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ABSTRACT

INDUCTIONS, RESTRICTIONS, EVALUATIONS, AND
SUBFUNCTORS OF MACKEY FUNCTORS

Ergün Yaraneri

P.h.D. in Mathematics

Supervisor: Assoc. Prof. Dr. Laurence J. Barker

August, 2008

In this thesis we try to relate the subfunctor structure of a given Mackey functor

M for a finite group G to the submodule structure of the KNG(H)-module M(H)

where H is a subgroup of G.

We mainly study the socle and the radical of a Mackey functor M for a finite

group G over a field K, (usually, of characteristic p > 0). For a subgroup H

of G, we construct bijections between some classes of the simple subfunctors of

M and some classes of the simple KNG(H)-submodules of M(H). We relate the

multiplicity of a simple Mackey functor SG
H,V in the socle of M to the multiplicity

of V in the socle of a certain KNG(H)-submodule of M(H). We also obtain

similar results for the maximal subfunctors of M. We specialize our results to

some specific kinds of Mackey functors for G that includes the functors obtained

by inducing or restricting a simple Mackey functor, Mackey functors for a p-group,

the fixed point functor, and the Burnside functor BG
K.

Let M be the Mackey functor ↑GK SK
H,W for G obtained by inducing a simple

Mackey functor SK
H,W for K. For example, we observe that the socle and the

radical of M can be determined from the socle and the radical of the KNG(H)-

module V =↑NG(H)

NK(H)
W. We also find similar results for Mackey functors obtained

by restricting a simple Mackey functor. Moreover, we derive criterions for a

Mackey functor obtained by inducing or restricting a simple Mackey functor to

be simple, semisimple or indecomposable.

Our results about induced or restricted Mackey functors include Mackey func-

tor versions of two classical and frequently used results in the representation

theory finite groups, namely Clifford’s theorem and Green’s indecomposibility

theorem.
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We also apply our general results to Mackey functors satisfying some special

conditions such as having a unique maximal or simple subfunctor, being uniserial,

and being a functor for a p-group. We give some results about primordial and

coprimordial subgroups of G for such kind of functors, and we refine our general

results and obtain, for instance, a criterion for a Mackey functor to be a quotient

of a projective Mackey functor, and find some information about composition

series.

In later chapters the main Mackey functor to which we apply our general

results is the Burnside functor BG
K. We first find the maximal subfunctors of BG

K

for any group G, and obtain some results about evaluations of the terms of the

radical series of BG
K. We also get some results about simple Mackey functors in

radical layers of BG
K whose minimal subgroups are p-subgroup of G. Assuming

that G is a p-group we find the first four top factors of the radical series of BG
K,

and assuming further that G is an abelian p-group we find the radical series of

BG
K completely, which means that in this case we find the evaluations of the terms

of the radical series, and the simple Mackey functors appearing in radical layers,

and the Loewy length of BG
K. We also study the socle series of BG

K. This seems to

be harder than the radical series. Nevertheless, we obtain similar results for the

socle series of BG
K assuming mostly that G is an abelian p-group. To illustrate

applications of our general results we also study briefly the radical and the socle

series of fixed point functors FPG
V where V is a one dimensional KG-module.

We finish this thesis by trying to find possible relations between the socles and

the radicals of the Mackey functors of the form T and FT where T is a Mackey

functor and F is one of the functors restriction, inflation, evaluation, or adjoints

of them, between Mackey functor categories.

Keywords: Mackey functor, Mackey algebra, simple, indecomposable, restriction,

induction, evaluation, socle, radical, Clifford’s theorem, Green’s indecomposibil-

ity theorem, maximal subfunctor, Brauer quotient, minimal subfunctor, restric-

tion kernel, primordial, coprimordial, uniserial, Burnside functor, socle series,

radical series, composition series, composition factors, Loewy lenght, fixed point

functor, functors for p-groups.



ÖZET

MACKEY FUNKTORLARIN GENİŞLETİLMESİ,
KISITLANMASI, HESAPLANMASI, VE ALT

FUNKTORLARI

Ergün Yaraneri

Matematik, Doktora

Tez Yöneticisi: Doç. Dr. Laurance J. Barker

Ağustos, 2008

G bir sonlu grup ve H de G nin bir alt grubu olsun. Ayrıca M de bize verilmiş G

nin bir Mackey funktoru olsun. Bu tezde, M nin alt funktorlarının yapısıyla M

yi H de hesapladığımızda elde ettiğimiz M(H) modülünün, ki KNG(H) cebirinin

bir modülüdür, alt modüllerinin yapısını karşılaştırdık.

Genellikle G nin karakteri 0 dan büyük olan bir cisim üzerinde verilen bir

Mackey funktoru M nin sokal ve radikal alt funktorlarına çalıştık. M nin

bazı basit alt funktorlarının oluşturduğu sınıflarla M(H) modülünün bazı ba-

sit alt modüllerinin oluşturduğu sınıflar arasında bire bir örten gönderimler

kurduk. Ayrıca, verilen bir basit Mackey functoru SG
H,V nin M nin sokal alt

funktorundaki tekerrür etme sayısını V nin M(H) in bir alt modülünün sokal

alt modülünde tekerrür etme sayısıyla ilişkilendirdik. Basit alt funktorlar için

yaptığımız çalışmaların benzerlerini basit bölüm funktorları, bir başka deyişle en

büyük alt funktorları, için de yaptık. Elde ettiğimiz genel Mackey funktorlar için

olan sonuçları bazı özel şartları sağlayan Mackey funktorlarına uyguladık. Mesela,

basit Mackey funktorların kısıtlanmasıyla yada genişletilmesiyle elde edilen funk-

torlara, değişmez eleman funktoruna, ve Burnside funktoruna uyguladık.

K, G nin bir alt grubu olsun. K nin bir basit Mackey funktoru olan SK
H,W den

genişletmeyle elde edilen G nin Mackey funktoru ↑GK SK
H,W yi M ile gösterelim.

Örneğin, bu durumda gösterdik ki, M nin sokal ve radikal alt funktorlarını V

nin sokal ve radikal alt modüllerini kullanarak bulabiliriz. Benzer bir durumun

bir basit Mackey funktorun kısıtlanmasıyla elde edilen Mackey funktorlar için

de doğru olduğunu gösterdik. Bunlara ek olarak, bir basit Mackey funktorun

genişletilmesiyle yada kısıtlanmasıyla elde edilen Mackey funktorların ne zaman

basit, yarı basit, yada parçalanamaz olacağına eşdeğer olan kiriterler bulduk.
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Bulduğumuz sonuçlar arasında sonlu grup temsilleri kuramında geçen ve sıkça

kullanılan iki önemli klasik teoremin benzerlerinin Mackey funktorlar kuramında

da doğru olduğu var. Bu bahsi geçen teoremler Clifford teoremi ve genişletmeyle

elde edilen bir modülün ne zaman parçalanamayacağını söyleyen Green teo-

remidir.

Geliştirdiğimiz genel sonuçları uyguladığımız daha başka Mackey funktorlar-

dan söz etmek gerekirse sadece bir tane en büyük yada en küçük alt funktora

sahip olan funktorları, sadece bir tane kompozisyon serisine sahip olan funktorları

ve p-grupların funktorlarını sayabiliriz. Örneğin, bu tipteki Mackey funktorların

primordiyal alt gruplarıyla alakalı bazı sonuçlar elde ettik.

Tezin sonraki bölümlerinde ise genellikle Burnside funktoru BG
K ye çalıştık.

Öncelikle onun en büyük alt funktorlarını bulduk ve radikal serisinin terimlerinin

G nin bazı alt gruplarındaki değerlerini hesapladık. Ek olarak, BG
K funktorunun

radikal katmanlarında bulunan basit Mackey funktorlar hakkında bazı sonuçlara

ulaştık. G yi bir p-grup varsaydığımızda ise BG
K nin ilk dört radikal katmanını

hesaplayabildik. G yi bir abelyen p-group varsaydığımızda ise BG
K funktoru-

nun radikal serisi hakkında tam bir bilgi sahibi olduk. Yani G nin bu duru-

munda, BG
K nin radikal katmanlarındaki tüm basit funktorların ne olduklarını,

BG
K nin radikal serisinin terimlerinin G nin alt gruplarındaki değerlerini ve de BG

K

nin Loewy uzunluğunun ne olduğunu bulabildik. Benzer şekilde BG
K nin sokal

serisi hakkında bir calışma yaptık. Fakat bu durumun radikal için yaptığımız

çalışmadan daha zor olduğunu gözlemledik, ki bu BG
K nin kısıtlama çekirdeklerinin

hesaplanmasının Brauer bölümlerinin hesaplanmasıyla kıyasladığımızda daha zor

olmasından ötürüdür. En azından sokal serisi için G nin abelyen p-group olduğu

durumlarda benzer bir çok sonuç çıkardık.

Anahtar sözcükler : Mackey funktoru, Mackey cebiri, basit, parçalanamaz,

kısıtlama, genişletme, değer, sokal, radikal, Clifford teoremi, Green parçalanamama

teoremi, en büyük alt funktor, Brauer bölümü, en küçük alt funktor, kısıtlama

çekirdeği, primordiyal, yardımcı primordiyal, biricik seri funktorları, Burnside

funktoru, sokal serisi, radikal serisi, compozisyon serisi, compozisyon faktörleri,

Loewy uzunluğu, değişmez eleman funktoru, p grupların funktorları.
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Chapter 1

Introduction

Let H ≤ G be finite groups and K be a field. Many topics in the representation

theory of finite groups deal with the repeated applications of the following three

basic functors, namely induction, restriction, and conjugation:

(1) ↑GH : KH-mod→ KG-mod, W 7→↑GH W := KG⊗KH W

(2) ↓GH : KG-mod→ KH-mod, V 7→↓GH V := KG⊗KG V

(3) |gH : KH-mod→ K(gH)-mod, U 7→ |gHU := U with gH-action given by

g′u = (g−1g′g)u.

Many classical results in the representation theory of finite groups depend

only on the properties of the above three functors such as:

(a) (Mackey decomposition formula) If H ≤ G ≥ K and W is a KH-module

then

↓GK↑GH W ∼=
⊕

KgH⊆G

↑KK∩gH↓
gH
K∩gH |

g
HW.

(b) The pairs (↑GH , ↓GH) and (↓GH , ↑GH) are adjoint pairs.

(c) If H ≤ K ≤ G then

↑GK↑KH W ∼=↑GH W.

1



CHAPTER 1. INTRODUCTION 2

The above properties are formalized in the notion of Mackey functors. At this

point one may think of Mackey functors as assigning to each subgroup H of G a

K-space (or more generally an R-module where R is a commutative unital ring)

M(H) as well as three kinds of R-module homorphisms, a restriction homomor-

phism M(H) → M(K) and an induction homomorphism M(K) → M(H) for

K ≤ H, and a conjugation homorphism transporting the structure of M(H) to

M(gH). These maps are required to satisfy some natural conditions such as (a)-

(c) above. The axioms for a Mackey functor were first formulated by Green [Gr]

(1971) and by Dress [Dr2] (1973). A basic example of a Mackey functor for G

over K, that motivates also the notion, is the representation ring which is the

content of the next example.

Example 1.1 Representation rings G0(KG) : the Grothendieck group of the cat-

egory of finitely generated KG-modules. In characteristic zero this may be iden-

tified as the group of characters of KG-modules, and in characteristic p as the

group of Brauer characters. More explicitly, for any subgroup H of G if we put

M(H) := G0(KH) =
⊕

V ∈Irr(KH)

Z[V ],

then M becomes a Mackey functor for G over Z with the following maps:

tKH : M(H)→M(K), [W ] 7→ [↑KH W ].

rK
H : M(K)→M(H), [V ] 7→ [↓KH V ].

cgH : M(H) → M(gH), [U ] 7→ [gU ], where gU = U with gH-action given by

g′u = (g−1g′g)u.

A Mackey functor is an algebraic structure possessing operations which behave

like the induction, restriction and conjugation mappings in the previous exam-

ple. It can be seen as a category-theoretic approach to various topics where

there are notions of induction and restriction. Important examples of Mackey

functors are representation rings, induction theory, G-algebras, Burnside rings,

algebraic K-theory of group rings, algebraic number theory, group cohomology,
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equivariant topological K-theory, equivariant L-groups, Witt rings, stable equiv-

ariant (co)homology theories, see [We1] and the references in [We1]. It is their

widespread occurrence which motivates the study of such operations in abstract.

The power of the theory comes from the fact that the category of Mackey func-

tors is fairly well-understood, for instance, the simple Mackey functors have been

classified (Thévenaz-Webb [TW]).

We mention now some examples of Mackey functors.

Example 1.2 Fixed point functors: Let V be an RG-module. For any subgroup

H of G, let

M(H) := V H = {v ∈ V : hv = v ∀h ∈ H}.

Then, M is a Mackey functor for G over R with the following maps:

tKH : M(H)→M(K), x 7→
∑

gH⊆K

gx,

rK
H : M(K)→M(H) is the inclusion, and

cgH : M(H)→M(gH), x 7→ gx.

Example 1.3 Burnside rings: Let H be a subgroup of G. The set of isomorphism

classes of finite H-sets form a commutative semiring under the operations disjoint

union and cartesian product. The associated Grothendieck ring B(H) is called

the Burnside ring of H. Therefore, letting V runs over representatives of the

conjugacy classes of subgroups of H, then [H/V ] comprise (without repetition)

a Z-basis of B(H), where the notation [H/V ] denotes the isomorphism class of

transitive H-sets whose stabilizers are H-conjugates of V. Thus,

B(H) =
⊕

V≤HH

Z[H/V ].

Then B becomes a Mackey functor for G over Z with the maps:

tKH([H/V ]) = [K/V ], rK
H ([K/W ]) =

∑
HgW⊆K

[H/H ∩ gW ],

cgH([H/U ]) = [gH/gU ].
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Example 1.4 The commutator functor: Let G be a finite group. For any sub-

group H of G we put M(H) := H/H ′ where H ′ is the commutator subgroup of

H. Then M becomes a Mackey functor for G over Z with the following maps:

tKH : H/H ′ → K/K ′, hH ′ 7→ hK ′,

rK
H : K/K ′ → H/H ′, the map induced by the group theoretical transfer map

K → H/H ′.

Example 1.5 Some other examples:

A(G) : the Green ring of finitely generated KG-modules.

Hn(G;U), Hn(G;U) : the cohomology and homology of G in some dimension n

with coefficients in the ZG-module U.

Kn(ZG) : the algebraic K-theory of ZG, and other related groups such as the

Whitehead group.

Cl(O(KG)) : the class group of the ring of integers of the fixed field KG where

G is a group of automorphisms of a number field K.

We call this structure, as in the examples above, a (Mackey) functor, because

it may be considered as a functor between two categories. Indeed, Dress [Dr2]

defined the notion as a bifunctor consisting of a covariant and a contravariant

functor from the category of finite G-sets to an abelian category. Another way

to see it as a functor between two categories is an instance of a more general

observation that any (left) module of a (finite) dimensional R-algebra can be

viewed as an R-linear (covariant) functor from a (small) R-linear category to the

category of R-modules. The converse is also true that an R-linear (covariant)

functor from a (small) R-linear category to the category of R-modules may be

viewed as a module of an algebra, called the category algebra, see Webb [We3].

It became apparent after Thévenaz-Webb [TW95] that Mackey functors are alge-

braic structures in their own right with a theory which fits into the framework of
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representations of algebras. They may, in fact, be identified with the representa-

tions of a certain finite dimensional R-algebra µR(G), called the Mackey algebra,

so that a Mackey functor for G is indeed a µR(G)-module (and vice versa), and

there are simple Mackey functors, projective and injective Mackey functors, res-

olutions of Mackey functors, and so on. In particular, one may use the Mackey

algebra to see a Mackey functor as a functor between two categories. To explain

it roughly, let S(G) be the category whose objects are the subgroups of G and

for any subgroups H and K the morphisms from H to K are R-linear combina-

tions of symbols tKgJc
g
Jr

H
J (which are elements of an R-basis of the Mackey algebra

µR(G), see 2.1) where g ∈ G and J ≤ Kg ∩H, and where t, r, and c satisfy some

natural relations as in the examples. Then a Mackey functor M is an R-linear

(covariant) functor M : S(G)→ R-mod.

In this thesis we mainly study subfunctors and quotient functors of a Mackey

functor M and relate them to those of the KNG(H)-module M(H) where H is

a subgroup of G. We apply our results to some specific Mackey functors such as

Mackey functors obtained by restricting or inducing a simple Mackey functor and

the Burnside functor BG
K. For instance, we obtain in some cases results about the

Loewy series and the Loewy layers of BG
K and obtain some results about socles

and radicals of some specific Mackey functors including the ones obtained by

restricting or inducing a simple Mackey functor.

We now want to explain our notations. Let H and K be subgroups of G.

By the notation HgK ⊆ G we mean that g ranges over a complete set of rep-

resentatives of double cosets of (H,K) in G. We write NG(H) for the quotient

group NG(H)/H where NG(H) is the normalizer of H in G, and write |G : H|
for the index of H in G. For a module V of an algebra we denote by Soc(V ) and

Jac(V ) the socle and the radical of V, respectively. Most of our other notations

are standard and tend to follow [TW, TW95].

Let us finish this chapter by mentioning some (not all) of our main results.

Let G be a finite group and let K be a field.
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Theorem A. Let H ≤ K ≤ G and let W be a simple KNK(H)-module. Let

M =↑GK SK
H,W and V =↑NG(H)

NK(H)
W.

(1) There is a bijective correspondence (preserving multiplicities in respective

socles) between the simple µK(G)-submodules of M and the simple KNG(H)-

submodules of V.

(2) There is a bijective correspondence (preserving multiplicities in respective

heads) between the maximal µK(G)-submodules of M and the maximal

KNG(H)-submodules of V.

(3) M is a simple (respectively, semisimple, or indecomposable) µK(G)-module

if and only if V is a simple (respectively, semisimple, or indecomposable)

KNG(H)-module.

Theorem B. Let H ⊆ K be subgroups of G and let V be a simple KNG(H)-

module. Let

T =↓GK SG
H,V and W =↓NG(H)

NK(H)
V.

(1) The socle and the radical of T can be determined from the socles and the

radicals of the KNK(gH)-modules gV where g ranges over all elements of

G with gH ≤ K.

(2) The µK(K)-module T is semisimple if and only if the KNK(gH)-modules gV

are all semisimple for any element of G with gH ≤ K.

(3) The µK(K)-module T is simple (respectively, indecomposable) if and only if

any element of the set {gH : gH ≤ K, g ∈ G} is a K-conjugate of H and

the KNK(H)-module W is simple (respectively, indecomposable).

Theorem C. There is a “Clifford’s theorem for Mackey functors” and there is a

“Green’s indecomposibility theorem for Mackey functors.”
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Theorem D. Let K be of characteristic p > 0. Suppose that M is a µK(G)-

module, H is a subgroup of G, and U is a simple KNG(H)-module. Then:

(1) The multiplicity of SG
H,U in Soc(M) is equal to the multiplicity of U in the

socle of the following KNG(H)-submodule of M(H) :⋂
X/H

{x ∈M(H) :
( ∑

gH⊆X

cgH
)
x = 0 =⇒ tXH(x) = 0}

where X/H ranges over all nontrivial p-subgroups of NG(H)/H.

(2) There is a simple subfunctor of M having H as a minimal subgroup if and

only if there is a simple KNG(H)-submodule T of M(H) satisfying the

following condition for any nontrivial p-subgroup X/H of NG(H)/H :

x ∈ T,
( ∑

gH⊆X

cgH
)
x = 0 implies tXH(x) = 0.

(3) The multiplicity of SG
H,U in Soc(M) is less than or equal to the multiplicity

of U in Soc
(
M(H)

)
.

(4) The multiplicity of SG
H,U in Soc(M) is greater than or equal to the multiplicity

of U in the socle of the following KNG(H)-submodule of M(H) :⋂
H<X≤NG(H):|X:H|=p

Ker
(
tXH : M(H)→M(X)

)
.

(5) Suppose that NG(H) is a p′-group. Then, the multiplicity of SG
H,U in Soc(M)

is equal to the multiplicity of U in M(H).

Theorem E. Let M be a µK(G)-module, H be a subgroup of G, and V be a simple

KNG(H)-module. Put A = µK(G).

(1) Suppose that H is maximal subject to the condition M(H) 6= 0. Then,

the multiplicity of SG
H,V in Soc(M) is equal to the multiplicity of V in

Soc(M(H)).
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(2) The multiplicity of V as a composition factor of M(H) is equal to the mul-

tiplicity of SG
H,V as a composition factor of AM(H).

(3) Let K be of characteristic p > 0 and G be a p-group. Let H ≤ K be subgroups

of G with |K : H| = pn. If tKH(M(H)) 6= 0 or rK
H (M(K)) 6= 0, then the

Loewy length of M is greater than or equal to n+ 1.

Theorem F. Let K be of characteristic p > 0 and M = BG
K. Let H be a p-subgroup

of G, and V be a simple KNG(H)-module, and let n be a natural number with

pn ≤ |G|p. For any natural number k we put Jk = Jack(M). Then:

(1) If SG
H,V appears in Jn/Jn+1 then |G : H|p ≤ pn and |G : H|p 6= pn−1.

(2) If |G : H|p = pn and SG
H,V appears in Jn/Jn+1 then V = K.

(3) If |G : H|p = pn then the multiplicity of SG
H,K in Jn/Jn+1 is 1.

(4) The multiplicity of SG
1,K in M is 1, and it appears in Jm/Jm+1 where pm =

|G|p.

(5) The Loewy length of M is greater than or equal to m+ 1.

Theorem G. Let K be of characteristic p > 0 and G be an abelian p-group with

|G| = pn. For any natural number k we put Jk = Jack(M) where M = BG
K. Then:

(1) For any natural number k with k ≤ n we have:

Jk/Jk+1
∼=

bk/2c⊕
l=0

( ⊕
H≤G:|G:H|=pk−2l

λl
HS

G
H,K

)
where λl

H is the number of elements of the set {V ≤ H : |H : V | = pl}.

(2) For any natural number k with k ≥ n+ 1 we have:

Jk/Jk+1
∼=

bk/2c⊕
l=k−n

( ⊕
H≤G:|G:H|=pk−2l

λl
HS

G
H,K

)
where λl

H is the number of elements of the set {V ≤ H : |H : V | = pl}.
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(3) The Loewy length of M is 2n+ 1.

Theorem H. Let K be of characteristic p > 0 and V be a one dimensional KG-

module. For any natural number k we put Jk = Jack(M) and Sk = Sock(M)

where M = FPG
V . Let n be the natural number satisfying pn = |G|p. Then:

(1)

Jk/Jk+1
∼=

⊕
H≤GG:|H|=pn−k

SG
H,V .

(2)

Sk+1/Sk
∼=

⊕
H≤GG:|H|=pk

SG
H,V .

(3) The Loewy length of M is n+ 1.

(4) Let X be a p-subgroup of G. Then, Jk(X) = 0 if and only if |X| ≥ pn+1−k.

(5) Let X be a p-subgroup of G. Then, Sk(X) = 0 if and only if |X| ≥ pk.

(6) If G is a p-group then the socle and the radical series of M coincide.

Throughout this thesis, G is a finite group, K is an arbitrary field. We consider

only finite dimensional Mackey functors.

Next page collects some of our frequently used notations.
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Notations

G : a finite group

|G : H| : index of the subgroup H in G

NG(H) : NG(H)/H where NG(H) is the normalizer of the subgroup

H in G

HgK ⊆ G : means that g ranges over a complete set of representatives

of double cosets of the pair (H,K) of subgroups of G in G

K : a field

R : a commutative unital ring

µR(G) : the Mackey algebra of G over the coefficient ring R

SG
H,V : simple Mackey functor

PG
H,V : projective cover of SG

H,V

BG
K : Burnside functor for G over K

FPG
V : fixed point functor

↑GH : induction of Mackey functors, modules

↓GH : restriction of Mackey functors, modules

|gHM : conjugation of Mackey functor M, conjugation of module M
gM : conjugation of Mackey functor M, conjugation of module M

Soc(M) : socle of Mackey functor M, socle of module M

Jac(M) : (Jacobson) radical of Mackey functor M, radical of module M

M(H) :
⋂

J<H Ker(rH
J : M(H)→M(J)), called the restriction kernel,

where M is a Mackey functor for G and H is a subgroup

M(H) : M(H)/
∑

J<H t
H
J (M(J)), called the Brauer quotient,

where M is a Mackey functor for G and H is a subgroup

np : p-part of the natural number n

brc : the largest integer which is less than or equal to the real

number r

InfGG/N : inflation of Mackey functors, modules, from the quotient

group G/N to G where N is a normal subgroup of G

L+
G/N : left adjoint of the inflation functor from the quotient group

G/N to G where N is a normal subgroup of G

L−G/N : right adjoint of the inflation functor from the quotient group

G/N to G where N is a normal subgroup of G



Chapter 2

Preliminaries

In this chapter, we briefly summarize some crucial material on Mackey functors.

For the proofs, see Thévenaz–Webb [TW, TW95]. Let χ be a family of subgroups

of G, closed under taking subgroups and taking G-conjugation. Recall that a

Mackey functor for χ over a commutative unital ring R is such that, for each

subgroup H of G in χ, there is an R-module M(H); for each pair H,K ∈ χ with

H ≤ K, there are R-module homomorphisms rK
H : M(K) → M(H) called the

restriction map and tKH : M(H) → M(K) called the transfer map or the trace

map; for each g ∈ G, there is an R-module homomorphism cgH : M(H)→M(gH)

called the conjugation map. The following axioms must be satisfied for any

g, h ∈ G and H,K,L ∈ χ [Bo, Gr, TW, TW95].

(M1) If H ≤ K ≤ L, then

rL
H = rK

Hr
L
K and tLH = tLKt

K
H .

Moreover, rH
H = tHH = idM(H).

(M2) c
gh
K = cghK

chK .

(M3) If h ∈ H, then chH : M(H)→M(H) is the identity map.

11
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(M4) If H ≤ K, then

cgHr
K
H = r

gK
gH c

g
K and cgKt

K
H = t

gK
gHc

g
H .

(M5) (Mackey Axiom) If H ≤ L ≥ K, then

rL
Ht

L
K =

∑
HgK⊆L

tHH∩gKr
gK
H∩gKc

g
K .

When χ is the family of all subgroups of G, we say that M is a Mackey functor

for G over R. A homomorphism f : M → T of Mackey functors for χ is a family

of R-module homomorphisms fH : M(H) → T (H), where H runs over χ, which

commutes with restriction, trace and conjugation. In particular, each M(H) is

an RNG(H)-module via g.x = cgH(x) for g ∈ NG(H) and x ∈ M(H). Also,

each fH is an RNG(H)-module homomorphism. By a subfunctor N of a Mackey

functor M for χ we mean a family of R-submodules N(H) ⊆ M(H), which is

stable under restriction, trace, and conjugation. A Mackey functor M is called

simple if it has no proper subfunctor.

Another possible definition of Mackey functors for G over R uses the Mackey

algebra µR(G) [Bo, TW95]: µZ(G) is the algebra generated by the elements rK
H , t

K
H ,

and cgH , where H and K are subgroups of G such that H ≤ K, and g ∈ G, with

the relations (M1)-(M7).

(M6)
∑

H≤G t
H
H =

∑
H≤G r

H
H = 1µZ(G).

(M7) Any other product of rK
H , t

K
H and cgH is zero.

A Mackey functor M for G, defined in the first sense, gives a left module M̃

of the associative R-algebra µR(G) = R⊗Z µZ(G) defined by M̃ =
⊕

H≤GM(H).

Conversely, if M̃ is a µR(G)-module then M̃ corresponds to a Mackey functor

M in the first sense, defined by M(H) = tHHM̃, the maps tKH , r
K
H , and cgH being

defined as the corresponding elements of the µR(G). Moreover, homomorphisms
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and subfunctors of Mackey functors for G are µR(G)-module homorphisms and

µR(G)-submodules, and conversely.

Theorem 2.1 [TW95] Letting H and Krun over all subgroups of G, letting g

run over representatives of the double cosets HgK ⊆ G, and letting J runs over

representatives of the conjugacy classes of subgroups of Hg ∩ K, then tHgJc
g
Jr

K
J

comprise, without repetition, a free R-basis of µR(G).

For a Mackey functor M for χ over R and a subset E of M, a collection of

subsets E(H) ⊆ M(H) for each H ∈ χ, we denote by < E > the subfunctor of

M generated by E.

Proposition 2.2 [TW] Let M be a Mackey functor for G, and χ be a family

of subgroups of G closed under taking subgroups and taking G-conjugation, and

let T be a subfunctor of ↓χ M, the restriction of M to χ which is the family

M(H), H ∈ χ, viewed as a Mackey functor for χ. Then

< T > (K) =
∑

X∈χ:X≤K

tKX(M(X))

for any K ≤ G. Moreover ↓χ< T >= T.

Let M be a Mackey functor for G and χ be a family of subgroups of G closed

under taking subgroups and taking G-conjugation. Then by [TW] we have the

following important subfunctors of M, namely ImtMχ and KerrM
χ defined by

(ImtMχ )(K) =
∑

X∈χ:X≤K

tKX(M(X)),

(KerrM
χ )(K) =

⋂
X∈χ:X≤K

Ker(rK
X : M(K)→M(X)).

Let M be a Mackey functor for G over R. A subgroup H of G is called a

minimal subgroup of M if M(H) 6= 0 and M(K) = 0 for every subgroup K

of H with K 6= H. Given a simple Mackey functor M for G over R, there is a

unique, up to G-conjugacy, a minimal subgroup H of M. Moreover, for such an

H the RNG(H)-module M(H) is simple, where the RNG(H)-module structure

on M(H) is given by gH.x = cgH(x), see [TW].
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Proposition 2.3 [TW] Let S be a simple Mackey functor for G with a minimal

subgroup H.

(1) S is generated by S(H), that is S =< S(H) > .

(2) S(K) 6= 0 implies that H ≤G K, and so minimal subgroups of S form a

unique conjugacy class.

(3) S(H) is a simple RNG(H)-module.

Proposition 2.4 [TW] Let M be a Mackey functor for G over R, and let H be

a minimal subgroup of M and χH = {X ≤ G : X ≤G H}. Then, M is simple if

and only if ImtMχH
= M, KerrM

χH
= 0, and S(H) is a simple RNG(H)-module.

Theorem 2.5 [TW] Given a subgroup H ≤ G and a simple RNG(H)-module V,

then there exists a simple Mackey functor SG
H,V for G, unique up to isomorphism,

such that H is a minimal subgroup of SG
H,V and SG

H,V (H) ∼= V. Moreover, up to

isomorphism, every simple Mackey functor for G has the form SG
H,V for some

H ≤ G and simple RNG(H)-module V. Two simple Mackey functors SG
H,V and

SG
H′,V ′ are isomorphic if and only if, for some element g ∈ G, we have H ′ = gH

and V ′ ∼= cgH(V ).

We now recall the definitions of restriction, induction and conjugation for

Mackey functors [Bo, Sa, TW, TW95]. Let M and T be Mackey functors for G

and H, respectively, where H ≤ G.

The restricted Mackey functor ↓GH M is the µR(H)-module 1µR(H)M so that

(↓GH M)(X) = M(X)

for X ≤ H, where 1µR(H) denotes the unity of µR(H).

For g ∈ G, the conjugate Mackey functor |gH T = gT is the µR(gH)-module T

with the module structure given for any x ∈ µR(gH) and t ∈ T by

x.t = (γg−1xγg)t,
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where γg is the sum of all cgX with X ranging over subgroups of G. Therefore,

(|gH T )(gX) = T (X) for all X ≤ H and the maps t̃, r̃, c̃ of |gH T satisfy

t̃AB = tA
g

Bg , r̃A
B = rAg

Bg , and c̃xA = cx
g

Ag

where t, r, c are the maps of T. Obviously, one has |gL SL
H,V
∼= S

gL
gH,cg

H(V )
.

The induced Mackey functor ↑GH T is the µR(G)-module

µR(G)1µR(H) ⊗µR(H) T,

where 1µR(H) denotes the unity of µR(H). It may be useful to express the µR(G)-

module ↑GH T as a Mackey functor in the first sense which is the context of the

next result. By the axioms (M1)-(M7) defining the Mackey algebra, it can be seen

easily that for any K ≤ G we have:

tKKµR(G)1µR(H) =
⊕

KgH⊆G

cgKgtK
g

H∩KgµR(H).

Therefore

(↑GH T )(K) = tKK
(
µR(G)1µR(H) ⊗µR(H) T

)
=

⊕
KgH⊆G

cgKgtK
g

H∩Kg ⊗µR(H) t
H∩Kg

H∩KgT.

The following result is clear now.

Proposition 2.6 [Sa, TW] Let H be a subgroup of G and T be a Mackey functor

for H. Then for any subgroup K of G

(↑GH T )(K) ∼=
⊕

KgH⊆G

T (H ∩Kg)

as R-modules. In particular, if T (X) 6= 0 for some subgroup X of H then

(↑GH T )(X) 6= 0.

The induced Mackey functor ↑GH T can also be defined by giving its values on

subgroups K of G as the R-modules in the right hand side of the isomorphism

in 2.6, and by giving its maps t, r, c in terms of the maps of T. See [Sa, TW].
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Indeed, let H ≤ G and let M be a Mackey functor for H. Then for any K ≤ G

the induced Mackey functor ↑GH M for G is given by

(↑GH M)(K) =
⊕

KgH⊆G

M(H ∩Kg)

where, if we write mg for the component in M(H ∩Kg) of m ∈ (↑GH M)(K), the

maps t̃, r̃, c̃ of ↑GH M are given as follows:

r̃K
L (m)g = rH∩Kg

H∩Lg (mg),

t̃KL (n)g =
∑

Lu(K∩gH)⊆K

tH∩Kug

H∩Lug (nug),

c̃yK(m)g = my−1g

for L ≤ K, n ∈ (↑GH M)(L) and y ∈ G.

We next record the Mackey decomposition formula for Mackey functors, which

can be found (for example) in [TW95].

Theorem 2.7 Given H ≤ L ≥ K and a Mackey functor M for K over R, we

have

↓LH↑LK M ∼=
⊕

HgK⊆L

↑HH∩gK↓
gK
H∩gK |

g
K M.

Theorem 2.8 [Sa] Let H be a subgroup of G. Then ↑GH is both left and right

adjoint of ↓GH .

We finally recall some facts from [TW] about inflated Mackey functors. Let

N be a normal subgroup of G. Given a Mackey functor M̃ for G/N, we define a

Mackey functor M = InfGG/NM̃ for G, called the inflation of M̃, as

M(K) = M̃(K/N) if K ≥ N, and M(K) = 0 otherwise.

The maps tKH , r
K
H , c

g
H of M are zero unless N ≤ H ≤ K in which case they are

the maps

t̃
K/N
H/N , r̃

K/N
H/N , c̃gN

H/N
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of M̃. Evidently, one has InfGG/NS
G/N
H/N,V

∼= SG
H,V .

Given a Mackey functor M for G we define Mackey functors

L+
G/NM and L−G/NM

for G/N as follows:

(L+
G/NM)(K/N) = M(K)

/ ∑
J≤K:J 6≥N

tKJ (M(J))

(L−G/NM)(K/N) =
⋂

J≤K:J 6≥N

KerrK
J .

The maps on these two new functors come from those on M. They are well defined

because the maps on M preserve the sum of images of traces and the intersection

of kernels of restrictions, see [TW].

Theorem 2.9 [TW] For any normal subgroup N of G, L+
G/N is a left adjoint

of InfGG/N and L−G/N is a right adjoint of InfGG/N .

Theorem 2.10 [TW] For any simple µK(G)-module SG
H,V , we have

SG
H,V
∼=↑GNG(H) Inf

NG(H)
NG(H)/HS

NG(H)
1,V

∼=↑GNG(H) S
NG(H)
H,V .



Chapter 3

Our approach

In this chapter we explain our main methods that we will apply to Mackey func-

tors in this work.

There are several equivalent definitions of Mackey functors two of them we

explained in Chapter 2. We mainly view Mackey functors as modules of Mackey

algebras.

