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ABSTRACT

COMPLETE INTERSECTION MONOMIAL CURVES
AND NON-DECREASING HILBERT FUNCTIONS

Mesut Şahin

P.h.D. in Mathematics

Supervisor: Assoc. Prof. Dr. A. Sinan Sertöz

July, 2008

In this thesis, we first study the problem of determining set theoretic complete

intersection (s.t.c.i.) projective monomial curves. We are also interested in finding

the equations of the hypersurfaces on which the monomial curve lie as set theoretic

complete intersection. We find these equations for symmetric Arithmetically

Cohen-Macaulay monomial curves.

We describe a method to produce infinitely many s.t.c.i. monomial curves in

Pn+1 starting from one single s.t.c.i. monomial curve in Pn. Our approach has

the side novelty of describing explicitly the equations of hypersurfaces on which

these new monomial curves lie as s.t.c.i.. On the other hand, semigroup gluing

being one of the most popular techniques of recent research, we develop numerical

criteria to determine when these new curves can or cannot be obtained via gluing.

Finally, by using the technique of gluing semigroups, we give infinitely many

new families of affine monomial curves in arbitrary dimensions with Cohen-

Macaulay tangent cones. This gives rise to large families of 1-dimensional local

rings with arbitrary embedding dimensions and having non-decreasing Hilbert

functions. We also construct infinitely many affine monomial curves in An+1

whose tangent cone is not Cohen Macaulay and whose Hilbert function is non-

decreasing from a single monomial curve in An with the same property.

Keywords: monomial curves, complete intersections, toric varieties, tangent

cones, Hilbert functions.
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ÖZET

TEK TERİMLİ TAM KESİŞİM EĞRİLERİ VE
AZALMAYAN HİLBERT FONKSİYONLARI

Mesut Şahin

Matematik, Doktora

Tez Yöneticisi: Doç. Dr. A. Sinan Sertöz

Temmuz, 2008

Bu tezde ilk olarak projektif uzaydaki tek terimli eğrilerden geometrik tam

kesişim olanları tespit etme problemi çalışılmıştır. Ayrıca bir eğriyi geometrik

tam kesişim olarak veren hiperyüzeylerin denklemlerini bulma problemi ile de

ilgilenilmiştir. Simetrik tek terimli eğrilerden aritmetik olarak Cohen-Macaulay

olanlarının, üzerinde tam kesişim olduğu yüzeylerin denklemleri de bulunmuştur.

Bunun yanı sıra, Pn’deki bir geometrik tam kesişim tek terimli eğrisinden

Pn+1’de sonsuz tane geometrik tam kesişim tek terimli eğri üreten bir yöntem

geliştirilmiştir. Bu yaklaşımın avantajı, elde edilen yeni eğrileri veren

hiperyüzeylerin denklemlerini bulmasıdır. Üretilen eğrilerin, son zamanların en

popüler tekniklerinden biri olan yarıgrup birleştirme metoduyla elde edilip edile-

meyeceğini kontrol etmek için de sayısal bir ölçüt verilmiştir.

Son olarak, yarıgrup birleştirme metodu kullanılarak, teğet konisi Cohen-

Macaulay olan sonsuz yeni afin tek terimli eğri meydana getirilmiştir. Böylece,

Hilbert fonksiyonu azalmayan bir boyutlu yerel halkalar elde edilmiştir. Buna

ek olarak, An’deki Hilbert fonksiyonu azalmayan tek terimli bir eğriden An+1’de

aynı özelliğe sahip ama teğet konu Cohen-Macaulay olmayan sonsuz tek terimli

eğri üretilmiştir.

Anahtar sözcükler : tek terimli eğriler, tam kesişimler, torik varyeteler, teğet koni-

leri, Hilbert fonksiyonları.
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Chapter 1

Introduction

Let K be an algebraically closed field and K[x] be the polynomial ring

K[x1, . . . , xn]. To any algebraic variety V of dimension d in An, one can as-

sociate a prime ideal I(V ) ⊂ K[x] to be the set of all polynomials vanishing on

V . The arithmetical rank of V , denoted by µ(V ), is the least positive integer

r for which I(V ) = rad(f1, . . . , fr), for some polynomials f1, . . . , fr or equiva-

lently V = H1

⋂
· · ·
⋂
Hr, where H1, . . . , Hr are the hypersurfaces defined by

f1 = 0, · · · , fr = 0, respectively. We denote by µ(I(V )) the minimal number r

for which I(V ) = (f1, . . . , fr), for some polynomials f1, . . . , fr ∈ R. These invari-

ants are known to be bounded below by the codimension of the variety (or height

of its ideal). So, one has the following relation:

n− d ≤ µ(V ) ≤ µ(I(V ))

Although µ(I(V )) has no upper bound (see e.g. [2, 14]), an upper bound for

µ(V ) is provided to be n in [20] via commutative algebraic methods. See [71]

for a survey on the problem of determining the minimal number of polynomial

equations needed to define an algebraic set, which dates back to Kronecker (1882).

The variety V is called a complete intersection if µ(I(V )) = n−d. It is called

an almost complete intersection, if instead, one has µ(I(V )) = n− d + 1. When

the arithmetical rank of V takes its lower bound, that is µ(V ) = n−d, the variety

1



CHAPTER 1. INTRODUCTION 2

V is called a set-theoretic complete intersection, s.t.c.i. for short. It is clear that

complete intersections are set-theoretic complete intersection. But the converse

statement is false as the projective twisted cubic curve is a s.t.c.i. but not a

complete intersection curve (cf.[71, Section 4.3.] for details). The corresponding

question for almost complete intersection varieties is answered affirmatively in a

series of papers by Eto [22, 23, 24] in the case of affine and projective monomial

curves over an algebraically closed field of characteristic zero, leaving the general

case widely open.

Complete intersection varieties are very special not only because they are the

simplest generalizations of hypersurfaces but also they have very special prop-

erties. For instance, complete intersection varieties have Gorenstein coordinate

rings which are very special Cohen-Macaulay rings. In addition to this, they

have proven themselves to be easy to work with. For example, the canonical

sheaf of a complete intersection variety V is given easily by a simple formula

ωV = OV (
∑
di − n − 1), where di’s are the degrees of the hypersurfaces that

cut out the variety V . The multiplicity of the coordinate ring of V has also a

simple formula like
∏
di. Another example of this sort is that free resolutions

of complete intersections are computed easily via Koszul complexes. So, Hilbert

polynomial and genus of a complete intersection variety is estimated rather eas-

ily, see [6]. As a special case, if the smooth curve C ⊂ P3 is a complete inter-

section of the smooth surfaces of degrees a and b, then the genus of C is given

by g(C) =
1

2
ab(a + b − 4) + 1. Therefore, it is worthwhile to investigate which

varieties are set theoretic complete intersections including the class of complete

intersection varieties.

Determining set-theoretic complete intersection varieties is a classical and

longstanding problem in algebraic geometry. Even more difficult is to give explic-

itly the equations of the hypersurfaces involved. It is believed that the equations

of these hypersurfaces or information about them will shed some light on the

problem. This is justified by the arose of this kind of papers. For instance, it

is shown in [9] that if the hypersurfaces that cut out a s.t.c.i. toric variety are

all binomial then the variety is a complete intersection, see also [74]. Another

example is that irreducible s.t.c.i. curves on smooth surfaces in P3 are in fact
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complete intersections [60]. We know also that if C ⊂ A3 is a smooth curve, then

its defining ideal I(C) is generated by minors of a matrix of the form(
a c d

b d e

)

and C is a set theoretic complete intersection of the surfaces given by ce−d2 = 0

and a(ae − bd) + b(bc − ad) = 0, cf. [70]. There are other papers which provide

equations or discuss certain properties of the hypersurfaces whose intersection is

the variety V , see [7, 8, 35, 42, 48, 72, 68, 76, 78].

There are varieties which are not set theoretic complete intersection. The

Segre variety S = P1 × P2 ⊂ P5 is an example for this situation which is given in

[43]. Let t < r < s be positive integers, char(K) = 0 and K[xij] be a polynomial

ring in rs variables. Then for any t, we have an ideal It which defines a non-s.t.c.i.

variety, where It is the ideal generated by the t × t minors of the r × s matrix

(xij), see introduction of [81].

The state of art can be summarized in the most general case as follows. We

know that any curve in An is a s.t.c.i. over a field of positive characteristic [16].

In the characteristic zero case, we know only that smooth (more generally locally

complete intersection) curves in An are s.t.c.i., see [27, 44]. The same is true

for varieties in An if their normal bundles are trivial [10]. It is still an open

problem to show that locally complete intersection varieties in An are s.t.c.i. In

the projective case, it is known that varieties of dimension at least one which are

not connected are not s.t.c.i. [34]. Therefore, the problem is open even for curves

in A3 and for connected curves in P3.

To study this problem one inevitably tends to choose a special class of (so

called toric) varieties. In this case, it is known that all simplicial toric varieties

with full parameterization are s.t.c.i. over a field of positive characteristic [8, 35,

48]. On the other hand, nobody knows whether or not the same question has

an affirmative answer in the characteristic zero case. However, there are many

partial results in this case [11, 12, 25, 36, 39, 52, 58, 62, 63, 77, 78, 79]. In fact,

even the case of symmetric monomial curves in P3 is still mysterious.
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We are also interested in determining basic properties of the Hilbert function

of local rings associated with affine monomial curves. This is worth studying

because it gives information about the singularity of the curve. Not much is

known about Hilbert functions in the local case. We do not know even when it

is non-decreasing. This basic question is studied by several mathematician and

Sally states a conjecture saying that one dimensional Cohen-Macaulay rings with

small enough embedding dimension have non-decreasing Hilbert functions, [66].

The conjecture is straightforward in the embedding dimension one case, since in

this case the local ring is regular and its Hilbert function takes the same value,

one, for each variable. The case of embedding dimension two is not trivial and

settled by Matlis in [45]. Finally, the case of embedding dimension three, has

been proved by Elias in [21]. There are counterexamples to the conjecture in

the case of embedding dimension greater than three. The first examples of local

rings whose Hilbert function is not non-decreasing were given by Herzog-Waldi

[37] and Eakin-Sathaye [19]. These rings are the local rings of affine monomial

curves in ten and twelve dimensional spaces respectively. Later, existence of

one-dimensional local rings of any embedding dimension greater than four whose

Hilbert function is not non-decreasing is proved by Orecchia in [57]. The work

[29] of Gupta and Roberts revealed that there are also counterexamples in the

case of embedding dimension four. These counterexamples show that the Cohen-

Macaulayness of a one-dimensional local ring with embedding dimension greater

than three does not guarantee that its Hilbert function is non-decreasing. How-

ever, it is a conjecture due to M. E. Rossi, that a one-dimensional Gorenstein local

ring (a Cohen-Macaulay ring of type 1) has a non-decreasing Hilbert function.

Arslan and Mete has recently proved this conjecture in [4] for Gorenstein local

rings with embedding dimension four associated to Gorenstein monomial curves

in affine 4-space under a suitable condition. Together with Arslan and Mete, we

are interested here in both conjectures in the case of local rings associated to

affine monomial curves in any dimensional space.

The organization of the thesis is as follows.

In chapter 2, we introduce a very special family of varieties, so-called toric

varieties, which includes affine and projective monomial curves. We discuss some
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properties of the concepts of projection of toric ideals, gluing toric varieties and

extensions of monomial curves, which will be used in the following chapters.

In chapter 3, we pay attention to the symmetric monomial curves in P3 and

classify all arithmetically Cohen-Macaulay monomial curves among them. And

then, we give an elementary proof of the fact that they are set theoretic complete

intersection by providing explicitly the equations of the surfaces that cut out the

curve.

In chapter 4, we develop a method for producing set theoretic complete in-

tersection monomial curves in any dimensional projective space. The method

starts with a single s.t.c.i. monomial curve in Pn and it produces infinitely many

new s.t.c.i. monomial curves in Pn+1. It gives the equations of the hypersurfaces

on which new curves lie as s.t.c.i. based on the information provided by the

hypersurfaces that defines the curve at the beginning.

In chapter 5, we study the Hilbert function of local rings associated to affine

monomial curves. Namely, we use the technique of gluing semigroups to obtain

new monomial curves in any dimensional affine space whose Hilbert functions are

non-decreasing.

In chapter 6, we discuss some possible continuations of the research carried

out in the thesis.



Chapter 2

Toric Varieties and Monomial

Curves

Toric varieties arise from different areas of mathematics. They provide a link be-

tween Algebraic Geometry, Commutative Algebra, Algebraic Statistics, Number

Theory, Graph Theory and Combinatorics. They are important for both theo-

retical and practical reasons. This is simply because they serve as examples to

check validity of many conjectures about more general algebraic varieties. More-

over, the theory of toric varieties provides nice applications to a broad area of

mathematics. Certain properties of toric ideals which arise from Graph Theory

and Root systems are studied by Ohsugi and Hibi in [53, 54, 55, 56]. Toric vari-

eties coming from Singularity Theory are the subject of the work of Altınok and

Tosun in [1] and [80]. Toric varieties arising from Algebraic Statistics are studied

by Diaconis and Sturmfels in [18]. For the interaction between Combinatorics

and toric varieties, see also [47].

Being a nice and important object, we define and study basic properties of

toric varieties in this chapter which will be used later on.

6



CHAPTER 2. TORIC VARIETIES AND MONOMIAL CURVES 7

2.1 Toric Variety vs. Toric Set

Let A = (aij) be a d × n matrix with integer entries whose columns are non-

zero. Denote by ai = (a1i, . . . , adi) the transpose of the i-th column of A and let

A = {a1, . . . , an} ⊂ Zd be the set of these vectors.

For the sake of simplicity let us denote the polynomial ring K[x1, . . . , xn] by

K[x] and the power series ring K[t1, . . . , td, t
−1
1 , . . . , t−1

d ] by K[t, t−1]. Then, the

toric ideal IA (or IA) associated to the matrix A (or the set A, respectively) is

defined to be the kernel of the following K-algebra epimorphism:

φ : K[x] → K[t, t−1], φ(xi) := tai , for all i = 1, . . . , n.

The toric ideal IA is prime, and thus define an irreducible algebraic set VA in An,

called the affine toric variety corresponding to A. The dimension of this variety

equals the rank of the matrix A.

