-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Bilkent University Institutional Repository

FINITE PERTURBATION ANALYSIS METHODS FOR
OPTIMIZATION OF PERIODIC (s,S) INVENTORY
CONTROL SYSTEMS

A THESIS
SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL
ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

by
Erding Mert
July, 2008

https://core.ac.uk/display/52925127?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Kagan Gokbayrak (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Osman Alp

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Ayse Kocabiyikoglu

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Baray
Director of Institute of Engineering and Sciences

1

ABSTRACT

FINITE PERTURBATION ANALYSIS METHODS FOR
OPTIMIZATION OF PERIODIC (s,S) INVENTORY
CONTROL SYSTEMS

Erding Mert
M.S. in Industrial Engineering
Supervisor: Asst. Prof. Dr. Kagan Gokbayrak
July, 2008

We are dealing with single item inventory systems where the period time is constant
and the unsatisfied demands are backordered. The demands are independent and
identically distributed random variables, but the distribution of those variables are not
known. The total cost of a period consists of; ordering cost "K" which is independent of
the ordering quantity, holding cost "h" for each item that remains in stock, and penalty
cost "p" for the each backordered item. In the considered system, it is known that when
the parameters of an (S,S) inventory policy are chosen appropriate, then the expected
period cost can be minimized. There are some exact methods or heuristics for finding
the optimal s and S parameters in the literature for the case where the demand
distribution is known. In our study, we introduce a perturbation analysis based method
for finding the optimal s and S parameters where the demand distribution is not known.
Our method anticipates the sensitivity of (S,S) parameters to the period cost for the
observed demand quantities. This method's performance is compared with a method
that uses Integer Programming with the past data and with a method that calculates the
mean and standard variation values with the past data and feeds them to the Ehrhardt's

Heuristic.

Keywords: Inventory Policies, Perturbation Analysis, Simulation

111

OZET

DAGILIMI BILINMEYEN RASSAL AYRIK TALEPLER iCIN
PERIYODIK (s,S) ENVANTER DENETIM METODU

Erding Mert
Endiistri Miithendisligi, Yiiksek Lisans
Tez Yoneticisi: Yrd. Dog. Dr. Kagan Gokbayrak
Temmuz, 2008

Karsilanamayan taleplerin bekletilebildigi ve tedarik zamanlarinin sabit oldugu tek
0geli envanter sistemlerini ele almaktayiz. Gozlem periyotlar1 icinde gelen talep
miktarlarinin bagimsiz 6zdesge dagilmis ayrik rastgele degiskenler olduklari ancak bu
degiskenlerin dagiliminin bilinmedigi kabul edilmektedir. Her periyot i¢cin maliyet,
siparis miktarindan bagimsiz K siparis maliyeti, elde kalan her birim ig¢in h tutma
maliyeti ve karsilanmak i¢in bekletilen her birim talep i¢cin p yoksatma maliyeti
toplamindan olusmaktadir. Ele alinan sistemde parametreleri dogru secilmis (S,S)
envanter denetim politikasinin beklenen periyot maliyetlerini en aza indirgeyebilecegi
bilinmektedir. Literatiirde talep dagilimin bilinmesi durumunda en iyi S ve S
parametrelerinin bulunabilmesi i¢in Onerilmis tam veya sezgisel yoOntemler
bulunmaktadir. Bu ¢aligmamizda ise dagilimin bilinmedigi durumda, yontemimizin
yakinsamasina yeterli siireler i¢in dagilimin duragan kalacagi kabulu ile, en iyi S ve S
degerlerinin bulunmasi i¢in sarsim analizi tabanl dagilim degisiklerine uyarlanabilir bir
yontem Onermekteyiz. Gergeklesen talep miktarlari i¢in periyot maliyetlerinin S ve S
parametrelerine duyarlhiliklarini tahmin eden ve bu parametreleri yenileyen
yontemimizin performansi geriye doniik tamsay1 programlamasi sonuglarini uygulayan
ve gerceklesen miktarlar icin hesaplanan ortalama ve standard sapma degerlerini

Ehrhardt sezgiseline besleyen iki yontemin performanslari ile karsilastirilmaktadir.

Anahtar Sozcukler: Envanter Politikalari, Sarsim Analizi, Simulasyon

v

To my family...

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Asst. Prof. Dr. Kagan Gokbayrak for all
his attention and supports during my graduate study and for his valuable guidance and

most importantly for his patience and trust.

I am indebted to members of my dissertation committee: Asst. Prof. Dr. Osman Alp and
Asst. Prof. Dr. Ayse Kocabiyikoglu for showing of kindness to accept to read and
review this thesis. I am grateful to them for their effort, sparing their valuable time for

me and for their support.

I am most thankful to members of Land and Missile Programs, especially to Mr.
Aybars Kiiciik and Mr. Oguz Yemisciler, for their support and their patience. I would
like also thank to my friends in Bilkent IE for their friendship.

Finally, I would like to express my deepest gratitude on my family for believing in my
work and sacrifices that they have made for me. I feel very lucky to have such a
wonderful sister, father and mother. Without their love and support, I would never have

finished this thesis.

vi

CONTENTS

1 INTRODUCTION ...ttt s e st b e 1
2 BACKGROUND. ...ttt et 4
2.1 IVENLOTY SYSLEIMS .uvirvieuieiiriietieiieieteete ettt sttt st sttt et e sbesae et enbesteeneeneenee 4
2.2 INVENtOTY POIICIESeovieinieiieiieiieieiete ettt 5
2.3 Problem FOrmulation..........cooeirieeriicninicinciriecei ettt 8
2.4 Determining Optimal (s,S) Policy Parameters............coceoueevivenenieienineneieennne 13

3 PERTURBATION ANALYSIS METHODS FOR OPTIMIZATION

OF POLICY PARAMETERS.......o oot 22
3.1 Perturbation Analysis AlGOTIthMS...........cccecivirierieiieiriieeeeeee e 22
3.1.1 Perturbation Analysis on "s" (Algorithm 1).........ccecvvinininiiininiineiene, 23

3.1.2 Perturbation Analysis on "q" (Algorithm 2)ccccvvivevievinvineneeieenne. 24

3.2 Finding Optimal (5*,q*) Pair........ccooviiiniiiiiiieieee e 26
3.3 Initializing Perturbation Analysis Parametersccccoceevveviveeieienenieieieee, 29

