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ABSTRACT

DOCUMENT RANKING BY GRAPH BASED LEXICAL
COHESION AND TERM PROXIMITY COMPUTATION

Hayrettin Gürkök

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. H. Murat Karamüftüoğlu

August, 2008

During the course of reading, the meaning of each word is processed in the con-

text of the meaning of the preceding words in text. Traditional IR systems

usually adopt index terms to index and retrieve documents. Unfortunately, a

lot of the semantics in a document or query is lost when the text is replaced

with just a set of words (bag-of-words). This makes it mandatory to adapt lin-

guistic theories and incorporate language processing techniques into IR tasks.

The occurrences of index terms in a document are motivated. Frequently, in

a document, the appearance of one word attracts the appearance of another.

This can occur in forms of short-distance relationships (proximity) like common

noun phrases as well as long-distance relationships (transitivity) defined as lexical

cohesion in text. Much of the work done on determining context is based on esti-

mating either long-distance or short-distance word relationships in a document.

This work proposes a graph representation for documents and a new matching

function based on this representation. By the use of graphs, it is possible to cap-

ture both short- and long-distance relationships in a single entity to calculate an

overall context score. Experiments made on three TREC document collections

showed significant performance improvements over the benchmark, Okapi BM25,

retrieval model. Additionally, linguistic implications about the nature and trend

of cohesion between query terms were achieved.

Keywords: Information retrieval, lexical cohesion, term proximity, collocation.
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ÖZET

ÇİZGE TABANLI SÖZCÜKSEL BAĞDAŞIKLIK VE
TERİM YAKINLIK HESABI İLE BELGE SIRALAMA

Hayrettin Gürkök

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. H. Murat Karamüftüoğlu

Ağustos, 2008

Okuma eylemi esnasında, her kelimenin anlamı, ondan önce gelen kelimelerin

anlamları bağlamında işlenir. Geleneksel bilgi erişim sistemleri belgeleri tas-

nif etmek ve onlara erişmek için genellikle dizin terimleri kullanırlar. Fakat,

metnin sıradan bir kelimeler kümesine dönüşmesi, belge ve sorgudaki anlamsal

özellikleri de yok etmektedir. Bu durum, bilgi erişim işlemlerinde dilbilimsel

teorileri uyarlamayı ve dil işleme tekniklerini uygulamayı mecbur kılmaktadır.

Bir belgede dizin terimlerinin birlikte görülmesi tesadüfi değildir. Sıklıkla, bir

belgede, bir kelimenin varlığı bir diğerinin varlığını çeker. Bu, tamlamalar gibi

kısa mesafe (yakınlık) ya da sözcüksel bağdaşıklık olarak da adlandırılan uzun

mesafe (geçişkenlik) ilişkisi şeklinde ortaya çıkabilir. Bağlam tespiti konusunda

yapılan çoğu çalışma ya kısa ya da uzun mesafe sözcüksel ilişkileri tahmin etmeye

dayanmaktadır. Bu çalışmada, belgeler için bir çizge gösterimi ve bu gösterime

dayalı yeni bir sıralama sistemi önerilmektedir. Çizgeler yardımı ile, hem kısa hem

de uzun mesafe sözcüksel ilişkileri tek bir yapıda tutup, belgeler için bir bağlam

puanı hesaplamak mümkün olmaktadır. Üç TREC belge kolleksiyonunda yapılan

deneyler, Okapi BM25 erişim modeline kıyasla önemli başarım artışı göstermiştir.

Ayrıca, belgelerde bulunan sorgu terimleri arasındaki bağdaşıklığın doğası ve

eğilimi hakkında dilbilimsel sonuçlar elde edilmiştir.

Anahtar sözcükler : Bilgi erişimi, sözcüksel bağdaşıklık, terim yakınlığı,

eşdizimlilik.
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Chapter 1

Introduction

1.1 Information Retrieval (IR)

The science of IR is concerned with the representation, storage, organization

of, and access to information items [4]. By the increasing amount of digital

information becoming available every day, fast access to these resources becomes

even more difficult. This also adversely affects the ability to reach the ‘correct’

information. IR research tries to mitigate these problems in order to provide in

the best way the information which might be relevant or useful to the user.

It is useful to clarify some IR terminology before starting discussion. The

records that IR addresses are called documents. Documents are retrieved from

an organized and relatively static repository, most commonly called a collection

(also called archive or corpus). IR is not restricted to static collections though.

For instance, the collection may be a stream of messages flowing over the Internet

[11]. User’s representation of information need is called query, which is generally

textual, and the words in the query are called keywords.

In a simplistic IR system there are three components: input, processor and

output (Figure 1.1 from [39]). Most computer-based retrieval systems store only

a representation of the document (or query) which means that the text of a

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: A typical IR system

document is lost once it has been processed for the purpose of generating its rep-

resentation. For example, a document representative could be a list of extracted

words considered to be significant. The words in the original document, which

are processed and transformed to the document representative are now called

terms. It is possible for the user to change his request during one search session

in the light of a sample retrieval to improve the subsequent retrieval run. Such a

procedure is referred to as feedback. The processor is concerned with structuring

the information in an appropriate way and executing the search strategy in re-

sponse to a query. The output is usually a set of citations or document numbers

referring to documents deemed relevant by the IR system [39].

1.2 IR Performance Evaluation

One of the primary distinctions made in the evaluation of IR systems is between

effectiveness and efficiency. Effectiveness measures the ability of the search engine

to find the right information, and efficiency measures how quickly this is done

[7]. Due to the purpose of this work, retrieval effectiveness is considered as the

performance indicator.
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1.2.1 Measuring IR Effectiveness

The major goal of an IR system is to retrieve all the documents which are rele-

vant to a user query while retrieving as few non-relevant documents as possible.

Relevance is an inherently subjective concept [35]. People often disagree about

whether a document is related to a given query or not. The disagreement is

more prominent if “degree of relevance” is considered, rather than “absolute rel-

evance”. Moreover, a person can be in disagreement even with himself due to

different needs, preferences, knowledge, expertise, language, and etc. Relevance

may also depend on the collection a document is retrieved from or the order it is

presented [11].

Three items are required to measure IR effectiveness [20]:

1. A document collection

2. A test suite of information needs, expressible as queries

3. A set of relevance judgments, standardly a binary assessment of either rel-

evant or non-relevant for each querydocument pair.

1.2.2 Standard Test Collections

To address the three requirements mentioned in §1.2.1, standard test collections

consisting of documents, queries, and relevance judgments were assembled by re-

searchers. Using test collections provide various advantages. Firstly, given the

large size of collections, it is very difficult to ask real users to assess the rele-

vance of answer sets consisting of hundreds of documents to each different query.

Secondly, considering the number of different combinations an IR system’s pa-

rameters might produce, it is impractical to conduct relevance judgment sessions

with real users for tuning purposes.

There are numerous standard test collections. A well-known and still updated

collection series is maintained by TREC (Text REtrieval Conference). TREC is
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a workshop series designed to build the infrastructure necessary for the large-

scale evaluation of text retrieval technology. The series is sponsored by the U.S.

National Institute of Standards and Technology (NIST) and the U.S. Depart-

ment of Defense [45]. At the time of this writing, there have been sixteen TREC

workshops. A variety of retrieval tasks (tracks) on different collections were in-

troduced in TREC. In total, TREC test collections comprise six CDs containing

1.89 million documents (mainly, but not exclusively, newswire articles) (Figure

B.8) and relevance judgments for 450 information needs, which are called topics

and specified in detailed text passages (Figure B.9) [20].

Relevance judgments require considerable manual effort for high-recall search

tasks. While for small collections most of the documents in the collection could

be evaluated for relevance, in today’s large collections this would clearly be im-

possible. Instead, a technique called pooling is used. In this technique, the top

k results (for TREC, k varied between 50 and 200) from the rankings obtained

by different search engines (or retrieval algorithms) are merged into a pool, du-

plicates are removed, and the documents are presented in some random order

to the people doing the relevance judgments [7]. Pooling is good for producing

large number of relevance judgments for each query. Its limitation is that, if a

document is found relevant by a new algorithm but it was not part of the pool,

it will be treated as non-relevant and the effectiveness of that algorithm could be

significantly underestimated. Ingwersen defines this situation as the Dark Matter

problem of IR and describes it as follows: “the searcher, the IR system, and the

IR researcher, ‘does not know what he does not retrieve’ - and will never know

it” [18]. However, studies with the TREC data have shown that the relevance

judgments are complete enough to produce accurate comparisons for new search

techniques [7].