There are three important algebraic and combinatorial structures related to

the toric variety VA, namely the semigroup NA, the group ZA and the rational

polyhedral cone σA. We recall that these objects are defined as the sets of vectors

which are N-linear, Z-linear and Q≥0-linear combinations of elements of A, i.e.

NA = {p1a1 + · · ·+ pnan| where pi ∈ N},

ZA = {z1a1 + · · ·+ znan| where zi ∈ Z} and

σA := posQ(A) = {q1a1 + · · ·+ qnan| where qi ∈ Q≥0}.

The polynomial ring K[x] is multigraded, i.e. it has more than one grading.

One of them is the most natural one where deg(xi) = 1, for all i = 1, . . . , n. If IA

is homogeneous with respect to this grading, the variety VA that it defines lies in

Pn−1, hence the name projective toric variety. The other natural grading is defined

as degA(xi) = ai ∈ A. In this case A-degree of a monomial xu := xu1
1 . . . xun

n

becomes a vector:

degA xu := u1a1 + · · ·+ unan ∈ NA.
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The toric ideal IA is A-homogeneous, that is, all monomials of a polynomial in IA

have the same A-degree. There are also other types of gradings on the polynomial

ring K[x]. Indeed, any set B = {b1, . . . ,bn} ⊂ Zd can be used to grade K[x] in

such a way that degB(xi) = bi, for i = 1, . . . , n.

There is a strong relation between the elements of the group (or the lattice)

ZA and the generators of the toric ideal IA. More precisely, IA is generated by

binomials xu−xv, where u−v ∈ ZA. In terms of Linear Algebra, it can be said

that IA is generated by binomials xu − xv, where u − v is an integer vector in

the null space of A. Hence, integer matrices whose null spaces contain the same

integer vectors give rise to the same toric variety. For a more detailed discussion

on generators and Gröbner bases of toric ideals, we refer the reader to [69].

Associated to the matrix A is the toric set

Γ(A) := {(ta1 , . . . , tan) = (ta11
1 · · · tad1

d , . . . , ta1n
1 · · · tadn

d ) | t1, . . . , td ∈ K}.

We first note that Γ(A) ⊂ VA, since f(ta1 , . . . , tan) = 0, for any f ∈ IA = Ker(φ).

But, in general, the toric set does not parameterize the toric variety, i.e. Γ(A) 6=
VA. For instance, take

A =

(
1 2 3

2 3 4

)
and B =

(
1 2 3

0 1 2

)
.

Then, it is clear that IA = (x2
2 − x1x3), since VA is a toric (hyper)surface in A3.

Obviously, Γ(A) = (t1t
2
2, t

2
1t

3
2, t

3
1t

4
2) and Γ(B) = (s1, s

2
1s2, s

3
1s

2
2), for t1, t2, s1, s2 ∈

K. We claim that Γ(A) 6= Γ(B) 6= VA 6= Γ(A). Observe first that (0, 0, z) ∈ VA

but it is not an element of the toric sets Γ(A) and Γ(B), if z 6= 0. Similarly

(x, 0, 0) is an element of Γ(B) but not an element of Γ(A), if x 6= 0. Hence, a

natural question is to determine the conditions under which VA = Γ(A). This

is first studied by E. Reyes, R. Villarreal and L. Zarate in [59]. Related to this

question is to find a suitable matrix B such that VA = Γ(B). Existence of such

a matrix is shown by A. Katsabekis and A. Thoma in [40, 41]. An algorithm is

also provided to find a suitable B.

We say that the set A is a configuration if the elements ai of A lie on a

hyperplane in Rd. Configurations correspond to projective toric varieties. For
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instance, consider the set A = {(0, a), (1, b), (2, c)}. This set is a configuration if

and only if the points (0, a), (1, b), (2, c) are collinear, i.e. they lie on the same

line in R2. Hence, A is a configuration if and only if a = 2b− c. For any integers

b and c, we have different configurations Ab,c = {(0, 2b − c), (1, b), (2, c)} but we

have a unique toric ideal IA = (x2
2 − x1x3). Parameterization of the toric variety

VA is given by the configuration A1,0.

There is a special class of toric varieties which are defined and parameterized

by the same matrix A, i.e. VA = Γ(A). The form of this matrix is as follows:

A =


a11 · · · 0 a1(d+1) · · · a1n

...
. . .

...
...

. . .
...

0 · · · add ad(d+1) · · · adn


and the parameterization of VA is (ta11

1 , . . . , tadd
d , t

a1(d+1)

1 · · · tad(d+1)

d , . . . , ta1n
1 · · · tadn

d ),

where a11, . . . , add are positive and the others are non-negative integers, see [40,

Corollary 2].

2.2 Monomial Curve

We start with the definition of affine monomial curves. Classically, an affine

monomial curve in the affine n-space An, denoted by C(m1, . . . ,mn), is defined

parametrically by (tm1 , . . . , tmn), for some positive integers m1 < · · · < mn with

gcd(m1, . . . ,mn) = 1. This means that if A is a row matrix defined by A =

( m1 · · ·mn ) then IA = I(C(m1, . . . ,mn)). Monomial curves are simplicial toric

curves which are parameterized by their toric sets, see [59, Proposition 2.9.].

The condition gcd(m1, . . . ,mn) = 1 is to ensure that different parameterizations

give rise to different toric curves. At the first sight one might think that the

parameterization (tgm1 , . . . , tgmn) defines a simplicial toric curve for each g. But

it defines a unique monomial curve C(m1, . . . ,mn). To clarify this ambiguity

we always assume that gcd(m1, . . . ,mn) = 1 whenever we talk about monomial

curves. The other assumption m1 < · · · < mn in the definition is needed to

determine the embedding dimension of the monomial curve, i.e. the dimension



CHAPTER 2. TORIC VARIETIES AND MONOMIAL CURVES 10

of the smallest affine space in which the monomial curve lives. In fact, order of

the numbers mi is not important, the crucial thing here is that they must be

different from each other. For instance, embedding dimension of C = C(1, 2, 2)

is two, since C is a curve in the plane x2 = x3 inside A3. So, the smallest affine

space containing C is A2. Besides, there is no difference between the curves

C(1, 2) and C(2, 1), since their geometric properties are the same. Therefore,

these assumptions do not harm the generality.

Under the same assumptions on m1, . . . ,mn, a projective monomial curve in

Pn, denoted by C(m1, . . . ,mn), is defined parametrically by

(smn , smn−m1tm1 , . . . , smn−mn−1tmn−1 , tmn).

Note that C(m1, . . . ,mn) is the projective closures of the affine curves

C(m1, . . . ,mn) and C(mn−mn−1, . . . ,mn−m1,mn). Projective monomial curves

can be regarded as simplicial affine toric surfaces which are parameterized by

their toric sets, see [59, Proposition 2.7.].

2.3 Projection of Toric Ideals

First of all, we introduce the geometric notion of projection of rational polyhedral

cones and then define the algebraic notion of projection of toric ideals. Let A

and B be two integer matrices of size c × n and d × n. Assume that dim σA ≤
dim σB for the corresponding rational convex polyhedral cones σA and σB. If

A = {a1, . . . , an} and B = {b1, . . . ,bn} are the sets of the column vectors of A

and B, then one can define a projection π : σB → σA of cones via π(bi) = ai,

for i = 1, . . . , n. For instance, take A = {3, 5, 8} and B = {(1, 2), (2, 1), (3, 3)}.
Then the map π(y1, y2) = (7y1 +y2)/3 defines a projection of the two dimensional

polyhedral cone σB onto the one dimensional polyhedral cone σA. It is not difficult

to see that IB = (x1x2 − x3), IA = (x1x2 − x3, x
5
1 − x3

2) and IB ⊂ IA. This is not

surprising as the following theorem reveals:

Theorem 2.1 [39, Theorem 2.2] With the preceding notation, the following are

equivalent:
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• IB ⊂ IA

• every B-homogeneous ideal in K[x] is also A-homogeneous

• there is a projection of cones π : σB → σA given by π(bi) = ai,

for all i = 1, . . . , n

• there is a c× d matrix D with rational entries such that DB = A

Inspired by the projection of the corresponding cones, Katsabekis in [39] in-

troduced the algebraic notion of projection. So, we say that IA is a projection of

IB if IB ⊂ IA. One can study certain algebraic and geometric properties of the

toric variety VA realizing it as a projection of another toric variety VB. A nice

example for this situation has been provided in the same paper [39]. For instance,

he used the projection of cones π : σB → σA and the fact that VB is a set-theoretic

complete intersection to show that VA is also a set-theoretic complete intersec-

tion, where A = {a, a+ 2b, 2a+ 3b, 2a+ 5b} and B = {(5, 0), (1, 2), (4, 3), (0, 5)}.
Katsabekis has studied projections of toric ideals set theoretically. Namely he

studied the question of finding suitable polynomials f1, . . . , fr ∈ IA such that

rad(IA) = rad(IB + (f1, . . . , fr)). Hence the problem is open ideal theoret-

ically. More precisely, we do not know whether or not we have polynomials

f1, . . . , fr ∈ IA such that IA = IB + (f1, . . . , fr), where r = µ(IA)− µ(IB).

2.4 Gluing Toric Varieties

Now, we introduce the concept of gluing semigroups. This concept has been

introduced for the first time by J. C. Rosales in [65] and used by several authors

to produce new examples of set-theoretic and ideal-theoretic complete intersection

affine or projective varieties (for example [52], [79]).

Let A be a subset of Zd such that A = A1

⊔
A2, for some subsets A1 and A2.

We say that NA is a gluing of NA1 and NA2 if there exists a nonzero element

α ∈ NA1

⋂
NA2 such that ZA1

⋂
ZA2 = Zα. Sometimes we say that the set A

is a gluing of its subsets A1 and A2 in the same situation. The crucial benefit of
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this definition is that we have the following relation between the corresponding

toric ideals:

IA = IA1 + IA2 + (Gα)

where Gα = M1 −M2 is the relation polynomial and Mi involves variables corre-

sponding to Ai, for details see [79].

Example 2.2 Let A be the following matrix
(p+ 1)m3 0 0 (p+ 1)(m3 −m1) (p+ 1)(m3 −m2) 0

0 (p+ 1)m3 0 m1 m2 m3

0 0 (p+ 1)m3 pm1 pm2 pm3


and A be the set of its column vectors, where 0 < m1 < m2 < m3 are integers

with gcd(m1,m2,m3) = 1 and p is any integer.

Set A1 = {(0, (p + 1)m3, 0), (0, 0, (p + 1)m3)} and A2 = A − A1. Then the

matrices A1 and A2 corresponding to A1 and A2 are as follows:

A1 =


0 0

(p+ 1)m3 0

0 (p+ 1)m3

 and

A2 =


(p+ 1)m3 (p+ 1)(m3 −m1) (p+ 1)(m3 −m2) 0

0 m1 m2 m3

0 pm1 pm2 pm3

 .

Note that the null space of A1 is trivial, so IA1 = 0. On the other hand null space

of A2 is the same with the null space of the following matrix

B =


m3 (m3 −m1) (m3 −m2) 0

0 m1 m2 m3

0 0 0 0

 and VB = C(m1,m2,m3) ⊂ P3.

We observe that ZA1

⋂
ZA2 = Zα and the vector α is in NA1

⋂
NA2, where

α = (0, (p + 1)m3, p(p + 1)m3). Hence NA is a gluing of NA1 and NA2. If xi is

the variable corresponding to the i-th column vector of A then we have

IA = IA1 + IA2 + (x2x
p
3 − xp+1

6 ) = IB + (x2x
p
3 − xp+1

6 ).
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Thus, if C(m1,m2,m3) ⊂ P3 is a s.t.c.i. on the surfaces X and Y , it readily

follows that the toric surface VA ⊂ P5 is a s.t.c.i. on the hypersurfaces X, Y and

x2x
p
3 = xp+1

6 , for any integer p.

2.5 Extensions of Monomial Curves

Finally, we introduce the concept of extension of monomial curves. This concept

is introduced for the first time by Arslan and Mete in [4] in the case of affine

monomial curves. Later in [73] we adopt it to the projective case. Thus this

section reflects the second and the third sections of [73].

Let m be a positive integer in the numerical semigroup generated by

m1, . . . ,mn, i.e. m = s1m1 + · · · + snmn where s1, . . . , sn are some non-negative

integers. Note that in general there is no unique choice for s1, . . . , sn to represent

m in terms of m1, . . . ,mn. We define the degree δ(m) of m to be the minimum of

all possible sums s1 + · · ·+ sn. If ` is a positive integer with gcd(`,m) = 1, then

we say that the monomial curve C(`m1, . . . , `mn,m) in Pn+1 is an extension of

C = C(m1, . . . ,mn). We similarly define C(`m1, . . . , `mn,m) to be an extension

of C. We say that an extension is nice if δ(m) > ` and bad otherwise, adopting

the terminology of [4].

When the integers m1, . . . ,mn are fixed and understood in a discussion, we

will use C`,m to denote the extensions C(`m1, . . . , `mn,m) in Pn+1, and use C`,m

to denote the extensions C(`m1, . . . , `mn,m) in An+1.

Extension in the affine case is a special case of gluing. More precisely, if C`,m

is an extension of C, then the numerical semigroup < `m1, . . . , `mn,m > is a

gluing of < `m1, . . . , `mn > and < m >, as Z{`m1, . . . , `mn}
⋂

Z{m} = Z{`m}
with `m ∈< `m1, . . . , `mn >

⋂
< m >. Thus, we have

I(C`,m) = I(C) + (xs1
1 · · ·xsn

n − x`
n+1).

A quick consequence of this is that C`,m ⊂ An+1 is a s.t.c.i. when C ⊂ An has

the same property.
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In the projective case, extension is not always a special case of gluing. There

are many projective monomial curves whose underlying affine semigroups can not

be obtained by gluing its subsemigroups. This will be studied in details in the

section 2.5.2. Now we give a more geometric proof of the fact that extensions of

affine s.t.c.i. monomial curves are s.t.c.i. too.