A SIMULATION L.ttt et 34
4.1 LogICal MOGCL.....c.ccuiieiieiieiiiiieiciteesteee ettt ens 34
4.2 SIMulation MOdEIS.........c.ooriiiriiirieinieircecc e 37

vii

5 NUMERICAL EXAMPLES ..o s 39
5.1 PoOiSSON DISIIDULION.c..eveuieiiriiieieiiei et 40
5.2 Comparison with Other AIZOTIthmS........cccooevieriiiniinireee e 44
5.3 AdAPLability ..c.eeeveieiieiieieeeeeeee et 46

6 CONCLUSIONS AND FUTURE DIRECTIONS ... 49

REFERENCES ...ttt e 52

APPENDICES. ... oo 55
A PAon"s" - AIOTIthm 1cooiiiiieieeeee s 55
B PA on "q" - AIOTItM 2 ..o 56
C Finding Optimal (5*,0*) Pair - Algorithm 3ccooevivieiieieeeeeeee 57
D Ehrhardt's HEuristic Code........co.eiriinirieniiiiniciniceriece e 80
E FIOWCRAIT......cuiiieiic et &3
F ARENA Simulation Model............ccoiiiiininiiiinieiniccercese e 84
G EXCEL Simulation Model..........cccooivieiiiiininierienesieeeeseseeteeee e 85
H MATLAB Simulation Model........c.cccooiiiiiiininiiiineeeceeeee e 86
I GAMS COC....iiiiiiieee ettt 91
J Outputs of Numerical EXamplesccccoovevieirinenieinineeeeeeesieeeeeceeseeeeeens 95

Viil

LIST OF FIGURES

4.1 Numerical Example of Inventory Simulation for s=10, S=15cccccvvininenee. 36
4.2 Inventory Simulation EXample..........ccccevieierieniniieieeneceeeeeeeee e 37
J.1 (s*,S*) Graph for PA Alg. POI(10), yY=ALL HISTORYcccceceoirrirriirinee 95
J.2 (s*,5%) Graph for PA Alg. POI(10), Y73 .oeoieieeeeeeeeeeeeete e 95
J.3 (s*,S*) Graph for EHR Alg. POI(10), yY=ALL HISTORYcccccecererirririrerrenene 96
J.4 (s*,S*) Graph for EHR Alg. POI(10), Y=3 ..ooiiiiiiieineiececcreeeeeeeenes 96
1.5 (s*,S*) Graph for RIP Alg. POI(10), y=ALL HISTORYccecestrerirrirerirrnene 97
J.6 (s*,S*) Graph for RIP Alg. POI(10), Y=3 ..ot 97
J.7 Comparison of (s*,S*) Graphs for POI(10), y=ALL HISTORYcccecvevenv... 98
J.8 Comparison of (s*,S*) Graphs for POI(10), =3 ...ccecevirireieieeriereeeeeeeeenee 98
J.9 Comparison of Cost Graphs for POI(10), y=ALL HISTORYccccccesurrrrren.n. 99
J.10 Comparison of Cost Graphs for POI(10), Y=3ccccioieieierieeeeeeeeeeeeee, 99
J.11 (s*,S*) Graph for PA Alg. POI(25), yY=ALL HISTORYcccceeverirerirerne. 100
J.12 (s*,S*) Graph for PA Alg. POI(25), Y=3 oo 100
J.13 (s*,S*) Graph for EHR Alg. POI(25), yY=ALL HISTORYccccececeverreeenne. 101
J.14 (s*,S*) Graph for EHR Alg. POI(25), =3 .eoeoieieeeeeeeeeeeee e 101
J.15 (s*,S*) Graph for RIP Alg. POI(25), y=ALL HISTORYc.eccectvvirirerrrrrnne 102
J.16 (s*,S*) Graph for RIP Alg. POI(25), Y=3 .ceoieieieeeeeeeeeeeee e 102

X

J.17

J.18

J.19

J.20

J.21

J.22

J.23

J.24

J.25

J.26

J.27

J.28

J.29

J.30

J.31

J.32

J.33

J.34

J.35

J.36

Comparison of (s*,S*) Graphs for POI(25), y=ALL HISTORY 103

Comparison of (s*,S*) Graphs for POI(25), Y=3 ...cccooeoiininierereeeee 103
Comparison of Cost Graphs for POI(25), y=ALL HISTORYccccecurueune.e. 104
Comparison of Cost Graphs for POI(25), Y=3 ..ccoeoeoirieieeeeeeeeeeeeene 104
Comparison of (s*,S*) Graphs for UNI(0,10)ccecevvrieinereeieerereeeeennn 105
Comparison of Cost Graphs for UNI(0,10).......cccccererrerierininineneeeeeereenen 105
Comparison of (s*,S*) Graphs for NOR(5,1) ..cccocevievieieininieeeeeeeen 106
Comparison of Cost Graphs for NOR(5,1) .c.ccceeivineieiiiininieeeneeeeen 106
Comparison of (s*,S*) Graphs for Empirical Distributionc.cccceeeueeneee. 107
Comparison of Cost Graphs for Empirical Distribution...........ccccceceverveiennn. 107
(s*,S*) Graph for PA Alg., =15, ¥=3 oot 108
(s*,S*) Graph for EHR Alg., 8=15, ¥=3 oot 108
(s*,S*) Graph for RIP Alg., =15, ¥=3 ..ot 109
Comparison of (s*,S*) Graphs, 0=15, Y=3 ...ccccerririeeeeeeeee 109
(s*,S*) Graph for PA Alg., 6=15, y=ALL HISTORYccceeovrvirirerrrerenne 110
(s*,S*) Graph for EHR Alg., 8=15, y= ALL HISTORYccceoevvviriereenene 110
(s*,S*) Graph for RIP Alg., 6=15, y= ALL HISTORYcccceovirniiniinnn 111
Comparison of (s*,S*) Graphs, 6=15, y= ALL HISTORYccceevevrirreiennnn. 111
(s*,S*) Graph for PA Alg., 890, yY=ALL HISTORYccecceerireiriirrennn. 112
(s*,S*) Graph for EHR Alg., =90, y= ALL HISTORYccecectviinrirrnnn. 112

J.37 (s*,S*) Graph for RIP Alg., 6=90, y= ALL HISTORY

J.38 Comparison of (s*,S*) Graphs, 6=90, yY= ALL HISTORYccccecevirenninnne

xi

CHAPTER 1

INTRODUCTION

Inventories are assets held for sale in the ordinary course of business or in the process
of production for such sale or supplies to be consumed in the production process or in
the rendering of services. Some inventories have to be held due to the lead time of the
goods and the ordering cost. Holding inventories in stock causes a cost, holding cost,
because of the cost of storage, the opportunity cost, etc. On the other hand, if no
inventories are held, the customers cannot find what they want and since the customer
is not satisfied, there is a potential for the loss of future orders. Thus, having no
inventories will also cause a cost; namely penalty cost. The third type of cost is named
as ordering cost and it is the money given for the transportation of the goods, all

possible administration tools to place an order, etc.