It is wrong to report results on a test collection that were obtained by tuning

parameters to maximize performance on the same collection. Such a tuning

overstates the expected performance of the system, as the parameters will be set

to maximize performance on one particular set of queries rather than for a random

sample of queries. In such cases, the correct procedure is to have one or more

development test collections and to tune the parameters on the development test
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collection. Then the tester would run the system with those parameters on the

test collection and reports the results on that collection as an unbiased estimate

of performance [20].

1.2.3 IR Effectiveness Metrics

There are two major retrieval effectiveness metrics, precision and recall. Precision

is the fraction of retrieved documents that are relevant and recall is the fraction of

relevant documents that are retrieved. Recall measures the ability of the system

to retrieve useful documents while precision measures the ability to reject useless

materials [35]. Formally:

Precision =
#(relevant items retrieved)

#(retrieved items)
(1.1)

Recall =
#(relevant items retrieved)

#(relevant items)
(1.2)

Another metric standard among the TREC community is mean average preci-

sion (MAP), which provides a single-figure measure of quality across recall levels.

For a given query, average precision is the average of the precision value obtained

for the set of top k documents existing after each relevant document is retrieved,

and this value is then averaged over number of queries. If the set of relevant

documents for a query qj ε Q is {d1, ..., dmj
} and Rjk is the set of ranked retrieval

results from the top result until document dk is reached, then [20]:

MAP (Q) =
1

|Q|
|Q|∑

j=1

1

mj

mj∑

k=1

Precision(Rjk) (1.3)

For many applications what matters is how many good results there are on

the first (few) page(s). This leads to measuring precision at fixed low levels of

retrieved results, such as ten or thirty documents. This is referred to as precision

at k (e.g. precision at 10). Another alternative metric is R-precision, which is

the same as “precision at k” with k = (number of relevant documents).
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1.2.4 Significance Tests

Once the retrieval effectiveness figures are obtained, in order to decide whether

this data shows that there is a meaningful difference between two retrieval algo-

rithms, significance tests are needed. Croft et al. proposes the following proce-

dure for comparing two retrieval algorithms using a particular set of queries and

a significance test [7]:

1. Compute the effectiveness measure for every query for both rankings.

2. Compute a test statistic based on a comparison of the effectiveness measures

for each query. The test statistic depends on the significance test, and is

simply a quantity calculated from the sample data that is used to decide

whether or not the null hypothesis should be rejected.

3. The test statistic is used to compute a P-value, which is the probability

that a test statistic value at least at that extreme could be observed if the

null hypothesis were true. Small P-values suggest that the null hypothesis

may be false.

4. The null hypothesis (no difference) is rejected in favor of the alternate hy-

pothesis (i.e. B is more effective than A) if the P-value is ≤ α, the sig-

nificance level. Values for α are small, typically 0.05 and 0.1, to minimize

Type I errors.

So, if the probability of getting a specific test statistic value is very small

assuming the null hypothesis is true, we reject that hypothesis and conclude that

ranking algorithm B is more effective than the baseline algorithm A [7].

1.3 Classic IR Models

In classical IR models, each document is described by a set of representative

keywords called index terms. An index term is simply a (document) word whose
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semantics helps in remembering the main themes of the document. Index terms

are used in indexing and summarizing document contents. Index terms are mainly

nouns which have meaning by themselves so that their semantics is easier to

identify and grasp compared with adjectives, adverbs, and connectives which

function mainly as complements [4].

Within a set of index terms for a document, not all terms are equally useful

for describing the document contents. For instance in a collection of hundred

thousand documents, a term appearing in each document is useless as an index

term because it does not tell anything about which documents the user might

be interested in. On the other hand, a word appearing in very few documents

is quite useful narrowing the space of documents which might be of interest to

the user. Distinct index terms have varying relevance when used to describe

document contents. This effect is captured through the assignment of numerical

weights to each index term of a document [4]. Weights can also be assigned to

the terms in a query. The weight of a query term is usually a measure of how

much importance the term will be assigned in computation of the similarity of

documents to the given query. Weights are usually normalized to be fractions

between zero and one [11].

1.3.1 Boolean Model

Boolean model is a simple retrieval model based on set theory and Boolean al-

gebra. It considers that index terms are either present or absent in a document.

This implies that term weights are assumed to be all binary (i.e. 0 or 1). The

query is formulated as a Boolean combination of keywords using operators and,

or, and not. For example, a query ‘k1 and k2’ is satisfied if and only if a document

contains both keywords k1 and k2. More complex queries can be built out of these

basic operators to be evaluated using Boolean algebra [4].

It is possible to make refinements on a classic Boolean query. First, the

query can be applied to a specific syntactic portion of the document, like title

or abstract, instead of the whole document. Second, a position to apply the
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query can be specified, like the beginning of the title of a document [11]. Another

possibility is to incorporate an adjacency operator, say adj, to the operator set. So

the result of a query ‘k1 adj k2’ will ensure that k1 and k2 are contained in adjacent

word positions. This is helpful in searching for phrases like ‘information retrieval’

[35]. The adjacency operator can be extended to a proximity operator which

may be used to specify that two terms must be within n words (or sentences) of

each other (e.g. n=0 may mean that the words must be adjacent). A proximity

operator can be applied to Boolean conditions as well as to simple terms. For

instance it might specify that a sentence satisfying one Boolean condition must

be adjacent to a sentence satisfying some other Boolean condition. A proximity

operator may specify order as well as proximity. It may define not only how close

two words must be but in what order they must occur [11].

Boolean model is an exact matching model, which means that a document

either satisfies a query or not. Since there is no grading scale, ranking is not

possible. This leads to answer sets consisting of either too few or too many

documents which prevent good retrieval performance.

1.3.2 Vector Space Model

Vector space is a statistical model which recognizes the disadvantages associated

with the Boolean model. It allows partial matching by assigning non-binary

weights to index terms in queries and documents. These term weights are then

used to compute the degree of similarity between documents and query. This

allows documents to be ranked more precisely [4].

Given a system with t index terms, vector space model considers a query q

and each document in the collection dj as t-dimensional vectors
−→
dj and −→q . It

evaluates the degree of similarity between the query and the document (sim(dj,q))

according to the correlation between their corresponding vectors by a matching

function. There are many examples of matching functions in the literature. One
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of them is taking the cosine of the angle between query and document vectors [4]:

sim(dj, q) =
~dj · ~q

|~dj| × |~q|
(1.4)

Various methods for assigning weights to index terms were suggested. Some

alternatives can be found in Salton and Buckley’s paper [33]. One early idea

is to use inverted document frequency (idf ) defined by Spärk Jones [36]. This

weighting scheme sorts the terms in reverse order according to the number of

documents in a collection in which the term occurs. So, terms occurring in many

documents receive low weights. If N is the number of documents in a collection

and nk is the number of documents in which term k occurs, then the inverse

document frequency of term k, idfk, is defined as [34]:

idfk = logN/nk (1.5)

The most commonly used weighting scheme is tf-idf (term frequency-inverted

document frequency) weighting. This is calculated as a combination of two values:

1. A value based on collection occurrence of the index term, idf (Eqn. 1.5).

2. A value based on document occurrence of the index term. Frequency of

occurrence, also known as term frequency (tf ), of a term can be used to

compute this value.

Finally the tf-idf weight, tfidfik, of term k in document i can be defined as [34]:

tfidfik = idfk · tfik (1.6)

The disadvantage of vector space model is that it considers the index terms

mutually independent. This comes along with the advantage of making it a

simple and fast model. Due to the locality of many term dependencies, their

indiscriminate application to all the documents in the collection might in fact

badly affect the retrieval performance [4].
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1.3.3 Probabilistic Model

According to the probabilistic model, given a user query there exists a set con-

taining exactly the relevant documents and no other (ideal set). Provided there

is an exact description of this ideal set, the retrieval will be ideal too. The prob-

abilistic model starts with an initial guess of probabilistic description of the ideal

set to retrieve the initial set of relevant document. By interacting with the user,

the description of the ideal set is improved [4].

The original and still most influential probabilistic retrieval model is the binary

independence model (BIM ) [28]. Here, binary means that if a term is present in

a document (or query) it is represented by 1 in the document (or query) vector

and by 0 otherwise. Independence means that terms are modeled as occurring in

the document independently. The model recognizes no association between terms

[20]. This model has the advantage of sorting the documents according to their

probability of being relevant. However, it suffers from considering index terms as

independent, not weighting terms by frequency of occurring inside a document

(i.e. all weights are binary), and requiring an initial guess for describing the ideal

set [4].