2.5.1 Extensions of Monomial Curves in An

Let C = C(m1, . . . ,mn) be a s.t.c.i. monomial curve in An. In this section, we

show that all extensions of C are s.t.c.i. For this we first define, for any ideal

I ⊂ K[x1, . . . , xn+1], Γ`(I) to be the ideal which is generated by all polynomials

of the form Γ`(g), where Γ`(g(x1, . . . , xn+1)) = g(x1, . . . , xn, x
`
n+1), for all g ∈ I.

We use the following trick of M. Morales:

Lemma 2.3 ([51, Lemma 3.2]) Let Y` be the monomial curve denoted by

C(`m1, . . . , `mn,mn+1) in An+1. Then I(Y`) = Γ`(I(Y1)).

For any extension of C of the form C`,m, we obviously have I(C) ⊂ I(C`,m)

and I(C`,m) ∩K[x1, . . . , xn] = I(C). The exact relation between the ideals of C

and C`,m are given by the following lemma.

Lemma 2.4 Let m = s1m1 + · · · + snmn. For any positive integer ` with

gcd(`,m) = 1 we have I(C`,m) = I(C) + (G), where G = x1
s1 · · · xn

sn − x`
n+1.

Proof:

Case ` = 1: We show that I(C1,m) = I(C) + (x1
s1 · · · xn

sn − xn+1).

For any polynomial f ∈ K[x1, . . . , xn+1], there are polynomials g ∈ K[x1, . . . , xn]

and h ∈ K[x1, . . . , xn+1] such that

f(x1, . . . , xn+1) = f(x1, . . . , xn, xn+1 − xs1
1 · · ·xsn

n + xs1
1 · · ·xsn

n )

= g(x1, . . . , xn) + (xs1
1 · · ·xsn

n − xn+1)h(x1, . . . , xn+1).
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This identity implies that f ∈ I(C1,m) if and only if g ∈ I(C).

Case ` > 1: Applying Lemma 2.3 with Y1 = C1,m we have

I(C`,m) = Γ`(I(C1,m)), by Lemma 2.3

= Γ`(I(C) + (xs1
1 · · ·xsn

n − xn+1)) by the first part of this lemma

= I(C) + (G). �

This lemma provides an alternate proof to the following theorem which is a

special case of [79, Theorem 2].

Theorem 2.5 If C ⊂ An is a s.t.c.i. monomial curve, then all extensions of

the form C`,m ⊂ An+1 are also s.t.c.i. monomial curves.

Proof: Since I(C`,m) = I(C) + (G) by Lemma 2.4, it follows that

Z(I(C`,m)) = Z(I(C) + (G))

C`,m = Z(I(C))
⋂

Z(G),

where Z(·) denotes the zero set as usual. Hence C`,m is a s.t.c.i. if C is. �

2.5.2 Extensions That Can Not Be Obtained By Gluing

If C(m1, . . . ,mn+1) is a monomial curve in Pn+1, then there is a corresponding

semigroup NT , where

T = {(mn+1, 0), (mn+1 −m1,m1), . . . , (mn+1 −mn,mn), (0,mn+1)} ⊂ N2.

Let T = T1

⊔
T2 be a decomposition of T into two disjoint proper subsets.

Without loss of generality assume that the cardinality of T1 is less than or equal to

the cardinality of T2. NT is called a gluing of NT1 and NT2 if there exists a nonzero

α ∈ NT1

⋂
NT2 such that Zα = ZT1

⋂
ZT2. Following the literature we write I(T )

for the ideal of the toric variety corresponding to the affine semigroup NT . Note
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that if NT is a gluing of NT1 and NT2 then we have I(T ) = I(T1)+ I(T2)+ (Gα),

where Gα is the relation polynomial, see [79].

We note that the condition Zα = ZT1

⋂
ZT2 is not fulfilled when T1 is not a

singleton. Hence we formulate this observation to be the following

Proposition 2.6 If T1 is not a singleton then NT is not a gluing of NT1 and

NT2.

Proof: If T1 is not a singleton, then neither is T2 by the assumption on the

cardinalities of these sets. Thus ZT1 and ZT2 are submodules of Z2 of rank two

each. It is elementary to show that their intersection has rank two. For instance,

let r and t be generators of ZT1, then the images of r and t have finite order in the

finite group Z2/ZT2, meaning that ar and bt are in ZT2 for some positive integers

a and b. Then the rank two Z-module generated by ar and bt is contained in the

intersection ZT1∩ZT2 which must be of rank two itself being a submodule of Z2.

Hence the intersection cannot be generated by a single element. Thus NT is

not a gluing of NT1 and NT2. �

This proposition means that the only way to show that an extension in Pn+1

is a s.t.c.i. via gluing is to apply the technique to a projective monomial curve in

Pn. Thus we discuss the case where T1 is a singleton. But if T1 is {(mn+1, 0)} or

{(0,mn+1)} then NT1

⋂
NT2 = {(0, 0)}. So it is sufficient to deal with the case

where T1 is of the form {(mn+1 −mi,mi)}, for some i ∈ {1, . . . , n}.

From now on, ∆i denotes the greatest common divisor of the positive inte-

gers m1, . . . , m̂i, . . . ,mn+1 (mi is omitted), for i = 1, . . . , n. Note that we have

gcd(∆i,mi) = 1, for all i = 1, . . . , n, since gcd(m1, . . . ,mn+1) = 1.

Proposition 2.7 If T1 = {(mn+1 −mi0 ,mi0)} for some fixed i0 ∈ {1, . . . , n},
then NT is a gluing of NT1 and NT2 if and only if there exist non-negative integers

dj, for j = 1, . . . , î0, . . . , n+ 1, satisfying the following two conditions:



CHAPTER 2. TORIC VARIETIES AND MONOMIAL CURVES 17

(I) ∆i0mi0 =
n+1∑

j=1 (j 6=i0)

djmj, and (II) ∆i0 ≥
n+1∑

j=1 (j 6=i0)

dj.

Proof: Let α = ∆i0(mn+1 − mi0 ,mi0). We first show that ZT1

⋂
ZT2 =

Zα. Since ∆i0 = gcd(m1, . . . , m̂i0 , . . . ,mn+1), there are zj ∈ Z, for j =

1, . . . , î0, . . . , n + 1, such that ∆i0 =
∑

j 6=i0
zjmj. So, ∆i0mi0 =

∑
j 6=i0

mi0zjmj

which implies that

∆i0(mn+1 −mi0 ,mi0) =
∑
j 6=i0

mi0zj(mn+1 −mj,mj) + (∆i0 −
∑
j 6=i0

mi0zj)(mn+1, 0).

Thus α = ∆i0(mn+1 −mi0 ,mi0) ∈ ZT1

⋂
ZT2 implying Zα ⊆ ZT1

⋂
ZT2.

For the converse inclusion, take c(mn+1 − mi0 ,mi0) ∈ ZT1

⋂
ZT2, for some

c ∈ Z. Then, obviously we have c(mn+1 − mi0 ,mi0) ∈ ZT2 which implies that

cmi0 ∈ Z({m1, . . . , m̂i0 , . . . ,mn+1}) = Z∆i0 . So, ∆i0 divides cmi0 . If ∆i0 > 1,

then ∆i0 divides c, since it does not dividemi0 (remember that gcd(∆i0 ,mi0) = 1).

If ∆i0 = 1, obviously ∆i0 divides c. Thus, c(mn+1 −mi0 ,mi0) is a multiple of α

and ZT1

⋂
ZT2 ⊆ Zα.

Since ZT1

⋂
ZT2 = Zα, it will follow by definition that NT is a gluing of NT1

and NT2 if and only if α ∈ NT1

⋂
NT2. But, if α ∈ NT1

⋂
NT2 then there exists

non-negative integers dj and d for which we have

∆i0(mn+1 −mi0 ,mi0) =
∑
j 6=i0

dj(mn+1 −mj,mj) + d(mn+1, 0)

(∆i0mn+1 −∆i0mi0 ,∆i0mi0) = ([d+
∑
j 6=i0

dj]mn+1 −
∑
j 6=i0

djmj,
∑
j 6=i0

djmj).

Thus, ∆i0mi0 =
∑

j 6=i0
djmj and d = ∆i0 −

∑
j 6=i0

dj. Since d ≥ 0, we see that

the conditions (I) and (II) hold. On the other hand, if (I) and (II) hold then

we observe that α ∈ NT1

⋂
NT2, by the equalities above. Thus, the condition

α ∈ NT1

⋂
NT2 is equivalent to the existence of the non-negative integers dj

satisfying (I) and (II). �

As a direct consequence of Proposition 2.7 we get the following
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Corollary 2.8 If ∆i0 = 1, for some fixed i0 ∈ {1, . . . , n}, then NT cannot be

obtained as a gluing of NT1 and NT2, where T1 = {(mn+1 −mi0 ,mi0)} and T2 =

T − T1.

Proof: We apply Proposition 2.7. If (I) does not hold, we are done. If it

holds, then we have two cases: either
n+1∑

j=1 (j 6=i0)

dj = 1 or
n+1∑

j=1 (j 6=i0)

dj > 1. The first

case forces mi0 = mj for some j 6= i0, from (I), but this contradicts the way we

choose m′
is. The second case causes (II) to fail, as ∆i0 = 1. �

Example 2.9 If we consider the curve C(2, 3, 4, 8) ⊂ P4 and take i0 = 2, then

the conditions (I) and (II) of the above proposition hold. Thus this curve can be

obtained by gluing.

But if we consider the monomial curve C(2, 4, 7, 8) ⊂ P4, then for every choice

of i0, either ∆i0 = 1, or else condition (II) of the above proposition fails. Hence

this curve cannot be obtained by gluing.

Corollary 2.10 Let C`,m ⊂ Pn+1 be a bad extension of C = C(m1, . . . ,mn), i.e.

` ≥ δ(m). If C is a s.t.c.i. on the hypersurfaces f1 = · · · = fn−1 = 0, then

C`,m can be shown to be a s.t.c.i. on the hypersurfaces f1 = · · · = fn−1 = 0

and F = x`
n+1 − x

`−δ(m)
0 xs1

1 · · ·xsn
n = 0 by the technique of gluing, where m =

s1m1 + · · ·+ snmn and s1 + · · ·+ sn = δ(m).

Proof: Since m1 < · · · < mn and m = s1m1 + · · · + snmn ≤ δ(m)mn ≤ `mn, it

follows that `mn is the biggest number among {`m1, . . . , `mn,m}. The extension

C`,m corresponds to the semigroup NT , where T = T1

⋃
T2, T1 = {(`mn−m,m)}

and T2 = {(`mn, 0), (`mn−`m1, `m1), . . . , (`mn−`mn−1, `mn−1), (0, `mn)}. Since

gcd(`m1, . . . , `mn) = `, `m = s1(`m1) + · · · + sn(`mn) and ` ≥ δ(m), NT is a

gluing of NT1 and NT2, by Proposition 2.7. Since I(T ) = I(T1) + I(T2) + (F ),

the claim follows from [79, Theorem 2]. �



Chapter 3

Symmetric Monomial Curves in

P3

The purpose of this chapter is to give an alternative proof of the fact that symmet-

ric monomial curves in P3 which are arithmetically Cohen-Macaulay are s.t.c.i.

by elementary algebraic methods inspired by [11]. The proof is constructive and

provides the equations of the hypersurfaces cutting out the curve.

Let p < q < r be some positive integers. Recall that a monomial curve

C(p, q, r) in P3 is given parametrically by

(w, x, y, z) = (ur, ur−pvp, ur−qvq, vr)

where (u, v) ∈ P1. It can be seen that C(p, q, r) is a smooth curve if and only if it

is of the form C(1, q, q + 1). No smooth curve of this form is known to be s.t.c.i.

except the twisted cubic (for which q = 2). They can not be s.t.c.i. on smooth

surfaces, see [38].

We say that the monomial curve C(p, q, r) is symmetric if p + q = r. In this

case the parametric representation of the curve C(p, q, p+ q) becomes

(up+q, uqvp, upvq, vp+q).

It is known that all monomial curves are s.t.c.i. in P3, if the base field K is

19
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of positive characteristic, [35]. But, no one knows whether even the symmetric

monomial curves are s.t.c.i. in P3 in the characteristic zero case. To address

this case, we work with an algebraically closed field K of characteristic zero,

throughout the chapter.

It is not difficult to show that symmetric monomial curves C(p, q, p+ q) ⊂ P3

can not be s.t.c.i. on the smooth quadric Q : xy = zw. We will achieve this result

by showing that C is of type (p, q) on Q and that complete intersections on Q is

of type (d, d), for some d.

Claim: C = C(p, q, p+ q) ⊂ P3 is of type (p, q) on Q.

Proof: Recall that Q is the Segre embedding of P1 × P1 in P3, see [33,

Ex.I.2.15]. More precisely, it is the image of the following map:

ψ : P1 × P1 → P3, ψ((a0, a1)× (b0, b1)) = (a0b0, a0b1, a1b0, a1b1).

We have two families of lines L and M on Q, defined by:

L∞ := ψ((0, 1)× (b0, b1)) = (0, 0, b0, b1)

Lt := ψ((1, t)× (b0, b1)) = (b0, b1, tb0, tb1), where t ∈ K.

and

M∞ := ψ((a0, a1)× (0, 1)) = (0, a0, 0, a1)

Mu := ψ((a0, a1)× (1, u)) = (a0, ua0, a1, ua1), where u ∈ K.

Picard group of Q is generated by L and M , so type of a curve on Q is determined

by the intersection of the curve with L and M . To see that C is of type (p, q),

we need to observe that C ·Mu = p and C · Lt = q.

Note that (up+q, uqvp, upvq, vp+q) = (b0, b1, tb0, tb1) is a point of the intersection

C
⋂
Lt. Since (b0, b1) 6= (0, 0), we have u = 1 and thus b0 = 1 and t = vq. Thus we

have a point (1, vp, vq, vp+q) = (1, b1, t, tb1) in the intersection with multiplicity q.

Similarly, (up+q, uqvp, upvq, vp+q) = (a0, ua0, a1, ua1) is a point of the intersec-

tion C
⋂
Mu. Since (a0, a1) 6= (0, 0), we have u = 1 and thus a0 = 1 andu = vp.
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Thus we have a point (1, vp, vq, vp+q) = (1, u, a1, ua1) in the intersection with

multiplicity p. �

The following more general result implies that complete intersections on Q

is of type (d, d), since H has type (1, 1), where H is the hyperplane defined by

x = 0.

