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Asst. Prof. Dr. Uluç Saranlı (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Varol Akman

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Pınar Şenkul
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ABSTRACT

EXPERIMENTS IN INTEGRATING CONSTRAINTS
WITH LOGICAL REASONING FOR ROBOTIC
PLANNING WITHIN THE TWELF LOGICAL

FRAMEWORK AND THE PROLOG LANGUAGE

Mert Duatepe

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. Uluç Saranlı

September, 2008

The underlying domain of various application areas, especially real-time sys-

tems and robotic applications, generally includes a combination of both discrete

and continuous properties. In robotic applications, a large amount of different

approaches are introduced to solve either a discrete planning or control theoretic

problem. Only a few methods exist to solve the combination of them. Moreover,

these methods fail to ensure a uniform treatment of both aspects of the domain.

Therefore, there is need for a uniform framework to represent and solve such

problems. A new formalism, the Constrained Intuitionistic Linear Logic (CILL),

combines continuous constraint solvers with linear logic. Linear logic has a great

property to handle hypotheses as resources, easily solving state transition prob-

lems. On the other hand, constraint solvers deal well with continuous problems

defined as constraints. Both properties of CILL gives us powerful ways to express

and reason about the robotics domain. In this thesis, we focus on the implemen-

tation of CILL in both the Twelf Logical Framework and Prolog. The reader of

this thesis can find answers of why classical aspects are not proper for the robotics

domain, what advantages one can gain from intuitionism and linearity, how one

can define a simple robotic domain in a logical formalism, how a proof in logical

system corresponds to a plan in the robotic domain, what the advantages and

disadvantages of logical frameworks and Prolog have and how the implementation

of CILL can or cannot be done using both Twelf Logical Framework and Prolog.

Keywords: constrained intuitionistic linear logic, automated theorem proving,

intuitionism, planning in robotics, logical framework, prolog.
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ÖZET

ROBOTİK PLANLAMAYI GERÇEKLES.TİRMEK İÇİN

MANTIKSAL MUHAKEME İLE KISITLAMALARIN
TWELF MANTIKSAL ÇATISI VE PROLOG DİLİ

İÇERİSİNDE BİRLES.TİRİLMESİNE YÖNELİK
DENEMELER

Mert Duatepe

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Uluç Saranlı

Eylül, 2008

Birçok uygulama alanı, özellikle de gerçek zamanlı sistemler ve robotik uygu-

lamalar, çoğunlukla hem kesikli hem de sürekli özelliklerini içerirler. Robotik

uygulamalarda, kesikli planlama ya da kontrol teorisi problemlerini çözmek

için birçok farklı yaklas.ım ortaya atılmıs.tır. Ayrıca, bunların kombinasyonunu

barındıran problemleri çözmek için farklı yöntemler mevcuttur. Fakat, bu

yöntemler uygulama alanının hem kesikli hem sürekli sorunlarını çözmek için

bütün bir sistem olus.turamazlar. Bu yüzden, bu tür problemleri betimeleye-

bileceğimiz ve çözebileceğimiz bütün bir sisteme önemli ölçüde ihtiyaç vardır.

Yeni bir biçim olan Kısıtlı Sezgisel Doğrusal Mantık(KSDM), sürekli kısıtlama

çözücülerle doğrusal mantığı birles.tirir. Doğrusal mantık, varsayımları kaynak

olarak kullanarak durum geçis. problemlerini rahatlıkla çözebilecek çok önemli

bir özelliğe sahiptir. Bas.ka bir taraftan, kısıtlama çözücü kısıtlama olarak

tanımlanmıs. sürekli problemleri çözecektir. KSDM’nin bu iki özelliği robotik

alan uygulamalarının tanımlanmasını ve çözümlenmesini güçlü bir s.ekilde ya-

pacaktır. Bu tezde, KSDM’nin hem Twelf Mantıksal çatısı hem de Prolog kul-

lanarak gerçekles.tirilmesinin üzerine odaklanılmıs.tır. Bu tezi okuyan okuyucu,

klasik görüs.ün robotik alan uygulamaları için hangi eksiklikleri içerdiği, sezgisel-

cilikten ve doğrusalcılıktan nasıl kazançlar elde edileceği, bir mantıksal biçimin

içinde basit bir robotik alan uygulamasının nasıl ifade edileceği, mantıksal sis-

temdeki bir kanıtın nasıl robotik alanda bir plana kars.ılık geleceği, mantıksal çatı

ve prologun hangi artıları ve eksileri olduğu ile KSDM’nin gerçekles.tiriminin hem

mantıksal çatı hem de prolog çerçevesinde nasıl olacağı gibi önemli sorulara yanıt

bulacaktır.
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Chapter 1

Introduction and Motivation

Today, robots are used in a large variety areas, such as military, space researches,

factories and even homes. Since they are doing jobs that are impractical and

time-consuming for people, they make human’s life easier. The problem is how

a robot can understand the features of a job and an environment while doing

its job. The answer is quite simple: Declaring rules that the robot has to obey.

For this purpose, the robot has to know its own capabilities and characteristics.

For instance, the robot Phoenix [48] in Mars has capabilities of landing onto the

Mars surface, walking on an unknown environment, decomposing soil and taking

photos of the environment. Moreover, the Spike system [25] of Hubble telescope

has a capability of making ground and orbiting telescope scheduling under several

constraints.

Since a robot will have to make a plan according to the aforementioned rules,

these rules have to be declared by taking into account of its behaviours and

characteristics. Furthermore, this plan should correspond to action sequences

and strategies. For example, if we have an environment that has some obstacles

and a robot has a capability of moving only forward and right directions, then

one has to find an obstacle-free shortest path under these conditions. This is

called path planning in robotics. Moreover, if we have a robot arm that has three

degrees of freedom, with a given robot arm position one can reach a requested

robot arm position under the conditions of torque applied onto each degree of

1



CHAPTER 1. INTRODUCTION AND MOTIVATION 2

freedom and angles between each degree of freedom.

All of these kind of different planning problems which do not include con-

tinuous aspects can be reduced into one that can take three inputs. These are

a description of the initial state of the world, a description of the desired goal,

and a set of possible actions. A planner can find output action sequences that

directly corresponds to a plan starting from initial state to the desired goal. One

of the known planners in artificial intelligence is STRIPS [14] which is a formal

language to express automated planning instances. However, the structure of

this language fits only state-changing problems. Nevertheless, robotic planning

problems has to deal with continuous problems of an environment. For example,

in Blocks World problem one has to consider the problem of properly placing a

block onto another block without falling any blocks, while in robot arm problem,

one has to ponder torques applied on each degree of freedom.

In robotics and artificial intelligence, one of the main goals has been to build

systems that are capable of finding autonomous plans according to given speci-

fications. Several researchers have been trying to address planning problems in

artificial intelligence. Techniques such as probabilistic planning [3], conditional

planning [39] or utility planning [6] have been introduced. Some other methods

degrade planning problems into constraint satisfaction problem in propositional

logic [26, 11] while others find planning by applying model checking techniques

[37, 7]. Moreover, some techniques represent planning problems in temporal logic

[2] and others utilize heuristic methods [4]. Another kind of planning techniques

try to represent plans with description logics and ontologies [15, 30].

In the context of robotics, while some discrete planning perspectives based on

action sequences employs techniques mentioned before, others from control the-

ory use specific methods for application domain [8, 13, 41, 51]. This is because

current methods in artificial intelligence have been specialized for finding action

sequences for discrete domains and thus fail to find plans for control theoretic

robotic problems. Therefore, it is essential to build a uniform framework for the

representation and solution of robotic planning problems including both discrete
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and continuous aspects of the underlying domain. Constrained Intuitionistic Lin-

ear Logic (CILL) [45] proposes a new formalism to represent and reason effectively

for application domains that have both discrete and continuous capabilities.

Explaining each word in CILL will make clear for a reader to understand whole

meaning of it. Logic gives a great expressive power to represent and reason with

an application domain in terms of logical syntax and semantics because of two

major properties. First, it is a formal and consistent language and thus planning

problems for different applications can be represented in a consistent way. Sec-

ond, finding plans for applications can be reduced into checking logical truth or

provability of logical expressions. This is why several previous approaches have se-

lected logic to represent planning problems. Linearity in logic [16, 17, 36] directly

avoids the frame problem without any additional representational overhead and

is explained in Chapter 4 in detail. Additional representational overhead is not

required because linear logic treats hypotheses as consumable resources. There-

fore, linear logic provides a natural way to deal with the state changing problem,

frequently seen as one of the major problems in the field of planning. Intuition-

ism has been fairly discussed by philosophers and mathematicians since it was

first suggested. In intuitionistic logic, proofs are described as true only when

they are verified. Moreover, its nature ensures that each proof in intuitionistic

logic directly corresponds to a program. Integration between linear logic and in-

tuitionistic logic is important for planning problems because intuitionistic linear

logic makes possible to find solution for planning problems in terms of programs

without the additional requirement of dealing with the frame problem. However,

it is still not possible to find a clean way to overcome robotic problems that

include continuous properties. Combining the efficiency of domain specific con-

straint solvers with the expressive power of linear logic gives us a great feature

to represent and reason about both discrete and continuous aspects of robotic

behaviour in terms of powerful syntax of Constrained Intuitionistic Linear Logic

[45]. Doing so allows us to express constraints of application domain within the

logical formalism.

CILL offers a uniform formalism to find plans in robotic applications by com-

bining both constraint solver and linear logic. The constraint solvers within linear
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logic solves mathematical equality or inequality problems and linear logic tries

to find plans by using decision trees in logic. The real goal of this thesis is to

automate decision procedures of CILL by using Twelf Logical Framework and

Prolog language. However, as it is explained in last chapters, implementing CILL

in both Twelf Logical Framework and Prolog is problematic. Therefore, we give

theoretical way of finding plans in CILL, and instead we implement Constrained

Intuitionistic Logic within both Twelf Logical Framework and Prolog language.

Moreover, we show a basic robotic application for finding plans by using CIL in

Prolog. We also give comparison of advantages and disadvantages of handling

constraints in Twelf Logical Framework and Prolog.

In the second chapter, we will give some fundamental information about what

we need for reading rest of the chapters. In Chapter 3, we will discuss the new

example domain of Blocks World that has both discrete and continuous aspects.

In the fourth chapter, we will give the formal definition of Intuitionistic Linear

Logic (ILL) and its connectives and the last section of this chapter will show

an extension of ILL with constraints and we will encode previously constructed

Blocks World domain within CILL. In the following chapter, we give basic infor-

mation about Twelf Logical Framework and Prolog Language. Chapter 6 gives

major reasons why CILL could not be implemented within Twelf Logical Frame-

work and instead Constrained Intuitionistic Logic (CIL) is implemented and some

examples will be given. Same chapter shows Prolog implementation of CIL and

then, we will finish up with future work and conclusion in last chapter.



Chapter 2

Background

2.1 Logic

Logic comes from the Greek word logos which means thought, idea, reason or

principle. Logic studies the laws of valid inferences that means the act or process

to derive a true conclusion from the base knowledge. The formal definition for

logic is the study of the way of reasoning, deduction from hypotheses, and demon-

stration. In mathematics, logic is concerned with providing symbolic models of

acceptable reasoning [12]. However, in philosophy, logic is a more general concept

that it is concerned with human thought and ways to analyse them.

Logic has been a branch of philosophy and mathematics for a long time.

Initially, logic was studied in philosophy. The usage of logic under the foundations

of mathematics was much later than studies in philosophy and this new branch

is referred to as formal logic or symbolic logic in the context of mathematics. In

artificial intelligence, there are some applications of logic, such as a knowledge

representation formalism and method of reasoning, and a programming language

[29].

5



CHAPTER 2. BACKGROUND 6

2.1.1 Propositional Logic

Propositional logic is the branch of logic that studies ways of combining proposi-

tions or statements to form more complicated propositions or statements [20, 43].

A statement can be defined as a declarative sentence that can either be true or

false. The following is an example statement:

Mustafa Kemal Atatürk is the founder of the Turkish Republic.

The terms proposition and statement are generally used interchangeably.

However, a proposition sometimes refers to two different statements that have

the same meaning. For instance, “It is raining” and “Il pleut” are two different

statements with same meaning and can be described with the same proposition.

Since the distinction of these two terms is a matter of philosophy, these two terms

are used interchangeably throughout this thesis. The upper-case letters, P , Q, R,

..., are mostly used as symbols for simple propositions. Joining two propositions

with the words “and” and “or” is one common way of combining propositions.

Propositions will assume an important role in describing basic concepts and

states of robotic application domains.

2.1.2 Predicate Logic

Predicate logic (also known as first-order logic) is an extension of propositional

logic in which formulas contain variables that can be quantified [49, 5]. Two

common quantifiers are the existential ∃ and universal ∀ quantifiers. Variables

can be elements in a universe, as well as relations over the universe.

A variable frequently refers to a parameter within a proposition. Moreover, it

creates a connection between propositions. In terms of robotic environments, one

can define actions using quantifiers and variables such as the examples presented

in Chapter 3.
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2.1.3 Classical and Intuitionistic Logic

Before describing the differences between classical and intuitionistic logic, it would

be better to give different viewpoints that correspond to these logical formalisms.

From a classical point of view, each statement has to be true or false independent

from whether the knowledge about such a statement is established or not and all

quantifiers are assumed to range over a well-defined domain [1]. For instance, the

statement that there are no odd perfect numbers is one of the famous conjectures

in mathematics. This statement has neither been proved nor disproved, but

classically speaking, it should be either true or false.

In the constructive perspective (the words constructive and intuitionistic are

used interchangeably), a statement is asserted as true only when it has been

verified to be true, and a statement is asserted as false only when it has been

verified to be false. From a constructive viewpoint, it could not be asserted that

the example about perfect numbers is true or false, since this conjecture could

not be verified.

Formally, true propositions that are provable in classical logic, such as A∨¬A

called the excluded middle are not derivable in intuitionistic logic. In addition to

this, intuitionistic logic rejects proof by contradiction because we need to verify

the proposition itself rather than verifying its negation. Moreover, the double

negation rule is also not derivable. The most important feature for intuitionistic

logic is its restriction to allow only a single formula in the conclusion. However,

classical logic allows multiple formula conclusions. These feature will be described

in later sections in detail.

2.2 Proof Theory

Proof theory is the study and representation of proofs as formal mathematical ob-

jects, simplifying their analysis by mathematical techniques. Proofs are presented

as data structures such as lists or trees, constructed according to the axioms and
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rules of a logical system [18].

Although there were some studies of famous mathematicians and logicians

such as Gottlob Frege, Bertrand Russell [31] and Giuseppe Peano [50] who were

advanced in formalising proofs in mathematical theory, the real story was started

by David Hilbert. Contemporary proof theory was established by Hilbert who

initiated his program in the foundations of mathematics. However, Gödel’s work

on proof theory then refuted this program. His incompleteness theorems showed

that Hilbert’s program was naive and simply a failure [9].

In parallel with the proof theoretic work of Gödel, Gerhard Gentzen intro-

duced the new concept known as structural proof theory [18]. In short years,

Gentzen introduced the formalisms of natural deduction and sequent calculus.

Moreover, he made fundamental advances in the formalization of intuitionistic

logic and introduced the important idea of analytic proofs.

Two of three types of proof calculus which are natural deduction calculus and

sequent calculus will be described in the following sections, however the other type

of proof calculus namely the Hilbert system, will be skipped since it is outside

the scope of this thesis.

2.2.1 Natural Deduction

Gentzen planned and constructed a system called Natural Deduction to formalize

proofs in terms of mathematical reasoning after dissatisfaction with Hilbert’s sys-

tem in capturing mathematical reasoning. In this paper, he said that he intended

to construct a formalism which would be as close as possible to actual reasoning.