Based on the BIM, the F4 weighting formula was developed. For a document

i, provided the relevance information is available, the F4 formula is [30]:

wi = log
(r + 0.5)(N −R− n + r + 0.5)

(R− r + 0.5)(n− r + 0.5)
(1.7)

where

N = collection size

n = number of postings of the term

R = total known relevant documents

r = number of these posted to the term

The matching function is a simple sum-of-weights.

The F4 was later elaborated by its originators. In proceedings of TREC-3
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Robertson et al. stated that the original F4 model (Eqn. 1.7) was with “no ac-

count taken of document length or term frequency within document or query” [32]

and developed two models, BM11 and BM15, in which “the simple inverse col-

lection frequency term-weighting scheme (F4) was elaborated to embody within-

document frequency and document length components, as well as within-query

frequency” [32]. These two models were described in TREC-2 proceedings [31].

In TREC-3 they introduced a new model, BM25, which is a combination of BM11

and BM15 models [32]. According to the BM25 model the weight of a term i in

a document D is calculated as [37]:

W (TFi) =
TFi (k1 + 1)

K + TFi

wi (1.8)

where

K = k1 ∗ ((1− b) + b DL
AV DL

)

k1, b = tuning constants

DL = length of D (i.e. number of terms in D)

AVDL = average document length in the given collection

wi = Eqn. 1.7

TFi = frequency (number of occurrences) of i in D

The matching score for the document is the sum of the weights of the matching

(i.e. present) terms. Robertson et al. identify three characteristics of the BM25

weighting formula (Eqn. 1.8) [37]:

1. It is zero for TFi = 0,

2. It increases monotonically with TFi,

3. When TFi = 1 the weight is just the usual presence weight wi. Addi-

tional occurrences of ti increase its contribution to the score, but there is

an absolute limit on how much they can add (has an asymptotic limit).

The constant k1 determines how much the weight reacts to increasing TF. If

k1 = 0, the weight reduces to the term-presence weight only; if k1 is large, the
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weight is nearly linear in TF. It was found to have values in the range 1.2 - 2 to

be effective. [37].

The formula given by K is for document length normalization. If the tuning

constant b is set to 1, the simple normalization factor is used. Smaller values

reduce the normalization effect. Experiments with the TREC collection suggest

a value of around b = 0.75 is good [37].

1.4 Problem Statement

In contrast with data retrieval systems which just determine the documents con-

taining the keywords in a user’s query, IR systems aim to retrieve information

about a subject in order to satisfy the user’s need. Van Rijsbergen states that

the ‘perfect’ retrieval might be achieved by a human being reading an entire col-

lection of documents to satisfy a query in hand retaining the relevant documents

and discarding all the others, but this is obviously impractical [39]. It is not

only the physical or timing constraints but also the much superior interpretation

capability of a human versus an automatic IR system which causes this impossi-

bility. ‘Reading’ involves attempting to extract information, both syntactic and

semantic, from the text and using it to decide whether each document is relevant

to a particular request or not.

During the course of reading, the meaning of each word is processed in the

context of the meaning of the preceding words in text. Van Rijsbergen emphasizes

that “If a document contains information about X then it is likely to be relevant

to X ... The process of locating relevant documents (however), is inherently

uncertain, it is also highly context dependent. The uncertainty enters in a number

of ways, first through the aboutness, (where) it is only possible to determine

that a document is about something to a degree, hence our probabilistic models,

secondly, whether a document is relevant to an expressed need is also a matter

of degree. Finally, a document is about X with the probability α, it may or may

not contain the information X” [40].
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As described in §1.3 traditional IR systems usually adopt index terms to

index and retrieve documents. Unfortunately this is an oversimplification of the

problem because a lot of the semantics in a document or query is lost when the

text is replaced with just a set of words (bag-of-words). However the occurrences

of index terms in a document are motivated. Frequently, in a document, the

appearance of one word attracts the appearance of another. This can occur in

forms of short-distance relationships (proximity) like common noun phrases as

well as long-distance relationships (transitivity) defined as lexical cohesion in

text, to be explained in the next chapter.

None of the classic IR models described in §1.3 considers the interaction be-

tween the words in a document but rather they are regarded as independent

entities. Not exploiting the lexical-semantic relationships between the words of a

document limits the retrieval effectiveness due to the reasons explained in §1.4.

This makes it mandatory to adapt linguistic theories and incorporate language

processing techniques into IR tasks.

Much of the work done on determining context is based on estimating either

long-distance (§2.2) or short-distance (§2.3) word relationships in a document.

These are covered in detail in the next chapter. This work proposes a graph

representation for documents and a new matching function, CGS, based on this

representation. By the use of graphs, it is possible to capture ‘both’ short- (by

direct paths between query terms) and long-distance (exploiting transitive paths

between query terms) relationships in a single body to calculate an overall context

score which will increase retrieval effectiveness.

By the advantage of using graphs and calculating the cohesion score in stages

(of path, pair, and document scores), it is possible to observe the relationship

between lexical collocation patterns and cohesion in text.

In addition, the graph representation can be used to visualize the document

contents so as to display the document words, index terms, and the connections

between words which may facilitate easy content analysis and relevance judging.

The scores calculated according to the new CGS matching function can be used

as an input to existing information visualization tools. An example can be seen
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in Figure B.7 where the graph representations of relevant and non-relevant doc-

uments for the same topic are visualized using a graph visualization tool, Chisio

[19].

The thesis is organized as follows. In Chapter 2, the previous work on lin-

guistic cohesion and its applications to IR are presented. The details of graph-

based document ranking methods developed in this work are given in Chapter

3. Chapter 4 describes the experimental setup used in evaluation of the methods

presented. The results of the evaluation experiments are given and discussed in

Chapter 5. Chapter 6 summarizes the experimental results and points to future

research directions.



Chapter 2

Related Work

2.1 Linguistic Cohesion

The methods proposed in this thesis are based on linguistic theories and hypothe-

ses developed on cohesion therefore it is useful to introduce these here. Text is

made of meanings expressed in words and structures. It is essentially a semantic

unit itself; it is wrong to consider it as a bigger version of sentence.

Every text is a context for itself and is characterized by coherence; “it hangs

together” [14]. Hoey defines coherence as “a quality assigned to text by a reader

or listener, and is a measure of the extent to which the reader or listener finds that

the text holds together and makes sense as a unity. It is therefore not identifiable

with any combination of linguistic features and will never be absolute. The same

text may be found coherent by one reader and incoherent by another, though

an overwhelming consensus can be achieved for most naturally-occurring texts.”

[16]. Hasan also claims that “textual coherence is a relative, not an absolute

property” [15].

An important feature that facilitates coherence is cohesion, a set of linguis-

tic resources that every language has for linking one part of a text to another.

These linguistic resources (or cohesive ties) are divided into five classes which are

15
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conjunction, reference, substitution and ellipsis, and lexical cohesion [14].

Conjunction is the author’s use of adjunct-like elements to mark semantic

relationships between the sentences. Items like ‘however’, ‘alternatively’, and ‘on

the other hand’ may all serve to mark a perceived semantic relation. Reference

does not ‘mark’ semantic relations; it ‘is’ a semantic relation and occurs whenever

an item indicates that the identity of what is being talked about can be retrieved

from the immediate context. Reference items include pronouns and determiners

[16]. In the following sentence the words typed in bold are a determiner and a

pronoun respectively referring to a car: ‘There appeared a car. The car was

so fast that it disappeared in the nick of time’. Substitution and ellipsis are

grammatical relations; the former occurs when a class of items stands in for an

earlier lexical item in the text, the latter when what stands in for the earlier item

is nothing at all [16]. The sentence ‘I play the cello. My husband does, too.’

demonstrates an example of substitution where the word ‘does’ replaces ‘play’.

And the sentence ‘Yes, you can borrow my pen but what happened to yours?’ is

elliptical where ‘yours’ is used in place of ‘your pen’ [14].

Initially, Halliday and Hasan defined lexical cohesion loosely as various kinds

of semantic relationships between lexical items. A categorization of these rela-

tionships was then made by Hasan. The sub-categories she recognizes are given

in Table 2.1, taken from [15]:

Category Sub-category Example
A. General a. repetition leave, leaving, left

b. synonymy leave, depart
c. antonymy leave, arrive
d. hyponymy travel, leave
e. meronymy hand, finger

B. Instantial a. equivalence the sailor was their daddy
b. naming the dog was called Toto
c. semblance the deck was like a pool

Table 2.1: Categories of lexical cohesion

Having made the distinction between coherence and cohesion, one might ex-

pect that it would be computationally easier to identify cohesion, because the
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identification of ellipsis, reference, substitution, conjunction, and lexical cohesion

is a straightforward task for people. Halliday and Hasan’s analysis on seven texts

of a variety of kinds reveals that lexical cohesion accounts for over forty per cent

of cohesive ties. Table A.1 shows the distribution of each class of tie per text [13].

