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ABSTRACT

ANALYSIS OF THE ELECTROMAGNETIC FIELD

INSIDE THE GRADIENT COILS AND

INVESTIGATION OF THE NERVE AND CARDIAC

STIMULATION RISK FOR THE PATIENTS DURING

MRI

Esra Abacı

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ergin Atalar

July 2008

During magnetic resonance imaging (MRI), the static magnetic field, the radio

frequency field and the gradient fields are utilized. In the literature, there are

several studies with the aim of understanding the bioeffects of these fields. Due

to the time varying gradient fields, an electric field is induced in the body which

may cause nerve and cardiac stimulation. In order to investigate this risk, re-

searchers have been working on solving the induced electric field both analytically

and by using computational methods. The field distribution inside the body has

also been investigated. It is vital to verify the risk of MRI to patients with an

implant. In order to improve the understandability of the field pattern, the field

should be expressed as simple as possible.

In this thesis, the simplified expressions of induced electric field are derived inside

and outside of the cylindrical, homogenous volume, which is taken as the human

body model. For this derivation, low frequency based assumptions are used and
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gradient field is assumed to be perfectly uniform. The obtained results satisfy

the expected conditions for the electric and magnetic fields. The field patterns

obtained with these simplified expressions are compared with the former studies

and the maximum electric field values obtained for a different gradient field and

slew rates are used to investigate the stimulation risk. Moreover, by using these

electric field values, the worst position for an implant lead and the length of the

lead is determined.

We believe that with these simplified expressions, the understandability of the

field distribution is enhanced and to comment on the risk of MRI to a patient

with an implant becomes easier.

Keywords: MRI, Gradient Coils, Electric Field, Stimulation, Implant
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ÖZET

MR GÖRÜNTÜLEME SIRASINDA GRADYAN SARGILAR

İÇİNDE OLUŞAN ELEKTROMANYETİK ALANIN ANALİZİ

VE HASTADA GÖRÜLEBİLECEK KALP VE SİNİR UYARIMI

RİSKİNİN İNCELENMESİ

Esra Abacı

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Ergin Atalar

Temmuz 2008

Manyetik Rezonans Görüntüleme süresince, ortamda sabit manyetik alan, radyo-

frekans alanı ve gradyan manyetik alan oluşur. Oluşan bu alanların biyolojik etki-

lerinin anlaşılması için bir çok çalışma yapılmıştır. Zamana bağlı değişen gradyan

manyetik alan, görüntülenen vücut içinde elektrik alan indükler. İndüklenen elek-

trik alan sinir ve kalp uyarımına sebep olur. Bu riskin anlaşılması için, indüklenen

elektrik alan matamatiksel olarak ve bilgisayar destekli hesaplama yöntemleriyle

çözülmeye ve alan dağılımı anlaşılmaya çalışılmıştır. Bu, aynı zamanda vücuduna

üreteç yerleştirilmiş hastaların MR ile görüntülenmelerinin oluşturabileceği riskin

anlaşılması için de önemlidir. Alan dağılımının kolaylıkla anlaşılabilmesi için,

denklemler basitleştirilmelidir.

Bu tezde, homojen iletkenliğe sahip silindirik bir hacim olarak modellenmiş

vücut içinde ve dışında indüklenen elektrik alan denklemi basitleştirilmiştir. Ba-

sitleştirilmiş denklemlere ulaşmak için, düşük frekans yaklaşımı kullanılmıştır ve

gradyan sargının ürettiği alanın tamamen bir örnek dağılıma sahip olduğu kabul
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edilmiştir. Elde edilen manyetik ve elektrik alan denklemleri gerekli matematik-

sel durumları sağlamaktadır. Bu denklemlerle alan dağılımları oluşturulmuş ve

daha önceki çalışmaların sonuçlarıyla karşılaştırılmıştır. Farklı sargı modelleri

için en yüksek elektrik alan değerleri bulunmuş; bu değerler üreteç kablosunun

vücutta yerleştirilebilecek en riskli yerinin tespiti ve kablonun uzunluğunun be-

lirlenmesi için kullanılmıştır.

Basitleştirilmiş elektrik ve manyetik alan denklemleriyle, alan dağılımın

anlaşılabilirliğini ve üreteç taşıyan hastaların MR içinde maruz kalabileceği riskin

yorumlanmasını kolaylaştırdığımıza inanıyoruz.

Anahtar Kelimeler: MR Görüntüleme, Gradyan Sargılar, Elektrik Alan,

Stimülasyon, Üreteç
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Chapter 1

INTRODUCTION

1.1 Motivation and Literature Survey

The magnetic resonance imaging (MRI) is a widely used diagnostic technique.

Since the introduction of MRI in the clinical platform in the early 1980s, more

than 100,000,000 diagnostic procedures have been completed in the world [4].

MRI scanners need static magnetic field as well as radio-frequency and gradient

magnetic fields in order to obtain images. Due to these fields, MR environment

and MRI scanning have the potential to induce hazardous effects to the patient.

These MR-related injuries are generally because of the metallic objects which are

not compatible to the MR environment. Moreover, the patients with implants

or devices are under the risk of excessive heating or nerve stimulation due to the

induction of the current [4]. Neuro-stimulation systems and cardiac pacemak-

ers are generally used active implantable medical devices (AIMD). In the world,

it is estimated that more than 2 million patients have cardiac pacemakers [5].

Patients with cardiac pacemakers generally need MR scanning, since MRI has

been applied successfully to monitor myocardial wall motion and perfusion. As a

result, cardiac pacemakers are the most common implant which have been tested
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for MR safety or MR compatibility [5].

The static magnetic field is the key component of MRI, because the magnetiza-

tion of the hydrogen nuclei in the human water molecules align with this strong

magnetic field. In order to understand the bioeffects of the static magnetic field,

many studies have been performed, and, at the end, majority of these studies

state that there is no verified substantial harmful bioeffect [6]. Although po-

tentially harmful effects of static magnetic field on isolated cells or organisms

are observed, there is no documented scientific fact. One of the biological effect

is magnetohydrodynamics which causes the change in blood viscosity. But this

effect is not significant below 10 T [7]. Generally, the serious injuries due to the

static field are because of the ferromagnetic objects around the MR [8]. Due

to the static field, forces induced on magnetic components tend to align these

objects’ long axis along the field, which causes the movement of the implants

inside the body [9].

In MRI scanners, the radio frequency (RF) field is required in order to induce

precession in the nuclei of concern. The bioeffects of RF field are related with

the heating [8]. For patients with AIMD, the risk increases due to hazardous RF

heating at the lead tips of the implants. In order to understand the parameters

affecting the heating, and to determine the worst position of the implant that

may cause the burning of the tissue, various experimental studies are performed

[10, 11].

The gradient fields are required to select the slice, to vary the phase distribu-

tions of the excited spins and also to spatially vary the frequency of the spins.

By utilizing the signal data obtained with the help of the gradient fields, the
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image of the selected slice can be reconstructed via Fourier transformation tech-

niques. There are three independent gradient coils, which are called as x, y, and

z-gradient coils. For imaging purposes, the magnetic field is defined in the z

direction. An ideal gradient field is given as Bz = Gxx + Gyy + Gzz. Although

non-uniformity in the gradient field causes undesired effects such as image distor-

tion, it is not possible to obtain a perfectly uniform gradient magnetic field [12].

Gradient waveforms are usually designed as pulses. The ramp up and down

times are usually considered as dead times and they need to be minimized for

maximum performance. During MRI, this rapidly switched gradient magnetic

field induces an electric field and the magnitude of this field is proportional with

the rate of change of the magnetic field.

Since the human nervous system is sensitive to the field variations at low frequen-

cies [13], an induced electric field may cause nerve stimulation. To investigate

the stimulation risk and the threshold value, many experimental studies have

been carried out [14–19]. Furthermore, in order to define the induced electric

field that causes stimulation, both computational methods such as finite differ-

ence time domain method, and analytical calculations have been performed in

the literature by using inhomogeneous and homogenous human models [1,20,21].

Although the results of these studies give the general behavior of the field pat-

terns graphically, a simple analytical expression that gives the safety threshold

does not exist.

The effect of the time varying magnetic field to the implant inside the body is

an important safety problem [2, 22]. In one report, due to gradient field, asyn-

chronous pacing of a patient with an implanted pacemaker was observed [23]. In

order to understand this effect fully, the gradient induced current on an implant

should be investigated. The model for the induction of the gradient induced
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current is given in [9]. However, in order to obtain a simple formula for the

induced current, first, the field distribution should be calculated and observed

explicitly. The main goal of the simplification of the expressions is to investigate

the interaction of an implant and the gradient field more easily and to obtain

the simple model describing the stimulation risk.

The subject of this study is to investigate the safety concerns related with the

gradient magnetic fields. This study starts with the analysis of the behavior of

the field distribution inside the body. The gradient coil design procedures are

investigated to understand the behavior of the gradient field. Under the low

frequency based assumptions, for a cylindrical, homogenous human body model,

simple analytic expressions of the electric and magnetic fields are obtained. By

using these simplified expressions, the worst position and length of the implants

causing stimulation are defined. The maximum length of the straight part of the

pacemaker lead is also determined.

1.2 The Objective and Scope of the Thesis

In this thesis, the gradient coils and the gradient field in magnetic resonance

imaging scanners are investigated. The analytical calculations and simplification

of the expressions are performed for the electric and magnetic field, which occur

due to this time varying gradient field. Using these simplified expressions, field

patterns are obtained for the safety of the patient. The worst case scenarios

causing stimulation for the patients with and without an implant are analyzed.

The risk for the patients with a pacemaker is also investigated.