The system of Gentzen’s approach was devised by Prawitz [38]. In natural deduc-

tion, valid deductions are described through inference rules only. Furthermore,

the meaning of the logical quantifiers and connectives is also described in terms

of their inference rules. Here, the inference rule refers to a function from sets

of formulae to formulae. The formulae in the argument are called premises and

the return value is called conclusion. In other words, it forms a relation between
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premises and a conclusion, where the conclusion is said to be derivable from the

premises. If the premise is empty, then the conclusion is said to be an axiom.

Inference rules are given in the following standard form:

Premise1 Premise2

Conclusion
Name

This expression states that whenever the given premises are obtained, the

specified conclusion can be derived as well.

The basic notion in natural deduction is a judgement based on an evidence.

In our normal life, we make judgements based on some evidence. For example,

we make the judgement “It is sunny” based on our visual evidence or we make

the judgement “A implies B” after an evidence of a derivation. In natural deduc-

tion, a judgement is something that is knowable or it is an object of knowledge.

Moreover, the fundamental judgement used within natural deduction is “A true”.

Before giving the details of natural deduction, it will be good to give some

general notation:

• ` known as the turnstile, separates assumptions on the left from proposi-

tions on the right.

• t denotes an arbitrary term where a term can be built up from variables x,

y, etc. function symbols f , g, etc. and parameters a, b, etc.:

Terms t := x | a | f(t1, ..., tn)

• A and B denote propositions of a logic where P , Q, etc. corresponds to

predicate symbols and a proposition can be defined as follows:

• Ψ, Γ and ∆ are finite sequences of propositions, called contexts. On the left

of the `, sequence of propositions is considered conjunctively. The context

cannot be on the right side of the ` in intuitionistic logic; but in classical
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Propositions A := P (t1, ..., tn) | A1 ∧ A2 | A1 ⊃ A2 | A1 ∨ A2

| ¬A | > | ⊥ | ∀x.A | ∃x.A

logic, contexts can be placed on the right side. When a context is in the

right side, the sequence of propositions is considered disjunctively.

• A[t] denotes a proposition A, in which some occurrences of a term t are of

interest.

• A[s/t] denotes the proposition obtained by substituting the term s for all

occurrences of t in A[t].

• a variable is said to occur free within a formula if its only occurrences in

the formula are not within the scope of quantifiers ∀ or ∃.

In natural deduction, each logical connective and quantifier is defined by its

introduction rule(s) which specify how to infer that a conjunction, disjunction,

etc. is true. The elimination rule tells what other truths can be deduced from

the truth of a conjunction, disjunction, etc. Introduction and elimination rules

must ensure that the rules are meaningful and the overall system can capture

mathematical reasoning. We need to look at some properties to guarantee that

our rules are meaningful.

If we introduce a connective and then immediately eliminate it, we should be

able to find an other derivation of the conclusion without using the connective.

This property is called as local soundness and if this property fails, the elimination

rules are said to be too strong: they allow us to conclude more than we should

be able to know.

We can eliminate a connective in a way that we can reconstruct it by an

introduction rule. This property is called as local completeness and if this prop-

erty fails, the elimination rules are too weak: they do not allow us to conclude

everything we should be able to know.

One of the important principles of natural deduction is that each connective
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should be defined only in terms of inference rules without referring to other log-

ical connectives or quantifiers. This property is called as orthogonality of the

connectives. It means that we can understand a logical system as a whole by

understanding each connective separately. It also allows us to extend the logical

system directly without changing other inference rules.

Let us give an example inference rules of conjunction for propositional logic

to clarify the concepts in natural deduction:

A true B true

A ∧ B true
∧I

This is an example of introduction of conjunction rule. It asserts that if we

have the judgement “A true” and “B true”, we can derive and introduce the

judgement “A ∧ B true” in the conclusion.

The elimination rule for conjunction will be written such that:

A ∧ B true

A true
∧EL

A ∧ B true

B true
∧ER

In the above example, we say that we can derive the judgements A true and

B true separately with the elimination of the judgement A ∧ B true.

The judgement “A true” alone is not very suitable to introduce all logical

connectives and quantifiers. We thus need two additional judgements. One of

them is hypothetical judgement to introduce implication connective and the other

one is the parametric judgement to apply for quantifiers.

The hypothetical judgement has a form that encodes “J2 under hypothesis

J1”. We consider this judgement evident if we make the judgement J2 once

provided with evidence for J1.

The parametric judgement has the form “J for any a”. We make this judge-

ment if we make the judgement [O/a]J for arbitrary objects O.
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Natural deduction enables us to formalize a specific logic via inference rules

of each connective. In addition to this, valid deductions are described through

inference rules and proof tree can be constructed with these deductions. Let us

look at the example derivation of (A ∧ B) ⊃ (B ∧ A) in natural deduction:

A ∧ B
u

B
∧ER

A ∧ B
u

A
∧EL

B ∧ A
∧I

(A ∧ B) ⊃ (B ∧ A)
⊃ Iu

The first step of this derivation starts at the bottom with (A∧B) ⊃ (B ∧A):

(A ∧ B) ⊃ (B ∧ A)

In the second step, we need the assumption A ∧ B to satisfy the conclusion

(A ∧ B) ⊃ (B ∧ A) with implication introduction:

A ∧ B
u

...
B ∧ A

(A ∧ B) ⊃ (B ∧ A)
⊃ Iu

The implication introduction generates a gap between two premises. Filling

the gap is crucial part to find the proper derivation for a rule. In other words,

the purpose for finding derivation is to meet axioms and the second premise of

implication introduction in some way. Thus, the third step tries to connect axiom

A ∧B with conclusion B ∧A. Consequently, the third step uses the conjunction

introduction to introduce B ∧ A:



CHAPTER 2. BACKGROUND 13

A ∧ B
u

...
B

A ∧ B
u

...
A

B ∧ A
∧I

(A ∧ B) ⊃ (B ∧ A)
⊃ Iu

We have to eliminate axiom A∧B twice in order to find A and B separately.

Thus, the last step fills the gap and shows the proper derivation for (A ∧ B) ⊃

(B ∧ A):

A ∧ B
u

B
∧ER

A ∧ B
u

A
∧EL

B ∧ A
∧I

(A ∧ B) ⊃ (B ∧ A)
⊃ Iu

2.2.2 Sequent Calculus

In natural deduction, the flow of information is bi-directional. In other words,

flow of information in elimination rules is downwards and flow of information in

introduction rules is upwards. As we see in the example in previous section, we

have always two possible way to meet propositions. Due to the dual way of infor-

mation flow (bottom-up and top-down), it is difficult to automate proof search in

natural deduction. We need a deterministic mechanism to find derivations for a

given proposition. The deterministic way of flow of information should be either

downwards or upwards.

In order to address this problem, Gentzen proposed in 1935 his sequent cal-

culus. However, his primary idea for using sequent calculus was to prove the

consistency of his natural deduction system. Kleene, in his seminal book Intro-

duction to Metamathematics [27] gave the first formulation of sequent calculus

with its modern style in order to employ sequent calculus to define logics and

their proofs.
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Sequent calculus offers a system to flip elimination rules in natural deduction

upside-down. Along with this modification, proof search steps in sequent calculus

proceed only bottom-up. This modification divides inference rules into right

and left rules, which correspond to introduction and elimination rules of natural

deduction, respectively. We denote the notation of sequent calculus as a sequent

by

A1, ..., An ⇒ A,

where propositions placed at the left side of arrow, A1 to An, are called assump-

tions and the judgement placed at the right side of arrow, A, is called the goal.

The right rules apply to the goal, while the left rules apply to assumptions. Here

is the right rule for conjunction in sequent calculus,

Γ ⇒ A Γ ⇒ B

Γ ⇒ A ∧ B
∧R

The above right rule in sequent calculus is almost the same as the introduction

rule in natural deduction. When we read this rule from bottom up, we say that

the right rule of conjunction divides the goal (A ∧ B) into two parts, A and B.

The left rule is different from the elimination rule of conjunction in natural

deduction:
Γ, (A, B) ⇒ C

Γ, (A ∧ B) ⇒ C
∧L

The left rule is viewed from bottom-up direction and the above rule says that

A and B are inserted to context of assumptions when A∧B is on the left side of

the arrow.

In natural deduction, we have given an example derivation of (A ∧ B) ⊃

(B ∧ A). We will see the derivation of this example in sequent calculus. Before

that, it is necessary to look at the right implication rule:
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Γ, A ⇒ B

Γ ⇒ A ⊃ B
⊃ R

It is time to describe how we find the proof search of (A ∧ B) ⊃ (B ∧ A). In

the first step, the rule is written at the right hand side.

. ⇒ (A ∧ B) ⊃ (B ∧ A)

First, we apply the right rule of implication:

A ∧ B ⇒ B ∧ A

. ⇒ (A ∧ B) ⊃ (B ∧ A)
⊃ R

Now, it is time to apply left rule of conjunction:

A, B ⇒ B ∧ A

A ∧ B ⇒ B ∧ A
∧L

. ⇒ (A ∧ B) ⊃ (B ∧ A)
⊃ R

The last step is applying right rule of conjunction:

A, B ⇒ B A, B ⇒ A

A, B ⇒ B ∧ A
∧R

A ∧ B ⇒ B ∧ A
∧L

. ⇒ (A ∧ B) ⊃ (B ∧ A)
⊃ R

The top two sequents, A, B ⇒ B and A, B ⇒ A, are initial rules where we

can achieve goal B and A from assumptions (A, B).



CHAPTER 2. BACKGROUND 16

2.2.3 Proof Terms

Howard, suggested in his book [22] that there is a strong correspondence between

intuitionistic derivations and λ-calculus and referred to this correspondence as

Curry-Howard Isomorphism. This is an isomorphism between formulas and types

and also between derivations and simply-typed λ-terms. This isomorphism is

generally called propositions-as-types and proofs-as-programs. However, we rather

employ the latter since we would like to find programs in a robotic domain.

In order to illustrate the relationship between proofs and programs we need

a new judgment,

M : A

where M is proof term for proposition A. Moreover, this interpretation can

be read as “M is a program of type A”. Since we have new judgement, we need to

annotate all the inference rules of natural deduction with proof terms. Previously,

we have an example derivation of (A∧B) ⊃ (B∧A) in natural deduction. We will

show how proof terms can be assigned to each derivation in proof search steps.

Prior to this, we give inference rules of conjunction and implication including

proof terms.

M : A true N : B true

〈M, N〉 : A ∧ B true
∧I

In this introduction rule, A∧B true has a combinational proof as a pair, one

comes from A true and one from B true. In functional programming, this rule

(function) takes two distinct arguments and combines these arguments in a pair

and returns this pair.

We have two elimination rules that take a pair as an argument, one of them

selects and returns the first element of pair while the other one returns the second

element.
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M : A ∧ B true

fstM : A true
∧EL

M : A ∧ B true

sndM : B true
∧ER

The type of conjunction A ∧ B corresponds to the product type A × B.

In programming languages, we can define a function f of a variable x by

writing for example f(x) = x2 + 1. This example can be transformed to f =

λx.x2 + 1, that is form a functional object by λ-abstraction. The proof of A ⊃

B true as a function which transforms a proof of A true into a proof of B true.

Therefore, λ-abstraction is a great candidate to annotate the implication rule.

u : A
u

...
M : B

λu : A.M : A ⊃ B
⊃ Iu

Using these changes on inference rules, we can annotate the proof of (A∧B) ⊃

(B ∧A) with proof terms. Thus, we obtain a function which takes a pair 〈M, N〉

and returns the reverse pair 〈N, M〉.

u : A ∧ B
u

sndu : B
∧ER

u : A ∧ B
u

fst u : A
∧EL

〈snd u, fstu〉 : B ∧ A
∧I

(λu. 〈sndu, fstu〉) : (A ∧ B) ⊃ (B ∧ A)
⊃ Iu

The above example illustrates that the proof that is constructed by proof terms

directly corresponds to a program. In addition to this, the proposition in this

example should correspond to a type by Curry-Howard Isomorphism. Before this,

it is necessary to give the summary of propositions and types which correspond

to each other as shown below:

In the above illustration, the base type b and the proposition A are left unspec-

ified. From this encoding, the type of the example proposition (A∧B) ⊃ (B∧A)
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Types τ ::= b | τ1 × τ2 | τ1 → τ2 | τ1 + τ2 | 1 | 0

Propositions A ::= p | A1 ∧ A2 | A1 ⊃ A2 | A1 ∨ A2 | > | ⊥

is (τ1 × τ2) → (τ2 × τ1) when we take τ1 as the type of proposition A and τ2 as

the type of proposition B.

2.2.4 Proof Normalization

The Proof Normalization confirms the existence of normal forms in natural deduc-

tion by using Normalization Theorem. This theorem asserts that every formula

in natural deduction has normal form. In addition to this, The Church-Rosser

property states that this normal form is unique. The proof of this property is not

given in this thesis, however the result of this theory is highly important. As we

have seen in the previous section, the proofs directly corresponds to a program.

Therefore, if one can find at most one normal form of a proof, one can also find

one program for the application domain. Furthermore, this program is directly

corresponds to a plan in terms of robotics applications. Uniqueness of this normal

proof makes possible to find only a single plan under same conditions.

2.2.4.1 Cut Elimination in Sequent Calculus

In order to establish soundness and completeness with respect to natural deduc-

tions, a rule called cut is added to the sequent calculus. The cut rule is written

as,

Γ ⇒ A Γ, A ⇒ C

Γ ⇒ C
cut

When the cut rule is viewed in the bottom-up direction during proof search,

it introduces a new and arbitrary proposition A. Clearly, this introduces a great

amount of non-determinism into the search. The cut elimination theorem tells
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us that we never need to use this rule. In other words, we should prove that

cut rule is admissible. For the first-order intuitionistic logic in Pfenning’s notes

[34], the admissibility of cut is proved using inductive techniques. All the rules

have the property that the premises contain only instances of propositions in the

conclusion, or parts. This latter property is often called the subformula property.

2.3 Automated Theorem Proving

In previous sections, we have seen the isomorphism between intuitionistic proofs

and programs, and between propositions and types. Moreover, we have described

how we can find proofs by using bottom-up search. An automated theorem prover

is a tool that searches the proof of a given proposition and eventually terminates

and either gives a proof or fails [35].

Depending on the problem, proof search in logic can have a variety of applica-

tions. In the domain of planning problems searching for a proof means searching

for a plan. In the domain of functional programming, searching for a proof means

searching for a program satisfying a given specification. For example, assume that

a robot wants to traverse in an environment that has some obstacles. If we want

the robot to move across this environment autonomously, degrading the planning

problem to proof searching problem and placing an automated theorem prover

into the robot will be enough. This robot can find a path using the automated

theorem prover in order to construct a plan without consulting a centralized

computer.

Depending on the underlying logic, the problem of deciding whether a proof

can be found varies from trivial to impossible. For propositional logic, the prob-

lem is decidable but NP-complete. For a first order predicate calculus, valid

statements can be proved, however invalid statements cannot always be recog-

nized making it undecidable.

We should specify some rules to provide determinism for automated theorem

prover. The important question here is how the theorem prover will select which
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rule to apply among set of propositions. Before giving the answer to this question,

the new concept invertible should be defined. An invertible rule means that the

premises of this rule are derivable whenever the conclusion is derivable. The

usual direction states that the conclusion is evident whenever the premises are.

For example, the following rule is invertible,

Γ ⇒ A Γ ⇒ B

Γ ⇒ A ∧ B
∧R

On the other hand, the following rule is non-invertible,

Γ ⇒ A

Γ ⇒ A ∨ B
∨R1

The following sections describe some techniques to reduce non-determinism

in proof search.

