, the inverted index should be distributed

among multiple index servers. The query responses are generated by combining

the partial answer sets produced by the index servers.

In general, distribution of the inverted index can be performed in either

document-based or term-based fashion. In both distributions, the responsibil-

ity of processing query terms and storing associated inverted lists is distributed

among parallel processors. In document-based distribution, a set of documents

in the dataset is assigned to a particular index server. In this distribution, during

1



CHAPTER 1. INTRODUCTION 2

query processing, each index server contributes to the final answer set by the sim-

ilarities of the documents assigned to itself. Hence, each query must be sent to all

index servers. The answer sets produced by the index servers are merged to form

the final answer set. In term-based distribution, each inverted list is assigned to

an index server. For each query, a subquery should be sent to the index servers

containing at least one term within the query. Only the index servers receiving a

subquery is required to respond with a partial answer set in order to compute the

final answer set. In this distribution, the partial answer sets are not sufficient to

decide whether a document is qualified to be in the final answer set or not. The

results of all participant index servers should be accumulated since the terms of

a document are scattered throughout separate index servers.

Both distributions have benefits and drawbacks. The performance of both

distribution schemes depend on the total number of disk accesses and the total

volume of communication in the system.

It is easy to divide the documents evenly across the index servers when

document-based distribution is used, hence the storage cost is almost balanced.

Furthermore, a query is sent to all index servers, and all index servers contribute

to the final answer set causing a balanced workload, enabling maximum paral-

lelism during the processing of a single query by inter-query parallelism. Another

advantage of this scheme is that the index servers can compute the final answer

sets, which reduces both the load over the central broker and the amount of inter-

mediary communication. The most significant disadvantage of document-based

distribution is that multiple disk accesses are required for a single query term.

On the other hand, in term-based distribution, during the processing of a

query, only a related subset of index servers is required and utilized for generating

the response. In this distribution, only a single disk access is required for a query

term. When the system is loaded with sufficiently many queries, since each index

server does not necessarily contribute to each query, it is possible to process

several queries at once, utilizing the system throughput. The widely accepted

disadvantages of term-based distribution are increased communication volume,

heavy processing load on the central broker and possible imbalance on index

server workloads.

The common approach for both distribution schemes is to have a central

broker which divides user queries into subqueries, sends these subqueries to index



CHAPTER 1. INTRODUCTION 3

servers, and merges the answer sets in order to generate the final answer set. We

refer to this scheme as the Central Broker Query Evaluation Scheme (CB). Since

the central broker is heavily loaded and becomes a bottleneck, an alternative

query evaluation schemetechnique, named Pipelined Query Evaluation Scheme

(PPL), has been proposed by Moffat et al. [36] as an alternative to CB. In this

scheme, query processing and merging of partial answer sets are performed in a

distributed manner across all index servers.

Experimental results reported in a recent study [35] show that, even for small

number of processors, a speed-down is observed on query throughput of CB and

PPL. Moffat et al. [35] proposed using full system replication for increasing the

query throughput rates. We do agree that it is hard to obtain scalable speedups

for the CB and PPL schemes mainly because of the high communication-to-

computation ratio in distributed query evaluation. However, we expect decent

speedups on throughput rates for small-to-medium number of processors by uti-

lizing appropriate algorithmic and implementation enhancements.

The objective of this paper is to investigate efficient parallelization of the CB

and PPL. The relative performances of the CB and PPL under various query

loads is explored. The pros and cons of each scheme are identified along with

detailed implementation, scalability, and performance discussions.

The organization of this paper is as follows: in Chapter 2, we provide related

work about parallel text retrieval, inverted index data structure and query pro-

cessing. In Chapter 3, we present the basics of the query processing techniques

we have investigated (CB and PPL). In Chapter 4, we present our experimen-

tal framework and analyze our results. Finally, in Chapter 5, we conclude and

discuss the future directions of this study.



Chapter 2

Text retrieval problem

The growing use of the internet has a significant influence on text retrieval sys-

tems. The size of the text collection available on the internet is growing at an

astonishing rate. It is very hard to access the data needed without the help of a

text retrieval system. A text retrieval system processes user queries and outputs

a set of documents related to the user query.

The data available on the internet is expanding very rapidly. As a result, the

amount of data processed for answering a user query is also increasing. It is not

a feasible solution to process this enormous data with the techniques used for

small data collections as sequential full text search. A different representation of

the dataset is needed for effective query processing. Until the early 90’s, suffix

arrays and bitmaps were sufficient to store the data available, and were used by

a majority of text retrieval systems [14]. However, these data structures are not

efficient and require large disk space for large scale collections. To alleviate the

indexing problem, inverted index data structure [45, 51] is proposed. After its

proposal, inverted index data structure replaced the other popular methods and

became the de facto method for indexing large document collections.

4



CHAPTER 2. TEXT RETRIEVAL PROBLEM 5

2.1 Inverted index data structure

An inverted index contains an inverted list (also called posting list) for every term

in the data collection. A posting is a pointer to a list of documents containing

that term. For large collections, the inverted lists are stored on disk, but the index

part generally fits into the main memory. Each posting p for term ti consists of

a document id field p.d and a weight field p.w for each document dj containing

ti. p.w is the result of the weight function [21] w(ti, dj) and shows the relevance

between ti and dj.

(b) Inverted index structure(a) Toy collection

I1I2I3 3; w(t1; d3)2; w(t2; d2) 3; w(t2; d3) 5; w(t2; d5)3; w(t3; d3) 4; w(t3; d4) 7; w(t3; d7)1; w(t4; d1) 4; w(t4; d4) 6; w(t4; d6) 8; w(t4; d8)1; w(t5; d1) 4; w(t5; d4) 7; w(t5; d7) 8; w(t5; d8)2; w(t6; d2) 3; w(t6; d3) 5; w(t6; d5)2; w(t7; d2) 3; w(t7; d3)4; w(t8; d4)I4I5I6I7I8d2 = ft2; t6; t7gd4 = ft3; t4; t5; t8gT = ft1; t2; t3; t4; t5; t6; t7; t8gD = fd1; d2; d3; d4; d5; d6; d7; d8gd1 = ft4; t5g d5 = ft2; t6gd6 = ft4gd7 = ft3; t5gd8 = ft4; t5gd3 = ft1; t2; t3; t6; t7g
Figure 2.1: The toy document collection used throughout the paper (from [10]).

Fig. 2.1-a shows the document collection that we will use throughout the

examples in the paper. There are 8 terms, 8 documents and 21 postings in this

toy dataset. The inverted index built for this collection is shown in Figure 2.1-b.

2.2 Parallel Text Retrieval

Parallel text retrieval system architectures fall into two categories: inter-query

parallel and intra-query parallel. In inter-query parallel systems processing of

each query is handled by a single processor, whereas in intra-query parallel sys-

tems, multiple processors in the system actively takes place during the evaluation

of a query. Both systems have advantages and disadvantages. Inter-query par-

allel systems are preferable for their better throughput rates, while intra-query

parallel architectures obtain better average response times. Further details of the

comparison between these architectures are provided in [42, 4].
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In this work, we focus on intra-query parallel text retrieval systems on shared-

nothing parallel architectures.