Proposition 3.1 C is the complete intersection of the smooth surface Xs of

degree s and the surface Vd of degree d if and only if C ∼ dH, where H is a

hyperplane section of Xs.

Proof: Let us assume that C is a complete intersection of Xs and Vd. Since

Vd ∼ dP2 and H = Xs

⋂
P2, it follows that

C = Xs

⋂
Vd ∼ Xs

⋂
dP2 = dH.

On the other hand, if C ∼ dH then obviously C is a complete intersection of

Xs and Vd. To see this consider the following exact sequence:

0 → QP3(d− s) → QP3(d) → QX(d) → 0

By taking the cohomology of each term, we get the following long exact sequence:

0 → H0(QP3(d− s)) → H0(QP3(d)) → H0(QX(d)) →

→ H1(QP3(d− s)) → H1(QP3(d)) → H1(QX(d)) → ...

Since H i(P3, QP3(d)) = 0 for 0 < i < 3 and d ∈ Z, it follows that

0 → H0(QP3(d− s)) → H0(QP3(d)) → H0(QX(d)) → 0

i.e H0(QP3(d)) → H0(QX(d)) is surjective.

Thus a section f , defining the curve C ∼ dH, is the restriction of a section F

on Xs. If Vd = Z(F ), C is the complete intersection Xs

⋂
Vd. �

Corollary 3.2 C(p, q, p+ q) ⊂ P3 can not be s.t.c.i. on Q : xy = zw.
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Proof: Assume that C = C(p, q, p + q) is a s.t.c.i. of Q and Vd. Then we have

Q
⋂
Vd = kC, for some k. Since type of the complete intersection Q

⋂
Vd is (d, d)

and the type of C is (p, q), we have (d, d) = k(p, q), which has no solution for k.

Contradiction. �

A minimal system of generators for the ideal of symmetric monomial curves

in P3 is given in [13] as follows:

f = xy − wz and Fi = wq−p−iyp+i − xq−izi, for all 0 ≤ i ≤ q − p.

Recall that a monomial curve C(p, q, r) ⊂ P3 is called Arithmetically Cohen-

Macaulay (ACM) if its projective coordinate ring is Cohen-Macaulay. In the same

article [13], it is also proven that a monomial curve in P3 is ACM if and only if

its ideal is generated by at most 3 polynomials. Now, if the ideal of a symmetric

monomial curve C(p, q, p + q) is generated by two polynomials it would follow

that p = q. But, this contradicts with the assumption that p < q < r. So, the

ideal of an ACM symmetric monomial curve C(p, q, p + q) is generated by three

polynomials and hence p = q − 1, where necessarily q > 1. Thus, all symmetric

ACM monomial curves in P3 are of the form C(q− 1, q, 2q− 1) and their defining

ideals are generated minimally by the following three polynomials:

f = xy − zw,

g : = −F1 = xq−1z − yq,

h : = −F0 = xq − yq−1w.

The fact that C(q − 1, q, 2q − 1) is a s.t.c.i. curve was shown in [63], but the

equation of the second surface was not given. Here, we give an alternative proof

that constructs the polynomial G such that the symmetric ACM monomial curve

is the intersection of the surface G = 0 and a binomial surface defined by one of

f, g and h. We construct G by adding xqg to the q-th power of f and dividing

the sum by z. Hence we get the following theorem in [72]:

Theorem 3.3 Any symmetric Arithmetically Cohen-Macaulay monomial curve

in P3, which is given by C(q − 1, q, 2q − 1) for some q > 1, is a set-theoretic
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complete intersection of the following two surfaces

g = xq−1z − yq = 0 and

G = x2q−1 +

q∑
k=1

(−1)k q!

(q − k)!k!
xq−kyq−kzk−1wk = 0.

Proof: Note first that zG = f q + xqg. Take a point (w0, x0, y0, z0) from

Z(f, g, h). Then, by z0G(w0, x0, y0, z0) = f q(w0, x0, y0, z0)+x
q
0g(w0, x0, y0, z0) = 0

we observe that either G(w0, x0, y0, z0) = 0 or z0 = 0.

If G(w0, x0, y0, z0) = 0 then (w0, x0, y0, z0) ∈ Z(g,G). If z0 = 0 then by

g(w0, x0, y0, z0) = 0 we get y0 = 0, and by h(w0, x0, y0, z0) = 0 we get x0 = 0.

Thus (w0, x0, y0, z0) = (1, 0, 0, 0) which is in Z(g,G).

Let us now take a point (w0, x0, y0, z0) ∈ Z(g,G). Then either z0 = 0 or

we can assume z0 = 1. If z0 = 0 then by g(w0, x0, y0, z0) = 0 we get y0 = 0,

and by G(w0, x0, y0, z0) = 0 we obtain x0 = 0 in this case. Thus we get the

point (w0, x0, y0, z0) = (1, 0, 0, 0) which is in Z(f, g, h). On the other hand, if

z0 = 1 then by G = f q + xq
0g we see that f(w0, x0, y0, z0) = 0. Moreover, we

have x0y0 = w0 and xq−1
0 = yq

0 in this case. Hence we obtain the following

xq
0 = x0x

q−1
0 = x0y

q
0 = x0y0y

q−1
0 = w0y

q−1
0 , meaning that h(w0, x0, y0, z0) = 0. �

Note that the symmetric ACM monomial curves above are s.t.c.i. on the

binomial surface g = 0. This is not true for symmetric non-ACM monomial

curves, that is, they can never be a s.t.c.i. on a binomial surface, [75, Theorem

5.1]. Thus it is very difficult to construct hypersurfaces on which symmetric non-

ACM monomial curves in P3 are s.t.c.i. with the simplest open case being the

Macaulay’s quartic curve C(1, 3, 4).



Chapter 4

Producing S.T.C.I. Monomial

Curves in Pn

The aim of this chapter is to study nice extensions of projective monomial curves

and follows the fourth and the fifth section of [73]. Since the relation between

the ideal of the curve and that of its nice extensions are not known explicitly, we

use the information provided by their affine parts here. So we need frequently to

refer to the Section 2.5. Let us recall the notation there.

Throughout the chapter, K will be assumed to be an algebraically closed field

of characteristic zero. By an affine monomial curve C(m1, . . . ,mn), for some

positive integers m1 < · · · < mn with gcd(m1, . . . ,mn) = 1, we mean a curve

with generic zero (vm1 , . . . , vmn) in the affine n-space An, over K. By a projective

monomial curve C(m1, . . . ,mn) we mean a curve with generic zero

(umn , umn−m1vm1 , . . . , umn−mn−1vmn−1 , vmn)

in the projective n-space Pn, over K. We use the fact that C(m1, . . . ,mn) is the

projective closure of C(m1, . . . ,mn).

Whenever we write C ⊂ Pn to simplify the notation, we always mean a mono-

mial curve C(m1, . . . ,mn) for some fixed positive integers m1 < · · · < mn with

gcd(m1, . . . ,mn) = 1.

24
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Let m be a positive integer in the numerical semigroup generated by

m1, . . . ,mn, i.e. m = s1m1 + · · · + snmn where s1, . . . , sn are some non-negative

integers. We define the degree δ(m) of m to be the minimum of all possible sums

s1 + · · · + sn. If ` is a positive integer with gcd(`,m) = 1, then we say that the

monomial curve C(`m1, . . . , `mn,m) in Pn+1 is an extension of C. An extension

is nice if δ(m) > ` and bad otherwise.

Recall that C`,m denotes the extensions C(`m1, . . . , `mn,m) in Pn+1, and C`,m

denotes the extensions C(`m1, . . . , `mn,m) in An+1.

4.1 Nice Extensions of Monomial Curves

Since bad extensions are shown to be a s.t.c.i. by the technique of gluing (see

Corollary 2.10), we study nice extensions of monomial curves in this section. By

using the theory developed in section 2.5.2 one can check which of these extensions

can be obtained by the technique of gluing semigroups.

Throughout this section we will assume that

• C = C(m1, . . . ,mn) ⊂ Pn is a s.t.c.i. on f1 = · · · = fn−1 = 0

• m = s1m1 + · · · + snmn for some nonnegative integers s1, . . . , sn such that

s1 + · · ·+ sn = δ(m)

• ` is a positive integer with gcd(`,m) = 1

• δ(m) > `.

Remark 4.1 Since C is s.t.c.i. on f1 = · · · = fn−1 = 0, its affine part C is

s.t.c.i. on g1 = · · · = gn−1 = 0, where gi(x1, . . . , xn) = fi(1, x1, . . . , xn) is the

dehomogenization of fi, i = 1, . . . , n − 1. It follows from Theorem 2.5 that C`,m

is a s.t.c.i. on the hypersurfaces gi = 0 and G = x1
s1 · · · xn

sn − x`
n+1 = 0.

So, the ideal of the affine curve C`,m contains gi’s and G. Hence the ideal of

the projective closure of C`,m must contain (at least) fi’s and F , where F is
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the homogenization of G. Now, since f1, . . . , fn−1, F ∈ I(C`,m), we always have

C`,m ⊆ Z(f1, . . . , fn−1, F ).

4.1.1 Special Extensions of Arbitrary Monomial Curves

In this section we assume that m is a multiple of mn, i.e. m = snmn where sn

is a positive integer. Note that (s1, . . . , sn−1) = (0, . . . , 0) and δ(m) = sn in this

case. This special choice enable us to prove the following

Theorem 4.2 Let C ⊂ Pn be a s.t.c.i. on the hypersurfaces f1 = · · · = fn−1 = 0,

gcd(`, snmn) = 1 and sn > `. Then, the nice extensions C`,snmn ⊂ Pn+1 are s.t.c.i.

on f1 = · · · = fn−1 = F = 0 where F = xsn
n − xsn−`

0 x`
n+1.

Proof: The fact that these nice extensions are s.t.c.i. can be seen easily by

[77, Theorem 3.4] taking b1 = m1, . . . , bn−1 = mn−1, d = mn and k = (sn − `)mn.

In addition to this, we provide here the equation of the binomial hypersurface

F = 0 on which these extensions lie as s.t.c.i. monomial curves.

Since C`,snmn ⊆ Z(f1, . . . , fn−1, F ), we need to get the converse inclu-

sion. Take a point P = (p0, . . . , pn, pn+1) ∈ Z(f1, . . . , fn−1, F ). Then, since

fi ∈ K[x0, . . . , xn], we have fi(P ) = fi(p0, . . . , pn) = 0, for all i = 1, . . . , n − 1.

Since Z(f1, . . . , fn−1) = C in Pn by assumption, the last observation implies that

(p0, . . . , pn) = (umn , umn−m1vm1 , . . . , umn−mn−1vmn−1 , vmn).

If p0 = 0 then u = 0, yielding that (p0, . . . , pn−1, pn) = (0, . . . , 0, pn). Since

sn > `, we have also pn = 0, by F (0, . . . , 0, pn, pn+1) = pn
sn − psn−`

0 p`
n+1 = 0. So

we observe that (p0, . . . , pn, pn+1) = (0, . . . , 0, 1) which is on the curve C`,snmn . If

p0 = 1 then (1, p1, . . . , pn, pn+1) ∈ Z(g1, . . . , gn−1, G) by the assumption, where gi

and G are polynomials defined in Remark 4.1. Since C`,snmn is a s.t.c.i. on the

hypersurfaces g1 = · · · = gn−1 = 0 and G = 0 it follows that (1, p1, . . . , pn, pn+1) ∈
C`,snmn ⊂ C`,snmn . �



CHAPTER 4. PRODUCING S.T.C.I. MONOMIAL CURVES IN PN 27

Since Arithmetically Cohen-Macaulay monomial curves are s.t.c.i. in P3 (see

[63]), we get the following corollary as a consequence of Theorem 4.2.

Corollary 4.3 Let C(m1,m2,m3) be an Arithmetically Cohen-Macaulay mono-

mial curve in P3. Let m = s3m3, gcd(`,m) = 1 and δ(m) = s3 > `. Then the

nice extensions C`,s3m3 = C(`m1, `m2, `m3, s3m3) are all s.t.c.i. in P4. �

Remark 4.4 There are very few examples of s.t.c.i. monomial curves in Pn,

where n > 3. We know that rational normal curve C(1, 2, . . . , n) is a s.t.c.i. in

Pn, for any n > 0, (see [62, 77]). Applying Theorem 4.2 to C(1, 2, . . . , n) ⊂ Pn,

we can produce infinitely many new examples of s.t.c.i. monomial curves in Pn+1:

Corollary 4.5 For all positive integers `, n and s with gcd(`, sn) = 1, the mono-

mial curves C(`, 2`, . . . , n`, sn) ⊂ Pn+1 are s.t.c.i.

Proof: Let m = sn. Clearly δ(m) = s. If s ≤ `, then the monomial curves

C`,m = C(`, 2`, . . . , n`, sn) ⊂ Pn+1 are bad extensions of C(1, 2, . . . , n) ⊂ Pn.

Hence they are s.t.c.i. by Corollary 2.10. If s > `, then these curves are nice

extensions of C(1, 2, . . . , n) ⊂ Pn. Therefore they are s.t.c.i. by Theorem 4.2. �

In [52], all (ideal theoretic) complete intersection (i.t.c.i.) lattice ideals are

characterized by gluing semigroups. But, for a given projective monomial curve

it is not easy to find two subsemigroups whose ideals are complete intersection.

So, as another application of Theorem 4.2 we can produce infinitely many i.t.c.i.

monomial curves:

Proposition 4.6 If C ⊂ Pn is an i.t.c.i., then the nice extensions C`,snmn ⊂
Pn+1 are i.t.c.i. for all positive integers ` and sn with sn > `, gcd(`, snmn) = 1.

Proof: Since C is a s.t.c.i. on the binomial hypersurfaces f1 = · · · = fn−1 = 0,

it follows from Theorem 4.2 that C`,snmn is a s.t.c.i. on f1 = · · · = fn−1 = 0 and

F (x0, . . . , xn+1) = xsn
n −xsn−`

0 x`
n+1 = 0. Since these are all binomial, the monomial

curves C`,snmn are i.t.c.i. on the same hypersurfaces, by [9, Theorem 4]. �
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Corollary 4.7 The monomial curves C(`m1, `m2, s2m2) are i.t.c.i. in P3, for all

positive integers m1,m2, ` and s2 with s2 > `, gcd(`, s2m2) = 1.