2.3.1 Inversion

Theorem prover applies invertible rules whenever possible because it never loses

completeness. The order of these rule applications does not matter. After some

steps, we arrive at a sequent where all applicable rules are non-invertible. At this

point, the theorem prover applies one of the non-invertible rules.

2.3.2 Unification

Unification is a technique for eliminating existential non-determinism. When

proving a proposition of the form ∃x : A by its right rule in the sequent calculus,

we must supply a term t and then prove [t = x]A. The domain of quantification

may include infinitely many terms. At that point, we could not try all possible

terms t. Rather, we postpone the choice of t and instead substitute x to a new

variable X called a meta-variable. When we reach initial sequents, we check if
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there is a substitution for the meta-variable such that the hypothesis matches the

conclusion. If so, we apply this instantiation globally to the partial derivation

and continue to search for proofs of other subgoals. This instantiation for meta-

variables is called unification.

Herbrand gives the first description of a unification algorithm. However, the

comprehensive work on unification is introduced into automative deduction by

Alan Robinson [42]. Generally variants of Robinson’s algorithm are still used in

the subject of theorem proving.
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Example Domain

3.1 Traditional Blocks World

3.1.1 Description

The blocks world is one of the most commonly used example domains for planning

problems within artificial intelligence research [19]. It consists of a set of blocks

on the table and a robot capable of picking up pieces and placing them on either

the table or another block. The goal is to stack blocks vertically to achieve a

desired stacking order. One of the main advantages of the Blocks World for us

as an example domain is that it provides a simple setting in which reasoning

with changing state information can be studied. Clearly, this is an important

element in robotic planning problems since robots are expected to perform useful

physical work, thereby effecting the state of the environment and themselves.

Blocks World has simple discrete actions and models nontrivial constraints on

ordering of actions (i.e. which block has to be picked up and placed first).

In general, planning in the Blocks World and other similar domains involves

an initial configuration as well as a goal state to be achieved at the end of the

plan. Therefore, we need to describe the state, the moves and the goal to be

22
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achieved in a logical form appropriate for automatic construction of plans.

The first element to be introduced in such a description is the definition of

logical propositions describing the state of the environment at a given time. For

example, propositions listed in Table 3.1 can be used to capture the current state

in Blocks World.

on(x, y) block x is on block y
tb(x) block x is on the table
clear(x) the top of block x is clear
empty robot arm is empty
hold(x) robot arm holds block x

Table 3.1: Propositions for the Blocks World Domain

Using these propositions, one can describe an example initial state such that

block a is on block b, block b and block c are on the table and the robot arm is

empty as follows:

∆0 = (on(a, b), tb(b), clear(a), tb(c), clear(c), empty).

In addition to this initial state, one can also describe the goal state using the

same set of propositions. Having block b on block c may be the goal state for the

above example,

∆g = on(b, c).

Moreover, intermediate states can also be described using the same set of

propositions. In order to achieve the example goal state with a given initial state,

one of the example intermediate states can be

∆i = (tb(b), tb(c), clear(c), holds(a)).
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3.1.2 Describing Actions and the Frame Problem

Along with the set of propositions, we need to declare some actions in order to

affect changes on these states. We consider four possible legal actions for our

application domain:

1. Picking up a block which is on the table.

2. Picking up a block which is on the other block.

3. Putting a block on the table.

4. Putting a block on another block.

In order to model these actions, logical implication is a possible candidate.

In general, logical implication is a logical relation that holds between a set S of

formulae and a formula A when every model of S is also a model of A and is

donated as

S ⇒ A.

We then say that A is an logical consequence of S. In the above implication,

S is called the antecedent, while A is called the succedent. In the definition of

implication, we say that it relates the antecedent and succedent part. Because of

the nature of implication, this relation is strong.

In the beginning of this section, we mentioned that we have four actions

to describe the moves for our application domain. Since we intend to use a

logical formalism to solve planning problems, the logical implication would be

appropriate for describing actions. For example, we can use the following four

implications in Table 3.2 to model the four actions above.

In practice, it seems that these implications are capable of giving consistent

ending states for the given initial states. However, there are several problems as-

sociated with these implications. Incorrect encoding is the main issue about this
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∀ x. ∀ y. (empty ∧ tb(x) ∧ clear(x)) ⇒ (holds(x))
∀ x. ∀ y. (empty ∧ clear(x) ∧ on(x, y)) ⇒ (holds(x) ∧ clear(y))
∀ x. ∀ y. (holds(x)) ⇒ (empty ∧ tb(x) ∧ clear(x))
∀ x. ∀ y. (holds(x) ∧ clear(y)) ⇒ (empty ∧ clear(x) ∧ on(x, y)).

Table 3.2: Implications for the Blocks World Domain

logical formalism. Because of the nature of implication, propositions in the an-

tecedent part will preserve after applying implication rule. For instance, assume

that we have empty, tb(a) and clear(a) propositions initially. After executing

the first implication in Table 3.2, the new proposition holds(a) is added to the

proposition set without deleting any other propositions. Therefore, two contra-

dictory propositions holds(a) and empty are added into the proposition set. This

is because the ordinary predicate calculus has no notion of state.

The frequently applied solution for this problem in the literature is to add a

time parameter to propositions which are then changed as time goes on. Since all

propositions in Table 3.1 depend on time, they all need to be changed accordingly

as shown in Table 3.3.

on(x, y, t) block x is on block y at time t
tb(x, t) block x is on the table at time t
clear(x, t) the top of block x is clear at time t
empty(t) robot arm is empty at time t
hold(x, t) robot arm holds block x at time t

Table 3.3: Propositions for the Blocks World Domain with Time Extension

In addition, our actions also need to be modified to accommodate for the

newly introduced time variables as illustrated in Table 3.4.

As a result of these modifications, contradictory propositions will not be drawn

anymore. However, while fixing the problem, a new problem emerges. Not speci-

fying the unchanged propositions in these logical implications leads this problem.

For instance, the first implication rule says that when robot arm is empty, block

x is on the table and there is no other block on block x at time t, the robot arm
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∀ x. ∀ y. ∀ t. (empty(t) ∧ tb(x, t) ∧ clear(x, t)) ⇒ (holds(x, t + 1))
∀ x. ∀ y. ∀ t. (empty(t) ∧ clear(x, t) ∧ on(x, y, t)) ⇒

(holds(x, t + 1) ∧ clear(y, t + 1))
∀ x. ∀ y. ∀ t. (holds(x, t)) ⇒ (empty(t + 1) ∧ tb(x, t + 1) ∧ clear(x, t + 1))
∀ x. ∀ y. ∀ t. (holds(x, t) ∧ clear(y, t)) ⇒

(empty(t + 1) ∧ clear(x, t + 1) ∧ on(x, y, t + 1))

Table 3.4: Implications for the Blocks World Domain with Time Extension

can pick the block x and hold it at time t + 1. If there were another block y

on the table at time t, block y should have also been on the table at time t + 1.

However, the first implication rule loses this information. This problem occurs

because specifying only which conditions or states are changed by actions do not

allow us to conclude that all other conditions or states are not changed. This is

called the frame problem in logic and there are numerous studies on solving it

in the literature. The common solution is to introduce new predicates or terms

to keep unchanged states after executing actions. This is done with different

approaches such as in fluent occlusion [44], predicate completion [10] or situation

calculus [40]. Because of the current nature of the first-order predicate calculus,

these solutions always need to introduce new predicates or terms which are only

used for fixing the frame problem. Therefore, one should spend time not only en-

coding the application domain in logic but also declaring new predicates or terms

to avoid the frame problem. Moreover, there will be many unused propositions

that remain after executing several actions over and over.

An alternative and easier way to solve such a problem is changing the nature

of the first-order predicate calculus by introducing the notion of state in the

logical formalism itself. Hence, changing the way in which assumptions are used

in the rules would be sufficient for this purpose. If we have rules that use every

assumption exactly once, the notion of state will be introduced and the frame

problem will be solved automatically without specifying new predicates or terms.

Furthermore, it is easily possible using the linear logic which will be described in

detail in Chapter 4.
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3.2 The Balanced Blocks World 3D

In the traditional Blocks World, the problem is easy to solve using linear logic

which includes the notion of state. However, in real life one also has to deal with

the problem of achieving balance of blocks while putting a block on another block.

We have a new version of the Blocks World named as the Balanced Blocks World

2D, in which the desired order of the blocks is also considered in conjunction with

the dynamic balance of blocks [45]. In such a problem, while putting down the

block A to the block B, the center of mass of block A should lie on the supporting

surface of block B (Figure 3.1). However, only placing the center of mass of the

latest placed block on the supporting surface of the block tower would not be

enough to satisfy the balance of the entire block tower. The combination of the

center of mass of the latest placed block and the top block in a tower should

also be on the supporting surface of the second top block in the tower. For the

entire block tower, there has to be a check for each block in the tower so that

the combination of the centers of mass of the blocks above it have to be on its

supporting surface. This modification is introduced into the Traditional Blocks

World so that the planning mechanism deals not only with the order of the actions

to satisfy the desired goal but also dynamical features of the environment.

Figure 3.1: 3D Illustration of Properly Placing Block A onto Block B

3.2.1 Definition and Domain Properties

In this section, a new blocks world domain called Balanced Blocks World 3D

will be described in detail. This domain has the same characteristics with the

Balanced Blocks World 2D in that it combines dynamical constraints with state
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transitions. However, unlike Balanced Blocks World 2D, the constraint domain is

composed of set constraints. Since the only contact part of a newly placed block

with the top block in a tower is its base, the points of base areas of blocks will

form our sets. For the sake of simplicity, the base of every block is assumed to

be the same as its top surface. Figure 3.2 illustrates definitions related to these

base areas for every block while Table 3.5 defines concepts and abbreviations in

this figure.

Figure 3.2: Concepts in Blocks World 3D

pCOM i center of mass point of Object i at Frame i
mi mass of Object i
Si set of all points in Object i at Frame i

Table 3.5: Abbreviation and Meanings in Blocks World 3D

Each object has its own set and a reference frame called Fi such that its center

of mass is located at the origin. In order to relate the locations of objects to each

other, it is necessary that their positions and orientations are represented in the

World Frame W . Therefore, we need to rotate and translate all the points of

an object from its own frame to the World Frame W . Table 3.6 definitions are

needed for that purpose.

We now need to relate these definitions to each other. Equation 3.1 associates

the coordinates of the center of mass point of an object with the World Frame W

by rotating and translating the center of mass point of an object from its current

frame to the World Frame W .
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pi an arbitrary point of Object i expressed in Frame i
0pi an arbitrary point of Object i expressed in the World Frame W
0Si set of all points of Object i expressed in the World Frame W
0

i R rotation matrix from Frame i to the World Frame W
0

i t translation from Frame i to the World Frame W

Table 3.6: Definitions in Blocks World 3D

0pCOM i = {0

i R pCOM i + 0

i t} (3.1)

Equation 3.2 can be used to transform all points of an object from the current

frame to the World Frame W .

0Si = {0

i R pi + 0

i t | pi ∈ Si} (3.2)

3.2.2 Constraints

In order to ensure that the tower remains balanced, we should not only check that

the new block itself remains in balance, but also make sure that the placement

does not disturb existing blocks on the tower. To this end, we recursively compute

the center of mass of connected groups of blocks from top to bottom and ensure

that all combined centers of mass lie on support surfaces. Thus, the following

constraints have to be satisfied to ensure that the towers balanced. We assume

that we have k number of objects.

The first constraint is that the center of mass point of the block that is placed

on the top block has to be on the support surface of the top block. In set theory,

this constraint will be expressed in a way that the center of mass point of the

newly placed block has to be the member of the set of all points of the top block

in the tower provided that both are on the World Frame W . It is modelled in

Equation 3.3.
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0pCOMk ∈ 0Sk−1 (3.3)

The other constraint is that all the combined center of mass of the connected

groups of blocks from top to bottom has to lie on support surfaces. Assume that

we have k − 1 number of blocks and we would like to place another block on top

of them. In such a condition, we should start to observe that the combination of

the center of mass point of the top two blocks should be the member of the set of

the top third block. This condition check will continue until reaching the bottom

block as an support surface. This constraint is given in Equation 3.4.

i∑

j=0

mk−j
0pCOMk−j

mk−j

pCOM k ∈ 0Sk−i−1 where i > 0 and i < k − 1 (3.4)

3.2.3 Term Language

So far, we have described the definition and properties of our application domain,

relations between these definitions and constraints on this domain. However, all

these explanations have to be encoded in a way that they can be used in a logical

system. Hence, the term language of our domain will be defined using BNF

notation. It will subsequently form the main part of the constrained domain for

linear logic.

Set: si | Rotate(Set, Angle) | Translate(Set, Point) |
toSet(Point)

Point: Point Def(Coordinate, Coordinate) |
Scale(Point, Point, Mass, Mass)

Mass: mi

Coordinate: x | 0
Angle: y

Constraint: Set ⊃ Set

Table 3.7: BNF notation of Blocks World 3D
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In Table 3.7, BNF notations for Blocks World 3D are defined. Here, con-

straints consist of only Sets. Since we would like to find whether the center of

mass point is the member of a set, the toSet predicate is employed to transform

an arbitrary point to the set which will include only one element. In order to

rotate and translate the set from its own frame to the World Frame, the Rotate

and Translate predicates are used respectively. The Scale predicate calculates

the mass balance point between two points. The usage of this encoding will be

found in Chapter 4.



Chapter 4

Intuitionistic Linear Logic

4.1 Introduction and Motivation

Linear Logic was discovered by J.Y. Girard in 1987 and published in his famous

paper [16]. In the abstract of this paper, he states that “completely new approach

to the whole area between constructive logics and computer science is initiated”.

The fundamental idea under Linear Logic is to control the use of resources.

In Chapter 2, we clarified the difference between Intuitionistic and Classical

Logics. One of the important features for Intuitionistic Logic over Classical Logic

was the isomorphism between proofs and programs. This has the benefit that

each proof in intuitionistic logic directly corresponds to a program. Therefore, a

specific domain problem such as robotic planning problem would be possible to

solve only searching a proof by using proof search procedures on the application

domain that is encoded in logical form. Since we deal with the planning problems,

intuitionism will fit for our purpose. The materials in this chapter have been

inspired from the Pfenning’s notes about Intuitionistic Linear Logic [36].

In Chapter 3, while describing about the frame problem, we noted that we

needed to introduce the notion of state. We have already described the notion of

judgement and proposition in Chapter 2. However, this two forms of judgement

32
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is not sufficient to explain logical reasoning from assumptions. Therefore, we

need to introduce new primitive notions such as linear hypothetical judgement

and linear hypothetical proof. The general form of linear hypothetical judgement

can be written as

A1 true, ..., An true ⇒ C true.

The meaning of this judgement is that we can prove C from assumptions

A1, ..., An, using every assumption exactly once. We say that the left side of the

entailment part is the consumable resources, where the right side is the goal to be

achieved. Since the notion of state concept is introduced using such a judgement,

the planning problems which are reduced into the state transition problem could

be solved by the logical viewpoint.

The judgement above allows only linear hypothesis. Hence, we have no chance

to encode ordinary intuitionistic logic to our system. Furthermore, we mostly

need some assumptions that will be used everytime, called non-consumable re-

sources. Therefore, we need to make a distinction between consumable and non-

consumable resources in our representation. Generally, the ∆ letter is used to

range over a collection of linear assumptions while the Γ is used to range over

a collection of assumptions that are used arbitrarily many times. These letters

correspond to a unique context where the ∆ and the Γ letters form the restricted

and unrestricted context respectively. For all these definitions, our judgement

will be in a form such that:

Γ; ∆ ⇒ A true.