The thesis is divided into chapters, Chapter 1 introduces the subject and gives

the motivation behind this study. Chapter 2 gives the general information about
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the gradient coil design procedure and the gradient field. In Chapter 3, analytical

calculations of the electric and magnetic field and simplification steps of these

expressions are introduced. Moreover, in this chapter, obtained field patterns

with these simplified expressions are given. Chapter 4 presents the safety concern

of the gradient field. At the end, Chapter 5 includes the discussions, conclusions

and future work. Appendices A and B contain additional simplification steps of

the fields, produced by y and z-gradient coils.
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Chapter 2

GRADIENT COILS

2.1 Magnetic Field Distribution in Gradient

Coil

Three spatially independent and time controllable gradient fields are produced

by gradient coils. Their magnitudes are significantly smaller than the magnitude

of the main field and in the order of millitesla per meter (mT/m) [24]. Quality

and uniformity of the MR image over the volume of interest (VOI) are directly

related to the strength and linearity of the gradient field over the imaging vol-

ume [25]. Spatial non-linearity of the gradient field causes image distortions. The

non-linear gradient field is the reason of the excitation of the undesired nuclei

outside the slice. The receiver detects resonance signals from different positions

and all these signals are used in the reconstruction process [24]. Moreover, in

order to use a simple reconstruction algorithm, like 3D-Fourier transformation, a

linear characteristic of the field in space is needed [25]. The variation of the gra-

dients Gx, Gy and Gz shows the linearity of the gradient fields [26]. For imaging

purposes, only the z-component of the gradient magnetic field is important [25].
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For each coordinate, there is one coil system. In order to understand the elec-

tromagnetic field distribution, first, the total magnetic field should be formu-

lated. As the design parameter, the z-component of the magnetic field is given

as Bz = Gxx + Gyy + Gzz. Bernstein et al. [27] have done a similar work earlier.

For the sake of completeness, the formulation steps are described below.

It is well-known that a linear function can be expressed as f(x) = x df

dx
. Similarly

a perfectly linear field can be expressed as:

~B = (~r · ∇) ~B. (2.1)

The relationship between the magnetic field components in the matrix form is:








Bx

By

Bz







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





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






, (2.2)

where ∂Bz

∂x
= Gx,

∂Bz

∂y
= Gy and ∂Bz

∂z
= Gz.

In Maxwell equations, relation between the current and magnetic field is defined

as ∇ × ~B = µ0( ~J + σ ~E + ∂ε ~E
∂t

), where ~J is the source current. Under low

frequencies, due to large skin depth, induced current can be ignored, and due to

small permittivity range, displacement current can also be ignored. The source

current density ~J inside the imaging volume is zero. So, within the imaging

volume, B-field expression has a curl free nature, i.e., ∇× ~B = 0 (Note that, on

the gradient coil, due to current on the wires, it is non-zero.).

∇× ~B = x̂{
∂Bz

∂y
−

∂By

∂z
} − ŷ{

∂Bz

∂x
−

∂Bx

∂z
} + ẑ{

∂By

∂x
−

∂Bx

∂y
} = 0 (2.3)

In addition, divergence of magnetic field has to be zero, i.e., ∇ · ~B = 0.

∇ · ~B =
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
=

∂Bx

∂x
+

∂By

∂y
+ Gz = 0, (2.4)

where x̂, ŷ, ẑ are unit vectors in x, y and z directions, respectively.
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From Eq.(2.3) and Eq.(2.4), each partial derivative components can be expressed

as:

∂By

∂z
=

∂Bz

∂y
= Gy, (2.5)

∂Bx

∂z
=

∂Bz

∂x
= Gx, (2.6)

∂By

∂x
=

∂Bx

∂y
≡ g, (2.7)

∂Bx

∂x
+

∂By

∂y
= −Gz. (2.8)

As mentioned in the study [27], for a coil with cylindrical symmetry partial

derivatives (∂Bx

∂x
) and (∂By

∂y
) are equal to each other and to −0.5Gz according to

Eq.(2.8). The derivatives (∂By

∂x
) and (∂Bx

∂y
) are equal to each other and for a linear

field they are also equal to a constant, g. Since these are not the desired gradients

their equivalents, g, can be taken as zero in Eq.(2.7) for imaging purposes. As a

result, each partial derivative in Eq.(2.2) can be expressed as:








Bx

By

Bz








=








−0.5Gz 0 Gx

0 −0.5Gz Gy

Gx Gy Gz















x

y

z








. (2.9)

Then, for perfectly uniform gradient field the total magnetic field expression in

cartesian coordinates for x, y, and z-coils, can be given as the following:

~B = Gx(zx̂ + xẑ) + Gy(zŷ + yẑ) + Gz(−0.5xx̂ − 0.5yŷ + zẑ). (2.10)

2.2 Design of Gradient Coil

Linearity of the gradient over a large volume of interest, short switching time

(i.e., low inductance), low power consumption and high current efficiency (the

ratio of the generated gradient field to the current drawn) are the important as-

pects that should be taken into consideration in the design of a gradient coil [26].
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To find the optimal position of the multiple windings of coils, there are a

number of approaches such as matrix inversion technique [28], stream function

method [29], and target field approach [30]. Generally, with these methods, a

continuous current density on a coil former is derived and this current is con-

verted to a pattern of discrete current paths to design a gradient coil [28].

In this thesis, in order to understand the field distribution inside the gradient

coil, first, the current distribution and the magnetic field are investigated by us-

ing the target field method [30]. In the target field method, Ampere’s law is used

to calculate the required currents directly from the specification of the desired

field. First, the current density, ~Jcoil flowing through a simple geometry, is used

as the source of the magnetic field [28]. Then, the gradient target field is defined

as Bz(ρ, φ, z) = g(z)f(ρ, φ) where g(z) gives a specified variation with respect to

z and f(ρ, φ) describes the azimuthal and radial variation of Bz [30]. According

to Turner [30], g(z) function can have a form of g(z) = [1 + ( z
d
)6]−1, where d is

a constant. For perfectly uniform gradients, g(z) is taken as unity. In this thesis

in order to solve the electromagnetic field expressions analytically, g(z) = 1 is

used. Note that, in order to obtain such a linear field, an infinitely long gradient

coil is required.

In the next chapter, the electromagnetic field is calculated by using the tar-

get field method, and the resultant magnetic field expression is compared with

Eq.(2.10).
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Chapter 3

THE ELECTRIC FIELD

INDUCED BY TIME

VARYING GRADIENT FIELDS

3.1 Analytical Calculations of the Electric Field

To understand the risk of the stimulation due to gradient fields, first, the in-

duced electric field distribution should be defined as mentioned before. The

electric and magnetic field expressions derived for cylindrical homogenous body

model by Bowtell and Bowley [1] provide a general understanding of the field

distribution inside the body. These electric and magnetic field expressions for

the current passing through the coils are in the form of a Fourier Transform and

a Fourier integral. Thus, for a given current in a cylindrical gradient coil, electric

and magnetic field patterns can only be observed after evaluating this transform

and integral numerically. However, this process might be challenging for certain

current distributions. On the other hand, without such a computational work, it

is difficult to understand these field distributions. In this thesis, apart from the

10



expressions derived for the electromagnetic fields inside of the body, the expres-

sion describing the electric field outside of the body is also derived. As a body

model, an infinitely long, cylindrical, homogenous volume with the conductivity,

σ, and the radius, ρ0, is used. All derived expressions are simplified and pre-

sented in short, analytical forms (closed-form expressions) for a perfectly linear

gradient field formed by an infinitely long gradient coil.1 In the region which in-

cludes the uniform field distribution, stimulation risk can easily be defined with

these simplified expressions.

3.1.1 Theory

In the study [1], to calculate the electric field, first the scalar potential V , and the

vector potential ~A, are evaluated inside the gradient coil. ~A is the magnetic vector

potential due to currents in gradient coils and V is due to the electric charge at the

interface of discontinuities in electrical conductivity and conservation of electric

charge. Maxwell’s equations are:

∇× ~B = µ0( ~J +
∂ ~D

∂t
), (3.1)

∇ · ~B = 0, (3.2)

∇× ~E = −
∂ ~B

∂t
, (3.3)

∇ · ~D = ρf (~r, t), (3.4)

where ρf(~r) is the charge density, ~J is the current density, µ0 is the permeability

of free space, and ~D = ε ~E is the current displacement with the permittivity ε,

and ~r is the position vector. The current density is defined as ~J = ~Jcoil + σ ~E,

where ~Jcoil is the density of the current passing through the coil. Magnetic field

~B, and electric field ~E, can be expressed in terms of the scalar potential, and the

1This work has been also presented in ISMRM’08 at Toronto. E. Abacı, E. Kopanoğlu,V.
B. Ertürk, E.Atalar,“Simple Analytical Equation of the Induced E-Field”, ISMRM 16th annual
meeting, Toronto, May 2008
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vector potential as:

~B = ∇× ~A(~r, t), (3.5)

and

~E = −∇V (~r, t) −
∂ ~A(~r, t)

∂t
. (3.6)

Quasi-Static Limit

For gradient waveforms, frequency level is smaller than 10 kHz. Conductivity

of the volume is assumed to be uniform and nearly equal to the average of the

conductivity of tissues inside the body [31]. Under these conductivity and low

frequency based assumptions, skin depth (δ = ( 2
ωµσ

)
1

2 ) is much larger than the

physical size of the stimulated tissue region which means that the induced cur-

rent inside the body is not a source to generate magnetic field. In other words,

this induced current inside the body does not contribute to the vector potential.

The permittivity of biological tissues varies between 10−7 F/m and 10−5 F/m

for a frequency range from 10 Hz to 10 kHz. The ratio of the displacement to

the conduction current is of order ωε
σ

and this is much smaller than 1. Based on

this knowledge, the displacement current can be ignored (i.e., ∂ ~D
∂t

→ 0).