Inventory policies are methods for determining when and how many units to
order in order to minimize an inventory cost function. There are two types of inventory
policies; continuous review policies and periodic review policies. In the first type, the
inventory position is monitored continuously and when the inventory position falls
below a pre-specified level, an order is given. In the periodic review policies, the
inventory position is monitored in periods and the same action is taken. One of the
periodic review policy is the (R,S,S) policy where the inventory position is checked in
every period of R time units and if the inventory position is less than or equal to S, an
order is placed to raise the position up to S. The inventory policy discussed in this
thesis will be the (R,s,S) policy for given R time units, and the aim is to find the optimal
(s,S) values to minimize the expected summation of holding cost, penalty cost and the

ordering cost.

1 Introduction 2

The aim is to design inventory control policies for random demand distributions that
can adapt themselves to sudden demand changes. For that purpose, Perturbation Analy-
sis Algorithm will be defined and will be compared with two other algorithms; Ehrhardt’s
Heuristic and Retrospective Integer Programming Method. Perturbation Analysis Algo-
rithm is a perturbation analysis based method for finding the optimal s and S parameters.
This method will anticipate the sensitivity of s, S parameters to the period cost for the ob-
served demand quantities. This algorithm can find the real optimal s, S parameters without
knowing the distribution, mean and the variance of the demand distribution.

Ehrhardt’s Heuristic is a simple heuristic that calculates near-optimal (s, .S) values
by calculating the mean and the standard deviation by the observed data. Retrospective
Integer Programming Method also uses the past data and finds the minimum cost by integer
programming.

In the second chapter, some background information about the Inventory Systems and
Inventory Policies are given. The problem formulation is defined and a literature review
about how to determine optimal (s, .S) parameters is mentioned.

In Chapter 3, the main method, Perturbation Analysis, is introduced. At the end of
this chapter, methods to find the optimal (s, .S) pair are given.

In Chapter 4, the logical model is defined, and the simulation models are introduced.
Chapter 5 consists of numerical examples. In this chapter, several distributions are taken
as the demand distributions and the algorithms defined in Chapter 3 are tested. Also com-

parison of the algorithms (Perturbation Analysis Algorithm, Ehrhardt’s Heuristic and Ret-

1 Introduction 3

rospective Integer Programming Method) can be found in this chapter. This chapter ends
with the adaptability issue.

The last chapter includes the conclusion and general discussion about the outputs of
numerical examples. At the end of this chapter, future directions are given and the thesis

ends with the appendices.

CHAPTER 2

BACKGROUND

2.1 Inventory Systems

Inventories are assets held for sale in the ordinary course of business or in the process
of production for such sale or supplies to be consumed in the production process or in

the rendering of services. Fogarty & Hoffman (1983) defines inventory as:

Inventory ties up capital, uses storage space, requires handling, deteriorates,
sometimes becomes obsolete, incurs taxes, requires insurance, can be stolen,
and sometimes is lost ... the absence of the appropriate inventory will halt a
production process; ... an expensive piece of earth moving equipment may be
idled by lack of a small replacement part; a patient may die due to the
unavailability of plasma; ... and, in many cases, a good customer may become
irate and take his business elsewhere if the desired product is not immediately
available.

Thus, inventories serve the function of providing a buffer between customer

demands and production capabilities (Aft 1987). There are three basic classes of

inventories for a company;

e Raw materials are the items that are purchased from another vendor to be
processed further.

e Work in process inventories are still not finished goods but processed raw
materials.

e Finished goods are the products that are available for sale.

In this thesis, inventory will only represent the "finished goods" which are

considered as discrete units.

2.2 Inventory Policies 5

An inventory system is a system in which the following three kinds of costs are
significant; the cost of carrying inventories, the cost of incurring shortages, and the cost
of replenishing inventories (Eliezer 1982). After this part, these costs will be recalled as
holding cost, penalty cost, and ordering cost, respectively. Holding cost applies if there is
a positive inventory on hand, penalty cost applies if there is unsatisfied order, and ordering

cost applies if order was made at that time.

2.2 Inventory Policies

Inventory policies are methods for determining when and how many units to order in order
to minimize an inventory cost function. Based on the inventory level, anticipated demand

and cost function, these policies answer the following questions:

When should the inventory be replenished?

How many units should be added to the inventory? (Eliezer 1982)

For the first question, following answers can be given;

° Inventory should be replenished when the amount in inventory is equal to or

below s quantity units

° Inventory should be replenished every R time units

For the second question, the answers can be;

° The quantity to be ordered is ¢ quantity units

2.2 Inventory Policies 6

. A quantity should be ordered so that the amount in inventory is brought to a

level of S quantity units

If the demand is deterministic, then some methods can be used to find the answers of
these questions. However, if the demand is stochastic, then some inventory policies should
be used. The quantities s, 1z, ¢, S used above are the policy parameters and defined as the
reorder point, scheduling period, lot size, and order-up-to level, respectively.

Based on the reviewing process, inventory policies are divided into two main groups;

continuous review policies and periodic review policies.

2.2.1 Continuous Review Policies

In continuous review policies, the inventory control system is designed so that the inventory
position (inventory on hand plus orders given but not received yet) is monitored continu-
ously. When the inventory level is sufficiently low, an order is given at that time and the
given order is received after a certain lead time. Well known continuous review policies are

(s,S) Policy and (s, Q) Policy.

(s,S) Policy

In (s, 5) Ordering Policy, whenever the inventory position falls to the reorder point s, an

order is placed enough to raise the position to the order-up-to level S.

2.2 Inventory Policies 7

(s,Q) Policy

An (s, Q) Ordering Policy means that when the level of inventory position is less than or

equal to s, an order of fixed amount of () is placed.

2.2.2 Periodic Review Policies

Another alternative of Continuous Review is to consider the inventory position only at
certain given points in time. The intervals between these reviews are constant and that
is called the Periodic Review. Well known periodic review policies are (R, s, S) Policy,

(R, s, Q) Policy and (R, S) Policy.

(R;s,S) Policy

In intervals of R time units, the inventory position is checked and if the inventory position

is less than or equal to s, an order is placed to raise the position up to S.