Let M be a µK(G)-module and H be a subgroup of G. We will usually com-

pare the properties of the µK(G)-module M with the properties of the KNG(H)-

module M(H). As tHH is an idempotent of µK(G) and as M(H) = tHHM, the eval-

uation M(H) of M at H has a natural tHHµK(G)tHH-module structure. However,

the structure of the algebra tHHµK(G)tHH is usually not easier than the structure of

the Mackey algebra µK(G). Moreover, one may see that the algebra tHHµK(G)tHH

decomposes as

tHHµK(G)tHH = AH ⊕ IH

where AH is a subalgebra of tHHµK(G)tHH isomorphic to KNG(H) and IH is a two

sided ideal of tHHµK(G)tHH . Therefore, it may be fruitful to compare the properties

of the µK(G)-module with the properties of the KNG(H)-module M(H). Most of

our results comes from this approach.

Let us recall some general facts related to above paragraph. Let A be a

18



CHAPTER 3. OUR APPROACH 19

finite dimensional algebra and e be a nonzero idempotent of A. We collect in the

following result some general facts about module categories of the algebra A and

its corner algebra eAe. We have the following functors some of whose properties

are recalled in the next result:

Re : Mod(A)→ Mod(eAe) and Ce, Ie : Mod(eAe)→ Mod(A)

given on the objects by

Re(V ) = eV, Ce(W ) = HomeAe(eA,W ) and Ie(W ) = Ae⊗eAe W.

The definitions on morphisms of these functors are obvious (and well-known).

Theorem 3.1 Let A be a finite dimensional algebra over a field and e be an

idempotent of A. Then:

(1) Ie and Ce are full and faithful linear functors such that both of the functors

ReIe and ReCe are naturally isomorphic to the identity functor.

(2) (Ie, Re) and (Re, Ce) are adjoint pairs.

(3) Both of Ie and Ce send indecomposable modules to indecomposable modules.

(4) Any simple eAe-module is of the form eS for some simple A-module S, and

conversely for any simple A-module S the eAe-module eS is either zero or

simple.

(5) Given simple A-modules S and S ′ that are not annihilated by e, one has

S ∼= S ′ as A-modules if and only if eS ∼= eS ′ as eAe-modules.

(6) Given a simple eAe-module T, the A-module Ie(T ) has a unique maximal

A-submodule JT and one has Re(Ie(T )/JT ) ∼= T and JT is the sum of all

A-submodules of Ie(T ) annihilated by e.

The above fact is well-known, and can be found in [Gr2, pp. 83-87].



CHAPTER 3. OUR APPROACH 20

We usually apply the above theorem to the Mackey algebra A = µK(G) by

choosing an idempotent

e =
∑
X∈χ

tXX

of A where χ is a set of subgroups of G. This method is used for instance in [Yar1]

and [Yar4]. For instance, if χ is the set of all subgroups of a normal subgroup

N of G, then eµK(G)e is a crossed product of G/N over µK(N) so that one may

use the theory of group graded algebras to study Mackey functors, see [Yar1].

For another example, if χ is the set of all subgroups of G containing a normal

subgroup N of G, then eµK(G)e decomposes as eµK(G)e = B ⊕ I where B is

a subalgebra of eµK(G)e isomorphic to µK(G/N)and I is a two sided ideal of

eµK(G)e so that one may derive some results about inflations of Mackey functors

by using the above theorem, see [Yar4].

To illustrate the usefulness of studying functors by viewing them as a module

of the category algebra and by using the idempotents of the category algebra, we

want to mention what comes next. Let R be a commutative unital ring, A is an

(small) R-linear category, and F be the category of R-linear (covariant) functors

from A to the category of left R-modules. The following result (see, for instance,

[Yar3, Proposition 3.5]) is proved in some slightly special contexts assuming A to

be some specific category satisfying some conditions by using the methods and

constructions of the each context:

Fact: Let M ∈ F be a functor and X be an object of A such that M(X) is

nonzero. Then, M is simple if and only if ImM
X,M(X) = M, KerM

X,0 = 0, and

M(X) is a simple EndA(X)-module. Here,

ImM
X,W (Y ) =

∑
f∈HomA(X,Y )

M(f)(W ) and KerM
X,0(Y ) =

⋂
f∈HomA(Y,X)

Ker(M(f)).

One may view M , by identifying it with⊕
X∈A

M(X),

as a left module of the algebra

AA =
⊕
Y,Z

HomA(Y, Z)
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where Y, Z ranges over the objects of the category A, and where the multiplication

in the algebra is induced from the composition of morphisms in A. See [We3] for

more details. Note that the identity morphisms 1X of EndA(X) is an idempotent

of AA such that

M(X) = 1XM and 1XAA1X = EndA(X).

Letting A = AA, e = 1X , and V = M, Fact becomes:

Fact′: Let V be an A-module and e be an idempotent of A such that eV is

nonzero. Then V is simple if and only if AeV = V, eAv = 0 =⇒ v = 0, and

eV is a simple eAe-module.

Fact′ is almost trivial by using Theorem 3.1. Therefore, Fact can readily be

obtained from 3.1.

In this work we usually obtain some results connecting modules of an algebra

A and its corners eAe, and we translate these results to Mackey functors and try

to refine them by using the extra structures in the context of Mackey functors.

We end this chapter with explaining the well known converse situation in

which one may view module of an algebra as a functor. Indeed, any left module

W of an R-algebra B can be viewed as a functor between two categories. Indeed,

one may choose a collection of mutually orthogonal idempotents f1, f2, ..., fn of B

whose sum is the identity of B, and may view W as a functor from the category

B to the category of R-modules. Here, the objects of B are the idempotents

fi, and HomB(fi, fj) = fjBfi, and the composition is the multiplication in the

algebra B.



Chapter 4

Inducing and restricting simple

functors

Almost all the materials in this chapter comes from [Yar5, Section 3].

Our main aim in this chapter is to study the subfunctors, especially the socle

and the radical, of a Mackey functor obtained by restricting or inducing a simple

functor. Let S be a simple µK(H)-module and T be a simple µK(G)-module where

H is a subgroup of G. For example, we determine the socles and radicals of the

functors ↑GH S and ↓GH T (in terms of the socles and the radicals of some modules

of group algebras), and obtain some criterions for ↑GH S and ↓GH T to be simple,

semisimple, or indecomposable.

We begin by a preliminary result, see for instance [Yar4, Lemma 7.2 and

Lemma 6.12].

Proposition 4.1 Let H ≤ K ≤ G and let W be a simple RNK(H)-module.

Then:

(1) We have the direct sum decomposition

tHHµR(G)tHH = AH ⊕ IH

22
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where AH is a unital subalgebra of tHHµR(G)tHH isomorphic to RNG(H) (via

the map cgH 7→ gH) and IH is a two sided ideal of tHHµR(G)tHH with the

R-basis consisting of the elements of the form

tHgJc
g
Jr

H
J

where J 6= H.

(2)

(↑GK SK
H,W )(H) ∼=↑NG(H)

NK(H)
W

as RNG(H)-modules.

Proof : (1) The basis theorem 2.1 implies that

tHHµK(G)tHH =
( ⊕

gH⊆NG(H)

KcgH
)
⊕ JH

as K-spaces, where JH is the K-subspace with basis elements of the desired form.

We see easily that ⊕
gH⊆NG(H)

KcgH and KNG(H)

are isomorphic algebras with isomorphism given by cgH ↔ gH. Finally, using the

axioms in the definition of Mackey algebras we observe that JH is a two sided

ideal of tHHµK(G)tHH .

(2) Because of T = SK
H,W , for a g ∈ G we see that T (K ∩Hg) 6= 0 if and only

if K ∩ Hg is equal to Hg and Hg is a K-conjugate of H, which is equivalent to

g ∈ NG(H)K. Moreover,

T (K ∩Hg) = cg
−1

H (W )

if g ∈ NG(H)K where c is the conjugation map for T. Then using the explicit

formula for the induced Mackey functors given in [Sa, TW] we obtain

(↑GK T )(H) =
⊕

gK⊆NG(H)K

cg
−1

H (W ).

If c̃ denotes the conjugation map for ↑GK T then k ∈ NG(H) acts on an element

x =
⊕

gK⊆NG(H)K

xg ∈ (↑GK T )(H) as
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k.x = c̃kH(x) =
⊕

gK⊆NG(H)K

(
c̃kH(x)

)
g
,

where (
c̃kH(x)

)
g

= xk−1g,

see [Sa, TW]. Therefore NG(H) permutes the summands cg
−1

H (W ) of (↑GK T )(H)

transitively, and the stabilizer of the summand c1H(W ) = W is

NG(H) ∩K = NK(H).

This proves the result. �

Let T be a Mackey functor for a subgroup K of G. Relating Soc(↑GK T ) to

Soc(T ) may require finding a relation between the minimal subgroups of the

functors ↑GK T and T. It is not true in general that any minimal subgroup of T is

also a minimal subgroup of ↑GK T. For instance, if the subgroup K have subgroups

A and B satisfying A <G B but A 6<K B then we may take T = SK
A,K ⊕ SK

B,K so

that, by the explicit description of an induced functor given in 2.6, the minimal

subgroup B of T is not a minimal subgroup of ↑GK T. However if T is simple then it

is clear by 2.6 that the minimal subgroups of ↑GK T are precisely the G-conjugates

of the minimal subgroups of T. Thus part (6) of [Yar4, Lemma 6.1] is true only

when T is simple, and must be corrected as the first part of the following result.

However the results of [Yar4] depending on it remain true because they made use

of it when T is simple.

Lemma 4.2 Let K be a subgroup of G.

(1) If T is a µK(K)-module, then the minimal subgroups of ↑GK T are precisely

the smallest elements (with respect to ⊆) of the set of all G-conjugates of

the minimal subgroups of T.

(2) If M be a µK(G)-module, then the minimal subgroups of ↓GK M are precisely

the minimal subgroups of M that are contained in K.

Proof : (1) We will argue as in the proof of part (6) of [Yar4, Lemma 6.1].

Let X be a minimal subgroup of ↑GK T. Then by 2.6 there is a g ∈ G such
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that T (K ∩ Xg) 6= 0 so that we can find a minimal subgroup Y of T satisfying

Y ≤ K ∩ Xg. As T (Y ) 6= 0 we see by 2.6 that (↑GK T )(Y ) 6= 0. Since X and

hence Xg is a minimal subgroup of ↑GK T, we must have that Xg = Y is a

minimal subgroup of T. Moreover, if there is a minimal subgroup Z of T such

that Zh ≤ X for some h ∈ G then 2.6 implies that (↑GK T )(Zh) 6= 0, because

T (Z) 6= 0. As X is a minimal subgroup of ↑GK T, we must have that Zh = X.

Hence any minimal subgroup X of ↑GK T is a smallest element of the set of all

G-conjugates of the minimal subgroup of T.

Conversely, let Y be a minimal subgroup of T such that for some g ∈ G

the group Y g is a smallest element of the set of all G-conjugates of the minimal

subgroups of T. Then T (Y ) 6= 0 and 2.6 implies that (↑GK T )(Y g) 6= 0. Thus we

can find a minimal subgroup X of ↑GK T such that X ≤ Y. By the what we have

shown in above there is a k ∈ G such that Xk is a minimal subgroup of T. But

then Xg is a G-conjugate of the minimal subgroup Xk of T such that Xg ≤ Y g.

The condition on Y g shows that Y g = Xg. Thus Y g is a minimal subgroup of

↑GK T.

(2) This is obvious. �

Lemma 4.3 Let K be a subgroup of G. Then

(1) For any simple µK(K)-module SK
H,W , the minimal subgroups of any nonzero

µK(G)-submodule of ↑GK SK
H,W are precisely the G-conjugates of H.

(2) For any simple µK(G)-module SG
L,V with L ≤G K, any minimal subgroup of

any nonzero µK(K)-submodule of ↓GK SG
L,V is a G-conjugate of L.

Proof : (1) Let M be a nonzero µK(G)-submodule of ↑GK SK
H,W , and let X be a

minimal subgroup of M. As (↑GK SK
H,W )(X) 6= 0, we can find a minimal subgroup

of ↑GK SK
H,W contained in X. Part (1) of 4.2 implies that H ≤G X. From the

adjointness of the pair (↓GK , ↑GK) we see the existence of a µK(K)-epimorphism

↓GK M → SK
H,W .
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This implies that M(H) 6= 0. Since X is a minimal subgroup of the Mackey

functor M for G, we conclude that X =G H.

(2) Let T be a nonzero µK(K)-submodule of ↓GK SG
L,V , and let Y be a minimal

subgroup of T. Then (↓GK SG
L,V )(Y ) 6= 0 implying that L ≤G Y.

Let T ′ denote the functor ↓KY T. Then T ′ is a nonzero µK(Y )-submodule of

↓GY SG
L,V . From the adjointness of the pair (↑GY , ↓GY ) we see the existence of a

µK(G)-epimorphism

↑GY T ′ → SG
L,V .

This implies that (↑GY T ′)(L) 6= 0 from which we see by 2.6 that

0 6= T ′(Y ∩ Lg) = T (Y ∩ Lg)

for some g ∈ G. Since Y is a minimal subgroup of T we conclude that Y ≤ Y ∩Lg.

�

The above lemma is a combination of [Yar4, Lemma 6.13] and [Yar1, Remark

3.1].

For an algebra A and an idempotent e of A, there are some well known rela-

tions between the module categories of the algebras A and eAe. In particular, the

map S 7→ eS define a bijective correspondence between the isomorphism classes

of simple A-modules not annihilated by e and the isomorphism classes of simple

eAe-modules. Most of these can be found in [Gr2, pp. 83-87] from which the

following lemma follows easily. For any subset X of the A-module V we denote

by AX the A-submodule of V generated by X.

Lemma 4.4 Let A be a finite dimensional K-algebra and let e be a nonzero

idempotent of A. If V is a nonzero A-module having no nonzero A-submodule

annihilated by e, then:

(1) The maps

S → eS and AT ← T

define a bijective correspondence between the simple A-submodules of V and

the simple eAe-submodules of eV.
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(2) SoceAe(eV ) = eSocA(V ) and SocA(V ) = ASoceAe(eV ).

Proof : By the help of the results in [Gr2, pp. 83-87], it remains to prove that

AT = AeT is a simple A-submodule of V for any simple eAe-submodule T of

eV. In general AT may not be simple, but our hypothesis on V forces it to be

simple because any nonzero A-submodule U of AT is not annihilated by e so that

eU = T implying U = AT. �

Let S and V be modules of an algebra A where S is simple and V is finite

dimensional. By the multiplicity of S in V we mean the number of composition

factors of V isomorphic to S.

Theorem 4.5 Let H ≤ K ≤ G and let W be a simple KNK(H)-module. Let

M =↑GK SK
H,W and V =↑NG(H)

NK(H)
W.

Then, there is a bijective correspondence between the simple µK(G)-submodules of

M and the simple KNG(H)-submodules of V. More precisely, any simple µK(G)-

submodule of M is isomorphic to a simple functor of the form SG
H,U where U is a

simple KNG(H)-submodule of V, and conversely any simple KNG(H)-submodule

of V is isomorphic to a simple module of the form S(H) where S is a simple

µK(G)-submodules of M. Furthermore, for any simple KNG(H)-module U, the

multiplicity of SG
H,U in Soc(M) is equal to the multiplicity of U in Soc(V ).

Proof : Let A = µK(G), B = KNG(H) and e = tHH . By 4.1 the B-modules

eM = M(H) and V are isomorphic. We also see by using 4.3 that the ideal IH of

eAe = AH⊕IH given in 4.1 annihilates eM where the algebra AH is isomorphic to

B via cgH ↔ gH. Therefore, the (simple) eAe-submodules of eM and the (simple)

B-submodules of eM coincide. 4.3 implies that any nonzero A-submodule of M

has H as a minimal subgroup. In particular, M has no nonzero A-submodule

annihilated by e so that 4.4 may be applied to deduce that there is a bijection

between the simple A-submodules of M and the simple B-submodules of eM ∼= V.

Moreover, the B-modules eSoc(M) and Soc(V ) are isomorphic.
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Any simple subfunctor S of M has H as a minimal subgroup (by 4.3), and by

part (1) of 4.4 the B-module eS = S(H) is a simple B-submodule of eM ∼= V. So,

any simple A-submodule of M is isomorphic to a simple functor of the form SG
H,U

where U is a simple B-submodule of V. Conversely, if U is a simple B-submodule

of V ∼= eM then again by part (1) of 4.4 there is a simple A-submodule S of M

such that S(H) ∼= U.

Let U be a simple B-module. eSoc(M) and Soc(V ) are isomorphic B-modules

and any simple A-submodule of M is of the form SG
H,U ′ . By 2.5 we see that the

isomorphisms of the simple functors of the forms SG
H,U ′ and SG

H,U ′′ is equivalent to

the isomorphisms of the simple B-modules U ′ and U ′′. Therefore, the statement

about the multiplicities must be true because SG
H,U ′(H) ∼= U ′ and because the left

multiplication by the idempotent e respects the direct sums. �

Lemma 4.6 Let K be a subgroup of G. Then

(1) Let X be a set of subgroups of K and let T be a µK(K)-module. If T is

generated as a µK(K)-module by its values on X , then ↑GK T is generated as

a µK(G)-module by its values on X . In particular, for any simple µK(K)-

module SK
H,W and any proper µK(G)-submodule M of ↑GK SK

H,W , the minimal

subgroups of

(↑GK SK
H,W )/M

are precisely the G-conjugates of H.

(2) Let Y be a set of subgroups of G and let M be a µK(G)-module. If M is

generated as a µK(G)-module by its values on Y , then ↓GK M is generated

as a µK(K)-module by its values on the elements of the set

{X ≤ K : X ≤G Y, Y ∈ Y}.

In particular, for any simple µK(G)-module SG
L,V with L ≤G K and any

proper µK(K)-submodule T of ↓GK SG
L,V , there is a minimal subgroup of

(↓GK SG
L,V )/T

which is a G-conjugate of L.
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Proof : (1) Let S be a µK(G)-submodule of ↑GK T such that S(X) = (↑GK T )(X)

for all X in X . To show that ↑GK T is generated by its values on X it suffices to

show that S =↑GK T.

If S is not equal to ↑GK T then by the adjointness of the pair (↑GK , ↓GK) there is

a nonzero µK(K)-module homomorphism

π : T →↓GK
(
(↑GK T )/S

)
whose L-component

πL : T (L)→↓GK
(
(↑GK T )/S

)
(L)

is nonzero for some subgroup L of K. So there is a t ∈ T (L) such that πL(t) 6= 0.

As T is generated by its values on X ,

T (L) =
∑
X∈X

tLLµK(K)tXXT

so that t can be written as a sum of elements of the form

tLkJc
k
Jr

X
J tX

where k ∈ K, J ≤ K, and tX ∈ T (X). Since π commutes with the maps t, r, c of

T, it follows that πL(t) can be written as a sum of elements of the form

tLkJc
k
Jr

X
J πX(tX).

But then πX(tX) and hence πL(t) is 0 because S(X) = (↑GK T )(X). Consequently,

S =↑GK T.

For the second statement, let M be a proper µK(G)-submodule of ↑GK SK
H,W .

As SK
H,V is generated by its value on H, it follows by what we have showed above

that the quotient

(↑GK SK
H,W )/M

is nonzero at H. Moreover, if Y is a minimal subgroup of the quotient then

↑GK SK
H,W is nonzero at Y so that H ≤G Y by part (1) of 4.3. Hence, the minimal

subgroups of the quotient are precisely the G-conjugates of H.
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(2) The first statement is obvious. For the second statement, let T be a proper

µK(K)-submodule of ↓GK SG
L,V . If the quotient

(↓GK SG
L,V )/T

is nonzero at a subgroup X of K then ↓GK SG
L,V is nonzero at X so that L ≤G X.

On the other hand, ↓GK SG
L,V is generated by its values on G-conjugates of L that

are in K and so, by the first statement, the quotient cannot be 0 at every G-

conjugate of L that is in K. Consequently, a minimal subgroup of the quotient

must ba a G-conjugate of L. �

Theorem 4.7 Let H ≤ K ≤ G and let W be a simple KNK(H)-module. Then,

↑GK SK
H,W

is a simple (respectively, semisimple) µK(G)-module if and only if

↑NG(H)

NK(H)
W

is a simple (respectively, semisimple) KNG(H)-module.

Proof : Let M =↑GK SK
H,W , V =↑NG(H)

NK(H)
W, A = µK(G), and B = KNG(H). It

follows by 4.1 that M(H) ∼= V as B-modules. We note also that the ideal IH in

4.1 annihilates M(H) which is a consequence of 4.3.

Suppose that M is a simple (respectively, semisimple) A-module. Then 4.3,

4.4 and 4.1 imply that M(H) is a simple (respectively, semisimple) AH-module.

Since AH and B are isomorphic algebras via cgH 7→ gH, we can conclude that V

is a simple (respectively, semisimple) B-module.

Suppose that V is a simple (respectively, semisimple) B-module. Then 4.1 im-

plies that M(H) is a simple (respectively, semisimple) eAe-module where e = tHH .

From 4.4 we see that SocA(M) = AM(H) is a simple (respectively, semisim-

ple) A-module. As SK
H,W is generated as a µK(K)-module by its value on H, it

follows by 4.6 that M is generated as an A-module by M(H). This shows that

M = AM(H) = SocA(M). �
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The previous result generalizes [Yar1, Proposition 3.5 and Corollary 3.7].

Let e be an idempotent of an algebra A, and let V be an A-module, and T

be an eAe-submodule of eV. We denote by the notation (V :e T ) the subset

{v ∈ V : eAv ⊆ T}

of V. It is clear that (V :e T ) is an A-submodule of V such that e(V :e T ) = T.

Lemma 4.8 Let A be a finite dimensional K-algebra and let e be a nonzero

idempotent of A. If V is a nonzero A-module having no nonzero quotient module

annihilated by e (equivalently, AeV = V ) then:

(1) The maps

J → eJ and (V :e I)← I

define a bijective correspondence between the maximal A-submodules of V

and the maximal eAe-submodules of eV.

(2) JaceAe(eV ) = eJacA(V ) and JacA(V ) = (V :e JaceAe(eV )).

Proof : (1) For any maximal eAe-submodule I of eV, we must show that (V :e I)

is a maximal A-submodule of V and that e(V :e I) = I :

For any eAe-submodule I ′ of eV it is obvious that AI ′ ⊆ (V :e I
′) and that

e(V :e I ′) ⊆ I ′. From these two the equality e(V :e I ′) = I ′ follows for any

eAe-submodule (not necessarily maximal) I ′ of eV.

It follows from e(V :e I) = I that (V :e I) is a proper A-submodule of V. Let

T be a proper A-submodule of V containing (V :e I). Then I ⊆ eT. Moreover,

V/T, being nonzero, is not annihilated by e so that eT 6= eV. Now I = eT by

the maximality of I. This implies that T ⊆ (V :e I). Consequently, (V :e I) is a

maximal A-submodule of V.

For any maximal A-submodule J of V, we must show that eJ is a maximal

eAe-submodule of eV and that (V :e eJ) = J :
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As V/J is a simple A-module not annihilated by e, the eAe-module eV/eJ ∼=
e(V/J) is simple so that eJ is a maximal eAe-submodule of eV.

The containment J ⊆ (V :e eJ) is clear. If (V :e eJ) is equal to V then

eJ = e(V :e eJ) = eV which is not the case. Hence (V :e eJ) = J by the

maximality of J.

(2) This is obvious from the first part. �

Theorem 4.9 Let H ≤ K ≤ G and let W be a simple KNK(H)-module. Let

M =↑GK SK
H,W and V =↑NG(H)

NK(H)
W.

Then, there is a bijective correspondence between the maximal µK(G)-submodules

of M and the maximal KNG(H)-submodules of V. In particular, any simple quo-

tient of M is isomorphic to a simple functor of the form SG
H,U where U is a simple

quotient of V, and conversely any simple quotient of V is isomorphic to a simple

module of the form S(H) where S is a simple quotient of M. Furthermore, for

any simple KNG(H)-module U, the multiplicity of SG
H,U in M/Jac(M) is equal to

the multiplicity of U in V/Jac(V ).

Proof : Let A = µK(G), B = KNG(H), and e = tHH . Firstly, we note that

the ideal IH of eAe given in 4.1 annihilates the eAe-module eM (by 4.3) so that

the (maximal) eAe and (maximal) eAe/IH-submodules of eM coincide. As B

and eAe/IH are isomorphic algebras (by 4.1), we see that there is a bijective

correspondence between the maximal B and eAe-submodules of eM. From 4.6

any nonzero quotient ofM hasH as a minimal subgroup. In particular, there is no

nonzero quotient ofM annihilated by e so that 4.8 gives a bijective correspondence

between the maximal A-submodules of M and the maximal B-submodules of V.

Moreover, the B-modules eJac(M) = Jac(eM) and Jac(V ) are isomorphic so

that, from the B-module isomorphism eM ∼= V we obtain that

eM/eJac(M) ∼= V/Jac(V )

as B-modules.
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Any simple quotient M/J of M has H as a minimal subgroup (by 4.6), and

by part (1) of 4.8 the B-module eM/eJ is a simple quotient of eM ∼= V. So, any

simple quotient of M is isomorphic to a simple functor of the form SG
H,U where U

is a simple quotient of V. Conversely, for any simple quotient of V/I of V ∼= eM

then again by by part (1) of 4.8 there is a simple quotient S = M/J such that

S(H) ∼= V/I.

Let U be a simple B-module. The there B-modules e
(
M/Jac(M)

)
,

eM/eJac(M) and V/Jac(V ) are isomorphic, and any simple quotient of the A-

module of M is of the form SG
H,U ′ . By 2.5 we see that the isomorphisms of the

simple functors of the forms SG
H,U ′ and SG

H,U ′′ is equivalent to the isomorphisms

of the simple B-modules U ′ and U ′′. Therefore, the statement about the multi-

plicities must be true because SG
H,U ′(H) ∼= U ′ and because the left multiplication

by the idempotent e respects the direct sums. �

Lemma 4.10 Let A be a finite dimensional K-algebra and e be a nonzero idem-

potent of A. Suppose that V and W be nonzero A-modules. Let

φ : HomA(V,W )→ HomeAe(eV, eW ), f 7→ f |eV ,

be the K-space (K-algebra if W = V ) homomorphism sending f to f |eV where

f |eV denotes the restriction of f to eV. Then:

(1) φ is a monomorphism if and only if W has no nonzero A-submodule annihi-

lated by e and isomorphic to a quotient of V.

(2) If V has no nonzero quotient module annihilated by e (equivalently, AeV =

V ) and if W has no nonzero A-submodule annihilated by e (equivalently,

(W :e 0) = 0), then φ is an isomorphism.

Proof : (1) Firstly, it is obvious that φ is not injective if and only if ef(V ) = 0

for some nonzero f in HomA(V,W ). For any A-submodule W0 of W isomorphic

to a quotient V/V0 of V, it is clear that there is an f in HomA(V,W ) with the

kernel equal to V0 and the image equal to W0. And conversely, any A-module

homomorphism gives such submodules. Thus the result follows.
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(2) By the first part, it is enough to show that φ is surjective:

Let g be in HomeAe(eV, eW ). We want to construct an element f in

HomA(V,W ) whose restriction to eV is equal to g. As V = AeV, any element of

V can be written as a sum of elements of the form aev where each a in A and

each v in V. Letting

v = a1ev1 + ...+ anevn,

it is natural to define

f(v) = a1g(ev1) + ...+ ang(evn).

By its construction, we only need to show that f is well-defined because there

may be some elements of V which can be expressed as a sum of elements of the

form aev in different ways. Suppose that

b1eu1 + ...+ bmeum = 0

for some natural number m and some elements ui ∈ V and bi ∈ A. Then for any

a in A we have

0 = g(0) = g
(
ea(b1eu1 + ...+ bmeum)

)
= ea

(
b1g(eu1) + ...+ bmg(eum)

)
.

Thus eAw = 0 where w = b1g(eu1) + ... + bmg(eum), implying that Aw is an

A-submodule of W annihilated by e. By the condition on W we must have that

w = 0, as desired. �

Lemma 4.11 Let A be a finite dimensional K-algebra and e be a nonzero idem-

potent of A. Let V be a nonzero A-module satisfying AeV = V and (V :e 0) = 0.

Suppose

V = V1 ⊕ ...⊕ Vn

is a decomposition of V into nonzero A-modules. Then,

eV = eV1 ⊕ ...⊕ eVn

is a decomposition of eV into nonzero eAe-modules such that the A-modules Vi

and Vj are isomorphic if and only if the eAe-modules eVi and eVj are isomorphic.

Moreover, Vi is an indecomposable A-module if and only if eVi is an indecompos-

able eAe-module.
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Proof : This is obvious because the endomorphism algebras of V and eV are

isomorphic by part (2) of 4.10. �

Using 4.11, one may lift most of the results about induction of simple modules

of group algebras to the results about induction of simple Mackey functors. As

an example, in part (3) of the next result we want to lift a part of the result [Ha,

Theorem 7] which says that if N is a normal subgroup of G and W is a simple

KN -module, then, for any indecomposable direct summand P of ↑GN W, there is

a simple KG-module V satisfying

Soc(P ) ∼= P/Jac(P ) ∼= V

(where W is necessarily a direct summand of ↓GN V ). The first two parts of the

following result are slight generalizations of 4.5 and 4.9.

Corollary 4.12 Let H ≤ K be subgroups of G and let W be a simple KNK(H)-

module. Put A = µK(G) and e = tHH . Then, for any nonzero µK(G)-module M,

(1) If M is isomorphic to a µK(G)-submodule of ↑GK SK
H,W , then the maps

S → S(H) and AT ← T

define a bijective correspondence between the simple µK(G)-submodules of

M and the simple KNG(H)-submodules of M(H).

(2) If M is isomorphic to a quotient functor of ↑GK SK
H,W , then the maps

J → J(H) and (M :e I)← I

define a bijective correspondence between the maximal µK(G)-submodules of

M and the maximal KNG(H)-submodules of M(H).

(3) Suppose that NK(H) is normal in NG(H). If M is an indecomposable µK(G)-

module which is a direct summand of ↑GK SK
H,W , then

Soc(M) and M/Jac(M)

are isomorphic simple functors having H as minimal subgroups.
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Proof : Firstly, in all cases the ideal IH of eAe given in 4.1 annihilates the

eAe-module eM so that the eAe-submodules of M and the eAe/IH-submodules

of M are the same, where from 4.1 we also have that eAe/IH ∼= KNG(H).

(1) Any A-submodule of M is isomorphic to an A-submodule of ↑GK SK
H,W .

So 4.3 implies that M has no nonzero A-submodule annihilated by e. The result

follows by 4.4.

(2) Any quotient functor of M is isomorphic to a quotient functor of ↑GK SK
H,W .

So 4.6 implies thatM has no nonzero quotient module annihilated by e. The result

follows by 4.8.

(3) In this case any subfunctor and any quotient functor of M are isomorphic

to a subfunctor and a quotient functor of ↑GK SK
H,W , respectively. This means that

AeM = M and (M :e 0) = 0

implying applicability of 4.11. Now, 4.11 implies thatM(H) is an indecomposable

KNG(H)-module which is a direct summand of

(↑GK SK
H,W )(H),

isomorphic by 4.1 to

↑NG(H)

NK(H)
W.

Then the result [Ha, Theorem 7], mentioned above, implies that

Soc(M(H)) ∼= M(H)/Jac(M(H)) ∼= V

where V is a simple KNG(H)-module. The bijective correspondences given in

the first two parts now imply that

Soc(M) ∼= SG
H,V
∼= M/Jac(M).

�

Theorem 4.13 Let K ≤ G ≥ L and H ≤ K∩L. Then, for any simple KNK(H)-

module W and any simple KNL(H)-module U,

HomµK(G)

(
↑GK SK

H,W , ↑GL SL
H,U

) ∼= HomKNG(H)

(
↑NG(H)

NK(H)
W, ↑NG(H)

NL(H)
U

)
as K-spaces (K-algebras if L = K and U = W ).
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Proof : Let M1 =↑GK SK
H,W , M2 =↑GL SL

H,U , A = µK(G), and e = tHH . It is a

consequence of 4.3 and 4.6 that both of the modules M1 and M2 have no nonzero

quotient modules annihilated by e and no nonzero submodules annihilated by e.

Thus part (2) of 4.10 implies that

HomA(M1,M2) and HomeAe(eM1, eM2)

are isomorphic. Moreover, as the ideal IH of eAe in 4.1 annihilates both of the

eAe-modules eM1 and eM2, it follows that

HomeAe(eM1, eM2) and HomeAe/IH
(eM1, eM2)

are isomorphic. The result follows from 4.1. �

For L = K = G, the previous theorem reduces to [Bo, Lemma 11.6.6, page

302] proved (more conceptually) by using the G-set definition of Mackey functors.

The results 4.5 and 4.9 follows also (more quickly) from the previous theorem.

Corollary 4.14 Let H ⊆ K be subgroups of G and W simple KNK(H)-module.

Then, the µK(G)-module

↑GK SK
H,W

is indecomposable if and only if the KNG(H)-module

↑NG(H)

NK(H)
W

is indecomposable.

Proof : This follows from 4.13 stating that endomorphism algebras of ↑GK SK
H,W

and ↑NG(H)

NK(H)
W are isomorphic, and hence they both local or not local. �

See [Yar4, Theorem 6.15] which is related to the above result.

Corollary 4.15 Let M be a µK(G)-module, H be a subgroup of G, and U be a

simple KNG(H)-module. Then, the multiplicity of SG
H,U in the socle (respectively,

in the head) of M is equal to the multiplicity of S
NG(H)
H,U in the socle (respectively,

in the head) of ↓GNG(H) M.



CHAPTER 4. INDUCING AND RESTRICTING SIMPLE FUNCTORS 38

Proof : As a consequence of 4.13 the endomorphism algebra of the the µK(G)-

module SG
H,V is isomorphic to the endomorphism algebra of the µK

(
NG(H)

)
-

module S
NG(H)
H,V . Using the isomorphism

SG
H,V
∼=↑GNG(H) S

NG(H)
H,V

given in 2.10, we see that the result follows by the adjointness of the pair

(↑GNG(H), ↓GNG(H))

(respectively, of the pair

(↓GNG(H), ↑GNG(H))).

�

It may be thought that 4.13 is a very restrictive result dealing with simple

functors whose minimal subgroups are equal (or conjugate). Indeed, the next

result indicates that it is not so.

Proposition 4.16 Let A ≤ K ≤ G ≥ L ≥ B. Then, for any simple KNK(A)-

module W and any simple KNL(B)-module U, if

HomµK(G)

(
↑GK SK

A,W , ↑GL SL
B,U

)
6= 0,

then B = Ag for some g ∈ G (so that ↑GL SL
B,U and ↑GgL S

gL
A,gU are isomorphic).

Proof : Let M1 =↑GK SK
A,W and M2 =↑GL SL

B,U . Suppose that

HomµK(G)(M1,M2) 6= 0.

Then, using the adjointness of the pairs (↑GK , ↓GK) and (↓GL , ↑GL), we see that there

are (nonzero) maps

SK
A,W →↓GK M2 and ↓GL M1 → SL

B,U ,

which are necessarily a µK(K)-module monomorphism and a µK(L)-module epi-

morphism, respectively. From these morphisms of functors we obtain that

M2(A) 6= 0 and M1(B) 6= 0. So it follows by 2.6 that B ≤L L ∩ Ax and that
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A ≤K K ∩ By for some x and y in G. Hence, B = Ag for some g ∈ G. Further-

more, the g conjugate |gGM2 of the functor M2 for G is isomorphic to M2, and

hence M2 is isomorphic to

|gGM2
∼=↑GgL S

gL
gB,gU .

�

One may want to obtain results similar to 4.5, 4.7, 4.9 and 4.13 for restrictions

of simple functors. The results similar to 4.5 and 4.9 can be readily given by using

4.13 and using the adjointness property of induction and restriction.

Theorem 4.17 Let K ≤ L ≤ G and let V be a simple KNG(K)-module. Let

M =↓GL SG
K,V .