2.3 Inverted Index Distribution

To set up an intra query parallel text retrieval system, the inverted index for the

data collection should be distributed among index servers. The storage loads of

the index servers should be considered in this process. Each index server should

keep an approximately equal amount of posting entries. Let SLoad(Sj) denote

the storage load of index server Sj. If there are K index servers in the system

and P postings in the dataset, then

SLoad(Sj) ≃
|P |

K
, for 1 ≤ j ≤ K, (2.1)

There are two mainly accepted ways of performing the distribution of the

inverted index: term-based distribution, also known as global index organization,

and document-based distribution, also know as local index organization [34].

In the term-based distribution, the inverted lists for terms are distributed

among the index servers. In this technique, all index servers are responsible for

processing their own set of terms, that is, inverted lists are assigned to index

servers atomically. A query is sent only to index servers containing terms of that

query in its local index. Since different terms reside in different index servers,

the probability of utilizing different index servers by different queries is very high,

allowing high intra-query concurrency in processing. But since only partial scores

for the documents are calculated on index servers, this distribution leads to high

communication volume in the system. Also, updating a term-based distributed

index is a nontrivial problem.

As an alternative to term-based distribution, the inverted index can be parti-

tioned in a document-based fashion. In document-based distribution, each index

server contains a portion of the document collection and an index server stores

only the postings that contain the document identifiers assigned to it. Each query

is sent to all index servers. This strategy reduces the volume of communication

by computing the final similarity scores on index servers but requires more disk
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seek operations. Also, it is easy to divide the documents evenly across the index

servers when document-based distribution is used.

a) Term-based inverted index partitioning b) Document-based inverted index partitioning

1; w(t4; d1) 4; w(t4; d4)1; w(t5; d1) 4; w(t5; d4) 7; w(t5; d7)4; w(t8; d4)4; w(t3; d4) 7; w(t3; d7)Id11Id12Id13Id14Id15Id16Id17Id18Ld1
Ld2 2; w(t2; d2)2; w(t6; d2)2; w(t7; d2) 5; w(t2; d5)8; w(t4; d8)8; w(t5; d8) 5; w(t6; d5)Id21Id22Id23Id24Id25Id26Id27Id28 3; w(t1; d3)3; w(t3; d3)3; w(t2; d3)6; w(t4; d6)3; w(t6; d3)3; w(t7; d3)Id31Id32Id33Id34Id35Id36Id37Id38Ld3

3; w(t1; d3)1; w(t4; d1) 4; w(t4; d4) 6; w(t4; d6)2; w(t7; d2) 3; w(t7; d3)It12It13It14It16It17It18It15It11 8; w(t4; d8)
2; w(t2; d2) 3; w(t2; d3) 5; w(t2; d5)1; w(t5; d1) 4; w(t5; d4) 7; w(t5; d7) 8; w(t5; d8)4; w(t8; d4)

It21It22It23It24It25It26It27It28 3; w(t3; d3) 4; w(t3; d4) 7; w(t3; d7)2; w(t6; d2) 3; w(t6; d3) 5; w(t6; d5)It31It32It36It37It38It34It33It35

Lt1
Lt2
Lt3

Figure 2.2: 3-way term-based and document-based distribution of our toy inverted
index (from [10]).

The term-based and document-based distribution strategies are illustrated on

our toy document collection for a 3-processor parallel text retrieval system in

Figure 2.2-a and Figure 2.2-b [10]. The postings are assigned to index servers

according to term and document ids in a round robin fashion, as in [44].

There is a wide literature on inverted index distribution problem in parallel

text retrieval systems starting from early 90’s. Tomasic and Garcia-Molina [44]

and Jeong and Omiecinski [27] are the early papers evaluating term-based distri-

bution versus document-based distribution of indexes that come into prominence.

Four different methods to distribute an inverted index on a shared-nothing

system with different hardware configurations are discussed in [44]. Term- and

document-based distribution of the index correspond to the system and disk

organizations described in the paper. Performance of the system is measured

employing simulation over a synthetic dataset. Similarities of documents and
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queries are calculated using the boolean model. They concluded that document-

based distribution performs better when there are longer documents in the data

collection, whereas term-based distribution is better for document collections

containing short terms.

The performance of term- and document-based distributions is measured on

a shared-everything multiprocessor system with multi disks in [27]. They worked

on a synthetic dataset and used boolean model to evaluate the similarities. They

focused on term skewness in their experiments. Two heuristics for load balancing

in term-based distribution is proposed. In the first heuristic, inverted index is

distributed focusing on the posting sizes instead of number of terms, i.e., the

inverted index is distributed with equal posting sizes instead of equal number of

terms. In the second heuristic, the term frequencies are considered along with

the posting sizes. According to their simulation results, term-based distribution

is superior if the distribution of terms is less skewed in the dataset whereas

document-based distribution is better otherwise.

MacFarlen et al. [33] explored the effect of distribution method on a text

retrieval system. They used a probabilistic model to compute similarity values.

They concluded that document-based distribution is performing better in their

framework.

Baeza-Yates and Ribeiro-Neto [41] also applied term- and document-based

distribution schemes on a shared-nothing parallel system. They used vector space

model for document ranking and worked on a real life dataset. Their results show

that term-based distribution performs better than document-based distribution

in the presence of fast communication channels, opposing the conclusions of [44,

27, 33]. Bardue et al. [3] also confirm their results.

Cambazoglu et al. [10] conducted experiments on a 32-node shared-nothing PC

cluster. Their results show that term-based distribution yields better throughput

for batch query processing. They also note that document-based distribution

should be preferred if the queries are submitted infrequently.

Interested reader should refer to excellent tutorial by Zobel and Moffat [50],

which contains a very nice and extensive survey of studies on index distribution

problem together with the explanation of many key techniques used in indexing.
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2.4 Query Processing

In text retrieval, the main objective of query processing is to find out the relevant

documents to a user query and displaying them to the user. Models such as

boolean, vector space, fuzzy-set, and probabilistic have been proposed [48] in

order to accomplish this goal. The vector space model, due to its simplicity,

robustness and speed [42], is the most used and widely accepted model among

others. In modern information retrieval systems, ranking based model replaces

the boolean model because of its effectiveness and ability to sort out the retrieved

documents.

The similarity of a user query is calculated for documents in the collection. A

set of documents is returned to the user according to the result of these similarity

calculations. This document set is sorted in decreasing order with respect to

similarity to the user query.

To calculate the cosine similarity between a query Q = {tq1, tq2, . . . , tqQ} of

size Q and the document dj in a text retrieval system adopting vector space

model, the formula

sim(Q, dj) =

∑Q
i=1 w(tqi, dj)

√

∑Q
i=1 w(tqi, dj)

2
(2.2)

is adopted assuming all query terms have equal importance. The tf-idf (term

frequency-inverse document frequency) score [42] is usually used to compute the

weight w(ti, dj) of a term ti in a document dj as

w(ti, dj) =
f(ti, dj)
√

|dj|
× ln

D

f(ti)
, (2.3)

where f(ti, dj) is the number of times term ti appears in document dj , |dj| is the

total number of terms in dj, f(ti) is the number of documents containing ti, and

D is the number of documents in the collection.

To calculate the similarity measures, the parallel text retrieval system imple-

mented in this work uses tf-idf together with the vector space model [48]. In a
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traditional sequential text retrieval system, there are several stages in processing

of a user query. Assume that a user query Q = {tq1, tq2, . . . , tqQ} is going to be

processed. During the process, each query term tqi is considered in turn. For

each query term tqi, inverted list Iqi is fetched from the disk. Then all postings

in Iqi are traversed, and the weight p.w of each posting p in Iqi is added to the

score accumulator for document p.d. When all inverted lists for the query terms

are processed, documents are sorted in decreasing order of similarity scores, and

they are returned to the user in order of relevance.