Proof: Let m = s2m2. Then δ(m) = s2 and C`,m = C(`m1, `m2, s2m2)

is a nice extension of C(m1,m2), by the assumption s2 > `. Since C(m1,m2)

is an i.t.c.i. on xm2
1 − xm2−m1

0 xm1
2 = 0, it follows from Proposition 4.6 that

the nice extensions C(`m1, `m2, s2m2) are i.t.c.i. on xm2
1 − xm2−m1

0 xm1
2 = 0 and

xs2
2 − xs2−`

0 x`
3 = 0. �

To produce infinitely many examples of i.t.c.i. curves, our method starts

from just one i.t.c.i. curve, whereas semigroup gluing method produces only one

example starting from one i.t.c.i.. The following example illustrates this point.

Example 4.8 From Corollary 4.7, we know that C(1, 2, 4) is an i.t.c.i. on

f1 = x2
1 − x0x2 = 0 and f2 = x2

2 − x0x3 = 0.

Take two positive integers ` and s with s > `, gcd(`, 4s) = 1. Then the monomial

curves C(`, 2`, 4`, 4s) ⊂ P4 are nice extensions of C(1, 2, 4) ⊂ P3. Thus, by

Proposition 4.6, the monomial curves C(`, 2`, 4`, 4s) are i.t.c.i. on

f1 = x2
1 − x0x2 = 0, f2 = x2

2 − x0x3 = 0 and F = xs
3 − xs−`

0 x`
4 = 0.

The nice extensions C(`, 2`, 4`, 4s) can also be obtained by gluing subsemigroups

generated by T1 = {(4s−`, `)} and T2 = {(4s, 0), (4s−2`, 2`), (4s−4`, 4`), (0, 4s)}.
But, in this case one has to know that C(`, 2`, 2s) is an i.t.c.i. for each ` and s.

In other words, starting with the fact that C(1, 2, 4) is an i.t.c.i., gluing method

can only produce C(1, 2, 4, 8) as an i.t.c.i. monomial curve.

4.1.2 Arbitrary Extensions of Special Monomial Curves

Assume now that m is not a multiple of mn, i.e. (s1, . . . , sn−1) 6= (0, . . . , 0).

Recall that we choose s1, . . . , sn in the representation of m = s1m1 + · · ·+ snmn

in such a way that s1 + · · ·+ sn is minimum, i.e. s1 + · · ·+ sn = δ(m). First we

prove a lemma where no restriction on the fi is required.
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Lemma 4.9 Let C ⊂ Pn be a s.t.c.i. on f1 = · · · = fn−1 = 0 and δ(m) >

`. Then, Z(f1, . . . , fn−1, F ) = C`,m ∪ L ⊂ Pn+1, where F = x1
s1 · · · xn

sn −
x

δ(m)−`
0 x`

n+1 and L is the line x0 = · · · = xn−1 = 0.

Proof: We first prove C`,m

⋃
L ⊆ Z(f1, . . . , fn−1, F ). By the light of Re-

mark 4.1, it is sufficient to see that L ⊆ Z(f1, . . . , fn−1, F ). For this, we take

a point P = (p0, . . . , pn+1) on the line L, i.e., P = (0, . . . , 0, pn, pn+1). Since

(s1, . . . , sn−1) 6= (0, . . . , 0) and δ(m) > `, we see that F (P ) = 0. Letting

v ∈ K be any mn-th root of pn, we get (0, . . . , 0, pn) = (0, . . . , 0, vmn) ∈ C =

Z(f1, . . . , fn−1). Since the polynomials fi are in K[x0, . . . , xn], it follows that

fi(P ) = fi(0, . . . , 0, pn) = 0, for all i = 1, . . . , n−1. Thus P ∈ Z(f1, . . . , fn−1, F ).

For the converse inclusion, take P = (p0, . . . , pn, pn+1) ∈ Z(f1, . . . , fn−1, F ).

Then, for all i = 0, . . . , n− 1, we get fi(p0, . . . , pn) = fi(P ) = 0 implying that

(p0, . . . , pn) = (umn , umn−m1vm1 , . . . , umn−mn−1vmn−1 , vmn).

If p0 = 0 then u = 0, yielding that (p0, . . . , pn) = (0, . . . , 0, pn). Thus, we get

P = (p0, . . . , pn, pn+1) = (0, . . . , 0, pn, pn+1) ∈ L. If p0 = 1 then by assumption

we know that P = (1, p1, . . . , pn, pn+1) ∈ Z(g1, . . . , gn−1, G). Since C`,m is a

s.t.c.i. on the hypersurfaces g1 = · · · = gn−1 = 0 and G = 0 it follows that

P = (1, p1, . . . , pn, pn+1) ∈ C`,m ⊂ C`,m. �

To get rid of L in the intersection of the hypersurfaces f1 = · · · = fn−1 = 0 and

F = 0, we modify the F = x1
s1 · · · xn

sn−xδ(m)−`
0 x`

n+1 of the Lemma 4.9, as in the

work of Bresinsky (see [11]), for some special choice of f1, . . . , fn−1. In this way

we construct a new polynomial F ∗ from F such that Z(f1, . . . , fn−1, F
∗) = C`,m,

where F ∗ is a polynomial of the form

F ∗ = xα
n + xβ

0H(x0, . . . , xn+1),

where β is a positive integer.

Note that when x0 = 0, the vanishing of F ∗ implies that xn = 0. It follows

from the last part of the proof of Lemma 4.9 that this property of F ∗ ensures
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that we have a point at infinity, in the intersection of f1 = · · · = fn−1 = 0 and

F ∗ = 0, instead of a line.

The construction of F ∗ can be described as follows. We first assume that

fi = xai
i −x

ai−bi
0 xbi

n = 0, where ai > bi are positive integers, for all i = 1, . . . , n−1.

Let p = a1 · · · an−1 and pi = bi

ai
p, for i = 1, . . . , n − 1. Take the p-th power of F

and for every occurrence of xai
i substitute xai−bi

0 xbi
n , for all i = 1, . . . , n− 1. Then

we have

F p = xγ
0x

α
n + x

δ(m)−`
0 H(x0, . . . , xn+1) mod(f1, . . . , fn−1)

= xγ
0 [x

α
n + x

δ(m)−`−γ
0 H(x0, . . . , xn+1)] mod(f1, . . . , fn−1)

where γ =
∑n−1

i=1 (p− pi)si, α = psn +
∑n−1

i=1 pisi and H is a polynomial. Letting

F ∗(x0, . . . , xn+1) = xα
n + x

δ(m)−`−γ
0 H(x0, . . . , xn+1)

we observe that

F p(x0, . . . , xn+1) = xγ
0F

∗(x0, . . . , xn+1) mod(f1, . . . , fn−1). (4.1)

Recall that m is an element of the numerical semigroup generated by

m1, . . . ,mn, i.e. m = s1m1 + · · · + snmn with s1 + · · · + sn = δ(m). If m is

large enough that sn > `+
∑n−1

i=1 (p− pi− 1)si (or equivalently δ(m)− `− γ > 0)

then F ∗ is the required polynomial. (Otherwise, F ∗ may not be a polynomial.)

Hence we conclude the following

Theorem 4.10 Let p, pi, fi and F ∗ be as above. Assume that m is chosen so

that sn > `+
∑n−1

i=1 (p− pi − 1)si. Then, for all ` < δ(m) with gcd(`,m) = 1, the

nice extensions C`,m ⊂ Pn+1 are s.t.c.i. on f1 = · · · = fn−1 = 0 and F ∗ = 0.

Proof: We will show that C`,m is a s.t.c.i. on f1 = · · · = fn−1 = 0 and

F ∗ = 0. To do this, take a point P = (p0, . . . , pn+1) ∈ C`,m. Then, F (P ) = 0

and fi(P ) = 0, for all i = 1, . . . , n − 1, since Z(f1, . . . , fn−1, F ) = C`,m

⋃
L, by

Lemma 4.9. From equation (4.1) it follows that F ∗(P ) = 0 or p0 = 0. Since P is

a point on the monomial curve C`,m, it can be parameterized as follows:

(um, um−`m1v`m1 , . . . , um−`mnv`mn , vm)
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So if p0 = 0, we get u = 0 and thus pi = 0, for all i = 1, . . . , n. Therefore

P = (0, . . . , 0, 1) and hence F ∗(P ) = 0 in any case.

Conversely, let P = (p0, . . . , pn+1) ∈ Z(f1, . . . , fn−1, F
∗). If p0 = 0, then

pi = 0 by fi(P ) = 0, for all i = 1, . . . , n − 1. Since δ(m) − ` − γ > 0, we have

pn = 0 by F ∗(P ) = 0. Thus P = (0, . . . , 0, 1) which is always on the curve C`,m.

If p0 = 1 then C is a s.t.c.i. on the hypersurfaces given by gi = xai
i − xbi

i+1 = 0,

for i = 1, . . . , n − 1, by the assumption. Hence, Theorem 2.5 implies that C`,m

is a s.t.c.i. on g1 = · · · = gn−1 = 0 and G = x1
s1 · · · xn

sn − x`
n+1 = 0. Thus

P = (1, p1, . . . , pn+1) ∈ C`,m ⊂ C`,m. �

Remark 4.11 The nice extensions in Theorem 4.10 can also be shown to be

s.t.c.i. by using [77, Theorem 3.4]. But to show that the hypotheses of [77,

Theorem 3.4] are satisfied by these extensions is much more difficult than the

proof here. As a byproduct we also constructed here the hypersurface F ∗ = 0 on

which these nice extensions are s.t.c.i.

Example 4.12 We start with C = C(3, 4, 6) ⊂ P3. Let ` = 1 and m = 6s + 7,

for some positive integer s. Then δ(m) = s + 2, s1 = s2 = 1 and s3 = s.

Thus we get the nice extensions C1,6s+7 = C(3, 4, 6, 6s + 7) ⊂ P4. Since ∆1 =

gcd(4, 6, 6s+ 7) = 1, ∆2 = gcd(3, 6, 6s+ 7) = 1 and ∆3 = gcd(3, 4, 6s+ 7) = 1 it

follows from Corollary 2.8 that these curves can not be obtained by gluing. Using

the software Macaulay [30], it is easy to see that the ideal of C1,6s+7 is minimally

generated by the polynomials

f1 = x2
1 − x0x3,

f2 = x3
2 − x0x

2
3,

f3 = xs+3
3 − xs−1

0 x1x
2
2x4

f4 = x2x
s+1
3 − xs

0x1x4,

f5 = x1x
s+2
3 − xs

0x
2
2x4

F = x1x2x
s
3 − xs+1

0 x4.

Since C(3, 4, 6) ⊂ P3 is a s.t.c.i. on the surfaces f1 = 0 and f2 = 0, it follows
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from Theorem 4.10 that C1,6s+7 is a s.t.c.i. on f1 = 0, f2 = 0 and

F ∗ = x6s+7
3 − 6xs−1

0 x1x
2
2x

5s+4
3 x4 + 15x2s

0 x2x
4s+4
3 x2

4 − 20x3s
0 x1x

3s+3
3 x3

4+

+15x4s
0 x

2
2x

2s+1
3 x4

4 − 6x5s
0 x1x2x

s
3x

5
4 + x6s+1

0 x6
4 = 0

provided that s > 2.

Recall that our method starts with a monomial curve C = Z(f1, . . . , fn−1)

in Pn and produces infinitely many nice extensions C`,m = Z(f1, . . . , fn−1, F
∗) in

Pn+1. Since the construction of F ∗ depends on the choice of f1, . . . , fn−1, it is pos-

sible to start with another curve C = Z(f1, . . . , fn−1) in Pn and obtain new fam-

ilies of nice extensions. Now we provide two examples of this sort. For instance,

if we assume that C is a s.t.c.i. on the hypersurfaces fi = xai
i − xai−bi

0 xbi
i+1 = 0,

where ai > bi are positive integers, i = 1, . . . , n − 1, then under some suitable

conditions we obtain other families of s.t.c.i. nice extensions. Let p = a1 · · · an−1,

q0 = b1 · · · bn−1 and qi = a1 · · · aibi+1 · · · bn−1, i = 1, . . . , n− 2. The first variation

is the following

Theorem 4.13 Let p, q0, . . . , qn−2 be as above. For all m which give rise to

sn > `+
∑n−2

i=0 (p− qi − 1)si+1 and for all ` with ` < δ(m) and gcd(`,m) = 1, the

nice extensions C`,m ⊂ Pn+1 are s.t.c.i. on f1 = · · · = fn−1 = F ∗ = 0.

Proof: Let F = x1
s1 . . . xn

sn − x
δ(m)−`
0 x`

n+1. Taking the p-th power and

replacing xai
i by xai−bi

0 xbi
i+1 for each i = 1, . . . , n− 1 we get the following

F p = xγ
0x

α
n + x

δ(m)−`
0 H(x0, . . . , xn+1) mod(f1, . . . , fn−1)

= xγ
0 [x

α
n + x

δ(m)−`−γ
0 H(x0, . . . , xn+1)] mod(f1, . . . , fn−1)

where γ =
∑n−2

i=0 (p − qi)si+1, α = psn +
∑n−2

i=0 qisi+1 and H is a polynomial.

Letting

F ∗(x0, . . . , xn+1) = xα
n + x

δ(m)−`−γ
0 H(x0, . . . , xn+1)

we observe that

F p(x0, . . . , xn+1) = xγ
0F

∗(x0, . . . , xn+1) mod(f1, . . . , fn−1).
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The proof of the claim that C`,m is a s.t.c.i. on f1 = · · · = fn−1 = F ∗ = 0 can be

done as in the proof of the Theorem 4.10. �

Now, we give another variation where m = simi + sjmj, for i, j ∈ {1, . . . , n}.
For the notational convenience we take i = 1 and j = n.