Under these low frequency based assumptions the scalar and vector potential

equations can be simplified. First, wave equation for vector potential is de-

scribed. By using the Eq.(3.5) in the Eq.(3.1), the wave equation is found after

the following steps:

∇×∇× ~A = µ0( ~Jcoil + σ ~E +
∂ ~D

∂t
), (3.7)

∇(∇ · ~A) −∇2 ~A(~r, t) = µ0
~Jcoil + µ0(σ + ε

∂

∂t
) ~E, (3.8)

where ~E = −∇V (~r, t) − ∂ ~A(~r,t)
∂t

, by inserting this to the wave equation:

∇(∇ · ~A) −∇2 ~A(~r, t) = µ0
~Jcoil −∇(µ0σV ) − µ0σ

∂ ~A

∂t

12



− ∇(µ0ε
∂V

∂t
) − µ0ε

∂2 ~A

∂t2
, (3.9)

∇(∇ · ~A + (µ0σ + µ0ε
∂

∂t
︸ ︷︷ ︸

0

)V −∇2 ~A(~r, t) = µ0
~Jcoil −µ0σ

∂ ~A

∂t
− µ0ε

∂2 ~A

∂t2
︸ ︷︷ ︸

0

(3.10)

Due to Lorentz gauge, ∇ · ~A + (µ0σ + µ0ε
∂
∂t

)V = 0 is used and also −µ0σ
∂ ~A
∂t

−

µ0ε
∂2 ~A
∂t2

≈ 0. Since, this part is reorganized in phasor domain such that:

(−iµ0σω + µ0εω
2) ~A = µ0σω

︸ ︷︷ ︸

= 2

δ2

(−i +
ωε

σ
) ~A, (3.11)

where δ is the skin depth, and for large skin depth as mentioned before for

quasi-static case, this part is ignored [32].

So, the resultant vector potential relation becomes:

∇2 ~A(~r, t) = −µ0
~Jcoil(~r, t). (3.12)

For scalar potential Eq.( 3.6) is used in Eq.( 3.4):

∇ · (−∇V −
∂ ~A

∂t
) =

ρf

ε
. (3.13)

In the Lorentz gauge, again due to low conductivity and permittivity values,

∇ · ~A can be taken as approximately zero. So, resultant scalar potential relation

becomes:

∇2V (~r, t) = −
ρf

ε
. (3.14)

Moreover, to solve the scalar and vector potential equations, an appropriate

boundary condition on the surface of the cylindrical volume is applied. It is

known that divergence of Eq.(3.1) should be zero, so ∇ · ( ~J + ∂ ~D
∂t

) = 0 and also

because of the quasi-static assumption ∂ ~D
∂t

= 0, the relationship ∇ · ~J = 0 is

obtained. This expression means that any component of the current normal to

surface should be continuous. Inside the body there is conductivity σ, hence the

current can be defined as ~J = σ ~E, whereas conductivity is zero outside of the

body, and thus the current is zero. For a cylindrical surface ρ component of the

13



current is normal to the surface, so it should be continuous. In order to see this

continuity at the surface, ρ component of the electric field at the boundary should

also be zero due to zero current at the outside (i.e., at the boundary Eρ = 0).

Note that any complicated waveform can be expressed as the combination of

each frequency component. Therefore, using this fact, Bowtell [1] has used sinu-

soidal waveforms for the fields (i.e., ~Jcoil(~r, t) = Re{ ~Jcoil(~r)eiωt}). The following

expressions in this chapter are in the phasor domain.

Scalar potential equations

Under the low frequency based assumptions, it is also assumed that in the bulk

of the body there is no charge, so thus the Laplace’s equation, ∇2V = 0 can

be solved. Solution of the Laplace’s equation in cylindrical coordinates is in the

form of [26]:

V (ρ, φ, z) =
1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikzV m(k, ρ)dk, (3.15)

where k is the spatial frequency.

Laplace’s equation can be explicitly written as:

1

ρ

∂

∂ρ
(ρ

∂V

∂ρ
) +

1

ρ2

∂2V

∂φ2
+

∂2V

∂z2
= 0. (3.16)

By using the knowledge that the basis functions of Fourier Series expansion, eimφ,

form an orthogonal set, the operations such as summation and differentiation

with respect to space can be performed only on the expansion coefficients of

corresponding fields. As a result, the relation for V m(k, ρ) becomes:

1

ρ

∂

∂ρ
(ρ

∂V m

∂ρ
) −

m2

ρ2
V m − k2V m = 0. (3.17)
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By multiplying both sides of the Eq.(3.17) with “ ρ2 ” [26], the expression be-

comes:

ρ
∂

∂ρ
(ρ

∂V m

∂ρ
) − k2ρ2V m − m2V m = 0. (3.18)

General solution of Eq.(3.18) is given by Vm = aIm(kρ) + bKm(kρ) [26], where a

and b are constants and Im(kρ) and Km(kρ) are first and second kind modified

Bessel functions of order m, respectively. Two of the basic properties of these

Bessel functions are [26]:

Im(kρ) → ∞ as ρ → ∞, (3.19)

Km(kρ) → ∞ as ρ → 0. (3.20)

Since the scalar potential must be finite both at the origin and infinity, according

to Eq.(3.19) and Eq.(3.20), inside the body, the constants become a = αm and

b = 0 and outside the body, they are a = 0 and b = βm, so the general solution

for scalar potential component is:

for ρ < ρ0 V m(k, ρ) = αm(k)Im(kρ), (3.21)

for ρ > ρ0 V m(k, ρ) = βm(k)Km(kρ). (3.22)

In order to find the constants αm and βm, the boundary condition at the surface

of the body is used (i.e., Eρ(ρ = ρ0) = 0) in the Eq.(3.6). Before the analysis of

this equation, first the analytical form of the magnetic field B, electric field E

and vector potential should be defined similar to the scalar potential such as:

Uc(ρ, φ, z) =
1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikzUm
c (k, ρ)dk, (3.23)

where U describes B, E or A and c can be ρ, φ or z.

With this form of the fields, by using similar reasoning in Eq.(3.17) about the

orthogonality Eq.(3.6) is written as:

Em
ρ = −

∂V m

∂ρ
− iωAm

ρ . (3.24)

Then, this equation is solved at the boundary to find the constants of the scalar

potential.
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While approaching to the boundary, ρ = ρ0 from inside, Eq.(3.21) is used in the

Eq.(3.24) and the resultant relation is:

Em
ρ = −

∂(αm(k)Im(kρ))

∂ρ
− iωAm

ρ = 0 at ρ = ρ0, (3.25)

−kαm(k)I ′
m(kρ0) − iωAm

ρ (k, ρ0) = 0, (3.26)

where I ′
m(kρ) is the derivative of the first order modified Bessel function with

respect to its variable (i.e., I ′
m(x) = dIm(x)

dx
). Moreover, the scalar potential should

be continuous at the surface in order to satisfy the continuity of the ρ component

of the electric field at the boundary. Therefore:

αm(k)Im(kρ0) = βm(k)Km(kρ0). (3.27)

As a result, constants become:

αm(k) = −
iωAm

ρ (k, ρ0)

kI ′
m(kρ0)

, (3.28)

βm(k) = −
iωAm

ρ (k, ρ0)Im(kρ0)

kI ′
m(kρ0)Km(kρ0)

. (3.29)

With these constants the solution for the components of the scalar potential

becomes:

for ρ < ρ0 V m(k, ρ) = −
iωAm

ρ (k, ρ0)Im(kρ)

kI ′
m(kρ0)

, (3.30)

for ρ > ρ0 V m(k, ρ) = −
iωAm

ρ (k, ρ0)Im(kρ0)Km(kρ)

kI ′
m(kρ0)Km(kρ0)

. (3.31)

In terms of scalar and vector potential components, each component of the elec-

tric field for ρ < ρ0 can be written as:

Em
ρ (k, ρ) = −iωAm

ρ (k, ρ) −
∂V m(k, ρ)

∂ρ

= −iω(Am
ρ (k, ρ) −

Am
ρ (k, ρ0)I

′
m(kρ)

I ′
m(kρ0)

), (3.32)

Em
φ (k, ρ) = −iωAm

φ (k, ρ) −
1

ρ

∂V m(k, ρ)

∂φ

= −iω(Am
φ (k, ρ) −

im

kρ

Am
ρ (k, ρ0)Im(kρ)

I ′
m(kρ0)

), (3.33)

Em
z (k, ρ) = −iωAm

z (k, ρ) −
∂V m(k, ρ)

∂z

= −iω(Am
z (k, ρ) − i

Am
ρ (k, ρ0)Im(kρ)

I ′
m(kρ0)

), (3.34)
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and for ρ > ρ0:

Em
ρ (k, ρ) = −iω(Am

ρ (k, ρ) −
Am

ρ (k, ρ0)Im(kρ)K ′
m(kρ)

I ′
m(kρ0)Km(kρ0)

), (3.35)

Em
φ (k, ρ) = −iω(Am

φ (k, ρ) −
im

kρ

Am
ρ (k, ρ0)Im(kρ0)Km(kρ)

I ′
m(kρ0)Km(kρ0)

), (3.36)

Em
z (k, ρ) = −iω(Am

z (k, ρ) − i
Am

ρ (k, ρ0)Im(kρ0)Km(kρ)

I ′
m(kρ0)Km(kρ0)

). (3.37)

Vector potential equations

In the study by Bowtell et al. [1], the vector potential, ~A is found using the

current passing through the coil. For cylindrical coil, with radius, the current is

defined as:

~Jcoil(ρ) = (φ̂Jφ(φ, z) + ẑJz(φ, z))δ(ρ − a), (3.38)

where φ̂ and ẑ are unit vectors in the directions of φ and z, respectively, Jφ(φ, z),

Jz(φ, z) are the surface current densities in φ and z directions and δ(ρ−a) is the

delta function that describes the current at ρ = a, where a is the radius of the

coil. Due to the characteristics of the coil, no current flows in the ρ-direction, so

Jρ(φ, z) = 0.