To reduce the overheads in term-based query processing, a number of strate-

gies are proposed. Exploring hypergraph partitioning to reduce the total volume

of communication in the central broker while balancing the index storage on each

processor [8], and user-centric approaches utilizing the query term frequency in-

formation to balance the query loads of index servers [35, 32] are among these

strategies. The aim of PPL proposed by Moffat et al. [36] is also reducing the

overheads in term-based distribution. In PPL, partial answers are transferred

between index servers and only the final answer set is sent to the central broker.

Their results show that the revised method is competitive with document-based

distribution in terms of query throughput, but has problems with load balancing

which has been shown to be a general issue [3].

2.5 Accumulator Limiting

In literature, ranking-based text retrieval [4, 17, 42, 48] is well-studied both in

terms of efficiency [11, 30] and effectiveness [11, 13, 47]. Many optimizations are

proposed [6, 22, 31, 38, 39, 43, 46, 49] to decrease the query processing times and

to use the memory more effectively. These optimizations focus on either limiting

the number of processed query terms and postings (short-circuit evaluation) [40,

23, 2] or limiting the memory allocation for accumulators (prunnig) [39, 37, 12].

The main differences between these optimizations are the processing order of

postings and stopping conditions for processing.

Buckley and Lewit [6] proposed an algorithm which traverses query terms in

decreasing order of frequencies and limits the number of processed query terms

by not evaluating the inverted lists for high-frequency terms whose postings are
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not expected to affect the final ranking. Harman and Candela [20] used an in-

sertion threshold on query terms, and the terms whose score contribution are

below this threshold are not allowed to allocate new accumulators. Moffat et

al. [38] proposed two heuristics which place a hard limit on the memory allo-

cated to accumulators. Turtle and Flood [46] presented simulation results for

the performance analysis of two optimizations techniques, which employ term or-

dered and document ordered inverted list traversal. Wong and Lee [49] proposed

two optimization heuristics which traverse postings in decreasing magnitude of

weights.

For a similar strategy, Persin [39] proposed a method which prunes entries

in inverted indexes and a query term’s processing is stopped when a particular

condition is met. Moffat and Zobel [37] then proposed that each posting list can

have a different stopping condition, according to the size of posting list. They

also stated that their accumulator limiting can achieve comparable effectiveness,

even when 1 percent of the total accumulators are allowed for update. Altingovde

et al. [1] also confirmed this result. During the evaluation of a query in an index

server, to reduce the memory constraints and increase scalability, the concept

of accumulator limiting is has been proposed in [50]. To reduce the number

of accumulators, only documents with rare query terms are allowed to have an

accumulator.

The optimizations for fast query evaluation can be classified as safe or ap-

proximate [46]. Safe optimizations guarantee that best-matching documents are

ranked correctly. Approximate optimizations may trade effectiveness for faster

production of a partial ranking, which does not necessarily contain the best-

matching documents, or may present them in an incorrect order.

There exists a significant amount of related work in the field of database sys-

tems. The interested reader may refer to prior works by Lehman and Carey [29],

Goldman et al. [18], Bohannon et al. [5], Hristidis et al. [24], Elmasri and Na-

vathe [15], and Ilyas et al [25] for more information about fast query evaluation

optimizations in database systems.



Chapter 3

Parallel Query Processing

Schemes

The ABC-Server Parallel Text Retrieval System [10] is implemented in C using

the LAM/MPI [7] library. In this work, it is running on a 48-node Beowulf PC

cluster, located in the Computer Engineering Department of Bilkent University.

3.1 Central Broker Query Evaluation Scheme

(CB)

CB is a master-client type of architecture. In this architecture, there is a single

central broker, which collects the incoming user queries and redirects them to the

index servers in the nodes of the PC cluster. The index servers are responsible

from generating partial answer sets to the received queries, using the local inverted

indices stored in their disk. The generated partial answer sets are later merged

into a global answer set at the central broker, forming an answer to the query.

Figure 3.1 displays the CB architecture.

12
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Figure 3.1: The architecture of the ABC-server parallel text retrieval system
(from [8]).

3.1.1 Implementation Details

The psuedocodes of codes running on central broker and index servers are shown

in Algorithm 1 and Algorithm 2 respectively. Further implementation details will

be given by analyzing the steps of processing a query in this section.

A query is first read from a pre-created file by the query submitter interface.

This interface spawns a number of child processes each of which concurrently

submits queries to web interface of the central broker via network.

Before answering queries, the central broker initializes itself by creating some

data structures. First of all it creates a trie(also known as radix tree or prefix

tree), in which it keeps the terms and their ids. When a query is received from

a user, the id of a query term is accessed in O( w ) memory accesses where w is

the length of that term. In this framework, a trie is preferred instead of a hash

table because of its smaller memory requirement. An array to store the mapping

information is also created. Finally, the central broker initializes a TCP port

over which the queries will be submitted, after creating its receive buffers and

allocating memory for statistical purpose data structures. Also the index servers

initialize their send buffer and accumulator arrays as well as their data structures

for statistical purposes. Both the central broker and the index servers use a queue

while processing the user queries.

The central broker enqueues each incoming query to its queue as a query item.

When the central broker dequeues a submitted query from the queue, it identifies

the responsible index servers and records the number of index servers it is sending

a subquery to. Then a packet is sent to responsible index servers. This packet
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consists of the query id and the terms of the query.

Each index server periodically checks for incoming subqueries from the central

broker. If a subquery is received, it is enqueued as a subquery item to the queue

of index server. When it is dequeued from the queue, the index server inspects

if any of the terms resides in its local term list. If no term appears in its local

index, it replies with an empty packet to the central broker. If there are terms

that belong to that index server’s local index, then the index server reads its

posting list and updates the scores of documents on its accumulator array. Each

index server has a static accumulator array with size of the document collection.

Another highly deployed technique for storing accumulator arrays is to use a

dynamic accumulator array and to insert an accumulator for a document only if

the weight field is larger than a predefined threshold (accumulator limiting). In

ABC-Server implementation, accumulator limiting is not deployed since the main

focus of this work is to compare the relative performances of CB and PPL.

When all terms of the subquery are processed, the index server selects top

scored accumulators from the accumulator array by using expected linear time

randomized selection algorithm. Selected accumulators are sorted to finalize the

partial answer set. Then the prepared partial answer set is copied to the send

buffer. However, if there is an ongoing send operation, this process is delayed

until that particular finish operation is finalized. The static accumulator array is

cleared for future use and the contents of the send buffer is sent to the central

broker by a non-blocking send operation (Isend).

The central broker has receive buffers allocated for each index server and

periodically checks them. If a partial answer set is detected, the contents of the

receive buffer is inserted into the master queue.

When a partial answer set is dequeued from the queue, the central broker

merges it with other partial answer sets received from other index servers. Details

of the merge operation change based on the scheme used.

After the merge operation, central broker checks whether it is going to receive

other partial answer sets for this query. If this is the last partial answer set, the

merge operation produces the final answer set. Top s accumulators are extracted

from the final answer set and they are displayed to the user.
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Algorithm 1 Central Broker algorithm running on Master.