Theorem 4.14 Let C ⊂ Pn be a s.t.c.i. on the hypersurfaces given by

f1 = xa
1 − xa−b

0 xb
n = 0

fi = xai
i + xbi

0 A(x1, . . . , xn) + xci
1 B(x2, . . . , xn) = 0,

where a, b, a− b, ai, bi, and ci are positive integers, for i = 2, . . . , n− 1, A and

B are some polynomials. For all m which give rise to sn > `+ (a− b− 1)s1 and

for all ` with ` < δ(m) and gcd(`,m) = 1, the nice extensions C`,m ⊂ Pn+1 are

s.t.c.i. on f1 = · · · = fn−1 = F ∗ = 0.

Proof: Let F = x1
s1xn

sn − xs1+sn−`
0 x`

n+1. Then it is easy to see the following

F a = x
(a−b)s1

0 F ∗(x0, . . . , xn+1) (mod f1) where

F ∗ = xbs1+asn
n + x

(1+b−a)s1+sn−`
0

a∑
k=1

(−1)k

(
a

k

)
(xs1

1 xn
sn)a−kx

(s1+sn−`)(k−1)
0 xk`

n+1.

The proof of the claim that C`,m is a s.t.c.i. on f1 = · · · = fn−1 = F ∗ = 0 can be

done as in the proof of the Theorem 4.10. �

Example 4.15 Consider the monomial curve C(3, 5, 9, 9s + 5) ⊂ P4, for all

s ≥ 2. Since gcd(5, 9, 9s+5) = 1, gcd(3, 9, 9s+5) = 1 and gcd(3, 5, 9s+5) = 1 it

follows from Corollary 2.8 that these curves can not be obtained by gluing. Using

the software Macaulay [30], it is easy to see that the ideal of C(3, 5, 9, 9s + 5) is

minimally generated by the polynomials

f1 = x3
1 − x2

0x3, f2 = x3
2 − x2

1x3, f3 = xs+2
3 − xs−2

0 x1x
2
2x4, f4 = x2x

s
3 − xs

0x4

and F = x2
1x

s−1
3 − xs

0x
2
2x4. Since C(3, 5, 9) ⊂ P3 is a s.t.c.i. on the surfaces

f1 = 0 and f2 = 0, it follows from Theorem 4.14 that C1,9s+5 = C(3, 5, 9, 9s+ 5)

is a s.t.c.i. on f1 = 0, f2 = 0 and

F ∗ = x3s+4
3 − 3xs−2

0 x2
1x

2
2x

2s+2
3 x4 + 3x2s−2

0 x1x
4
2x

s+1
3 x2

4 − x3s−2
0 x6

2x
3
4 = 0.
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Example 4.16 By Corollary 4.7, we know that C(1, 2, 4) ⊂ P3 is an i.t.c.i. on

f1 = x2
1 − x0x2 = 0 and f2 = x2

2 − x0x3 = 0. In this example, we show that the

monomial curve C(1, 2, 4,m) ⊂ P4 is a s.t.c.i. for any m 6= 5, 7. Clearly m is 0,

1, 2 or 3 (mod 4). The case m = 4s is investigated in Example 4.8. In the case

of m = 4s+ 1, we have the monomial curve C(1, 2, 4, 4s+ 1) ⊂ P4 whose ideal is

generated by the following set of generators

f1, f2, f3 = x2x
s
3 − xs−1

0 x1x4, f4 = xs+1
3 − xs−2

0 x1x2x4, F = x1x
s
3 − xs

0x4.

Since m = 4s + 1, this means that s1 = 1, s2 = 0 and s3 = s in Theorem 4.13.

In the theorem we assume that s3 = s > ` + 2s1 + s2 = 3 but this is not sharp.

Indeed, the construction of F ∗ work if s > 1. The construction is as follows:

F 4 = (x1x
s
3 − xs

0x4)
4 = x4

1x
4s
3 − 4x3

1x
3s
3 x

s
0x4 + 6x2

1x
2s
3 x

2s
0 x

2
4 − 4x1x

s
3x

3s
0 x

3
4 + x4s

0 x
4
4.

Since x2
1 = x0x2 mod(f1) and x2

2 = x0x3 mod(f2), it follows that we have

x4
1 = x2

0x
2
2 = x3

0x3 mod(f1, f2). Thus, we get F 4 = x3
0(F

∗) mod(f1, f2), where

F ∗ = x4s+1
3 − 4xs−2

0 x1x2x
3s
3 x4 + 6x2s−2

0 x2x
2s
3 x

2
4 − 4x3s−3

0 x1x
s
3x

3
4 + x4s−3

0 x4
4.

Thus, the curve C(1, 2, 4, 4s+ 1) ⊂ P4 is a s.t.c.i. on f1 = 0, f2 = 0 and F ∗ = 0.

In the case where s = 1, F ∗ is not a polynomial since xs−2
0 x1x2x

3s
3 x4 is not a

monomial. That’s why our method does not apply here.

If m = 4s+2, we have the monomial curve C(1, 2, 4, 4s+2) ⊂ P4 whose ideal

is generated by the following set of generators

f1, f2, f3 = xs+1
3 − xs−1

0 x2x4, F = x2x
s
3 − xs

0x4.

In this case we take s1 = 0, s2 = 1 and s3 = s > 2 to apply Theorem 4.13, which

yields F 4 = x2
0(F

∗) mod(f1, f2), where

F ∗ = (x4s+2
3 − 2xs−1

0 x2x
s
3x4 + x2s−1

0 x2
4)

2.

Thus, the curve C(1, 2, 4, 4s+ 2) ⊂ P4 is a s.t.c.i. on f1 = 0, f2 = 0 and F ∗ = 0.

Indeed, we could apply Theorem 4.14 here with s > 1 and in this case we get a

quadric G∗ instead of a quartic F ∗ above. We take 2nd power of F and mode it

by f2 to get:

F 2 = x2
2x

2s
3 − 2xs

0x2x
s
3x4 + x2s

0 x
2
4 = x0G

∗ where
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G∗ = x2s+1
3 − 2xs−1

0 x2x
s
3x4 + x2s−1

0 x2
4.

Note that F ∗ = (G∗)2 and C(1, 2, 4, 4s + 2) ⊂ P4 is a s.t.c.i. on f1 = 0, f2 = 0

and G∗ = 0.

If m = 4s+3, we have the monomial curve C(1, 2, 4, 4s+3) ⊂ P4 whose ideal

is generated by the following set of generators

f1, f2, f3 = xs+1
3 − xs−1

0 x1x4, F = x1x2x
s
3 − xs+1

0 x4.

Now, we need to take s1 = 1, s2 = 1 and s3 = s > 4 to apply Theorem 4.13, but

the same happens to be true for any positive integer s. As before, we have the

following relation F 4 = x5
0(F

∗) mod(f1, f2), where

F ∗ = x4s+3
3 − 4xs−1

0 x1x
3s+2
3 x4 + 6x2s−1

0 x2x
2s+1
3 x2

4 − 4x3s−2
0 x1x2x

s
3x

3
4 + x4s−1

0 x4
4.

Thus, the curve C(1, 2, 4, 4s+ 1) ⊂ P4 is a s.t.c.i. on f1 = 0, f2 = 0 and F ∗ = 0.

So the missing integers are m = 5, 6, 7 corresponding to s = 1.

When m = 6, we use Theorem 4.2 with ` = 2, s3m3 = 1 and the fact that

C(3, 2, 1) is a s.t.c.i. on x2
3 = x0x2 and x3

2 − 2x1x2x3 + x0x
2
1 = 0. So C(6, 4, 2, 1)

is a s.t.c.i. on x2
3 = x0x2, x

3
2 − 2x1x2x3 + x0x

2
1 = 0 and x2

4 = x0x3 implying that

C(1, 2, 4, 6) is a s.t.c.i. on x2
2 = x0x3, x

3
3 − 2x2x3x4 + x0x

2
4 = 0 and x2

1 = x0x2.

Thus the only open cases that the technique of this thesis does not apply are

m = 5 and 7 for this example.



Chapter 5

Hilbert Function of Monomial

Curves

In this chapter, we study the Hilbert functions of local rings associated to mono-

mial curves. Our aim is to obtain large families of one dimensional local rings

with arbitrary embedding dimension whose Hilbert function is non-decreasing.

This will be achieved by producing affine monomial curves whose tangent cones

are Cohen-Macaulay by using the technique of gluing numerical semigroups. The

Cohen-Macaulayness of the tangent cones of monomial curves has been studied

by many authors, see [2], [4], [15], [28], [49], [50], [61] and [67]. To check the

Cohen-Macaulayness, we first present an easy and efficient criterion by using the

standard basis theory. This new criterion refines the given one in the literature.

We use this criterion and the technique of gluing to obtain infinitely many new

families of monomial curves in arbitrary dimensions with Cohen-Macaulay tan-

gent cones. In this way, we generalize the results in [2] and [4] given for nice

extensions, which are in fact special types of gluings. In doing this, we also give

the definition of a nice gluing which is a generalization of a nice extension defined

in [4]. The content of this chapter is a fruit of our joint work with Feza Arslan and

Pınar Mete, see also [5]. We encourage the reader to consult [3] for fundamental

facts about tangent cone of a monomial curve and its Cohen-Macaulayness and

to [46] for their Hilbert functions.

36
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Let S be a polynomial ring K[x1, . . . , xk] over a field K. If M is a finitely

generated N-graded S-module, i.e. M =
⊕
r∈N

Mr, then the Hilbert function of

M is defined to be HM(r) = dimKMr, where the graded modules Mr are finite

dimensional vector spaces over K. The Hilbert series HPM(y) of M is defined to

be the power series
∑
r∈N

HM(r)yr. For example, the Hilbert function and Hilbert

series of S itself are given by the following combinatorial formulas:

HS(r) =

(
k − 1 + r

k − 1

)
and HPS(y) =

∑
r∈N

(
k − 1 + r

k − 1

)
yr.

Let C = C(n1, . . . , nk) be a monomial curve corresponding to the numeri-

cal semigroup < n1, . . . , nk > minimally generated by n1, . . . , nk. It is known

that the coordinate ring K[C] of C is isomorphic to the affine semigroup ring

K[tn1 , . . . , tnk ]. Clearly, K[tn1 , . . . , tnk ] =
⊕
r∈N

K[tr] and dimKK[tr] = 1 if

r ∈< n1, . . . , nk > and dimKK[tr] = 0 if r /∈< n1, . . . , nk >. Thus, Hilbert

function of the coordinate ring of C takes only two values 0 and 1:

HK[C](r) = 1 if r ∈< n1, . . . , nk > and HK[C](r) = 0 if r /∈< n1, . . . , nk > .

If c is the Frobenius number of the semigroup < n1, . . . , nk >, i.e. the largest

number not belonging to < n1, . . . , nk >, then Hilbert function is constant

(HK[C](r) = 1) for all r > c since in this case r ∈< n1, . . . , nk >. Thus, it is

non-decreasing in this case. If n1 = 1, then r is always in the semigroup, and

thus HK[C](r) = 1, for any r ∈ N. But if n1 6= 1, then there are certainly gaps, i.e.

r /∈< n1, . . . , nk >, for which HK[C](r) = 0. Therefore, in this case, Hilbert func-

tion is NOT non-decreasing. For example, if C = C(3, 5, 7), then the numerical

semigroup generated minimally by 3, 5, 7 is

< 3, 5, 7 >= {0, 3, 5, 6, 7, 8, 9, . . . } and gaps are {1, 2, 4} with c = 4.

Hence, the Hilbert function of the coordinate ring of C = C(3, 5, 7) is given by

the following sequence of numbers HK[C] = {1, 0, 0, 1, 0, 1, 1, 1, . . . } and clearly

decrease at some points. Therefore we can conclude this paragraph by stating

that Hilbert function of the coordinate ring of C(n1, . . . , nk) is non-decreasing if

and only if n1 = 1.
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If (R,m) is a local ring with maximal ideal m, then the Hilbert function of

R is defined to be the Hilbert function of its associated graded ring

grm(R) =
⊕
r∈N

mr/mr+1.

Therefore,

HR(r) = dimK(mr/mr+1).

If (R,m) is a one dimensional Cohen-Macaulay local ring with embedding

dimension d := HR(1), the following are known about the conjecture of Sally

saying that the Hilbert function HR(r) is non-decreasing:

• d = 1, obvious as HR(r) = 1,

• d = 2, proved by Matlis (1977) [45],

• d = 3, proved by Elias (1993) [21],

• d = 4, a counterexample is given by Gupta-Roberts (1983) [29],

• d ≥ 5, counterexamples for each d are given by Orecchia(1980) [57].

The first counterexamples were the local rings associated to monomial curves.

Herzog and Waldi [37] in 1975 were the first who consider the monomial curve

C(30, 35, 42, 47, 148, 153, 157, 169, 181, 193) in A10 and its associated local ring

(R,m). They show that the Hilbert function of R is NOT non-decreasing by

explicitly writing it down:

HR = {1, 10,9, 16, 25, . . . }.

Later, Eakin and Sathaye [19] in 1976 took the monomial curve in A12 de-

fined by C(15, 21, 23, 47, 48, 49, 50, 52, 54, 55, 56, 58) and studied its associated lo-

cal ring (R,m). Hilbert function of R is NOT non-decreasing as it is given by

HR = {1, 12,11, 13, 15, . . . }.
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5.1 An Effective Criterion for Checking the

Cohen-Macaulayness

In this section, we give a refinement of the criterion for checking the Cohen-

Macaulayness of the tangent cone of a monomial curve given in [2, Theorem 2.1].

This criterion uses the theorem of Garcia saying that a monomial curve C =

C(n1, . . . , nk) with n1 smallest among the integers n1, . . . , nk has Cohen-Macaulay

tangent cone if and only if tn1 is not a zero divisor in grm(k[[tn1 , . . . , tnk ]]) (or

equivalently, x1 is not a zero divisor in the ring K[x1, . . . , xk]/I(C)∗) [28]. In

[2, Theorem 2.1], first the generators of the defining ideal of the tangent cone

are computed by a Gröbner basis computation and then from these generators

another Gröbner basis is computed in order to check whether x1 is not a zero

divisor. The advantage of this new criterion presented below is that, instead

of computing another Gröbner basis after finding the generators of the defining

ideal of the tangent cone, it needs only a computation of the standard basis of the

generators of the defining ideal of the monomial curve with respect to a special

local order. Recall that a local order is a monomial ordering with 1 greater than

any other monomial. For the examples and properties of local orderings, see [32].