Then, any simple µK(L)-submodule of M is isomorphic to a simple functor of the

form

SL
gK,W

where g is an element of G with gK ≤ L and W is a simple KNL(gK)-submodule

of gV. Conversely, for any element g of G with gK ≤ L, any simple KNL(gK)-

submodule of gV is isomorphic to a simple module of the form S(gK) where S is

a simple µK(L)-submodule of M. Moreover, for any element g of G with gK ≤ L

and any simple KNL(gK)-module of W, the multiplicity of SL
gK,W in

Soc(M)

is equal to the multiplicity of U in

Soc
(
↓NG(gK)

NL(gK)

gV
)
.

Proof : It follows by part (2) of 4.3 that any simple µK(L)-submodule of M

has a minimal subgroup which is a G-conjugate of K so that it must be of the

form SL
gK,W where g is an element of G with gK ≤ L and W is simple KNL(gK)-

submodule of gV ∼= M(gK).

What remain will follow easily from the following isomorphism of K-spaces.

Let g ∈ G with gK ≤ L and let W be a simple KNL(gK)-module. Put x = g−1
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to simplify the notation. Using the adjointness of the pair (↑GL , ↓GL) and 4.13 we

have the following isomorphisms of K-spaces:

HomµK(L)

(
SL

gK,W ,M
) ∼= HomµK(G)

(
↑GL SL

gK,W , S
G
K,V

)
∼= HomµK(G)

(
↑GL |

g
LS

Lg

K,xW , S
G
K,V

)
∼= HomµK(G)

(
|gG ↑

G
Lg SLg

K,xW , S
G
K,V

)
∼= HomµK(G)

(
↑GLg SLg

K,xW , S
G
K,V

)
∼= HomKNG(K)

(
↑NG(K)

NLg (K)

xW,V
)

∼= HomKNLg (K)

(
xW, ↓NG(K)

NLg (K)
V

)
∼= HomKNL(gK)

(
W, ↓NG(gK)

NL(gK)

gV
)

We also used the following obvious properties of conjugation which transports the

structure. Firstly, the Mackey functors SL
gK,W and |gLSLg

K,xW , where x = g−1, are

isomorphic. Secondly, given subgroups A ≤ B ≤ G, an element g ∈ G, and KA-

modules U1 and U2, the functors |gB ↑BA and ↑gB
gA |

g
A are naturally isomorphic, the

K-spaces HomKA(U1, U2) and HomK(gA)(
gU1,

g U2) are isomorphic, and moreover

|gG and the identity functor are naturally isomorphic. �

The previous theorem remains true if we replace simple µK(L) and KNL(gK)-

submodules with simple quotients, and replace socles with heads.

Theorem 4.18 Let K ≤ L ≤ G and let V be a simple KNG(K)-module. Let

M =↓GL SG
K,V .

Then, any simple quotient of M is isomorphic to a simple functor of the form

SL
gK,W

where g is an element of G with gK ≤ L and W is a simple quotient of gV.

Conversely, for any element g of G with gK ≤ L, any simple quotient of gV is

isomorphic to a simple module of the form S(gK) where S is a simple quotient

of M. Moreover, for any element g of G with gK ≤ L and any simple KNL(gK)-

module of W, the multiplicity of SL
gK,W in

M/Jac(M)
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is equal to the multiplicity of U in(
↓NG(gK)

NL(gK)

gV
)/

Jac
(
↓NG(gK)

NL(gK)

gV
)
.

Proof : It follows by part (2) of 4.6 that any simple quotient of M has a minimal

subgroup which is a G-conjugate of K so that it must be of the form SL
gK,W where

g is an element of G with gK ≤ L and W is simple quotient of gV ∼= M(gK).

What remain will follow easily from the following isomorphism of K-spaces.

Let g ∈ G with gK ≤ L and let W be a simple KNL(gK)-module. Put x = g−1

to simplify the notation. Using the adjointness of the pair (↓GL , ↑GL) and 4.13 we

have the following isomorphisms of K-spaces:

HomµK(L)

(
M,SL

gK,W

) ∼= HomµK(G)

(
SG

K,V , ↑GL SL
gK,W

)
∼= HomµK(G)

(
SG

K,V , ↑GL |
g
LS

Lg

K,xW

)
∼= HomµK(G)

(
SG

K,V , |
g
G ↑

G
Lg SLg

K,xW

)
∼= HomµK(G)

(
SG

K,V , ↑GLg SLg

K,xW

)
∼= HomKNG(K)

(
V, ↑NG(K)

NLg (K)

xW
)

∼= HomKNLg (K)

(
↓NG(K)

NLg (K)
V, xW

)
∼= HomKNL(gK)

(
↓NG(gK)

NL(gK)

gV,W
)

We also used the following obvious properties of conjugation which transports the

structure. Firstly, the Mackey functors SL
gK,W and |gLSLg

K,xW , where x = g−1, are

isomorphic. Secondly, given subgroups A ≤ B ≤ G, an element g ∈ G, and KA-

modules U1 and U2, the functors |gB ↑BA and ↑gB
gA |

g
A are naturally isomorphic, the

K-spaces HomKA(U1, U2) and HomK(gA)(
gU1,

g U2) are isomorphic, and moreover

|gG and the identity functor are naturally isomorphic. �

Theorem 4.19 Let K ≤ L ≤ G and let V be a simple KNG(K)-module. Let

M =↓GL SG
K,V .

(1) M is a semisimple µK(L)-module if and only if gV is a semisimple NL(gK)-

module for every element g of G with gK ≤ L.
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(2) M is a simple µK(L)-module if and only if any element of the set

{gK : gK ≤ L, g ∈ G}

is an L-conjugate of K and the KNL(K)-module V is simple.

Proof : As a consequence of 4.17, for any g ∈ G with gK ≤ L we have(
Soc(M)

)
(gK) ∼= Soc

(
↓NG(gK)

NL(gK)

gV
)
.

(1) Suppose that M is semisimple. Then M = Soc(M) so that the socle of

the NL(gK)-module gV is isomorphic to M(gK). As M(gK) ∼= gV, the NL(gK)-

module gV must be semisimple. Suppose that gV is semisimple for every g in G

with gK ≤ L. Since M(gK) ∼= gV, we must have that(
Soc(M)

)
(gK) = M(gK).

It follows by part (2) of 4.6 that M is generated by its values on gK where g

ranges over elements of G satisfying gK ≤ L. This shows that M = Soc(M).

(2) This is clear from 4.17 and from the isomorphism given at the beginning

of the proof. �

The following immediate consequence of 4.17 and 4.19 generalizes part (ii) of

[Yar2, Corollary 3.5].

Corollary 4.20 Let K ≤G L be subgroups of G and let V be a simple KNG(K)-

module such that dimK V = 1. Then, the µK(L)-module ↓GL SG
K,V is semisimple

and satisfies

↓GL SG
K,V
∼=

⊕
LgNG(K)⊆G:gK≤L

SL
gK,gV .

We now want to obtain an analogous of 4.13 for restrictions of simple functors.

It seems that such a result is not an immediate consequences of 4.13, the Mackey

decomposition formula, the formula in 2.10, and the adjointness properties of

restriction and induction. Instead of using 4.13 we may try to adopt the proof
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of 4.13. Therefore, given a simple functor M for G and a subgroup L of G, we

must find an appropriate idempotent e of µK(L) such that ↓GL M has no nonzero

quotient module annihilated by e and no nonzero submodule annihilated by e.

We must also relate the algebra eµK(L)e to some group algebras.

Lemma 4.21 Let X be a set of subgroups of G and let

eX =
∑
X∈X

tXX .

Then we have the direct sum decomposition

eXµK(G)eX = AX ⊕ IX

where AX is a unital subalgebra of eXµK(G)eX and IX is a (AX , AX )-bisubmodule

of eXµK(G)eX . The elements of the form

tXgJc
g
Jr

Y
J

with X and Y are different elements of X and the elements of the form

tXgJc
g
Jr

X
J

with X ∈ X and J 6= X form a K-basis of IX . Moreover we have the following

K-algebra isomorphism

AX =
⊕
X∈X

AX , AX =
( ⊕

gX⊆NG(X)

KcgX
) ∼= KNG(X), cgX ↔ gX,

where AX are two sided ideals of AX so that the identities tXX = c1X of the algebras

AX , X ∈ X , are mutually orthogonal central idempotents of AX whose sum is

equal to the identity eX of AX . Furthermore, IX is a two sided ideal of eXµK(G)eX

if and only if there no elements X and Y of X with X < Y.

Proof : Follows easily by the axioms defining the Mackey algebra and by the

basis theorem 2.1. See also 4.1. �

Using the previous result and 4.10, we sometimes can reduce hom spaces of

Mackey functors to hom spaces of AX -modules. Moreover, as the algebra direct
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summands of AX given in 4.21 are actually two sided ideals of AX , using the next

result, hom spaces can be reduced further to direct sums of hom spaces of group

algebras.

Remark 4.22 Let 1 = e1 + ... + en be a decomposition of the unity of a finite

dimensional K-algebra A into orthogonal central idempotents. Then, for any A-

modules V and W,

HomA(V,W )→
n⊕

i=1

HomAei
(eiV, eiW ), f 7→ ⊕n

i=1f |eiV ,

is a K-space (K-algebra if V = W ) isomorphism.

Proof : Well-known and easy. �

Theorem 4.23 Let K ≤ L ≤ A ≤ G ≥ B ≥ L. Let Y1, Y2, ..., Yn be a complete

list of representatives of L-orbits (i.e., L-conjugacy classes) of the L-set

{aK : aK ≤ L, a ∈ A}
⋂
{bK : bK ≤ L, b ∈ B}

on which L acts by conjugation. Suppose that

Yi = aiK = biK; ai ∈ A, bi ∈ B, i = 1, 2, ..., n.

Then, for any simple KNA(K)-module W and any simple KNB(K)-module U,

HomµK(L)

(
↓AL SA

K,W , ↓BL SB
K,U

) ∼= n⊕
i=1

HomKNL(Yi)
(aiW, biU)

as K-spaces (K-algebras if B = A and W = U and if we choose bi = ai).

Proof : Let X1, X2, ..., Xm be a complete list of representatives of L-orbits (i.e.,

L-conjugacy classes) of the L-set

{aK : aK ≤ L, a ∈ A}
⋃
{bK : bK ≤ L, b ∈ B}

on which L acts by conjugation. We may assume that

{Y1, Y2, ..., Yn} ⊆ {X1, X2, ..., Xm}.
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We also let M1 =↓AL SA
K,W , M2 =↓BL SB

K,U , E = µK(L), and X =

{X1, X2, ..., Xm}.

Letting eX be the idempotent of E defined as in 4.21, it follows by part (2)

of 4.6 that the E-module M1 has no nonzero quotient module annihilated by eX ,

because any quotient of M1 must be nonzero at some element of X . And similarly,

it follows by part (2) of 4.3 that M2 has no nonzero E-submodule annihilated by

eX . Then 4.10 implies that

HomE(M1,M1) ∼= HomeXEeX (eXM1, eXM2).

If M1(J) 6= 0 for some subgroup J of L then SA
K,W (J) 6= 0 implying that

K ≤A J. This shows that the ideal IX of eXEeX given in 4.21 annihilates the

eXEeX -module eXM1, because if a basis element

tXgJc
g
Jr

Y
J

of IX does not annihilate eXM1 then, as g ∈ L, we must have that X =L Y, which

is not the case by the choice of the set X . In a similar way, we see also that IX

annihilates eXM2. Therefore,

HomeXEeX (eXM1, eXM2) ∼= HomAX (eXM1, eXM2)

where AX is the subalgebra of eXEeX given in 4.21.

The unities tXX = c1X of the algebras AX are central idempotents of AX which

are mutually orthogonal. That is, ∑
X∈X

tXX = eX

is a decomposition of the unity eX of the algebra AX into central orthogonal

idempotents of AX . Now it follows by 4.22 that

HomAX (eXM1, eXM2) ∼=
⊕
X∈X

HomAX tXX

(
M1(X),M2(X)

)
.

Let X ∈ X . Then X = gK for some g ∈ A ∪B with gK ≤ L. If

HomAX tXX

(
M1(X),M2(X)

)
6= 0
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then both of M1(X) and M2(X) must be nonzero. Thus SA
K,W (gK) 6= 0 and

SB
K,U(gK) 6= 0. This gives that gK =A K and gK =B K. Consequently, X must

be an L-conjugate of Yi for some i ∈ {1, 2, ..., n}. Thus,⊕
X∈X

HomAX tXX

(
M1(X),M2(X)

) ∼= n⊕
i=1

Hom
AX t

Yi
Yi

(
M1(Yi),M2(Yi)

)
.

The algebras AX t
Yi
Yi

= AYi
and KNL(Yi) are isomorphic via cyi

Yi
7→ yiYi by 4.21.

Moreover,

M1(Yi) = M1(
aiK) ∼= aiW and M2(Yi) = M2(

biK) ∼= biU.

As a result, for each i ∈ {1, 2, ..., n}, we have that

Hom
AX t

Yi
Yi

(
M1(Yi),M2(Yi)

) ∼= HomKNL(Yi)

(
aiW, biU

)
.

�

Using 4.23 we can find a criterion about the indecomposibilty of a functor

obtained by restricting a simple Mackey functor.

Corollary 4.24 Let H ⊆ K be subgroups of G and let V be a simple KNG(H)-

module. Then, the µK(K)-module

↓GK SG
H,V

is indecomposable if and only if any element of the set

{gH : gH ≤ K, g ∈ G}

is a K-conjugate of H and the KNK(H)-module

↓NG(H)

NK(H)
V

is indecomposable.

Proof : The µK(K)-module ↓GK SG
H,V is indecomposable if and only if its en-

domorphism algebra is local. By using the isomorphism of the endomorphism

algebras given 4.23 one concludes the result. �
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Proposition 4.25 Let L ≤ A ≤ G ≥ B ≥ L and X ≤ A and Y ≤ B. Then, for

any simple KNA(X)-module W and any simple KNY (K)-module U, if

HomµK(L)

(
↓AL SA

X,W , ↓BL SB
Y,U

)
6= 0

then Xa = Y b ≤ L for some a ∈ A and b ∈ B.

Proof : Similar to the proof of 4.16. �

As a consequence of 4.25, hom spaces of restrictions of any simple functors

can be related to hom spaces of modules of some group algebras.

Given any simple KNK(H)-module W, we have seen that the socle and head

of the µK(G)-module

M =↑GK SK
H,W

can be determined by the socle and head of the KNG(H)-module

V =↑NG(H)

NK(H)
W.

As M may have composition factors with minimal subgroups not G-conjugates

of H, we do not expect a connection between (say) the socle series of M and V

(except when the socle length of M is 2).

Example 4.26 Let K be a field of characteristic 2 and G be a 2-group. Let

K be a subgroup of G with |G : K| = 2 and let W = K be the trivial module

K(G/K)-module. Put

M =↑GK SK
H,W and V =↑NG(H)

NK(H)
K ∼= K(G/K).

Then:

(1) The factors of the socle series of (the uniserial K(G/K)-module) V are

K and K.

(2) The factors of the socle series of (the uniserial µK(G)-module) M are

SG
K,K, SG

G,K, and SG
K,K.



CHAPTER 4. INDUCING AND RESTRICTING SIMPLE FUNCTORS 48

Proof : (1) As |G : K| = 2 it is clear that V is a uniserial K(G/K)-module

factors of whose socle series are K and K.

(2) Using 4.5 and 4.9 we see by part (1) thatM has a unique simple subfunctor

S and has a unique maximal subfunctor J where

S ∼= SG
K,K
∼= M/J.

If M(X) 6= 0 for a subgroup X of G, then it is clear that |G : X| ≤ 2. Moreover,

it follows by 2.6 that

dimKM(G) = 1 and dimKM(Y ) = 2 for Y ≤ G with |G : Y | = 2.

Now S ≤ J, and using the above dimensions we see that

dimK J/S = 1 and J(G) 6= S(G).

Hence J/S must be isomorphic to SG
G,K. �



Chapter 5

Clifford’s theorem for functors

Almost all the materials in this chapter comes from [Yar1, Section 3]

In this chapter we prove that restriction of a simple functor to a normal

subgroup is semisimple and simple summands of it are conjugate, obtaining a

Mackey functor version of Clifford’s theorem occurring in representation theory

of finite groups.

Lemma 5.1 Let N be a normal subgroup of G and L be a subgroup of G with

N ≤ L. Let M = SG
H,V be a simple µK(G)-module such that H ≤ N. For any

KNL(H)-submodule U of M(H) = V and any g ∈ G, we denote by

TL
gH,cg

H(U)

the µK(L)-submodule of ↓GL M generated by cgH(U). Then:

(1) For any K ≤ L,

TL
gH,cg

H(U)(K) =
∑

x∈L:x(gH)≤K

tKxgHc
x
gHc

g
H(U).

(2)

TL
gH,cg

H(U)(
gH) = cgH(U).

49
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(3) For any x ∈ L
TL

gH,cg
H(U) = TL

xgH,cxg
H (U).

(4) Any minimal subgroup of TL
gH,cg

H(U)
is an L-conjugate of gH.

(5) TL
gH,cg

H(U)
is simple if and only if U is simple KNL(H)-module.

Proof : (1) As TL
gH,cg

H(U)
is the µK(L)-submodule of ↓GL M generated by cgH(U),

TL
gH,cg

H(U)(K) = tKKµK(L)t
gH
gHc

g
H(U).

By the basis theorem 2.1 any element of tKKµK(L)t
gH
gH is a K-linear combination

of elements of the form

tKxJc
x
Jt

gH
J

where x ∈ L. It follows by 4.3 that if J 6= gH then

tKxJc
x
Jt

gH
J cgH(U) = 0.

Therefore, TL
gH,cg

H(U)
(K) is the sum of K-spaces of the form

tKx(gH)c
x
gHt

gH
gHc

g
H(U),

with x ∈ L. So the result follows.

(2) This follows from part (1).

(3) For any x ∈ L, it is obvious that the subsets

cgH(U) and cxgHc
g
H(U) = cxg

H (U)

of ↓GL M generate the same L-subfunctor of ↓GL M.

(4) It follows by 4.3 that any minimal subgroup of TL
gH,cg

H(U)
is a G-conjugate

of H. Moreover, if aH is a minimal subgroup of TL
gH,cg

H(U)
, then

TL
gH,cg

H(U)(
aH) 6= 0

so that part (1) implies that gH =L
aH, proving the result.
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(5) If TL
gH,cg

H(U)
is simple, then 2.3 implies that U is simple KNN(H)-module.

Suppose now U is simple. If S is a nonzero L-subfunctor of TL
gH,cg

H(U)
then S is

a nonzero L-subfunctor of ↓GL M, and hence, by 4.3, S(yH) 6= 0 for some y ∈ G.
Then, S(yH) is a nonzero submodule of TN

gH,cg
H(U)

(yH), implying that the index

set

{x ∈ L : x(gH) ≤ yH}

of the sum expressing TL
gH,cg

H(U)
(yH) is nonempty, and so xg = yu for some x ∈ L

and u ∈ NG(H). Then, by part (3), we have

TL
gH,cg

H(U) = TL
xgH,cxg

H (U) = TL
yuH,cyu

H (U) = TL
yH,cy

H(U).

Thus, S is a nonzero subfunctor of TL
yH,cy

H(U)
, and so S(yH) is a nonzero submodule

of cyH(U). Then simplicity of U implies that S(yH) = cyH(U). Now,

TL
yH,cy

H(U) =< cyH(U) >=< S(yH) >

implies that

TL
gH,cg

H(U) = TL
yH,cy

H(U) = S.

Hence, TL
gH,cg

H(U)
is simple. �

We state below the main result of this chapter, which is Clifford’s theorem

for Mackey functors. We state it over a filed, but it is true over any commutative

base ring. Of course, restriction of a simple Mackey functor may be 0. Indeed,

↓GK SG
H,V 6= 0 implies that H ≤G K. And note that if H ≤ N E G then

NN(H) E NG(H).

Theorem 5.2 (Clifford’s theorem for Mackey functors)

Let N be a normal subgroup of G, and let SG
H,V be a simple µK(G)-module such

that H ≤ N. Then:

(1) There is a simple µK(N)-submodule of ↓GN SG
H,V isomorphic to SN

H,W where

W is a simple KNN(H)-submodule of V.
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(2) Let

L = {g ∈ G : SN
gH,cg

H(W )
∼= SN

H,W}

be the inertia group of SN
H,W . Then, there is a positive integer d, called the

ramification index of SG
H,V relative to N, such that

↓GN SG
H,V
∼= d

⊕
gL⊆G

|gN SN
H,W
∼= d

⊕
gL⊆G

SN
gH,cg

H(W ).

Moreover, if

T = {g ∈ NG(H) : cgH(W ) ∼= W}

is the inertia group of the NN(H)-module W in NG(H), then

L = NT and ↓NG(H)

NN (H)
V ∼= d

⊕
gT⊆NG(H)

cgH(W ).

Furthermore

SN
gH,cg

H(W ), for gL ⊆ G,

form, without repetition, a complete set of nonisomorphic G-conjugates of

SN
H,W . And

cgH(W ), for gT ⊆ NG(H),

form, without repetition, a complete set of nonisomorphic NG(H)-

conjugates of W.

(3) NL(H) = T and there is a simple µK(L)-submdule S for L such that

S ∼= SL
H,U

where U is the sum of all KNN(H)-submodules of ↓NG(H)

NN (H)
V isomorphic to

W. Moreover, S is a simple L-subfunctor of ↓GL SG
H,V such that

↓LN S ∼= dSN
H,W and ↑GL S ∼= SG

H,V .

Furthermore U is a simple KNL(H)-submodule of ↓NG(H)

NL(H)
V satisfying

↓NL(H)

NN (H)
U ∼= dW and ↑NG(H)

NL(H)
U ∼= V.
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Proof : We begin by explaining a notation we used in the proof. Let K ≤ G

and g ∈ G. If U is a KNG(K)-module then we use the notation cgK(U) to denote

the its conjugate gU which is a KNG(gK)-module

As V is a simple KNG(H)-module and NN(H) E NG(H), by Clifford’s theo-

rem for group algebras, see for instance [Na], there is a positive integer d, and a

simple KNN(H)-submodule W of V such that

↓NG(H)

NN (H)
V ∼= d

⊕
gT⊆NG(H)

cgH(W ) = d
⊕

gT⊆NG(H)

cgH(W ),

where T = {g ∈ NG(H) : cgH(W ) ∼= W} is the inertia group of the NN(H)-

module W in NG(H). Moreover cgH(W ), gT ⊆ NG(H), form, without repetition,

a complete set of nonisomorphic NG(H)-conjugates of W. Also, if U is the sum

of all KNN(H)-submodules of ↓NG(H)

NN (H)
V isomorphic to W then U is a simple

KT -module such that

↓T
NN (H)

U ∼= dW and ↑NG(H)

T
U ∼= V.

For any x ∈ G, it is clear that

↓NG(xH)

NN (xH)
cxH(V ) = cxH(↓NG(H)

NN (H)
V ) ∼= d

⊕
gT⊆NG(H)

cxg
H (W ).

Firstly, the µK(N)-module ↓GN SG
H,V is semisimple by the virtue of 4.19. More-

over, it follows by 4.17 that any simple µK(N)-submodule of ↓GN SG
H,V is of iso-

morphic to a functor of the form SN
aH,U ′ where a is an element of G and U ′ is a

simple KNN(aH)-submodule of

↓NG(aH)

NN (aH)
caH(V ) ∼= d

⊕
gT⊆NG(H)

cag
H (W ),

and conversely, for any a ∈ G and any g ∈ NG(H) the simple µK(N)-module

SN
agH,cag

H (W )
is isomorphic to a submodule of ↓GN SG

H,V .

Let a ∈ G and let U ′ be a simple KNN(aH)-module. Then 4.17 implies

that the multiplicity of the simple µK(N)-module SN
aH,ca

H(W ) in the semisimple
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µK(N)-module ↓GN SG
H,V is equal to the multiplicity of caH(U ′) in

↓NG(aH)

NN (aH)
caH(V ) ∼= d

⊕
gT⊆NG(H)

cag
H (W ).

Therefore, simple µK(N)-submodules of ↓GN SG
H,V are precisely of the form

SN
bH,cb

H(W )
where b ranges in G, moreover each simple summand appears with

multiplicity equal to d.

Using 2.5, we see that SN
gH,cg

H(W )
∼= SN

H,W if and only if,

for some n ∈ N, ngH = H and cng
H (W ) ∼= W,

equivalently g ∈ NT. In particular, L = NT. Hence, SN
gH,cg

H(W )
, gL ⊆ G, form,

without repetition, a complete set of nonisomorphic G-conjugates of SN
H,W .

Now U is a simple KT -submodule of M(H) = V . If we apply the modular

law to the tower T ≤ NG(H) ≤ G ≥ N we see that

NL(H) = NG(H) ∩ L = NG(H) ∩ TN = T (NG(H) ∩N) = TNN(H) = T.

As a result, U is a simple KNL(H)-submodule of V. We put

S = TL
H,U

where TL
H,U is defined as in 5.1. Using 5.1 we see that S is a simple L-subfunctor

of ↓GL M and

S ∼= SL
H,U .

As ↑NG(H)

NL(H)
U ∼= V is simple, 4.5 and 4.7 imply that ↑GL SL

H,U
∼= SG

H,V .

Finally, it follows by 4.19 that

↓LN S ∼=↓LN SL
H,U

is a semisimple µK(N)-module. Moreover, it is a consequence of 4.17 that any

simple µK(N)-submodule of ↓LN SL
H,U is of the form

SN
lH,W ′
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for some l ∈ L and some simple KNN(lH)-submodule W ′ of

↓NL(lH)

NN (lH)

lU ∼= l
(
↓NL(H)

NN (H)
U

) ∼= l
(
↓T

NN (H)
U

) ∼= d(lW ).

Therefore, any simple µK(N)-submodule of ↓LN SL
H,U is of the form

SN
lH,lW

∼= SN
H,W .

Since

↓NL(H)

NN (H)
U ∼= dW,

it is clear that

↓LN S ∼=↓LN SL
H,U
∼= dSN

H,W .

�

The socle and the head of the functor M in the example 4.26 are isomorphic.

This can also be seen as an immediate consequence of part (3) of 4.12. Indeed,

it can also be derived from the next result.

Corollary 5.3 Let N be a normal subgroup of G and S be a µK(N)-module. If

Soc(S) ∼= S/Jac(S), then

Soc(↑GN S) ∼= (↑GN S)/Jac(↑GN S).

Proof : Take any simple µK(G)-module T. The µK(N)-module ↓GN T is semisim-

ple (if nonzero) by Clifford’s theorem for Mackey functors. Using the adjointness

of the pairs (↓GN , ↑GN) and (↑GN , ↓GN) we see that:

HomµK(G)

(
T, Soc(↑GN S)

) ∼= HomµK(G)

(
T, ↑GN S

)
∼= HomµK(N)

(
↓GN T, S

)
∼= HomµK(N)

(
↓GN T, Soc(S)

)
∼= HomµK(N)

(
Soc(S), ↓GN T

)
∼= HomµK(N)

(
S/Jac(S), ↓GN T

)
∼= HomµK(N)

(
S, ↓GN T

)
∼= HomµK(G)

(
↑GN S, T

)
∼= HomµK(G)

(
(↑GN S)/Jac(↑GN S), T

)
∼= HomµK(G)

(
T, (↑GN S)/Jac(↑GN S)

)
,
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from which the result follows. �



Chapter 6

Green’s theorem for functors

All the materials in this chapter comes from [Yar1, Sections 5 and 6].

We will illustrate in this chapter that Green’s indecomposibility theorem in

the context of group algebras (or more generally for group graded algebras) has

an analogue in the context of Mackey algebras.

An R-algebra A is called strongly G-graded algebra if A =
⊕

x∈GAx, direct

sum of R-submodules of A, and AxAy = Axy for all x, y ∈ G; here AxAy is the

R-submodule of A consisting of all finite sums
∑

i aibi with ai ∈ Ax and bi ∈ Ay.

The trivial component A1 is a unital subring of A. Let U(A) be the set of all

units of the algebra A. If u ∈ U(A) lies in Ax for some x ∈ G then u is called

graded unit and x is called the degree of u, written deg(u) = x. Letting GrU(A)

be the set of all graded units of A we see that GrU(A) is a subgroup of U(A) and

deg : GrU(A) → G, u 7→ deg(u), is a group homomorphism with kernel U(A1).

If U(A) ∩ Ax is nonempty for all x ∈ G then A is called a crossed product of G

over A1. Let A be a crossed product of G over A1, choosing ux ∈ U(A) ∩ Ax for

any x ∈ G, we see that Ax = A1ux = uxA1.

From now on in this chapter, for K ≤ G we let 1K denote the unity of

µR(K) which is a nonunital subring of µR(G), if K 6= G, and a unital subring of

1KµR(G)1K . Moreover, for an element g of G and for a normal subgroup N of G

57
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we let

γg =
∑
L≤G

cgL, and βg =
∑
L≤N

cgL ∈ 1NµR(G)1N .

Lemma 6.1 Let N be a normal subgroup of G. Then,

(1) γgγg−1 = 1G and βgβg−1 = 1N for any g ∈ G. In particular, γg is a unit of

µK(G) and βg is a unit of 1NµK(G)1N .

(2) βxµR(N) = βyµR(N) if and only if xN = yN.

(3) βxµR(N) = µR(N)βx

(4)

1NµR(G)1N =
⊕

gN∈G/N

βḡµR(N).

Proof : (1) This is obvious.

(2) Noting that βx1N = βx = 1Nβx for any x ∈ G, we see that

βxµR(N) = βyµR(N)

if and only if βy−1xµR(N) = µR(N), and so βy−1x = βy−1x1N ∈ µR(N), implying

that y−1x ∈ N.

Conversely, y−1x ∈ N implies that βy−1x is a unit of µR(N). Thus

βy−1xµR(N) = µR(N).

(3) By 2.1, an R-basis element of µR(N) is of the form

tHnJc
n
Jr

K
J

where H ≤ N ≥ K, n ∈ N, and J ≤ Hn ∩K. For any x ∈ G we have

βxt
H
nJc

n
Jr

K
J = cxHt

H
nJc

n
Jr

K
J = t

xH
xnx−1

(xJ)
cxnx−1

(xJ) r
xK
(xJ)c

x
K = t

xH
xnx−1

(xJ)
cxnx−1

(xJ) r
xK
(xJ)βx.

Using the normality of N we see that

tHnJc
n
Jr

K
J
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is an element of µR(N) if and only if

t
xH
xnx−1 (xJ)

cxnx−1

(xJ) r
xK
(xJ)

is an element of µR(N). Therefore, βxµR(N) = µR(N)βx.

(4) It follows by 2.1 that the elements

tHgJc
g
Jr

K
J ,

where H ≤ N ≥ K, HgK ⊆ G, and J is a subgroup of Hg ∩K up to conjugacy,

form, without repetition, a free R-basis of 1NµR(G)1N . Now g ∈ G is in a unique

coset xN, and if g = xn with n ∈ N then

tHgJc
g
Jr

K
J = cxHxtH

x

nJ c
n
Jr

K
J = βxt

Hx

nJ c
n
Jr

K
J ∈ βxµR(N).

Hence,

1NµR(G)1N =
∑

gN∈G/N

βḡµR(N).

Furthermore, since βx is a unit of 1NµR(G)1N we see that the elements

βxt
H
nJc

n
Jr

K
J ,

where H ≤ N ≥ K, HnK ⊆ N, and J is a subgroup of Hn ∩K up to conjugacy,

form, without repetition, a free R-basis of βxµR(N). If

βxt
H
nJc

n
Jr

K
J = βyt

H′
mIc

m
I r

K′

I

then

βy−1xt
H
nJc

n
Jr

K
J = t

y−1xH
y−1xnJ

cy
−1xn

J rK
J = tH

′
mIc

m
I r

K′

I .

Then, by 2.1, we get that K ′ = K, y−1xH = H ′ and H ′mK ′ = H ′y−1xnK ′,

implying that N = y−1xN. So part (1) implies that βxµR(N) = βyµR(N). Hence,

any basis element of 1NµR(G)1N lies in a unique summand βx̄µR(N). Therefore

the sum ∑
gN∈G/N

βḡµR(N)

must be direct. �

Lemma 6.1 implies
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Theorem 6.2 If N E G then

1NµR(G)1N =
⊕

gN∈G/N

βḡµR(N)

is a crossed product of G/N over µR(N).

If A =
⊕

g∈GAg is a strongly G-graded algebra and W is an A1-module, the

conjugate of W is defined to be the A1-module Ag⊗A1W with obvious A1-action.

Let A1 = µR(N) and A = 1NµR(G)1N . Then, by 6.2, A is a strongly G/N -graded

algebra, and note that the notion of conjugation of A1-modules described above

coincides with the conjugation of µR(N)-modules defined in Chapter 2, because

if S is a µK(N)-module we defined its conjugate |gNS in Chapter 2 as |gNS = S

with µK(N) action given as x.s = (γg−1xγg)s for x ∈ µK(N), s ∈ S. On the other

hand, we defined its conjugate here as gS = βḡµK(N) ⊗µK(N) S. Now it is clear

that there is a µK(N)- module isomorphism |gNS → gS given by s 7→ βḡ ⊗ s.

Proposition 6.3 Let N be a normal subgroup of G. Given a Mackey functor S

for N over R,

↑GN S

is an indecomposable µR(G)-module if and only if

1N ↑GN S

is an indecomposable 1NµR(G)1N -module.

Proof : Let A = µK(G), M =↑GN S, and let e = 1N .

We first observe that AeM = M and (M :e 0) = 0 : Indeed these are imme-

diate consequences of the adjointness of the pairs (↑GN , ↓GN) and (↓GN , ↑GN).

Now 4.10 implies that the endomorphism algebras EndA(M) and EndeAe(eM)

are isomorphic, from which we may conclude the result because indecomposibilitiy

of a (finite) dimensional module is equivalent to the locality of the corresponding

endomorphism algebra. �
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The following result contains a Mackey functor version of Green’s indecom-

posability theorem.

Theorem 6.4 (Green’s indecomposibility criterion for Mackey functors)

Let R be a commutative complete noetherian local ring whose residue field

R/Jac(R) is algebraically closed and is of characteristic p > 0, and N be a normal

subgroup of G. Let S be a finitely generated indecomposable Mackey functor for

N over R, and let L be the inertia group of S. Then, ↑GN S is an indecomposable

Mackey functor for G over R if and only if L/N is a p-group.

Proof : Let A = 1NµR(G)1N and A1 = µR(N). Then we know that A is a

crossed product of G/N over A1, and in the context of crossed products S is an

indecomposable A1-module whose inertia group is L/N. Then, Green’s theorem

in the context of group graded algebras implies that A⊗A1 S is indecomposable

if and only if (L/N)/(N/N) is a p-group. Moreover,

A⊗A1 S = 1N ↑GN S.

Now, it follows by 6.3 that 1N ↑GN S is indecomposable if and only if ↑GN S is

indecomposable. Hence the result is proved. �



Chapter 7

Maximal subfunctors

Almost all the materials in this chapter comes from [Yar5, Sections 4 and 5].

Let M be a µK(G)-module and H be a subgroup of G. The purpose of this

chapter is to find some relations between the maximal µK(G)-submodules of M

and the KNG(H)-submodules of the coordinate moduleM(H) ofM. For instance,

we construct a bijective correspondence between the maximal µK(G)-submodules

J ofM satisfyingM/J ∼= SG
H,V for some simple KNG(H)-module V and the maxi-

mal KNG(H)-submodules I of the Brauer quotient M(H) satisfying some certain

conditios. Using this bijective correspondence, we show that the multiplicity of

a simple µK(G)-module SG
H,V in the head of M is equal to the multiplicity of the

simple KNG(H)-module V in the head of a certain quotient module of M(H).

We begin with recording some properties of the submodules (V :e T ) defined

at the beginning of 4.8. Recall that

(V :e T ) = {v ∈ V : eAv ⊆ T}

where A is an algebra, e is an idempotent of A, V is an A-module, and T is an

eAe-submodule of eV.