Require: CON: A port through which a client connects, Q: Master queue, qk: Sub-
query of query q that will be sent to index server ISk,

∏

= {T1 ∩ T2 ∩ . . . Tk}:
partitioning of document, collection among index servers, SEND: Non-Blocking
send operation, IRECV: Non-Blocking receive operation, AS[q]: Answer set for
query q.

1: for each index server ISk do

2: issue an IRECV
3: while true do

4: TEST whether a query is received from a client over CON
5: if TEST(CON) = true then

6: for each query q received over con do

7: ENQUEUE(Q,q)
8: for each index server ISk do

9: TEST whether a message containing PAS is received
10: if TEST = true then

11: ENQUEUE(Q,(PartialAnswerSetqueryid))
12: issue a new IRECV
13: if Q 6= ∅ then

14: x←DEQUEUE(Q)
15: if type(x) = query then

16: q ← x

17: for each index server ISk do

18: qk ← q ∩ Tk
19: if qk 6= ∅ then

20: subqueryProcessorCount(q) ← subqueryProcessorCount(q) +1
21: SEND(qk) to processor index server ISk

22: else

23: ⊲ type(x) = PartialAnswerSet
24: PAS ← x

25: MERGE partial answer set PAS with AS[PAS.queryId]
26: subqueryProcessorCount(q) ← subqueryProcessorCount(q) −1
27: if subqueryProcessorCount(q) = 0 then

28: DISPLAY(AS[q]) to client via CON
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Algorithm 2 Central Broker algorithm running on Index Servers.

Require: Q: Index Server queue, IndexServersList: List of nodes that are running
the index server code, qk: Subquery of query q that will be sent to index server
ISk, ISEND: Non-Blocking send operation, SendBuf: An accumulator array of size
MAX SEND SIZE, Sending: boolean variable, PAS[q]: Partial answer set generated
for query q, which holds (dj ,scorej) pairs, Dk: set of documents that reside on the
inverted index of index server ISk, wi,j: weight of ti in dj calculated using tf-idf
scheme, scorej : total score of document j, calculated in p, k: Requested number
of documents per index server.

1: for each processor p ∈ IndexServersList do

2: while true do

3: TEST whether a message containing a subquery is received from central broker
4: if TEST = true then

5: ENQUEUE(Q,qk)
6: if Q 6= ∅ then

7: q ←DEQUEUE(Q)
8: for each t ∈ qk do

9: for each d ∈ Dk do

10: if ti ∈ dj then

11: compute wi,j

12: scorej ← scorej + wi,j

13: PAS[q] ← SELECT top k documents from PAS[q] according to their score
fields

14: SORT PAS[q] according to their document id fields
15: if Sending then

16: Wait for previous send to finish
17: Sending = FALSE
18: Copy PAS[q] to SendBuf
19: Sending = TRUE
20: ISEND SendBuf to central broker
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3.1.2 Term-based distribution

In parallel query processing, initial distribution of the inverted index is kept in

a term-to-processor mapping array. The central broker creates an array to store

this mapping information. If term-based distribution is used, the mapping array

is accessed with the id of the term and returns the id of the processor possessing

that term.

Upon reception of a query, the central broker parses the query terms to find

out their ids with the help of the trie and which processors they are mapped to

using the term-to-processor array. Subqueries are sent only to responsible index

servers, i.e., to the index servers which have at least one query term mapped to it.

The subquery packet consists of the query id and the subset of the query terms

residing on that index server.

In term-based distribution, in order to improve performance of ABC-Server

system, communication volume is decreased by performing accumulator size re-

striction on the partial answer sets. A predefined number of accumulators with

highes scores are selected employing expected linear time randomized selection

algorithm. The selected accumulators are sorted using quicksort algorithm ac-

cording to their document id fields. Sending a sorted accumulator list from the

index servers enables the central broker to merge received partial answer sets in

linear time. It is possible to merge received accumulators with the already exist-

ing ones upon arrival of a partial answer set(2-way merge), or merge all patrial

answer sets at once(k-way merge).

3.1.2.1 2-way merge

If the received accumulators are the first partial answer set for that query, then

they become the accumulators for this query and a new receive buffer is allo-

cated. Otherwise, they are merged with the existing ones. Since both existing

accumulators and received accumulators are sorted according to their document

id fields, the merge operation is performed in linear time in the following way:

Space for merged accumulators is allocated. The length of this accumulator

array equals to sum of the received and existing accumulator sizes. If this is the
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first partial answer set received for that query, central broker does not perform

any operation, it simply becomes the accumulators for the query. Otherwise, it

is merged with the existing accumulators.

For the merge operation, there are two pointers, initially pointing to the be-

ginning of the received and existing accumulator arrays, both of which are sorted

according to document id fields. The doc id fields of both pointers are compared,

and the one with the smaller id is copied into the merged accumulator array. If

doc id field of both pointers are equal, then the score fields’ sum is taken. Pointer

of the processed accumulator list is advanced. When a pointer reaches to the end

of a list, remaining accumulators of the other array are copied to the tail of the

merged accumulators array. The merged accumulators become the accumulators

for the current query at the end of the process. Received and previously existing

merged accumulators are then deallocated.

This algorithm runs in linear time with respect to the size of accumulator

array. But since it merges existing and received accumulators each time a new

partial answer set is received, it should run k − 1 times in total to merge all k

partial answer sets and form the final answer set. Also, it copies the data from an

array to another each time it runs, causing an allocation/deallocation overhead.

3.1.2.2 K-way merge

K-way merge is an alternative to 2-way merge. Since it is known that central

broker in CB becomes a bottleneck, the disadvantages of 2-way merge can be

alleviated by using this approach.

In this technique, the central broker waits for the merge operation until all

partial answer sets for the current query is received. Let k represent the number of

received accumulator arrays. Space for merged accumulators is allocated. Length

of this accumulator array is the sum of all k received accumulator sizes. There are

k pointers pointing to the heads of the received arrays. As in 2-way merge, the

pointer with the smallest doc id field is found, and it is copied into the merged

accumulator array. If there are other accumulators in other lists with same doc

id, their score fields are added to the score field of the merged accumulator. The

processed accumulator pointers are advanced. This process is repeated until all
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but one of the k list pointers reach to end. The last remaining lists unprocessed

accumulators are copied to tail of the merged accumulators list. All k lists are

deallocated.

This algorithm runs in O( k ×m) time where m denotes the size of received

accumulators. There is less allocation/deallocation overhead since all accumula-

tors are merged at once. But all partial answer sets for a query waits for the last

one to be received, causing an increase in memory requirements of the central

broker.

The merged accumulators are stored in doc-id order. Top s accumulators

are extracted from the final answer set using expected linear time randomized

select algorithm with respect to the score fields of the accumulators. Then the

extracted accumulators are sorted according to their score fields using quicksort.

Extraction takes O( a + slogs ) time, where a is the number of accumulators in

the final answer, and s is the number of answers to be retrieved.

In term-based distribution, accessing a term’s inverted list requires a single

disk access, but reading the list (i.e., posting I/O) may take a long time since

the whole list is stored at a single processor. Similarly, the partial answer sets

transmitted by the index servers are long. Hence, the overhead of term-based

partitioning is mainly at the network, during the communication of partial an-

swer sets. Especially, in cases where the partial answer sets are long or inverted

lists keep additional information such as information on term positions, this com-

munication overhead becomes a bottleneck.

3.1.3 Document-based distribution

If document-based distribution is used, subquery packet including term ids and

the query id is sent to all index servers without mapping the terms to processors.