Lemma 5.1 Let < n1, . . . , nk > be a numerical semigroup minimally generated

by the integers n1, . . . , nk among which n1 is the smallest. Let C = C(n1, . . . , nk)

be the associated monomial curve and G = {f1, . . . , fs} be a minimal standard

basis of the ideal I(C) ⊂ K[x1, . . . , xk] with respect to the negative degree reverse

lexicographical ordering that makes x1 the lowest variable. C has Cohen-Macaulay

tangent cone at the origin if and only if x1 does not divide LM(fi) for 1 ≤ i ≤ k,

where LM(fi) denotes the leading monomial of a polynomial fi.

Proof: Recalling that f∗ is the homogeneous summand of the polynomial

f of least degree, if x1 divides LM(fi) for some i, then either fi∗ = x1m or

fi∗ = x1m +
∑
cimi, where mi’s are monomials having the same degree with

x1m and ci’s are in K. In the latter case, x1 must divide each mi, because

we work with the negative degree reverse lexicographical ordering that makes
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x1 the lowest variable. This implies that in both cases fi∗ = x1g where g is a

homogeneous polynomial. Moreover, g 6∈ I(C)∗. If g ∈ I(C)∗, then there exists

f ∈ I(C) such that f∗ = g so LM(f) = LM(g). Since the ideal generated by the

leading monomials of the elements in I(C) (with respect to the negative degree

reverse lexicographical ordering which makes x1 the lowest variable) is equal to

the ideal generated by the leading monomials of the elements in G, there exists

an fj ∈ G such that LM(fj) divides LM(f) = LM(g) and this contradicts with

the minimality of G. Thus, x1g ∈ I(C)∗, while g 6∈ I(C)∗, which makes x1 a

zero-divisor in K[x1, . . . , xk]/I(C)∗. Hence, the tangent cone of the monomial

curve C is not Cohen-Macaulay. Conversely, if K[x1, . . . , xk]/I(C)∗ is not Cohen-

Macaulay, then x1 is a zero-divisor in K[x1, . . . , xk]/I(C)∗. Thus, x1m ∈ I(C)∗,

where m is a monomial and m 6∈ I(C)∗. The ideal generated by the leading

monomials of the elements in I(C) obviously contains x1m. Since G is a standard

basis, there exists fi ∈ G such that LM(fi) = x1m
′, where m′ divides m and

m′ 6∈ I(C)∗, because m 6∈ I(C)∗. This completes the proof. �

In this way, checking the Cohen-Macaulayness of the tangent cone of a mono-

mial curve has been just reduced to a computation of a standard basis with

respect to the negative degree reverse lexicographical ordering that makes x1 the

lowest variable and checking whether any of the leading monomials of this basis

contains x1.

Example 5.2 Let C be the monomial curve given by C = C(6, 7, 15). The ideal

I(C) is generated by the set G = {x5
1 − x2

3, x1x3 − x3
2}, which has a minimal

standard basis with respect to the negative degree reverse lexicographical ordering

with x2 > x3 > x1 given by the set G′ = {x5
1 − x2

3, x1x3 − x3
2, x

3
2x3 − x6

1, x
6
2 − x7

1}.
From 5.1, since x1 divides LM(x1x3 − x3

2) = x1x3, the monomial curve C does

not have a Cohen-Macaulay tangent cone.

5.2 Gluing and Cohen-Macaulay Tangent Cones

In this section, we first give the definition of gluing for numerical semigroups.
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Definition 5.3 [65, Lemma 2.2] Let S1 and S2 be two numerical semigroups

minimally generated by m1 < · · · < ml and n1 < · · · < nk respectively. Let

p = b1m1 + · · · + blml ∈ S1 and q = a1n1 + · · · + aknk ∈ S2 be two positive

integers satisfying gcd(p, q) = 1 with p 6∈ {m1, . . . ,ml} and q 6∈ {n1, . . . , nk}. The

numerical semigroup S =< qm1, . . . , qml, pn1, . . . , pnk > is called a gluing of the

semigroups S1 and S2.

This definition of gluing is different from the one we gave before. In fact S

above is the gluing of its subsemigroups qS1 and pS2. Since the monomial curve

defined by qS1 is nothing but the one defined by S1 we prefer to use this definition

here.

Thus, the monomial curve C = C(qm1, . . . , qml, pn1, . . . , pnk) can be inter-

preted as the gluing of the monomial curves C1 = C(m1, . . . ,ml) and C2 =

C(n1, . . . , nk), if p and q satisfy the conditions in Definition 5.3. Moreoever, if

the defining ideals I(C1) ⊂ K[x1, . . . , xl] of C1 and I(C2) ⊂ K[y1, . . . , yk] of C2

are generated by the sets G1 = {f1, . . . , fs} and G2 = {g1, . . . , gt} respectively,

then the defining ideal of I(C) ⊂ K[x1, . . . , xl, y1, . . . , yk] is generated by the set

G = {f1, . . . , fs, g1, . . . , gt, x
b1
1 . . . xbl

l − ya1
1 . . . yak

k }

We first answer the following question: If C1 and C2 have Cohen-Macaulay

tangent cones, is the tangent cone of the monomial curve C obtained by gluing

these two monomial curves necessarily Cohen-Macaulay? The following example

shows that the answer is no.

Example 5.4 Let C1 and C2 be the monomial curves C1 = C(5, 12) and C2 =

C(7, 8). Obviously, they have Cohen-Macaulay tangent cones. By a gluing of

C1 and C2, we obtain the monomial curve C = C(21.5, 21.12, 17.7, 17.8). The

ideal I(C) is generated by the set G = {x12
1 − x5

2, y
8
1 − y7

2, x1x2 − y3
1}, which has a

minimal standard basis with respect to the negative degree reverse lexicographical

ordering with x2 > y2 > y1 > x1 given by the set G′ = {x1x2 − y3
1, x

5
2 − x12

1 , y
15
1 −

x17
1 , y

7
2−y8

1, x
4
2y

3
1−x13

1 , x
3
2y

6
1−x14

1 , x
2
2y

9
1−x15

1 , x2y
12
1 −x16

1 }. From Lemma 5.1, since

x1 divides x1x2 which is the leading monomial of the element x1x2− y3
1 ∈ G′, the



CHAPTER 5. HILBERT FUNCTION OF MONOMIAL CURVES 42

monomial curve C obtained by a gluing of C1 and C2 does not have a Cohen-

Macaulay tangent cone.

This example leads us to ask the following question:

Question. If two monomial curves have Cohen-Macaulay tangent

cones, under which conditions does the monomial curve obtained by

gluing these two monomial curves also have a Cohen-Macaulay tan-

gent cone?

To answer this question partly, we first give the definition of a nice gluing,

which generalizes the definition of a nice extension given in [4].

Definition 5.5 Let S1 =< m1, . . . ,ml > and S2 =< n1, . . . , nk > be two nu-

merical semigroups minimally generated by m1 < · · · < ml and n1 < · · · < nk

respectively. The numerical semigroup S =< qm1, . . . , qml, pn1, . . . , pnk > ob-

tained by gluing S1 and S2 is called a nice gluing, if p = b1m1 + · · · + blml ∈ S1

and q = a1n1 ∈ S2 with a1 ≤ b1 + · · ·+ bl.

Remark 5.6 Notice that a nice extension defined in [4] is exactly a nice gluing

with S2 =< 1 >.

Remark 5.7 It is important to determine the smallest integer among the gener-

ators of the numerical semigroup S =< qm1, . . . , qml, pn1, . . . , pnk > obtained by

gluing, since this is essential in checking the Cohen-Macaulayness of the tangent

cone of the associated monomial curve. The condition a1 ≤ b1 + · · · + bl with

m1 < · · · < ml, n1 < · · · < nk and gcd(p, q) = 1 implies that

qm1 = a1n1m1 ≤ (b1 + · · ·+ bl)n1m1 < pn1 = (b1m1 + · · ·+ blml)n1

and qm1 is the smallest integer among the generators of S.

We are now ready to state the following:
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Theorem 5.8 Let S1 =< m1, . . . ,ml > and S2 =< n1, . . . , nk > be two nu-

merical semigroups minimally generated by m1 < · · · < ml and n1 < · · · < nk,

and let S =< qm1, . . . , qml, pn1, . . . , pnk > be a nice gluing of S1 and S2. If

the associated monomial curves C1 = C(m1, . . . ,ml) and C2 = C(n1, . . . , nk)

have Cohen-Macaulay tangent cones at the origin, then the monomial curve C =

C(qm1, . . . , qml, pn1, . . . , pnk) has also Cohen-Macaulay tangent cone at the ori-

gin, and thus, the Hilbert function of the local ring K[[tqm1 , . . . , tqml , tpn1 , . . . , tpnk ]]

is non-decreasing.

Proof: By using the notation in [32], we denote the s-polynomial of the poly-

nomials f and g by spoly(f, g) and the Mora’s polynomial weak normal form of f

with respect to G by NF (f |G). Let G1 = {f1, . . . , fs} be a minimal standard ba-

sis of the ideal I(C1) ⊂ K[x1, . . . , xl] with respect to the negative degree reverse

lexicographical ordering with x2 > · · · > xl > x1 and G2 = {g1, . . . , gt} be a mini-

mal standard basis of the ideal I(C2) ⊂ K[y1, . . . , yk] with respect to the negative

degree reverse lexicographical ordering with y2 > · · · > yk > y1. Since C1 and C2

have Cohen-Macaulay tangent cones at the origin, we conclude from Lemma 5.1

that x1 does not divide the leading monomial of any element in G1 and y1 does

not divide the leading monomial of any element in G2 for the given orderings. The

defining ideal of the monomial curve C obtained by gluing is generated by the set

G = {f1, . . . , fs, g1, . . . , gt, x
b1
1 . . . xbl

l − ya1
1 }. Moreover, this set is a minimal stan-

dard basis with respect to the negative degree reverse lexicographical ordering

with y2 > · · · > yk > y1 > x2 > · · · > xl > x1, because NF (spoly(fi, gj)|G) = 0,

NF (spoly(fi, x
b1
1 . . . xbl

l − ya1
1 )|G) = 0 and NF (spoly(gj, x

b1
1 . . . xbl

l − ya1
1 )|G) = 0

for 1 ≤ i ≤ s and 1 ≤ j ≤ t. This is due to the fact that NF (spoly(f, g)|G) = 0,

if lcm(LM(f),LM(g)) = LM(f) · LM(g). From Remark 5.7, qm1 is the smallest

integer among the generators of G. Thus, C has Cohen-Macaulay tangent cone

at the origin if and only if x1, which corresponds to qm1, is not a zero-divisor

in K[x1, . . . , xl, y1, . . . , yk]/I(C)∗. Since x1 does not divide the leading monomial

of any element in G1 and G2, and LM(xb1
1 . . . xbl

l − ya1
1 ) = ya1

1 , x1 does not di-

vide the leading monomial of any element in G, which is a minimal standard

basis with respect to the negative degree reverse lexicographical ordering with

y2 > · · · > yk > y1 > x2 > · · · > xl > x1. Thus, from Lemma 5.1, C has
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Cohen-Macaulay tangent cone at the origin. �

Remark 5.9 From Remark 5.6, every nice extension is a nice gluing. Thus, if

the monomial curve C = C(m1, . . . ,ml) has a Cohen-Macaulay tangent cone at

the origin, then every nice extension C ′ = C(qm1, . . . , qml, b1m1 + · · ·+ blml) of

C has also Cohen-Macaulay tangent cone at the origin. Therefore, Theorem 5.8

generalizes the results in [2, Proposition 4.1] and [4, Theorem 3.6].

Example 5.10 Let C1 and C2 be the monomial curves C1 = C(m1,m2) with

m1 < m2 and C2 = C(n1, n2) with n1 < n2. Obviously, they have Cohen-

Macaulay tangent cones. From Theorem 5.8, every monomial curve C =

C(qm1, qm2, pn1, pn2) obtained by a nice gluing with q = a1n1, p = b1m1 + b2m2,

gcd(p, q) = 1 and a1 ≤ b1 + b2 has Cohen-Macaulay tangent cone at the ori-

gin, so the local ring R = K[[tqm1 , tqm2 , tpn1 , tpn2 ]] associated to the monomial

curve C has a non-decreasing Hilbert function. Thus, by starting with fixed

m1,m2, n1 and n2, we can construct infinitely many families of 1-dimensional lo-

cal rings with non-decreasing Hilbert functions. For example, consider the mono-

mial curves C1 = C(2, 3) and C2 = C(4, 5). By choosing q = 2n1 = 8 and

p = (2r)m1 + m2 = 4r + 3, for any r ≥ 1, we obtain the monomial curve

C(16, 24, 16r+12, 20r+15), which is a nice gluing of C1 and C2. Since C is also

a complete intersection monomial curve having a Cohen-Macaulay tangent cone,

the associated local rings are Gorenstein with non-decrasing Hilbert functions, and

that supports Rossi’s conjecture saying that a one-dimensional Gorenstein local

ring has a non-decreasing Hilbert function [4].

This example shows that gluing is an effective method to obtain new families

of monomial curves with Cohen-Macaulay tangent cones. Especially in affine 4-

space, nice gluing is a very efficent method to obtain large families of complete

intersection monomial curves with Cohen-Macaulay tangent cones, since every

monomial curve in affine 2-space has a Cohen-Macaulay tangent cone.
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5.3 A Conjecture

It is also possible to construct large families of gluings, which are not nice, but still

give families of monomial curves with associated local rings having non-decreasing

Hilbert functions.