The combination of linearity and intuitionism will allow us to use both the con-

sumable resources and proofs-as-programs property. This combination is named

as Intuitionistic Linear Logic in literature. The proof theory and the connectives

of this logic will be mentioned in later sections.

One has to bear in mind that linear assumptions are viewed as resources

and conclusions are viewed as the products by spending the given resources.



CHAPTER 4. INTUITIONISTIC LINEAR LOGIC 34

Therefore, two of three structural rules, contraction and weakening, of traditional

logics are absolutely rejected. The contraction states that a conclusion which

follows from two same assumptions can be derived from just one assumption.

Γ; A, A ⇒ B

Γ; A ⇒ B
Contraction

The weakening expresses that if a conclusion follows from some assumptions

then that conclusion can also be derived after increasing the number of these

assumptions.

Γ; A ⇒ B

Γ; A, C ⇒ B
Weakening

The only structural rule that intuitionistic linear logic preserve is the exchange

which states that the order of the assumptions in derivation does not matter.

Γ; A, C ⇒ B

Γ; C, A ⇒ B
Exchange

4.2 Linear Connectives with an Example

In this section, we give an introduction to the linear connectives and an example

in order to provide the reader with an initial familiarisation for their meanings

and usage. He can also find the formal declarations of these connectives in the

next section. Before that, a fundamental formula will be mentioned firstly.

A ⇒ A is the first rule which is derived from the nature of linear hypothetical

judgement itself. It means that the resource A is spent to give a product of A.

Now it is time to give an initial information about the linear connectives. One

of the most notable feature about the intuitionistic linear logic is that it has two
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forms of conjunction (⊗ and &) and two forms of truth (> and 1). On the other

hand, there is only one connective for implication (−◦), one form of falsehood (0)

and one for disjunction (⊕). There are also various types of linear connectives

other than these ones in the literature, however all of the connectives that are

mentioned above are utilized for providing intuitionistic purposes while the others

satisfy the classical objectives. (e.g. multiplicative disjunction connective (P) and

bottom connective(⊥))

• Linear Implication (−◦):

A −◦ B means that B can be produced by consuming an A.

• Simultaneous Conjunction (⊗):

If both A and B are true in the same state then we can write A ⊗ B. A⊗B

means that our resources can produce both A and B simultaneously.

• Alternative Conjunction (&):

A & B means that our resources can make A or B available, but not both

simultaneously. This is called internal choice. For instance, if we have one

dollar and the price of a coffee and a tea is one dollar, then, we have to

make a choice to buy a coffee or tea. Our resource, one dollar, can only

produce one of them.

• Disjunction (⊕):

A⊕B means that our resources can make either A or B available, but you

do not know which one is produced. This is called external choice. For

example, if we have one dollar and we would like to buy a coffee or a tea

from vending machine and this machine gives us one of them randomly,

then A ⊕ B shall be used.

• Unit (1):

The goal 1 can always be produced from the resource of nothing. This is

the identity for simultaneous conjunction. (A ⊗ 1 ≡ A)

• Top (>):
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The goal > can always be achieved regardless of which resource we have.

It always consumes all of the resources. > is the identity for alternative

conjunction. (A & > ≡ A)

• Impossibility (0):

The 0 is the identity for the disjunction. It corresponds to the impossible

resource, so that external choice of 0 and A is always A. (A ⊕ 0 ≡ A)

• “Of Course” Modality (!):

The ! is a way to connect the unrestricted hypothesis with restricted ones.

It will be described in next section clearly.

Using these new linear connectives, we can now define an example domain

and encode this domain to intensify the meanings of these connectives. The

French Restaurant example is one of the famous examples and makes the reader

to understand the matter easily.

Menu A: FF 200 FF(200) −◦

Onion Soup or Clear Broth ((OS & CB)

Honey Glazed Duck ⊗ HGD

Peas or Red Cabbage ⊗ (P ⊕ RC)
(according to season)

New Potatoes ⊗ NP

Chocolate Mousse ((FF(30) −◦ CM) & 1)
(FF 30 extra)

Coffee ⊗ C
(unlimited refills) ⊗ (!C))

Table 4.1: French Restaurant Menu and Corresponded Linear Logic Encoding

In Table 4.1, note that the alternative conjunction(&) is used when a customer

can determine his own meal. However, the disjunction(⊕) is used when a meal
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varies according to season. Also he has to pay extra 30 French Francs to eat

chocolate mousse or he can choose nothing (1) to eat.

4.3 Proof Theory

Developing linear logic in the form of natural deduction, is highly economical,

in that we only need one basic judgement (A true) and two judgement forms

(linear and unrestricted hypothetical judgements) to explain the meaning of all

connectives we have encountered so far. However, it is not well-suited for proof

search, because it involves both forward and backward reasoning.

In Chapter 2, we have mentioned that sequent calculus is the best mechanism

to do proof search because of its nature of backward reasoning. In this section,

we develop a sequent calculus rather than natural deduction as a calculus of proof

search for Intuitionistic Linear Logic.

We now summarize the rules of Intuitionistic Linear Logic. The logic we

consider here comprises the following logical operators.

Propositions A := P Atoms
| A1 −◦ A2 | A1

⊗ A2 | 1 Multiplicatives
| A1 & A2 | > | A1

⊕ A2 | 0 Additives
| ∀x.A | ∃x.A Quantifiers
| A ⊃ B | !A Exponentials

4.3.1 Sequent Calculus

Based on the notion of linear hypothetical judgment, we now introduce the various

connectives of Intuitionistic Linear Logic using sequent calculus. Before giving

details of linear connectives, we firstly describe two rules. One of them called

init explicitly states a connection between resources and goals and the other one

called copy relates the unrestricted context and restricted context. Most of the
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information in this section is borrowed from Pfenning’s notes about Intuitionistic

Linear Logic [36].

Init. It is the basic sequent that means with resource A, we can achieve goal

A

Γ; A ⇒ A
init

.

Copy. It creates a resource from the unrestricted context and copies it into

the restricted context

Γ, A; ∆, A ⇒ A

Γ, A; ∆ ⇒ A
copy

.

The remaining rules are divided into right and left rules. Each linear connec-

tive has own left and right rules.

Simultaneous Conjunction. Assume we have some resources and we want

to achieve goals A and B simultaneously, written as A ⊗ B (A tensor B). We

need to split our resources into ∆1 and ∆2 and show that with resources ∆1 we

can achieve A and with ∆2 we can achieve B

Γ; ∆1 ⇒ A Γ; ∆2 ⇒ B

Γ; ∆1, ∆2 ⇒ A ⊗ B
⊗R

Here, the important part is that the splitting of resources, from bottom to

top, is a non-deterministic operation.

The left rule captures that if we achieve goal C using simultaneously occurring

resources A and B, then we could achieve same goal C from same resources A

and B

Γ; ∆, A, B ⇒ C

Γ; ∆, A ⊗ B ⇒ C
⊗L

.
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Alternative Conjunction. We write A & B if we can goals A and B with

the current resources, but only alternatively. The right rule for the alternative

conjunction asserts that if we achieve goal A&B from resources ∆, then we could

achieve goal A or alternatively B from same resource ∆

Γ; ∆ ⇒ A Γ; ∆ ⇒ B

Γ; ∆ ⇒ A & B
&R

.

The right rule for alternative conjunction appears to duplicate the resources.

However, this is an illusion: since we will actually have to make a choice between

A and B, we will only need one copy of the resources.

If we achieve goal C from resources A&B, we could achieve the same goal C,

either from A or B but alternatively. Therefore we need two left rules for that

purpose:

Γ; ∆, A ⇒ C

Γ; ∆, A & B ⇒ C
&L1

Γ; ∆, B ⇒ C

Γ; ∆, A & B ⇒ C
&L2

.

Linear Implication. The linear implication incorporates the linear hypo-

thetical judgement within level of propositions. A −◦ B (pronounced A linearly

implies B) is used for the goal of achieving B with resource A. Formally, if we have

resource ∆ to achieve goal A −◦ B, then we can achieve goal B from resources

∆ and A

Γ; ∆, A ⇒ B

Γ; ∆ ⇒ A −◦ B
−◦ R

.

The left rule for linear implication needs splitting resources as in the right rule

of simultaneous conjunction. Assume that if we have resources ∆ and A −◦ B to

achieve goal C, then we need to divide our resource ∆ into two parts such as ∆1

and ∆2 to achieve goal A from resource ∆1 and to achieve goal C from resources

B and ∆2
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Γ; ∆1 ⇒ A Γ; ∆2, B ⇒ C

Γ; ∆1, ∆2, A −◦ B ⇒ C
−◦ L

.

Unit. The trivial goal which requires no resources is written as 1

Γ; . ⇒ 1
1R

.

The left rule asserts that if we have resource 1 to achieve goal C, then we

could achieve the same goal C without the resource 1

Γ; ∆ ⇒ C

Γ; ∆, 1 ⇒ C
1L

.

Top. The goal which consumes all resources is written as >

Γ; ∆ ⇒ >
>R

.

It is the unit of alternative conjunction and there is no elimination for the >.

Disjunction. The disjunction A⊕B (called as external choice) is character-

ized by two introduction rules

Γ; ∆ ⇒ A

Γ; ∆ ⇒ A ⊕ B
⊕R1

Γ; ∆ ⇒ B

Γ; ∆ ⇒ A ⊕ B
⊕R2

.

The left rule of disjunction asserts that if we have resources A ⊕ B and ∆ to

achieve goal C, then we could achieve the same goal C from A and ∆ or B and

∆

Γ; ∆, A ⇒ C Γ; ∆, B ⇒ C

Γ; ∆, A ⊕ B ⇒ C
⊕L

.
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Note that resources ∆ appear in both branches, since only one of those two

derivations will actually be used to achieve C.

Impossibility. The impossibility 0 has no right rule. In the left rule, if we

achieve goal C from resource 0, then we could conclude nothing.

Γ; ∆, 0 ⇒ C
0L

.

Universal Quantification. We say ∀x.A is true with given resource ∆ if

[a/x]A is true with same resource ∆ for an arbitrary a. The notation of [a/x]A

means that the occurrences of x in A will be replaced by a. The label a must

be “new”, that is, it may not occur in ∆ or A. In other words, the label a is a

parameter which will be replaced by another term during backward proof search.

Here is the right rule for universal quantification:

Γ; ∆ ⇒ [a/x]A

Γ; ∆ ⇒ ∀x.A
∀Ra

.

The left rule replaces the parameter x with a term t:

Γ; ∆, [t/x]A ⇒ C

Γ; ∆, ∀x.A ⇒ C
∀L

.

Existential Quantification. The left and right rule of the existential quan-

tifiers are such as:

Γ; ∆ ⇒ [t/x]A

Γ; ∆ ⇒ ∃x.A
∃R

Γ; ∆, [a/x]A ⇒ C

Γ; ∆, ∃x.A ⇒ C
∃La

.

Unrestricted Implication. The proof of an unrestricted implication A ⊃ B

allows an unrestricted assumption A to achieve goal B
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(Γ, A); ∆ ⇒ B

Γ; ∆ ⇒ A ⊃ B
⊃ R

.

In the left rule, if we use resource A ⊃ B and ∆ to achieve goal C, then

we could achieve goal A without using linear assumptions and achieve C using

resource B

Γ; . ⇒ A Γ; ∆, B ⇒ C

Γ; ∆, A ⊃ B ⇒ C
⊃ L

.

“Of Course” Modality. This is an alternative way to connect unrestricted

and linear hypothesis. Here are the right and left rules:

Γ; . ⇒ A

Γ; . ⇒!A
!R

(Γ, A); ∆ ⇒ C

Γ; (∆, !A) ⇒ C
!L

.

We have defined the formal sequent calculus of Intuitionistic Linear Logic so

far, the summary of it can be found in Appendix.

4.3.2 The Linear λ-Calculus

In Chapter 2, we have mentioned about the proof terms that carries enough in-

formation to reconstruct its deduction when they are used to establish the truth

of a proposition. From intuitionistic point of view such proof terms describe con-

structions. That means a proof can keep its evidence throughout a proof search.

Moreover, these proof terms can be seen as a plan and program in the domain

of planning problems. We have also mentioned about the Curry-Howard isomor-

phism in which there is bijective correspondence between proofs in intuitionistic

logic and simply typed λ-terms. This correspondence make us possible to find

a plan just only constructing proofs in intuitionistic logic. Since we are working

on different type of intuitionistic logic, we now need to define new linear λ-terms

and assign these terms into the sequent calculus.
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4.3.3 Proof Term Assignment for Sequent Derivations

In this section we address the question of how to assign proof terms to sequent

calculus derivations. There are two possibilities to do this assignment. One is

that we can either develop a new proof term calculus specifically for sequent

derivations, or the other is that we can directly assign natural deduction proof

terms. The former is more appropriate for our purposes, since we have described

our connectives as sequents.

Firstly, we need a new judgement Γ; ∆ ⇒ I : A which means I is a proof

term for A under unrestricted hypotheses Γ and resources ∆. Proof terms to

be assigned to each inference rule can be determined by a close examination

of the soundness proof for the sequent calculus. Now, we can write down the

corresponding proof terms to each inference rule.

Initial Sequents.

Γ; u : A ⇒ u : A
init

Note that, for proof term assignments we abandon the previous convention of

omitting labels for hypotheses, since proof terms need to refer to them. Using

labelized notation will remove the ambiguity that which one of hypotheses is used.

Linear Implication. Linear implication corresponds to a linear function

types with corresponding linear abstraction and application. The proof of an

implication A −◦ B will be represented by a function which maps proofs of A to

proofs of B. The right rule explicitly forms such a function by λ-abstraction and

the left rule applies the function to an argument.

Γ; ∆, u : A −◦ M : B

Γ; ∆ ⇒ λu : A.M : A −◦ B
−◦ R
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Γ; ∆1 ⇒ M : A Γ; ∆2, w : B ⇒ I : C

Γ; ∆1, ∆2, u : A −◦ B ⇒ [uM/w]I : C
−◦ L

Simultaneous Conjunction. In the rules for the simultaneous conjunction,

the proof term for the left rule is a let form which deconstructs a pair, naming the

components. The linearity of the two new hypotheses means that the variables

must both be used in M .

Γ; ∆1 ⇒ M : A Γ; ∆2 ⇒ N : B

Γ; ∆1, ∆2 ⇒ M ⊗ N : A ⊗ B
⊗R

Γ; ∆, u : A, w : B ⇒ N : C

Γ; ∆, v : A ⊗ B ⇒ let u ⊗ w = v in N : C
⊗L

One. The multiplicative unit type allows us to consume linear hypotheses

without introducing new linear ones.

Γ; . ⇒ ∗ : 1
1R

Γ; ∆ ⇒ C

Γ; ∆, 1 ⇒ C
1L

Alternative Conjunction. The proof term for a alternative conjunction is

the pair of proofs of the premises.

Γ; ∆ ⇒ M : A Γ; ∆ ⇒ N : B

Γ; ∆ ⇒ 〈M, N〉 : A & B
&R

Γ; ∆, w : A ⇒ I : C

Γ; ∆, u : A & B ⇒ [fst u/w]I : C
&L1

Γ; ∆, w : B ⇒ I : C

Γ; ∆, u : A & B ⇒ [snd u/w]I : C
&L2

Top. The additive unit corresponds to a unit type with no operations on it.
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Γ; ∆ ⇒ 〈〉 : >
>R

Disjunction. It uses injection and case as constructor and destructor forms,

respectively.