Lemma 7.1 Let A be a finite dimensional K-algebra and e be a nonzero idem-

potent of A. Suppose that W ⊆ V are A-modules with eV 6= 0 and suppose that

62
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I, I1, and I2 are eAe-submodules of eV. Then:

(1) (V :e I) is the largest A-submodule of V subject to the condition e(V :e I) = I.

In particular, W ⊆ (V :e eW ).

(2) If I1 ⊆ I2 then (V :e I1) ⊆ (V :e I2).

(3) (V :e I1) ∩ (V :e I2) = (V :e I1 ∩ I2).

(4) (V :e I) ∩W = (W :e I ∩ eW ).

(5)
(
V/W :e (I +W )/W

)
= (V :e I + eW )/W.

(6) (V × V ′ :e I × I ′) = (V :e I) × (V ′ :e I
′) for any A-module V ′ and any

eAe-submodule I ′ of eV ′.

(7) V is a simple A-module if and only if AeV = V, (V :e 0) = 0, and eV is a

simple eAe-module.

(8) Let (V :e 0) = 0. Then, V is a semisimple A-module if and only if AeV = V

and eV is a semisimple eAe-module.

Proof : (1) Let S be an A-submodule of V such that eS = I. Take any s ∈ S.
Then, As ⊆ S implies that eAs ⊆ eS = I; so s ∈ (V :e I). Hence, S ⊆ (V :e I).

(2) This is obvious.

(3) Let v ∈ V be such that v ∈ (V :e Ii) for i = 1, 2. Then eAv ⊆ I1 ∩ I2,
implying that v ∈ (V :e I1 ∩ I2).

The converse inclusion follows by part (2).

(4) This is clear.

(5) Let v ∈ V.

Suppose that v+W ∈
(
V/W :e (I+W )/W

)
. Then, eA(v+W ) ⊆ (I+W )/W

and so eAv ⊆ I +W, implying that

eAv = e2Av ⊆ e(I +W ) = eI + eW = I + eW.
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Thus, v ∈ (V :e I + eW )/W.

Suppose that v ∈ (V :e I + eW ). Then,

eAv ⊆ I + eW = e(I +W ) ⊆ (I +W ),

and hence eA(v +W ) ⊆ (I +W )/W. This shows that

v +W ∈
(
V/W :e (I +W )/W

)
.

(6) This is straightforward because A acts on V × V ′ diagonally, that is,

a(v, v′) = (av, av′) for a ∈ A, v ∈ V, v′ ∈ V ′.

(7) Suppose that V is a simple A-module. As eV is nonzero, the A-submodules

AeV and (V :e 0) of V are nonzero and proper, respectively. Thus AeV = V

and (V :e 0) = 0. The simplicity of the eAe-module eV is well-known (from [Gr2,

pp. 83-87] or 4.4). Conversely, suppose V is an A-module satisfying AeV = V,

(V :e 0) = 0, and eV simple. Let U be a nonzero A-submodule of V. Then it

follows from (V :e 0) = 0 that eU is a nonzero eAe-submodule of eV so that

eU = eV by the simplicity of eV. Now AeV = V implies that V = U. Hence V is

a simple A-module.

(8) As (V :e 0) = 0, the A-module V has no nonzero A-submodule annihilated

by e so that 4.4 may be applied to see the result. �

Let X be a set of subgroups of G and M be a µK(G)-module. If we put

A = µK(G) and e = eX

where the idempotent eX is defined as in 4.21, then the module

(M :e 0)

becomes an already familiar subfunctor of M. Indeed, assuming that X is closed

under taking subgroups and taking G-conjugates, we have

(M :e 0) = {m =
⊕
H≤G

mH ∈M : eAm = 0}

=
⊕
H≤G

{mH ∈M(H) : tXXµK(G)tHHmH = 0 ∀X ∈ X}.
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The basis theorem 2.1 and the conditions on X imply that

tXXµK(G)tHHmH = 0

for all X ∈ X if and only if rH
XmH = 0 for all X ∈ X satisfying X ≤ H.

Consequently,

(M :e 0)(H) =
⋂

X∈X :X≤H

Ker
(
rH
X : M(H)→M(X)

)
.

Thus (M :e 0) is the subfunctor KerrM
X of M defined in [TW, Section 3]. This ob-

servation shows that part (7) of 7.1 implies the characterization of simple functors

in [TW, (3.1) Theorem].

Moreover, for any set X of subgroups ofG and any µK(G)-moduleM, a µK(G)-

submodule RXM of M defined in [We2] to be the largest µK(G)-submodule of M

subject to the condition rK
J (RXM(K)) = 0 for all J ∈ X with J ≤ K. It can be

seen easily that RXM = (M :eX 0).

For an algebra A and its idempotent e we want to relate the maximal A-

submodules of an A-module V to the maximal eAe-submodules of eV. Although

we gave such a relation in 4.8, some modules we want to consider may not satisfy

the conditions of 4.8. For this reason we next state the following result.

Lemma 7.2 Let A be a finite dimensional K-algebra and e be a nonzero idem-

potent of A. Suppose that V is a nonzero A-module, J is an A-submodule of V,

and I is an eAe-submodule of eV. Then:

(1) I is a maximal eAe-submodule of eV if and only if (V :e I) is a largest

element of the set of all A-submodules of V not containing AeV.

(2) (V :e I) is a maximal A-submodule of V if and only if I is a maximal eAe-

submodule of eV and AeV + (V :e I) = V.

(3) J is a largest element of the set of all A-submodules of V not containing AeV

if and only if eJ is a maximal eAe-submodule of eV and J = (V :e eJ).



CHAPTER 7. MAXIMAL SUBFUNCTORS 66

(4) J = (V :e eJ) if and only if V/J has no nonzero A-submodule annihilated by

e, equivalently (V/J :e 0) = 0.

(5) Suppose that J does not contain AeV. Then, J is a maximal A-submodule of

V if and only if eJ is a maximal eAe-submodule of eV, AeV + J = V,

and (V :e eJ) = J.

Proof : (1) Let I be a maximal eAe-submodule of eV. As I is not equal to

eV, the A-module (V :e I) can not contain AeV. Let W be an A-submodule

of V containing (V :e I) but not containing AeV. Then eW is a proper eAe-

submodule of eV containing I. This implies that eW = I because I is a maximal

eAe-submodule of eV. Hence W = (V :e I).

Let (V :e I) be a largest among all the A-submodules of V not containing

AeV. Then I must be a proper eAe-submodule of eV. Let T be a maximal eAe-

submodule of eV that contains I. By using 7.1 we see that (V :e T ) contains

(V :e I) but does not contain AeV. Because of the condition on (V :e I), this

implies that (V :e T ) = (V :e I). Thus T = I.

(2) We may assume that I is not equal to eV, because (V :e I) = V if and

only if I = eV. Thus, V/(V :e I) is not annihilated by e so that part (7) of 7.1 is

applicable.

(V :e I) is a maximal A-submodule of V if and only if V/(V :e I) is a simple

A-module. This is equivalent to the conditions:

Ae
(
V/(V :e I)

)
= V/(V :e I),

the eAe−module e
(
V/(V :e I)

)
is simple,

and
(
V/(V :e I) :e 0

)
= 0.

The result follows by 7.1.

(3) Let J be such a largest element. As J does not contain AeV, the eAe-

module eJ is not equal eV. Let I ′ be a maximal eAe-submodule of eV containing

eJ. It follows by part (1) that the A-module (V :e I
′) is also a largest element of the
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set of all A-submodules of V not containing AeV. This shows that (V :e I
′) = J

because (V :e I
′) contains J. Hence I ′ = eJ is a maximal eAe-submodule of eV

and J = (V :e eJ). The converse direction follows from the first part of this

lemma.

(4) Follows from part (5) of 7.1 which implies that (V :e eJ)/J = (V/J :e 0).

(5) Follows from part (7) of 7.1 because the maximality of J is equivalent to

simplicity of V/J, which is not annihilated by e. �

From 7.2 the following is immediate.

Proposition 7.3 Let A be a finite dimensional K-algebra and e be a nonzero

idempotent of A. Suppose that V is a nonzero A-module. Then:

(1) The maps

J → eJ and (V :e I)← I

define a bijective correspondence between the largest elements of the set of all

A-submodules of V not containing AeV and the maximal eAe-submodules

of eV.

(2) The maps

J → eJ and (V :e I)← I

define a bijective correspondence between the maximal A-submodules of V

that are containing A(1− e)V (so, necessarily not containing AeV ) and the

maximal eAe-submodules of eV that are containing eA(1− e)V.

(3) The maps

J → eJ and (V :e I)← I

define a bijective correspondence between the maximal A-submodules of V

that are not containing AeV and the maximal eAe-submodules of eV that

satisfy

AeV + (V :e I) = V.
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We next need to recall the notion of the Brauer quotient of a Mackey functor,

see [Th, TW95, We2]. Let M be a µK(G)-module and H be a subgroup of G. We

put

bH(M) =
∑
S<H

tHS (M(S)).

It is clear that bH(M) is a KNG(H)-submodule of M(H). The quotient module

M/bH(M)

is called the Brauer quotient (or the residue module) of M(H) and denoted by

M(H).

Given any µK(G)-module M and any subgroup H of G we will observe in the

proof of the next result that if I is a (maximal) KNG(H)-submodule of M(H)

containing bH(M) then it is also a tHHµK(G)tHH-submodule of M(H) so that the

notation (M :e I) in the next result makes sense (see also part (1) of 7.5).

Theorem 7.4 Let M be a µK(G)-module and H be a subgroup of G. Put e = tHH .

Then, the maps

J → J(H) and (M :e I)← I

define a bijective correspondence between the largest elements of the set of all

subfunctors J of M whose quotient functor M/J has H as a minimal subgroup and

the maximal KNG(H)-submodules I/bH(M) of M(H). In particular, M(H) = 0

if and only if M has no quotient functor having H as a minimal subgroup.

Proof : Let A = µK(G), B = KNG(H), X = {X ≤ G : X < H}, and let the

idempotent f = eX of A be defined as in 4.21. By 4.21 or part (1) of 4.1 we

have the direct sum decomposition eAe = AH ⊕ IH where the algebra AH can be

identified with B via the isomorphism given by cgH ↔ gH.

We also define five sets A,B, C,D, E as follows:

A is the set of all subfunctors of M whose quotient has H as a minimal

subgroup,
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B is the set of all A-submodules of M containing AfM but not containing

AeM,

C is the set of all eAe-submodules of eM containing eAfM,

D is the set of all B-submodules of eM containing eAfM, and

E is the set of all KNG(H)-submodules of M(H) containing bH(M).

We first show that the sets A and B are equal: Let J be a subfuncor of M.

Then, H is a minimal subgroup of M/J if and only if (M/J)(X) = 0 for all

X < H and (M/J)(H) 6= 0. This is equivalent to the conditions f(M/J) = 0

and e(M/J) 6= 0. Note that f(M/J) = 0 if and only if AfM ⊆ J, and that

e(M/J) 6= 0 if and only if J does not contain AeM. Thus the sets A and B are

equal.

Let J be an A-submodule of M and I be an eAe-submodule of eM. If J

contains AfM then eJ contains eAfM, and conversely if I contains eAfM then,

by its definition, (M :e I) contains AfM. Therefore, it follows by part (1) of

7.3 that the maps J → eJ and (M :e I) ← I define a bijective correspondence

between the maximal elements of the sets B and C.

We finish the proof by showing the equality of the sets C, D, and E : By the

basis theorem 2.1 it is clear that any element of eAf can be written as a linear

combination of the elements of the form

tHgAc
g
Ar

X
A

where X < H so that gA < H. Moreover, it is obvious that tHS is in eAf for any

S < H. Consequently, eAfM = bH(M). The elements of the form

tHxBc
x
Br

H
B

with B 6= H form a K-basis of the two sided ideal IH of eAe, see 4.1. This shows

that IHeM = IHM is in bH(M). Therefore,

IHM ⊆ eAfM = bH(M) ⊆ eM.



CHAPTER 7. MAXIMAL SUBFUNCTORS 70

By the correspondence theorem, there is a bijection between the eAe-

submodules of eM containing eAfM and eAe-submodules of M/IHM contain-

ing eAfM/IHM. As the ideal IH annihilates the eAe-module M/IHM and as

eAe = B⊕IH , the eAe-submodules ofM/IHM and the B-submodules ofM/IHM

are the same. By another usage of the correspondence theorem, we see that the

eAe-submodules of eM containing eAfM and the B-submodules of eM contain-

ing eAfM are the same. As eAfM = bH(M), the sets C, D, and E are equal.

�

Let M be a µK(G)-module and H be a subgroup of G. A consequence of 7.4

is that the number of maximal µK(G)-submodules J of M such that

M/J ∼= SG
H,V

for some simple KNG(H)-module V is less than or equal to the number of max-

imal KNG(H)-submodules of M(H). Indeed, by part (2) of 7.2 (or part (3) of

7.3) we see that the maps in 7.4 define a bijection between the maximal µK(G)-

submodules J of M that satisfies the given condition in 7.4 and the maximal

KNG(H)-submodules I/bH(M) of M(H) that satisfies

AeM + (M :e I) = M,

where A = µK(G) and e = tHH .

Lemma 7.5 Let M be a µK(G)-module, H be a subgroup of G, and let e = tHH .

Then:

(1) IHM ⊆ bH(M) so that bH(M) is a eµK(G)e-submodule of M(H) where IH is

the ideal of eµK(G)e given in 4.1. In particular, any KNG(H)-submodule

of M(H) containing bH(M) is an eµK(G)e-submodule of M(H).

(2) If H 6≤G X then
(
M :e bH(M)

)
(X) = M(X), and if H ≤G X then(

M :e bH(M)
)
(X) =

{x ∈M(X) : cgHgrX
Hg(x) ∈ bH(M) ∀g ∈ G with Hg ≤ X}.
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(3) Let X = {X ≤ G : H 6<G X} and I/bH(M) be a KNG(H)-submodule of

M(H). Then, for any subset Y of X containing a G-conjugate of H we

have

AeM + (M :e I) = AeYM + (M :e I),

where A = µK(G) and eY is the idempotent of A defined as in 4.21. In

particular, the evaluations of the functors

AeM + (M :e I) and M

at subgroups of G in X are all equal.

Proof : (1) It is obtained in the proof of 7.4.

(2) As (
M :e bH(M)

)
(X) = {x ∈M(X) : tHHµK(G)tXXx ⊆ bH(M)},

by the basis theorem 2.1 we see that
(
M :e bH(M)

)
(X) is the set of all elements

x ∈M(X) satisfying

tHgJc
g
Jr

X
J (x) ∈ bH(M)

for all g ∈ G and all J ≤ Hg ∩ X. Note that if gJ < H then this condition is

satisfied trivially for all x ∈M(X). Thus, the result follows.

(3) Since
(
M :e bH(M)

)
⊆ (M :e I), it follows by part (2) that

(M :e I)(Y ) = M(Y )

for all Y ∈ Y with Y 6=G H. If Y =G H then it is clear that

(AeM)(Y ) = M(Y )

(because e = tHH). Therefore,

AeM ⊆ AeYM ⊆ AeM + (M :e I),

from which the result follows. �
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Corollary 7.6 Let M be a µK(G)-module and H be a subgroup of G. Put e = tHH .

Then:

(1) The maps

J → J(H) and (M :e I)← I

define a bijective correspondence between the maximal µK(G)-submodules J

of M such that

M/J ∼= SG
H,V

for some simple KNG(H)-module V and the maximal KNG(H)-submodules

I/bH(M) of M(H) that satisfies

M(X) =∑
g∈G

tXX∩gH

(
M(X ∩ gH)

)
+ {x ∈M(X) : cgHgrX

Hg(x) ∈ I, ∀g ∈ G, Hg ≤ X}

for all X ≤ G with H < X.

(2) Let M be a semisimple µK(G)-module. Then, the maps

J → J(H) and (M :e I)← I

define a bijective correspondence between the maximal µK(G)-submodules J

of M such that

M/J ∼= SG
H,V

for some simple KNG(H)-module V and the maximal KNG(H)-submodules

I/bH(M) of M(H).

Proof : Let A = µK(G), Y = {Y ≤ G : Y ≤G H}, and let the idempotent

e′ = eY be defined as in 4.21.

(1) Let I/bH(M) be a KNG(H)-submodule of M(H). It follows by part (3)

of 7.5 that the A-modules

AeM + (M :e I) and Ae′M + (M :e I)
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are equal. Since Y is closed under taking subgroups and taking G-conjugates, we

see easily by using the basis theorem 2.1 that

(Ae′M)(X) =
∑

Y ∈Y:Y≤X

tXY (M(Y ))

for any X ≤ G. Part (3) of 7.5 implies that the evaluations of

AeM + (M :e I) and M

at subgroups X of G for which H 6<G X are all equal. Thus, to justify that

AeM + (M :e I) = M

it is enough to see that

(Ae′M)(X) + (M :e I)(X) = M(X)

for all X with H <G X ≤ G. As the conjugation maps cgX of M are K-space

isomorphism, it is enough to see the equality of the above evaluations at subgroups

X satisfying H < X ≤ G.

Let H < X ≤ G. If Y ∈ Y with Y ≤ X then there is a g ∈ G such that

Y ≤ X ∩ gH ∈ Y . By the transitivity property (M1) of the trace maps on M (see

the definition of a Mackey functor given in Chapter 2) we have

tXY (M(Y )) ⊆ tXX∩gH

(
M(X ∩ gH)

)
.

Therefore,

(Ae′M)(X) =
∑
g∈G

tXX∩gH

(
M(X ∩ gH)

)
.

Moreover, since bH(M) ⊆ I, we see as in the proof of part (2) of 7.5 that

(M :e I)(X) = {x ∈M(X) : cgHgrX
Hg(x) ∈ I, ∀g ∈ G, Hg ≤ X}.

The result now follows by the explanation given at the beginning of 7.5.

(2) By the explanation given at the beginning of 7.5, it suffices to prove that

AeM + (M :e I) = M
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for any maximal KNG(H)-submodule I/bH(M) of M(H). Indeed, this is true

for any (not necessarily maximal) KNG(H)-submodule I/bH(M). To see this, we

first note by part (5) of 7.1 that(
M/(M :e I) :e 0

)
= 0.

As M is semisimple, part (8) of 7.1 implies the result. �

The condition on I given in part (1) of 7.6 becomes slightly simpler if we

assume that H is normal in G. Using 4.15 we see that the existence of a maximal

subfunctor J of M such that

M/J ∼= SG
H,V

for some simple KNG(H)-module V is equivalent to the existence of a maximal

subfunctor J ′ of ↓GNG(H) M such that

(↓GNG(H) M)/J ′ ∼= S
NG(H)
H,V .

Corollary 7.7 Let M be a µK(G)-module and H be a subgroup of G. Put

M ′ =↓GNG(H) M and e = tHH .

Then:

(1) The maps

J →
(
M ′ :e J(H)

)
and

(
M :e J

′(H)
)
← J ′

define a bijective correspondence between the largest elements of the set of

all subfunctors J of M whose quotient functor M/J has H as a minimal

subgroup and the largest elements of the set of all subfunctors J ′ of M ′

whose quotient functor M ′/J ′ has H as a minimal subgroup.

(2) The map

J →
(
M ′ :e J(H)

)
define an injection from the set of all maximal µK(G)-submodules J of M

such that H is a minimal subgroup of the simple functor M/J to the set

of all maximal µK
(
NG(H)

)
-submodules J ′ of M ′ such that H is a minimal

subgroup of the simple functor M ′/J ′.
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(3) For any maximal µK(G)-submodule J of M such that H is a minimal sub-

group of the simple functor M/J, there is a maximal µK
(
NG(H)

)
-submodule

J ′ of M ′ such that H is a minimal subgroup of the simple functor M ′/J ′

and J =
(
M :e J

′(H)
)
.

Proof : (1) This follows from 7.4 because, for any H ≤ K ≤ G, it follows by the

definition of the Brauer quotient that

bH(M) = bH(↓GK M) and M(H) = (↓GK M)(H).

(2) and (3) Let A = µK(G), B = µK
(
NG(H)

)
, and L = NG(H). Let J be a

maximal A-submodule of M such that H is a minimal subgroup of the simple

A-module M/J. Then M/J must be isomorphic to a simple functor of the form

SG
H,V . Using 4.15 we see that the multiplicity of the simple B-module SL

H,V in the

head of

↓GL (M/J) ∼= M ′/(↓GL J)

is nonzero (indeed one) where the isomorphism of the B-modules follows from

the exactness of the functor ↓GL . Therefore there is a maximal B-submodule J ′

of M ′ containing ↓GL J such that M ′/J ′ is isomorphic to SL
H,V . In particular,

J(H) = J ′(H). Moreover, part (4) of 7.2 implies that

J ′ =
(
M ′ :e J

′(H)
)

and J =
(
M :e J(H)

)
.

Using the equality J(H) = J ′(H) we obtain that

J ′ =
(
M ′ :e J(H)

)
and J =

(
M :e J

′(H)
)
.

As
(
M ′ :e J(H)

)
is equal to the maximal B-submodule J ′ of M ′, part (2)

follows. As the maximal B-submodule J ′ of M ′ satisfies

J =
(
M :e J

′(H)
)
,

part (3) follows. �

Lemma 7.8 Let M be a µK(G)-module and H be a normal subgroup of G. Put

A = µK(G) and e = tHH . The following conditions are equivalent for any maximal

K(G/H)-submodule I = I/bH(M) of M(H) :
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(i) (M :e I) is a maximal µK(G)-submodule of M.

(ii) AeM + (M :e I) = M.

(iii) M(X) = tXH(M(H)) + {x ∈M(X) : rX
H (x) ∈ I} for all X ≤ G with H < X.

(iv) For all X ≤ G with H < X,

rX
H (M(X)) ⊆

( ∑
gH⊆X

cgH
)
M(H) + I

(v) For all X ≤ G with H < X,(
rX
H (M(X)) + bH(M)

)
/bH(M) ⊆

( ∑
gH⊆X

cgH
)
M(H) + I

(vi) There is a simple K(G/H)-module U and a nonzero α ∈ HomK(G/H)(M(H), U)

with kernel equal to I and such that

α ◦ πH ◦ rX
H (M(X)) ⊆

( ∑
gH⊆X

cgH
)
U

for all X ≤ G with H < X, where πH : M(H) → M(H)/bH(M) is the

natural epimorphism.

Proof : (i), (ii), and (iii) are equal: Follows from 7.2 and 7.6.

(iv) equals to (v): Clear.

(iii) implies (iv): Take any x ∈M(X). Then x = tXH(a)+b for some a ∈M(H)

and b ∈M(X) with rX
H (b) ∈ I. By the Mackey axiom

rX
H (x) = rX

H t
X
H(a) + rX

H (b) =
( ∑

gH⊆X

cgH
)
a+ rX

H (b) ∈
( ∑

gH⊆X

cgH
)
M(H) + I.

(iv) implies (iii): Take any x ∈M(X). Then, there is a u ∈M(H) and v ∈ I
such that

rX
H (x) =

( ∑
gH⊆X

cgH
)
u+ v.
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By the Mackey axiom

rX
H (x) = rX

H t
X
H(u) + v, implying that rH

X

(
x− tXH(u)

)
= v ∈ I.

Consequently,

x = tXH(u) +
(
x− tXH(u)

)
∈ tXH(M(H)) + {x ∈M(X) : rX

H (x) ∈ I}.

(v) implies (vi): Put U = M(H)/I and let α : M(H) → U be the natural

surjection. Then, U is a simple K(G/H)-module and α is a (nonzero) K(G/H)-

module epimorphism with kernel equal to I. Moreover, using (v) we have:

α ◦ πH ◦ rX
H (M(X)) = α

((
rX
H (M(X)) + bH(M)

)
/bH(M)

)
⊆

( ∑
gH⊆X

cgH
)
U + α(I)

=
( ∑

gH⊆X

cgH
)
U.

(vi) implies (iv): Take x ∈ M(X). As a result of (vi) there is a y ∈ M(H)

such that

α
(
rX
H (x) + bH(M)

)
= α ◦ πH ◦ rX

H (x) =
( ∑

gH⊆X

cgH
)
α
(
y + bH(M)

)
.

This shows that

rX
H (x)−

( ∑
gH⊆X

cgH
)
y + bH(M) ∈ Kerα = I,

implying

rX
H (x) ∈

( ∑
gH⊆X

cgH
)
M(H) + I.

�

Corollary 7.9 [TW95, (15.4) Proposition] Let M be a µK(G)-module, H be a

subgroup of G, and U be a simple KNG(H)-module. Then, HomµK(G)(M,SG
H,U) 6=

0 if and only if there is a nonzero α ∈ HomKNG(H)(M(H), U) such that

α ◦ πH ◦ rX
H (M(X)) ⊆

( ∑
gH⊆X

cgH
)
U
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for all X ≤ G with H < X ≤ NG(H), where πH : M(H)→M(H)/bH(M) is the

natural epimorphism.

Proof : By 4.15 we may assume that H is normal in G, because

M(H) = (↓GK M)(H)

for any H ≤ K ≤ G. Put e = tHH .

Suppose that HomµK(G)(M,SG
H,U) 6= 0. There is a maximal subfunctor J of M

such that M/J ∼= SG
H,U . Moreover,

U ∼= M(H)/I ∼= M(H)/I

as K(G/H)-modules, where I = J(H). It follows by 7.6 that J = (M :e I)

and that I is a maximal K(G/H)-submodule of M(H) satisfying the equivalent

conditions (in particular (vi)) of 7.8. Thus there is a simple K(G/H)-module

U ′ and a (nonzero) K(G/H)-module epimorphism α′ : M(H) → U ′ with kernel

equal to I so that U ∼= U ′, and such that

α′ ◦ πH ◦ rX
H (M(X)) ⊆

( ∑
gH⊆X

cgH
)
U ′.

Let f : U ′ → U be a K(G/H)-module isomorphism. Put α = f ◦ α′ which is a

nonzero element of HomK(G/H)(M(H), U). Now,

α ◦ πH ◦ rX
H (M(X)) = f ◦ α′ ◦ πH ◦ rX

H (M(X))

⊆
( ∑

gH⊆X

cgH
)
f(U ′)

=
( ∑

gH⊆X

cgH
)
U.

Conversely, assume that there is a nonzero α ∈ HomK(G/H)(M(H), U) satis-

fying the required conditions. Letting I = Kerα, we see that I is a maximal

K(G/H)-submodule of M(H) satisfying the condition (vi) of 7.8 and such that

M(H)/I ∼= U. Thus J = (M :e I) is a maximal µK(G)-submodule of M, and H

is a minimal subgroup of M/J, and J(H) = I so that M/J ∼= SG
H,U . �



CHAPTER 7. MAXIMAL SUBFUNCTORS 79

Given a µK(G)-module M and a subgroup of H of G, we want to find a

quotient module of the KNG(H)-module M(H) such that the multiplicity of a

simple KNG(H)-module V in the head of it is equal to the multiplicity of the

simple µK(G)-module SG
H,V in the head of M. For this end we first need some

trivial remarks.

Remark 7.10 Let V be a finite dimensional K-vector space. For any K-

subspaces A, B, and W of V :

(1) Let A = {f ∈ HomK(V,K) : f(W ) = 0}. Then

W =
⋂
f∈A

Ker(f : V → K)

where Ker(f : V → K) denotes the kernel of f.

(2) Let B = {f ∈ HomK(V,K) : f(B) = 0 =⇒ f(A) = 0}. Then, A ⊆ B +W

if and only if ⋂
f∈B

Ker(f : V → K) ⊆ W.

Proof : (1) Let

v ∈
⋂
f∈A

Kerf.

Write V = W ⊕ W ′ as K-spaces for some subspace W ′ of V. Then, there are

elements w ∈ W and w′ ∈ W ′ such that v = w + w′. If w′ 6= 0 then we can find

an f in HomK(V,K) such that f(W ) = 0 and f(w′) = 1, implying that

0 = f(v) = f(w) + f(w′) = 1.

Thus, w′ = 0 so that v ∈ W. This proves that⋂
f∈A

Kerf ⊆ W.

The reverse inclusion is clear.

(2) Suppose that A ⊆ B +W. Then,

f(A) ⊆ f(B) + f(W ) = f(B)
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for any f ∈ A. This shows that A ⊆ B. Thus,⋂
f∈B

Kerf ⊆
⋂
f∈A

Kerf = W

where the last equality follows from the first part.

Conversely, suppose that ⋂
f∈B

Kerf ⊆ W.

Take any a ∈ A. Write V = (B +W )⊕C as K-spaces for some subspace C of V.

Then, there are elements u ∈ (B +W ) and r ∈ C such that a = u + r. Assume

for a moment that there is an f0 ∈ B such that f0(r) 6= 0. As the codimension of

f0 is 1, we must have that

f0(B) ⊆ f0(B +W ) = 0.

So f0(A) = 0 because f0 ∈ B. But now,

0 = f0(a) = f0(u) + f0(r) = f0(r) 6= 0.

Therefore, f(r) = 0 for all f ∈ B implying that r ∈ W so that

a = u+ r ∈ (B +W ).

�

Let M be a µK(G)-module. For a restriction map rY
X on M, it may not be

true that rY
X(bY (M)) ⊆ bX(M). So, in general, rY

X does not induce a well defined

map from M(Y ) to M(X). However, we will use the notations rX
H t

X
H(M(H)) and

rX
H (M(X)) in some of our later results to indicate the subspaces(

rX
H t

X
H(M(H)) + bH(M)

)
/bH(M) and

(
rX
H (M(X)) + bH(M)

)
/bH(M)

of M(H), respectively.

Lemma 7.11 Let K be of characteristic p > 0. Suppose that M is a µK(G)-

module and H is a normal subgroup of G. Put A = µK(G) and e = tHH . The follow-

ing conditions are equivalent for any maximal K(G/H)-submodule I = I/bH(M)

of M(H) :
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(i) (M :e I) is a maximal µK(G)-submodule of M.

(ii) M(X) = tXH(M(H))+{x ∈M(X) : rX
H (x) ∈ I} for any nontrivial p-subgroup

X/H of G/H.

(iii) ⋂
f

Ker(f : M(H)→ K) ⊆ I

for any nontrivial p-subgroup X/H of G/H, where f ranges over all ele-

ments of the set

{f ∈ HomK(M(H),K) : f
(
rX
H t

X
H(M(H)

)
= 0 =⇒ f

(
rX
H (M(X))

)
= 0}.

Proof : (i) equals to (ii): By the virtue of 7.8, it suffices to show that part

(ii) of the present result implies the part (ii) of 7.8. Let Y/H be any nontrivial

subgroup of G/H. Take any y ∈M(Y ). We need to show that

y ∈ tYH(M(H)) + {y ∈M(Y ) : rY
H(y) ∈ I}.

Let X/H be a Sylow p-subgroup of Y/H and let n = 1/|Y : X|. As X/H is a

(nontrivial) p-subgroup of G/H,

M(X) = tXH(M(H)) + {x ∈M(X) : rX
H (x) ∈ I}

so that

rY
X(y) = tXH(a) + b

for some a ∈ M(H) and b ∈ M(X) with rX
H (b) ∈ I. (Note also that, for X = H,

such a decomposition of rY
X(y) holds trivially, in which b = 0). Now we can write

y = tYH(na) +
(
y − tYH(na)

)
.

Thus, we may finish the proof by indicating that

rY
H

(
y − tYH(na)

)
∈ I.



CHAPTER 7. MAXIMAL SUBFUNCTORS 82

Indeed, by using the axioms in the definition of a Mackey functor,

rY
H

(
y − tYH(na)

)
= rY

H(y)− rY
Ht

Y
H(na)

= rY
H(y)−

∑
gX⊆Y

cgHr
X
H t

X
H(na)

= n
(
|Y : X|rY

H(y)−
∑

gX⊆Y

cgHr
X
H t

X
H(a)

)
= n

( ∑
gX⊆Y

cgHr
Y
H(y)−

∑
gX⊆Y

cgHr
X
H t

X
H(a)

)
= n

∑
gX⊆Y

cgHr
X
H

(
rY
X(y)− tXH(a)

)
= n

∑
gX⊆Y

cgHr
X
H (b) ∈ I,

as desired.

(ii) equals to (iii): Part (2) of 7.10 implies that (iii) equals to the condition

rX
H (M(X) ⊆ rX

H t
X
H(M(H) + I

where X is any subgroup satisfying the required condition. From the Mackey

axiom,

rX
H t

X
H =

∑
gH⊆X

cgH ,

implying by (the proof) of 7.8 that the above containment relation is equivalent

to (ii). �

Proposition 7.12 Let K be of characteristic p > 0. Suppose that M is a µK(G)-

module and H is a subgroup of G.

(1) The map

J → J(H)

define an injection from the set of all maximal µK(G)-submodules J of M

such that H is a minimal subgroup of the simple functor M/J to the set of all

maximal KNG(H)-submodules I/bH(M) of M(H) satisfying the following

condition for any nontrivial p-subgroup X/H of NG(H)/H :

M(X) = tXH(M(H)) + {x ∈M(X) : rX
H (x) ∈ I}.
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(2) For any maximal µK(G)-submodule J of M such that H is a minimal sub-

group of the simple functor M/J, there is a maximal KNG(H)-submodule

I/bH(M) of M(H) satisfying the condition given in the first part such that

J = (M :e I) where e = tHH .

Proof : Follows by 7.7, 7.6, 7.8, and 7.11. �

Remark 7.13 Let A be a finite dimensional algebra, V be a finite dimensional

A-module, and e be a nonzero idempotent of A.

(1) Let V1, V2, ..., Vn be A-submodules of V. For each i, we put

Ṽi =
n⋂

j=1:j 6=i

Vj.

For the map

ψ : V →
n∏

i=1

V/Vi, v 7→
n∏

i=1

v + Vi

we have:

(i) If Vi + Ṽi = V for each i then ψ is surjective.

(ii) Suppose further that each Vi is a maximal A-submodule of V. If ψ is

surjective then Vi + Ṽi = V for each i.

(2) Let I1, I2, ..., In be maximal eAe-submodules of eV. Suppose that each (V :e Ii)

is a maximal A-submodule of V. If the product of natural epimorphisms

eV →
n∏

i=1

eV/Ii

is surjective then the product of natural epimorphisms

V →
n∏

i=1

V/(V :e Ii)

is surjective.
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Proof : (1)(i) Take any elements v1, v2, ..., vn of V. As Vi + Ṽi = V for each i, we

may find ui ∈ Ṽi satisfying ui + Vi = vi + Vi. Let

v0 = u1 + u2 + ...+ un.

By the definition of Ṽi we see that ui ∈ Ṽi ⊆ Vk for any k with k 6= i. Hence,

v0 + Vi = ui + Vi = vi + Vi.

Consequently, ψ is surjective.

(1)(ii) For each i, let

ψ̃i : V →
n∏

j=1:j 6=i

V/Vj

be the product of natural epimorphisms. Note that Ṽi is equal to the kernel the

map ψ̃i. If there is an s such that Vs + Ṽs 6= V then by the maximality of Vs we

see that Ṽs ⊆ Vs. Then, the kernel of ψ is equal to Ṽs ∩ Vs = Ṽs. Therefore, there

must be an A-module monomorphism from the image

n∏
i=1

V/Vi

of ψ to
n∏

i=1:i6=s

V/Vi.

This is impossible, because V is finite dimensional and V/Vs 6= 0.

(2) For each i we use the notation Vi to denote (V :e Ii). If the product of

natural epimorphisms

V →
n∏

i=1

V/(V :e Ii)

is not surjective, then by part (1)(i) there is a j such that Vj + Ṽj 6= V where Ṽj

is defined as in the first part. By the maximality of Vj we obtain that Ṽj ⊆ Vj.

Multiplying this containment by the idempotent e, we get that

Ij = eVj ⊇ eṼj = e(V :e Ĩj) = Ĩj
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where the equalities follows from 7.1 and Ĩj is defined as in the first part. On the

other hand, using part (1)(ii) we see that the containment Ij ⊆ Ĩj contradicts the

surjectivity of the product of the natural epimorphisms

eV →
n∏

i=1

eV/Ii.