Similar to the solution of Laplace’s equation both Jφ(φ, z) and Jz(φ, z) are in the

form of:

J(φ, z) =
1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikzJm(k)dk. (3.39)

Jφ(φ, z) and Jz(φ, z) can be written in terms of each other using the conservation

of the charge relation, ∇ · ~Jcoil = −iωρf . As mentioned in Eq. ( 3.17) again by

using the orthogonality, in the absence of charge accumulation (i.e., ρf = 0), the

relation between the current components becomes:

m

a
Jm

φ (k) = −kJm
z (k). (3.40)
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To find the vector potential, the Eq.(3.12) is solved in phasor domain. The

general vector potential-current relation is known as:

~A(~r) =
µ0

4π

∫ ~Jcoil(~r′)

|~r − ~r′|
d3~r′, (3.41)

and in Cartesian coordinates components of the vector potential are:

Ax(~r) =
µ0

4π

∫
Jcoil

x (~r′)

|~r − ~r′|
d3~r′, (3.42)

Ay(~r) =
µ0

4π

∫
Jcoil

y (~r′)

|~r − ~r′|
d3~r′, (3.43)

Az(~r) =
µ0

4π

∫
Jcoil

z (~r′)

|~r − ~r′|
d3~r′. (3.44)

In order to obtain vector potential components in cylindrical coordinates, first,

according to the defined current, Eq.(3.38), the currents Jx and Jy are defined

in cylindrical coordinates such as Jx = −J ′
φ sin φ′ and Jy = J ′

φ cos φ′ and then,

vector potential components are written in cylindrical coordinates by using the

following relations:

Aρ = Ax cos φ + Ay sin φ, (3.45)

Aφ = −Ax sin φ + Ay cos φ. (3.46)

As a result, the components of the vector potential become [33]:

Aρ =
µ0

4π

∫
J ′

φ(~r
′)sin(φ − φ′)

|~r − ~r′|
dv′, (3.47)

Aφ =
µ0

4π

∫
J ′

φ(~r
′)cos(φ − φ′)

|~r − ~r′|
dv′, (3.48)

Az =
µ0

4π

∫
Jz(~r′)

|~r − ~r′|
dv′. (3.49)

1

|~r−~r′|
can be defined according to Green’s function expansion as:

1

|~r − ~r′|
=

1

π

∞∑

m=−∞

eim(φ−φ′)

∫ ∞

−∞

eik(z−z′)dkIm(kρ <)Km(kρ >), (3.50)

where ρ < (ρ >) is the lesser (greater) of ρ and ρ′.

First, Eq.(3.50) is embedded to the Eq.(3.47), and this equation becomes:

Aρ =
µ0

4π

1

π

∞∑

m=−∞

∫ ∞

−∞

∫ ∞

−∞

∫ π

−π

∫ ∞

0

eimφe−imφ′

eikze−ikz′Im(kρ <)Km(kρ >)Jφ′(φ′, z′)

18



× δ(ρ′ − a)(
eiφe−iφ − e−iφeiφ′

2i
)ρ′dρ′dφ′dz′dk, (3.51)

Aρ =
µ0a

i8π

1

π

∞∑

m=−∞

∫ ∞

−∞

∫ ∞

−∞

∫ π

−π

eimφeikze−ikz′Im(kρ <)Km(kρ >)Jφ′(φ′, z′)

× (eiφe−i(m+1)φ − e−iφei(m−1)φ′

)dφ′dz′dk. (3.52)

In order to simplify Eq.(3.52), Jφ(φ, z) and Jz(φ, z) are defined in the form of a

Fourier Transform, such as:

Jm
z (k) =

1

2π

∫ π

−π

dφe−imφ

∫ ∞

−∞

dze−ikzJz(φ, z), (3.53)

Jm
φ (k) =

1

2π

∫ π

−π

dφe−imφ

∫ ∞

−∞

dze−ikzJφ(φ, z). (3.54)

By using Eq.(3.54) in the Eq.(3.51):

Aρ =
µ0a

i4π

∞∑

m=−∞

∫ ∞

−∞

eimφeikz(Im(kρ <)Km(ka)Jm+1
φ (k)eimφ

− Im(kρ <)Km(ka)Jm−1
φ (k)e−imφ)dk (3.55)

and according to the general expression of Aρ given in the form of Eq.(3.23), in

this equation Am
ρ (k, ρ) is defined as:

Am
ρ (k, ρ) =

µ0a

i2
Jφ(k){Im−1(kρ)Km−1(ka) − Im+1(kρ)Km+1(ka)}. (3.56)

By following the same procedure Am
φ (k, ρ) and Am

z (k, ρ) components are:

Am
φ (k, ρ) =

µ0a

2
Jφ(k){Im−1(kρ)Km−1(ka) + Im+1(kρ)Km+1(ka)}, (3.57)

Am
z (k, ρ) = µ0aJz(k)Im(kρ)Km(ka). (3.58)

By using the recurrence relations of the Bessel’s Functions [34]:

I ′
n(x) = In−1(x) −

n

x
Inx, (3.59)

Kn+1(x) = Kn−1(x) +
2n

x
Knx, (3.60)

K ′
n(x) = −Kn−1(x) −

n

x
Knx (3.61)

in Eq.(3.56), (3.57) and (3.58), vector potential equations are:

Am
ρ (k, ρ) = iµ0aJm

φ (k){
m

kρ
Im(kρ)K ′

m(ka) +
m

ka
I ′
m(kρ)Km(ka), (3.62)
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Am
φ (k, ρ) = −µ0aJm

φ (k){I ′
m(kρ)K ′

m(ka) +
m2

k2ρa
Im(kρ)Km(ka), (3.63)

Am
z (k, ρ) = µ0aJz(k)Im(kρ)Km(ka). (3.64)

There is no change on the vector potential inside and outside of the body.

To obtain the magnetic field expression, the Eq.(3.5) that gives the relation

between the vector potential, and magnetic field is used:

~B = ∇× ~A(~r, t),

~B = ρ̂(
1

ρ

∂Az

∂φ
−

∂Aρ

∂z
) + φ̂(

∂Aρ

∂z
−

∂Az

∂ρ
) + ẑ(

1

ρ

∂ρAφ

∂ρ
−

1

ρ

∂Aρ

∂φ
). (3.65)

Due to orthogonality, Bm components in the general magnetic field expression

become:

Bm
ρ (k, ρ) =

im

ρ
Am

z (k, ρ) − ikAm
φ (k, ρ), (3.66)

Bm
φ (k, ρ) = ikAm

z (k, ρ) −
∂Am

z (k, ρ)

∂ρ
, (3.67)

Bm
φ (k, ρ) =

1

ρ

∂ρAm
φ

∂ρ
−

im

ρ
Am

ρ (k, ρ). (3.68)

The equation (3.40), recurrence relation (3.59) and the equations for Am
ρ (3.62),

for Am
φ (3.63) and for Am

z (3.64) are used in the equations (3.66), (3.67) and

(3.68). The resultant expressions are given below:

Bm
ρ (k, ρ) = iµ0kaJm

φ (k)I ′
m(kρ)K ′

m(ka), (3.69)

Bm
φ (k, ρ) = ik{iµ0aJm

φ (k)
µ0

kρ
Im(kρ)K ′

m(ka) + i
µ0m

k
Jm

φ (k)I ′
m(kρ)Km(ka)}

− µ0kaJm
z (k)I ′

m(kρ)Km(ka)

= −
µ0ma

ρ
Jm

φ (k)Im(kρ)K ′
m(ka), (3.70)

Bm
z (k, ρ) =

m − 1

ρ
µ0aJm

φ (k)K ′
m(ka){I ′

m(kρ) +
m

kρ
Imkρ − Im−1(kρ)}

− µ0kaJm
φ (k)Im(kρ)K ′

m(ka)

= −µ0kaJm
φ (k)Im(kρ)K ′

m(ka). (3.71)

When the equations (3.62), (3.63) and (3.64) are used in (3.32), (3.33) and (3.34),

the electric field components inside the body become as the following:

Em
ρ (k, ρ) = ωµ0a

m

k
Jm

φ (k)K ′
m(ka){

1

ρ
Im(kρ) −

Im(kρ0)I
′
m(kρ)

ρ0I ′
m(kρ0)

}, (3.72)
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Em
φ (k, ρ) = iωµ0aJm

φ (k)K ′
m(ka){I ′

m(kρ) −
m2

k2ρρ0

Im(kρ)Im(kρ0)

I ′
m(kρ0)

}, (3.73)

Em
z (k, ρ) = −iωµ0a(Jm

z (k)Im(kρ)Km(ka)

+ Jm
φ (k){

m

kρ0
Im(kρ0)K

′
m(ka) +

m

ka
I ′
m(kρ0)Km(ka)}

Im(kρ)

I ′
m(kρ0)

)

= −i
ωµ0am

kρ0

Jm
φ (k)

Im(kρ)Im(kρ0)K
′
m(ka)

I ′
m(kρ0)

. (3.74)

After inserting the expressions of the fields into the Eq.(3.23) electric and mag-

netic field patterns inside the body are obtained in the study [1]. However, first,

the transforms and integrals should be numerically evaluated for certain current

distributions of any cylindrical coil. Without such a computational work, it is

difficult to understand these field distributions.

3.2 Simplification of the Analytical Calcula-

tions of the Electric Field

To understand the field distribution inside and outside of the body more easily,

magnetic and electric field expressions obtained by Bowtell [1] and described in

the first section of this chapter, are simplified.

According to the defined current pattern, the magnetic and electric field patterns

inside the gradient coil can be obtained. If the magnetic field distribution in the

z-direction is known, the current distribution can be found and the electric field

pattern inside and outside of the body can be observed. The relationship between

the current density in φ-direction and the magnetic field in z-direction is:

Jm
φ = −

Bm
z

µ0kaIm(kρ)K ′
m(ka)

. (3.75)

To obtain simple expressions for the fields, target fields for x, y, and z-gradient

coils are used as defined in the Chapter 2.