Γ; ∆ ⇒ M : A

Γ; ∆ ⇒inlBM : A ⊕ B
⊕R1

Γ; ∆ ⇒ M : B

Γ; ∆ ⇒inrAM : A ⊕ B
⊕R2

Γ; ∆, v : A ⇒ I : C Γ; ∆, w : B ⇒ J : C

Γ; ∆, u : A ⊕ B ⇒ (case u of inl v ⇒ I | inr w ⇒ J) : C
⊕L

Impossibility.

Γ; ∆, u : 0 ⇒abort u : C
0L

To treat the quantifiers we extend our proof term calculus to handle the

quantifier rules. We overload the notation by reusing λ-abstraction and pairing.

There is no ambiguity, because the proof term for universal quantification binds

a term variable x (rather than a proof variable u), and the first component of the

pair for existential quantification is a first-order term, rather than a proof term

as for conjunction.

Universal Quantification. The proof term for a universal quantifier λx.A

is a function from a term t to a proof of [t/x]A.

Γ; ∆ ⇒ [a/x]I : [a/x]A

Γ; ∆ ⇒ λx.I : ∀x.A
∀Ra

Γ; ∆, w : [t/x]A ⇒ I : C

Γ; ∆, u : ∀x.A ⇒ [ut/w]I : C
∀L
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Existential Quantification. The proof term for an existential λx.A is a

pair consisting of a witness term t and the proof of [t/x]A.

Γ; ∆ ⇒ I : [t/x]A

Γ; ∆ ⇒ 〈t, I〉 : ∃x.A
∃R

Γ; ∆, w : [a/x]A ⇒ [a/x]I : C

Γ; ∆, u : ∃x.A ⇒ (let 〈x, w〉 = u in I) : C
∃La

Unrestricted Implication. Unrestricted implication corresponds to the

usual function type from the simply-typed λ-calculus.

(Γ, v : A); ∆ ⇒ M : B

Γ; ∆ ⇒ λv : A.M : A ⊃ B
⊃ R

Γ; . ⇒ M : A Γ; ∆, w : B ⇒ I : C

Γ; ∆, u : A ⊃ B ⇒ [uM/w]I : C
⊃ L

“Of Course” Modality. The rules for the of course operator allow us to

name term of type !A.

Γ; . ⇒ M : A

Γ; . ⇒!M :!A
!R

(Γ, v : A); ∆ ⇒ I : C

Γ; (∆, u :!A) ⇒ ( let !v = u in I) : C
!L

Below is a summary of the linear λ-calculus:

4.4 Problems with ILL

Intuitionistic Linear Logic provides an effective way of capturing state changes

and creating programs for the planning problems that we deal with. However,

traditional linear logic lacks continuous reasoning. Almost all robotic planning

problems include dynamical constraints in conjunction with state transitions.

Since we would like to represent and reason about these problems in our logical
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M := u Linear
Variables

| λu : A.M | M1 M2 A −◦ B
| M1

⊗ M2 | let u1
⊗ u2 = M in N A ⊗ B

| ∗ | let ∗ = M in N 1

| 〈M1, M2〉 | fst M1 | snd M2 A & B
| 〈〉 >
| inlBM | inrAM | (case u of inl v ⇒ I | inr w ⇒ J) A ⊕ B
| abort M 0

| v Unrestricted
Variables

| λu : A.M | M1 M2 A ⊃ B
| !M | let v = M in N !A

formalism, current nature of Intuitionistic Linear Logic is not enough to achieve

our goals. Therefore, we need to find a way to combine dynamical constraints

with linear logic. Ideally, it would be possible to add domain specific constraint

solvers into our logical formalism.

4.5 The Constraint Extensions to ILL: CILL

The constraint extension to linear logic will bring us increased expressive power

to represent a domain which comprises both dynamical constraints and state

changes. Although there are other ways to encode such a domain within pure

logical theory, the complexity in practice leads to significant amount of limita-

tions when applied to specific domain. By using constraint solvers specific to a

particular domain, we can reduce the complexity associated with the encoding.

Thus, the constraint solver itself can handle all the consistency problems in it

and we only focus on just representation of constraints in our logic.

In this section, we describe a new representational framework based on Intu-

itionistic Linear Logic extended with two new logical connectives to incorporate

continuous constraints directly into the language.
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4.5.1 Additional Connectives for CILL

At the beginning of this chapter, we mentioned that we have a new form of

judgements to differentiate the notion of consumable resources and unrestricted

hypotheses. Now, we need a new context to collect and solve constraints called

constraint context. The new judgement defined for that purpose is

Ψ | Γ; ∆ ⇒ A true.

The meaning of this judgement is just extended from our previous judgement

that we could achieve goal A only if constraints in Ψ are satisfiable and we

have ∆ consumable resources and Γ unrestricted hypotheses. Along with the

modification on our judgement, the given sequent calculus for Intuitionistic Linear

Logic has to be revised. Since newly added constraint context has no effect on

the meanings of existing inference rules and connectives, only adding the new

context at the beginning of each judgement would be enough. However, we need

new connectives in order to relate constraints with our consumable resources and

unrestricted hypotheses. Thus, we now describe two additional connectives to

incorporate constraints into our formalism.

Constraint Implication. If we have a constraint implication such as, D ⊃c

A then we need to show that the goal A can be achieved under the constraint D.

The following left and right rules provide a formal definition for this connective:

(Ψ, D) | Γ; ∆ ⇒ A

Ψ | Γ; ∆ ⇒ D ⊃c A
⊃c R

Ψ |= D Ψ | Γ; ∆, A ⇒ C

Ψ | Γ; ∆, D ⊃c A ⇒ C
⊃c L

.

The right rule for this connective asserts that in order to achieve goal D ⊃c A,

we need to verify that inserting the new constraint D into constraint context

should preserve consistency of within context, and that we can also achieve goal

A under the same consumable resources and unrestricted hypotheses.

The left rule for this connective is very similar to typical left rules for im-

plication, however now the constraint D has to be handled by an other proof
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procedure specific to the constraint domain. We denote this proof procedure as

Ψ |= D, which means the model of Ψ has to also be super set of the model of

D. For example, assume that we use integer constraints for our domain and Ψ

includes x > 1 and x < 5. Thus the constraint context knows that x can take

the values {2, 3, 4} corresponding to the model of Ψ. In addition to this, assume

that D includes x > 2. In such a condition, the model of D is {3, 4, ...}. Since the

model of D is not a subset of Ψ, the proof procedure concludes that Ψ |= D is

not satisfied. All of the procedures described in this example are carried out by a

constraint solver which is not an integral part of the logical formalism. In other

words, the constraint proof procedure is a black box that takes constraints and

returns their consistency or whether the model of current constraints is satisfied

or not. All of the procedures for constraints will be described in Chapter 5 under

the Constraint Logic Programming section in detail.

Constraint Conjunction. If we would like to show that an example con-

straint conjunction, D ∧c A is achievable, then we need to show that both the

goal A can be achieved with given resources and constraint D is satisfiable under

given constraints. The following right rule is the formal definition of it:

Ψ |= D Ψ | Γ; ∆ ⇒ A

Ψ | Γ; ∆ ⇒ D ∧c A
∧cR

.

Observe that Ψ |= D is handled in the same way as the previous section. The

left rule asserts that the constraint D and consumable resource A is ejected from

the structure of Ψ | Γ; ∆, D∧cA ⇒ C and each component is inserted into its own

context. Moreover, the constraints context has to preserve its consistency and

goal C has to be achieved under the extended resource context and constraint

context.

(Ψ, D) | Γ; (∆, A) ⇒ C

Ψ | Γ; ∆, D ∧c A ⇒ C
∧cL
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There are also some auxiliary definitions to provide soundness and complete-

ness of the CILL system.

Constraint Contradiction. If we have a inconsitent constraint domain,

then we conclude that we can achieve any arbitrary goal:

Ψ |= ⊥

Ψ | Γ; ∆ ⇒ C
⊥

Constraint Split. A constraint can be divided into two or finite parts. For

example, if we cannot conclude anything when the constraint is between 1 and 4,

then we can try to conclude using both 2 and 3. It seems that constraint splitting

will be very useful for set constraints:

Ψ |= Ψ1 ∨ Ψ2 Ψ1 | Γ; ∆ ⇒ C Ψ2 | Γ; ∆ ⇒ C

Ψ | Γ; ∆ ⇒ C
∨

Ψ |= ∃x.Ψ1(x) Ψ1(x) | Γ; ∆ ⇒ C

Ψ | Γ; ∆ ⇒ C
∃

4.5.2 An Example: Encoding Blocks World 3D within

CILL

Before using this language in Linear Logic, we have to define predicates in order

to represent the dynamic state. Each block in Blocks World 3D is named and

their geometry is specified through three functions from the set of block names.

These functions encode the set of all points of the block and the center of mass

point at its own frame as well as the mass of the block. The predicates are shown

in Table 4.2. At the first part of Table 4.2, the predicates to define the dynamic

state of the system is shown and at the second part of this table, the invariant

states about the world is shown.
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dynamic state of the system
tableempty There are no blocks on the table
ontable(a, θ, t) Block a is on the table with given translation t

and rotation θ
available(a) Block a is available for placement
on(a, b, θ, t) Block a is on top of Block b with given

translation t and rotation θ
check(Sb, Θb, tb, Pa, Po, ma, mo) Checks whether given Pa, Po with combination mass

ma, mo is on the supporting surface of Sb

clear(a) The top of Block a is clear

invariant facts about the world
support(a) It gives the set of all points of the Block a

at its own frame
comp(a) It gives the center of mass point of the Block a

at its own frame
mass(a) Mass of Block a

Table 4.2: Resource predicates for the Blocks World 3D

Table 4.3 shows encoding of Blocks World 3D actions using CILL properties.

As you see, the predicates, Point Def, Scale, toSet, Rotate and Translate, defined

in Chapter 3 are used to integrate the term language and resources predicates of

Blocks World 3D.

4.5.3 Example: Placing a Block on Block Tower using

CILL

Placing a block on block tower is a good practice to understand the representation

of actions and rules in CILL. Our trivial goal is to achieve the balance of block

tower when placing block a on block b that is on the table where the rotation of

block a must not pass the angle 45 degrees:

G := ∃Θa. ∃ta. (Θa <= 45) ∧c on(a, b, Θa, ta) ⊗>
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Here, > is used for consuming all unused resources at the end of the proof

search. Our initial state, where there are two blocks and empty table yield the

linear context:

∆0 = (tableempty, available(a), available(b))

Our unrestricted hypotheses (Γ) include actions that are available in the form

of linear implications, summarized in Table 4.3. These implications are used

many times without consuming themselves. At this point, the planning problem

reduces to finding a proof for the following CILL sequent:

Ψ |Γ; ∆0 ⇒ G

The actions putonblock1 and putonblock2 is used to place a block on top of an

existing one on the tower. The only difference between them is that the former

places a block on the block that is on the table, while the latter puts a block on

the block that is on the another block. In order to perform balance check, when

a block is placed on another block using above actions, we ensure that the center

of mass of connected groups of blocks from top to bottom should lie on support

surfaces. This can be possible by calling check(support(b), Θb, tb, pa, pz, ma, mz)

predicate recursively to figure out whether the center of mass point of each block

is a subset of supporting surface set until the bottom block is reached. Here,

b, Θb, tb is used to form the supporting surface set with respect to the World

Frame. pa is a center of mass point of the block to be checked. pz is previous

center of mass points of blocks above from the block to be checked. ma is mass of

the block to be checked. mz is previous total mass of blocks above from the block

to be checked. The check predicate is introduced for the topmost block with the

application of the putonblock1 or putonblock2 according to the situation whether

the block is placed on the block that is on the table or not. It will be iterated

through the hypothesis checkiterblock1 until the query reaches one above from the

bottom block with the hypothesis checkiterblock2 and eventually bottom block

with the hypothesis checkitertable.
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For our example, the proof search procedure forms the derivation from bottom

that putontable hypothesis is firstly used for the block b with rotation Θb and tb.

Therefore, we have consumed the predicates tableempty and available(b) and we

product the resources clear(b) and ontable(b):

∆1 = (available(a), clear(b), ontable(b, Θb, tb))

putonblock1 hypothesis is used for the block a with rotation Θa and translation

ta and its orientation will be checked with checkitertable to ensure that the given

orientation does not lead the block tower to collapse. We have consumed the re-

sources, available(a) and clear(b), and have produced the resources on(a, b, Θa, ta)

and clear(a):

∆2 = (on(a, b, Θa, ta), clear(a), ontable(b, Θb, tb))

The following is the constraint to be satisfied:

C1 : toSet(Scale(comp(a), (0, 0), mass(a), 0)) ⊃ Translate(Rotate(support(b), Θb), tb)

means center of mass point of block a at World Frame should be the subset of

set of all points of block b at World Frame.

However, we are not done yet, since we need to use the right rule of the ∧c

connective whether our constraint domain C1 entails the constraint Θa <= 45:

C1 |= (Θa <= 45)

Eventually, it returns the required limit of orientation for each block where

Θa must be smaller than 45 degrees and center of mass point of block a at World

Frame should be the subset of set of all points of block b at World Frame. This

example shows us that we can solve planning problems including both discrete

and continuous properties using CILL encodings.
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putontable : ∀a. ∃Θa. ∃ta. tableempty ⊗ available(a) −◦

ontable(a, Θa, ta) ⊗ clear(a)

pullofftable : ∀a. ∀Θa. ∀ta. ontable(a, Θa, ta) ⊗ clear(a) −◦
available(a) ⊗ tableempty

pulloffblock : ∀a. ∀b. ∀Θa. ∀ta. on(a, b, Θa, ta) ⊗ clear(a) −◦
available(a) ⊗ clear(b)

putonblock1 : ∀a. ∀b. ∀Θb. ∀tb. ∃Θa. ∃ta. clear(b) ⊗ available(a) ⊗

ontable(b, Θb, tb) −◦ on(a, b, Θa, ta) ⊗ ontable(b, Θb, tb) ⊗

check(support(b), Θb, tb, comp(a) + ta, Point Def(0, 0),
mass(a), mass(0)) ⊗ testing(a)

putonblock2 : ∀a. ∀b. ∀c. ∀Θb. ∀tb. ∃Θa. ∃ta. clear(b) ⊗ available(a) ⊗

on(b, c, Θb, tb) −◦ on(a, b, Θa, ta) ⊗ on(b, c, Θb, tb) ⊗

check(support(b), Θb, tb, comp(a) + ta, Point Def(0, 0),
mass(a), mass(0)) ⊗ testing(a)

checkitertable : ∀a. ∀b. ∀c. ∀Θa. ∀ta. ∀Θb. ∀tb. ∀pa. ∀pz. ∀ma. ∀mz .
ontable(b, Θb, tb) ⊗ testing(c) ⊗

check(support(b), Θb, tb, pa, pz, ma, mz) ⊗ on(a, b, Θa, ta) −◦
toSet(Scale(pa, pz, ma, mz)) ⊃
Translate(Rotate(support(b), Θb), tb) ⊃c

on(a, b, Θa, ta) ⊗ ontable(b, Θb, tb) ⊗ clear(c)

checkiterblock1 : ∀a. ∀b. ∀c. ∀d. ∀Θa. ∀ta. ∀Θb. ∀tb. ∀Θc. ∀tc. ∀pa. ∀pz.
∀ma. ∀mz . on(c, d, Θc, tc) ⊗ on(b, c, Θb, tb) ⊗

check(support(b), Θb, tb, pa, pz, ma, mz) ⊗ on(a, b, Θa, ta) −◦
toSet(Scale(pa, pz, ma, mz)) ⊃
Translate(Rotate(support(b), Θb), tb) ⊃c

on(a, b, Θa, ta) ⊗ on(b, c, Θb, tb) ⊗ on(c, d, Θc, tc)
check(support(c), Θc, tc, comp(b) + tb, Scale(pa, pz, ma, mz),
mass(b), ma + mz)

checkiterblock2 : ∀a. ∀b. ∀c. ∀Θa. ∀ta. ∀Θb. ∀tb. ∀Θc. ∀tc. ∀pa. ∀pz.
∀ma. ∀mz . ontable(c, Θc, tc) ⊗ on(b, c, Θb, tb) ⊗

check(support(b), Θb, tb, pa, pz, ma, mz) ⊗ on(a, b, Θa, ta) −◦

toSet(Scale(pa, pz, ma, mz)) ⊃
Translate(Rotate(support(b), Θb), tb) ⊃c

on(a, b, Θa, ta) ⊗ on(b, c, Θb, tb) ⊗ ontable(c, Θc, tc) ⊗

check(support(c), Θc, tc, comp(b) + tb, Scale(pa, pz, ma, mz),
mass(b), ma + mz)

Table 4.3: CILL Representations of BW3D Actions and Supporting Rules for
Checking Balance
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Interlude: Logical Formalisms

5.1 A Logical Framework: Twelf

5.1.1 Logical Frameworks

Logical Framework is a meta-language in which one can define and reason about

formal properties of different logics and programming languages. Logical Frame-

works have been designed for high-level specification of languages in logic and

computer science. LF is the abbreviation of LF Logical Framework which is

introduced by Harper, Honsell and Plotkin [21].