�

Theorem 7.14 Let K be of characteristic p > 0. Suppose that M is a µK(G)-

module, H is a subgroup of G, and U is a simple KNG(H)-module. Then, the

multiplicity of SG
H,U in

M/Jac(M)

is equal to the multiplicity of U in the head of the following quotient module of

the KNG(H)-module M(H) :

M(H)
/ ∑

X/H

( ⋂
f∈AX

Ker(f : M(H)→ K)
)

where X/H ranges over all nontrivial p-subgroups of NG(H)/H, and for each X,

AX = {f ∈ HomK(M(H),K) : f
(
rX
H t

X
H(M(H)

)
= 0 =⇒ f

(
rX
H (M(X))

)
= 0}.

Proof : Let

VX =
⋂

f∈AX

Kerf and MH =
∑
X/H

VX

where X/H ranges over all nontrivial p-subgroups of NG(H)/H.

We first note that MH is a KNG(H)-submodule M(H) : As conjugation

maps of a Mackey functor are K-space isomorphism, it is clear for any K ≤ G

and a ∈ G that caK induces a K-space isomorphism M(K)→ M(gK). Moreover,

for any g ∈ NG(H), it can be seen by the definition of a Mackey functor that

f ∈ AX if and only if f ◦ cgH ∈ AXg . So, cgH(VX) ⊆ VgX , proving that MH is a

KNG(H)-module.

As M(H) = (↓GK M)(H) for any H ≤ K ≤ G, it follows by 4.15 that we may

(and will do) assume that H is normal in G. Let n be the multiplicity of SG
H,U in

the head of M, and let m be the multiplicity of U in the head of M(H)/MH .
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Let A = µK(G), B = KNG(H), and e = tHH . There are n maximal A-

submodules J1, J2,...,Jn of M such that all of the quotients M/Ji are isomorphic

to SG
H,U and that the product of natural epimorphisms

M →
n∏

i=1

M/Ji

is surjective. By 7.6, 7.8 and 7.11 we know that each Ji(H)/bH(M) is a maximal

B-submodule of M(H) containingMH . As the multiplication by the idempotent

e is an exact functor (from A-mod to eAe-mod), we see that it induces a surjective

eAe-module homomorphism

M(H)→
n∏

i=1

M(H)/Ji(H)

with kernel containing MH . The last surjection induces a surjective B-module

homomorphism

M(H)/MH → nU,

because B is a unital subalgebra of eAe and each B-module M(H)/Ji(H) is

isomorphic to U. This shows that n ≤ m.

Conversely, there are m maximal B-submodules T1, T2, ..., Tm of M(H) con-

tainingMH such that each B-module M(H)/Ti is isomorphic to U and that the

product of all natural epimorphisms

M(H)→
m∏

i=1

M(H)/Ti

is surjective. By the correspondence theorem, there are maximal B-submodules

Ii = Ii/bH(M) ofM(H) such that Ti = Ii/MH . Using the canonical isomorphisms

M(H)/Ti
∼= M(H)/Ii,

we see that the product of the natural epimorphisms

M(H)→
m∏

i=1

M(H)/Ii

is surjective. By part (1) of 7.5, each Ii is a maximal eAe-submodule of eM =

M(H). Moreover, using 7.11 we see that each (M :e Ii) is a maximal A-submodule
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of M. So, we may apply part (2) of 7.13 to deduce that the product of natural

epimorphism

M →
m∏

i=1

M/(M :e Ii)

is surjective. This shows that m ≤ n, because

M/(M :e Ii) ∼= SG
H,U

for each i. �

Corollary 7.15 Let K be of characteristic p > 0. Suppose that M is a µK(G)-

module, H is a subgroup of G, and U is a simple KNG(H)-module.

(1) There is a maximal subfunctor of M whose quotient has H as a minimal

subgroup if and only if there is a maximal KNG(H)-submodule I/bH(M) of

M(H) satisfying the following condition for any nontrivial p-subgroup X/H

of NG(H)/H :

M(X) = tXH(M(H)) + {x ∈M(X) : rX
H (x) ∈ I}.

(2) The multiplicity of SG
H,U in M/Jac(M) is less than or equal to the multiplicity

of U in M(H)
/
Jac

(
M(H)

)
.

(3) The multiplicity of SG
H,U in M/Jac(M) is greater than or equal to the multi-

plicity of U in the head of the following KNG(H)-module:

M(H)
/ ∑

H<X≤NG(H):|X:H|=p

rX
H

(
M(X)

)
.

(4) Suppose that NG(H) is a p′-group. Then, the multiplicity of SG
H,U in

M/Jac(M) is equal to the multiplicity of U in M(H).

Proof : (1) It follows by (the proof of) 7.14 and 7.11.

(2) and (4) They are immediate from 7.14.
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(3) We use the notations AX , VX , and MH defined in 7.14 and its proof.

For any nontrivial p-subgroup X/H of NG(H)/H, part (2) of 7.10 implies that

VX ⊆ rX
H (M(X)). Therefore,

MH ⊆
∑
X/H

rX
H (M(X))

where X/H ranges over all nontrivial p-subgroup X/H of NG(H)/H. From the

transitivity of restriction maps on M, we see that

rX
H (M(X)) = rY

Hr
X
Y (M(X)) ⊆ rY

H(M(Y )),

implying that

rX
H (M(X)) ⊆ rY

H(M(Y ))

for any subgroup Y/H of X/H of order p. Therefore,

MH ⊆ NH , where NH =
∑

H<X≤NG(H):|X:H|=p

rX
H

(
M(X)

)
.

This proves that M(H)/NH is isomorphic to a quotient module of M(H)/MH .

The result now follows from 7.14. �

Proposition 7.16 Let K be of characteristic p > 0. Suppose that M is a µK(G)-

module, H is a subgroup of G, and U is a simple KNG(H)-module. If all the

elements of NG(H) of order p acts on U trivially, then the multiplicity of SG
H,U

in

M/Jac(M)

is equal to the multiplicity of U in the head of the following KNG(H)-module:

M(H)
/ ∑

H<X≤NG(H):|X:H|=p

rX
H

(
M(X)

)
.

Proof : We use the notations AX , VX , MH and NH defined in 7.14 and 7.15

and their proofs. By 7.14 the multiplicity of SG
H,U in the head of M is equal to

the multiplicity of U in the head of M(H)/MH . Let ϕ : M(H) → U be any

(nonzero) KNG(H)-module homomorphism whose kernel containsMH . As

MH =
∑
X/H

VX
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where X/H ranges over all nontrivial p-subgroups of NG(H)/H, it follows that

VX ⊆ Kerϕ, in particular, for any subgroup X/H of NG(H)/H of order p. Using

part (2) of 7.10 we see that the containment VX ⊆ Kerϕ is equivalent to the

condition

rX
H (M(X)) ⊆ rX

H t
X
H(M(H)) + Kerϕ.

We will show that rX
H (M(X)) ⊆ Kerϕ : It follows by the assumption on U that

ϕ
(
rX
H t

X
H(M(H))

)
= ϕ

( ∑
gH⊆X

cgH(M(H))
)

=
∑

gH⊆X

(gH)U = |X : H|U = 0.

Therefore,

rX
H (M(X)) ⊆ rX

H t
X
H(M(H)) + Kerϕ = Kerϕ.

Since this is true for any subgroup X/H of NG(H)/H of order p, we obtain that

NH ⊆ Kerϕ. Consequently, the K-spaces

HomB(M(H)/MH , U) and HomB(M(H)/NH , U)

must be isomorphic where B = KNG(H). This finishes the proof. �

IfNG(H) is a nilpotent group (or more generally, a group with normal Sylow p-

subgroup), then (Clifford’s theorem implies that) the hypothesis of 8.15 is satisfied

for any simple KNG(H)-module U. For another example, the hypothesis of 8.15 is

satisfied for any group G and for any simple KNG(H)-module U with dimK U = 1.

We finish this chapter by giving some conditions on a µK(G)-module M equiv-

alent to the condition M(H) 6= 0 where H is a subgroup of G.

Remark 7.17 Let M be a µK(G)-module and H be a subgroup of G. Then the

following conditions are equivalent:

(i) M(H) 6= 0.

(ii) M has a quotient functor having H as a minimal subgroup.

(iii) ↑GH↓GH M has a simple quotient having H as a minimal subgroup.

(iv) HomµK(G)(M, ↑GH SH
H,K) 6= 0.
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Proof : (i) equals to (ii): Follows by 7.4.

(ii) implies (iii): Let J be a subfunctor of M such that M/J has H as a

minimal subgroup. It is clear that

↓GH (M/J) ∼= nSH
H,K

where n = dimK(M/J)(H). Therefore, it follows by the exactness of the functors

↑ and ↓ that ↑GH SH
H,K is an epimorphic image of ↑GH↓GH M. By 4.6 we know that the

minimal subgroups of any nonzero quotient functor of ↑GH SH
H,K is a G-conjugate

of H. As a result, ↑GH SH
H,K and hence ↑GH↓GH M has a simple quotient having H

as a minimal subgroup.

(iii) implies (iv): Suppose that ↑GH↓GH M has a simple quotient having H as a

minimal subgroup. Then there is a simple KNG(H)-module V such that

HomµK(G)(↑GH↓GH M,SG
H,V ) 6= 0.

It is clear that ↓GH SG
H,V
∼= nSH

H,K where n = dimK V. Using the adjointness of the

pairs (↑GH , ↓GH) and (↓GH , ↑GH) we see that

0 6= HomµK(G)(↑GH↓GH M,SG
H,V )

∼= HomµK(H)(↓GH M, ↓GH SG
H,V )

∼= HomµK(H)(↓GH M,nSH
H,K)

∼= HomµK(G)(M, ↑GH nSH
H,K)

∼= HomµK(G)(M,n ↑GH SH
H,K)

∼= nHomµK(G)(M, ↑GH SH
H,K)

(iv) implies (i): Firstly, using the adjointness of the pairs

(↓GH , ↑GH) and (L+
H/H , InfHH/H)

and using the obvious isomorphisms

SH
H,K
∼= InfHH/HS

H/H
H/H,K, µK(H/H) ∼= K, S

H/H
H/H,K

∼= K,

L+
H/H ↓GH M = (L+

H/H ↓GH M)(H/H) = M(H),
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we obtain that

HomµK(G)(M, ↑GH SH
H,K) ∼= HomµK(H)(↓GH M,SH

H,K)

∼= HomµK(H)(↓GH M, InfHH/HS
H/H
H/H,K)

∼= HomµK(H/H)(L
+

H/H ↓GH M,S
H/H
H/H,K)

∼= HomK(M(H),K).

�



Chapter 8

Minimal subfunctors

Almost all the materials in this chapter comes from [Yar5, Section 5].

Let M be a µK(G)-module and H be a subgroup of G. This chapter deals with

the simple µK(G)-submodules of M and the KNG(H)-submodules of the coordi-

nate module M(H) of M. We want to obtain results similar to the ones obtained

in the previous chapter. For example, we show that if K is of characteristic p > 0

and U is a simple KNG(H)-module, then the multiplicity of the simple µK(G)-

module SG
H,U in the socle of a µK(G)-module M is equal to the multiplicity of the

simple KNG(H)-module U in the socle of the following KNG(H)-submodule of

the restriction kernel M(H) :⋂
X/H

{x ∈M(H) :
( ∑

gH⊆X

cgH
)
x = 0 =⇒ tXH(x) = 0}

where X/H ranges over all nontrivial p-subgroups of NG(H)/H.

We begin with a general easy lemma.

Lemma 8.1 Let A be a finite dimensional K-algebra and e be a nonzero idem-

potent of A. Suppose that V is a nonzero A-module, S is an A-submodule of V,

and T is an eAe-submodule of eV. Then:

(1) T is a simple eAe-submodule of eV if and only if AT is a smallest element

92
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of the set of all A-submodules of V not contained in (V :e 0).

(2) AT is a simple A-submodule of V if and only if T is a simple eAe-submodule

of eV and (AT :e 0) = 0.

(3) S is a smallest element of the set of all A-submodules of V not contained in

(V :e 0) if and only if eS is a simple eAe-submodule of eV and S = AeS.

(4) S = AeS if and only if S has no nonzero quotient module annihilated by e.

Proof : (1) Let T be a simple eAe-submodule of eV. We want to show that AT is

a smallest element of the set of all A-submodules of V not contained in (V :e 0) :

As T is nonzero, AT is not contained in (V :e 0). Let W be an A-submodule

of V contained in V but not contained in (V :e 0). Then eW is a nonzero eAe-

submodule of T. This implies that eW = T because T is simple. Hence, AT ⊆ W

implying that W = AT.

Let AT be a smallest element of the set of all A-submodules of V not contained

in (V :e 0). We want to show that T is a simple eAe-submodule of eV :

As eAT = T and as AT 6⊆ (V :e 0), it is clear that T is nonzero. Let T ′ be

a simple eAe-submodule of eV that is contained in T. Then, we get by what we

have shown above that AT ′ is not contained in (V :e 0). As AT ′ is contained in

AT, we conclude by using the condition on AT that AT ′ = AT. Thus T ′ = T.

(2) We may assume that T 6= 0, because T = 0 if and only if AT = 0.

As T 6= 0, the idempotent e does not annihilate AT so that we may apply

part (7) of 7.1. Therefore, AT is a simple A-module if and only if Ae(AT ) = AT,

(AT :e 0) = 0, and e(AT ) = T is a simple eAe-module.

(3) Let S be a smallest element of the set of all A-submodules of V not

contained in (V :e 0). As S is not contained in (V :e 0), the eAe-module eS is

nonzero. Let T ′ be a simple eAe-submodule of eV contained in eS. It follows

by part (1) that the A-module AT ′ is also a smallest element of the set of all A-

submodules of V not contained in (V :e 0). This shows that AT ′ = S because AT ′
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is in S. Hence, eS = T ′ is a simple eAe-submodule of eV and S = AT ′ = AeS.

The converse direction follows by part (1).

(4) Let S ′ be an A-submodule of S. If AeS ⊆ S ′ then multiplying the contain-

ment AeS ⊆ S ′ ⊆ S by the idempotent e we obtain that eS ′ = Se or e(S/S ′) = 0.

Conversely, if e(S/S ′) = 0 then eS = eS ′ so that AeS = AeS ′ ⊆ S ′. Hence we

seen that S/S ′ is annihilated by e if and only if AeS ⊆ S ′. The result is clear

now. �

From 8.1 the following is immediate.

Proposition 8.2 Let A be a finite dimensional K-algebra and e be a nonzero

idempotent of A. Suppose that V is a nonzero A-module. Then:

(1) The maps

S → eS and AT ← T

define a bijective correspondence between the smallest elements of the set

of all A-submodules of V not contained in (V :e 0) and the simple eAe-

submodules of eV.

(2) The maps

S → eS and AT ← T

define a bijective correspondence between the simple A-submodules of V that

are contained in (V :1−e 0) (so, necessarily not contained in (V :e 0)) and

the simple eAe-submodules of eV that are contained in e(V :1−e 0).

(3) The maps

S → eS and AT ← T

define a bijective correspondence between the simple A-submodules of V that

are not contained in (V :e 0) and the simple eAe-submodules of eV that

satisfy (AT :e 0) = 0.
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We now need to recall the notion of the restriction kernel of a Mackey functor,

see [Th, We2]. Let M be a µK(G)-module and H be a subgroup of G. By the

restriction kernel of M at H we mean the following module

M(H) =
⋂

J<H

Ker
(
rH
J : M(H)→M(J)

)
.

It is clear that M(H) is a KNG(H)-submodule of M(H). Moreover, there is a

KNG(H)-module isomorphism

M(H) ∼=
(
(M∗)(H)

)∗
obtained by taking K-duals, see [We2]. Thus, every result concerning Brauer

quotients has a dual result concerning restriction kernels. In this section we

obtain these dual results and refine them. However we will not make use of this

duality property here.

Lemma 8.3 Let M be a µK(G)-module, H be a subgroup of G, and T be a

KNG(H)-submodule of M(H). Put A = µK(G) and e = tHH . Then:

(1) The ideal IH of eAe defined in 4.1 annihilates M(H) so that M(H) is also an

eAe-submodule of M(H) whose KNG(H)-submodules and eAe-submodules

are the same.

(2) Let X be a set of subgroups of G. If

{X ≤ G : X < H} ⊆ X ⊆ {X ≤ G : H 6≤G X},

then (M :eX 0)(H) = M(H), where eX is the idempotent of A defined as in

4.21.

(3) If H 6≤G X then (AT )(X) = 0, and if H ≤G X then

(AT )(X) =
∑

g∈G:gH≤X

tXgHc
g
H(T ).

(4) If H 6<G X then (AT :e 0)(X) = 0, and if H <G X then

(AT :e 0)(X) =( ∑
g∈G:gH≤X

tXgHc
g
H(T )

) ⋂ ( ⋂
g∈G:gH≤X

Ker
(
rX

gH : M(X)→M(gH)
))
.
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Proof : (1) Follows from 4.1 because any element of IH is a linear combination

of elements of the form tHgJc
g
Jr

H
J with J 6= H.

(2) By its definition

(M :eX 0)(H) = {x ∈M(H) : tXXµK(G)tHHx = 0,∀X ∈ X}.

The basis theorem 2.1 implies the result. Because, J < H for any basis element

tXgJc
g
Jr

H
J

of tXXµK(G)tHH , and because if J < H then J ∈ X so that rH
J is in tXXµK(G)tHH for

some X ∈ X .

(3) It is clear that

(AT )(X) = tXXµK(G)tHHT.

As T ⊆ M(H), if J < H then rH
J annihilates T. The result follows by the basis

theorem 2.1.

(4) Part (3) implies that if H 6≤G X then

(AT :e 0)(X) ⊆ (AT )(X) = 0.

Moreover,

(AT :e 0)(H) = e(AT :e 0) = 0.

So we now assume that H <G X. For any g ∈ G and any J ≤ Hg ∩ X, we see

that if x ∈ (AT )(X) then

tHgJc
g
Jr

X
J x ∈ tHgJ

(
(AT )(gJ)

)
= 0

in the case gJ 6= H. Thus, as the conjugation maps cgHg of M are bijections, from

the basis theorem 2.1 we obtain

(AT :e 0)(X) = {x ∈ (AT )(X) : tHHµK(G)tXXx = 0}

= {x ∈ (AT )(X) : cgHgrX
Hg(x) = 0, ∀g ∈ G, Hg ≤ X}

= {x ∈ (AT )(X) : rX
Hg(x) = 0, ∀g ∈ G, Hg ≤ X}

= (AT )(X)
⋂
{x ∈M(X) : rX

Hg(x) = 0, ∀g ∈ G, Hg ≤ X}.

The result now follows from part (3). �
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Theorem 8.4 Let M be a µK(G)-module and H be a subgroup of G. Put e = tHH

and A = µK(G). Then, the maps

S → S(H) and AT ← T

define a bijective correspondence between the smallest elements of the set of all

subfunctors S of M having H as a minimal subgroup and the simple KNG(H)-

submodules T of M(H). In particular, M(H) = 0 if and only if M has no sub-

functor having H as a minimal subgroup.

Proof : We argue as in the proof of 7.4. Let

B = KNG(H), X = {X ≤ G : X < H}, and f = eX

be the idempotent of A defined as in 4.21.

We also define four sets A,B, C,D as follows:

A is the set of all subfunctors of M having H as a minimal subgroup,

B is the set of all A-submodules of M contained in (M :f 0) but not contained

in (M :e 0),

C is the set of all eAe-submodules of eM contained in e(M :f 0), and

D is the set of all B-submodules of M(H).

It is easy to see that the sets A and B are equal. Moreover, it follows by 8.3

that the sets C and D are equal. Because, 8.3 implies that e(M :f 0) = M(H)

and that IH annihilates M(H).

Now the result follows from part (1) of 8.2 which shows that the maps S → eS

and AT ← T define a bijective correspondence between the minimal elements of

the sets B and C. �

Given a µK(G)-module M and a subgroup H of G, the previous result implies

that the number of simple µK(G)-submodules S of M isomorphic to SG
H,V for

some simple KNG(H)-module V is less than or equal to the number of simple
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KNG(H)-submodules of M(H). Indeed, we see by part (3) of 8.2 that the maps

in 8.4 define a bijection between the simple µK(G)-submodules S of M having

H as a minimal subgroup and the simple KNG(H)-submodules T of M(H) that

satisfies (AT :e 0) = 0, where A = µK(G) and e = tHH .

Remark 8.5 Let A be a finite dimensional K-algebra and e be a nonzero idem-

potent of A. If V is a semisimple A-module, then (AT :e 0) = 0 for any eAe-

submodule T of eV.

Proof : As V is semisimple, (AT :e 0)⊕W = AT for some A-submodule W of

AT. Multiplying both sides with e we get eW = T, implying that

AT = AeW ⊆ W.

Hence, (AT :e 0) = 0. �

Corollary 8.6 Let M be a µK(G)-module and H be a subgroup of G. Put A =

µK(G) and e = tHH . Then:

(1) The maps

S → S(H) and AT ← T

define a bijective correspondence between the simple µK(G)-submodules S of

M isomorphic to SG
H,V for some simple KNG(H)-module V and the simple

KNG(H)-submodules T of M(H) that satisfies

0 =
( ∑

g∈G:gH≤X

tXgHc
g
H(T )

) ⋂ ( ⋂
g∈G:gH≤X

Ker
(
rX

gH : M(X)→M(gH)
))

for all X ≤ G with H < X.

(2) Let M be a semisimple µK(G)-module. Then, the maps

S → S(H) and AT ← T

define a bijective correspondence between the simple µK(G)-submodules S of

M isomorphic to SG
H,V for some simple KNG(H)-module V and the simple

KNG(H)-submodules T of M(H).
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Proof : Follows from 8.3, 8.5, and from the explanation given at the beginning

of 8.5. �

Corollary 8.7 Let M be a µK(G)-module and H be a subgroup of G. Put

M ′ =↓GNG(H) M, e = tHH , A = µK(G), and B = µK
(
NG(H)

)
.

Then:

(1) The maps

S → BeS and AeS ′ ← S ′

define a bijective correspondence between the smallest elements of the set of

all subfunctors S of M having H as a minimal subgroup and the smallest

elements of the set of all subfunctors S ′ of M ′ having H as a minimal

subgroup.

(2) The map

S → BeS

define an injection from the set of all simple µK(G)-submodules S of M

such that H is a minimal subgroup of S to the set of all simple µK
(
NG(H)

)
-

submodules S ′ of M ′ such that H is a minimal subgroup of S ′.

(3) For any simple µK(G)-submodule S of M such that H is a minimal subgroup

of S, there is a simple µK
(
NG(H)

)
-submodules S ′ of M ′ such that H is a

minimal subgroup of S ′ and S = AeS ′.

Proof : (1) This can be deduced by arguing as in the proof of part (1) of 7.7.

(2) and (3) Let K = NG(H). Let S be a simple A-submodule of M having H

as a minimal subgroup. S must be isomorphic to a simple functor of the form

SG
H,V . Using 4.15 we see that there is a simple B-submodule S ′ of

↓GK S ⊆↓GK M

isomorphic to SK
H,V . In particular, eS = eS ′ 6= 0. Moreover,

S = AeS and S ′ = BeS ′
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by the simplicity of the A-module S and the B-module S ′. Using the equality

eS = eS ′, we obtain that S = AeS ′ (proving part (3)) and that S ′ = BeS

(proving part (2)). �

The condition on T given in part (1) of 8.6 becomes simpler if we assume

that H is normal in G. The results 8.1 and 8.6, and the Mackey axiom imply the

following.

Lemma 8.8 Let M be a µK(G)-module and H be a normal subgroup of G. Put

A = µK(G) and e = tHH . The following conditions are equivalent for any simple

K(G/H)-submodule T of M(H) :

(i) AT is a simple µK(G)-submodule of M.

(ii) (AT :e 0) = 0.

(iii) tXH(T ) ∩Ker
(
rX
H : M(X)→M(H)

)
= 0 for all X ≤ G with H < X.

(iv) For all X ≤ G with H < X,

x ∈ T,
( ∑

gH⊆X

cgH
)
x = 0 implies tXH(x) = 0.

(v) There is a simple K(G/H)-module U and a nonzero β ∈ HomK(G/H)(U,M(H))

with image equal to T and such that

{u ∈ U :
( ∑

gH⊆X

cgH
)
u = 0} ⊆ Ker

(
tXH ◦ ιH ◦ β

)
for all X ≤ G with H < X, where ιH : M(H)→M(H) is the inclusion.

A justification similar to the proof of 7.9 can be given for the following result.

Corollary 8.9 Let M be a µK(G)-module, H be a subgroup of G, and U be a

simple KNG(H)-module. Then, HomµK(G)(S
G
H,U ,M) 6= 0 if and only if there is a

nonzero element β of HomKNG(H)(U,M(H)) such that

{u ∈ U :
( ∑

gH⊆X

cgH
)
u = 0} ⊆ Ker

(
tXH ◦ ιH ◦ β

)
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for all X ≤ G with H < X ≤ NG(H), where ιH : M(H) → M(H) is the

inclusion.

Proof : By 4.15 we may assume that H is normal in G, because

M(H) = (↓GK M)(H)

for any H ≤ K ≤ G.

Suppose that HomµK(G)(S
G
H,U ,M) 6= 0. There is a simple subfunctor S of M

such that S ∼= SG
H,U . Moreover, U ∼= S(H) as K(G/H)-modules. It follows by 8.6

that S = AT and that T is a simple K(G/H)-submodule of M(H) satisfying the

equivalent conditions (in particular (v)) of 8.8. Thus there is a simple K(G/H)-

module U ′ and a (nonzero) K(G/H)-module monomorphism β′ : U ′ → M(H)

with image equal to T so that U ∼= U ′, and such that

{u′ ∈ U ′ :
( ∑

gH⊆X

cgH
)
u′ = 0} ⊆ Ker

(
tXH ◦ ιH ◦ β′

)
.

Let f : U → U ′ be a K(G/H)-module isomorphism. Put β = β′ ◦ f which is a

nonzero element of HomK(G/H)(U,M(H)).

Let u ∈ U be such that ( ∑
gH⊆X

cgH
)
u = 0.

We want to show that u ∈ Ker
(
tXH ◦ ιH ◦β

)
. As f : U → U ′ be a K(G/H)-module

isomorphism,

f(u) ∈ {u′ ∈ U ′ :
( ∑

gH⊆X

cgH
)
u′ = 0} ⊆ Ker

(
tXH ◦ ιH ◦ β′

)
.

Thus,

0 = tXH ◦ ιH ◦ β′(f(u)) = tXH ◦ ιH ◦ β′ ◦ f(u) = tXH ◦ ιH ◦ β(u).

Conversely, assume that there is a nonzero β ∈ HomK(G/H)(U,M(H)) satisfy-

ing the required conditions. Letting T be the image of β, we see that T is a simple

K(G/H)-submodule of M(H) satisfying the condition (v) of 8.8 and such that
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T ∼= U. Thus S = AT is a simple µK(G)-submodule of M, and H is a minimal

subgroup of S, and S(H) ∼= U so that S ∼= SG
H,U . �

The result 8.8 contains some equivalent conditions to be checked for all X ≤ G

with H < X. We next observe that we do not need to check them for all such X.

Lemma 8.10 Let K be of characteristic p > 0. Suppose that M is a µK(G)-

module and H is a normal subgroup of G. The following conditions are equivalent

for any simple K(G/H)-submodule T of M(H) :

(i) The µK(G)-submodule of M generated by T is simple.

(ii) For any nontrivial p-subgroup X/H of G/H,

x ∈ T,
( ∑

gH⊆X

cgH
)
x = 0 implies tXH(x) = 0.

Proof : The condition (i) is equivalent to the condition (iv) of 8.8. So, it suffices

to see that part (ii) of the present result implies the part (iv) of 8.8. Let Y ≤ G

with H < Y, and let y ∈ T satisfying( ∑
gH⊆Y

cgH
)
y = 0.

We need to show that tYH(y) = 0. Let X/H be a Sylow p-subgroup of Y/H. Using

the the axioms in the definition of a Mackey functor we see that

0 =
( ∑

gH⊆Y

cgH
)
y = rY

Ht
Y
H(y) = rX

Hr
Y
Xt

Y
H(y) =

∑
Xg⊆Y

rX
H t

X
Hc

g
H(y) =

( ∑
gH⊆X

cgH
)
x,

where

x =
∑

Xg⊆Y

cgH(y) ∈ T.

As X/H is a (nontrivial) p-subgroup of G/H, we must have that 0 = tXH(x), which

implies

0 = tYH(x) = |Y : X|tYH(y).

This gives that tYH(y) = 0 because |Y : X| is not divisible by p. �
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Proposition 8.11 Let K be of characteristic p > 0. Suppose that M is a µK(G)-

module and H is a subgroup of G.

(1) The map

S → S(H)

define an injection from the set of all simple µK(G)-submodules S of M hav-

ing H as a minimal subgroup to the set of all simple KNG(H)-submodules

T of M(H) satisfying the following condition for any nontrivial p-subgroup

X/H of NG(H)/H :

x ∈ T,
( ∑

gH⊆X

cgH
)
x = 0 implies tXH(x) = 0.

(2) For any simple µK(G)-submodule S of M having H as a minimal subgroup,

there is a simple KNG(H)-submodule T of M(H) satisfying the condition

given in the first part such that S = AT where A = µK(G).

Proof : Follows by 8.7, 8.6, 8.8, and 8.10. �

Remark 8.12 Let A be a finite dimensional K-algebra and e be a nonzero idem-

potent of A. Let V be an A-module and let W1,W2, ...,Wn be eAe-submodules of

eV. Suppose that the A-submodules AW1, AW2, ..., AWn of V are all simple. If

the sum of W1,W2, ...,Wn is direct then the sum of AW1, AW2, ..., AWn is direct.

Proof : Suppose that the sum of AW1, AW2, ..., AWn is not direct. Therefore

one of these simple A-modules must be in the sum of the others, say

AWi ⊆
∑
j:j 6=i

AWj.

Multiplying by e we obtain that

Wi ⊆
∑
j:j 6=i

Wj,

which is not true because the sum of W1,W2, ...,Wn is direct. �
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Theorem 8.13 Let K be of characteristic p > 0. Suppose that M is a µK(G)-

module, H is a subgroup of G, and U is a simple KNG(H)-module. Then, the

multiplicity of SG
H,U in

Soc(M)

is equal to the multiplicity of U in the socle of the following KNG(H)-submodule

of M(H) : ⋂
X/H

{x ∈M(H) :
( ∑

gH⊆X

cgH
)
x = 0 =⇒ tXH(x) = 0}

where X/H ranges over all nontrivial p-subgroups of NG(H)/H.

Proof : It is easy to see that the subset ofM(H) defined as the above intersection

is indeed a KNG(H)-submodule of M(H).

It follows from 4.15 that we may (and will do) assume that H is normal in G,

because

M(H) = (↓GK M)(H)

for any H ≤ K ≤ G. Let n be the multiplicity of SG
H,U in the socle of M, and let

m be the multiplicity of U in the socle of the above given submodule of M(H)

for which we use the notation M0(H) here.

Let A = µK(G), B = KNG(H), and e = tHH . There are n simple A-submodules

S1, S2, ..., Sn of M whose sum is direct and all of them are isomorphic to SG
H,U .

Therefore the A-submodule

S1 ⊕ S2 ⊕ ...⊕ Sn

of M is a direct summand of Soc(M). By 8.6, 8.8 and 8.10 we know that each

eSi is a simple B-submodule of M0(H). As the multiplication by the idempotent

e respects the direct sums we see that the B-submodule

eS1 ⊕ eS2 ⊕ ...⊕ eSn

of M0(H) is a direct summand of Soc(M0(H)). As each eSi = Si(H) is isomorphic

to the simple B-module U, we conclude that n ≤ m.
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Conversely, there arem simpleB-submodules T1, T2, ..., Tm ofM0(H) ⊆M(H)

whose sum is direct and all of them are isomorphic to U. By part (1) of 8.3 we

know that each Ti is also a simple eAe-submodule of M(H) ⊆ eM. Moreover, it

follows by 8.10 that each of the A-submodules ATi of M is simple. Therefore we

may apply 8.12 to deduce that the sum of the A-submodules AT1, AT2, ..., ATm

of M is direct so that

AT1 ⊕ AT2 ⊕ ...⊕ ATm

is a direct summand of Soc(M). By 8.4 each simple A-module ATi has H as a

minimal subgroup, and as ATi(H) = Ti
∼= U all of them must be isomorphic to

SG
H,U . Consequently, m ≤ n. �

Corollary 8.14 Let K be of characteristic p > 0. Suppose that M is a µK(G)-

module, H is a subgroup of G, and U is a simple KNG(H)-module.

(1) There is a simple subfunctor of M having H as a minimal subgroup if and

only if there is a simple KNG(H)-submodule T of M(H) satisfying the

following condition for any nontrivial p-subgroup X/H of NG(H)/H :

x ∈ T,
( ∑

gH⊆X

cgH
)
x = 0 implies tXH(x) = 0.

(2) The multiplicity of SG
H,U in Soc(M) is less than or equal to the multiplicity

of U in Soc
(
M(H)

)
.

(3) The multiplicity of SG
H,U in Soc(M) is greater than or equal to the multiplicity

of U in the socle of the following KNG(H)-submodule of M(H) :⋂
H<X≤NG(H):|X:H|=p

Ker
(
tXH : M(H)→M(X)

)
.

(4) Suppose that NG(H) is a p′-group. Then, the multiplicity of SG
H,U in Soc(M)

is equal to the multiplicity of U in M(H).

Proof : (1) and (2) They are immediate from 8.13.
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(3) By 8.13, it is enough to observe that the submodule of M(H) given in

this part is in the submodule of M(H) given in 8.13: Let x be an element of

the submodule of M(H) given in this part. It follows for any X/H ≤ NG(H)/H

with |X : H| = p that tXH(x) = 0. Therefore, for any nontrivial p-subgroup Y/H

of NG(H)/H, it follows by the transitivity of trace maps on M that tYH(x) = 0.

Hence, x is in the submodule of M(H) given in 8.13.

(4) Follows from 8.13, because in this case the index set of the intersection

defining the given submodule of M(H) is empty so that the intersection is equal

to the semisimple KNG(H)-module M(H). �

Part (2) of the previous result cannot be improved in general, because there

may be two isomorphic simple KNG(H)-submodules of M(H) such that the only

one of them satisfies the condition given in part (1).

Letting K = NG(H), the adjointness of the pairs

(↑GK , ↓GK) and (InfKK/H , L
−

K/H)

and the isomorphism given in 2.10 and the result 4.13 imply that the multiplicity

of a simple µK(G)-module SG
H,U in the socle of M is equal to the multiplicity of

S
K/H
H/H,U in the socle of the µK(K/H)-module

L−K/H ↓GK M.

Therefore, part (4) of 8.14 follows also from part (2) of 8.6 (because the Mackey

algebra µK(K/H) is semisimple in this case, see [TW]).

The next result indicates a case in which the multiplicities mentioned in part

(3) of 8.14 become equal.

Proposition 8.15 Let K be of characteristic p > 0. Suppose that M is a µK(G)-

module, H is a subgroup of G, and U is a simple KNG(H)-module. If all the

elements of NG(H) of order p acts on U trivially, then the multiplicity of SG
H,U

in

Soc(M)
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is equal to the multiplicity of U in the socle of the following KNG(H)-submodule

of M(H) : ⋂
H<X≤NG(H):|X:H|=p

Ker
(
tXH : M(H)→M(X)

)
.

Proof : Let T be a simple KNG(H)-submodule of M0(H) isomorphic to U where

M0(H) denotes the submodule of M(H) defined in 8.13. If we show that T is in

the KNG(H)-submodule of M(H) defined in this result (which is a submodule of

M0(H)), then the result will follow by 8.13.

Take any X with H < X ≤ NG(H) and |X : H| = p. As the KNG(H)-

modules T and U are isomorphic and as any element of NG(H) of order p acts

on U trivially, ( ∑
gH⊆X

cgH
)
T = 0.