This high frequency of occurrence makes lexical cohesion a strong candidate for

determining the cohesion in text.

Morris and Hirst [24] showed that lexical cohesion is computationally feasible

to identify. A single instance of a lexical cohesive relationship between two words

is usually referred to as a lexical link. Morris and Hirst state that lexical cohesion

does not only occur between pairs of words but over a succession of a number of

nearby related words spanning a topical unit of the text. They call these sequences

of related words as lexical chains. They claimed that since lexical cohesion is a

result of a unit of text being about a single topic, and text structure analysis

involves finding the units of text that are about the same topic, one should have

something to say about the other. They proved this by computing lexical chains

on general-interest magazine articles and showing that these correspond closely to

the intentional structure produced from the structural analysis method of Grosz

and Sidner [12].

Hoey [16] introduced the concept of lexical bonds defined as the connection

that exists between a pair of sentences by virtue of there being an above-average

number of links relating them. He argues that the minimum number of links

required is three (and it is never less than three) but sometimes for texts in

which there are a great number repetitions, the threshold may be four links or

more. He claimed that bonded pairs of sentences are semantically related and,

often, intelligible together.
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2.2 Lexical Cohesion in IR

There are a number of works on usage of lexical cohesion in information retrieval

most of which are based on computing lexical chains or lexical bonds. Stair-

mand [38] developed an IR system which identifies lexical clusters and lexical

chains of semantically related terms using WordNet [22] synonym sets (synsets)

and then quantifies textual contexts by considering the distribution of these terms

throughout the document. During retrieval, for each query concept they establish

its context of occurrence, and then determine how dominant this textual context

is within the document based on a vector-space model. They compared their

system, COATER, against IBM’s STAIRS retrieval system and demonstrated

performance improvement. However they also noted that recall performance was

limited by the coverage of the WordNet database, thus making the system inca-

pable of being compared with standard test collections.

Ellman and Tait [9] implemented a WWW meta searching agent, called Hes-

perus, that clusters web pages based on their similarity to exemplar texts. An

exemplar text represents the kind of output that would exemplify a successful

search and is found by personal recommendation, or through recommender sys-

tems. The agent identifies the lexical chains in a text using Roget’s thesaurus.

This is used to create an attribute value vector of thesaural categories, called

the Generic Document Profile. Using this profile, similarity between a web page

retrieved and an exemplar is computed. They experimented their agent initially

with two queries and reported that in the case of one query, agent’s clustering

was significantly correlated with that of human judges. However in the case of a

second query, no such correlation could be found.

Vechtomova et al. [43] made use of lexical bonds to quantify lexical cohesion.

For each query term, words that co-occur within fixed-size windows identified

around each occurrence of the query term in the document are recorded. All

of these co-occurring words are then merged to determine the context of the

query term in the document. For every pair of query terms, the number of co-

occurrences are counted and a lexical cohesion score is obtained. This score is



CHAPTER 2. RELATED WORK 19

fused with the BM25 [37] matching function to re-rank the documents. Perfor-

mance improvements were reported on TREC collections. This way, the authors

proved the hypothesis that in a relevant document all query terms are likely to

be used in related contexts and tend to share many semantically-related words

while in a non-relevant document query terms are less likely to occur in related

contexts, and hence they co-occur with fewer common terms. Therefore, it is also

shown that relevant documents tend to have a higher level of lexical cohesion

between different query terms’ contexts than non-relevant documents.

In a recent study, Vechtomova et al. [42] extended their work on lexical

bonds. Instead of windows around query terms, they used sentence boundaries.

For each sentence containing a query term, they calculate the number of lexi-

cal bonds formed between that sentence and other sentences containing different

query terms. They experimentally found out that there should exist at least two

lexical links between two sentences for them to form a bond. They compute a

contribution score for each query term instance using the number of lexical bonds

formed by the sentence containing the instance. They sum these contributions

and calculate a pseudo-frequency (pfi) weight for each query term i. Finally they

modify and use the BM25 formula (Eqn. 1.8) replacing TFi with pfi. They eval-

uated the performance of their methods on four TREC collections and obtained

improvements, though not significant. However, they reported major improve-

ment when they combined this method with a proximity-based method that they

also suggest in the same work (described in §2.3).

2.3 Term Proximity in IR

Term proximity-based methods rely on two intuitions: (1) the closer the terms

are in a document, the more likely it is that they are related, and (2) the closer

the query terms are in a document, the more likely it is that the document is

relevant to the query [42].

Some of the proximity-based methods are based on evaluating multi-word
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units (phrases) in text. These include nominal compounds (‘ice cream’, ‘turn-

off valve’), phrasal verbs (‘get up’, ‘run into’), proper nouns (‘New York City’,

‘Albert Einstein’) and some idioms (‘food for thought’, ‘nuts and bolts’).

Fagan [10] proposed a phrase indexing method controlled by six parameters

that incorporate the notion of term specificity and the co-occurrence character-

istics of terms into the phrase construction process. The parameters are domain

(of co-occurence of phrase elements, like document or sentence), proximity (rel-

ative location of phrase elements), df-phrase (document frequency threshold for

phrases), df-head (document frequency threshold for phrase heads), df-comp (doc-

ument frequency threshold for phrase components), and length (the number of

elements in a phrase). Retrieval experiments conducted on five document col-

lections revealed that the phrase indexing method performed significantly better

than single term indexing for some collections.

Mitra et al. [23] compared the usefullness of phrases recognized using linguis-

tic methods and those recognized by statistical techniques. Statistical phrases

were selected as the pairs of non-functional words that occur contiguously in at

least 25 documents. The individual words are stemmed and the pair is ordered

lexicographically. To identify syntactic phrases, every word in the document is

tagged with its part of speech (POS) and certain tags are then recognized as noun

phrases. The experiments made on a TREC collection showed that phrases are

useful for some queries, the use of phrases does not significantly affect precision

at the top ranks, and syntactic phrases perform better than statistical phrases.

Clarke et al. [6] proposed a relevance ranking technique called cover den-

sity ranking. Initially the documents are grouped into sets (coordination levels)

according to the number of distinct query terms each contains, with the initial

ranking of a document based on the set in which it appears. Ranking of docu-

ments within a coordination level is based on the proximity and density of query

terms within the documents. The cover sets within a document are identified,

where a cover refers to the shortest span in the document containing query term

instances. The scoring of cover sets is based on two assumptions: (1) the shorter

the cover, the more likely the corresponding text is relevant; and (2) the more
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covers contained in a document, the more likely the document is relevant. Evalu-

ations made on a TREC test collection demonstrated performance that compares

favorably with previous work.

Apart from methods based on capturing phrases, there are also studies aiming

to model term dependencies, which are generally ignored by classical IR models

as discussed in §1.3.

Metzler and Croft [21] developed a general, formal framework for modeling

term dependencies via Markov random fields. They made use of features based

on occurrences of single terms, ordered phrases, and unordered phrases. They

explored full independence, sequential dependence, and full dependence variants

of the model. Ad hoc retrieval experiments were presented on several newswire

and web collections and the results showed that significant improvements are

possible by modeling dependencies, especially on the larger web collections.

Vechtomova [41] proposed a method of matching and weighting phrases in

documents, specifically addressing the problem of weighting overlapping and non-

contiguous word sequences in documents. They reported small improvements over

a baseline system on a TREC collection.

Rasolofo and Savoy [26] suggested the use of proximity measurement in com-

bination with the BM25 probabilistic model. Their approach is based on the as-

sumption that if a document contains sentences having at least two query terms

within them, the probability that this document will be relevant must be greater.

Moreover, the closer the query terms are, the higher the relevance probability is.

They modified the BM25 weighting scheme so as to consider proximity between

query term pairs. They evaluated their approach on three TREC collections and

obtained some improvements, though not consistent, on average precision and

precision at 5, 10 and 20 documents.

Similarly, Büttcher et al. [5] proposed an integration of term proximity scoring

into BM25. Their evaluation on a TREC Terabyte track collection demonstrated

better performance on precision at 10 and 20 documents. They also concluded

that for stemmed queries the impact of term proximity scoring is larger than for
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unstemmed queries.