Example 5.11 Let C1 and C2 be the monomial curves C1 = C(5, 12) and

C2 = C(7, 8). Obviously, they have Cohen-Macaulay tangent cones and thus

their associated local rings have non-decreasing Hilbert functions. The family of

monomial curves

C = C(5 · 7 · (2d+ 1), 12 · 7 · (2d+ 1), 7 · 17 · d, 8 · 17 · d)

for d ≥ 1 and d not divisible by 7 is a gluing, but not a nice gluing, of C1 and

C2. Computations with Singular [31] show that, for 1 ≤ d ≤ 4, C does not

have a Cohen-Macaulay tangent cone, but its associated local ring has a non-

decreasing Hilbert function. (Note that d = 1 gives Example 5.2.) For d ≥ 5 and

d not divisible by 7, the generator set G = {x12
1 − x5

2, y
8
1 − y7

2, y
2d+1
1 − x12+d

1 xd−5
2 }

of I(C) is a minimal standard basis with respect to the negative degree reverse

lexicographical ordering with x1 < y2 < y1 < x2. Since x1 does not divide the

set {x5
2, y

7
2, y

2d+1
1 } of leading monomials of the polynomials in the set G, C has

Cohen-Macaulay tangent cone at the origin by Lemma 5.1. As a result, the Hilbert

function of the local ring R = K[[t5·7·(2d+1), t12·7·(2d+1), t7·17·d, t8·17·d]] associated to

the monomial curve C is non-decreasing for d ≥ 1 and d not divisible by 7.

Again notice that for each d, C is a complete intersection monomial curve, and

this result also supports Rossi’s conjecture.

All these results and computations give examples of local rings, which have

non-decreasing Hilbert functions and which are associated to monomial curves

obtained by a gluing or a nice gluing of two monomial curves with associated

local rings having non-decreasing Hilbert functions. Thus, depending on this

idea, we formulate the following conjecture:

Conjecture 5.12 If the Hilbert functions of the local rings associated to two
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complete intersection monomial curves are non-decreasing, then the Hilbert func-

tion of the local ring associated to the monomial curve obtained by gluing these

two monomial curves is also non-decreasing.

We know that every monomial curve in affine 2-space is obtained by gluing two

complete intersection monomial curves C1 = C(1) and C2 = C(1) both having

Cohen-Macaulay tangent cones obviously, and it is easy to check that every local

ring associated to a monomial curve in affine 2-space has a non-decreasing Hilbert

function. In affine 3-space, every monomial curve is not obtained by gluing,

but every local ring associated to a monomial curve in affine 3-space has also a

non-decreasing Hilbert function. This follows from the important result of Elias

saying that every one-dimensional Cohen-Macaulay local ring with embedding

dimension three has a non-decreasing Hilbert function [21]. Thus, the answer to

the above conjecture is positive for the monomial curves in affine 2-space and

3-space, which are obtained by gluing, while the conjecture is open even for the

complete intersection monomial curves in 4-space, which are obtained by gluing.

What makes this question important is that, if the answer is affirmative, it will

have been proved that the Hilbert function of every local ring associated to any

complete intersection monomial curve is non-decreasing. This will be due to a

result of Delorme [17], which is restated by Rosales in terms of gluing and says that

every complete intersection numerical semigroup minimally generated by at least

two elements is a gluing of two complete intersection numerical semigroups [65,

Theorem 2.3]. Considering that it is still not known whether the Hilbert function

of local rings with embedding dimension four associated to complete intersection

monomial curves in affine 4-space is non-decreasing, this will be an important step

in proving the conjecture due to Rossi saying that a one-dimensional Gorenstein

local ring has a non-decreasing Hilbert function.

5.4 Hilbert functions via Free Resolutions

In this section we give an approach to study Hilbert functions using free reso-

lutions. The advantage of this is that one can still get non-decreasing Hilbert
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function in the case where the tangent cone is NOT Cohen-Macaulay.

Let R be an N-graded ring. Given a finitely generated N-graded module M

over R, the Hilbert function of M is defined to be HM(r) = dimK(Mr), for all

r ∈ N.

If M has a minimal finite graded free resolution

0 → Fd → · · · → F1 → F0 →M → 0

then the Hilbert Function of M is given by HM(r) =
∑d

i=0HFi
(r), where the free

modules Fi =
⊕

j∈NR(−j)βi,j , for all i = 0, . . . , d = projdim(M). Moreover the

Hilbert series of M is given by [
∑

r≥0

(
n−1+r

n−1

)
tr][
∑

i,j(−1)jβi,jt
j].

One can use this approach to show that nice extensions of monomial curves

with non-decreasing Hilbert functions have non-decreasing Hilbert function as

well. For instance, if C = C(6q, 7q, 15q,m) is a nice extension of C(6, 7, 15), that

is m = 6b1 +7b2 +15b3 and q ≤ b1 +b2 +b3, then we show that its Hilbert function

is non-decreasing. Note that tangent cones of these monomial curves are NOT

Cohen-Macaulay.

Hilbert functions of certain extensions can be computed using a computer

program such as Macaulay and Singular. For instance, the following sequence of

numbers describe the Hilbert function of extensions where 1 < q < 7:

1, 4, 7, 9, 10, 11, 12, 12, 12, 12, 12, . . .

1, 4, 8, 12, 14, 16, 17, 18, 18, 18, 18, . . .

1, 4, 8, 13, 17, 20, 22, 23, 24, 24, 24, . . .

1, 4, 8, 13, 18, 23, 26, 28, 29, 30, 30, . . .

1, 4, 8, 13, 18, 24, 29, 32, 34, 35, 36, . . .

Obviously, they are non-decreasing. For the extensions where q ≥ 7, we use free

resolutions of their tangent cones.

Let R = K[x1, x2, x3, x4] and M = R/I(C)∗. A minimal free resolution of M

is as follows

0 → F4 → F3 → F2 → F1 → F0 →M → 0



CHAPTER 5. HILBERT FUNCTION OF MONOMIAL CURVES 48

where F0 = R, F1 = R(−2)2
⊕

R(−4)
⊕

R(−6)
⊕

R(−q),
F2 = R(−3)

⊕
R(−5)2

⊕
R(−7)

⊕
R(−q − 2))2

⊕
R(−q − 4)

⊕
R(−q − 6),

F3 = R(−6)
⊕

R(−q − 3)
⊕

R(−q − 5)2
⊕

R(−q − 7) and F4 = R(−q − 6).

In the sequel, if a < b then we assume that
(

a
b

)
= 0. Thus, we have

HM(r) = HF0(r)−HF1(r) +HF2(r)−HF3(r) +HF4(r) =

=

(
r + 3

3

)
− [2

(
r + 1

3

)
+

(
r − 1

3

)
+

(
r − 3

3

)
+

(
r − q + 3

3

)
] +

+ [

(
r

3

)
+ 2

(
r − 2

3

)
+

(
r − 4

3

)
+ 2

(
r − q + 1

3

)
+

(
r − q − 1

3

)
+

+

(
r − q − 3

3

)
]− [

(
r − 3

3

)
+

(
r − q

3

)
+ 2

(
r − q − 2

3

)
+

+

(
r − q − 4

3

)
] +

(
r − q − 3

3

)
=

=

(
r + 3

3

)
− 2

(
r + 1

3

)
+

(
r

3

)
−
(
r − 1

3

)
+ 2

(
r − 2

3

)
− 2

(
r − 3

3

)
+

+

(
r − 4

3

)
−
(
r − q + 3

3

)
+ 2

(
r − q + 1

3

)
−
(
r − q

3

)
+

+

(
r − q − 1

3

)
− 2

(
r − q − 2

3

)
+ 2

(
r − q − 3

3

)
−
(
r − q − 4

3

)
=

= [

(
r + 3

3

)
−
(
r + 1

3

)
]− [

(
r + 1

3

)
−
(
r

3

)
]− [

(
r − 1

3

)
−
(
r − 2

3

)
] +

+ [

(
r − 2

3

)
−
(
r − 3

3

)
]− [

(
r − 3

3

)
−
(
r − 4

3

)
]− [

(
r − q + 3

3

)
−

−
(
r − q + 1

3

)
] + [

(
r − q + 1

3

)
−
(
r − q

3

)
] + [

(
r − q − 1

3

)
−
(
r − q − 2

3

)
]−

− [

(
r − q − 2

3

)
−
(
r − q − 3

3

)
] + [

(
r − q − 3

3

)
−
(
r − q − 4

3

)
].

If r < q then all the combinations above involving q are equal to zero. As a

result Hilbert function becomes

HM(r) = [

(
r + 3

3

)
−
(
r + 1

3

)
]− [

(
r + 1

3

)
−
(
r

3

)
]− [

(
r − 1

3

)
−
(
r − 2

3

)
] +

+ [

(
r − 2

3

)
−
(
r − 3

3

)
]− [

(
r − 3

3

)
−
(
r − 4

3

)
].

Using
(

a+1
b

)
−
(

a
b

)
=
(

a
b−1

)
,
(

a+2
b

)
−
(

a
b

)
= 2
(

a
b−1

)
+
(

a
b−2

)
and

(
a+3
2

)
−
(

a
2

)
= 3(a+1)
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we get

HM(r) = [2

(
r + 1

2

)
+

(
r + 1

1

)
]−
(
r

2

)
−
(
r − 2

2

)
+

(
r − 3

2

)
−
(
r − 4

2

)
= r + 1 + [

(
r + 1

2

)
−
(
r

2

)
] + [

(
r + 1

2

)
−
(
r − 2

2

)
] + [

(
r − 3

2

)
−
(
r − 4

2

)
]

= [r + 1 + r + 3r − 3 + r − 4]

= [6r − 6], for all r < q,which is non-decreasing.

When r ≥ q + 4 we similarly find that

HM(r) = [2

(
r + 1

2

)
+

(
r + 1

1

)
]−
(
r

2

)
−
(
r − 2

2

)
+

(
r − 3

2

)
−
(
r − 4

2

)
−

− [2

(
r − q + 1

2

)
+

(
r − q + 1

1

)
] +

(
r − q

2

)
+

(
r − q − 2

2

)
−

−
(
r − q − 3

2

)
+

(
r − q − 4

2

)
=

= r + 1 + [

(
r + 1

2

)
−
(
r

2

)
] + [

(
r + 1

2

)
−
(
r − 2

2

)
] +

+ [

(
r − 3

2

)
−
(
r − 4

2

)
]− (r − q + 1)− [

(
r − q + 1

2

)
−
(
r − q

2

)
]−

− [

(
r − q + 1

2

)
−
(
r − q − 2

2

)
]− [

(
r − q − 3

2

)
−
(
r − q − 4

2

)
] =

= [6r − 6]− [6r − 6q − 6] = 6q, for all r ≥ q + 4,

which is non-decreasing as well. One can compute the following values directly

using the formula of Hilbert function above:

HM(q) = 6q−7,HM(q+1) = 6q−4,HM(q+2) = 6q−2, andHM(q+3) = 6q−1.

Hence, Hilbert functions of all nice extensions C = C(6q, 7q, 15q,m), for all q ≥ 7,

are non-decreasing.
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Conclusion

We studied certain properties of monomial curves in this thesis. Namely, we inves-

tigate if they are set theoretic complete intersection and if their Hilbert function

is non-decreasing. We introduce and discuss certain properties of extensions of

monomial curves. We have seen that the algebraic structure of affine extensions

are easy to determine contrary to the case of projective extensions. That is why

we have used affine parts of the projective extensions to conclude that they are

set theoretic complete intersections, a geometric property. This is also valid for

projection of toric ideals, that is, the relation between the toric ideals in ques-

tion is mysterious in general. Our experiences with gluing technique suggest that

knowing the algebraic description of the ideal helps to understand the geometry

of the toric variety. Therefore, a logical continuation may be to find the exact

relation between a toric ideal and its projections. More precisely, it would be

interesting to extend a minimal basis of a toric ideal to a minimal basis of its

projection.

We have stated a conjecture saying that a gluing of two monomial curves

whose Hilbert functions are non-decreasing has a non-decreasing Hilbert function.

And we have shown particularly that the conjecture is true for nice extensions,

a special type of gluing. Hence, another very natural continuation is to prove

the conjecture which will imply that Hilbert functions of complete intersection

monomial curves are non-decreasing.

50



Bibliography

[1] S. Altınok and M. Tosun, Toric varieties associated with weighted graphs,

Int. Math. Forum 2 (2007), no. 33-36, 1779-1793.

[2] F. Arslan, Cohen-Macaulayness of tangent cones, Proc. Amer. Math. Soc.

128 (2000) 2243-2251.

[3] F. Arslan, Monomial curves and the Cohen-Macaulayness of their tangent

cones, Ph. D. Thesis, Bilkent University, 1999.

[4] F. Arslan, P. Mete, Hilbert functions of Gorenstein monomial curves, Proc.

Amer. Math. Soc. 135 (2007) 1993-2002.
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[6] F. Arslan and S. Sertöz, Genus calculations of complete intersections, Comm.

Algebra 26 (1998) 2463-2471.

[7] M. Barile and M. Morales, On the equations defining projective monomial

curves, Comm. Algebra 26, 1907-1912 (1998).

[8] M. Barile, M. Morales, A. Thoma, On simplicial toric varieties which are

set-theoretic complete intersections, Journal of Algebra 226, 880-892 (2000).

[9] M. Barile, M. Morales, A. Thoma, Set-theoretic complete intersections on

binomials, Proc. Amer. Math. Soc. 130 (2002) 1893-1903.

[10] M. Boratynski, A note on set theoretic complete intersections, J. of Algebra

54, (1978) 1-5.

51



BIBLIOGRAPHY 52

[11] H. Bresinsky, Monomial space curves in A3 as set-theoretic complete inter-

section, Proc. Amer. Math. Soc. 75 (1979) 23-24.

[12] H. Bresinsky, Monomial Gorenstein curves in A4 as set theoretic complete

intersections, Manuscripta Math. 27 (1979) 353-358.

[13] H. Bresinsky, P. Schenzel, W. Vogel, On Liaison, Arithmetical Buchsbaum

curves and monomial curves in P3, Journal of Algebra 86 (1984) 283-301.

[14] H. Bresinsky, On prime ideals with generic zero xi = tni , Proc. Amer. Math.

Soc. 47 (1975) 329-332.

[15] M. P. Cavaliere and G. Niesi, On form ring of a one-dimensional semigroup

ring, Lecture Notes in Pure and Appl. Math. 84 (1983) 39-48.

[16] R. C. Cowsik and M. V. Nori, Curves in characteristic p are set theoretic

complete intersections, Inv. Math. 45 (1978) 111-114.
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[69] B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Se-

ries, No. 8, American Mathematical Society Providence, RI 1995.

[70] L. Szpiro, On equations defining space curves, Tata Inst. Lecture Notes,

Springer, Berlin, 1979.
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[72] M. Şahin, On symmetric monomial curves in P3, to appear in Turkish Jour-

nal of Mathematics.
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