This implies that tXH(T ) = 0 because T ⊆M0(H). �

IfNG(H) is a nilpotent group (or more generally, a group with normal Sylow p-

subgroup), then (Clifford’s theorem implies that) the hypothesis of 8.15 is satisfied

for any simple KNG(H)-module U. For another example, the hypothesis of 8.15 is

satisfied for any group G and for any simple KNG(H)-module U with dimK U = 1.

We finish this chapter by giving some conditions on a µK(G)-module M equiv-

alent to the condition M(H) 6= 0 where H is a subgroup of G.

Remark 8.16 Let M be a µK(G)-module and H be a subgroup of G. Then the

following conditions are equivalent:

(i) M(H) 6= 0.

(ii) M has a subfunctor having H as a minimal subgroup.

(iii) ↑GH↓GH M has a simple subfunctor having H as a minimal subgroup.

(iv) HomµK(G)(↑GH SH
H,K,M) 6= 0.
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Proof : (i) equals to (ii): Follows by 8.4.

(ii) implies (iii): Let S be a subfunctor of M having H as a minimal subgroup.

It is clear that

↓GH S ∼= nSH
H,K

where n = dimK S(H). Therefore, it follows by the exactness of the functors ↑ and

↓ that ↑GH SH
H,K is isomorphic to a subfunctor of ↑GH↓GH M. By 4.3 we know that

the minimal subgroups of any nonzero subfunctor of ↑GH SH
H,K is a G-conjugate of

H. As a result, ↑GH SH
H,K and hence ↑GH↓GH M has a simple subfunctor having H as

a minimal subgroup.

(iii) implies (iv): Suppose that ↑GH↓GH M has a simple subfunctor having H as

a minimal subgroup. Then there is a simple KNG(H)-module V such that

HomµK(G)(S
G
H,V , ↑GH↓GH M) 6= 0.

It is clear that ↓GH SG
H,V
∼= nSH

H,K where n = dimK V. Using the adjointness of the

pairs (↓GH , ↑GH) and (↑GH , ↓GH) we see that

0 6= HomµK(G)(S
G
H,V , ↑GH↓GH M)

∼= HomµK(H)(↓GH SG
H,V , ↓GH M)

∼= HomµK(H)(nS
H
H,K, ↓GH M)

∼= HomµK(G)(↑GH nSH
H,K,M)

∼= HomµK(G)(n ↑GH SH
H,K,M)

∼= nHomµK(G)(↑GH SH
H,K,M)

(iv) implies (i): Firstly, using the adjointness of the pairs

(↑GH , ↓GH) and (InfHH/H , L
−

H/H)

and using the obvious isomorphisms

SH
H,K
∼= InfHH/HS

H/H
H/H,K, µK(H/H) ∼= K S

H/H
H/H,K

∼= K,

L−H/H ↓GH M = (L−H/H ↓GH M)(H/H) = M(H),
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we obtain that

HomµK(G)(↑GH SH
H,K,M) ∼= HomµK(H)(S

H
H,K, ↓GH M)

∼= HomµK(H)(InfHH/HS
H/H
H/H,K, ↓

G
H M)

∼= HomµK(H/H)(S
H/H
H/H,K, L

−
H/H ↓GH M)

∼= HomK(K,M(H))

�



Chapter 9

Composition factors

Almost all the materials in this chapter comes from [Yar5, Section 6].

Our aim in this chapter is to study µK(G)-modules M, especially their compo-

sition factors, satisfying some extreme conditions such as having a unique max-

imal or simple subfunctors, and being uniserial. For example, we refine some

of the results in the previous two chapters, and we observe that the primordial

subgroups of a uniserial µK(G)-module form a chain.

The result 7.8 contains some necessary and sufficient conditions for a µK(G)-

module M to have a simple quotient functor of the form SG
H,V . It is shown in

[TW95, (15.7) Proposition] that if H is a maximal subgroup of G subject to

the condition M(H) 6= 0 and if we assume that H is normal in G, then for

any maximal KNG(H)-submodule I of M(H), the simple module V = M(H)/I

satisfies the condition (vi) of 7.8 so that M has a simple quotient functor of the

form SG
H,V . We first want to state this result in a slightly stronger form and then

dualize it.

Lemma 9.1 Let M be a µK(G)-module, and let Y and Z be subgroups of G.

110
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(1) Assume that M(Y ) = 0. Then,

Ker
(
α : M(Z)→M(Y )

)
=

⋂
J<Y

Ker
(
rY
J ◦ α : M(Z)→M(J)

)
for any K-space homomorphism α : M(Z)→M(Y ).

(2) Assume that M(Y ) = 0. Then,

β(M(Y )) =
∑
J<Y

β ◦ tYJ (M(J))

for any K-space homomorphism β : M(Y )→M(Z).

Proof : We only justify the first part. The second part may be justified similarly.

As M(Y ) = 0, it follows by the definition of restriction kernels that the product

of restriction maps

ϕ =
∏
J<Y

rY
J : M(Y )→

∏
J<Y

M(J)

is injective. Thus, the kernels of the maps α and ϕ ◦ α are equal, implying the

result. �

Part (2) of 9.2 can be found in the proof of [TW95, (15.7) Proposition], whose

dual version is part (1) of 9.2.

Lemma 9.2 Let M be a µK(G)-module and H be a subgroup of G.

(1) If H is maximal subject to the condition M(H) 6= 0, then,

0 =
(
KerrX

H

) ⋂ ( ⋂
H 6≤J<X

KerrX
J

)
for any X with H < X ≤ G.

(2) If H is maximal subject to the condition M(H) 6= 0, then,

M(X) = tXH(M(H)) +
∑

H 6≤J<X

tXJ (M(J))

for any X with H < X ≤ G.
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Proof : We only justify the first part by arguing as in the proof of [TW95, (15.7)

Proposition]. Let H < X ≤ G. By the maximality of H,

0 = M(X) =
( ⋂

H≤J<X

KerrX
J

) ⋂ ( ⋂
H 6≤J<X

KerrX
J

)
.

For any H < J < X, by the maximality of H we obtain that M(J) = 0. Then,

part (1) of 9.1 implies (by taking α to be the map rX
J ) that

KerrX
J =

⋂
K<J

KerrX
K .

Substituting this intersection for KerrX
J in the first intersection, and continuing

to do this process we finally obtain that

0 =
(
KerrX

H

) ⋂ ( ⋂
H 6≤J<X

KerrX
J

)
.

�

It is proved in [TW95, (15.7) Proposition] that for a µK(G)-module M, a

subgroup H of G maximal subject to the condition M(H) 6= 0, and a simple

KNG(H)-module U, the existence of a simple quotient of the functor M isomor-

phic to SG
H,U is equivalent to the existence of a simple quotient of M(H) isomor-

phic to U. We next show that not only existences but also their multiplicities in

respective heads are equal.

Proposition 9.3 Let M be a µK(G)-module, H be a subgroup of G, and U be a

simple KNG(H)-module.

(1) Suppose that H is maximal subject to the condition M(H) 6= 0. Then,

the multiplicity of SG
H,U in Soc(M) is equal to the multiplicity of U in

Soc(M(H)).

(2) Suppose that H is maximal subject to the condition M(H) 6= 0. Then,

the multiplicity of SG
H,U in M/Jac(M) is equal to the multiplicity of U in

M(H)/Jac(M(H)).
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Proof : (1) Let X/H be a nontrivial p-subgroup of NG(H)/H. We will show

that tXH(x) = 0 for any x ∈M(H) satisfying( ∑
gH⊆X

cgH
)
x = 0

(that is equivalent to the condition rX
H t

X
H(x) = 0 by the Mackey axiom), from

which the result follows by the virtue of 8.13.

Let x ∈M(H) such that rX
H t

X
H(x) = 0. Then

tXH(x) ∈ KerrX
H .

For any H 6≤ J < X, it follows by the Mackey axiom that

rX
J t

X
H(x) =

∑
JgH⊆X

tJJ∩Hc
g
Jg∩Hr

H
Jg∩H(x).

We see that Jg ∩ H 6= H for any g ∈ NG(H) because H 6≤ J. This shows that

rH
Jg∩H(x) = 0 because x ∈ M(H). So rX

J t
X
H(x) = 0 for any J with H 6≤ J < X.

Consequently,

tXH(x) ∈
(
KerrX

H

) ⋂ ( ⋂
H 6≤J<X

KerrX
J

)
= 0

where the last equality follows from part (1) of 9.2.

(2) We use the notations AX , VX , and MH defined in 7.14 and its proof.

From 7.14, it suffices to show thatMH = 0.

Let X/H be a nontrivial p-subgroup of NG(H)/H. Part (2) of 9.2 implies that

rX
H (M(X)) ⊆ rX

H t
X
H(M(H)) +

∑
H 6≤J<X

rX
H t

X
J (M(J)).

For any H 6≤ J < X, as in the first part H∩ gJ 6= H if g ∈ NG(H), so the Mackey

axiom implies that

rX
H t

X
J (M(J)) ⊆

∑
HgJ⊆X

tHH∩gJr
gJ
H∩gJc

g
JM(J) ⊆

∑
HgJ⊆X

tHH∩gJM(H ∩ gJ) ⊆ bH(M).

Therefore,

rX
H (M(X)) ⊆ rX

H t
X
H(M(H)) + bH(M)
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implying that

rX
H (M(X)) ⊆ rX

H t
X
H(M(H)).

The last containment is equivalent by part (2) of 7.10 to the condition VX = 0.

Hence,MH = 0 as desired. �

The following is an immediate consequence of 9.3.

Remark 9.4 Let M be a µK(G)-module and H be a subgroup of G. If M(H) 6= 0

(respectively, M(H) 6= 0), then there is a subgroup K of G containing H such

that M has a simple subfunctor (respectively, simple quotient functor) having K

as a minimal subgroup.

The next result shows that an example of a µK(G)-module M for which H

is a maximal subgroup of G subject to the condition M(H) 6= 0 occurs when

M =↑GH T for some µK(H)-module T such that T (H) 6= 0.

Proposition 9.5 Let H be a subgroup of G and T be a µK(H)-module. For any

subgroup K of G, we have the following KNG(K)-module isomorphisms:

(1)

(↑GH T )(K) ∼=
⊕

NG(K)gH⊆G:Kg≤H

↑NG(K)

NgH(K)

g
(
T (Kg)

)
.

In particular, if (↑GH T )(K) is nonzero, then K ≤G H.

(2)

(↑GH T )(K) ∼=
⊕

NG(K)gH⊆G:Kg≤H

↑NG(K)

NgH(K)

g
(
T (Kg)

)
.

In particular, if (↑GH T )(K) is nonzero, then K ≤G H.

Proof : We will prove only the first isomorphism. The second one can be proved

similarly. The explicit description of induced functors given in 2.6 implies that

(↑GH T )(K) =
⋂

J<K

Kerr̃K
J =

⊕
KgH⊆G

( ⋂
J<K

KerrH∩Kg

H∩Jg

)



CHAPTER 9. COMPOSITION FACTORS 115

where r̃ and r are restriction maps of ↑GH T and T, respectively. Letting J =
gH ∩K, we see that H ∩ Jg = H ∩Kg. So, if gH ∩K < K then⋂

J<K

KerrH∩Kg

H∩Jg = 0.

Therefore, we must have that

(↑GH T )(K) =
⊕

KgH⊆G:Kg≤H

( ⋂
J<K

KerrKg

Jg

)
=

⊕
KgH⊆G:Kg≤H

T (Kg).

Using the following obvious equality (which is also true if we replace NG(K) with

any other subgroup L containing K)

NG(K)gH =
⊎

Ku
(

NG(K)∩gH
)
⊆NG(K)

KugH,

and noting that the conditions Kg ≤ H and Kug ≤ H are equivalent for any

g ∈ G and any u ∈ NG(K), we may write

(↑GH T )(K) =
⊕

NG(K)gH⊆G:Kg≤H

( ⊕
uNgH(K)⊆NG(K)

T (Kg)
)
.

Writing µK(G)⊗µK(H) T for ↑GH T, the last equality becomes

(↑GH T )(K) =
⊕

NG(K)gH⊆G:Kg≤H

( ⊕
uNgH(K)⊆NG(K)

cuK
(
cgKg ⊗µK(H) t

Kg

KgT
))
,

see the explanation given at the beginning of 2.6. As the KNH(Kg)-module

structure on tK
g

KgT is given by left multiplications of elements chKg of µK(H), it is

clear that the KN gH(K)-module g
(
T (Kg)

)
, which is the g-conjugate of T (Kg),

is isomorphic to

cgKg ⊗µK(H) t
Kg

KgT ,

via the map, given for all x is in T (Kg), by x ↔ cgKg ⊗ tKg

Kgx. Now, the result is

clear. �

The next result follows easily by 9.5.

Corollary 9.6 Let H be a subgroup of G and T be a µK(H)-module. Then we

have the following KNG(H)-module isomorphisms:
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(1) (↑GH T )(H) ∼=↑NG(H)
1 T (H).

(2) (↑GH T )(H) ∼=↑NG(H)
1 T (H).

The previous result and 9.3 implies the following.

Proposition 9.7 Let H be a subgroup of G and T be a µK(H)-module. Given a

simple KNG(H)-module U,

(1) The multiplicity of SG
H,U in Soc(↑GH T ) is equal to dimK T (H).

(2) The multiplicity of SG
H,U in (↑GH T )/Jac(↑GH T ) is equal to dimK T (H).

Proof : We will prove the first part only, the second part may be derived

similarly.

Let n be the multiplicity of SG
H,U in Soc(↑GH T ).We may assume that T (H) 6= 0,

because otherwise 9.6 implies that (↑GH T )(H) = 0, which gives by 8.4 that n = 0.

Now it follows by 9.5 that H is a maximal subgroup of G subject to the

condition (↑GH T )(H) 6= 0. Then it follows by 9.3 that n is equal to the multiplicity

of U in

Soc
(
(↑GH T )(H)

) ∼= Soc
(
↑NG(H)

1 T (H)
)

where the isomorphism follows by 9.6. Letting r = dimK U it is clear that

nr = dimK HomKNG(H)

(
U, Soc

(
↑NG(H)

1 T (H)
))
.

Using the adjointness of the pair (↓NG(H)
1 , ↑NG(H)

1 ) we obatin the following K-space

isomorphisms:

HomKNG(H)

(
U, Soc

(
↑NG(H)

1 T (H)
)) ∼= HomKNG(H)

(
U, ↑NG(H)

1 T (H)
)

∼= HomK
(
↓NG(H)

1 U, T (H)
)

∼= HomK
(
rK, T (H)

)
∼=

(
r dimK T (H)

)
K.
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This shows that n = dimK T (H). �

The following is clear from the definitions.

Remark 9.8 Let N be a normal subgroup of G and K be a subgroup of G with

K ≥ N. For any µK(G)-module M, we have the following KNG(K)-module iso-

morphisms:

(1) (InfGG/NL
+

G/NM)(K) ∼= M(K).

(2) (InfGG/NL
−

G/NM)(K) ∼= M(K).

(3) (L+
NG(K)/K ↓GNG(K)

M)(K) ∼= M(K).

(4) (L−NG(K)/K ↓GNG(K)
M)(K) ∼= M(K).

Given a subgroup H of G and a µK(G)-module M, a smallest element of the

set of all subfunctors of M having H as a minimal subgroup may not be a simple

functor (but it is indecomposable by the explanation given after 9.10). However,

it possesses some properties of simple functors.

Remark 9.9 Let H be a subgroup of G and M be a µK(G)-module. Suppose that

H is a minimal subgroup of M. Then, M has no proper subfunctor having H as

a minimal subgroup if and only if the following conditions hold:

(i) M is generated as a µK(G)-module by its value M(H).

(ii) H is the unique, up to G-conjugacy, minimal subgroup of M.

(iii) M(H) is a simple KNG(H)-module.

Proof : For any µK(G)-module M, it is clear by the definition of restriction

kernels that if H is a minimal subgroup of M then M(H) = M(H) 6= 0. The

result follows by part (3) of 8.3 and by the bijective correspondence given in 8.4.

�
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Any simple µK(G)-module M having H as a minimal subgroup satisfies the

conditions (i)-(iii) of the previous result so that the previous result explains what

happens in the converse situation of [TW, (2.3) Proposition].

Proposition 9.10 Let M be a µK(G)-module and H be a subgroup of G. Put

A = µK(G) and e = tHH . Then:

(1) For any KNG(H)-submodule T of M(H), the maps

J → J(H) and (AT :e I)← I

define a bijective correspondence between the maximal µK(G)-submodules J

of AT and the maximal KNG(H)-submodules I of T. Moreover, any simple

quotient functor of AT has H as a minimal subgroup.

(2) For any KNG(H)-submodule I of M(H) where I = I/bH(M), the maps

S → S(H) and AT ← T

define a bijective correspondence between the simple µK(G)-submodules S of

M̃ = M/(M :e I)

and the simple KNG(H)-submodules T of

M̃(H) ∼= M(H)/I.

Moreover, any simple subfunctor of M̃ has H as a minimal subgroup.

Proof : Put B = KNG(H).

(1) Part (1) of 8.3 implies that eAe-submodules and B-submodules of T are

the same. As eAT = T and AT = Ae(AT ), the required bijection follows from

4.8. It follows by this bijection that any simple quotient of AT is of the form

AT/(AT :e I)
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for some maximal B-submodule I of T. The value of

AT/(AT :e I)

at H is isomorphic to T/I which is nonzero. For any X < H, part (3) of 8.3

implies that (AT )(X) = 0. Consequently, H is a minimal subgroup of

AT/(AT :e I).

(2) Firstly, using part (5) of 7.1 we see that (M̃ :e 0) = 0. Moreover, it follows

by part (2) of 7.5 that M̃(X) = 0 for all X < H. Now, by using 4.4 and part (1)

of 7.5, and by arguing as in the first part, one may prove the results. �

Let M a µK(G)-module and H be a subgroup of G. Let M ′ be any smallest

element of the set of all subfunctors of M having H as a minimal subgroup. It

follows by 8.4 that M ′ = AT for some simple KNG(H)-submodule T of M(H),

where A = µK(G). We see by using part (1) of 9.10 that M ′ has a unique maximal

subfunctor implying that M ′ is indecomposable. In particular, any µK(G)-module

satisfying the conditions of 9.9 has a unique maximal subfunctor (and so it is

indecomposable).

Let M a µK(G)-module and H be a subgroup of G. Given any composition

series

0 = T0 ⊂ T1 ⊂ ... ⊂ Tn−1 ⊂ Tn = M(H)

of the KNG(H)-module M(H), letting A = µK(G) we obtain the series

0 = AT0 ⊂ AT1 ⊂ ... ⊂ ATn−1 ⊂ ATn = AM(H)

of µK(G)-submodules of M. The inclusions

ATi−1 ⊆ ATi

are strict because eATi = Ti where e = tHH . Part (1) of 9.10 implies that

(ATi :e Ti−1)

is a maximal µK(G)-submodule of ATi whose quotient

ATi/(ATi :e Ti−1)
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is isomorphic to SG
H,Vi

, where Vi is isomorphic to Ti/Ti−1. Moreover, we see by

part (1) of 7.1 that

ATi−1 ⊆ (ATi :e Ti−1).

Consequently, we have proved for any simple KNG(H)-module V that the multi-

plicity of the simple µK(G)-module SG
H,V as a composition factor of M (indeed, of

AM(H)) is greater than or equal to the multiplicity of V as a composition factor

of M(H). This is the dual version of [TW95, (6.2) Proposition]. Moreover, as the

evaluation of

(ATi :e Ti−1)/ATi−1

at subgroups of H are 0, we see that the multiplicity of V as a composition

factor of M(H) is equal to the the multiplicity of SG
H,V as a composition factor

of AM(H). This can also be deduced by using the next result.

Proposition 9.11 Let M be a µK(G)-module and H be a minimal subgroup of

M. Then, for any simple KNG(H)-module V, the multiplicity of SG
H,V as a com-

position factor of M is equal to the multiplicity of V as a composition factor of

M(H).

Proof : Let 0 = M0 ⊂ M1 ⊂ ... ⊂ Mn−1 ⊂ Mn = M be a composition series of

M. Evaluating at H yields a series

0 = M0(H) ⊆M1(H) ⊆ ... ⊆Mn−1(H) ⊆Mn(H) = M(H)

of KNG(H)-submodules of M(H). Each Mi/Mi−1 is isomorphic to a simple

µK(G)-module of the form Si = SG
Hi,Vi

for some Hi and Vi. We will show that

Mi−1(H) 6= Mi(H) if and only if Hi =G H. This clearly finishes the proof, be-

cause the isomorphism of two simple functors of the form SG
A,U and SG

B,W is equiv-

alent to the existence of a g ∈ G satisfying B = gA and W ∼= gU and because

SG
A,U(A) ∼= U for any simple functor SG

A,U (see 2.5).

As Si(Hi) 6= 0, we see that Mi−1(Hi) 6= Mi(Hi) and that Mi(Hi) 6= 0. From

0 6= Mi(Hi) ⊆M(Hi) we obtain that Hi 6<G H because H is a minimal subgroup

of M. On the other hand, if Mi−1(H) 6= Mi(H) then Si(H) 6= 0 implying that

Hi ≤G H. Consequently, Mi−1(H) 6= Mi(H) if and only if Hi =G H. �
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It is clear that a µK(G)-module M has a composition factor having 1 as a

minimal subgroup if and only if M(1) 6= 0. Therefore, taking H = 1 in 9.11 one

obtains [TW95, (6.3) Proposition].

Corollary 9.12 Let M be a µK(G)-module, H be a subgroup of G, and V be a

simple KNG(H)-module. Put A = µK(G) and e = tHH . Then:

(1) For any KNG(H)-submodule T of M(H), the multiplicity of SG
H,V as a com-

position factor of AT is equal to the multiplicity of V as a composition

factor of T.

(2) For any KNG(H)-submodule I = I/bH(M) of M(H), the multiplicity of SG
H,V

as a composition factor of M/(M :e I) is equal to the multiplicity of V as

a composition factor of M(H)/I.

Proof : (1) Using part (3) of 8.3 we see that H is a minimal subgroup of the

functor AT. Then, the result follows from 9.11, because (AT )(H) = T.

(2) Using part (2) of 7.5 we see that H is a minimal subgroup of the functor

M/(M :e I).

Then, the result follows from 9.11, because the evaluation of

M/(M :e I)

at H is isomorphic to M(H)/I. �

The following special case of the previous result explains the precise version

of the situation about multiplicities explained at the beginning of 9.11.

Theorem 9.13 Let M be a µK(G)-module, H be a subgroup of G, and V be a

simple KNG(H)-module. Put A = µK(G) and e = tHH . Then:

(1) The multiplicity of V as a composition factor of M(H) is equal to the mul-

tiplicity of SG
H,V as a composition factor of AM(H).
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(2) The multiplicity of V as a composition factor of M(H) is equal to the mul-

tiplicity of SG
H,V as a composition factor of M/(M :e bH(M)).

If a µK(G)-module M has a unique maximal submodule whose simple quotient

has H as a minimal subgroup, then it follows by 9.3 that H is the unique, up

to G-conjugacy, maximal subgroup of G subject to the condition M(H) 6= 0. We

next want to study such µK(G)-modules including the uniserial ones. A finite

dimensional module of an algebra is said to be uniserial if its submodule lattice

is a chain, equivalently if it has a unique composition series.

Lemma 9.14 Let M be a µK(G)-module, and let H and K be subgroups of G.

Put A = µK(G).

(1) Suppose that M(H) 6= 0. If AM(H) ⊆ AM(K) then H ≤G K.

(2) Suppose that M(H) 6= 0. If AM(H) ⊆ AM(K) then K ≤G H.

Proof : (1) Evaluation at H gives that

M(H) ⊆ tHHµK(G)tKKM(K).

Using the basis theorem 2.1 we see that

M(H) ⊆ tHHµK(G)tKKM(K) =
∑

g∈G,J≤Hg∩K

tHgJc
g
Jr

K
J (M(K)).

If gJ < H for any g and J appearing in the above sum, then the sum is in bH(M)

so that M(H) ⊆ bH(M) contradicting the assumption M(H) 6= 0. So there is a

g ∈ G and J ≤ Hg ∩K satisfying gJ = H. This shows that H ≤G K.

(2) We obtain by evaluation at H that

0 6= M(H) ⊆ tHHµK(G)tKKM(K).

As rK
J (M(K)) = 0 for any J < K, arguing as in the first part we see by using

the basis theorem 2.1 that J = K for some g ∈ G and J ≤ Hg ∩K. This shows

that K ≤G H. �
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In the next result we observe that the primordial subgroups of a uniserial

µK(G)-module M (i.e., subgroups X of G for which M(X) 6= 0) form a chain

with respect to the subgroup conjugacy relation ≤G .

Proposition 9.15 Let M be a uniserial µK(G)-module, and let H and K be

subgroups of G.

(1) If M(H) 6= 0 and M(K) 6= 0, then H ≤G K or K ≤G H.

(2) If M(H) 6= 0 and M(K) 6= 0, then H ≤G K or K ≤G H.

Proof : As the justifications of both parts are similar, we only justify the first

part. Since M is uniserial, we must have that

AM(H) ⊆ AM(K) or AM(K) ⊆ AM(H)

where A = µK(G). Part (1) of 9.14 implies that H ≤G K or K ≤G H. �

Lemma 9.16 Let M be a µK(G)-module for which there is a unique, up to G-

conjugacy, subgroup H of G maximal subject to the condition M(H) 6= 0. If

M2 ⊆M1

are µK(G)-submodules of M such that

M/M1
∼= SG

H,V and M1/M2
∼= SG

K,W

for some simple µK(G)-modules SG
H,V and SG

K,W , then H ≤G K or K ≤G H.

Proof : Assume that H 6≤G K. Take any X ≤ K. Then H 6≤G X. Evaluation of

M/M1
∼= SG

H,V

at X is 0 implying that M(X) = M1(X). Thus,

bK(M) = bK(M1) and M(K) = M1(K)
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so that M(K) = M1(K). As M1/M2
∼= SG

K,W , it follows from 7.4 that M1(K) 6= 0.

Hence M(K) 6= 0, and the maximality of H implies that K ≤G H. �

We now observe that the minimal subgroups of any two successive simple

factors of the composition series of a uniserial µK(G)-module can be compared

with respect to the subgroup conjugacy relation ≤G .

Proposition 9.17 Let M be a uniserial µK(G)-module with the composition se-

ries

0 = M0 ⊂M1 ⊂M2 ⊂ ... ⊂Mn−1 ⊂Mn = M where Mi/Mi−1
∼= SG

Hi,Vi

for each i. Then, Hi ≤G Hi−1 or Hi−1 ≤G Hi for each i.

Proof : The µK(G)-module Mi is uniserial for each i. In particular, Mi−1 is the

unique maximal µK(G)-submodule of Mi. So, 9.3 implies that Hi is the unique,

up to G-conjugacy, maximal subgroup of G subject to the condition M(Hi) 6= 0.

Now the result follows from 9.16 applied to the submodules Mi−2 ⊆Mi−1 of Mi.

�

The previous result may also be deduced as an immediate consequence of

[TW95, (14.3) Theorem] involving a condition for Ext groups of simple functors

to be 0. Indeed, in the case of 9.17, one has a non-split exact sequence

0→ SG
Hi−1,Vi−1

→Mi/Mi−2 → SG
Hi,Vi

→ 0

so that

Ext1
µK(G)

(
SG

Hi,Vi
, SG

Hi−1,Vi−1

)
6= 0,

implying by the above mentioned result of [TW95] that Hi ≤G Hi−1 or Hi−1 ≤G

Hi. Moreover, by using [TW95, (14,6) Theorem] one conclude more that Hi E
gHi−1 or Hi−1 E gHi for some g ∈ G.

Proposition 9.18 Let K be of characteristic p > 0. Let M be a µK(G)-module

having a unique maximal µK(G)-submodule, say M/Jac(M) ∼= SG
H,V , and let K

be a subgroup of G such that M(K) 6= 0, and let X be a subgroup of G such that

SG
H,V (X) 6= 0. Then:
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(1) M(H) has a unique maximal KNG(H)-submodule, and the simple head of

the KNG(H)-module M(H) is isomorphic to V.

(2) K ≤G H, and if K 6=G H then p divides |NG(K) : K|.

(3) M is generated as a µK(G)-module by its value M(X) at X.

(4) For any K <G H,

M(K) =
∑

K<Y≤NG(K):|Y :K|=p

rY
K

(
M(Y )

)
.

Proof : (1) Put J = Jac(M). We see that J is the unique largest element of the

set of all subfunctors J ′ of M whose quotient M/J ′ has H as a minimal subgroup.

Then 7.4 implies that M(H) has a unique maximal KNG(H)-submodule, which

is J(H) = Jac(M(H)). Moreover, evaluating the isomorphic functors M/J and

SG
H,V at H we see that the head of M(H) is isomorphic to V.

(2) Choose a maximal subgroup L of G containing K subject to the condition

M(L) 6= 0. It follows from 9.3 that M has a maximal µK(G)-submodule whose

simple quotient has L as a minimal subgroup. As M has a unique maximal

µK(G)-submodule, L =G H so that K ≤G H. Moreover, if K 6=G H then part (4)

of 7.15 implies that p divides NG(K).

(3) Put J = Jac(M), A = µK(G) and e = tXX . The idempotent e ∈ A does not

annihilate the simple A-module M/J. Then part (7) of 7.1 implies that

AeM + J = M.

If AeM 6= M then, as J contains every proper A-submodule of M, it follows that

J = M, which is not the case. Hence AeM = M.

(4) This follows by part (3) of 7.15. �

The following dual version of the previous result may be justified similarly.

Proposition 9.19 Let K be of characteristic p > 0. Let M be a µK(G)-module

having a unique simple µK(G)-submodule, say Soc(M) ∼= SG
H,V , and let K be a
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subgroup of G such that M(K) 6= 0, and let X be a subgroup of G such that

SG
H,V (X) 6= 0. Then:

(1) M(H) has a unique simple KNG(H)-submodule, and the simple socle of the

KNG(H)-module M(H) is isomorphic to V.

(2) K ≤G H, and if K 6=G H then p divides |NG(K) : K|.

(3) (M :e 0) = 0 where e = tXX .

(4) For any K <G H,

0 =
⋂

K<Y≤NG(K):|Y :K|=p

Ker
(
tYK : M(K)→M(Y )

)
.

Let A be a finite dimensional K-algebra and V be an A-module. If V is iso-

morphic to a nonzero quotient module of a projective indecomposable A-module

P then it is clear that the heads of P and V are isomorphic so that the head of V

is a simple A-module. Conversely, if the head of V is isomorphic to a simple A-

module S then there are A-module epimorphisms π : V → S and f : P (S) → S

where P (S) is the projective cover of S. By the projectivity of P (S) we may

find an A-module homomorphisms γ : P (S) → V satisfying π ◦ γ = f. Using

the relation π ◦ γ = f one sees that γ : P (S) → V is an epimorphism. Hence,

an A-module has unique maximal submodule if and only if it is isomorphic to a

nonzero quotient of a projective indecomposable A-module. In a similar way, one

sees that a module has unique simple submodule if and only if it is isomorphic to

a submodule of an injective indecomposable module.

As in [TW95] we denote by PG
H,V the projective cover of a simple µK(G)-

module of the form SG
H,V . Thus, 9.18 applies to PG

H,V and its nonzero quotients.

Remark 9.20 Let M be a uniserial µK(G)-module. Then, for any subgroup H

of G, the KNG(H)-modules M(H) and M(H) are uniserial.

Proof : Let T1 and T2 be KNG(H)-submodules of M(H). By part (1) of 8.3

they are also eAe-submodules of M(H) where A = µK(G) and e = tHH . Therefore,
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eATi = Ti for each i. As M is a uniserial A-module, its A-submodules AT1 and

AT2 must be comparable, say AT1 ⊆ AT2. Multiplying this containment by the

idempotent e we get T1 ⊆ T2. Hence, M(H) is uniserial. Similar arguments may

be used to justify the result for M(H). �

As an easy consequence of 9.18 and 4.8 we obtain the following criterion for

a µK(G)-module to have a unique maximal submodule.

Remark 9.21 Let M be a µK(G)-module. Then, M has a unique maximal

µK(G)-submodule if and only if there is a subgroup H of G satisfying the fol-

lowing conditions:

(i) M is generated as a µK(G)-module by its value M(H) at H.

(ii) M(H) has a unique maximal tHHµK(G)tHH-submodule.

Using 9.19 and 4.4 we obtain the following dual version of the previous result.

Remark 9.22 Let M be a µK(G)-module. Then, M has a unique simple µK(G)-

submodule if and only if there is a subgroup H of G satisfying the following con-

ditions:

(i) (M :e 0) = 0 where e = tHH .

(ii) M(H) has a unique simple tHHµK(G)tHH-submodule.

It is desirable to replace the second condition of 9.21 with a condition involving

M(H) and KNG(H). This can be done if K is of characteristic p > 0 and G

is a p-group, because in this case it follows from [TW95, (15.1) Lemma] that

SG
K,K(X) 6= 0 implies X =G K.

The next result is a slight general form of [TW95, (15.1) Lemma].
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Lemma 9.23 Let K be of characteristic p > 0 and SG
H,V be a simple µK(G)-

module. Let K be a subgroup of G. Assume that either K is a normal subgroup

of G or dimK V = 1. Then, SG
H,V (K) 6= 0 if and only if there is a g ∈ G with

gH ≤ K satisfying the following conditions:

(i) NK(gH) acts on gV trivially.

(ii) p does not divide |NK(gH) : gH|.

Proof : We first try to find conditions equivalent to the condition SG
H,V (G) 6= 0 :

Using the isomorphism given in 2.10 and using the explicit description of induced

functors given in 2.6 we see that

SG
H,V (G) ∼= S

NG(H)
1,V (NG(H)) = tr

NG(H)
1 (V ) ⊆ V NG(H)

where tr denotes the relative trace map, because S
NG(H)
1,V is the (unique simple)

subfunctor of the fixed point functor FP
NG(H)
V generated by

FP
NG(H)
V (1) = V,

see [TW] for more details about the fixed point functors. Note that V NG(H) is a

submodule of the simple KNG(H)-module V. Thus, if SG
H,V (G) 6= 0 then

V = V NG(H)

implying that NG(H) acts on V trivially (i.e., V is the trivial module). Moreover,

if V is the trivial module then we see that

SG
H,V (G) ∼= |NG(H) : H|V.

Consequently, SG
H,V (G) 6= 0 if and only if NG(H) acts on V trivially and p does

not divide |NG(H) : H|.

Let K and V satisfy the conditions of the hypothesis. If K is normal or if

dimK V = 1, then Clifford’s theorem for Mackey algebras [Yar1] or 4.20 implies

respectively that ↓GK SG
H,V is semisimple. Thus,

0 6= SG
H,V (K) = (↓GK SG

H,V )(K)
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if and only if there is a simple µK(K)-module S direct summand of the semisimple

µK(K)-module ↓GK SG
H,V such that S(K) 6= 0. It follows by 4.17 that simple direct

summands of the semisimple µK(K)-module

↓GK SG
H,V

are precisely of the form SK
gH,W where g ∈ G with gH ≤ K and W is a simple

KNK(gH)-submodule of gV. Thus, SG
H,V (K) 6= 0 if and only if SK

gH,W (K) 6= 0

for some g ∈ G with gH ≤ K and for some simple KNK(gH)-submodule W of
gV. This is, by what we have proved in the first paragraph, equivalent to the

requirements that W is the trivial KNK(gH)-module and that p does not divide

|NK(gH) : gH|. If dimK V = 1 then W = gV so that the result follows.

Assume that K is normal in G. Then NK(gH) is normal in NG(gH). Take any

simple KNK(gH)-submodule U of gV. Then Clifford’s theorem for group algebras

implies that any simple direct summand of the semisimple KNK(gH)-module gV

is an NG(gH)-conjugate of U. Therefore, KNK(gH) acts on U trivially if and only

if it acts on gV trivially. �

Proposition 9.24 Let K be of characteristic p > 0 and G be a p-group. Let M

be a µK(G)-module. Then:

(1) M has a unique simple µK(G)-submodule if and only if there is a subgroup

H of G satisfying the following conditions:

(i) (M :e 0) = 0 where e = tHH .