Formalizing a language or deductive system within a logical framework consid-

erably simplifies reasoning about certain properties of such languages. We refer

to a language that we formalize in LF as an object language. The techniques of

formalization consist of three common stages. The first stage is the representation

of the abstract syntax for the object language. For example, if we are interested

in to represent boolean types, we first need to specify the languages of expres-

sions and types of boolean system. The second stage is the representation of the

language semantics. There are two types of it. One of them is static semantics

which can be constructed with the notion of value and type system. The other

55
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is dynamic semantics which can be constructed with operational semantics. The

third stage is the representation of meta-theory of the object language where the

proof of type preservation is the best example to represent it.

5.1.2 Twelf System

Twelf depends on the LF type theory and the judgements-as-types methodology

for specification, a constraint logic programming interpreter for implementation

[32] and the meta-logic M2 for reasoning about object languages encoded in LF

[46]. It is the extension and reimplementation of the Elf system [33]. Furthermore,

it is written in Standard ML and can run under SML of New Jersey on Unix and

Windows platforms.

The Twelf System is a tool for experimentation in the theory of programming

languages and logics. It supports diverse tasks which are specification of object

languages and their semantics, implementation of algorithms exploiting object-

language expressions and deductions, and formal development of the meta-theory

of an object language.

Twelf uses the representation methodology and underlying type theory of the

LF logical framework. Expressions are represented as LF objects employing the

technique of higher-order abstract syntax abbreviated as HOAS. This technique

has an important advantage that variables bound in the object language will be

bound by λ in the meta-language. In other words, variables of an object language

are mapped to variables in the meta-language. As a result of this property, we

do not need to program a new operation for renaming of bound variables or

capture-avoiding substitution which are directly supported by the framework.

LF employs the judgements-as-types representation technique for semantic

specification. This means that a derivation is coded as an object whose type

represents the judgement it establishes. Therefore, just type-checking the rep-

resentation of a derivation in the logical framework provides us to check the

correctness of it.
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Twelf supports the implementation of algorithms to exploit expressions or

derivations by a constraint logic programming interpretation of LF signatures.

The operational semantics is based on backtracking and goal-directed search for

an object of a given type.

Twelf provides higher-level judgements and the meta-logic M2 to express the

meta-theory of deductive systems.

5.1.3 Main Features of Twelf as a Logical Framework

The choice of using Twelf system as a Logical Framework has numerous advan-

tages. The main advantage is that it is written and tested by great community

who has been implemented several case studies, written too many documents and

tutorials about it. Because of these properties, it has been chosen several people

who are working on Logical Framework and hence it is seen as pioneer in the field

of Logical Frameworks.

Since Twelf System is based on LF system, it carries the features of LF.

Furthermore, it leads to several features to increase the user’s capability on using

it. The main features of the Twelf logical framework can be summarized as

follows:

• Twelf is a tool to mechanize the metatheory.

• It represents the syntax of the formal system.

• It represents the judgements of the logic.

• It relates among the elements of the syntax.

• It states theorems about the judgements.

• It proves these theorems.

Moreover, Twelf includes a type checker for the LF, an operation interpreta-

tion of LF as proof search procedure, a theorem checker about represented logics



CHAPTER 5. INTERLUDE: LOGICAL FORMALISMS 58

and a theorem prover. However, the theorem prover is not satisfactory that it

does include proof finding.

5.1.4 An Example for Twelf

At the beginning of this chapter, we have described the features of Twelf as a tool

that assists people designing deductive systems. If someone has an idea to design

a programming language, first he should formalize the syntax of the language and

give the meaning of syntax by defining some judgements for it in the LF logical

framework. He also uses Twelf to check proofs of theorems. Moreover, he uses

Twelf to run language definition itself to try out some examples. In this section,

we would like to show how a very simple deductive system (natural numbers with

addition) will be introduced according to these formalization techniques. This

example offers a trivial tutorial about defining deductive system using Twelf

Logical Framework.

Informally, the syntax of the natural numbers is defined by the following

grammar:

n ::= zero | succ(n)

That is, zero is a natural number, and if n is a natural number, then succ(n)

is as well.

We represent an object language of natural numbers in LF by writing an LF

signature. A signature declares type and term constants. For example, this LF

signature defines a type representing the natural numbers:

nat : type.

z : nat.

s : nat -> nat.
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From the above signature, the LF type nat classifies the LF representations

of natural numbers. The LF constant z corresponds to zero and the LF constant

s corresponds to succ. The signature declares that z has type nat, which makes

sense because zero is a natural number.

The signature declares that s has function type nat -> nat. An LF term of

function type can be applied to another LF term of the appropriate type to form

a new term. For instance, the constant s can be applied to the constant z to

form the term s z representing the number succ(zero). Then s can be applied

to this term to form s (s z), and so on. An informal natural number succ(n) is

represented by the LF term s N where n is represented by N.

So far, we have seen how we can represent a syntax of deductive system,

now we start to represent the judgements. We first state the judgement that a

number is even. At the beginning, we need to make informal definition about

even numbers:

even(zero)

even(n)

even(succ(succ(n)))

where zero is an even number and the judgement even(n) holds when n is

even.

Previously, we have represented the syntax of an object language as the in-

dividuals of an LF type. Mainly, we also represent the judgement of an object

language with an LF type, where the individuals of type correspond exactly to the

derivations of judgement. However, the current simply-typed LF is not adequate

to represent judgements. Therefore, we need to generalize our simply-typed LF

to dependently-typed LF. A dependently-typed language is convenient because

object language judgements are parameterized by their subjects. For instance,

even(n) is parameterized by the number n being judged to be even. For that

reason, in order to represent judgements as LF types, we should consider LF

types that are parameterized by the subjects of object language judgements. In

other words, the subjects of judgements are the syntax of the object language
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and LF types of judgement representation are parameterized by these subjects.

Since the judgement subjects are represented as LF terms, in order to represent

judgements as LF types, it is obvious that families of LF types are parameterized

by LF terms.

For example, the following signature represents the judgement even(n):

even : nat -> type.

even-z : even z.

even-s : {N:nat} even N -> even (s (s N)).

The first declaration states that even is a family of types indexed by a nat

which is defined previously as an LF type of our syntax.

The first term constant, even-z, has type even z. This constant represents

the derivation that consists of the first inference rule above, which concludes

even(zero).

The second term constant even-s, corresponds to the second inference rule

above. It states that for any n, it constructs a derivation of even(succ(succ(n)))

from a derivation of even(n). As we have mentioned before, in order to encode

this inference rule, the constant even-s is given a dependent function type.

The syntax x:A1 A2 represents a dependent function type, which is a gener-

alization of the ordinary function type A1 -> A2 that allows the argument term

x to appear in A2. We write the ordinary function type -> as a synonym when

the argument is not free in the result type, for example A1 -> A2 means :A1

A2. Just as with the ordinary function type, LF terms of dependent function type

can be applied to a term of the argument type to form a new term.

The dependent function type is used to bind the variable N in the type (even N

-> even (s (s N))), expressing that the inference rule is schematic in n. When

a term of dependent function type is applied to an argument, the argument is

substituted into the result type. For example, the term even-s z has type even

z -> even (s (s z)) where it is the specialization of the inference rule to n =
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zero. Thus, the term

even-s z even-z

represents the derivation

even(zero)

even(succ(succ(zero)))

The other judgement addition can be represented as relation of two natural

numbers to their sum:

plus(zero, n1, n1)

plus(n1, n2, n3)

plus(succ(n1), n2, succ(n3))

This judgement defines addition by induction on the first argument and it is

represented by the following LF signature:

plus : nat -> nat -> nat -> type.

plus-z : {N1:nat} plus z N1 N1.

plus-s : {N1:nat} {N2:nat} {N3:nat}

plus N1 N2 N3 -> plus (s N1) N2 (s N3).

The type family plus is indexed by three terms of type nat because the

informal judgement has three parameters. The constants correspond to the two

inference rules. For example,

plus-s (s z) (s z) (s (s z))

(plus-s z (s z) (s z)

(plus-z (s z)))
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which has type plus (s (s z)) (s z) (s (s (s z))), represents a derivation

that 2 + 1 = 3.

We sometimes would like to reason about our theories, for example plus

relation is commutative. Especially whenever we have a derivation of plus N1 N2

N3, there is a different derivation of plus N2 N1 N3. We therefore ask ourselves

the same question: Is the relation total relation? Totality relations are one class

of statements about LF type families. A totality assertion for a type family is

specified by allocating some index positions as inputs and others positions as

outputs. We call this specification the mode of the totality assertion. Given a

mode specification, the totality assertion asserts that for all inputs, there exist

outputs that stand in the relation. Using plus as an example, if we allocate the

first two positions as inputs and the third position as an output, this specifies the

following totality assertion:

For all N1:nat and N2:nat, there exist N3:nat and D:plus N1 N2 N3.

For all that, Twelf can check totality of relations. Mechanizing such assertions

brings us that Twelf can verify totality assertions about LF type families on its

own. Twelf can do this by the following declarations:

• %mode => Which arguments are inputs which are outputs.

• %worlds => The theorems live in which context.

• %total => Which is the induction argument.

Using these declarations, we can show an example totality assertion about

plus type family such that:

plus_ident : {N : nat} plus N z N -> type.

%mode plus_ident +N -D.
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-: plus_ident z plus-z.

-: plus_ident (s N) (plus-s D) <- plus_ident N (plus-s D).

%worlds () (plus_ident _ _).

%total N (plus_ident N _).

5.2 Logic Programming through Prolog

There are two types programming languages in computer science. One of them is

named as imperative programming languages where programs are made up of com-

mands to be executed. A commonly used examples for this type of programming

languages are Pascal, Java and C. However, the other one is declarative program-

ming languages where programs are made up of definitions and statements about

the problem to be solved. Prolog and Lisp are broadly used imperative languages.

In logic programming, a program consists of a collection of statements ex-

pressed as formulas in symbolic logic. There are inference rules that allow a new

true formula from old true formulas. When a computer executes a logic program,

it uses inference rules to derive new formulas from the ones given in the program

until it finds one that expresses the solution of the problem. In other words, logic

programming systems solve goals by systematically searching for a way to derive

the answer from the program.

5.2.1 Constraint Logic Programming

Constraint Logic Programming is a constraint programming in which the logical

programming is extended to include concepts from constraint satisfaction that is

the process of finding solutions from set of constraints [24, 28, 23]. The following

can be an example of CLP :

A(X, Y ) :- (X + Y > 0) B(X) C(Y )
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which means the satisfaction of A(X, Y ) is dependent to the satisfaction of

the constraint (X + Y > 0), and the satisfaction of both B(X) and C(Y ).

A goal in constraint logic programming may include constraints in addition

to the literals. A proof for a goal is composed of the clauses that embody the

satisfiable constraints and the literals that can be proved by the other clauses.

The interpreter does the execution and the interpreter tries to prove the goal by

starting from the goal and recursively scanning the clauses. Since the satisfiability

of a constraint cannot always be determined when the constraint is encountered,

constraints encountered during the scan are stored in the constraint store. If

the set is unsatisfiable after addition of some constraints, the interpreter will

backtrack to try to find out the satisfiable constraints from other clauses.

The semantics of a constraint logic programs can be defined in terms of the

interpreter which maintains a pair < G, S > during execution. The pair consists

of two letters where G infers the current goal and S is called the constraint store.

The current goal contains the literals that the interpreter is trying to prove and

may contain the constraints to satisfy that it is trying to satisfy. The constraint

store contains the constraints that the interpreter is sure that all the constraints

are satisfiable with each other.

Initially the current goal is the main goal and the constraint store is empty.

The interpreter removes the first element from the current goal and starts to

analyse this element. This analysis is continued until there is a failure or a

successful termination. During the analysis the new literals may be added to the

current goal or the constraints may be added to the constraint store. The addition

of the constraints to the constraint store may introduce the unsatisfaction of

the constraints in constraint store. When this happens, the interpreter should

backtrack to the position where the constraints are satisfied. The successful

termination is generated when the current goal is empty and all the constraints

in constraint store are satisfiable.

Every time a constraint is added to the constraint store, the unsatisfaction of

the constraints is checked. The process of checking the unsatisfaction of the con-

straint would be inefficient. Rather than pursuing such method, the incomplete
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satisfiability checker can be used. It rewrites the constraints in the constraint

store to their equivalent simpler form. This is incomplete because it rarely proves

the satisfiability of unsatisfiable constraints in constraint store.

The semantics of constrained logic programming is defined in terms of deriva-

tions. The following notation shows the transition, which means one-step execu-

tion: < G, S > -> < G′, S ′ >. Such a transition can be possible in three cases.

A constraint element c in G, can be moved from to goal to the constraint store.

G′ = G/{c}, and S ′ = S∪{c}.

5.2.2 SWI-Prolog: A Prolog Enviroment

SWI-Prolog is a comprehensive software Prolog environment which offers the fea-

ture to debug and trace of a Prolog program using its graphics toolkit XPCE.

XCPE allows to stop the execution of a program at a demanded point and shows

all called predicates with a tree structure. This is not only the benefit of SWI-

Prolog. In order to realize our purpose about constraint solvers. It provides

libraries for Constraint Handling Rules (CHR), and Constraint Logic Program-

ming (CLP(Q, R)). CLP(Q, R) solves linear equations over rational or real valued

variables, covers the lazy treatment of nonlinear equations, features a decision al-

gorithm for linear inequalities that detects implied equations, removes redundan-

cies, performs projections (quantifier elimination), allows for linear dis-equations,

and provides for linear optimization. Some other important features of SWI-

Prolog are:

• It provides a flexible and fast interface to the C and C++ programming

languages. The interface allows for calling both-ways, and embedding of

the SWI-Prolog kernel in C/C++ projects.

• It is portable to many platforms, including almost all Unix/Linux platforms,

all Windows distributions and MacOS X with both 32-bits and 64-bits

support.

• It provides multithreading support.
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• It has unit testing support through PlUnit and literate programming sup-

port through PlDoc.

• It handles UNICODE character set.