For x-gradient coil, the target field is taken as Bz(ρ, φ, z) = Gxxg(z) =
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Gxρg(z) cos φ where Gx is the gradient field in phasor domain and g(z) describes

the z variation as mentioned in Chapter 2. To find Jm
φ , first Bm

z should be defined

for the given target field [26]:

Bm
z =

1

2π

∫ ∞

−∞

∫ π

−π

e−imφ cos φe−ikzGxρg(z)dφdz (3.76)

=
1

2π

∫ ∞

−∞

∫ π

−π

e−imφ(
eiφ + e−iφ

2
)e−ikzGxρg(z)dφdz (3.77)

= Gxρ
δ(m − 1) + δ(m + 1)

2

∫ ∞

−∞

g(z)e−ikzdz. (3.78)

For g(k) =
∫ ∞

−∞
g(z)e−ikzdz:

Bm
z = Gxρ

δ(m − 1) + δ(m + 1)

2
g(k). (3.79)

By inserting this Bm
z field into the Eq.(3.75) we can write the expression for Jm

φ

as the following:

Jm
φ = −

Gxρ[δ(m − 1) + δ(m + 1)]g(k)

2µ0kaIm(kρ)K ′
m(ka)

. (3.80)

By using Eq.(3.80) in the field equations in the form of Um
c (k, ρ), and embedding

them to the equations in the form of (3.23), simplification is performed for all

field components:

Eρ(ρ, φ, z) = −ωGxρ
1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikz m[δ(m − 1) + δ(m + 1)]g(k)

2k2

× (
1

ρ
−

Im(kρ0)I
′
m(kρ)

ρ0Im(kρ)I ′
m(kρ0)

)dk, (3.81)

Eφ(ρ, φ, z) = −iωGxρ
1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikz [δ(m − 1) + δ(m + 1)]g(k)

2k

× (
I ′
m(kρ)

Im(kρ)
−

m2Im(kρ0)

k2ρρ0I ′
m(kρ0)

)dk, (3.82)

Ez(ρ, φ, z) = −ωGxρ
1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikz m[δ(m − 1) + δ(m + 1)]Im(kρ0)

2k2ρ0I ′
m(kρ0)

× g(k)dk, (3.83)

Bρ(ρ, φ, z) = −iGxρ
1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikz [δ(m − 1) + δ(m + 1)]I ′
m(kρ)

2Im(kρ)

× g(k)dk, (3.84)

Bφ(ρ, φ, z) = Gx

1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikz m[δ(m − 1) + δ(m + 1)]

2k

× g(k)dk. (3.85)
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Due to δ(m) function, the summation indices can easily be defined as m = ±1

and the expression becomes summation free. Besides, for the derivative of the

modified Bessel’s functions, we can use the following recurrence relations [34]:

I ′
n(x) = In−1(x) −

n

x
In(x), (3.86)

K ′
n(x) = −Kn−1(x) −

n

x
Kn(x), (3.87)

In(x) = I−n(x), (3.88)

Kn(x) = K−n(x). (3.89)

With these relations, the electric and magnetic field expressions are written in

the form of:

Eρ(ρ, φ, z) = −ωGxρ
eiφ − e−iφ

2

1

2π

∫ ∞

−∞

eikz(
1

ρ
−

1

ρ0

I1(kρ0)(I0(kρ) − 1
kρ

I1(kρ))

I1(kρ)(I0(kρ0) −
1

kρ0

I1(kρ0))
)

×
g(k)

k2
dk, (3.90)

Eφ(ρ, φ, z) = −iωGxρ
eiφ + e−iφ

2

1

2π

∫ ∞

−∞

eikz g(k)

k
(
(I0(kρ) − 1

kρ
I1(kρ))

I1(kρ)

− (
I1(kρ0)

k2ρρ0(I0(kρ0) −
1

kρ0

I1(kρ0))
))dk, (3.91)

Ez(ρ, φ, z) = −ωGxρ
eiφ − e−iφ

2

1

2π

∫ ∞

−∞

eikz I1(kρ0)

kρ0(I0(kρ0) −
1

kρ0

I1(kρ0))

× (
g(k)

k
)dk, (3.92)

Bρ(ρ, φ, z) = −iGxρ
eiφ + e−iφ

2

1

2π

∫ ∞

−∞

eikz
(I0(kρ) − 1

kρ
I1(kρ))

I1(kρ)
g(k)dk, (3.93)

Bφ(ρ, φ, z) = Gx

eiφ − e−iφ

2

1

2π

∫ ∞

−∞

eikz g(k)

k
dk. (3.94)

In these electromagnetic field equations, the argument of the Bessel’s functions

contains kρ that becomes small for low frequencies (e.g., (kρ) ≤ 6 × 10−5 for

ρ ≤(radius of the coil= 0.3m) and frequency, f ≤ 10 kHz) or ka that is also

limited with the radius of the coil. Thus, using the small argument approximation

of the modified Bessel’s functions, they can be expressed as [34]:

I1(kρ) =
kρ

2
(1 +

(kρ)2

8
), (3.95)

I0(kρ) = 1 +
(kρ)2

4
, (3.96)
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K1(kρ) =
1

2
(
kρ

2
)−1, (3.97)

K0(kρ) = − ln(kρ). (3.98)

By using these approximated expressions in the Eq.(3.90):

Eρ(ρ, φ, z) = −iωGxρ sin φ
1

2π

∫ ∞

−∞

eikz g(k)

k2
(
1

ρ
−

1

ρ0

kρ0

4
(1 + (kρ0)2

8
)(1 + 3(kρ)2

8
)

kρ

4
(1 + (kρ)2

8
)(1 + 3(kρ0)2

8
)

)dk

= −iωGx sin φ
1

2π

∫ ∞

−∞

eikz g(k)

k2

( (kρ0)2

4
− (kρ)2

4
)

(1 + (kρ)2

8
)(1 + 3(kρ0)2

8
)
dk. (3.99)

Beside the small argument approximation of the Bessel’s functions, with the

assumption (kρ)2 � 1 for ρ ≤ ρ0, simplified expressions for Eρ, Eφ, Ez, Bρ and

Bφ become:

Eρ(ρ, φ, z) = −iωGx sin φ(
ρ0

2 − ρ2

4
)

1

2π

∫ ∞

−∞

eikzg(k)dk, (3.100)

Eφ(ρ, φ, z) = −iωGxρ cos φ
1

2π

∫ ∞

−∞

eikz g(k)

k
(

(1 + 3(kρ)2

8
)

kρ(1 + (kρ)2

8
)
−

kρ0(1 + (kρ0)2

8
)

k2ρρ0(1 + 3(kρ0)2

8
)
)dk

= −iωGx cos φ(
ρ0

2 + ρ2

4
)

1

2π

∫ ∞

−∞

eikzg(k)dk, (3.101)

Ez(ρ, φ, z) = −ωGxρ sin φ
1

2π

∫ ∞

−∞

eikz g(k)

k

(1 + (kρ0)2

8
)

(1 + 3(kρ0)2

8
)
dk

= −ωGxρ sin φ
1

2π

∫ ∞

−∞

eikz g(k)

k
dk, (3.102)

Bρ(ρ, φ, z) = −iGx cos φ
1

2π

∫ ∞

−∞

eikzg(k)ρ(
1 + 3(kρ)2

8

kρ(1 + (kρ)2

8
)
)dk

= −iGx cos φ
1

2π

∫ ∞

−∞

eikz g(k)

k
dk, (3.103)

Bφ(ρ, φ, z) = iGx sin φ
1

2π

∫ ∞

−∞

eikz g(k)

k
dk. (3.104)

As mentioned in Chapter 2, g(z) is taken as g(z) = 1. If g(z) is expressed as

the given form in Chapter 2 (i.e., g(z) = [1 + ( z
d
)6]−1), the inverse Fourier of

g(k) is not convergent. In order to get rid of this, during the design, another

parameter is used in expressions [26], which is out of our scope when g(z) = 1.

With this, the simplified electric and magnetic field expressions inside the body,

ρ < ρ0 become as following [35]:

Eρ(ρ, φ, z) = −iωGx sin φ(
ρ0

2 − ρ2

4
), (3.105)
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Eφ(ρ, φ, z) = −iωGx cos φ(
ρ0

2 + ρ2

4
), (3.106)

Ez(ρ, φ, z) = −iωGxρz sin φ, (3.107)

Bρ(ρ, φ, z) = Gxz cos φ, (3.108)

Bφ(ρ, φ, z) = −Gxz sin φ. (3.109)

Outside the body (ρ > ρ0), there is no change in the magnetic field expression.

To find the electric field expressions one more assumption is used [34]:

lim
k→0

(kρ)n ln(kρ) → 0 for n real constant and n > 0. (3.110)

With this assumption the electric field expressions are;

Eρ(ρ, φ, z) = iωGx sin φ(
ρ0

4 + ρ4

4ρ2
), (3.111)

Eφ(ρ, φ, z) = −iωGx cos φ(
ρ0

4 + ρ4

4ρ2
), (3.112)

Ez(ρ, φ, z) = −iωGxρz sin φ. (3.113)

For y and z-gradient coils, target fields are defined as Bz(ρ, φ, z) = Gyyg(z) =

Gxρg(z) sin φ and Bz(ρ, φ, z) = Gzzg(z), respectively. Details of the simplifica-

tion of the equations for these coils are given in Appendices A and B. Unlike

x and y-coils, the current passing through the z-coil is defined as J coil(ρ) =

φ̂Jφ(φ, z)δ(ρ − a), so for this coil, the vector potential in z-direction, Az is zero

which can be understood from the Eq.(3.64). For y-gradient coil, the electric and

magnetic field expressions inside the body are [35]:

Eρ(ρ, φ, z) = iωGy cos φ(
ρ0

2 − ρ2

4
), (3.114)

Eφ(ρ, φ, z) = −iωGy sin φ(
ρ0

2 + ρ2

4
), (3.115)

Ez(ρ, φ, z) = iωGyρz cos φ, (3.116)

Bρ(ρ, φ, z) = Gyz sin φ, (3.117)

Bφ(ρ, φ, z) = Gyz cos φ, (3.118)

outside the body, the electric field expressions are:

Eρ(ρ, φ, z) = −iωGy cos φ(
ρ0

4 + ρ4

4ρ2
), (3.119)
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Eφ(ρ, φ, z) = −iωGy sin φ(
ρ0

4 + ρ4

4ρ2
), (3.120)

Ez(ρ, φ, z) = iωGyρz cos φ. (3.121)

And for z-gradient coil the electric and magnetic field expressions inside the body

become [35]:

Eρ(ρ, φ, z) = 0, (3.122)

Eφ(ρ, φ, z) = −iωGz

ρ

2
z, (3.123)

Ez(ρ, φ, z) = 0, (3.124)

Bρ(ρ, φ, z) = −Gz

ρ

2
, (3.125)

Bφ(ρ, φ, z) = 0, (3.126)

outside the body, the electric field expressions become:

Eρ(ρ, φ, z) = 0, (3.127)

Eφ(ρ, φ, z) = −iωGz

ρ

2
z, (3.128)

Ez(ρ, φ, z) = 0. (3.129)

3.2.1 Field Patterns

To understand the accuracy of the resultant simplified expressions, the electric

and magnetic field patterns are observed and these are compared with the re-

sultant patterns of the previous study [1]. These patterns are obtained for a

x-gradient coil with diameter 0.654 m, the gradient 20 mTm−1, and the gradient

switching rate 100 Tm−1s−1, and it is assumed that radius of the body model is

0.195 m. Figures 3.1 and 3.2 show these electric and magnetic field distributions.

Each pattern is obtained inside the body model (ρ < ρ0 where ρ0 = 0.195 m).

Along the z direction, only z = ±0.39 m region is shown, since the maximum

magnetic field observed in study [1] is at z = 0.39 m and ρ = ρ0, and after that

point, for a real gradient coil, the field starts to decrease, but in our case due
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to the linear field assumption, it continues to increase, so in order to compare

the patterns obtained in this thesis and previous study [1] easily, only region

z = ±0.39 m is used. This comparison is given in discussion section.

Because of the conductivity difference at the boundary, charge can be occurred,

and due to the charge density, there is a discontinuity in the partial derivative of

the scalar potential. This discontinuity can be observed at the ρ component of the

electric field and also at the magnitude of the total electric field. Figure 3.3 shows

the discontinuity at the electric field component. For three different angle values,

along the ρ direction, the change in each field component, Eρ, Eφ, Ez, pattern is

observed. In Eρ pattern, at ρ = 0.195 m discontinuity can easily be seen. In Eφ

pattern, there is no discontinuity at the boundary, but the characteristics of the

field is different inside and outside the body. In Ez pattern, there is no change,

and the characteristics of the field is same both inside and outside the body.

3.2.2 Discussion

To obtain field expressions, it is assumed that there is no charge in the bulk of

the body which means the divergence of the electric field should be zero. In order

to check the accuracy of the simplified field equations, it is verified.

As expected, the resultant simplified magnetic field expressions are the same as

the expressions given in the study [27] and also in Chapter 2, for perfectly uni-

form gradient fields. Moreover, in Chapter 2, the equivalent of ∂By

∂x
and ∂Bx

∂y
has

been taken as zero and this is confirmed with the resultant expressions found in

this chapter.

To observe the correct field patterns, the path of the current should be defined

accurately. Probably, due to the difference of the current paths of the coil in

27



−0.2
0

0.2

−0.2
0

0.2
−6
−4
−2

0
2
4
6

x(m)y(m) −0.4 −0.2 0 0.2
−0.2

0
0.2
−6
−4
−2

0
2
4
6

z(m)
x(m)

−0.4 −0.2 0 0.2
−0.2

0
0.2
−8
−6
−4
−2

0
2
4
6
8

z(m)
y(m) −0.4 −0.2 0 0.2

−0.2
0

0.2
0
2
4
6
8

z(m)
y(m)

(a)

(c) (d)

(b)

             
             

F
igu

re
3.1:

E
-fi

eld
d
istrib

u
tion

form
ed

b
y

th
e

eq
u
ation

of
ou

r
stu

d
y

for
x
-grad

ien
t

coil.
a:

E
x (y

,x
)

for
z

=
0.

b
:

E
y (x

,z)
for

y
=

0.
c:

E
z (y

,z)
for

x
=

0.
d
:

|E
(y

,z)|
for

x
=

0.

28



−0.4
−0.2

0
0.2

0.4

−0.2

0

0.2
−10

−5

0

5

10

z(m)
x(m)

−0.4
−0.2

0
0.2

0.4

−0.2

0

0.2
−10

−5

0

5

10

z(m)
x(m)

−0.4
−0.2

0
0.2

0.4

−0.2

0

0.2
0

2

4

6

8

10

z(m)

x(m)

(a) (b) (c)

F
igu

re
3.2:

B
-fi

eld
d
istrib

u
tion

for
x
-grad

ien
t

coil
in

ou
r

stu
d
y.

a:
B

x (x
,z)

for
y

=
0.

b
:

B
z (x

,z)
for

y
=

0.
c:

|B
(x

,z)|
for

y
=

0.

29



0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

E ρ (V
/m

)

ρ(m)

 

 
φ=π/100
φ=π/2
φ=4π/5

0 0.05 0.1 0.15 0.2 0.25 0.3
−4

−3

−2

−1

0

1

2

3

4

E φ (V
/m

)

ρ(m)

 

 
φ=π/100
φ=π/2
φ=4π/5

0 0.05 0.1 0.15 0.2 0.25 0.3
−6

−5

−4

−3

−2

−1

0

ρ(m)

E z (V
/m

)

 

 

φ=π/100
φ=π/2
φ=4π/5

−0.2 −0.1 0 0.1 0.2 0.3
0

2

4

6

8

10

12

y(m)

|E
(y

,z
)| 

(V
/m

)

 

 
z=−0.27 m
z=−0.135 m
z=0.06 m

(a) (b)

(c) (d)

F
igu

re
3.3:

D
iscon

tin
u
ity

in
E

-fi
eld

d
istrib

u
tion

for
x
-coil.

a:
C

h
an

ge
in

E
ρ (ρ

,φ
)

accord
in

g
to

ρ
(m

)
for

x
-
coil,

b
:

C
h
an

ge
in

E
φ (ρ

,φ
)
accord

in
g

to
ρ
(m

),
c:

C
h
an

ge
in

E
z (ρ

,φ
)

accord
in

g
to

ρ
(m

),
d
:

C
h
an

ge
in

|E
(y

,z)|
accord

in
g

to
y
(m

).

30



Figure 3.4: E-field distribution found by Bowley and Bowtell [1] forx-gradient
coil. a: Ex(y, x) for z = 0. b: Ey(x, z) for y = 0. c: Ez(y, z) for x = 0. d:
|E(y, z)| for x = 0

study [1], there are inconsistencies in Ex, Ey, and Bz field graphs obtained in

this thesis. Figures 3.4 and 3.5 show the result of the study [1]. The comparison

of the graphs obtained in two studies can be made in a certain region indicated

in the figures. Since, the simplification of the equations are performed for a coil

with a perfectly uniform gradient field, the characteristics of the graphs in both

studies are the same in the volume of interest where the change at the linearity

of the field is up to 5%.
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Figure 3.5: B-field distribution found by Bowley and Bowtell [1] for x-gradient
coil. a: Bx(x, z) for y = 0. b: Bz(x, z) for y = 0. c: |B(x, z)| for y = 0.

32



Chapter 4

THE SAFETY CONCERN OF

THE GRADIENT FIELD

Peripheral nerve stimulation (PNS) is one of the bioeffects of the time varying

gradient field. If a certain magnitude electric field is applied during a sufficient

duration, peripheral nervous system can be stimulated. During experimental

studies volunteers report spatially localized sensations of pressure, or muscle

twitching [13].

The nerve stimulation near an implant during magnetic resonance imaging has

also been examined [2]. This is an important study to understand whether MR

imaging techniques can be used on patients with an implant or not.

In order to understand the excitability of the nerve, first the strength-duration

curve and the behavior of the nerve have been investigated. In the first section

of this chapter the laws of nerve stimulation is introduced. Under the light of

this knowledge, the other sections describe the worst position and length of an
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implant that causes stimulation and determine the maximum length of the lead

of a pacemaker.

4.1 Nerve Stimulation without an implant

Resting typical polarized cells are charged positively on the outside and nega-

tively on the inside according to the distribution of K+ ion. Electrical stimulus

will bring the resting membrane potential to the threshold potential by changing

the distribution of the Na+ and K+ ions [36]. In the region of a locally constant

electric field, excitation is initiated where a nerve is ended, or undergoes a rapid

bend, or at the point where the excitation is directly exposed. These modes are

shown in Figure 4.1 [2]. The threshold of the excitation depends on the position

of the nerve and the spatial distribution of the electric field. In study [2] different

electric field threshold values for sufficient durations are given for 20 µm nerve

fibers with different bending points and angles. The electric field is oriented par-

allel to the fiber. These electric field thresholds are presented in Table 4.1. The

first column indicates the bend angle. The second column lists the nerve node at

which the bend occurs. Ethreshold is the rheobase excitation threshold and τc(µs)

is the strength duration time constant.

Table 4.1: Excitation requirements for a nerve with different modes of stimula-
tion [2]

Bend angle(deg) number of the bend node Ethreshold (V/m) τc(µs)

0 1 6.21 128.2

90 2 8.55 126.0

90 8 9.96 112.9

180 2 6.56 101.4

180 6 5.10 110.3

In order to compare the electric field values with the results of the former studies

and standards and also to understand the stimulation risk, the real gradient coil
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Figure 4.1: The neural stimulation modes [2]

parameters are used as given in Table 4.2. We check whether these parameters

fall within the limits related to prevention of cardiac stimulation.