(ii) M(H) has a unique simple KNG(H)-submodule.

(2) M has a unique maximal µK(G)-submodule if and only if there is a subgroup

H of G satisfying the following conditions:

(i) M is generated as a µK(G)-module by its value M(H) at H.

(ii) M(H) has a unique maximal KNG(H)-submodule.

Proof : We only prove the first part. If M has a unique simple subfunctor,

say of the form SG
H,K, then it follows from 9.19 that the subgroup H satisfies
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the desired conditions. Suppose that there is a subgroup H of G satisfying the

given conditions. It follows from (M :e 0) = 0 that M has no nonzero subfunctor

whose evaluation at H is 0. Thus, if M has a simple subfunctor of the form SG
K,K

then SG
K.K(H) 6= 0 implying by 9.23 that K =G H. Consequently, any simple

subfunctor of M has H as a minimal subgroup. Now 8.4 implies that M has a

unique simple subfunctor. �

Proposition 9.25 Let K be of characteristic p > 0 and G be a p-group. Let H

be a subgroup of G, and let M be a µK(G)-module. Put e = tHH and

b0H(M) =
∑

H<K:|K:H|=p

rK
H (M(K)) + bH(M),

which is a KNG(H)-module. Then, the maps

J → J(H) and (M :e I)← I

define a bijective correspondence between the maximal µK(G)-submodules J of

M such that M/J ∼= SG
H,K and the maximal KNG(H)-submodules I of M(H)

containing b0H(M). Moreover,

b0H(M) ⊆ Jac(M)(H)

and the KNG(H)-module

Jac(M)(H)/b0H(M)

is the radical of M(H)/b0H(M).

Proof : Let J be a subfunctor of M such that M/J ∼= SG
H,K. For any K > H, it

follows from 9.23 that rK
H annihilates M/J so that rK

H (M(K)) ⊆ J(H). We also

know from 7.4 that bH(M) ⊆ J(H). Therefore, J(H) contains b0H(M).

Let I be a KNG(H)-submodule of M(H) containing b0H(M). Take any X > H.

By the transitivity of restriction maps (i.e., rB
Ar

C
B = rC

A for A ≤ B ≤ C) we see

that rK
H (M(K)) ⊆ I for any K > H. Therefore,

{x ∈M(X) : cgHgrX
Hg(x) ∈ I,∀g ∈ G,Hg ≤ X} = M(X)
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so that we can deduce the maximality of the subfunctor (M :e I) from part (1)

of 7.6. Now, the required bijection follows from 7.4.

For any maximal subfunctor J ′ of M with M/J ′ ∼= SG
K,K, if K 6=G H then 9.23

implies that J ′(H) = M(H). Thus, Jac(M)(H) is the intersection of all J(H)

where J ranges over all maximal subfunctors of M with M/J ∼= SG
H,K. By the

bijective correspondence proved above, we see that b0H(M) ⊆ Jac(M)(H) and the

quotient is the radical of M(H)/b0H(M). �

Regarding simple subfunctors, one may prove the following similar to 9.25.

Proposition 9.26 Let K be of characteristic p > 0 and G be a p-group. Let H

be a subgroup of G, and let M be a µK(G)-module. Put A = µK(G) and

k0
H(M) =

⋂
H<K:|K:H|=p

Ker
(
tKH : M(H)→M(K)

)
,

which is a KNG(H)-module. Then, the maps

S → S(H) and AT ← T

define a bijective correspondence between the simple µK(G)-submodules S of M

such that S ∼= SG
H,K and the simple KNG(H)-submodules T of M(H) contained

in k0
H(M). Moreover,

Soc(M)(H) ⊆ k0
H(M)

and the KNG(H)-module Soc(M)(H) is the socle of k0
H(M).

Let V be a finite dimensional module of an algebra. For any natural number

i ≥ 1 we put

Jaci(V ) = Jac
(
Jaci−1(V )

)
and Soci(V )/Soci−1(V ) = Soc

(
V/Soci−1(V )

)
where Jac0(V ) = V and Soc0(V ) = 0. One has the radical series

V = Jac0(V ) ⊃ Jac1(V ) ⊃ ... ⊃ Jacn(V ) = 0

of V, and the socle series

0 = Soc0(V ) ⊂ Soc1(V ) ⊂ ... ⊂ Socm(V ) = V
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of V. The lengths of the radical series and the socle series of V are equal (i.e.,

n = m), and it is called the Loewy length of V.

We next state a result giving a lower bound for Loewy lengths.

Proposition 9.27 Let K be of characteristic p > 0 and G be a p-group. Let M

be a µK(G)-module, and H ≤ K be subgroups of G with |K : H| = pn. If

tKH(M(H)) 6= 0 or rK
H (M(K)) 6= 0,

then the Loewy length of M is greater than or equal to n+ 1.

Proof : For any natural number k let Jk = Jack(M). If X ≤ Y are subgroups of

G with |Y : X| = p, then it follows by 9.23 that both of the elements tYX and rY
X

of µK(G) annihilate the semisimple µK(G)-modules, in particular Jk/Jk+1. This

gives that

tYX(Jk(X)) ⊆ Jk+1(Y ) and rY
X(Jk(Y )) ⊆ Jk+1(X).

Using the transitivity of trace and restriction maps on a Mackey functor, the

above argument can be used repeatedly to obtain that

tBA(Jk(A)) ⊆ Jk+m(B) and rB
A(Jk(B)) ⊆ Jk+m(A)

where |B : A| = pm. Therefore,

0 6= tKH(M(H)) = tKH(J0(H)) ⊆ Jn(H).

This shows that the Loewy length of M is at least n+ 1. �

If K is of characteristic p > 0 and G is a p-group, then one may see that the

Loewy length of the fixed point functor FPG
K is n + 1 where |G| = pn, see 14.1.

As the restriction maps of FPG
K are all injective, rG

1 (FPG
K ) 6= 0 so that the lower

bound obtained by 9.27 is attained by the Loewy length of FPG
K .



Chapter 10

Maximal subfunctors of Burnside

functor

All the materials in this chapter comes from [Yar5, Section 7].

In this chapter we want to study the maximal subfunctors of the Burnside

functor BG
K for G over K.

We begin with recalling the maps between Burnside algebras of subgroups of

G making BG
K a Mackey functor for G, see [Dr, Bo, TW95]. Let H be a subgroup

of G. The set of isomorphism classes of finite H-sets form a commutative semir-

ing under the operations disjoint union and cartesian product. The associated

Grothendieck ring BZ(H) is called the Burnside ring of H. The Burnside algebra

of H over K is the K-algebra BG
K(H) = K ⊗Z BZ(H). Therefore, letting V runs

over representatives of the conjugacy classes of subgroups of H, then [H/V ] com-

prise (without repetition) a K-basis of BG
K(H), where the notation [H/V ] denotes

the isomorphism class of transitive H-sets whose stabilizers are H-conjugates of

V. The maps on BG
K are given as follows:

tKH([H/V ]) = [K/V ],

rK
H ([K/W ]) =

∑
HgW⊆K

[H/H ∩ gW ],

cgH([H/U ]) = [gH/gU ].

133
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For any prime number p and any natural number n we write np to denote the

p-part of n.

Theorem 10.1 Let M = BG
K, and let H and K be subgroups of G. For any

subgroup L of G we put

ML =
(
M :eL

bL(M)
)

where eL = tLL. Then:

(1) Any maximal µK(G)-submodule of M is of the form ML for some subgroup

L of G.

(2) If MH is a maximal µK(G)-submodule of M then M/MH
∼= SG

H,K.

(3) MH = MK if and only if H =G K.

(4) If K is of characteristic 0 then MH is a maximal µK(G)-submodules of M.

(5) Let K be of characteristic p > 0. Then:

(i) MH is a maximal µK(G)-submodules of M if and only if

|NG(H) : H|p = 1.

(ii)

M/Jac(M) ∼=
⊕

L≤GG:|NG(L):L|p=1

SG
L,K.

(iii)

Jac(M)(K) =
⋂

X≤K:|NG(X):X|p=1

{x ∈M(X) : rK
X (x) ∈ bX(M)}.

Proof : (1) and (2) It follows from the relations

[L/V ] = tLV ([V/V ]) and cgH([L/V ]) = [gL/gV ]

that M(L) ∼= K, as KNG(L)-modules, for any subgroup L of G. The result follows

by 7.4.
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(3) It follows by part (2) of 7.5

(4) In this case the Mackey algebra is semisimple by [TW], and so the result

follows by part (2) of 7.6.

(5) Using the first three parts we see that MH is maximal if and only if SG
H,K

appears in the head of M. For any X > H, as rX
H ([X/X]) = [H/H] we see that

rX
H (M(X)) + bH(M) = M(H).

Thus, if p divides |NG(H) : H| then 7.16 implies that SG
H,K does not appear in the

head of M. On the other hand, if p does not divide |NG(H) : H| then part (4) of

7.15 implies that the multiplicity of SG
H,K in the head of M is 1. These finish the

proofs of parts (i) and (ii).

Jac(M) is the intersection of subfunctors MX where X ranges over all sub-

groups X of G such that p does not divide |NG(X) : X|. Therefore,

x ∈ Jac(M)(X)

if and only x ∈MX for any such subgroup X. The desired result follows by part

(2) of 7.5. �

If we assume that K is algebraically closed then part (5)(ii) of 10.1 follows

also by [TW95, (8.9) Corollary] which express BG
K as a direct sum of principal

indecomposable µK(G)-modules.



Chapter 11

Radical series of Burnside functor

Almost all the materials in this chapter comes from [Yar5, Section 7].

In this chapter we study the radical series of the Burnside functor, mainly for

a (an abelian) p-group over a field of prime characteristic p > 0. For example,

we show that if K is of characteristic p > 0 then the simple µK(G)-module SG
1,K

appears (only) in Jm/Jm+1 where |G|p = pm and Jk = Jack(BG
K).

Proposition 11.1 Let K be of characteristic p > 0 and M = BG
K. For any natural

number k we put Jk = Jack(M). Let n be a natural number. Then:

(1) Jn(H) = M(H) for any p-subgroup H of G with |G : H|p ≥ pn.

(2) Jn(H) = bH(M) for any p-subgroup H of G with |G : H|p = pn−1, where

n ≥ 1.

(3) Jn(H) = bH(M) for any p-subgroup H of G with |G : H|p = pn−2, where

n ≥ 2.

(4) Jn+1(H) = Jn(H) for any p-subgroup H of G with |G : H|p = pn−1, where

n ≥ 1.

Proof : (1) Part (5)(iii) of 10.1 shows that the result is true for n = 1.

136
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Assume that the result is true for n. Take any p-subgroup K of G with

|G : K|p ≥ pn+1.

Our aim is to show that Jn+1(K) = M(K).

As Jn(K) = M(K), we see that Jn+1(K) = M(K) if and only if evaluation

of any simple summand of Jn/Jn+1 at K is 0. Let SG
L,U be a simple summand of

Jn/Jn+1. If SG
L,U(K) 6= 0 then L ≤G K so that L is a p-subgroup of G with

|G : L|p ≥ pn+1.

We will finish the proof by showing that there is no simple functor in the head

of Jn that has X as a minimal subgroup where X is a p-subgroup of G with

|G : X|p ≥ pn+1. Let X be such a subgroup. It is clear that

Jn(X) = M(X) and bX(Jn) = bX(M),

and that Jn(Y ) = M(Y ) for any Y > X with |Y : X| = p. As Jn(X) ∼= K, we

see by using 7.4 that if SG
X,V appears in the head of Jn for some simple KNG(X)-

module V, then V = K. Thus, it follows by 7.16 that the multiplicities of SG
X,K in

the heads of Jn and M are equal. But p divides |NG(X) : X|, and so by 10.1 we

see that SG
X,K does not appear in the head of M.

(2) The result is true for n = 1 by part (5)(iii) of 10.1.

Assume that the result is true for n. Take any p-subgroup K of G with

|G : K|p = pn.

We want to show that Jn+1(K) = bK(M).

Using part (1) we see that Jn(K) = M(K) and bK(Jn) = bK(M). Let X > K

with |X : K| = p. Then Jn(X) = bX(M) by the assumption of the result for n.

We calculate easily that

rX
K(Jn(X)) = rX

K(bX(M)) ⊆ bK(M),

and so rX
K(Jn(X)) = 0. Thus, 7.16 implies that SG

K,K appears in the head of Jn.

As Jn(K) = M(K) ∼= K and as bK(Jn) = bK(M), we deduce by 7.4 that Jn
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has a unique maximal subfunctor I whose simple quotient has K as a minimal

subgroup, and that I satisfies I(K) = bK(M).

For any p-subgroup Y of G with |G : Y |p ≥ pn+1 it follows by part (1) that

Jn(Y ) ∼= K so that any simple functor having Y as a minimal subgroup and

appearing in the head of Jn must be of the form SG
Y,K. Now 7.16 implies that

the multiplicity of SG
Y,K in the heads of Jn and M are equal. Thus, 10.1 gives

that Jn has no simple functor in its heads with a minimal subgroup Y satisfying

|G : Y |p ≥ pn+1. Consequently, if J is a maximal subfunctor of Jn whose simple

quotient Jn/J is nonzero at K, then J must be equal to I. Hence,

Jn+1(K) = I(K) = bK(M)

because Jn+1 is the intersection of maximal subfunctors of Jn.

(3) We first show that the result is true for n = 2 : Let H be a p-subgroup

of G with |G : H|p = 1. By part (2) we obtain that J1(H) = bH(M). For any

p-subgroup X of G such that |G : X|p ≥ p, part (1) gives that J1(X) = M(X), in

particular, J1(H) = 0 and J1(X) ∼= K. Thus 7.4 implies that if a simple functor

whose minimal subgroup is a p-group appears in the head of Jn then it must be

of the form SG
X,K where X is a p-subgroup with |G : X|p ≥ p. Using 7.16 we

see easily that the simple functors in the head of J1 whose minimal subgroups

are p-groups are precisely of the form SG
K,K where K ranges over all subgroups of

G with |G : K|p = p. Now 9.23 implies that the evaluation of J1/J2 at H is 0.

Hence, J2(H) = J1(H) = bH(M).

Assume that the result is true for n. Take a subgroup K of G with

|G : K|p = pn−1.

We want to justify that Jn+1(K) = bK(M).

Then Jn(K) = bK(M) by part (2), and bZ(Jn) = bZ(M) for any p-subgroup

Z with |G : Z|p ≥ pn by part (1). As in the first paragraph proving the result

for n = 2, we may see that the simple functors in the head of Jn whose minimal

subgroups are p-groups in some conjugate of K are of the form SG
A,K where A are
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some subgroups of G with |G : A|p = pn. Thus, applying 9.23 again we see that

the value of Jn/Jn+1 at K is zero. Therefore,

Jn+1(K) = Jn(K) = bK(M)

where the last equality follows from part (2).

(4) It follows by parts (2) and (3) that they both equal to bH(M). �

Theorem 11.2 Let K be of characteristic p > 0 and M = BG
K. Let H be a p-

subgroup of G, and V be a simple KNG(H)-module, and let n be a natural number

with pn ≤ |G|p. For any natural number k we put Jk = Jack(M). Then:

(1) If SG
H,V appears in Jn/Jn+1 then |G : H|p ≤ pn and |G : H|p 6= pn−1.

(2) If |G : H|p = pn and SG
H,V appears in Jn/Jn+1 then V = K.

(3) If |G : H|p = pn then the multiplicity of SG
H,K in Jn/Jn+1 is 1.

(4) The multiplicity of SG
1,K in M is 1, and it appears in Jm/Jm+1 where pm =

|G|p.

(5) The Loewy length of M is greater than or equal to m+ 1.

Proof : (1) If |G : H|p ≥ pn+1 or |G : H|p = pn−1 then by 11.1 we obtain that

Jn(H) = Jn+1(H). Thus the result follows.

(2) It follows by 11.1 that Jn(H) ∼= K. The conclusion V = K follows from

7.4.

(3) Let |G : H|p = pn and let X > H with |X : H| = p. Then 11.1 gives that

Jn(X) = bX(M), Jn(H) = M(H), and bH(Jn) = bH(M).

It is easy to see that

rX
H (Jn(X)) = rX

H (bX(M)) ⊆ bH(M).
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Now, 7.16 shows that the multiplicity of SG
H,K in Jn/Jn+1 is 1.

(4) As dimKM(1) = 1, it is clear that the multiplicity of SG
1,K in M is 1 (see

also 9.11). Moreover, we see by part (3) that SG
1,K appears in Jm/Jm+1 where

pm = |G|p.

(5) This follows by part (4). �

The following result may be obtained by using the previous two results and

their proofs.

Corollary 11.3 Let K be of characteristic p > 0 and G be a p-group with |G| ≥
p3. For any natural number k we put Jk = Jack(M) where M = BG

K. Then:

(1)

J2/J3
∼=

( ⊕
H≤GG:|G:H|=p2

SG
H,K

) ⊕
λSG

G,K,

where λ is the number of elements of the set

{V ≤G G : |G : V | = p}.

(2)

J3/J4
∼=

( ⊕
H≤GG:|G:H|=p3

SG
H,K

) ⊕ ( ⊕
H≤GG:|G:H|=p

λHS
G
H,K

)
,

where λH is the number of NG(H)-orbits of the set

{V ≤H H : |H : V | = p}

on which NG(H) acts by conjugation.

Proof : This can be justified by using 9.23 and 9.25 and by arguing as in

(proofs of) the previous two results. Details left to the reader we give only some

information about evaluations of radical terms Ji.

J1(X) =

{
bX(M) ; X = G

M(X) ; X 6= G
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J2(X) =

{
bX(J1) ; |G : X| ≤ p

M(X) ; |G : X| ≥ p2

J3(X) =

{
bX(J2) ; |G : X| ≤ p2

M(X) ; |G : X| ≥ p3

J4(X) =


bX(J3) ; X = G

∗ ; |G : X| = p

bX(J3) ; p2 ≤ |G : X| ≤ p3

M(X) ; |G : X| ≥ p4

The module * may not be bX(J3) and may be complicated in general which

defer us to find radicals Jk with k ≥ 5. Indeed, let H ≤ G with |G : H| = p.

Then, J4(H)/b0H(J3) is equal by 9.25 to the radical of the KNG(H)-module

J3(H)/b0H(J3). Thus, if J4(H) = bH(J3) then J3(H) must be a semisimple

KNG(H)-module. We may see easily that

J3(H) =
⊕

V≤HH:|H:V |=p

K
(
[H/V ] + bH(J3)

)
which is not necessarily semisimple. Moreover, if J4(H) = bH(J3) then we get by

9.25 that b0H(J3) = bH(J3). As

bH(J3) =
⊕

V≤HH:|H:V |≥p2

K[H/V ] and J3(G) =
⊕

V≤GG:|G:V |≥p2

K[G/V ],

we compute that

b0H(J3) = rG
H(J3(G)) + bH(J3)

= bH(J3)
⊕ ( ⊕

V≤GH:|H:V |=p, NG(V )=H

K
( ∑

gH⊆G

[H/gV ]
))

︸ ︷︷ ︸
b′H(J3)

.

Consequently, if J4(H) = bH(J3) then b′H(J3) = 0 so that every subgroup of H

whose index in G is p2 must be normal in G. �

In the case of the previous result, one sees that Jk+1(X) = bX(Jk) for any

k ∈ {0, 1, 2} and any X ≤ G with |G : X| ≤ pk. However, this may not be true

for k ≥ 3 unless G is abelian.
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Lemma 11.4 Let K be of characteristic p > 0 and G be an abelian p-group with

|G| ≥ p3. For any natural number k we put Jk = Jack(M) where M = BG
K. Then,

Jn+1(H) = bH(Jn) for any n and any H ≤ G with |G : H| ≤ pn ≤ |G|.

Proof : Let X be a subgroup of G. As G is abelian, NG(X) acts on M(X)

trivially so that M(X), and hence each nonzero quotient of each Jk(X), is a

semisimple KNG(X)-module. Then, 9.25 shows that Jk+1(X) = b0X(Jk) for any

k and any X.

We will prove the result by induction on n. It may be seen easily by using

11.1 that the result is true for n = 0, 1. Assume that the result is true for n. Take

any subgroup K of G with |G : K| ≤ pn+1. We want to obtain that

Jn+2(K) = bK(Jn+1).

By the above, Jn+2(K) = b0K(Jn+1). Let Y > K with |Y : K| = p. Then,

|G : Y | ≤ pn

implying by the assumption of the result for n that Jn+1(Y ) = bY (Jn). Using the

Mackey axiom we see that

rY
K(Jn+1(Y )) =

∑
Z<Y :Y =KZ

tKK∩Zr
Z
K∩Z(Jn(Z)).

From the condition Y = KZ it follows that K ∩ Z < Z and K ∩ Z < K. As

Jn/Jn+1 is semisimple, 9.23 implies that the element rZ
K∩Z of µK(G) annihilates

Jn/Jn+1. This gives that

rZ
K∩Z(Jn(Z)) ⊆ Jn+1(K ∩ Z).

Therefore,

rY
K(Jn+1(Y )) ⊆

∑
Z<Y :Y =KZ

tKK∩Z

(
Jn+1(K ∩ Z)

)
⊆ bK(Jn+1).

Consequently, b0K(Jn+1) = bK(Jn+1) proving that Jn+2(K) = bK(Jn+1). �

For any rational number r we denote by brc the largest integer which is less

than or equal to r.
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Theorem 11.5 Let K be of characteristic p > 0 and G be an abelian p-group.

Let H be a subgroup of G with |G : H| = pm and n be a natural number with

m ≤ n− 1 and pn ≤ |G|. For any natural number k we put Jk = Jack(M) where

M = BG
K. Then:

(1)

Jn(H) =
⊕

V≤H:|H:V |≥ps+1

K[H/V ],

where s = b(n−m− 1)/2c.

(2) SG
H,K does not appear in Jn/Jn+1 if and only if n−m is an odd number.

(3) Suppose that n − m is an even number. Then, the multiplicity of SG
H,K in

Jn/Jn+1 is equal to the number of elements of the set

{V ≤ H : |H : V | = p(n−m)/2}.

Proof : (1) For any nonnegative integer i, we see that i ≤ s if and only if

m+ i ≤ n− i− 1. Thus, if i ≤ s then we get by 11.4 that

Jn−i(X) = bX(Jn−i−1)

for any X ≤ G with |G : X| ≤ pn−i−1. Moreover, by the transitivity of trace

maps on a Mackey functor (i.e, tABt
B
C = tAC for C ≤ B ≤ A) we see that bK(M) is

the sum of K-subspaces of M(K) of the form tKL (M(L)) where L ranges over all

subgroups of K satisfying |L : K| = p.

The result will follow by repeated applications of 11.4. To illustrate it, as-

suming s ≥ 2, we see that

Jn(H) = bH(Jn−1)

=
∑

X1≤H:|H:X1|=p

tHX1
(Jn−1(X1))

=
∑

X1≤H:|H:X1|=p

tHX1
(bX1(Jn−2))

=
∑

X1≤H:|H:X1|=p

tHX1

∑
X2≤X1:|X1:X2|=p

tX1
X2

(Jn−2(X2))

=
∑

X2≤H:|H:X2|=p2

tHX2
(Jn−2(X2)).
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By the explanation given in the first paragraph of the proof we can apply 11.4 to

Jn(H) as above s-times to obtain

Jn(H) =
∑

Y≤H:|H:Y |=ps

tHY (Jn−s(Y )).

It is clear that

n−m− 2 ≤ 2s ≤ n−m− 1,

and so

(n− s)− 2 ≤ m+ s ≤ (n− s)− 1.

As |G : Y | = pm+s we must have by 11.1 that Jn−s(Y ) = bY (M). Hence, the

result follows.

(2) It is a consequence of 9.23 that SG
H,K does not appear in Jn/Jn+1 if and

only if Jn(H) = Jn+1(H), which is, by part (1), equivalent to the requirement

that

b(n−m− 1)/2c = b(n−m)/2c.

The result is clear now.

(3) Suppose that n −m is even. Then, 9.23 implies that the multiplicity of

SG
H,K in Jn/Jn+1 is equal to the dimension of Jn(H)/Jn+1(H). The result now

follows by part (1). �

By part (1) of 11.5 we know the evaluations Jn(H) where G is an abelian

p-group, n is a natural number with pn ≤ |G|, and H is a subgroup of G with

|G : H| ≤ pn−1. For a subgroup H of G with |G : H| ≥ pn we already knew by

part (1) of 11.1 that Jn(H) = M(H). Moreover, if |G : H| ≥ pn then the integer

s in part (1) of 11.5 is a negative integer so that every subgroup V of H satisfies

|H : V | ≥ ps+1. The conclusion is that we can drop the condition m ≤ n− 1 from

the hypothesis of part (1) of 11.5.

The following is an immediate consequence of 11.2 and 11.5.

Corollary 11.6 Let K be of characteristic p > 0 and G be an abelian p-group.

For any natural number k we put Jk = Jack(M) where M = BG
K. Then, for any
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natural number n with pn ≤ |G| we have:

Jn/Jn+1
∼=

bn/2c⊕
l=0

( ⊕
H≤G:|G:H|=pn−2l

λl
HS

G
H,K

)
where λl

H is the number of elements of the set {V ≤ H : |H : V | = pl}.

Let G be an abelian p-group with |G| = pn. To study the the radical factors

Jn+r/Jn+r+1 of BG
K, where r ≥ 1, we first extend 11.4 to other cases.

Lemma 11.7 Let K be of characteristic p > 0 and G be an abelian p-group with

|G| = pn. Let r ≥ 1 be a natural number. For any natural number k we put

Jk = Jack(M) where M = BG
K. Then, Jn+r(H) = bH(Jn+r−1) for any subgroup H

of G.

Proof : The result is true for r = 1 by 11.4.

Assume that the result is true for r.

As each M(H) is a semisimple KNG(H)-module, it follows by 9.25 that

Jn+r+1(H) = b0H(Jn+r).

It can be seen by arguing as in the proof of 11.4 that

b0H(Jn+r) = bH(Jn+r).

�

The radical factors of BG
K not covered in 11.5 is the content of the next result.

Theorem 11.8 Let K be of characteristic p > 0 and G be an abelian p-group

with |G| = pn. Let H be a subgroup of G with |G : H| = pm. For any natural

number k we put Jk = Jack(M) where M = BG
K. Then:
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(1)

Jk(H) =
⊕

V≤H:|H:V |≥ps+1

K[H/V ],

where s = b(k −m− 1)/2c.

(2) Assume that k ≥ n+ 1. Then, SG
H,K appears in

Jk/Jk+1

if and only if k −m is an even number satisfying

(k −m)/2 ≤ (n−m).

Moreover, in this case, the multiplicity of SG
H,K in

Jk/Jk+1

is equal to the number of elements of the set

{V ≤ H : |H : V | = p(k−m)/2}.

Proof : (1) We may assume that k = n + r where r ≥ 1 is a natural number,

because the result is true for k ≤ n by the virtue of part (1) of 11.5. It follows

by repeated applications of 11.7 that

Jn+r(H) =
∑

X≤H:|H:X|=pr

tHX(Jn(X)).

Then, part (1) of 11.5 implies that

Jn+r(H) =
⊕

V≤H:|H:V |=ps′+r+1

K[H/V ]

where s′ = b(n−m− r − 1)/2c. The result follows because

s′ + r = b(n+ r −m− 1)/2c.

(2) It follows by 9.23 that SG
H,K appears in Jk/Jk+1 if and only if

Jk(H) 6= Jk+1(H).
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Note also that if Jk(H) 6= Jk+1(H) then Jk(H) 6= 0 so that |H| ≥ ps+1 by part (1).

Therefore, part (1) gives the equivalency of Jk(H) 6= Jk+1(H) to the conditions

b(k −m− 1)/2c 6= b(k −m)/2c and (n−m) ≥ b(k −m− 1)/2c.

The result now follows easily. �

The following obvious consequence of 11.8 deals with the cases not contained

in 11.6.

Corollary 11.9 Let K be of characteristic p > 0 and G be an abelian p-group

with |G| = pn. For any natural number k we put Jk = Jack(M) where M = BG
K.

Then, for any k ≥ n+ 1,

Jk/Jk+1
∼=

bk/2c⊕
l=k−n

( ⊕
H≤G:|G:H|=pk−2l

λl
HS

G
H,K

)
where λl

H is the number of elements of the set

{V ≤ H : |H : V | = pl}.

In particular, the Loewy length of M is 2n+ 1.

Remark 11.10 Let K be of characteristic p > 0 and G be a p-group with |G| =
pn. Then, the Loewy length of BG

K is greater than or equal to 2n+ 1.

Proof : As tG1 r
G
1 ([G/G]) = [G/1],

tG1 r
G
1 (BG

K(G)) 6= 0.

The proof of 9.27 shows that the Loewy length of BG
K is greater than or equal to

2n+ 1. �

For any subgroup H of G it is obvious that ↓GH BG
K = BH

K .

Remark 11.11 Let K be of characteristic p > 0 and G be an abelian p-group.

Let H be a subgroup of G with |G : H| = pm. Then, for any natural number k

with k ≥ m we have:

↓GH Jack(BG
K) = Jack−m(BH

K ).



CHAPTER 11. RADICAL SERIES OF BURNSIDE FUNCTOR 148

Proof : It can be obtained easily by using part (1) of 11.8. �

As an example obtained from 11.6 and 11.8 we next record

Example 11.12 Let K be of characteristic p > 0 and G be a cylic group of

order p4. For any natural number k we put Jk = Jack(M) where M = BG
K. Let

1 < H1 < H2 < H3 < G be the lattice of the subgroups of G so that |Hi| = pi for

each i. Then:

M = J0 ⊃ J1 ⊃ J2 ⊃ J3 ⊃ J4 ⊃ J5 ⊃ J6 ⊃ J7 ⊃ J8 ⊃ J9 = 0,

where
J0/J1

∼= SG
G,K

J1/J2
∼= SG

H3,K

J2/J3
∼= SG

H2,K ⊕ SG
G,K

J3/J4
∼= SG

H1,K ⊕ SG
H3,K

J4/J5
∼= SG

1,K ⊕ SG
H2,K ⊕ SG

G,K

J5/J6
∼= SG

H1,K ⊕ SG
H3,K

J6/J7
∼= SG

H2,K ⊕ SG
G,K

J7/J8
∼= SG

H3,K

J8/J9
∼= SG

G,K

One may see the symmetry of the diagram showing the radical layers of the

functor in the previous example. Indeed, up to multiplicities of simple functors in

radical layers, the shape of the diagram showing the radical layers of BG
K, where

G is an abelian p-group, is still symmetric.

Remark 11.13 Let K be of characteristic p > 0 and G be an abelian p-group

with |G| = pn. For any natural number k we put Jk = Jack(M) where M = BG
K.

Let r be a natural number with 1 ≤ r ≤ n and let H be a subgroup of G. Then,

SG
H,K appears in

Jn−r/Jn−r+1

if and only if SG
H,K appears in

Jn+r/Jn+r+1.
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However, the multiplicities may be different.

Proof : Let |G : H| = pm.

Suppose that SG
H,K appears in Jn−r/Jn−r+1. It follows by 11.2 and 11.5 that

m ≤ n− r and n− r −m is an even number. Then, n + r ≥ n + 1, the number

n+ r−m is even, and (n+ r−m)/2 ≤ (n−m). Thus, we see by part (2) of 11.8

that SG
H,K appears in Jn+r/Jn+r+1.

Converse part may be proved similarly. �



Chapter 12

Minimal subfunctors of Burnside

functor

All the materials in this chapter comes from [Yar5, Section 7].

Here we want to study the minimal subfunctors of BG
K where K is of charac-

teristic p > 0 and G is a (abelian) p-group. This turns out to be harder than the

study of the radical series we presented in this section because determination of

restriction kernels of BG
K is much harder than determination of Brauer quotients

of BG
K, all of which were isomorphic to trivial modules.

For any finite group H we use the notation Φ(H) to denote the Frattini

subgroup of H which is the intersection of all maximal subgroups of H. It is the

set of all nongenerators of H so that Φ(H)X 6= H for any proper subgroup X of

H.

Lemma 12.1 Let K be of characteristic p > 0 and G be a p-group. Put M = BG
K.

For any subgroups K and L of G we have:

(1) If K ≤ L with |L : K| = p then

Ker(rL
K : M(L)→M(K)) ⊆

( ⊕
V≤LL:NL(V ) 6≤K

K[L/V ]
)
.

150
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(2) ( ⊕
V EL:V≤Φ(L)

K[L/V ]
)
⊆M(L) ⊆

( ⊕
V EL

K[L/V ]
)
.

(3) (
k0

L(M)
)NG(L) ⊆

( ⊕
V≤LL:NG(V )=L

K[L/V ]
)
.

Proof : (1) Let K E L with |L : K| = p. Any subgroup V of L satisfies exactly

one of the three conditions:

NL(V ) ≤ K; V ≤ K 6≥ NL(V ); V 6≤ K.

As these conditions closed under taking L-conjugates of V, we can write the set

of L-conjugacy classes of subgroups of L as a disjoint union of the three sets:

B1 = {V ≤L L : NL(V ) ≤ K},

B2 = {V ≤L L : V ≤ K 6≥ NL(V )},

B3 = {V ≤L L : V 6≤ K}.

Thus, letting

Bi =
⊕
V ∈Bi

K[L/V ],

we may write

M(L) = B1 ⊕B2 ⊕B3

as K-spaces. Using the definitions of restriction maps on M it is easy to verify

the three properties:

rL
K : B1 →M(K) is injective; rL

K(B2) = 0; rL
K(B1) ∩ rL

K(B3) = 0.

Now, let x ∈M(L) and write

x = x1 + x2 + x3

where xi ∈ Bi for each i. If rL
K(x) = 0 then it follows by the above properties that

x1 = 0. This completes the proof.
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(2) Let x ∈ M(L). Assume that there is a nonnormal subgroup V of L such

that [L/V ] appears in x with nonzero coefficient. We can choose a maximal

subgroup K of L containing NL(V ). Then |L : K| = p and x ∈ KerrL
K . But this

is impossible by part (1). The other inclusion is obvious.

(3) Let

x ∈
(
k0

L(M)
)NG(L)

.

Take a subgroup X = X/L of NG(L) of order p. Then,

x ∈ Ker(tXL : M(L)X →M(X))

(see 9.26). It follows by part (2) that

x ∈ Ker(tXL : UX →M(X))

where

U =
⊕
V EL

K[L/V ].

The KX-module U is a permutation module with a permutation basis

S = {[L/V ] : V E L}.

The X-orbit sums of S form a K-basis of UX . As the order of X is p, the sizes

of X-orbits of S are 1 or p. It is is obvious that the image under tXL of any orbit

sum of size p is 0. Furthermore, if V and W are normal subgroups of L such that

NX(V ) = X = NX(W )

(equivalently, the sizes of orbits containing each are both equal to 1) then

tXL ([L/V ]) = [X/V ] and tXL ([L/W ]) = [X/W ]

are distinct basis elements of M(X). If we write x as a linear combination of

X-orbit sums of S then we see that the coefficient of any orbit sum of size 1 must

be 0. Therefore, x can be written as a linear combination of elements of M(L) of

the form [L/V ] with NX(V ) = L.

To finish, if [L/V ] with V E L and with NG(V ) 6= L appears in x, then we

may choose a subgroup of Y/L of NG(V )/L of order p. Then NY (V ) = Y, which

is impossible, because what we have observed above implies that NY (V ) = L. �
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Proposition 12.2 Let K be of characteristic p > 0. Let G be a p-group and H

be a subgroup of G. Put M = BG
K. Then:

(1) If SG
H,K appears in Soc(M) then H = NG(V ) for some subgroup V of H.

(2) The multiplicity of SG
G,K in Soc(M) is equal to dimKM(G), which is nonzero.

(3) SG
NG(Φ(H)),K appears in Soc(M).

(4) If G is abelian, then Soc(M)(G) = M(G) and Soc(M)(X) = 0 for any proper

subgroup X of G.