(R;s,Q) Policy

In (R, s, Q) policy, the inventory position is checked in every period of R time units and if
the inventory position is less than or equal to s, an order of amount () is placed.

As can be seen easily, in the first policy, the inventory position is always increased to
same value after orders, where in the second policy, always the same quantity of orders are

given.

2.3 Problem Formulation 8

(R,S) Policy (Base Stock Policy)

In this policy, an order up to S at the end of each period of R time units is placed, unless
the period demand is zero.

In this thesis, Periodic (R, s, S) Policy will be analyzed for a fixed and given time
period, R. After this part, "(s, .S) Policies" will be used for "(R, s, S) Policies" and the aim
is to find optimal s and S values that minimize a total cost. For that purpose, we consider
a single-item inventory system where unfilled demand is backlogged with a fixed lead time
L between placement and delivery of an order where the holding cost and penalty cost are

linear, and the demand is random.

2.3 Problem Formulation

We have a stochastic inventory control problem with an unknown demand distribution. The
demand distribution shall not have any known distribution; the algorithms in this thesis
work for all kinds of distributions and also for empirical distributions. There is a non-
negative constant lead time and three types of costs (holding cost, penalty cost, and ordering
cost). Detailed information of the costs are given below.

Holding Cost: Holding cost applies while holding inventory on stock. Holding in-
ventory causes a cost because there is an opportunity cost (money invested in inventory
could be placed on bank for interest), storage cost (need for place to store the inventory),
deterioration cost (materials deteriorate over time), obsolescence problem (products may

become outdated), insurance cost (insurance protects against potential loss), etc.

2.3 Problem Formulation 9

Thus, holding cost is applied if the inventory on hand is positive at the end of the
day. The holding cost per unit "h" is multiplied with the "Inventory on Hand", and the total
holding cost is calculated.

Penalty Cost: It is also known as stockout cost or shortage cost. There are two types
of penalty cost; in the first type, the customer is willing to backorder and to wait for the
delivery, where in the second, customer does not wait and the order is lost. In this thesis,
we assume full backlogging. However, it also causes a cost since you cannot satisfy your
customer and there is a potential for the loss of future orders (Aft 1987).

Thus, if the inventory on hand at the end of the day is negative, penalty cost is applied.
The penalty cost per unit "p" is multiplied by the total "Unsatisfied Demand" at the end of
that period and the total penalty cost is calculated. Since backlogging policy is applied,
the unsatisfied demand is forwarded to the following day until all of the past demands are
satisfied.

Ordering Cost: There are usually fixed costs associated with a replenishment (inde-
pendent of the batch size). It may be described as a truck with infinite capacity delivering
the orders and even if one order is placed, the same money will be given to the truck. Thus,
if order is given in a day, Ordering Cost (Set-Up Cost) "K" is also incurred. In other words,
this cost is independent of the ordered unit size, i.e. ordering 1 unit and 100 units will have
the same ordering cost.

Then, the total cost is defined as:

J=IH{Y < s}K + hmax(X,0) + pmax(—X,0)

2.3 Problem Formulation 10

where Y is the inventory position at the end of the period, X is the inventory level at

the end of the period, and [is the indicator function.

2.3.1 Mathematical Model

The model of the problem can be formulated as:

J; = I{Y; < s} K + hmax(X;,0) + pmax(—X;,0)
Xi=X; 1+ R —D;

Yi=Xi1+0i1— D

O; =01+ Qi — R;

Qi = HY: < s}(S-Y))

Ri = Qi—L—l
X() == S
Op =0

2.3 Problem Formulation 11

where the problem parameters are as below:

D; : Demand Occurred at Period i
L : Constant Lead Time
h : Holding Cost per unit
p : Penalty Cost per unsatisfied units
K : Ordering cost for placing an order, independent of number of units
s : Inventory control policy parameter, Reorder Point

S ¢ Inventory control policy parameter, Order Up-To Level

and the state variables/decision variables of the problem are as below:

J; . Total Cost at the end of Period i

Y; : Inventory Position at the beginning of Period i
X,; : Inventory Level at the beginning of Period i
R; : Received Orders at the beginning of Period 1
@; : Order Quantity at the beginning of Period i

O; : Outstanding Orders at the beginning of Period i

By Inventory Position, we mean inventory on hand plus on order minus backorders.
By Inventory Level, we mean inventory on hand minus backorders. Lead Time is the time

between the placement of an order and the arrival of that order.

2.3 Problem Formulation 12

For linearizing the problem, the model was rewritten as below:

Y

IN

IN

IN

Y

v

IN

Z J (i)

KZ'Il(z') +hX (i)

KT1(i) — pX (i)

S—D(1)

X(i—1)+ R(i) — D(i), fori>1
X(1)

X(i=1)+0(@i—1) — D(i), fori>1
Q(1)

O(i — 1) + Q(i) — R(i), fori>1
S — Y (i) — M(1 = I,(i))

S — Y (i) + M(1 = I,(i))

MI, (i)

0

Qii—L—1), fori>1

2.4 Determining Optimal (s,S) Policy Parameters 13

where
M is a very big number,
I; and I, are binary variables,
s and S are integers,

J, R, O and () are positive variables.

2.4 Determining Optimal (s,S) Policy Parameters

In this section, the literature about determining the optimal (s, .S) inventory policy para-
meters will be reviewed. The analysis of (s, .S) inventory policies started out as a research
topic after the introduction of the multistage periodic review inventory model in the pa-
per by Arrow, Harris & Marschak (1951). In that paper, they studied uncertainty models—a
static and a dynamic one—in which the demand flow is a random variable with a known
probability distribution. The best maximum stock and the best reordering point are deter-
mined as functions of the demand distribution, the cost of making an order, and the penalty
of stock depletion.

Scarf (1960) and Iglehart (1963) showed that an optimal policy can be found within
the class of (s, S) policies where there are linear costs, stochastic demand, and a fixed
lead time. Thus, since our assumptions satisfy these requirements, there will always be
an optimal (s, S) policy that minimizes the average cost. However, computing the opti-
mal policy that minimizes the long term average cost has become a big problem for years
since there are a potentially infinite number of (s, .S) combinations. There are mainly two

categories for finding the optimal (s, .S) pair; exact method and heuristics. Iglehart (1963),

2.4 Determining Optimal (s,S) Policy Parameters 14

Veinott& Wagner (1965), Bell (1970), Archibald&Silver (1978), Federgruen&Zipkin (1984),
Zheng&Federgruen (1991), Feng&Xiao (2000) and Daniel&Rajendran (2005) are all ex-
amples about the first category, exact method. On the other side, Naddor (1975), Ehrhardt
(1979, 1984) and Roundy&Muckstadt (2000) are the most known papers that introduce

heuristics for (s, .S) optimization.