In the recent study of Vechtomova et al. (also mentioned in §2.2), the authors

modify the BM25 weighting function (Eqn. 1.8) replacing TFi with pfi where

pfi is the pseudo-frequency of query term i and is computed using its shortest

distance to another query term in all sentences it appears. The closer the query

terms are, the higher the pseudo-frequency is. They obtained slight improvements

by the experiments done on collections.



Chapter 3

System Description

3.1 Overview

As described in §1.4, occurrences of words in text are correlated but classic IR

models ignore this, treating words as independent entities. Linguistic theories

suggest that the correlation between the words implies the cohesiveness of a text.

Lexical cohesion and term proximity are two linguistic properties contributing

to cohesiveness. In this work, repetition based lexical cohesion is considered

(cf. Table 2.1). Lexical cohesion and term proximity computations are based on

collocation (cf. §3.2.2). Figures 3.1 and 3.2 (from [42]) illustrate the formation of

proximity based (short-distance) and lexical cohesive (long-distance) relationships

in text, respectively.

Figure 3.1: Short-distance relationship between query terms

23
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Figure 3.2: Long-distance relationship between query terms

The methodology described in this section aims to detect the degree of cohe-

siveness between the words using a graph representation where the nodes repre-

sent the words and the arcs the strength of cohesion computed based on word

co-occurrences. In this way, direct paths between words represent the term prox-

imity and transitive paths represent the lexical cohesion. By exploiting the paths

between words, a graph-based cohesion score is obtained.

In order to show the effectiveness of our approach, the graph-based cohesion

score is used in an information retrieval task. Performance improvement has

already been demonstrated by Vechtomova et al. [43, 42] by means of ranking

a document set using lexical cohesion and term proximity between query terms.

Similarly, in this thesis the lexical cohesion computed for all query term pairs in

each documents is used to re-rank documents in a collection. So, performance

improvement in retrieval effectiveness implies that the lexical cohesion and term

proximity computations are successful.
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3.2 Graph-Based Cohesion Computation

In the following subsections, the basic cohesion computation stages are presented.

Subsections §3.2.1 - §3.2.4 describe the steps of computing cohesion score for a

document. The final subsection §3.2.5 explains how all the documents in the

collection are re-ranked after the cohesion scores are computed for each document.

3.2.1 Document Pre-Processing

The first process applied to a document is tokenizing its content. Tokenizing is

the process of forming words from the sequence of characters in a document. A

simplistic approach would be considering “word” as any sequence of alphanumeric

characters of length 3 or more, terminated by a space or other special character.

So, for instance, the text:

The company’s profit was predicted at $1500.

would produce the following sequence of tokens:

the company profit was predicted at 1500

The next step is the stopping. Words which are too frequent within or among

the documents in the collection are not good discriminators. These are called

stopwords, as the text processing stops when one is seen, and they are thrown

out. Throwing out these words decreases index size, increases retrieval efficiency,

and generally improves retrieval effectiveness [8]. Articles, prepositions, and con-

junctions are natural candidates as stopwords. After stopping, the above sequence

of tokens would reduce to:

company profit predicted 1500

After the stopwords are removed, the remaining words are stemmed. A stem

is the portion of a word which is left after the removal of its affixes (i.e. prefix

and suffixes). Stemming reduces the different forms of a word that occur because

of inflection (e.g., plurals, tenses) or derivation (e.g., making a verb to a noun

by adding the suffix -ation) to a common concept [8]. Applying one of the most

popular stemmers, the Porter stemmer [25], to the above tokenized and stopped
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text would produce:

compani profit predict 1500

In this work, tokenizing, stopping, and stemming of the documents rely on

Okapi IR system’s “parse” functionality1. Finally, the document is reduced fur-

ther in order to include in the calculations only the most significant F number of

terms determined using the tf-idf weighting scheme (Eqn. 1.6). By this way, only

the significant terms which contribute to the actual meaning of the document are

kept.

The steps described in the subsequent sections are applied on the tokenized,

stopped, and stemmed (i.e. reduced) document, rather than the original full-text

document.

3.2.2 Creation of Collocation Matrix

Collocation is defined in various ways by different authors. Hoey’s basic definition

is adopted in this thesis: collocation is the property of language whereby two or

more words seem to appear frequently in each other’s company [17]. One of

these words is called another’s collocate. Collocation can be systematic or non-

systematic. Systematic collocation includes antonyms, members of an ordered

set such as [one, two, three], members of an unordered set such as [white, black,

red], and part-to-whole relationships like [eyes, mouth, face]. Non-systematic

collocation exist between words that tend to occur in similar lexical environments.

Words tend to occur in similar lexical environments because they describe things

that tend to occur in similar situations or contexts in the world. For instance,

the word relationship [garden, digging] is non-systematic [24].

As stated in the previous paragraph, collocation can convey information about

the similarity of words’ lexical environments. So, it’s useful to benefit from col-

locations while computing cohesion. To find collocations, fixed-sized windows

around every instance of each term in the document are identified. A window is

1http://www.soi.city.ac.uk/ andym/OKAPI-PACK/appendix-j.html#parse
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defined as S number of stemmed, non-stopwords to the left and right of a term.

By using the windows identified around each term, the Collocation Matrix

(CM) is created for the document. CM = [mij] is an LxL symmetric matrix

where L is the number of distinct terms (i.e. term types, not instances) in the

reduced document, and each element mij represents how many times any instance

of termi occurs in the same window (i.e., collocates) with any instance of termj.

3.2.3 Conversion of CM into Cohesion Graph

An undirected, weighted Cohesion Graph, CG = (N,A) is created from the CM

such that;

N = {term types in the document}, and

A = {(i, j) : wij = collocation strength between termi and termj}.

To calculate the collocation strength between terms, the co-occurrence fre-

quencies, i.e. mij values, from the CM are used. So for an arc (i, j) ∈ A, wij =

mij.

In CG, a direct path between two nodes implies that the two terms represented

by these nodes co-occur in the same window at least once (term proximity). A

multi-hop path implies that the two terms are related transitively by means of

some other common term(s) (lexical cohesion). It is assumed that, as these terms

co-occur within a common subset of terms, they should also be contextually

related.

3.2.4 Calculation of Cohesion Graph Score

The Cohesion Graph Score (CGS) of query terms for a document is derived from

the strength of the paths between query terms. The algorithm to calculate the

score of a document {d} for a query term set {query term set} is as follows:
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begin
{query terms} = {d} ∩ {query term set};
if | {query terms} |< 2 then

return 0 ;

else

foreach query term pair (qi, qj) : qi, qj ∈ {query term set} do
construct P , set of paths between qi & qj with max length of M ;

foreach path pk ∈ P do
calculate path score PATH SC(qi, qj)k;

end

calculate pair score PAIR SC(qi, qj) using PATH SC(qi, qj)k;

end

calculate document score DOC SC using PAIR SC(qi, qj);

return DOC SC; // DOC SC = CGS

end
end

Algorithm 1: Algorithm to calculate CGS

As the algorithm describes, there are three levels of computation to reach CGS:

path level, query term pair level, and document level. Separation of computations

allows investigating cohesion characteristics at different levels. For each level

there are a number of alternative methods of calculation. These are explained

below and summarized in Table 3.1.

DOC SC (CGS) PAIR SC PATH SC
Method Symbol Method Symbol Method Symbol
Average Av Average Av Average Av

Multiplication Ml Minimum Mn Minimum Mn
Sum Sm Maximum Mx Maximum Mx

Multiplication Ml
Sum Sm

Table 3.1: Alternative methods to calculate path, pair and document scores

3.2.4.1 Calculation of the Path Score (PATH SC)

The following methods were chosen to compute the path score:
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• taking the average of the weights of the arcs in the path (Av)

• taking the maximum weighted arc in the path (Mx)

• taking the minimum weighted arc in the path (Mn)

The minimum and maximum values identify the weakest and strongest chains in

the path. Averaging assumes that the overall path strength lies somewhere be-

tween these extreme values. Trivially, any of the path score calculation methods

described above reduces to the same value for direct links (without any interme-

diate node).

3.2.4.2 Calculation of the Pair Score (PAIR SC)

Usually there are several paths between query term pairs. The score of a query

term pair is computed by one of the following methods:

• taking the average of path scores (Av)

• taking the maximum path score (Mx)

• taking the minimum path score (Mn)

• taking the product of path scores (Ml)

• taking the sum of path scores (Sm)

Summation, multiplication and averaging of path scores are chosen in order

to investigate the effect of the number of distinct paths between query term pairs.