On an index server, when a subquery packet is dequeued from the queue, the

index server inspects if any of the terms reside on its local term list since it may

receive unrelated terms when document-based partitioning is used. If no terms

are related to that index server, a packet only containing the query id is sent to

the central broker.
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For each index server containing at least one of the query terms, accumulators

should be created as it is done in term-based distribution. Selection is performed

over these accumulators, but since the accumulators created contains the final

scores for those documents, selecting the top s accumulators is sufficient. Then

these top s accumulators are sorted according to their score fields and sent to the

central broker. Sending a sorted accumulator list from the index servers enables

the central broker to merge received partial answer sets in linear time. 2-way

merge and k-way merge can be performed to merge these accumulators.

3.1.3.1 2-way merge

If the received accumulators are the first partial answer for that query, then they

become the accumulators for this query and a new receive buffer is allocated.

Otherwise, they are merged with the existing ones. Since both existing accumu-

lators and received accumulators are sorted, the merge operation is performed in

linear time.

A space of length ”s” is allocated for merged accumulators. Since received

partial answer sets contain the final scores for documents, it is redundant to save

the accumulators with scores smaller than the score of the sth accumulator. If

this is the first partial answer set received for that query, central broker does

not perform any operation, it simply becomes the accumulators for the query.

Otherwise, it is merged with the existing accumulators.

For the merge operation, there are two pointers, initially pointing to the be-

ginning of the received and existing accumulator arrays, both of which are sorted

according to score fields. The score fields of both pointers are compared, and the

one with the larger value is copied into merged accumulators array. Pointer of

the processed accumulator list is advanced. This process is repeated until there

are s items in the merged accumulators array, or one of the accumulator arrays

is fully processed. If the latter case occurs, the tail of the not fully processed

list is added to merged accumulators list. The merged accumulators becomes

the accumulators for the current query at the end of the process. Received and

previously existing merged accumulators are deallocated.

This algorithm runs in linear time with respect to the size of accumulator
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array. But since it merges existing and received accumulators each time a partial

answer set is received, it should run k−1 times to merge all k partial answer sets

and form the final answer set. Also, it copies the data from an array to another

each time it runs,causing an allocation/deallocation overhead. The merged accu-

mulator always keeps to top s accumulators received so far, so memory overhead

of this algorithm is small compared to term-based 2-way merge.

3.1.3.2 K-way merge

K-way merge is an alternative to 2-way merge. Since it is known that central

broker in CB becomes a bottleneck, the disadvantages of 2-way merge should be

alleviated by using this algorithm.

In this technique, the central broker waits for the merge operation until all

partial answer sets for the current query is received. Let k represent the number of

received accumulator arrays. Space of size s for merged accumulators is allocated.

There are k pointers pointing to the heads of the received arrays. As in 2-way

merge, the pointer with the largest score field is found, and it is copied into the

merged accumulators array. The processed accumulator pointers are advanced.

This process is repeated until all but one of the k list pointers reach to end or

the merged accumulators store s top accumulators. If the former case occurs,

the last remaining lists unprocessed accumulators are copied to the tail of the

merged accumulators list. When the top s accumulators are stored in the merged

accumulators array, all k lists are deallocated.

This algorithm runs in O( k × s ) time. There is less allocation/deallocation

overhead since all accumulators are merged at once. But all partial answer sets

for a query waits for the last one to be received, causing an increase in memory

requirements of the central broker.

If document-based distribution is used, top s accumulators are already in score

order in merged accumulators array and no further processing for extraction is

necessary.

In document-based distribution, disk accesses are the dominating overhead in

total query processing time, especially in the presence of slow disks and a fast

network. O(K) disk seeks are required in the worst case to read the inverted list
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Figure 3.2: Pipelined query evaluation architecture.

of a term since the complete list is distributed at many processors. However, the

inverted lists retrieved from the disk are shorter in length, and hence posting I/O

is faster. Moreover, in case the user is interested in only the top s documents,

no more than s accumulator entries need to be communicated over the network,

since no document with a rank of s+1 in a partial answer set can take place

among the top s documents in the global ranking.

3.2 Pipelined Query Evaluation Scheme (PPL)

The architecture of PPL is very similar to term-based distribution using 2-way

merge. In this architecture, there is a single central broker, which collects the

incoming user queries and redirects them with a routing information to the first

index server in the list. The index servers are responsible from generating partial

answer sets to the received queries, using the local inverted indices stored in their

disk and forwarding these partial answer sets to the next index server in the route.

The generated partial answer sets are later merged into a global answer set at the

last index server of the route, forming an answer to the query. The final answer

set is sent to the central broker to be displayed to user. Figure 3.2 displays the

PPL architecture.
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Algorithm 3 Pipelined algorithm running on Master.

Require: CON: A port through which a client connects, Q: Master queue, qk: Sub-
query of query q that will be sent to index server ISk, sqq[p]: Subquery that will be
sent to processor p for query q,

∏

= {T1 ∩ T2 ∩ . . . Tk}: partitioning of document,
SEND: Blocking send operation, IRECV: Non-Blocking receive operation, AS[q]:
Answer set for query q.

1: for each index server ISk do

2: issue an IRECV
3: while true do

4: TEST whether a query is received from a client over CON
5: if TEST(CON) = true then

6: for each query q received over con do

7: ENQUEUE(Q,q)
8: for each index server ISk do

9: TEST whether a message containing AS is received
10: if TEST = true then

11: ENQUEUE(Q,(AnswerSet))
12: issue a new IRECV
13: if Q 6= ∅ then

14: x←DEQUEUE(Q)
15: if type(x) = query then

16: q ← x

17: for each index server ISk do

18: qk ← q ∩ Tk
19: if qk 6= ∅ then

20: subqueryProcessorCount(q) ← subqueryProcessorCount(q) +1
21: ProcSendList(q) ← ProcSendList(q) ∪ISk

22: ORDER ← SHUFFLE(ProcSendList)
23: for each index server ISk ∈ ORDER do

24: MSG ← MSG ∪ {k, q ∩ Tk}
25: SEND MSG to the first index server in ORDER
26: else

27: ⊲ type(x) = AS
28: AS[g] ← x

29: DISPLAY(AS[q]) to client via CON
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Algorithm 4 Pipelined algorithm running on Index Servers.

Require: Q: Index Server queue, IndexServersList: List of nodes that are running
the index server code, sqq: Subquery received about query q, ISEND: Non-blocking
send operation, SendBuf: An accumulator array of size MAX SEND SIZE, Sending:
boolean variable, PAS[q]: Partial answer set generated for query q, which holds
(dj ,scorej) pairs, D: set of documents that reside on the inverted index of p, wi,j:
weight of ti in dj calculated using tf-idf scheme, scorej: total score of document j,
calculated in p, k: Requested number of documents per index server.