Exact Methods (For known demand distribution):

Iglehart (1963) gives bounds for the sequences {s,} and {S,} and discusses their lim-
iting behavior. The limiting (s, S) policy characterizes the optimal ordering policy for
the infinite horizon problem. In Veinott&Wagner (1965), a complete computational ap-
proach for finding optimal (s,.S) inventory policies is developed. The model is named
as a dynamic inventory model in which demands for a single product are independent,
identically distributed (i.i.d) discrete random variables. There is a constant lead time, a
discount factor 0 < o < 1, a fixed non-negative set up cost, a linear purchase cost, a con-
vex expected holding and penalty cost function, and total backlogging of unfilled demand.
The objective of the paper is to choose the control parameters (s, S) which minimizes the
long run average cost per period. The methods of Veinott&Wagner (1965), Bell (1970),
and Archibald&Silver (1978) apply complete enumeration method where it is bounded by
lower bounds s, S and upper bounds 3, S for finding the optimal values of s* and S*.
Sahin (1982) analyzes the behavior of (s, S) inventory models. Both for periodic and
continuous review systems, Sahin states that for constant lead times and full backlogging,

expected cost F(s, A) is convex in s where A = S — s. From that point, he proves that both

2.4 Determining Optimal (s,S) Policy Parameters 15

for periodic and continuous review systems with full backlogging, constant lead times,
and linear holding and shortage costs, F/(s1(A),A) is pseudoconvex on A > 0. After
that, in Federgruen&Zipkin (1984), an iterative algorithm to compute an optimal (s, .5)
policy under standard assumptions (stationary data, well-behaved one-period costs, discrete
demand, full backlogging) is presented. The algorithm starts with a given (s, S) policy and
evaluates a sequence of policies, and converges to an optimal one in a finite number of
iterations.

In Zheng&Federgruen (1991), a new algorithm for computing optimal (s, .S) policies
is derived based upon a number of new properties of the infinite horizon cost function
c(s,S) as well as a new upper bound for optimal order-up-to levels S* and a new lower
bound for optimal reorder levels s*. In other words, Zheng&Federgruen (1991) propose
a simple and efficient algorithm that searches directly on (s, S) plane. While improving
the average cost (s, .S), the search moves vertically up and horizontally right to upgrade
the s and S values at each step until reaching the optimal s*, S* pair. The algorithm’s
computational complexity is 2.4 times that required to evaluate a single (s, .S) policy and
this algorithm can be applied both to periodic review and continuous review inventory
systems. Zheng&Federgruen defines:

D = the one-period demand (random variable);

p;=Pr{D=j},j=0,1,2,.

K = the fixed cost to place an order;

G(y) = the one-period expected costs where,

2.4 Determining Optimal (s,S) Policy Parameters 16

Yy oo

Cr# Y (y—d)«Pr(D=d)+Cpx Y _ (d—y)*Pr(D=d) fory>1
G(y) — dO:OO d=y+1
Cpx Y (d—y)*Pr(D = d) fory < 1
d=0

After defining this G function, the long-run average cost c(s, .S) is calculated as:

S—s—1

o(s,8) = M(S—s)K + Y m(j)G(S - j)

where

=0

M@) = M(@G—1)+m(—1), j=12,..

Feng&Xiao (2000) uses the method that Zheng&Federgruen (1991) introduced, and
proposes a new approach to solve the optimal (s, S) inventory policy. A dummy cost factor
and an auxiliary function were introduced in this paper. The algorithm searches for the
optimal dummy cost through continuously evaluating the auxiliary function.

Daniel&Rajendran (2005) studies the performance of a single-product serial supply
chain operating with a base-stock policy and optimizes the inventory levels in the supply to
minimize the total supply chain cost with holding and shortage costs. A genetic algorithm
is proposed to optimize the base-stock levels with the objective of minimizing the sum of
holding and shortage costs in the entire supply chain. Simulation is used to evaluate the
base-stock levels generated by the genetic algorithm. The effectiveness of this algorithm is

compared with a random search procedure. Optimal base-stock levels are obtained through

2.4 Determining Optimal (s,S) Policy Parameters 17

complete enumeration of the solution space and compared with those yielded by this algo-
rithm. It is found that the solutions generated by the proposed algorithm do not significantly
differ from the optimal solution obtained through complete enumeration for different sup-

ply chain settings, thereby showing the effectiveness of the proposed algorithm.

Heuristics (For known demand distribution):

As mentioned before, there are also some papers that introduce heuristics to find the optimal
pair of (s,.5). Naddor (1975) derives a heuristic decision rule that computes optimal s*
and S* values. The rule requires the knowledge of the mean and standard deviation of
demand, probability of no demand, carrying and replenishing costs, desired availability, and
leadtime. Ehrhardt (1979) presents an analytic approximation for computing (s, S) policies
for single items under periodic review with a set up cost, linear holding and shortage costs,
fixed lead time, and backlogging of unfilled demand. He calls the approximation as the
"Power Approximation". By that approximation, it is very easy to compute the optimal s
and S values by only knowing the mean and the variance of the demand.

The Power Approximation is defined as follows:

Lety; = (L+1)pand o = o/ L + 1.

Then,
G = 1‘46?)”0.364(k/h)0.4980_%1387

2 = {a/l(1+p/h)or]},

sp, = pip +0r®2(0%/1)87(0.220/ 2 + 1.142 — 2.8662)

2.4 Determining Optimal (s,S) Policy Parameters 18

And if ¢, /1 is greater than 1.5, then s* = s, and S* = s, + ¢,. If demands are to be
integer values, s, and g, values are rounded to the nearest integer.

Ehrhardt (1984) introduces the Revised Power Approximation. In Ehrhardt (1979),
it is likely that the accuracy of the Power Approximation will suffer when the variance of
demand is very small. Thus, a revised version of the Power Approximation is published.
The Revised Power Approximation is defined as follows:

Lety;, = (L+1)pand o = o/L + 1.