To save from computation, multiplication is implemented as summation of the

logarithms of path scores.

3.2.4.3 Calculation of the Document Score (DOC SC, CGS)

The final score of the document is reached by either:
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• summing all pair scores (Sm), or

• multiplying all pair scores (Ml)

The latter method is useful in penalizing documents where one or more of the

query term pairs are weakly linked. While executing this method, a non-existing

query term yields a pair score of y, 0 ≤ y ≤ 1, with the other query. y = 0 means

that the document will get a CGS of 0 if at least one query term is missing in it.

y = 1 means that non-existence of a query term in a document will not affect its

CGS at all. A value in between penalizes the document for missing query terms

but prevents it from being treated as a document containing none of the query

terms.

3.2.5 Re-Ranking of Documents

To understand its reliability, CGS is used in re-ranking the documents of a col-

lection in response to a set of queries. The queries are tokenized, stopped, and

stemmed using Okapi’s “parse” functionality, as done in reducing documents.

Using the resulting query terms, CGS is calculated as described in steps §3.2.1 -

§3.2.4.

Documents are re-ranked either directly by their CGS scores or by fusing this

score with their BM25 (Eqn. 1.8) scores. The fused score, COMB-CGS, for a

document is calculated as follows:

COMB − CGS = MS + x · CGS (3.1)

where MS is the matching score (BM25) returned by Okapi IR system and x is

a tuning constant to regulate the final score.
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3.3 Improving CGS

In order to improve the performance of the basic CGS method, the modifications

described in the following subsections were applied at different steps of calcula-

tion.

3.3.1 Consideration of document length

CGS calculation does not take into account the length of documents in the collec-

tion. A long and a short document giving exactly the same CGS may experience

a bias in favor of the long document because a long document is expected to

score much, due to the higher number of collocations it should contain. A short

document with the same score should show that it is more cohesive than a longer

document. To normalize the score, a variant method, CGSDL, is built where the

weight of the arc, wij, between each node pair (i, j ) is updated as follows:

wij = mij · ln
(

AV DL

DL
+ 1

)
(3.2)

where DL is the length of document, AV DL is the average document length of

the retrieved set per query, and mij is the co-occurrence frequency of terms i and

j. In this way, a long document is penalized for its length whilst a shorter one is

rewarded.

3.3.2 Consideration of inverse document frequency

In the basic CGS method, solely intra-document relationships (i.e. co-occurrence

frequencies within document) between the terms are considered. During pre-

processing idf weights of terms are used to reduce document but during cohesion

computation there is no use of any collection-wide term information. To include

the collection distribution of terms in CG, a new method, CGSIDF , is developed

where the weight of the arc, wij, between each node pair (i, j ), is updated as
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follows:

wij = mij · f(idfi, idfj) (3.3)

where mij is the co-occurrence frequency of terms i and j. The function

f(idfi, idfj) returns a value based on the idf weights of terms by one of the

following methods:

• taking the average of idf weights (Av)

• taking the maximum idf weight (Mx)

• taking the minimum idf weight (Mn)

• taking the sum of idf weights (Sm)

Once the graph is updated, CGSIDF is calculated as described in §3.2.4.

3.3.3 Incorporating BM25 matching function

In the COMB-CGS method (Eqn. 3.1), CGS is fused with BM25. CGS and BM25

are two complementary methods, the former considering intra-document lexical

cohesive relationships and the latter collection-wide term statistics. Instead of

fusing, another possibility is to incorprate BM25 into CGS. This is done by a new

variant method, CGSTW , in which CG arc weights are updated as follows:

wij = mij · g(TWi, TWj) (3.4)

where mij is the co-occurrence frequency of terms i and j. BM25 term weights,

TWi and TWj, are computed according to Eqn.1.8. The function g(TWi, TWj)

returns a value using one of the following methods:

• taking the average of BM25 weights (Av)

• taking the maximum BM25 weight (Mx)



CHAPTER 3. SYSTEM DESCRIPTION 33

• taking the minimum BM25 weight (Mn)

• taking the sum of BM25 weights (Sm)

After the graph is updated, CGSTW is calculated as described in §3.2.4.
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Experimental Design

4.1 Procedure

In order to show the effectiveness of CGS, information retrieval experiments were

conducted based on TREC test collections (§4.3). Short queries were created

from all non-stopword terms in the “Title” fields of TREC topics (Figure B.9).

Single-term queries were not considered since CGS requires at least two query

terms to be computed. Top T documents are retrieved using Okapi IR System

and then re-ranked by CGS and COMB-CGS methods. Okapi is briefly described

in §4.2. Fixed and tested parameters are provided in §4.4.

The retrieval performance of the methods implemented were evaluated using

trec-eval1, which is a standard program written by Chris Buckley for scoring the

quality of a retrieval result. Trec-eval provides a common implementation for

over 100 different evaluation measures that ensures issues such as interpolation

are handled consistently. Figure B.10 shows a sample output generated by trec-

eval. Despite large number of available evaluation measures, a much smaller set of

measures has emerged as the de facto standard by which retrieval effectiveness is

characterized. These measures include the recall-precision (R-Prec) graph, mean

average precision (MAP) and precision at ten retrieved documents (P10) [44].

1http://trec.nist.gov/act part/tools.html
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These three major metrics are used in this work to evaluate and compare the

developed methods.

4.2 Okapi IR System

Okapi2 is an experimental text retrieval system based at City University, Lon-

don. It started as an online library catalogue system and has since been made

available to groups of researchers. The structure of the Okapi mainly consists of

the following components: indexing routines, search engine (Basic Search System

or BSS), and various interface systems [27].

The Okapi team at City University has taken part in every round of TREC,

which, as stated in [29], has encouraged and made possible substantial develop-

ments both in system design and in underlying models. However, it is also noted

that BM25 formula (Eqn. 1.8) has remained more-or-less fixed since TREC-3.

Okapi povides three types of stemming: weak, strong, and none. It parses

and indexes documents according to a GSL file which is a list of stop terms,

stop marks, phrases and synonym groups. During indexing, the GSL file can be

tailored for a collection.

4.3 Collections

The following standard test collections were used during experiments:

1. TREC 2003 HARD track collection (HARD03 ): 372,219 documents from

3 newswire corpora and U.S. government documents. Two of the 50 top-

ics had no relevant documents and were excluded from the official HARD

2003 evaluation [1]. Two more topics were single-term queries so were also

excluded (See Figure B.11).

2http://www.soi.city.ac.uk/̃ andym/OKAPI-PACK
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2. TREC 2004 HARD track collection (HARD04 ): 652,710 documents from 8

newswire corpora and 50 topics. Five of the topics had no relevant doc-

uments and were excluded from the official HARD 2004 evaluation [2].

Five more topics were single-term queries so were also excluded (See Figure

B.12).

3. TREC 2005 HARD track collection (HARD05 ): 1,033,461 documents from

3 newswire corpora and 50 topics [3]. One of the topics was a single-term

query and was excluded (See Figure B.13).

Instead of separating the collections for testing and training, in the next chap-

ter, the best run in one collection is presented in the other as well. In this way it

is possible to cross-validate the evaluation results.

4.4 Parameters

The parameters described in §4.4.1 were fixed throughout all experiments. The

variable parameters that are tested are given in §4.4.2 with values tried.

4.4.1 Fixed Parameters

In BM25 equation (Eqn. 1.8):

• k1 = 1.2

• b = 0.75

• r = R = 0 - no prior relevance judgements

In CGS calculation (§3.2):

• T = 1000 - number of documents retrieved

• P = 2 (i.e. one intermediate node) - maximum hop count for a path
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4.4.2 Variable Parameters

In CGS calculation (§3.2):

• F = 50, 100, 1000 - number of terms considered

• S = 5, 10, 15 - window size

• y = 0.0, 0.2, 0.5, 0.8, 1.0 - contribution of a non-existing query term to

multiplication during DOC SC computation

In COMB-CGS computation (Eqn. 3.1):

• x = 0.008, 0.01, 0.125, 0.25, 0.5, 1.0, 2.0 - tuning constant
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Evaluation Results

5.1 Performance Comparison of Methods

Table 5.1 summarizes the performance of CGS and COMB-CGS against the

benchmark, Okapi BM25. Improvements significant at 0.05 by two-tailed paired

t-test are marked by *. The table reveals that CGS performs significantly better

only at P10 on HARD05. COMB-CGS outperforms BM25 at all metrics, sig-

nificantly on HARD04 and HARD05. It also performs better than CGS on all

collections and metrics.