1: for each processor running except myself do

2: issue an IRECV
3: while true do

4: for each processor running except myself do

5: TEST whether a MSG containing a subquery and an ORDER is received from
master ∨ a MSG containing a PAS and an ORDER is received from another
IS

6: if TEST = true then

7: ENQUEUE(Q, MSG)
8: if Q 6= ∅ then

9: MSG ←DEQUEUE(Q)
10: for each t ∈ qk in MSG do

11: for each d ∈ Dk do

12: if ti ∈ dj then

13: compute wi,j

14: scorej ← scorej + wi,j

15: PAS[q] ← SELECT top k documents from PAS[q] according to their score
fields

16: SORT PAS[q] according to accumulators’ document id fields
17: MSG ← MSG \ {k, qk}
18: if Sending then

19: Wait for previous send to finish
20: Sending = FALSE
21: if ORDER 6= ∅ then

22: Copy MSG and PAS[q] to SendBuf
23: ISEND SendBuf to the next IS ∈ ORDER
24: Sending = TRUE
25: else

26: Copy PAS[q] to SendBuf
27: ISEND SendBuf to master
28: Sending = TRUE
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3.2.1 Implementation Details

The psuedocodes of codes running on central broker and index servers are shown

in Algorithm 3 and Algorithm 4 respectively. Further implementation details will

be given by analyzing the steps of processing a query in this section.

Before answering queries, the central broker first creates a trie, in which it

keeps the terms and their ids. As in CB, the central broker creates an array to

store the mapping information. The mapping array is accessed with the id of a

term and it returns the processor having that term in its inverted list. Finally the

central broker initializes a TCP port which the queries will be submitted over,

after creating its receiving buffers and allocating memory for statistical purposed

data structures. Also the index servers initialize their send buffer, receive buffers,

and accumulator arrays as well as their data structures for statistical purposes.

Both the central broker and the index servers use a queue while processing the

user queries in all implementations.

A query is first read from a pre-created file by the query submitter interface.

This interface spawns a number of child processes which concurrently submits

queries to web interface of the central broker via network.

The central broker enqueues the incoming queries to its queue as a query

item. When the central broker processes a submitted query from the queue, it

identifies the responsible index servers. The central broker parses the query terms

to find out their ids with the help of trie and which processors they are mapped

to using the term-to-processor mapping array. An ordering of these index servers

is created. This ordering becomes the routing order for that query. Different

techniques can be adopted for the creation of the ordering, three of which are

described below in detail.

3.2.1.1 Processor ordered routing

The list of responsible index servers’ ids are sorted in increasing order to form the

routing order. In this ordering, index servers with small ids rarely perform a merge

operation while on the other hand the index servers with large ids suffer from the

load of preparing the final answer sets. This approach causes an imbalance in
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work loads. There is no possibility of deadlock in this routing order since a

topological ordering of the index servers is same as the id ordering of them, and

the graph is unidirectional and acyclic(DAG).

3.2.1.2 Random ordered routing

The list of responsible index servers’ ids are sorted in increasing order to form the

routing order. To shuffle this list, Fisher-Yates shuffle is adopted. Let there be r

responsible index servers. While r > 1, a random number j between 1 and r is

identified, the jth element of the responsible index server list is swapped with the

rth element, and r is decremented by 1. This ordering balances the workloads of

the index servers, but there is a possibility of deadlock if send/receive operations

block the processors.

3.2.1.3 Random cyclic ordered routing

The list of responsible index servers’ ids are sorted in increasing order. Let there

be r responsible index servers. A random number between 1 and r is identified.

Let j denote this random number. This query routes among the responsible index

servers in the following order: j, j + 1, . . . , r − 1, r, 1, 2, . . . , j − 1. This

approach balances the workloads of the index servers, but there is a possibility

of deadlock if send/receive operations block the processors.

A packet containing query id, query terms and routing order is prepared and

sent to the first index server in the routing.

Each index server periodically checks for incoming subqueries from the central

broker and partial answer sets from other index servers. If a packet is received,

it is enqueued to the queue of index server.

When a packet is dequeued, the index server extracts the terms that are

related to it, reads its posting list and updates the scores of documents on its

accumulator array. Each index server has a static accumulator array with size of

the document collection.

If the dequeued packet is received from another index server, the index server
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merges its local partial answer set with the received partial answer set by adding

the scores of the received accumulators to its static accumulator array.

If there are more index servers in the routing list, the index server selects

top scored accumulators from the accumulator array by using expected linear

time randomized selection algorithm. The selected accumulators are not sorted

as done in CB, since the merge operation does not require a sorted list in PPL. If

this index server is the last one in the routing, then prepares the final answer set

by extracting top s accumulators from its static accumulator array and sorting

them according to their score fields.

The extracted accumulators are copied to the sending buffer if there exists no

ongoing send operation. The static accumulator array is cleared for future use

and contents of the sending buffer is sent to its destination by non-blocking send

operation(Isend).

The central broker has receive buffers allocated for each index server and

periodically checks them. If an answer set coming from an index server is detected,

the contents of the receive buffer is inserted into the master queue.

When an answer set is dequeued from the queue, the central broker displays

it to the user.

3.3 CB vs PPL

Consider an example scenario where there are K = 6 processors, the inverted

lists of the terms are held on processors P1(t1), P3(t2, t3), and P6(t4). A query

with four terms, q = (t1, t2, t3, t4), arrives to the system. In Fig, 3.3(a), we

depict the behaviour of CB scheme for this scenario. Upon reception of a query,

central broker determines the related index servers, which are P1, P3 and P6 in

this case, partitions the query into subqueries according to the term distribution

and sends these subqueries to the related index servers. Index servers P1, P3

and P6 evaluate these subqueries over their local index, and return the respective

partial answer sets, which are then merged at the central broker to form the final

answer set.
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Figure 3.3: (a) Example for CB query evaluation. (b) Example for PPL query
evaluation.

In the pipelined approach, if processor ordered routing order is used, evalu-

ation of the query begins on P1, which processes the list corresponding to term

t1 to produce an initial set of accumulators. This set is passed to P3, which pro-

cesses the lists for t2, t3 merges its results with the forwarded partial answer set

to produce a modified partial answer set. The modified set is passed to P6, which

applies the updates generated by the index list for t4 to produce a final set of

accumulators. These final set of accumulators are returned to the central broker.

The only work the central broker need to do is receive each query, plan its route

through the processors, and return the answer lists to the user, as is shown in

Fig. 3.3(b).



Chapter 4

Experimental Results

4.1 Experimental Setting

4.1.1 Environment

Our experiments are conducted on a Beowulf cluster of 48 processors. Each

processor in the cluster runs Mandrake Linux 10.1, is a 3.0 GHz Intel Pentium

IV with 1 GB memory and 80 GB hard disk. The cluster is connected by a 1 GB

network switch. The parallel query processing algorithms discussed in Chapter 3

is implemented in C using the LAM/MPI [7] library.

4.1.2 Dataset

The document collection is the result of a large crawl performed over the ‘.edu’

domain (i.e., the educational US Web sites). The properties of the dataset used

in our experiments are presented in Table 4.1. The entire collection is 30 GB

and contains 1,883,037 Web pages. After cleansing and stop-word elimination,

3,325,075 distinct index terms remain. The size of the inverted index constructed

using this collection is around 2.7 GB. In term-based (document-based) partition-

ing, terms (documents) are alphabetically sorted and assigned to K index servers

in a round-robin fashion using the distribution scheme of [44]. No compression is

29
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applied and posting list indexes are kept in memory.

Size(MB) 30.000
Documents(103) 1.883
Total Terms(103) 787.221
Distinct Terms(103) 3.325
Index(MB) 3.200

Table 4.1: Properties of the crawl+ document collection.

4.1.3 Queries

In the process of constructing queries, it is assumed that the real life query

patterns are similar to patterns in the documents. That is, the probability of a

term occurring in a query is proportional to that term’s frequency in the document

collection. It is also assumed that the terms of a query are dependent to each

other in some way. To construct each query, a term is selected randomly. Then

a random document containing that particular term is picked. The other query

terms are extracted from that document randomly.