Then,

qQp = 1_3M0.494(k/h)0.506(1+O_2L/M2)0.1167

2 = lap/(orxp/M)"?,

s, = 0.973p; +0,(0.183/z + 1.063 — 2.1922)

Roundy&Muckstadt (2000) study the problem of determining production quantities
in each period of an infinite horizon for a single item produced in a capacity-limited facility.
The demand for the product is random, and it is independent and identically distributed
from period to period. Unfilled demand is backordered. A base stock or order-up-to policy
is used. They develop a new approximation for this distribution, and perform extensive
computational tests of existing approximations. Their new approximation works extremely

well as long as the coefficient of variation of the demand is less than two.

2.4 Determining Optimal (s,S) Policy Parameters 19

Retrospective Approaches (If demand distribution is not known):

All of the methods until this part, we had the assumption of knowing the demand distrib-
ution or at least the mean and the variance. After this part, some retrospective approaches
will be introduced. In Fu&Healy (1992), a periodic review (s, S) inventory system is con-
sidered. The problem in this paper considers the inventory control of an item which is
measured in continuous units. The infinite horizon problem is considered and simulation is
used to find the optimal s and S values that minimize the average cost per period. The gen-
eral assumptions of this paper are; general independent and identically distributed (i.i.d.)
continuous demands, zero lead time, full backlogging of orders, and linear ordering, hold-
ing and shortage costs.

Two approaches are introduced in this paper: a deterministic "retrospective" algo-
rithm and a gradient-based, steepest-descent algorithm. The more important approach is
the second one which involves estimating the gradient of the performance measure of in-
terest and adjusting the parameters according to the gradient during the evolution of the
simulation. The simulation terminates when the gradient is "close enough" to zero. As
L’Ecuyer (1991) states, there are two main techniques for gradient estimation; perturbation
analysis and likelihood ratio. Perturbation analysis is a technique for gradient estimation
from a single simulation of a discrete-event system.

The perturbation analysis estimators for continuous demand is derived in Fu (1994)
and PA algorithms for 0.J/0s and 0.J/0q (for continuous demand and zero lead time) are

given where J denotes the average cost per period.

2.4 Determining Optimal (s,S) Policy Parameters 20

In Fu (1994), sample path derivatives of performance measures were derived for
(s,.S) inventory systems. The objective is again to find optimal s and S values that mini-
mize the average total cost. In this paper, nondiscounted periodic review system with 1.i.d
continuous demands, full backlogging, constant lead time and general holding, shortage
costs are considered. The approach is sample path analysis with the focus on sample path
derivatives. Since it deals with derivative estimation, the paper assumes that demands take
continuous values. Also, in this paper Fu focuses on infinitesmall perturbation analysis
(IPA) and smoothed perturbation analysis (SPA) for finding the estimators of s and S.

Fu&Healy (1997) utilizes the perturbation analysis estimators derived in Fu (1994)
for zero lead time. In this paper, two approaches (gradient-based methods and retrospective
approach) for the optimization of a periodic review (s, .S) inventory systems are compared,
and a Perturbation Analysis algorithm that combines these two approaches is proposed.

Glasserman&Tayur (1995) develop simulation-based methods for estimating sensi-
tivities of inventory costs with respect to policy parameters. They consider capacitated,
multiechelon systems operating under base-stock policies and develop estimators of deriv-
atives with respect to base-stock levels. They formulate and validate infinitesimal per-
turbation analysis derivative estimates for multiechelon capacitated production-inventory
systems. It means that they introduce appropriate algorithms and show that they converge
to the correct values. The convergence is shown over the number of independent simula-
tion runs for derivatives of finite-horizon costs and over an infinite horizon for derivatives
of steady-state costs. The model can be defined as a periodic-review, continuous-demand,

fixed lead time multiechelon system with limited production capacity at each stage. There

2.4 Determining Optimal (s,S) Policy Parameters 21

are linear holding and shortage costs, all unsatisfied orders are backlogged, where there is
no fixed ordering cost. When compared with Fu (1994), Fu’s estimator is more complex
than the Glasserman&Tayur’s estimator.

Zhao&Melamed (2004) considers single-stage, single-product Make-to-Stock sys-
tems with random demand and random service (production) rate, where demand shortages
at the inventory facility are backordered. IPA (Infinitesimal Perturbation Analysis) gradi-
ents of various performance metrics are derived with respect to parameters of interest and
are showed to be easy to compute.

In all of the papers defined in this section, the main purpose is to find the optimal
(s,.S) pair. For that purpose, this thesis will present a method named Perturbation Analysis
and this method will find the optimal inventory control parameters by calculating the delta

costs of neighbor points by only one simulation.

CHAPTER 3

PERTURBATION ANALYSIS
METHODS FOR OPTIMIZATION OF
POLICY PARAMETERS

3.1 Perturbation Analysis Algorithms

Perturbation Analysis is a technique for gradient estimation from a single simulation.
For Perturbation Analysis algorithms, q=S-s will be defined for simplifications.

L{s.g+1)?
®

L(s,
L(s-1.9)? ® S o L(s+1g?

®
L(s.g-1?

As can be seen from the graph above, the aim is to find the costs of four
neighbors of point (5,q) by only making the simulation for (s,q). Firstly the Perturbation
Analysis Algorithm is applied to the parameter S to calculate the delta costs of (s-1,q)
and (s+1,9). After that, the delta costs of (5,g+1) and (S,0-1) are calculated by
Perturbation Analysis on q parameter. Detailed information about these algorithms can

be found below.

22

3.1 Perturbation Analysis Algorithms 23

3.1.1 Perturbation Analysis on "s" (Algorithm 1)

In this algorithm, the perturbation is done on "s". It means that we leave the S — s value
(q value) constant and perturbate the system on s to determine the descent direction for the

given constant q.

Red: s=b =9 - Blue: =5 0= - Green: s=7 =49 (L=1)
20

14

10

[rventory Level
m
T

-0 1 1]
a] 10 15 20 25 a0

Day

Perturbation on s one by one (Constant q)

Figure that is above shows the effect on sample path where ¢ is fixed and s is per-
turbed. Red lines denote the On-Hand Inventory when s = 6, ¢ = 9. Green lines denote
the On-Hand Inventory when s = 7, ¢ = 9, and blue lines denote the On-Hand Inventory
when s = 5, ¢ = 9. It can be easily seen that a perturbation in s shifts the entire sam-

ple path by the same perturbation. When s is perturbed by 1 unit, all of the sample path

3.1 Perturbation Analysis Algorithms 24

is perturbed 1 unit. It means that, when we change s value and keep ¢ value constant, the
ordering policy does not change, i.e., we still order the same amount at the same periods.
The effect of increasing s is to increase the on hand inventory or to decrease the shortage

amount resulting with the change in cost determined by the following algorithm.