5.2.2.1 ileanSeP: An Intuitionistic Sequent Theorem Prover

ileanSeP is implemented by Jens Otten and it is a Prolog program that imple-

ments a very compact theorem prover for first-order intuitionistic logic which

preserves the properties of soundness and completeness1. It is based on an intu-

itionistic sequent calculus using free term-variables and skolemization. Inference

rules are defined in a modular way which makes modifications to the calculus eas-

ily. This property makes us possible to modify current sequent prover with our

desired constrained extension. First of all, we give the implementation details of

ileanSeP to make clear some concepts like skolemization. The process of remov-

ing all the existential quantifiers from a formula is known as Skolemization. The

Herbrand theorem states that a formula F of first-order logic can be transformed

into a quantifier-free formula FH such that F is provable if and only if some fi-

nite disjunction of instances of FH can be proved in classical propositional logic.

The use of Herbrand functions in proof search is mostly called Skolemization.

However, Herbrand theorem cannot be applied directly to most logics, including

intuitionistic, linear, and modal logics, which typically lack the transformations

needed to convert F to FH . Hence, Shankar [47] presented an optimized form of

dynamic Skolemization for the intuitionistic sequent calculus.

The ileanSeP prover is invoked with prove(F ) where F is a first-order formula.

The logical connectives are expressed by “~” (negation), “,” (conjunction), “;”

(disjunction), “=>” (implication), “ <=>” (equivalence); quantifiers are expressed

by “all X:” (universal) and “ex X:” (existential).

The description of the implementation is divided into the parts path checking

and unification. In order to search proofs of a given formula, the two predicates

prove and fml are employed. The predicate prove gets one argument which

1Jens Otten’s website for ileanSeP: http://www.leancop.de/ileansep/
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takes a formula and initially starts the proof checking process. The predicate

fml is used to specify the particular characteristics of each logical connective or

quantifier:

fml(F,Pol,inv/noninv,L1,R1,L2,R2,S,FreeV,V,Cpy,Cpy1).

In fml predicate, F is the non-atomic first order formula. Pol is the polar-

ization of the formula which takes 1 for left rules and takes 0 for right rules.

inv/noninv is used for specifying the formula to be invertible or noninvertible.

L1 and R1 are the left and right rules of first premise and L2 and R2 are the left

and right rules of second premise after decomposing formula F. S is the unique

position in the formula tree and FreeV is the lists of free quantifier-variables of

the current branch in proof tree. V is the new free variable revealed after applying

current formula decomposition. Cpy contains a term which has to be copied later

on and bound to the parameter Cpy1.

The followings are the left and right rules of the ∧ connective of Gentzen’s

sequent calculus of intuitionistic logic:

Γ ⇒ A Γ ⇒ B

Γ ⇒ A ∧ B
∧R

Γ, A, B ⇒ C

Γ, (A ∧ B) ⇒ C
∧L

The corresponding encoding for the above connective within ileanSeP is as

follows:

fml((A,B), 0, inv, [], [A], [], [B], _, _, [], [], [] ).

fml((A,B), 1, inv, [A,B], [], [], [], _, _, [], [], [] ).

A free variable is introduced by quantifiers. Therefore, explaining one of the

quantifiers is beneficial to understand the usage of free variables within ileanSeP.

The followings are the existential quantifier of Gentzen’s sequent calculus of in-

tuitionistic logic:
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Γ ⇒ [t/x]A

Γ ⇒ ∃x.A
∃R

Γ, [a/x]A ⇒ C

Γ, ∃x.A ⇒ C
∃La

For the right rule of existential quantifier a new term t is introduced and

variable x in A are replaced by this new term. However, we need to replace x

with a new variable a in A for the left rule. As a result, this new variable must be

a variable which is not defined before and this variable must not be unified with

other variables or terms except itself during unification process. Therefore, we

replace the quantified variable by the Skolem-term S^FV in the current formula

F where S is the position of F (in the formula tree), FV is its free variable list.

Thus, the corresponding encoding is as follows:

fml(ex X:A, 0, nin, [], [C], [], [], _, _, [Y], X:A, Y:C).

fml(ex X:A, 1, inv, [C], [], [], [], S, FV, [], (X,A), (S^FV,C)).

The difference between implication rule and other rules except universal quan-

tifier in Gentzen’s intuitionistic sequent calculus is that the left implication rule

resumes in the left side of the first premise:

Γ, A ⇒ B

Γ ⇒ A ⊃ B
⊃ R

Γ, (A ⊃ B) ⇒ A Γ, B ⇒ C

Γ, (A ⊃ B) ⇒ C
⊃ L

Viewing from bottom-up, the left rule does not shrink compared to other rules.

For that reason, Prolog program can continuously call the same rule. Therefore,

this has to be considered in such a way:

fml((A=>B), 1, nin, [(A=>B)], [C], [D], [], _, _, [!], A:B, C:D).

fml((A=>B), 0, inv, [A], [B], [], [], _, _, [], [], [] ).

An anonymous “!” added to FreeV whose size will later be compared to

VarLim. When comparison equals, then the program backtracks to select another
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matched rule in some point. This modification prevents from calling same rule

again and again.

There are totally 15 clauses that define the corresponding characteristics of

the intuitionistic connectives and quantifiers.

The predicate actually performing the proof search is:

prove(Left,Right,S,FreeV,VarLim).

It succeeds if unification finds correspondence between Left and Right for-

mulas after decomposing them. The parameter VarLim is a positive integer used

to initiate backtracking in order to obtain completeness within Prolog’s depth

search. The other parameters have been explained before.

Given a formula F, the program starts to search a proof using predicate prove

and assigns formula F to argument Right, l to argument S, 1 to argument VarLim

and gives empty set to the other two arguments. It initially starts to inspect to

match whether the left rule and right rule corresponds to any invertible rule

respectively. It later tries non-invertible rules to match. If there is no match,

it means atomic rules are in both left and right side and they are conveyed to

unification process. If there is a match, then the program checks whether the

depth-bound VarLim is reached. If depth-bound is reached, then the program

backtracks; otherwise the program decomposes the formula with a rule of matched

connective.

An example proof tree for ∀y.P (y) ⊃ ∃x.P (x) is as shown:

P (T1), ∀y.P (y) ⇒ P (T2)
init

P (T1), ∀y.P (y) ⇒ ∃x.P (x)
∃R

∀y.P (y) ⇒ ∃x.P (x)
∀L

. ⇒ ∀y.P (y) ⊃ ∃x.P (x)
⊃ R

In order to search proof within ileanSeP, one has to invoke the program in the
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following way:

prove( all Y:(p(Y)) => ex X:(p(X)) ).

The program takes the formula and assigns it to right formula set while keeping

empty set for left formula set:

LEFT: [], RIGHT: [all Y:(p(Y)) => ex X:(p(X))]

The program starts to build a proof tree of given example. First of all, given

formula matches the right implication rule, therefore left formulas and right for-

mulas are decomposed and added to left and right formula set respectively:

LEFT: [all _G590:p(_G590)], RIGHT: [ex _G597:p(_G597)]

After that, the program applies the noninvertible left rule of universal quan-

tifier to the left formula set. The result is added to the left formula set and the

right formula set remains unchanged:

LEFT: [p(_G748), all _G590:p(_G590)], RIGHT: [ex _G597:p(_G597)]

It is time to apply the noninvertible right rule of existential quantifier to the

right formula set, the resultant left and right formula set is such that:

LEFT: [p(_G748), all _G590:p(_G590)], RIGHT: [p(_G779)]

Since, both right and left formula sets have atomic expressions, the unification

process starts. This process ensures that all of the expression in right formula

set are conformed with the left ones where unify with occurs check is used for

that purpose. It is the specialized Prolog builtin to realize unification process:
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unify_with_occurs_check([p(_G748)], [p(_G779)]).

Eventually, the program verifies that given formula is true and builds its proof

tree with given order.



Chapter 6

Implementations of CILL

6.1 Twelf

6.1.1 Constructing CIL in Twelf

In Chapter 5, we have defined the properties and features of Twelf and given a

simple example using it. Twelf provides the formalization of defining and reason-

ing about programming languages and logics. Since we are considering to imple-

ment Constrained Intuitionistic Linear Logic(CILL), Twelf can be an important

candidate. However, for simplicity we first implement Constrained Intuitionistic

Logic(CIL) which is extended from the Frank Pfenning’s language of formulas for

intuitionistic predicate calculus with constrained domain. We later discuss why

we start with CIL rather than CILL.

In LF, we encode the syntax of our sequent calculus as follows:

i : type. % individuals

o : type. % formulas

c : type. % constraints

d : type. % constraint domain

72
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EC : d. % empty constraint-context

and : o -> o -> o.

imp : o -> o -> o.

or : o -> o -> o.

not : o -> o.

true : o.

false : o.

forall : (i -> o) -> o.

exists : (i -> o) -> o.

addom : c -> d -> d.

cimp : c -> o -> o.

cand : c -> o -> o.

>> : integer -> integer -> c.

Here, the logic only supports >, ⊥, ∧, ∨, ⊃ and existential quantifiers. In

addition to this, our constrained extension ⊃c and ∧c are supported within this

language. We have two auxiliary terms to help representing the constrained

syntax. One of them is EC that represents the empty constraint context and it is

needed at the beginning of our proof search when our context is initially empty.

The other one is addom, that is for inserting a single constraint to our constrained

context. From our declaration, we only construct such example constraints: x

>> 3, x >> y or 3 >> 4 where x and y are individuals of our constraints that are

introduced by existential quantifiers.

Now, we define our judgements of our sequent calculus in LF methodology.

hyp : o -> type. % Hypotheses (left)

conc : o -> type. % Conclusion (right)

chyp : d -> type. % Constraint hypothesis

cconc : c -> type. % Constraint conclusion
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The sequent is represented as the judgement conc, which is hypothetical in

hypotheses hyp.

Ψ | (Γ, A) ⇒ A
axiom

A rule axiom allows us to use a hypothesis to satisfy a conclusion.

axiom : (hyp A -> conc A).

Moreover, we have two other judgements chyp and cconc to represent our

constraint domain. If we have a condition such as D |= C then the correspondent

sequent will be chyp(D) -> cconc(C).

Now, let us look at the sequent calculus of ordinary intuitionistic logic:

Ψ | Γ ⇒ A Ψ | Γ ⇒ B

Ψ | Γ ⇒ A ∧ B
∧R

Ψ | (Γ, A) ⇒ C

Ψ | (Γ, (A ∧ B)) ⇒ C
∧L1

Ψ | (Γ, B) ⇒ C

Ψ | (Γ, (A ∧ B)) ⇒ C
∧L2

Ψ | (Γ, A) ⇒ B

Ψ | Γ ⇒ A ⊃ B
⊃ R

Ψ | Γ ⇒ A Ψ | (Γ, B) ⇒ C

Ψ | (Γ, (A ⊃ B)) ⇒ C
⊃ L

Ψ | Γ ⇒ A

Ψ | Γ ⇒ A ∨ B
∨R1

Ψ | Γ ⇒ B

Ψ | Γ ⇒ A ∨ B
∨R2

Ψ | (Γ, A) ⇒ C Ψ | (Γ, B) ⇒ C

Ψ | (Γ, (A ∨ B)) ⇒ C
∨L
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Ψ | Γ ⇒ >
>R

Ψ | (Γ,⊥) ⇒ C
⊥L

Ψ | Γ ⇒ [a/x]A

Ψ | Γ ⇒ ∀x.A
∀Ra

Ψ | (Γ, [t/x]A) ⇒ C

Ψ | (Γ, ∀x.A) ⇒ C
∀L

Ψ | Γ ⇒ [t/x]A

Ψ | Γ ⇒ ∃x.A
∃R

Ψ | (Γ, [a/x]A) ⇒ C

Ψ | Γ, ∃x.A ⇒ C
∃La

The encoded inference rules in Twelf will be such that:

andr : conc A ->

conc B ->

conc (A and B).

andl1 : (hyp A -> conc C) ->

(hyp (A and B) -> conc C).

andl2 : (hyp B -> conc C) ->

(hyp (A and B) -> conc C).

impr : (hyp A -> conc B) ->

conc (A imp B).

impl : conc A ->

(hyp B -> conc C) ->

(hyp (A imp B) -> conc C).

orr1 : conc A ->

conc (A or B).

orr2 : conc B ->
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conc (A or B).

orl : (hyp A -> conc C) ->

(hyp B -> conc C) ->

(hyp (A or B) -> conc C).

truer : conc (true).

falsel : (hyp (false) -> conc C).

forallr : ({a:i} conc (A a)) ->

conc (forall A).

foralll : {T:i} (hyp (A T) -> conc C) ->

(hyp (forall A) -> conc C).

existsr : {T:i} conc (A T) ->

conc (exists A).

existsl : ({a:i} hyp (A a) -> conc C) ->

(hyp (exists A) -> conc C).

We need to show inference rules of constraint extension such that:

(Ψ, R) | Γ ⇒ A

Ψ | Γ ⇒ R ⊃c A
⊃c R

Ψ |= R Ψ | Γ, A ⇒ C

Ψ | (Γ, R ⊃c A) ⇒ C
⊃c L

Ψ |= R Ψ | Γ ⇒ A

Ψ | Γ ⇒ R ∧c A
∧cR

(Ψ, R) | (Γ, A) ⇒ C

Ψ | (Γ, R ∧c A) ⇒ C
∧cL

For all that, the following part describes the encoded constraint sequents

within intuitionistic logic.
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cimpl : ( chyp D -> cconc R ) ->

( chyp D -> hyp A -> conc C) ->

( chyp D -> hyp (R cimp A) -> conc C ).

cimpr : ( chyp (addom R D) -> conc A ) ->

( chyp D -> conc (R cimp A) ).

candr : ( chyp D -> cconc R ) ->

( chyp D -> conc A ) ->

( chyp D -> conc (R cand A) ).

candl : ( chyp (addom R D) -> hyp A -> conc C ) ->

( chyp D -> hyp (R cand A) -> conc C ).

So far, we have encoded our sequent calculus of constrained intuitionistic

logic into Twelf. But we need a rule for constraint context to terminate the proof

search just like the rule axiom. Since Twelf lacks constrained logic programming,

we could not find out the consistency of the constraint domain. Therefore, we say

that whenever Twelf system encounters a constraint hypothesis R, it will satisfy a

trivial conclusion S. This means that all given constraints are satisfiable although

in reality they may not. A rule triv allows us to use a constraint hypothesis to

satisfy a constraint conclusion.

triv : chyp R -> cconc S.

In Chapter 5, we have said that Twelf introduces a systematic methodology for

representing deductive systems. This methodology is often called the judgements

as types principle, because a judgement in a deductive system is represented as

an LF type family classifying derivations of the judgement. It offers a great

opportunity that derivations in a deductive system can be checked just by type

checking their LF representations. Therefore, we need to give how we can do type-

checking within Twelf. For simplicity, we below just write down the grammar that

describes only the type checking part of Twelf.
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sig ::= % Empty signature

| decl sig % Constant declaration

decl ::= _ = term. % for type-checking

decl ::= _ : term = term. % for type-checking

term ::= type % type

| id % variable x or constant a or c

| term -> term % A -> B

| term <- term % A <- B, same as B -> A

| {id : term} term % Pi x:A. K or Pi x:A. B

| [id : term] term % lambda x:A. B or lambda x:A. M

| term term % A M or M N

| term : term % explicit type ascription

| _ % hole, to be filled by term

reconstruction

| {id} term % same as {id:_} term

| [id] term % same as [id:_] term

The grammar above defines the non-terminals sig, decl, term and uses the

terminal id which stands for identifers. Here, we do not give the whole gram-

mar of Twelf, since we only intend to focus on the details of type checking. The

important part is that Twelf does not directly support proof searching. It only

checks the proofs by classifying derivations of judgements. Hence, one has to

write the judgements with its derivations in a signature to ask to Twelf whether

derivations are deducable or not. The following Twelf signature is an example

type-checking signature that uses our encoded constraint intuitionistic logic rep-

resentation without constraints.