In our experiments, short queries contain 1 to 3 terms and medium sized

queries contain 4 to 6 terms. Long query experiments are not conducted since

97 percent of realistic web queries consist of less than 7 words [26]. For crawl+

dataset average number of terms in the short queries is 2.04 and for medium

queries it is 4.99.

In all of the experiments, 20,000 queries are submitted to the system. Pro-

cessing times of the first 10,000 queries are excluded from the throughput and

average response time statistics. The first 10,000 queries are used to warm up the

system. The queries are submitted via a query submitter interface. It forks child

processes which act as users submitting queries to the system. The number of

child processes determines the number of concurrent queries in the system. Ex-

periments for 50, 100, 150 and 200 concurrent queries are conducted to measure

the system performance under various query loads.
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4.2 Experimental Results

The performances of the query processing schemes are compared in terms of two

quality measures: average response time and throughput. Average response times

represents the response time for a query(seconds per query), and it is calculated

by averaging the running time of each query except the initial 10,000 warm up

queries. Throughput represents the number of queries answered by the system

per second, and is calculated by dividing system’s query evaluation time to the

total number of queries submitted. Since we used 10,000 warm up queries, the

query evaluation time of the system refers to the processing time of the second

10,000 queries . All results reported are the averages of 5 runs.

4.2.1 Central Broker Scheme

In CB experiments, K denotes the number of collaborating processors. For ex-

ample, when K = 16, the central broker and 15 index servers are working simul-

taneously to process a query. Our system is homogenous, i.e., the central broker

and index servers have exactly the same hardware configuration. This setup is

prepared for the sake of fair comparison of the CB and PPL.

4.2.1.1 Term-based Distribution

The implementation details of term-based distribution are described in Sec-

tion 3.1.2. As mentioned before, the merge operation on the central broker can be

done in two different ways: 2-way merge and k-way merge. The results of term-

based distribution with these two merge operations for K = 4, 8, 12, 16, 24, 28, 32

and 40 processors are given in Fig. 4.1. There are concurrently 100 queries in the

system.

As seen in Fig. 4.1, the throughput of the CB with term-based distribution

(CB-TB) increases up to K = 24 processors for both query types. For number

of processors larger than 24, overall system efficiency goes down due to the par-

allelization overhead: as the number of processors increase, throughput does not
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Figure 4.1: Comparison of CB with term-based distribution for 2-way vs k-way
merge.

increase. This is a common phenomenon in all parallel systems [19]. A signifi-

cant decrease in the throughput is not observed since in term-based distribution

the total volume of communication does not increase with increasing number of

processors, but instead is related with the number of responsible processors for a

query. Throughput does not drop down since the processing load of the central

broker does not increase with increasing number of processors.

In Fig. 4.1, a slight difference in the throughput rates of 2-way merge and

k-way merge is observed. For both types of queries and for all processor counts

2-way merge gives better results than k-way merge. Hence, for comparisons of

CB-TB with other schemes, 2-way merge results will be presented for the rest of

the paper.

4.2.1.2 Document-Based Distribution

As in term-based distribution, when CB with document-based distribution (CB-

DB) is adopted, there are two different ways to perform the merge operation on

the central broker: 2-way merge and k-way merge. The relative performances

of these two approaches are investigated for K = 4, 8, 12, 16, 24, 28, 32 and 40
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Figure 4.2: Comparison of CB with document-based distribution for 2-way vs
k-way merge.

processors. There are concurrently 100 queries in the system.

As seen in Fig. 4.2, for short queries, throughput increases up to 16 proces-

sors whereas for medium queries throughput increases up to 24 processors. In

document-based distribution, a decrease in the throughput is observed because

of the increasing volume of communication during answering a query. For all

processor counts, it is observed that almost all index servers contribute during

the query processing, probably since the documents are distributed in a round

robin fashion, instead of a clustering based distribution. Thus, as the number

of processors increase, the total volume of communication during the processing

of a query increases in CB-DB as well. As a consequence, the merge load of

the central broker increases, which also generates a processing bottleneck on the

central broker, causing throughput rates to decrease with increasing number of

index servers.

In Fig. 4.2, a slight difference is observed in the throughput rates of 2-way

merge and k-way merge. Apart from 8-way and 16-way short query experiments,

2-way merge performs equally or better than k-way merge. Hence 2-way merge is

selected to represent document-based distribution for the rest of the paper since

it performs better and to be able to make fair comparisons between CB-TB and
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Figure 4.3: Comparison of processing orderings in PPL for short queries.
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Figure 4.4: Comparison of processing orderings in PPL for medium queries.

In PPL experiments, K denotes the number of collaborating processors. For

example, when K = 16, there are 16 index servers. The central broker and

16 index servers are working simultaneously on processing a query. The central
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broker is not counted as a collaborating processor since the only work of the

central broker is to dispatch queries and to display the incoming final answer sets

to the users.

The system is homogenous, i.e., the central broker and index servers have

exactly the same hardware configuration. This setup is prepared in order to be

able to compare CB and PPL fairly.

In PPL, the routing order of a query can effect the performance of the sys-

tem. The three different ordering algorithms presented in Section 3 are analyzed.

The comparison of throughput for these methods using 4, 8, 16, 24, 32 and 40

processors can be seen in Fig. 4.3 and Fig. 4.4 for short and medium queries,

respectively.

The results show that, cyclic ordering performs better than the other ordering

schemes for all processor counts with medium queries and for processor counts

up to K = 24 processors for short queries. Thus, for comparisons of PPL with

other schemes randomized cyclic routing results will be given for the rest of the

paper.

4.2.3 CB-TB vs CB-DB vs PPL

In Fig. 4.5 CB-TB, CB-DB and PPL are compared in terms of throughput over

short queries. PPL performs poorly for small number of processors but achieves

high throughput rates after K = 16 processors. The overhead of parallelization is

observed as a decrease in throughput of CB-DB after K = 16 processors whereas

this decrease is observed in CB-TB and PPL after K = 32 processors. In general

CB-TB performs well for all processor counts and PPL seems to be more scalable

than the other schemes.

In Fig. 4.6 CB-TB, CB-DB and PPL are compared in terms of throughput over

medium queries. All three schemes observe an increase in throughput rates up to

K = 24 processors and then start to degrade due to parallelization overhead for

larger processor counts. For small number of processors, CB-DB performs much

better than the term-based schemes. PPL performs poorly for small number of

processors but achieves high throughput rates after K = 32 processors. PPL
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throughput rates continue to increase with increasing number of processors and

the efficiency of PPL does not start to decrease until 40 processors, unlike CB

schemes. Even though PPL is more scalable, the throughput values can not

compete with CB.
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Figure 4.5: Comparison of CB and PPL for short queries in terms of throughput.
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Figure 4.7: Comparison of CB and PPL for short queries in terms of average
response time.

Number of processors

A
v
e
r
a
g
e
 R

e
sp

o
n

se
 T

im
e
(s

e
c
)

Q-medium

0

0.50

1.00

1.50

2.00

4 8 12 16 24 28 32 36 40

PPL

CB-term based

CB-document based

Figure 4.8: Comparison of CB and PPL for medium queries in terms of average
response time.