Algorithm 1:

The flowchart of Algorithm 1 can be found in Appendix A.

3.1.2 Perturbation Analysis on "q" (Algorithm 2)

In this section s value is kept constant and ¢ value is perturbed.

Red: s=6,g=9 - Blue: =6 =8 - Green: s=6,0=10 (L=1)
20

14

10

[nventary Level
m
T

_1|:| 1 1 1 1 1 |
0

3.1 Perturbation Analysis Algorithms 25

As seen from the figure above, the perturbation in ¢ may result with a major change
on the sample path. Thus, the ordering policies change, i.e. in perturbed path an order may
be placed where there was no order in the nominal path.

In the table below, the policy (s = 1,.S = 61) is perturbed to become (s = 1, S = 62)

for the case of zero Lead Time.

DAY 1 2 3 4] 6 | 7 [8 |9 |10 1112|1314 |15

Cemand - g] 3 s120 29|31\ 133| 8|6 |4

Inventory Lewel for (1,60) 19| 7 1 188 |53 |33 (123 | 4|58 429 |1 |55 |41

S o o

Imventory Position 15 TB1)| 58 |63 |33 |12 3 |[6B1)| A8 |42 9 |[B1)] 65 |51
M _/ o Mo
Inventory Level for (1,61) 16 a 2 B3 I - T C T A 1 SO D|s9 (43)10 2 | -4 |58
— > > - ——
Delta=1 Delta=4 Delta=1 Delta=7
Delta=-59 Delta=1 Delta = -59

In the table above, the first row is the demand occured that period. The second row
is the Ending Inventory if (s,.S) policy is used (Nominal Path). The third row shows the
Inventory Position for (s, S) policy. And the last row is the Ending Inventory if (s, S + 1)
policy is used (Perturbed Path). To be short, POL1 will be used for (s, .S) policy and POL2
will be used for (s, S + 1) policy afterwards. From the table above, we can also see the
following points:

Firstly, it is seen that we have to deal with "Delta" values to construct the perturbed
sample path. "Delta" value can be defined as the value in the fourth row minus the value
in the second row (how many more units to hold in the perturbed path compared to the
nominal path). At the beginning, the perturbed path can be easily calculated as the previous

section (only one unit difference between the two paths). However, after some point, the

3.2 Finding Optimal (s*,q*) Pair 26

perturbed path starts to become different from the nominal path. When the path is analyzed
carefully, it can be seen that the system starts to get out of order ("delta" values change)
after the numbers with red circles in the third row. 61 is the S value of the nominal path.
Thus, we can see numerically that the perturbed path gets out of order when Inventory
Position reaches the S value. It means that when we reach the S value in POL1, we place
an order. However, the S value of POL2 is 62, i.e. we do not place an order in POL2 in the
cases where Ending Inventory falls exactly to s in POL1. So, there is an ordering change.
From now on, we focus on the "Delta" values. If POL1 orders and POL2 does not

n_

order, we have a "Delta"=-59 for one period and after that period, we have a completely
different "Delta" value until we reach another red circle. When we reach the red circle, if
both policies order, everything becomes fine, "Delta" again decreases to 1 and continues as
1 until reaching another red circle.

After calculating the perturbed path, things will become similar to Section 3.1.1.

We consider the cost differences if we increase or decrease g by 1, and try to solve this

optimization problem until we reach the optimal ¢ value for the specific constant s value.

Algorithm 2:

The flowchart of Algorithm 2 can be found in Appendix B.

3.2 Finding Optimal (s*,q*) Pair

For finding the optimal parameters by the perturbation analysis method, the cost graph

should be convex. Thus, the cost graph must be convex in s when ¢ is fixed, and vice

3.2 Finding Optimal (s*,q*) Pair 27

versa. Sahin (1982) showed that the cost graph is convex in s for fixed ¢ values. Thus,
the perturbation analysis method can find the optimal s value by Algorithm 1. However,
there are no proofs for Algorithm 2’s optimality. When s is fixed, there may be some
local optimal values such that the perturbation algorithm method can stuck on these values.
Since we have different demand sample paths in each period, the local optimal values, if
any, change from period to period. Thus, if there are some local optimal values, we can get
rid of them while the simulation runs long enough. The convergence to the global optimal
value can be satisfied since the global optimal value remains the same in each period.

This chapter will be a combination of Section 3.1.1 and Section 3.1.2. In those sec-
tions, how to update one of the control parameters are discussed. In addition to this, by
using the methods in the mentioned sections, how to find the optimal pair will be discussed
in this section. s and ¢ values will be updated one by one until the optimal pair is reached.
Firstly, we start with an arbitrary (s, q) pair. After that, using Algorithm 1, s value will be
updated to s+ 1, s or s — 1. Then, we have the updated s+ 1 value and initial ¢ value. Now,
we will perturbate on ¢ value, and update it to ¢ + 1, g or ¢ — 1. The process continues on

until ¢ and s values do not oscillate.

Algorithm 3:

e STEP1: Start with initial s and ¢ values

e STEP2: Use Algorithm 1 and update s value (s + 1, sor s — 1)

e STEP3: Use Algorithm 2 and update ¢q value (¢ + 1, g or ¢ — 1)

3.2 Finding Optimal (s*,q*) Pair 28

e STEP4: if s and q values were both same at the previous iteration

s*=sand ¢* =¢q
else

go back to STEP2.

Example 1 Finding optimal (s, S) pair for the problem below by using Algorithm 3.
Demand ~N (5,2): round the numbers to have integer demands, negative demands
are assumed to be zero
Lead Time: 1 day
Holding cost/unit: $0.1
Ordering cost: $1

Penalty cost/unit: 330

After starting with initial s = 5 and ¢ = 5, s* = 15 and ¢* = 9 (S* = 24) is found
by running code in Appendix C. The optimal solution could be found in 15 iterations and

the figure below shows the iterations from (5,10) to (15,24).

3.3 Initializing Perturbation Analysis Parameters 29

Demand~N(5 2, L=1, RED=5, ELUE=S
30-
25+
g 20F
=
(143
=
i)
=
=
= 1R
wr
10F
5 | 1 | 1 1 1 1 |
a 2 4 5 a8 10 12 14 16
Period

Iterations on s and S

3.3 Initializing Perturbation Analysis Parameters

The Perturbation Analysis will be initialized with values that are the outputs of the Ehrhardt’s

Heuristic. Thus, the Perturbation Analysis Algorithm will have two main stages:

1. Finding Rough Estimate by using Ehrhardt’s Revised Power Approximation

2. Fine Tuning by Perturbation Analysis

As mentioned in Section 2.4, Ehrhardt introduces two heuristics that compute ap-
proximation of optimal sg and Sy values with simple equations; Power Approximation

and Revised Power Approximation. These values are really good approximations of the

3.3 Initializing Perturbation Analysis Parameters 30

optimal values. Both of these heuristics need the knowledge of mean and variance of the
demand distribution.