METHOD HARD03 HARD04 HARD05
MAP P10 RPREC MAP P10 RPREC MAP P10 RPREC

BM25 0.3258 0.5478 0.3464 0.2014 0.3025 0.2317 0.1697 0.3694 0.2307
CGS 0.2524 0.4435 0.2857 0.1872 0.3450 0.2447 0.1747 0.4490 * 0.2347

COMB-CGS 0.3281 0.5783 0.3546 0.2311 * 0.3825 * 0.2749 * 0.1975 * 0.4612 * 0.2587 *

Table 5.1: The highest performance scores of BM25, CGS and COMB-CGS

The individual retrieval performances of CGS and COMB-CGS for each topic

of every collection are shown in figures B.1 - B.6.

As described previously, CGS is calculated using solely intra-document rela-

tionships between terms. Therefore, it does not contain any collection-wide term

information. This is probably why CGS on its own does not always produce re-

sults as good as the baseline Okapi BM25 system. However, when the scores of
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both systems are fused (Eqn. 3.1), the results are better than the either system

on its own, suggesting that BM25 and CGS capture complementary relevance

information.

5.2 Parameter Analysis of CGS

The performance of CGS on three datasets and three metrics is summarized in

Table 5.2. The following parameters are displayed: window size (S ), number of

terms (F ) used in document representations, and the methods used in calculating

path, pair and document scores (Av, Ml, Mn, Mx, Sm). The highest scores for a

given collection-evaluation measure combination are typed in bold.

Best combinations found Sets and metrics tested on
F S Method HARD03 HARD04 HARD05

MAP P10 RPREC MAP P10 RPREC MAP P10 RPREC
1000 15 Ml-Sm-Mn 0.2524 0.4326 0.2857 0.1792 0.3275 0.2346 0.1739 0.4286 0.2341
100 15 Ml-Sm-Av 0.2367 0.4435 0.2646 0.1791 0.3450 0.2214 0.1605 0.4469 0.2129
1000 15 Ml-Sm-Av 0.2485 0.4152 0.2850 0.1872 0.3225 0.2417 0.1711 0.4245 0.2323
1000 10 Ml-Sm-Av 0.2455 0.4087 0.2767 0.1868 0.3375 0.2447 0.1732 0.4204 0.2340
1000 5 Ml-Sm-Mn 0.2396 0.4326 0.2789 0.1814 0.3250 0.2310 0.1747 0.4163 0.2323
100 15 Ml-Ml-Av 0.2349 0.4283 0.2641 0.1807 0.3300 0.2255 0.1627 0.4490 0.2124
1000 10 Ml-Sm-Mn 0.2456 0.4130 0.2828 0.1811 0.3450 0.2378 0.1736 0.4163 0.2347

Table 5.2: Best performing runs for CGS

There is no best run with F = 50. F = 1000 yields the best results in MAP

and R-PREC, while F = 100 gives the best result in P10 on all collections. This

suggests that it is best to represent the documents (F ) with more terms for good

performance in general, but with fewer terms for high precision (e.g. P10).

For window size, S = 15 is the most popular value, followed by S = 10 at

R-PREC on HARD04 and HARD05, and by S = 5 at MAP on HARD05. But

it is observed in Table 5.3 that S = 15 performs either the best or nearly the

best (for the same fixed window size and method combinations) in all collections

and metrics. Therefore, it can be understood that keeping windows larger (i.e.

considering longer collocation distances) is better.

In calculating the document score, multiplying (Ml) the pair scores performs

better than summing (Sm) them. The superiority of multiplication over summing
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Best combinations Sets and metrics tested on
F Method HARD03 HARD04 HARD05

MAP P10 RPREC MAP P10 RPREC MAP P10 RPREC
1000 Ml-Sm-Mn 0.2524 0.4326 0.2857 0.1792 0.3275 0.2346 0.1739 0.4286 0.2341
100 Ml-Sm-Av 0.2367 0.4435 0.2646 0.1791 0.3450 0.2214 0.1605 0.4469 0.2129
1000 Ml-Sm-Av 0.2485 0.4152 0.2850 0.1872 0.3225 0.2417 0.1711 0.4245 0.2323
1000 Ml-Sm-Av 0.2485 0.4152 0.2845 0.1872 0.3225 0.2417 0.1711 0.4245 0.2323
1000 Ml-Sm-Mn 0.2524 0.4326 0.2857 0.1792 0.3275 0.2346 0.1739 0.4286 0.2341
100 Ml-Ml-Av 0.2349 0.4283 0.2641 0.1807 0.3300 0.2255 0.1627 0.4490 0.2124

Table 5.3: CGS runs for S=15

suggests that the more the pair scores vary across query term pairs in a document

the less the document is cohesive with respect to query terms, hence, the less likely

that the document is relevant. Thus, in relevant documents there are higher

number of query term pairs that are lexically connected, and the strength of this

connection tends to be uniform among all query term pairs.

It can also be observed from the results that summing (Sm) path scores to

arrive pair scores is better than taking the minimum (Mn), maximum (Mx),

multiplication (Ml) or average (Av) of the path scores, except for P10 at HARD05.

For the same F and S values and document and path score calculations methods,

Sm performs comparable to Ml for P10 at HARD05 though (see Table 5.4). This

result indicates that the higher the number of distinct paths between a query term

pair the more likely the document is relevant. Thus, in relevant documents query

terms tend to have more common collocates than in non-relevant documents.

F S Method MAP P10 RPREC
100 15 Ml-Ml-Av 0.1627 0.4490 0.2124
100 15 Ml-Sm-Av 0.1605 0.4469 0.2129

Table 5.4: Ml vs. Sm as pair scores for F=100 S=15 in HARD05

In obtaining the path scores averaging the weights of the arcs (Av), followed

by taking the minimum of arc weights (Mn) are the two best performing methods.

Averaging is preferred for high precision (P10) while a worst-case value of taking

the minimum arc (i.e. terms connected as weakest) sometimes performs better

for MAP and R-PREC.

Set HARD03 HARD04 HARD05
Metric MAP P10 RPREC MAP P10 RPREC MAP P10 RPREC

y 0.8 0.2 1.0 1.0 0.2,0.5,0.8,1.0 0.2 0.8 0.8,1.0 0.5

Table 5.5: Best performing y values for CGS
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As explained in §3.2.4.3, during document score calculation, a non-existing

query term contibutes a value of y in multiplying (Ml) pair scores. Ml is always

the best document score calculation method and y values providing the best

score are given in Table §5.5. The table shows that there is no agreement on a

particular y value within or across neither a collection nor a metric. However,

deeper observation of performance results reveals that all values, except for y =

0.0 which performs much worst, achieve very close performance within the same

F, S, and score calculation methods.

5.3 Parameter Analysis of COMB-CGS

The best performing COMB-CGS runs are given in Table 5.6 for three collec-

tions (the highest scores for a given collection-evaluation measure combination

are typed in bold). The table shows that there is no unique combination of

parameters that yields the highest score in all measures in a collection or for a

given evaluation metric on three collections. F = 1000 always performs best for

R-PREC and x = 0.125 is the best tuning constant value for document scores

calculated using multiplication. Comparison of Table 5.2 and Table 5.6 suggests

that the selection of parameters and methods depends on the document collection

more in COMB-CGS runs than in CGS runs.