In order to understand the worst position for the maximum electric field, surface

plots are observed for different radii. The maximum electric field magnitude

is observed at the surface of the body model (i.e., ρ = ρ0) and it is in the z-

direction. For z-gradient coil, the electric field z and ρ components are zero and

for other coils, distribution patterns are given in Figures 4.2 and 4.3.

Thus, at the surface of the body model, the expression of the total electromag-

netic field produced by each gradient coil in the cylindrical coordinates is as the

following:

~E(ρ = ρ0, φ, z) = G′
x(t){−0.5ρ2

0 cos φφ̂ − ρ0z sin φẑ} + G′
y(t){−0.5ρ2

0 sin φφ̂ + ρ0z cos φẑ}

+ G′
z(t){−0.5ρ0zφ̂}, (4.1)

~B(ρ = ρ0, φ, z) = Gx(t){z cos φρ̂ − z sin φφ̂ + ρ0 cos φẑ}

+ Gy(t){z sin φρ̂ + z cos φφ̂ + ρ0 sin φẑ}

+ Gz(t){−0.5ρ0ρ̂ + zẑ}. (4.2)

To understand the worst case for the electric field that causes the stimulation,

Reilly [37] assumed that maximum z gradient magnetic field is in the z-direction
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Figure 4.2: Eφ and Ez components distribution on the surface with ρ = 0.2 for
x-gradient coil.
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Figure 4.3: Eφ and Ez components distribution on the surface with ρ = 0.2 for
y-gradient coil.
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and uniform over a circular cross section of radius, ρ0. For uniform magnetic

field, relation between the magnetic and electric field are given as:

~E · (2πρ0)φ̂ = −(πρ2
0)ẑ ·

∂ ~B

∂t
, (4.3)

|B′
z(t)| = 2|Eφ(ρ)|/ρ0, (4.4)

where B′
z(t) is the first order time derivative of the magnetic field in z-direction.

With the simplified expressions for the maximum magnetic field same relation

can be observed [35], however, the magnetic field has also a component in the

φ-direction. For x and y-coils as mentioned before the electric field has a com-

ponent in the z-direction and it is the dominant one to cause the stimulation.

When only x-gradient coil is effective, maximum electric field is observed at

φ = π/2 and z = DSV/2, where DSV is the diameter spherical volume with field

homogeneity. When all coils are driven simultaneously with identical waveforms

at the maximum slew rate (∂G
∂t

), maximum electric field is observed at φ = π/4

and z = DSV/2. These maximum electric field magnitudes in z-direction for a

body model with a radius, ρ0 = 0.2 m are given in Table 4.2.

Table 4.2: Maximum Electric Field Magnitudes in z-direction inside the human
body model with radius, ρ0 = 0.2m according to the gradient coil parameters

Gradient Coil MagnetomSymphony1.5T MagnetomAvanto1.5T SignaCV/i

DSV 0.5m 0.5m 0.4m

Gx, Gy, Gz 30mT/m 45mT/m 40mT/m
∂Gx

∂t
,

∂Gy

∂t
, ∂Gz

∂t
125T/m/sec 200T/m/sec 150T/m/sec

Min. Rise Time 240µs 225µs 267µs

Ezmax x − coil 6.25V/m 10V/m 6V/m

Ezmax all coils 8.84V/m 14.14V/m 8.48V/m

Depending on the threshold values given in Table 4.1, it can be said that any

nerve with a diameter of 20 µm and located parallel to the Ez field can be

stimulated with the maximum electric field values obtained for the maximum

slew rates supplied by different coils given in Table 4.2. When the diameter of
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a fiber decreases, the threshold level will increase and the risk of the stimulation

will decrease. For example the threshold for a fiber with a diameter of 10 µm

is 12.3 V/m and for a fiber with a diameter of 5 µm it becomes 24.6 V/m [2].

These examples show that with any of the coils given in Table 4.2, 5 µm nerve

may not be stimulated.

In the standards [38], to protect against peripheral nerve stimulation, the

strength duration curve is defined as the relation between the rate of change

of the magnetic field during gradient switching dB/dt (T/s), and the effective

stimulus duration ts,eff(ms) or as the relation between the electric field E (V/m),

and the effective stimulus duration ts,eff(ms) such that:

dB

dt
= 20{1 +

0.36

ts,eff

}, (4.5)

E = 2.2{1 +
0.36

ts,eff

}, (4.6)

where “20” is the rheobase dB/dt (T/s) value, “2.2” is the rheobase E (V/m)

value and “0.36” is the chronaxia time τc(µs). The values in these expressions are

suited with the theoretical values of the threshold given in [39]. As mentioned

before, Reilly has assumed a uniform z gradient magnetic field. According to

our study, when dB/dt (T/s) value is converted to dG/dt (T/s) using the max-

imum field location(ρ = 0.2 m and z = DSV/2), the electric field threshold

becomes 1.89 V/m which is not much different than the value in eq.(4.6), used

in standards and obtained by Reilly [39]. Stimulation risk for each coil given in

Table 4.2 can be investigated with this strength-duration relation. For, Siemens

Magnetom Symphony 1.5T, ts,eff is taken as 0.24 s, so maximum dB
dt

= 50 T/s

and then, maximum rate of change of the gradient at ρ = 0.2 m and z = 0.25 m

should be 156 T/m, which is larger than the given value, and for the other coils,

for Siemens Magnetom Avanto 1.5T, it is 162.4 T/m and for GE Signa CV/i, it

is 166 T/m, these values are also comparable with the real parameters. But as

found before, the stimulation risk with Siemens Magnetom Avanto 1.5T is higher

than the other coils because of the high slew rate 200 T/m, and maximum electric
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Figure 4.4: Pulse width-amplitude relation necessary for tissue stimulation. This
graph is taken from [3].

field values also give the similar results with that conclusion. However, scanners

are driven at the safety limits, defined by the standards [38].

Minimum threshold value for both cardiac and nerve tissue is the same. How-

ever, the excitation time constant of cardiac tissue is relatively longer [39].

In [3], strength-duration curve for the tissue is obtained. To obtain this curve,

the tissue is stimulated with an impulse obtained from the output amplifier of the

pacemaker. The amplitude is adjustable from 0.1 V to 9.6 V and also the pulse

width is between 0.1 ms and 2 ms. The resultant graph is given in Figure 4.4.

According to this result rheobase voltage is determined as 0.5 V .

4.2 The worst position and the minimum length

of the implants causing stimulation

If there is an implant near a nerve, it may causes the stimulation during MRI.

Reilly have worked on the relation between the position of the implant and the

nerve and observed that the most sensitive case is when the nerve is terminated
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near the wire tip and oriented parallel to the wire [2]. When the distance between

the wire and the nerve increases, threshold of the field also increases [2].

To determine the minimum length of the implant lead that causes the stimulation,

cardiac pacing threshold voltage is used. It is taken as 0.5 V according to [3].

For this value, the lengths of the implant leads starting from the point that

the maximum electric fields obtained for the different coil parameters given in

Table 4.2 are determined approximately by using the relationship V =
∫

~E · ~dl,

and this integral is calculated along the wire. The position of the nerve is assumed

to be parallel to the implant and also to Ez field. The minimum implant lead

length values for different coil parameters are given in Table 4.3. Using the

rheobase value and chronaxia time given in standards [38] such as Ethreshold =

2.2 V/m and τc = 0.36 µs the lead length value is obtained as 11 cm.

Table 4.3: Minimum Implant Lead Length to stimulate the nerve at the maxi-
mum electric field.

Gradient Coil MagnetomSymphony1.5T MagnetomAvanto1.5T SignaCV/i

length(cm) − x − coil 8 5.5 6.2

length(cm) − all coils 5.67 3.9 4.3

4.3 The maximum length of the lead of a pace-

maker for MR safety

The location of the pacemaker, based on the evaluation of the dimensions of

typical lead position given in [40], can be used to understand the stimulation

risk due to the induced voltage on the lead. When the umbilicus is taken as the

center of the coil, the heart location is in approximately 20 cm distance from the

center. ICD (implantable cardioverter defibrillator) is located at 10 cm above
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the heart. Human heart can be modeled as a sphere with a radius 3 cm and

the distance between heart center and the torso center is taken as 5 cm. Leads

will be located at the right atrium, right ventricle and left ventricle. In order to

understand the simple case, it is assumed that lead directly goes to the heart,

by following the line, parallel with the distance 3 cm to the line passing on the

torso center. Generally the length of a pacemaker lead is longer than 40 cm. For

a lead length of 50 cm, the length from the ICD to the heart is taken as 15 cm,

and there are two loops around the ICD. At this location along the strength

part of the lead the magnitude of the maximum electric field in z-direction is for

Siemens Magnetom Symphony 1.5T, 1.125 V/m, for Siemens Magnetom Avanto

1.5T, 1.8 V/m, for GE Signa CV/i, 1.35 V/m. These electric field values are ob-

tained when only x-coil is effective. For the loops, ρ components of the electric

fields are used. With these values, voltages induced on the lead become 0.36 V ,

0.547 V and 0.41 V , respectively. These values are comparable with the pacing

threshold voltage. When each gradient field is effective simultaneously with iden-

tical waveforms, the maximum electric field values are for Magnetom Symphony

1.5T, 1.6 V/m, for Magnetom Avanto 1.5T, 2.56 V/m, for Signa CV/i, 1.9 V/m

and voltage values become 0.52 V , 0.77 V and 0.58 V , respectively. These values

show that there is stimulation risk for the patient with pacemakers in MRI.

These voltage values are approximate results. To understand the risk of the

electric field to the pacemaker more clearly, the current passing through the lead

should also be investigated. To calculate this current, first, the relation between

the tissue and the lead tip should be investigated as a circuit model which will

be investigated as a future study.
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Chapter 5

CONCLUSION AND FUTURE

WORK

As a summary, in this thesis, simple expressions for the electric field inside and

outside the cylindrical homogenous body model for a perfectly uniform gradient

field are derived. These simple expressions are used to understand the nerve-

stimulation thresholds.