Proof : (1) Let S be a simple subfunctor of M such that S is isomorphic to SG
H,K.

It follows by 9.26 that S(H) ⊆ k0
H(M). As NG(H) acts on S(H) ∼= K trivially,

we must have that

S(H) ⊆
(
k0

H(M)
)NG(H)

.

In particular,
(
k0

H(M)
)NG(H) 6= 0. The result follows by part (3) of 12.1.

(2) It follows by part (2) of 12.1 and by 9.3.

(3) By part (2) we may assume that NG(Φ(H)) 6= G. For any subgroup V of

G with NG(V ) 6= G we put

xV =
∑

gNG(V )⊆NG(NG(V ))

[NG(V )/gV ].

It is easy to see that an element g ∈ NG(NG(V )) satisfies

[NG(V )/V ] = [NG(V )/gV ]

if and only if g ∈ NG(V ). This shows that

xV ∈M(NG(V ))NG(NG(V )).

Take any K ≥ NG(V ) with |K : NG(V )| = p. Then,

NG(V ) E K ≤ NG(NG(V ))
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so that

xV =
∑

NG(V )a⊆K

caNG(V )

( ∑
Kb⊆NG(NG(V ))

[NG(V )/bV ]
)
,

implying that

tKNG(V )(xV ) = |K : NG(V )|
∑

Kb⊆NG(NG(V ))

[K/bV ] = 0.

Letting now V = Φ(H) and L = NG(V ) we see by the above and by part (2) of

12.1 that

xV = k0
L(M)NG(L).

Thus, KxV is a KNG(L)-submodule of k0
L(M) isomorphic to the trivial module K,

in particular it is simple. Hence, 9.26 implies that SG
NG(V ),K appears in Soc(M).

(4) If SG
H,K appears in Soc(M) then part (1) implies that H = G. The result

follows by 9.26. �

Part (1) of 12.2 is a special case of [Ni, Proposition 2.4], that can also be

obtained by using it. Moreover, calculating the dimension of M(G), where M =

BG
K, is not easy even for small abelian p-groups. See [Ni, Section 3] where this

dimension is calculated for some abelian p-groups.

As the Mackey algebra µK(G) is not self-injective unless p2 does not divide |G|
(see [TW95, (19.2) Theorem]), the socle of a principal indecomposable µK(G)-

module PG
H,V may not be isomorphic to SG

H,V . Thus, determination of the socle

of a µK(G)-module of the form PG
H,V is not out of interest and studied in [Ni].

In particular, letting K be algebraically closed and G be a p-group, it is shown

in [Ni, Proposition 2.4] by using a filtration of projective functors described in

[We2] that if SG
K,K appears in Soc(PG

H,K) then K = NH(L) for some L ≤ H. In

the general case, by the category equivalence described in [TW95, Section 10],

finding

Soc(PG
H,V )

is equivalent to finding

Soc
(
P

NG(J)
H/J,V

)
where J = Op(H). Thus, to understand socles of principal indecomposable func-

tors one has to find the socle of a µK(G)-module of the form PG
H,V where H is a
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p-group. Moreover, letting K be algebraically closed, we have by [TW95, (8.6)

Theorem] that PG
H,V is a direct summand of ↑GH BH

K . Therefore, studying the so-

cle of the Burnside functor BH
K for a p-subgroup of H of G is important for the

determination of the socle of PG
H,V . Regarding this problem we only state the

following.

Proposition 12.3 Let K be an algebraically closed field of characteristic p > 0,

and let K and H be subgroups of G. Suppose that W is a simple KNG(H)-module

and V is a simple KNG(K)-module. Then:

(1) Assume that H is a p-subgroup of G. If a simple µK(G)-module S appears in

the socle of PG
H,W , then S(NH(L)) 6= 0 for some L ≤ H.

(2) Assume that H is a p-subgroup of G and dimK V = 1. If SG
K,V appears in the

socle of PG
H,W , then K =G NH(L) for some L ≤ H.

(3) Assume that H is a normal p-subgroup of G. If SG
K,V appears in the socle of

PG
H,W , then K = NH(L) for some L ≤ H.

(4) If NG(H) is a p-group, then SG
H,K appears in the socle of PG

H,K with multiplicity

equal to dimK T (H), where T = BH
K .

(5) Assume that H is a p-subgroup of G. Then, for any simple KNG(H)-module

U there is a simple KNG(H)-module U ′ such that SG
H,U appears in the socle

of PG
H,U ′ .

Proof : (1) Let B = µK(H) and T = BH
K . Suppose that S appears in the socle

of PG
H,W . As PG

H,W is a direct summand of ↑GH T, it follows by the adjointness of

the pair (↓GH , ↑GH) that

HomB(↓GH S, T ) 6= 0.

Let X = {NH(X) : X ≤ H} and e = eX be the idempotent of B defined as in

4.21 by

eX =
∑
X∈X

tXX .
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Part (1) of 12.2 implies that T has no nonzero B-submodule annihilated by e.

Then, by part (1) of 4.10, we see that HomeBe(eS, eT ) 6= 0. In particular eS 6= 0,

implying the result.

(2) and (3) They follow by part (1) and by 9.23.

(4) Let T = BH
K . Using 9.5 we see that the KNG(H)-modules

(↑GH T )(H) and nKNG(H)

are isomorphic where n = dimK T (H).

It is clear that taking restriction kernels respects finite direct sums. Indeed,

for any Mackey functor M for G, we have by part (2) of 8.3 that

M(H) = (M :f 0)(H)

for some idempotent f. So, part (6) of 7.1 implies that taking restriction kernels

respects finite direct sums. This fact is also immediate from the isomorphism

(L−NG(H)/H ↓GNG(H) M)(H/H) ∼= M(H)

of KNG(H)-modules, because the functors L− and ↓ respect finite direct sums.

For a principal indecomposable µK(G)-module P = PG
Y,U it follows by 9.5 that

if P (H) 6= 0 then H ≤G Y. Thus, using the formula [TW95, (8.6) Theorem]

expressing ↑GH T as a direct sum of principal indecomposable µK(G)-modules, we

see that

(↑GH T )(H) ∼= PG
H,K(H).

Hence, the multiplicity of SG
H,K in the socle of PG

H,K is equal by 9.3 to n.

(5) As

↓GH SG
H,U
∼= (dimK U)SH

H,K

and as SH
H,K appears in the socle of BH

K (by part (2) of 12.2), we see by using the

adjointness of the pair (↓GH , ↑GH) that SG
H,U appears in the socle of ↑GH BH

K . The

result follows by using the formula [TW95, (8.6) Theorem] expressing ↑GH BH
K as

a direct sum of principal indecomposable and by arguing as in part (4). �



Chapter 13

Socle series of Burnside functor

Almost all the materials in this chapter comes from [Yar5, Section 7].

We want to study the socle series of BG
K and obtain results similar to the ones

in Chapter 11. However, because of the difficulty arisen in the computation of

restriction kernels, here we required to assume that G is abelian.

Lemma 13.1 Let K be of characteristic p > 0 and G be an abelian p-group. Let

H be a subgroup of G and n be a natural number. For any natural number k we

put Sk = Sock(M) where M = BG
K. Then:

(1) Sn+1(H)/Sn(H) = k0
H(M/Sn).

(2) If |G : H| ≥ pn then Sn(H) = 0.

(3) If |G : H| = pn−1 and n ≥ 1 then Sn(H) = M(H).

(4) If |G : H| = pn−2 and n ≥ 2 then Sn(H) = M(H).

(5) If |G : H| ≤ pn ≤ |G| then Sn+1(H)/Sn(H) = (M/Sn)(H).

Proof : (1) As G is abelian, NG(H) acts on M(H) trivially so that each sub-

module of each quotient of M(H), in particular k0
H(M/Sn), is semisimple. The

result follows by 9.26.

157
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(2) The result is true for n = 0, 1 by 12.2.

Assuming that the result is true for n, take a subgroup K of G such that

|G : K| ≥ pn+1. We want to show that Sn+1(K) = 0.

Let H ≥ K with |H : K| = p. Then,

Sn(H) = 0 = Sn(K)

by the assumption of the result for n. As G is abelian, the map tHK on M, and

hence on M/Sn, is injective. This means by 9.23 that SK,K does not occur in

Sn+1/Sn so that, by 9.23 again,

Sn+1(K) = Sn(K) = 0.

(3) The result is true for n = 1 by 12.2.

Assume that the result is true for n. Take a subgroup K of G with

|G : K| = pn.

We want to show that Sn+1(K) = M(K). We will achieve this by first calculating

k0
K(M/Sn) and then by using part (1).

Part (2) implies that

(M/Sn)(K) = {x ∈M(K) : rK
J (x) ∈ Sn(J),∀J < K}/Sn(K) = M(K)/0.

Let H ≥ K with |H : K| = p. For any x ∈ M(K), we see by using the Mackey

axiom that rH
J t

H
K(x) = 0 for any J < H so that

tHK(x) ∈M(H) = Sn(H).

Hence,

k0
K(M/Sn) = (M/Sn)(K) = M(K)/0.

As Sn(K) = 0, the result follows by part (1).

(4) Using the first three parts we see that

k0
G(M/S1) = (M/S1)(G) = M(G)/M(G) = 0
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implying by 9.26 that SG
G,K does not appear in S2/S1, and so

S2(G) = S1(G) = M(G)

by 9.23. Hence, the result is true for n = 2. An easy induction argument on n

finishes the proof.

(5) The result is true for n = 0 because S1(G) = M(G) by 12.2.

Assume that the result is true for n. Take a subgroup K of G with

|G : K| ≤ pn+1.

Our aim is to obtain that Sn+2(K)/Sn+1(K) = (M/Sn+1)(K).

We have by part (1) that

Sn+2(K)/Sn+1(K) = k0
K(M/Sn+1).

Let x ∈M(K) be such that

x+ Sn+1(K) ∈ (M/Sn+1)(K)

= {y ∈M(K) : rK
J (y) ∈ Sn+1(J),∀J < K}/Sn+1(K).

Then, rK
J (x) ∈ Sn+1(J) for any J < K. Take any H ≥ K with |H : K| = p.

Then, for any I < H, it follows by the Mackey axiom that

rH
I t

H
K(x) = |H : IK|tII∩Kr

K
I∩K(x).

If rH
I t

H
K(x) 6= 0, thenH = IK implying that I∩K < I and I∩K < K. It follows by

9.23 that the element tII∩K of µK(G) annihilates the semisimple functor Sn+1/Sn.

This gives that rH
I t

H
K(x) ∈ Sn(I), because rK

I∩K(x) ∈ Sn+1(I ∩K). Therefore,

rH
I t

H
K(x) ∈ Sn(I)

for every I < H, that means

tHK(x) + Sn(H) ∈ {z ∈M(H) : rH
J (z) ∈ Sn(J),∀J < H}/Sn(H)

= (M/Sn)(H).
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Now, the assumption of the result for n gives that tHK(x) ∈ Sn+1(H). Conse-

quently, any element x+ Sn+1(K) of (M/Sn+1)(K) is mapped by tHK to the zero

element of M(H)/Sn+1(H). This yields that

k0
K(M/Sn+1) = (M/Sn+1)(K),

as desired. �

Theorem 13.2 Let K be of characteristic p > 0 and G be an abelian p-group.

Let H be a subgroup of G and n be a natural number with pn ≤ |G|. For any

natural number k we put Sk = Sock(M) where M = BG
K. Then:

(1) If SG
H,K appears in Sn+1/Sn then |G : H| ≤ pn.

(2) If |G : H| = pn−1 then SG
H,K does not appear in Sn+1/Sn.

(3) If |G : H| = pn then the multiplicity of SG
H,K in Sn+1/Sn is dimKM(H).

(4) SG
1,K appears in Sm+1/Sm where pm = |G|.

Proof : (1) and (2) They follow by parts (2)-(4) of 13.1.

(3) The multiplicity of SG
H,K in Sn+1/Sn is equal by 9.23 to the dimension of

Sn+1(H)/Sn(H), that is isomorphic by 13.1 to M(H).

(4) Follows by part (3). �

Theorem 13.3 Let K be of characteristic p > 0 and G be an abelian p-group.

Let H be a subgroup of G with |G : H| = pm and n be a natural number with

m ≤ n− 1 and pn ≤ |G|. For any natural number k we put Sk = Sock(M) where

M = BG
K. Then:

(1)

Sn(H) =
⋂

X≤H:|H:X|=ps+1

Ker(rH
X : M(H)→M(X)),

where s = b(n−m− 1)/2c.



CHAPTER 13. SOCLE SERIES OF BURNSIDE FUNCTOR 161

(2) If n−m is an odd number then SG
H,K does not appear in Sn+1/Sn.

Proof : (1) For any subgroup K of G with |G : K| ≤ pn it follows by part (5)

of 13.1 that

Sn+1(K) = {x ∈M(K) : rK
J (x) ∈ Sn(J),∀J < K}

=
⋂

J≤K:|K:J |=p

{x ∈M(K) : rK
J (x) ∈ Sn(J)}.

We will use this equality repeatedly to obtain the result. Arguing as in the proof

of part (1) of 11.5, we apply the above equality s-times to Sn(H) and obtain that

Sn(H) =
⋂

Y≤H:|H:Y |=ps

{x ∈M(H) : rH
Y (x) ∈ Sn−s(Y )}.

As |G : Y | = pm+s and as

(n− s)− 2 ≤ m+ s ≤ (n− s)− 1,

we see by parts (3) and (4) of 13.1 that Sn−s(Y ) = M(Y ). Thus, the result follows.

(2) It follows by the first part, because if n−m is an odd number then

b(n−m− 1)/2c = b(n−m)/2c.

�

The following is immediate from 13.3.

Corollary 13.4 Let K be of characteristic p > 0 and G be an abelian p-group.

For any natural number k we put Sk = Sock(M) where M = BG
K. Then, for any

natural number n with pn ≤ |G| we have:

Sn+1/Sn
∼=

bn/2c⊕
l=0

( ⊕
H≤G:|G:H|=pn−2l

λl
HS

G
H,K

)
for some nonnegative integers λl

H .
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Some of the numbers λl
H in 13.4 may be 0. For instance, letting G be the cyclic

group of order p4, one may calculate that S3/S2
∼= 2SG

H,K where |G : H| = p2, in

particular, SG
G,K does not appear in S3/S2. See Example 13.7.

Imitating the proofs of 11.7 and 11.8 one may obtain the following.

Theorem 13.5 Let K be of characteristic p > 0 and G be an abelian p-group

with |G| = pn. Let H be a subgroup of G with |G : H| = pm. For any natural

number k we put Sk = Sock(M) where M = BG
K. Then:

(1)

Sk(H) =
⊕

X≤H:|H:X|=ps+1

Ker(rH
X : M(H)→M(X)),

where s = b(k −m− 1)/2c.

(2) Assume that k ≥ n+1. If k−m is an odd number, then SG
H,K does not appear

in Sk+1/Sk.

(3) If k ≥ n+ 1, then

Sk+1/Sk
∼=

bk/2c⊕
l=k−n

( ⊕
K≤G:|G:K|=pk−2l

λl
KS

G
K,K

)
for some nonnegative integers λl

K .

The following consequence of the previous result may be used to derive some

results about the Burnside functor of an abelian group G by using induction on

the order of G.

Corollary 13.6 Let K be of characteristic p > 0 and G be an abelian p-group.

Let H be a subgroup of G with |G : H| = pm. Then, for any natural number k

with k ≥ m we have:

↓GH Sock(BG
K) = Sock−m(BH

K ).
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Proof : It can be obtained easily by using part (1) of 13.5. �

Using part (1) of 13.5 one may get the following example.

Example 13.7 Let K be of characteristic p > 0 and G be a cylic group of order

p4. For any natural number k we put Sk = Sock(M) where M = BG
K. Let 1 <

H1 < H2 < H3 < G be the lattice of the subgroups of G so that |Hi| = pi for each

i. Then:

0 = S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ S4 ⊂ S5 ⊂ S6 ⊂ S7 ⊂ S8 ⊂ S9 = M,

where

4SG
G,K; 3SG

H3,K; 2SG
H2,K; SG

H1,K; SG
1,K; SG

H1,K; SG
H2,K; SG

H3,K; SG
G,K

∼= ∼= ∼= ∼= ∼= ∼= ∼= ∼= ∼=
S1/S0 S2/S1 S3/S2 S4/S3 S5/S4 S6/S5 S7/S6 S8/S7 S9/S8



Chapter 14

Series of fixed point functor

All the materials in this chapter comes from [Yar5, Section 7].

To give more applications of general results we obtained in previous chapters,

we study in this short chapter the fixed point functor FPG
V where V is a one

dimensional KG-module and K is of characteristic p > 0. As V is one dimensional,

the KK-module V is simple for any subgroup K of G, and if H is a p-subgroup

of G then V H = V 6= 0. Therefore, the image of the (relative) trace map tKH is

0 if H < K are p-subgroups of G. Moreover, restrictions maps on a fixed point

functor are all inclusions (so that injective), and in the case dimK V = 1 we see if

we assume V K 6= 0 that the (relative) trace map tKH on FPG
V is surjective if and

only if p does not divide |K : H|.

Lemma 14.1 Let K be of characteristic p > 0 and V be a one dimensional KG-

module. Let H be a subgroup of G and W be a simple KNG(H)-module. Let J

and S be µK(G)-submodules of M where M = FPG
V . Then:

(1) J(H) 6= 0 if and only if J(H) = M(H) and H is a p-subgroup of G.

(2) SG
H,W appears in the head of J if and only if H is a maximal subgroup of G

subject to the condition J(H) 6= 0 and the KNG(H)-module W is isomor-

phic to V H = V.

164
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(3) Any minimal subgroup of M/S is a p-subgroup of G.

(4) (M/S)(H) 6= 0 if and only if H is a minimal subgroup of M/S.

Proof : As dimKM(X) ≤ 1 for any subgroup X of G, we see that J(X) 6= 0 if

and only if J(X) = M(X) 6= 0. We will use this trivial observation in the proof.

(1) This is trivial by the explanation given before 14.1.

(2) Suppose that SG
H,W appears in the head of J. By 7.4 the module W

is isomorphic to a simple quotient module of the KNG(H)-module J(H). As

dimKM(Y ) ≤ 1 for any Y ≤ G, it is clear that if J(H) 6= 0 then

J(H) ∼= M(H) = V H = V.

In particular, dimKW = 1 so that we may use 7.16. Assume that H is not

maximal subject to the required condition. Then there is a K > H satisfying

J(K) 6= 0. Using part (1) we can find a subgroup X with H < X ≤ K with

|X : H| = p. Now

0 6= rK
H (J(K)) ⊆ rX

H (J(X))

implying that rX
H (J(X)) = J(H). But then 7.16 implies that SG

H,W does not

appear in the head of J.

The converse implication follows by 9.3.

(3) Let X be a minimal subgroup of M/S. Then M(X) 6= 0, S(X) = 0 and

S(Y ) = M(Y ) for any Y < X. If X is not a p-group then

M(X) = tXZ (S(Z)) ⊆ S(X)

where Z is a Sylow p-subgroup of X.

(4) Suppose that (M/S)(H) 6= 0. Then

0 6= rH
X (M(H)) ⊆ S(X)

for any X < H. Thus, M(X) = S(X) for any X < H implying that H is a

minimal subgroup of M/S. �
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Theorem 14.2 Let K be of characteristic p > 0 and V be a one dimensional

KG-module. For any natural number k we put Jk = Jack(M) and Sk = Sock(M)

where M = FPG
V . Let n be the natural number satisfying pn = |G|p. Then:

(1)

Jk/Jk+1
∼=

⊕
H≤GG:|H|=pn−k

SG
H,V .

(2)

Sk+1/Sk
∼=

⊕
H≤GG:|H|=pk

SG
H,V .

(3) The Loewy length of M is n+ 1.

(4) Let X be a p-subgroup of G. Then, Jk(X) = 0 if and only if |X| ≥ pn+1−k.

(5) Let X be a p-subgroup of G. Then, Sk(X) = 0 if and only if |X| ≥ pk.

(6) If G is a p-group then the socle and the radical series of M coincide.

Proof : Firstly, as dimKM(X) ≤ 1 for any X ≤ G, the multiplicity of any

composition factor of M is 1.

(1) Parts (1) and (2) of 14.1 imply that J0/J1
∼= SG

H,V where |H| = pn.

Assume that the result is true for k = 1, 2, ..., r.

Let K be a p-subgroup of G. Then, it follows by 9.23 that the evaluation

of M/Jr+1 at K is nonzero if and only if |K| ≥ pn−r. As dimKM(K) = 1, we

conclude that Jr+1(K) = M(K) if and only if

|K| ≤ pn−(r+1).

Therefore, parts (1) and (2) of 14.1 imply that the result is true for k = r + 1.

(2) It may be justified as in part (1).

(3) It follows by part (1) or by part (2).
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(4) As dimKM(X) = 1, we see that Jk(X) = 0 if and only if the evaluation of

M/Jk at X is nonzero. This is equivalent to the requirement that the evaluation

of

Jk−m−1/Jk−m

at X is nonzero for some m ≥ 0. Using part (1) and 9.23 we now conclude that

Jk(X) = 0 if and only if

|X| = pn−(k−m−1) ≥ pn+1−k.

(5) It may be justified as in part (4).

(6) It follows by parts (4) and (5). �



Chapter 15

Adjoints of restriction and

inflation

The main concern of this last chapter is to study socles and heads of Mackey

functors obtained by applying adjoints of restriction and inflation to a Mackey

functor. As the results here depend on functorial properties of restriction and

inflation, almost every thing in this chapter can be done for modules of group

algebras.

We begin by investigating possible relations between Soc(T ) and Soc(↑GH T ),

where H is a subgroup of G and T is a µK(H)-module.

Proposition 15.1 Let H be a subgroup of G, and let T1 and T2 be µK(H)-modules

with T1 ⊆ T2. If Soc(↑GH T1) = Soc(↑GH T2) then Soc(T1) = Soc(T2).

Proof : It is enough to see that every nonzero µK(H)-submodule T of T2 inter-

sects T1 nontrivially. This follows from the exactness of the functor ↑GH (which is

a consequence of 2.8), implying by the condition Soc(↑GH T1) = Soc(↑GH T2) that

0 6= (↑GH T ) ∩ (↑GH T1) =↑GH (T ∩ T1).

�

168
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The containment condition T1 ⊆ T2 in 15.1 is necessary. For instance, assum-

ing the existence of a simple µK(H)-module T such that, for some g ∈ NG(H),

its conjugate gT is not isomorphic to T, we see that ↑GH T ∼=↑GH gT, and hence

their socles are isomorphic.

Proposition 15.2 Let K be of characteristic p > 0, and let H be either a p′-

subgroup of G or a normal subgroup of G. For any µK(H)-modules T1 and T2, if

Soc(T1) ∼= Soc(T2) then Soc(↑GH T1) ∼= Soc(↑GH T2).

Proof : Let S be any simple µK(G)-module such that ↓GH S 6= 0. We first note

that ↓GH S is a semisimple µK(H)-module. Indeed, if H is a p′-subgroup then

µK(H) is a semisimple algebra by [TW] so that ↓GH S is a semisimple µK(H)-

module. If H is a normal subgroup of G, then it follows by Clifford’s theorem for

Mackey functors [Yar1, Theorem 3.10] that ↓GH S is semisimple.

The result now follows from the adjointness of the pair (↑GH , ↓GH) which implies

the following K-space isomorphisms for any simple µK(G)-module S :

HomµK(G)

(
S, Soc(↑GH T1)

) ∼= HomµK(G)

(
S, ↑GH T1

)
∼= HomµK(H)

(
↓GH S, T1

)
∼= HomµK(H)

(
↓GH S, Soc(T1)

)
∼= HomµK(H)

(
↓GH S, Soc(T2)

)
∼= HomµK(H)

(
↓GH S, T2

)
∼= HomµK(G)

(
S, ↑GH T2

)
∼= HomµK(G)

(
S, Soc(↑GH T2)

)
.

�

Corollary 15.3 Let K be of characteristic p > 0, and let H be either a p′-

subgroup of G or a normal subgroup of G. For any µK(H)-module T,

(1) Soc(↑GH T ) = Soc
(
↑GH Soc(T )

)
.
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(2) If p does not divide |G : H| then Soc(↑GH T ) =↑GH Soc(T ).

Proof : (1) Follows from 15.2 because the socles of µK(H)-modules T and Soc(T )

are equal.

(2) This follows from part (1). Indeed, either G is a p′-group in which case

the result is trivial by the semisimplicity of the algebra µK(G) [TW], or H is a

normal subgroup of G whose index is not divisible by p. In the latter case, it

follows by [Yar1, Corollary 3.8] that ↑GH T ′ is a semisimple µK(G)-module for any

semisimple µK(H)-module T ′. This clearly implies the result. �

Given a subgroup H of G and a µK(H)-module T, we next want to obtain

some results about heads of Mackey functors T and ↑GH T.

Proposition 15.4 Let H be a subgroup of G, and let T1 and T2 be µK(H)-modules

with a µK(H)-module epimorphism T1 → T2. If

(↑GH T1)
/
Jac(↑GH T1) ∼= (↑GH T2)

/
Jac(↑GH T2)

then T1/Jac(T1) ∼= T2/Jac(T2).

Proof : Let f : T1 → T2 be a µK(H)-module epimorphism. For any µK(H)-

submodule T of T1 satisfying Kerf + T = T1 we must show that T = T1. This

follows from the exactness of the functor ↑GH , inducing a µK(G)-module epimor-

phism ↑GH T1 →↑GH T2 whose kernel is equal to ↑GH Kerf. Indeed, Kerf + T = T1

implies that

↑GH Kerf+ ↑GH T =↑GH T1.

As the heads of ↑GH T1 and ↑GH T2 are isomorphic, we deduce that ↑GH T =↑GH T1.

Now it follows by the containment T ⊆ T1 and by the exactness of the functor

↑GH that ↑GH (T1/T ) = 0, from which T = T1 is obtained. �

The example given after 15.1 indicates the necessity of the surjectivity as-

sumption of a µK(H)-module homomorphism T1 → T2 given in 15.4.

The same arguments of the proofs of 15.2 and 15.3 can be used to deduce the

next two results.
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Proposition 15.5 Let K be of characteristic p > 0, and let H be either a p′-

subgroup of G or a normal subgroup of G. For any µK(H)-modules T1 and T2, if

T1/Jac(T1) ∼= T2/Jac(T2) then

(↑GH T1)
/
Jac(↑GH T1) ∼= (↑GH T2)

/
Jac(↑GH T2).

Proposition 15.6 Let K be of characteristic p > 0, and let H be either a p′-

subgroup of G or a normal subgroup of G. For any µK(H)-module T,

(1) The heads of the µK(G)-modules ↑GH T and ↑GH
(
T/Jac(T )

)
are isomorphic.

(2) If p does not divide |G : H| then ↑GH Jac(T ) = Jac(↑GH T ).

As the restriction of a Mackey functor for G to a proper subgroup of G may

be the zero Mackey functor, if we replace inductions with restrictions then the

results 15.1 and 15.4 will be no longer true. Nevertheless, we want to give some

similar results for this case also.

For any µK(G)-module M and any subgroup H of G we denote by SocH(M)

the sum of all simple subfunctors of M having a minimal subgroup contained in

H. In a dual way, we denote by JacH(M) the intersection of all maximal µK(G)-

submodules J of M whose quotient M/J has a minimal subgroup contained in

H.

The following result follows from the definitions.

Remark 15.7 Let H be a subgroup of G, and let M be a µK(G)-module.

(1) SocH(M) is the µK(G)-submodule of M generated by ↓GH Soc(M). In other

words, SocH(M) is the smallest µK(G)-submodule of M satisfying

↓GH SocH(M) =↓GH Soc(M).

(2) JacH(M) is the largest µK(G)-submodule of M satisfying

↓GH JacH(M) =↓GH Jac(M).
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(3) M/JacH(M) is isomorphic to the sum of all simple µK(G)-submodules

of M/Jac(M) with a minimal subgroup contained in H. In particular,

M/JacH(M) is a semisimple µK(G)-module.

One may imitate the proofs of 15.1 and 15.4 to obtain the following result.

Proposition 15.8 Let H be a subgroup of G, and let M1 and M2 be µK(G)-

modules.

(1) Suppose that M1 ⊆M2. If Soc(↓GH M1) = Soc(↓GH M2), then

SocH(M1) = SocH(M2) so that ↓GH Soc(M1) =↓GH Soc(M2).

(2) Suppose that there is a µK(H)-module epimorphism M1 → M2. If the heads

of the µK(H)-modules ↓GH M1 and ↓GH M2 are isomorphic, then the µK(G)-

modules

M1/JacH(M1) and M2/JacH(M2)

are isomorphic, which implies that

(↓GH M1)
/(
↓GH Jac(M1)

)
and (↓GH M2)

/(
↓GH Jac(M2)

)
are isomorphic µK(H)-modules .

The conditions on H given in the next result guarantees that the induced

µK(G)-module ↑GH T is semisimple for any simple µK(H)-module T, (see the proof

of 15.3). Thus, the next result may be justified by using the adjointness properties

of induction and restriction, (see 2.8).

Proposition 15.9 Let K be of characteristic p > 0, and let H be a normal

subgroup of G such that |G : H| is not divisible by p. For any µK(G)-modules M1

and M2,

(1) If SocH(M1) ∼= SocH(M2) then Soc(↓GH M1) ∼= Soc(↓GH M2).
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(2) If the µK(G)-modules

M1/JacH(M1) and M2/JacH(M2)

are isomorphic, then the heads of the µK(H)-modules

↓GH M1 and ↓GH M2

are isomorphic.

The following result is an easy consequence of 15.9.

Corollary 15.10 Let K be of characteristic p > 0, and let H be a normal sub-

group of G such that |G : H| is not divisible by p. For any µK(G)-modules M,

(1) ↓GH Soc(M) = Soc(↓GH M).

(2) ↓GH Jac(M) = Jac(↓GH M).

We now want to study socles and heads of Mackey functors obtained by ap-

plying inflation and its adjoints to a Mackey functor. We begin with the following

which can be obtained by using the definitions and adjointness properties of func-

tors involved, see [Yar4, Section 3].

Remark 15.11 Let N be a normal subgroup of G, and T be a µK(G/N)-module.

(1) Let SG
H,V be a simple µK(G)-module and F be any of the functors L+

G/N and

L−G/N . Then,

FSG
H,V
∼= S

G/N
H/N,V if N ≤ H, and FSG

H,V = 0 if N 6≤ H.

(2) L+
G/N InfGG/NT

∼= T ∼= L−G/N InfGG/NT.

(3) T is a semisimple µK(G/N)-module if and only if InfGG/NT is a semismple

µK(G)-module.
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Proposition 15.12 Let N be a normal subgroup of G. Suppose that M is a

µK(G)-module and T be a µK(G/N)-module.

(1) Soc(InfGG/NT ) = InfGG/NSoc(T ) and Jac(InfGG/NT ) = InfGG/NJac(T ).

(2) L−G/NSoc(M) = Soc(L−G/NM).

(3) The head of the µK(G/N)-module L+
G/NM is isomorphic to

L+
G/N

(
M/Jac(M)

)
.

Proof : Follows by 15.11 and by the adjointness of the pairs (L+, Inf) and

(Inf, L−). �

The next result concerns the cases not covered in 15.12.

Corollary 15.13 Let N be a normal subgroup of G, and let M be a µK(G)-

module and T be a µK(G/N)-module.

(1) Soc(L+
G/NM) ∼= L+

G/NSoc(InfGG/NL
+

G/NM).

(2) Jac(L−G/NM) ∼= L−G/NJac(InfGG/NL
−

G/NM).

(3) Jac(L+
G/NM) ∼= L+

G/NJac(InfGG/NL
+

G/NM).

Proof : Follows by part (2) of 15.11 and part (1) of 15.12. �

The µK(G)-module InfGG/NL
+

G/NM (respectively, InfGG/NL
−

G/NM) appeared

in 15.13 is isomorphic to the largest quotient functor (respectively, subfunctor) of

M that can be inflated from a Mackey functor for the quotient group G/N, see

[Yar4, Section 5].

We next want to construct two functors connecting µK(G)-modules with

KNG(H)-modules where H is a subgroup. Similar functors appears in [TW]

and [We2]. We know by [TW] that the evaluation of Mackey functors at trivial

subgroup is a left adjoint of the fixed point functor. For another example, we
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know by [We2] that the functors ∆G
H,− and ∇G

H,− form left and right adjoints of

taking restriction kernel and Brauer quotients at H. These facts about the func-

tors ∆ and ∇ can be derived by using the adjoints of restriction, inflation, and

evaluation at the trivial subgroup. To be more precise, we have the following

functors for a subgroup H of G:

H : µK(G)-mod→ KNG(H)-mod, M 7→M(H).

H : µK(G)-mod→ KNG(H)-mod, M 7→M(H).

∆G
H,− : KNG(H)-mod→ µK(G)-mod,

V 7→ ∆G
H,V =↑GNG(H) Inf

NG(H)
NG(H)/HFQ

NG(H)/H
U

where FQU is the fixed quotient functor.

∇G
H,− : KNG(H)-mod→ µK(G)-mod,

V 7→ ∆G
H,V =↑GNG(H) Inf

NG(H)
NG(H)/HFP

NG(H)/H
U

where FPU is the fixed point functor.

The pairs (∆G
H,−, H ) and (H ,∇G

H,−) are adjoint pairs, see [We2] for more de-

tails. Some of our results may also obtained by using the functors ∆ and ∇.

Here we want to construct another two functors from the module category of

the algebra µK(G) to the module category of the algebra KNG(H).

Let A be a finite dimensional K-algebra and I be a two sided ideal of A.

The canonical A-module epimorphism A→ A/I induces three functors (namely,

restriction, induction, and coinduction):

infI := A(A/I)⊗A/I −, defI := A/I(A/I)⊗A −,

codefI := A/IHomA

(
A(A/I)A/I ,−

)
.

In particular, (defI , infI) and (infI , codefI) are adjoint pairs.
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Remark 15.14 Assume the notations of the above paragraph. For any A-module

V we have the following A/I-module isomorphisms:

(1) defIV = (A/I)⊗A V ∼= V/IV, (a+ I)⊗ v ↔ av + IV.

(2) codefIV = HomA(A/I, V ) ∼= {v ∈ V : Iv = 0}, f → f(1 + I) and fv ← v

where fv(a+ I) = av.

The next result is easy to derive.

Remark 15.15 Everything in Remark 15.11, Proposition 15.12, and Corollary

15.13 remain true if we replace the terms

µK(G), µK(G/N), InfGG/N , L+
G/N , L−G/N

with the following respective terms

A, A/I, infI , defI , codefI .

We now need to recall the functors given in [Gr2, pp. 83-87] (see, Chapter 3).

Let B be a finite dimensional algebra and e be a nonzero idempotent of B. We

have the following functors:

Re : Mod(B)→ Mod(eBe) and Ce, Ie : Mod(eBe)→ Mod(A)

given on the objects by

Re(V ) = eV, Ce(W ) = HomeBe(eB,W ) and Ie(W ) = Be⊗eBe W.

Let M be a µK(G)-module and H be a subgroup of G. We want to find adjoints

of the functors that map M to the KNG(H)-modules

M(H)
/
IHM(H) and {x ∈M(H) : IHx = 0}

where IH is the two sided ideal of tHHµK(G)tHH given in 4.1. Note that the first

module has M(H) as a quotient, and the second module has M(H) as a submod-

ule. We define two functors:
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e+H : µK(G)-mod→ KNG(H)-mod, M 7→M(H)
/
IHM(H).

e−H : µK(G)-mod→ KNG(H)-mod, M 7→ {x ∈M(H) : IHx = 0}.

Now letting

B = µK(G), e = tHH , A = eBe, I = IH

we see that

e+H = defI ◦Re and e−H = codefI ◦Re.

Therefore the following pairs are adjoint pairs:

(e+H , Ce ◦ infI) and (Ie ◦ infI , e
−
H).

For instance, if a µK(G)-module has no subfunctor whose evaluation at H is 0

then one may see that e−HSoc(M) = Soc(e−HM).
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