Best combinations found Sets and metrics tested on
F S x Method HARD03 HARD04 HARD05

MAP P10 RPREC MAP P10 RPREC MAP P10 RPREC
50 15 0.125 Ml-Mn-Mx 0.3281 0.5652 0.3475 0.2108 0.2950 0.2443 0.1694 0.3755 0.2340
50 5 0.125 Ml-Ml-Av 0.3269 0.5783 0.3477 0.2227 0.3350 0.2564 0.1781 0.4143 0.2368

1000 5 0.25 Sm-Mn-Av 0.3243 0.5370 0.3546 0.2172 0.2975 0.2475 0.1675 0.3490 0.2316

100 15 0.25 Sm-Mx-Av 0.2879 0.4717 0.3310 0.2311 0.3575 0.2698 0.1698 0.3939 0.2302
50 5 0.5 Sm-Ml-Mx 0.2954 0.4870 0.3313 0.2260 0.3825 0.2623 0.1792 0.3959 0.2348

1000 15 0.125 Ml-Sm-Av 0.2916 0.4587 0.3312 0.2245 0.3500 0.2749 0.1851 0.4367 0.2503

1000 5 0.5 Sm-Sm-Mn 0.2652 0.3717 0.3130 0.2170 0.3425 0.2511 0.1975 0.4367 0.2576
100 15 0.125 Ml-Ml-Av 0.3182 0.5174 0.3484 0.2260 0.3575 0.2706 0.1824 0.4612 0.2422
1000 5 0.5 Sm-Sm-Av 0.2535 0.3478 0.3085 0.2188 0.3450 0.2569 0.1911 0.4204 0.2587

Table 5.6: Best performing runs for COMB-CGS

As in CGS, there is not a common y value within or across a collection or a

metric in COMB-CGS (see Table 5.7).
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Collection HARD03 HARD04 HARD05
Metric MAP P10 RPREC MAP P10 RPREC MAP P10 RPREC

y 0.5 0.2 - - - 0.2 - 0.5, 1.0 -

Table 5.7: Best performing y values for COMB-CGS

5.4 Impact of Variant Methods of CGS

Of the three modifications suggested for improving the performance of CGS,

consideration of document length (§3.3.1) resulted in performance improvement

only in the HARD03 collection (See Table 5.8). This was expected because this

collection, consisting of a heterogeneous set of news and government documents

with highly varying document lengths, distinguishes itself from the other two

collections which contain solely news articles of usually close lengths.

METHOD HARD03
MAP P10 R-PREC

CGS 0.2524 0.4435 0.2857

CGSDL 0.2785 0.4870 0.3066

Table 5.8: HARD03 performance with consideration of document length

In all collections, considering inverse document frequency (§3.3.2) improved

P10 performance. Table 5.9 provides the numbers together with the best per-

forming f(idfi, idfj) methods in parantheses.

METHOD HARD03 HARD04 HARD05
P10 P10 P10

CGS 0.4435 0.3450 0.4490

CGSIDF 0.4652 (Mn) 0.3550 (Av/Sm) 0.4673 (Mn)

Table 5.9: P10 improvement with consideration of IDF

Incorporating BM25 matching function (§3.3.3) resulted in improvement in

MAP and R-Prec (except for HARD04) in all collections. The results are given

together with the best performing g(TWi, TWj) methods in parantheses in Table

5.10.
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METHOD HARD03 HARD04 HARD05
MAP RPREC MAP RPREC MAP RPREC

CGS 0.2524 0.2857 0.1872 0.2447 0.1747 0.2347

CGSTW 0.2574 (Mx) 0.2947 (Mn) 0.1951 (Mx) 0.2430 (Various) 0.1792 (Sm) 0.2409 (Mn)

Table 5.10: MAP and R-PREC improvement with BM25 incorporation
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Conclusion

Context-awareness is a crucial concern in information retrieval. A document

and a query having matching words does not necessarily imply that the doc-

ument is relevant to the query. The words may reside in the same document

but may not share a common context. As opposed to traditional “bag-of-words”

retrieval methods, by adapting linguistic theories and incorporate language pro-

cessing techniques into IR tasks it is possible to perform contextual information

retrieval. In this work different methods for document ranking based on lexical

cohesion and proximity among query terms in a document were investigated. To

compute the degree of cohesion in a document with respect to a query, a docu-

ment is interpreted as a graph whose nodes are the terms in the document, and

arcs representing the strength of association between the terms connected by it.

The associations a term has with other terms in the cohesion graph constitute

its context in the document. The overall strength of the cohesive relationships

between all query terms in a document is indicator of a common context that

makes the document relevant to a given query.
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6.1 Novelty and Implications of this Study

This study extends the previous studies on cohesion based IR with the following

major contributions:

• a new graph representation for documents which is created by the use of

collocation information and able to capture both term proximity and lexical

cohesion in text,

• two new matching functions based on cohesion in document aiming to im-

prove retrieval effectiveness,

• several linguistic implications about the characteristics of cohesion stem-

ming from score calculation methods and parameters.

The experiments made revealed the following implications:

• BM25 and CGS capture complementary relevance information,

• representing the documents with more terms provides good performance,

• larger windows (i.e. considering longer collocation distances) increases per-

formance,

• in relevant documents there are higher number of query term pairs that are

lexically connected, and the strength of this connection tends to be uniform

among all query term pairs,

• in relevant documents query terms tend to have more common collocates

than in non-relevant documents,

• normalizing cohesion score by average document length is useful in improv-

ing retrieval performance on heterogeneous collections consisting of docu-

ments with varying lengths,

• considering idf weights improves P10,
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• incorporating BM25 function into CGS improves MAP and R-PREC.

The methodology described in this work can be used in:

• improving an IR system: CGS can be incorporated and fused with the

underlying matching functions of an existing text retrieval engine improving

effectiveness,

• summarizing documents: by analyzing the links between terms and consider

terms’ distribution frequencies within document or collection, important

terms can be determined and used in summarizing a document,

• query expansion and re-formulation: using the links query terms form with

non-query terms, highly collocated terms can be included in a revised query,

• understanding cohesion characteristics in a collection: by analyzing the

best performing document, pair, and path calculations methods, impression

about cohesion in different types of collections can be obtained,

• visualizing documents: by enriching the graph representation with visual

cues, an interface to preview documents can be provided to users. Enhance-

ment ideas include, but are not limited to, highlighting query term nodes,

re-sizing nodes by their weights, and thickening arcs proportional to collo-

cation frequency. This way, a user can evaluate the relevance of a document

without reading the whole document.

6.2 Further Research Directions

This study can be extended in several directions:

• Instead of fixed-sized windows, lexical structures, like sentences or para-

graphs, may be used as boundary for windows,

• In addition to repetition, other lexical cohesive relationships like synonymy,

hypernymy, and etc. may be used in determining collocations,
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• Standard graph-based methods may be used to calculate CGS. For instance,

collocations may be determined by selecting k-nearest neighbors and the

score between two query terms can be determined by random walk,

• Different merging algorithms and matching functions may be used in cal-

culating COMB-CGS, instead of a linear combination with BM25,

• The performance of the methods suggested may be tested on corpora other

than news collections like blogs, web documents, and etc.
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Appendix A

Tables

Lexical
cohesion Reference Conjunction Ellipsis Substitution

Children’s fiction 7 8 3 0 0
Oral narrative 26 12 11 6 2
Sonnet 13 8 2 0 0
Autobiography 20 10 1 0 1
Dramatic dialogue 9 13 5 12 4
Reported interview 17 20 4 1 1
Transcribed interview 15 10 4 7 2

107 81 30 26 10
(including Conjunction) 42% 32% 12% 10% 4%
(excluding Conjunction) 48% 36% 12% 4%

Table A.1: Distribution of classes of cohesive ties for different kinds of texts
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(a) Topic number vs. MAP

(b) Topic number vs. P10

(c) Topic number vs. R-PREC

Figure B.1: Query-by-query retrieval performance of CGS on HARD03
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(a) Topic number vs. MAP

(b) Topic number vs. P10

(c) Topic number vs. R-PREC

Figure B.2: Query-by-query retrieval performance of CGS on HARD04
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(a) Topic number vs. MAP

(b) Topic number vs. P10

(c) Topic number vs. R-PREC

Figure B.3: Query-by-query retrieval performance of CGS on HARD05
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(a) Topic number vs. MAP

(b) Topic number vs. P10

(c) Topic number vs. R-PREC

Figure B.4: Query-by-query retrieval performance of COMB-CGS on HARD03
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(a) Topic number vs. MAP

(b) Topic number vs. P10

(c) Topic number vs. R-PREC

Figure B.5: Query-by-query retrieval performance of COMB-CGS on HARD04
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(a) Topic number vs. MAP

(b) Topic number vs. P10

(c) Topic number vs. R-PREC

Figure B.6: Query-by-query retrieval performance of COMB-CGS on HARD05



APPENDIX B. FIGURES 61

(a) A relevant document (NYT20030103.0110) ranked 4th by BM25

(b) A non-relevant document (APE20030102.0060) ranked 5th by BM25

Figure B.7: Visual representation of two documents using the Cohesion Graph
(F50S1) for the query “Chimpanzee language ability” (HARD-407). The

thickness of arcs represents the strength of association between the nodes (i.e.
terms). CGS demotes document represented in (b), and promotes document

represented in (a)
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Figure B.8: An example TREC document
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Figure B.9: An example TREC topic
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Figure B.10: A sample trec-eval output
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Figure B.11: HARD03 queries
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Figure B.12: HARD04 queries
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Figure B.13: HARD05 queries