_ = (B’ or A’) : o.

_ =

([A’:o] [B’:o] [h1:hyp (A’ or B’)]
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orl ( [h2:hyp A’] orr2 (axiom h2) )

( [h3:hyp B’] orr1 (axiom h3) )

h1 )

:

{A’:o} {B’:o} {h1:hyp (A’ or B’)}

conc (B’ or A’).

The above signature shows that the hypothesis A’ or B’ concludes to B’ or

A’ while having hypotheses A’ and B’.

The following is another type-checking signature that uses constraints of our

representation.

_ = R cimp ( R cand (A imp A) ) : o.

_ =

( [A:o] [R:c] [d1:chyp EC]

cimpr ( [d2:chyp (addom R EC)]

( candr ( [d3:chyp (addom R EC)] triv d3 )

( [d4:chyp (addom R EC)]

( impr ([h1:hyp A] axiom h1) ) )

d2 ) )

d1 )

:

{A:o} {R:c} {d1:chyp EC}

conc ( R cimp ( R cand (A imp A) ) ).

We have mentioned that Twelf lacks constraint logic programming. This prop-

erty prevents us from implementing our desired constrained intuitionistic linear

logic in Twelf. Therefore, we stop going on with Twelf and leaving it just imple-

menting CIL. Miraculously, Prolog provides both constraint logic programming

and backward proof search. We describe in next section that Prolog will offer

great properties to implement CILL.
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6.2 Prolog

In previous chapter, we have mentioned that ileanSeP introduces a theorem prover

for first-order intiutionistic logic. Moreover, SWI-Prolog offers a Prolog environ-

ment including constraint handling rules. Therefore, we can initially implement

constrained intuitionistic logic by extending ileanSeP with constraints.

6.2.1 cileanSeP: Extension of ileanSeP for First-Order

Constrained Intuitionistic Logic

As we have mentioned before, SWI-Prolog offers a great property to handle con-

straints named as CLP(Q, R). {Constraint} predicate is used for constraint solver

to add given Constraint to the constraint store. For the sake of simplicity, we

below give only the part used for the implementation:

Constraint ::= C

| C, C conjunction

C ::= Expr = Expr equation
| Expr < Expr strict inequation
| Expr > Expr strict inequation
| Expr =< Expr nonstrict inequation
| Expr >= Expr nonstrict inequation

Expr ::= variable Prolog variable
| number floating point or integer

The other predicate in CLP(Q, R) for constraint handling is entailed(Constraint).

It succeeds if and only if the linear Constraint is entailed by the current constraint

store. This predicate does not change the state of the constraint store.

After giving constraint handling rules and predicates in SWI-Prolog, it is

time to find out how we can use these predicates in order to extend ileanSeP

with constraint domain. Since constraint intuitionistic logic introduces a new
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context, we need to add two arguments to our formula definition(fml). One of

the arguments is the constraint to be inserted to the constraint context, and the

other one is the constraint to be solved:

fml(..., ConstToBeAdded, ConstToBeSolved).

Another modification is done on prove predicate in order to pass the con-

straint context throughout the proof tree. As you recall, splitted formulas are

always called by prove predicate until only atomic formulas left. Therefore, prove

predicate is extended with one argument to keep track of constraint context:

prove(..., ConstContext).

If a given formula matches with a pattern that a constraint is insterted to

the constraint context, then predicate { } is used to add this constraint into the

constraint store. Likewise, if a given formula matches with a pattern that a con-

straint is solved, then predicate entailed is used for solving this constraint using

current constraint store. Thus, two predicates, solve const and check const

are defined. The former takes two arguments which are the constraint context

and the constraint to be solved respectively. The latter also takes two arguments

which are the constraint context and the constraint to be inserted respectively.

This predicate checks consistency of constraint store with a given constraint. It

is used for deciding to add the constraint to the constraint store or backtrack to

the point that consistency is satisfied.

solve_const([], [Right]) :- entailed(Right).

solve_const([Head|Const], [Right]) :- {Head},

solve_const(Const, [Right]).

check_const([], [Right]) :- {Right}.

check_const([Head|Const], [Right]) :- {Head},

check_const(Const, [Right]).

Recall that we have two additional connectives for constraints, one is con-

straint implication:
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(Ψ, D) | Γ ⇒ A

Ψ | Γ ⇒ D ⊃c A
⊃c R

Ψ |= D Ψ | (Γ, A) ⇒ C

Ψ | Γ, D ⊃c A ⇒ C
⊃c L

.

Encoding constraint implication in cileanSeP will be such as:

fml((D cimp A), 1,inv,[A], [], [], [], _, _,[], [], [], [], [D]).

fml((D cimp A), 0,inv,[], [A], [], [], _, _,[], [], [], [D], []).

As you see, while the left rule introduces the constraint to be solved, the right

rule introduces the constraint to be added to constraint context.

The constraint conjunction was defined before:

Ψ |= D Ψ | Γ ⇒ A

Ψ | Γ ⇒ D ∧c A
∧cR

(Ψ, D) | (Γ, A) ⇒ C

Ψ | Γ, D ∧c A ⇒ C
∧cL

Following enconding shows the enconding within cileanSeP of constraint con-

junction:

fml((D cand A), 1,inv,[A], [], [], [], _, _,[], [], [], [D], []).

fml((D cand A), 0,inv,[], [A], [], [], _, _,[], [], [], [], [D]).

The important question to ask ourselves is where we will handle constraints

in our program. Well, the answer of this question is quite simple, we will handle

these constraints if any constraint is introduced after pattern matching of a given

formula. In other words, if a given formula matches with the connectives of

constraint implication or constraint conjunction, then constraint solver intervenes

the program to handle constraints with a given Prolog syntax:

( AddConst=[] -> NewContext=ConstContext;

( check_const(ConstContext, AddConst),

append(ConstContext, AddConst, NewContext) ) ),
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( SolveConst=[] -> true;

( solve_const(NewContext, SolveConst) ) )

The code above states that when constraint to be added is introduced; first,

it will be checked whether constraint context loses its consistency, then it will

be inserted to the constraint store. However, when constraint to be solved is

introduced, then it will be solved by current constraint context.

Now, it is a good practice to give a simple example about constraints in

cileanSeP. When program is invoked by

prove( (p => p) ).

then the program concludes that given formula is satisfiable. However, the follow-

ing example is not satisfiable because of the inconsistency of constraint context.

prove( (3 > 4) cimp (p => p) ).

6.2.1.1 Quantification problem about constraints

In first-order logic, quantification always involves all elements of the universe.

When one uses a type of constrained logic, it will therefore be a part of the

universe. In such a universe, constrained logic provides restricted quantifiers

constraining variables by a formula. A formula F preceeded by such a restricted

quantifier can be read as “F holds for all or for some elements (depends on type of

the quantifier) satisfying the constraint R”. Since the universe of unconstrained

hypotheses is extended with the universe of constraints, the unification process

and skolemization technique have to be modified in the extension of intuitionistic

logic with constraints.

Before describing the modification, an example clarifies the problem. The

problem occurs in the left rule of existential quantifier and the right rule of uni-

versal quantifier where the parametric variable is introduced. The following is

the formula to be solved:



CHAPTER 6. IMPLEMENTATIONS OF CILL 84

∃y.((y = 0 − 1)∧c p(y) ⇒ p(-1)

In this example, the corresponding proof tree looks like that:

(a = 0 − 1) | p(a) ⇒ p(−1)

(a = 0 − 1) ∧c p(a) ⇒ p(−1)
∧cL

∃y.((y = 0 − 1) ∧c p(y) ⇒ p(−1)
∃La

Since parametric variables are not unified at the unification level, the judge-

ment p(a) ⇒ p(−1) could never be satisfied in our current implementation. How-

ever, on the constraint side of the proof tree, we have a constraint that the

parametric variable (a) has to be -1 (a = 0− 1). Therefore, it concludes that the

judgement p(a) ⇒ p(−1) is satisfied. For that reason, we need to modify our cur-

rent unification process that when a parametric variable is encountered, we first

examine the constraint over this variable, then unification process is started. Sat-

isfaction of given formula directly bounds with the restriction on this variable.

For instance, the p(a) ⇒ p(−1) judgement will not be satisfiable if constraint

solver finds out that parametric variable a is restricted as a < 1.

6.2.2 Simple Example in cileanSeP

A robot starting from initial point moves only one step backwards, we find out

whether this robot can come one step back from the initial point and how.

For that example, we have an at predicate which takes one argument corre-

sponding the position of robot. Initially, the robot is at 0, which encoded as

at(0). We also need an action that the robot only moves one step backwards.

This action can be encoded as follows:

∀x. (at(x) ⊃ ∃y.((y = x − 1)∧c at(y) )

Moreover, at(-1) is the goal state of the robot. Consequently, the following is

the formula of our problem
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∀x. (at(x) ⊃ ∃y.((y = x − 1)∧c at(y) ), at(0) ⇒ at(-1)

and the following syntax is used to invoke the program:

prove( ( all X: (at(X) => ex Y: ( (Y = X - 1) cand at(Y) ) ),

at(0) ) => at(-1.0) ).



Chapter 7

Conclusions and Future Work

We have mentioned that robotic planning problems mostly include both discrete

and continuous properties of the application domain. Finding plans according

to the robotic behaviours and environmental structures is a vital and common

research area in the context of robotics and artificial intelligence. Several re-

searchers also deal with the automation of finding plans in either uncertain or

certain environments. In this thesis, one of the main goals is to build and imple-

ment systems that are capable of finding autonomous plans according to given

specifications. Therefore, we have chosen logic programming in order to find

plans. In logic programming, a program consists of a collection of statements

expressed as formulas in symbolic logic in which inference rules allow to deduce

a new true formula from old ones. The nature of logic programming leads to find

desired information using its inference rules. In other words, logic programming

reduces to find proofs, which later correspond to programs, only using actual logi-

cal techniques and formalisms without additional information. Several researches

select logical systems to overcome the problem of finding plans because of its

consistency, soundness and completeness. However, some of these approaches

cope with only specific robotic planning problems, some others just deal with the

problem of discrete state changing. For that reason, there has been a need for a

uniform framework.

In this thesis, we have selected Constrained Intuitionistic Linear Logic (CILL)

86
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which is initially defined by Uluç Saranlı and Frank Pfenning in their paper [45] to

represent and reason about planning problems. CILL combines both constraint

solvers and intuitionistic linear logic. For that reason, it makes possible to define

constraints using logical expressions. In other words, constraints has become

a part of the language. In all kinds of intuitionistic logic, proofs are directly

correspond to programs because a given formula is true only when it is verified.

Furthermore, linear logic solves the frame problem without any additions to the

language because it acts hypotheses as resources where they are consumed when

used.

In this thesis, we have introduced a new robotics application domain named

Blocks World 3D which is based on classical Blocks World. This domain has some

differences from the original one: one should not only place a block onto another

block but also keep track of balancing of blocks tower. Therefore, planning in

this domain consists of placing blocks in desired order providing blocks balance

in terms of set constraints where each set corresponds to base areas of each block.

Two equations are used to satisfy constraints. Together with these equations and

predicates defined for describing this domain, we have encoded CILL representa-

tion for Blocks World 3D. In theory, this encoding ensures that CILL searches a

plan using reasoning techniques and returns a plan in terms of logical derivations

if it exists.

Before implementing CILL within any logical framework or Prolog, we have

decided that it is a good practice to implement first-order intuitionistic logic with

constraint extension using logical programming tools and languages. For that

purpose, Twelf Logical Framework is a good candidate where it supports diverse

tasks which are specification of object languages and their semantics, implemen-

tation of algorithms exploiting object-language expressions and deductions, and

formal development of the meta-theory of an object language. Especially, defin-

ing specification of object language, which is our first-order intuitionistic logic

with constraint extension (CIL), is vital to achieve our goal. However, lack of

constraint properties of Twelf Logical Framework prevents from doing further

implementations for CILL. Hence, we have implemented CIL using Prolog Lan-

guage in SWI-Prolog environment. Together with backtracking and declarative
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property of Prolog Language, and constraint handling rules and CLP(R) support

of SWI-Prolog makes us possible to automate proof searching for given applica-

tion domain. Moreover, some examples of both implementations of CIL has been

given.

Not directly employing constraints in Twelf Logical Framework which is men-

tioned in previous paragraph is the main drawback of implementation of CILL

within Twelf. Conversely, Prolog is convenient to encode CILL with its strong

properties of handling constraints and backtracking. However, this time linearity

extremely decreases the performance of automating proof search. This is be-

cause resource splitting of some connectives in linear logic leads to problem of

non-determinism and linear logic introduces new context where hypotheses are

behaved as resources. For that reason, the way of using hypotheses in linear

and unrestricted context makes impractical to encode CILL. However, in the lit-

erature there are some techniques for resource splitting and context handling.

Therefore, for future work, it is possible to encode CILL within Prolog Language

using these techniques. Furthermore, another future work will be automatically

extracting linear proof terms of a given formula while searching proof by using

Prolog language.



Appendix A

Intuitionistic Linear Logic

A.1 Sequent Calculus

Hypothesis.

Γ; A ⇒ A
init

(Γ, A); (∆, A) ⇒ A

(Γ, A); ∆ ⇒ A
copy

Multiplicative Connectives.

Γ; ∆, A −◦ B

Γ; ∆ ⇒ A −◦ B
−◦ R

Γ; ∆1 ⇒ A Γ; ∆2, B ⇒ C

Γ; ∆1, ∆2, A −◦ B ⇒ C
−◦ L

Γ; ∆1 ⇒ A Γ; ∆2 ⇒ B

Γ; ∆1, ∆2 ⇒ A ⊗ B
⊗R

Γ; ∆, A, B ⇒ C

Γ; ∆, A ⊗ B ⇒ C
⊗L
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Γ; . ⇒ 1
1R

Γ; ∆ ⇒ C

Γ; ∆, 1 ⇒ C
1L

Additive Connectives.

Γ; ∆ ⇒ A Γ; ∆ ⇒ B

Γ; ∆ ⇒ A & B
&R

Γ; ∆, A ⇒ C

Γ; ∆, A & B ⇒ C
&L1

Γ; ∆, B ⇒ C

Γ; ∆, A & B ⇒ C
&L2

Γ; ∆ ⇒ >
>R

No > left rule

Γ; ∆ ⇒ A

Γ; ∆ ⇒ A ⊕ B
⊕R1

Γ; ∆ ⇒ B

Γ; ∆ ⇒ A ⊕ B
⊕R2

Γ; ∆, A ⇒ C Γ; ∆, B ⇒ C

Γ; ∆, A ⊕ B ⇒ C
⊕L

No 0 right rule Γ; ∆, 0 ⇒ C
0L
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Quantifiers.

Γ; ∆ ⇒ [a/x]A

Γ; ∆ ⇒ ∀x.A
∀Ra

Γ; ∆, [t/x]A ⇒ C

Γ; ∆, ∀x.A ⇒ C
∀L

Γ; ∆ ⇒ [t/x]A

Γ; ∆ ⇒ ∃x.A
∃R

Γ; ∆, [a/x]A ⇒ C

Γ; ∆, ∃x.A ⇒ C
∃La

Exponentials.

(Γ, A); ∆ ⇒ B

Γ; ∆ ⇒ A ⊃ B
⊃ R

Γ; . ⇒ A Γ; ∆, B ⇒ C

Γ; ∆, A ⊃ B ⇒ C
⊃ L

Γ; . ⇒ A

Γ; . ⇒!A
!R

(Γ, A); ∆ ⇒ C

Γ; (∆, !A) ⇒ C
!L
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