CHAPTER 4. EXPERIMENTAL RESULTS 39

In Fig. 4.7 and Fig. 4.8 CB-TB, CB-DB and PPL are compared in terms of

average response times over short and medium queries, respectively. For both

query types, CB schemes observe an decrease in average response times up to

K = 24 processors whereas PPL average response times decrease up to K = 32

processors and then start to degrade due to parallelization overhead for larger

processor counts. This also indicates to the scalability of PPL scheme.

4.2.4 Variation of system performance under different

query loads

To investigate the alteration of the system performance under various query loads,

experiments with different number of concurrent queries in the system are carried

out. We made experiments for C = 50, 100, 150 and 200, where C denotes the

number of children spawned in the query submitter interface. The results are

presented in Fig. 4.9 and Fig. 4.10 for throughput and Fig. 4.11 and Fig. 4.12 for

average response time, K = 16 and 32 respectively.

As seen in Fig. 4.9, for K = 16 processors, CB-TB and CB-DB schemes’

throughput do not change significantly when the concurrent user load on the

system is increased whereas PPL throughput slightly increases. Fig. 4.10 shows

that, when K = 32 processors are used, CB-TB and CB-DB schemes’ through-

put slightly decreases when the concurrent user load on the system is increased

whereas PPL throughput still slightly increases. This indicates that PPL is more

resilient to increase in user loads. These results proves that the central broker be-

comes a bottleneck in query processing. For heavily loaded systems, CB performs

poorer. System resources are wasted for enqueue/dequeue operations.

As expected, average response times increase when number of concurrent

queries increase in the system. This result can be seen in Fig. 4.11 and Fig. 4.12.

Best average response time results are obtained for PPL. CB-TB performs bet-

ter than CB-DB. Also, the increase in average response times of PPL is smaller

compared to CB, because the central broker becomes a bigger bottleneck as the

number of concurrent queries in the system increases.
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Figure 4.11: Average response times of CB and PPL compared with changing
query load for K = 16.
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4.2.5 Accumulator Size Restriction and Quality

In term-based distribution of the inverted index, communication overhead signif-

icantly reduces the system performance. In light of the previous research [37],

our text retrieval system communicates accumulators with size up to 1 percent

of the size of the document collection when term-based distribution is used. In

the selection phase, index servers select the top 1 percent of the accumulators

from their static accumulator arrays and send them to the central broker. The

aim of limiting the number of accumulators sent is to keep communication costs

at minimum without causing a visible change in the final answer set.

Since the proposed optimization is approximate, a series of experiments are

conducted to measure if there is a decrease in the quality of the top s scores

presented to the user. To verify that limiting the number of accumulators being

sent does not cause a decrease in quality, Fagin et al. [16] developed various

correlation measures to compare two lists, based on techniques for comparing

two permutations [28]. Carmel et al. [12] also adopted one of their measures,

namely a variation of Kendall’s tau method.

In this modification of Kendall’s tau, for each document pair i, j, penalties are

assigned according to appearance of i and j in resulting top s lists. The penalty

values are defined as:

• Case 1: if both i and j appear in both lists, and if their appearance order

is changed, we assign a penalty of 1, otherwise no penalty is assigned.

• Case 2: if one of the lists contain both i and j but the other list contains

only one of them, then a penalty of 1 is assigned if the lower rank document

appears. No penalty is assigned if the higher order term appears, since it

is ahead in both lists.

• Case 3: if only i appears in one list and only j appears in the other, a

penalty of 1 is assigned, since their ordering is changed.

• Case 4: if both i and j appear in one list but neither appears in the other,

a penalty of 1/2 is assigned since it is not known which one would appear

in higher rank.
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For each query, the penalty scores are summed. Note that the result is between

1 and k (3k − 1) / 2 . To get a normalized similarity value, the sum is divided

by this number, and then the result is subtracted from 1 to define 1 as the highest

similarity value, whereas 0 is defined to be the minimum.

Using the accumulator limiting scheme described above, remarkable improve-

ments in the average response times and throughput is obtained. For example,

CB without employing accumulator limiting for short queries gives average re-

sponse time of 18.4 seconds per query and processes 7.1 queries per second on

8 processors, where on the other hand same scheme with accumulator limiting

gives average response time of 1.5 queries per second and outputs 73.0 queries

per second. For PPL, the difference is even more dramatic: on 8 processors it

processes 87.4 queries per second with an average response time of 1.1 seconds

per query.

The result set generated employing document-based distribution in CB gives

precision value of 1.0 is assumed, since it is possible to compute final scores of

the documents in index servers. Comparing the other result sets to it yields to

Table 4.2. These experiments are conducted for 1500 queries, each returning top

100 answers.
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Table 4.2: Average similarity and penalty sum results.

According to Table 4.2, short query evaluation accuracy is not affected from

accumulator limiting. But for medium queries, CB-TB with accumulator restric-

tion gives a relatively low similarity measure than PPL. Since the accumulators

with low scores are not sent to the central broker, in CB-TB, the documents in

the final answer set may switch places, causing a decrease in the similarity scores.

However, since the scores on the index servers are merged using the static accu-

mulator arrays, some of these low scored accumulators may be included in the

final answer set, causing PPL to perform better than CB-TB.
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As seen from Table 4.2, restricting the number of accumulators communicated

does not cause a notable decrease in the quality of our answer set but it brings a

remarkable increase in the quality of service.



Chapter 5

Conclusion

The vast volume of data available online raises more challenges in information

retrieval research. The need to access desired data by numerous users concur-

rently forces the text retrieval system designers to be innovative since the classical

approaches does not work efficiently and effectively on very large document col-

lections. In order to satisfy user needs when a large volume of data is being

processed, usage of parallel methods become inevitable since parallel systems

provide better average response times and higher throughput rates compared to

sequential methods.

In this thesis, a parallel text retrieval system on a shared-nothing architecture

is implemented. The system adopts inverted index for distributing the dataset

and uses vector space model for calculating the similarities between documents

and query terms. The dataset is distributed in a round-robin fashion.

ABC-Server Parallel Text Retrieval System uses two query evaluation

schemes: Central Broker (CB) and Pipelined (PPL). CB can be used with both

term-based or document-based distributed inverted indexes whereas PPL is valid

only for term-based distribution. The query evaluation performance of CB-TB,

CB-DB and PPL are measured and compared according to their throughput, av-

erage response time and quality performances on a 48 node PC cluster on varying

query loads.

The results indicate that, CB-DB gives the best throughput rates whereas

45
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PPL gives the best average response times in general. This result reveals that in

CB, some query response times are significantly larger than the average, which

increases the average response time without affecting the throughput. This proves

the existence of a bottleneck on the central broker.

Another interesting result is that, when the dataset is distributed in a doc-

ument based fashion, the throughput begins to decrease as the number of pro-

cessors increase after some point, whereas the throughput decreases slightly after

a point when term-based distribution is used. This is also a consequence of the

bottleneck on the central broker, due to merge operations.

The crawl+ document collection used for the experiments is not sufficiently

large for exploring the scalability of ABC-Server for practical uses. The future

aspects of this study include running the experiments on a larger document col-

lection and compare its results.

Although the system is implemented very carefully for the best performance,

there are still some possible enhancements. The system adopts expected linear

time selection algorithm for the selection phase both in the central broker and

index servers. It is possible to use a minimum heap to select top accumulators as

proposed in [48]. Cambazoglu [9] compared the performances of both and con-

cluded that the min heap implementation gives better results. Another possible

improvement is to use a min heap instead of keeping the running minimum in

k-way merge. Including these in the next version of ABC-server is planned.
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