First, in order to understand the relationship between the current passing

through the coil and the gradient field, design procedures are investigated. Sim-

plification is performed by using the target field method approach. Under the

quasi-static assumptions and appropriate boundary condition, the analytical ex-

pressions can easily be obtained. These expressions are directly related with the

current. By using the defined target field for perfectly uniform magnetic field,

the current is obtained. With this current, the field expressions are simplified

and we have obtained general field expressions formed inside and outside of a

cylindrical homogenous body model. With this simplified expressions, for differ-

ent coil properties, maximum electric field values are achieved. These values are

used to understand the nerve and cardiac stimulation risk. According to these
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values nerve stimulation can be observed for 20 µm and 10 µm nerves, if the field

is parallel to the nerve. By using the cardiac pacing voltage, the worst implant

lead length is determined such that it should be bigger than 4 cm to cause the

stimulation.

Our future work will consist of implant-tissue relationship for stimulation. Be-

cause of the impedance between the implant lead and the tissue, current will flow

through the lead. The interaction of an implant and the gradient field should

be investigated clearly to understand the safe operation conditions exactly. To

check the analytical results and to obtain the impedance model more easily, the

gradient field will be modeled by using plane waves. As a result, simulation

region can be formed easily rather than the field generated by the gradient coil.
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APPENDIX A

Simplification of the Electric

Field Expressions for y-gradient

coil

For y-gradient coil, target field is Bz(ρ, φ, z) = Gyyg(z) = Gxρg(z) sin φ and the

relation between Jm
φ and Bm

z is Jm
φ (k) = iGyρ[δ(m−1)−δ(m+1)]

2µ0kaIm(kρ)K′

m(ka)
g(k). According to

that, fields become:

Eρ(ρ, φ, z) = iωGyρ
1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikz m[δ(m − 1) − δ(m + 1)]g(k)

2k2

× (
1

ρ
−

Im(kρ0)I
′
m(kρ)

ρ0Im(kρ)I ′
m(kρ0)

)dk, (A.1)

Eφ(ρ, φ, z) = −ωGyρ
1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikz [δ(m − 1) − δ(m + 1)]g(k)

2k

× (
I ′
m(kρ)

Im(kρ)
−

m2Im(kρ0)

k2ρρ0I ′
m(kρ0)

)dk, (A.2)

Ez(ρ, φ, z) = ωGyρ
1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikz [δ(m − 1) − δ(m + 1)]Im(kρ0)

2ρ0I ′
m(kρ0)

×
g(k)

k2
dk, (A.3)

Bρ(ρ, φ, z) = −Gyρ
1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikz [δ(m − 1) − δ(m + 1)]I ′
m(kρ)

2Im(kρ)
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× g(k)dk, (A.4)

Bφ(ρ, φ, z) = −iGy

1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikz m[δ(m − 1) − δ(m + 1)]

2

×
g(k)

k
dk. (A.5)

Due to δ(m) function, the summation indices are defined as m = ±1 and the

expressions become summation free; besides, by using recurrence relations for

Bessel’s functions given in Chapter 3, the expressions are:

Eρ(ρ, φ, z) = iωGyρ cos φ
1

2π

∫ ∞

−∞

eikz(
1

ρ
−

1

ρ0

I1(kρ0)(I0(kρ) − 1
kρ

I1(kρ))

I1(kρ)(I0(kρ0) −
1

kρ0

I1(kρ0))
)

×
g(k)

k2
dk, (A.6)

Eφ(ρ, φ, z) = −iωGxρ sin φ
1

2π

∫ ∞

−∞

eikz g(k)

k
(
(I0(kρ) − 1

kρ
I1(kρ))

I1(kρ)

−
I1(kρ0)

k2ρρ0(I0(kρ) − 1
kρ

I1(kρ))
)dk, (A.7)

Ez(ρ, φ, z) = ωGyρ cos φ
1

2π

∫ ∞

−∞

eikz g(k)

k

I1(kρ0)

kρ0(I0(kρ0) −
1

kρ0

I1(kρ0))
dk, (A.8)

Bρ(ρ, φ, z) = ωGyρ sin φ
1

2π

∫ ∞

−∞

eikzg(k)
(I0(kρ) − 1

kρ
I1(kρ))

I1(kρ)
dk, (A.9)

Bφ(ρ, φ, z) = −iGy cos φ
1

2π

∫ ∞

−∞

eikz g(k)

k
dk. (A.10)

Using the small argument approximation of the modified Bessel’s functions inside

the equations, simplified expressions become:

Eρ(ρ, φ, z) = iωGy cos φ(
ρ0

2 − ρ2

4
), (A.11)

Eφ(ρ, φ, z) = −iωGy sin φ(
ρ0

2 + ρ2

4
), (A.12)

Ez(ρ, φ, z) = iωGyρz cos φ, (A.13)

Bρ(ρ, φ, z) = Gyz sin φ, (A.14)

Bφ(ρ, φ, z) = Gyz cos φ. (A.15)
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APPENDIX B

Simplification of the Electric

Field Expressions for z-gradient

coil

For z-gradient coil, target field is Bz(ρ, φ, z) = Gzzg(z) and the relation between

Jm
φ and Bm

z is Jm
φ (k) = −

Gzδ(m)
R

e−ikzg(z)zdz

µ0kaIm(kρ)K′

m(ka)
. According to that, fields become:

Eρ(ρ, φ, z) = iωGz

1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikz mδ(m)
∫

e−ikzg(z)zdz

k2

× (
1

ρ
−

Im(kρ0)I
′
m(kρ)

ρ0Im(kρ)I ′
m(kρ0)

)dk, (B.1)

Eφ(ρ, φ, z) = −iωGz

1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikz δ(m)
∫

e−ikzg(z)zdz

k

× (
I ′
m(kρ)

Im(kρ)
−

m2Im(kρ0)

k2ρρ0I ′
m(kρ0)

)dk, (B.2)

Ez(ρ, φ, z) = iωGz

1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikz mδ(m)
∫

e−ikzg(z)zdz

k2ρ0

×
Im(kρ0)

I ′
m(kρ0)

dk, (B.3)

Bρ(ρ, φ, z) = −iGz

1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikz δ(m)
∫

e−ikzg(z)zdz

Im(kρ)

× I ′
m(kρ)dk, (B.4)

47



Bφ(ρ, φ, z) = Gz

1

2π

∞∑

m=−∞

eimφ

∫ ∞

−∞

eikz mδ(m)
∫

e−ikzg(z)zdz

kρ
dk. (B.5)

For this case, due to δ(m) function, the summation indices become m = 0. By

using recurrence relations for Bessel’s functions and the small argument approxi-

mation of the modified Bessel’s functions given in Chapter 3 inside the equations,

simplified expressions become:

Eρ(ρ, φ, z) = 0, (B.6)

Eφ(ρ, φ, z) = −iωGz

ρ

2
z, (B.7)

Ez(ρ, φ, z) = 0, (B.8)

Bρ(ρ, φ, z) = −Gz

ρ

2
, (B.9)

Bφ(ρ, φ, z) = 0. (B.10)

48



Bibliography

[1] R. Bowtell and R. Bowley, “Analytic calculations of the E-fields induced by

time varying magnetic fields generated by cylindrical gradient coils,” Magn

Reson Med, vol. 44, pp. 782–790, 2000.

[2] J. P. Reilly and A. M. Diamant, “Theoretical evaluation of peripheral nerve

stimulation during MRI with an implanted spinal fusion stimulator,” Magn.

Res. Imag., vol. 15, no. 10, pp. 1145–1156, 1997.

[3] J. Webster, Wiley Encyclopedia of Electrical and Electronics Engineering.

John Wiley and Sons Inc., 1999.

[4] F. G. Shellock, “Magnetic resonance safety update 2002: Implants and de-

vices,” J Magn Reson Imaging, vol. 16, pp. 485–496, 2002.

[5] A. Roguin, M. Zviman, G. R. Meininger, E. R. Rodrigues, D. A. B. Timm

M. Dickfeld, A. Lardo, R. D. Berger, H. Calkins, and H. R. Halperin, “Mod-

ern pacemaker and implantable cardioverter/defibrillator systems can be

magnetic resonance imaging safe: In vitro and in vivo assessment of safety

and function at 1.5 T,” Circulation, vol. 110, pp. 475–482, 2004.

[6] D. Formica and S. Silvestri, “Biological effects of exposure to magnetic

resonance imaging: an overview,” BioMedical Engineering OnLine, vol. 3,

no. 11, 2004.

49



[7] A. Kangarlu and P.-M. L. Robitaille, “Biological effects and health impli-

cations in magnetic resonance imaging,” Concepts in Magnetic Resonance,,

vol. 12, no. 5, pp. 321–359, 2000.

[8] F. G. Shellock, Reference Manual for Magnetic Resonance Safety, Implants,

and Devices. Biomedical Research Publishing Group, 2007.

[9] J. Nyenhuis, “Interactions of medical implants with the magnetic fields in

MRI,” The 25” Annual lntemational Conference of the IEEE EMBS, 2003.

[10] R. Luechinger, “In vivo heating of pacemaker leads during magnetic reso-

nance imaging,” Eur Heart J, vol. 26, pp. 376–383, 2005.

[11] H. Irak, “Modelling RF heating of implantable medical devices during MRI

using safety index,” 2007.

[12] H. Siebold, “Design optimization of main, gradient and RF field coils for

MR imaging,” IEEE on Magn., vol. 26, no. 2, pp. 841–846, 1990.

[13] B. A. Chronik, “Peripheral nerve stimulation in MRI gradient coils,”

ISMRM Berlin, 2007.

[14] B. A. Chronik and B. K. Rutt, “A comparison between human magnetostim-

ulation thresholds in whole-body and head/neck gradient coils,” Magn Re-

son Med, vol. 46, pp. 386–384, 2001.

[15] F. M. Vogt, M. E. Ladd, P. Hunold, S. Mateiescu, F. X. Hebrank, A. Zhang,
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