In this thesis, Ehrhardt’s Revised Power Approximation will be used without the
knowledge of mean and variance. This new heuristic will work as follows; the demand will
be observed for some time period. The mean and the variance of this observed demand will
be calculated and these calculated values will be used to find the optimal s and S values.
After that period, the policy parameters will be updated and the new mean and variance will
be calculated with the new demand data. The MATLAB Code of the Ehrhardt’s Heuristic
can be found in Appendix D.

The main issue is why to use Ehrhardt’s Revised Power Approximation to initial-
ize the problem. For running the Perturbation Analysis Algorithm, it is a must to start
with some initial values. Ehrhardt’s Revised Power Approximation is a very good approx-
imation for the optimal parameters. It cannot always find the optimal but is a really good
approximation that only requires some nanoseconds. If the Ehrhardt’s Revised Power Ap-
proximations is not used, you have to start from an initial point; let’s say (10, 30). Then,

the Perturbation Analysis will work as the graph below:

3.3 Initializing Perturbation Analysis Parameters 31

Foisson{10)
"lll:l T T T IDUUUWUUUUO
OODDDDDOD
35+ .
o
[SNeRe NN RGNS
oo
O .
o
o
s 5 .
=
*
iy
=]
® 201 i
+{l'.l'.l
15 | .
10 F .
5 | | | | |
] & 10 15 20 25 30
Period

However, if the Ehrhardt’s Revised Power Approximation were used to initialize the

values, the following graph would be obtained:

3.3 Initializing Perturbation Analysis Parameters 32

Foisson(10)
45 T T T T T

_dl:l_l::l.l"\f'\ P N e N e W, O VO e O . W o O s N . f\f‘\f\f\ﬁ'\ﬁf}
e T S R e T e e

TOo0o000

35 -

25 .

s* and 5* Yalues

10 .

Feriod

As can be seen, the PA Algorithm can find the optimal solution in both cases. How-
ever, since the PA Algorithm can update itself one by one, it takes some time to reach the
optimal solution in the first case. Thus, initializing the (s, .S) values by Ehrhardt’s Revised
Power Approximation Method is very advantageous. The graph converges to the optimal
value in the 6" period. However, after a while, the S value again starts to oscillate because
of different demand sample paths. If the sample path was always the same, after the con-
vergence there would be no more oscillations. The converged value would be the optimal
value where the Perturbation Analysis method cannot move in either sides for the same

demand data.

3.3 Initializing Perturbation Analysis Parameters 33

To conclude, the Perturbation Analysis Algorithm works in the following way:

STEP1: Determine a short time period, R (i.e. 7 days)

STEP2: Observe the problem environment for R days

STEP3: Calculate the mean and variance of the demand for the first R days

STEP4: Use Ehrhardt’s Heuristic to calculate the approximate values of sg and Sg,

and start with s = s and ¢ = Sg — sg

STEPS: Use Algorithm 1 and update s value (s + 1, sor s — 1)

STEPG6: Use Algorithm 2 and update ¢ value (¢ + 1, g or ¢ — 1)

STEP7: if s and ¢ values were both same at the previous iteration

s*=sand ¢* = ¢q
else

go back to STEPS

CHAPTER 4

SIMULATION

4.1 Logical Model

The logical model of the problem can be summarized as the figure below:

| WORKING DAY |

v v v v b v

Demand Events

v v
Order Arrival Fvent Inventory Eeview Event

As seen from the figure, there are mainly three types of events in our problem;
order arrival event at the beginning of the day, demand event during the day, and
inventory review event at the end of the day.

Orders arrive at the beginning of the working days. If there is a lead time of zero,
the orders arrive in the following morning. On the other hand, the orders will not arrive
before the lead time passes. At the beginning of the first day, no orders arrive since no
orders were given before. Demands occur during the whole day as integers. Random
demands occur in the problem and the distribution of the demands can be any kind of
distribution or may have empirical distribution. Thus, during the day, demand D occurs
and the ending inventory of the first day becomes "S-D". Inventory position also

becomes "S-D".

34

4.1 Logical Model 35

The inventory is reviewed at the end of every day. At the end of the day, the inventory
position is calculated and order is given if the inventory position is below or equal to s. "S—
Inventory position" units are ordered and waiting orders is updated. Since order is given,
the new inventory position will be S. The inventory on hand is also calculated when the
shop is closed. Then, we calculate the cost of the first day from the inventory level. If we
have inventory on hand, we will have holding cost at the end of the first day. On the other
hand, if there are unsatisfied demands, there will be penalty cost at the end of the day. Also,
an ordering cost will be applied if we have given an order.

The objective of the problem is to choose s and .S values such that the summation of
the daily costs is minimized.

The general flowchart of the problem can be seen in Appendix E.

Numerical Example

To visualize the problem, a simple numerical example is given below. The example is given
for a period of 10 days and the (s,.S) values are defined as (10,15). We have a constant
Lead Time of 2 days and demand is uniformly distributed between 1 and 10 units. Demands
arrive as integers and the costs are defined as; holding cost/unit=$1, penalty cost/unit=$100,
ordering cost=$10.

As shown from Figure 4.1 and 4.2, at the beginning of day one, the beginning inven-
tory is 15. During day one, 8 units are demanded. Since we had inventory on hand, we
have sold all of the 8 items to the customers and at the end of the day we have remaining

7 items on inventory. We order S — Y} (15-7=8) items since the "inventory position" is be-

4.1 Logical Model 36

DAY 1 2 3 4 5 6 7 8 9 10
Orders - - - 8 6 5 5 7 - 9
Received

Beginning 15 7 1 4 5 3 6 6 3 8
Inventory

Demand 8 6 5 5 7 2 7 3 4 5
Ending 7 1 -4 -1 -2 1 -1 3 -1 3
Inventory

Inv. Pos. 7 9 10 10 8 13 6 12 8 10
Before Order

Orders 8 6 5 5 7 - 9 - 7 5
Given

Inv. Pos. 15 15 15 15 15 13 15 12 15 15
After Order

Holding 7 1 - - - 1 - 3 - 3
Units

Backlogged - - 4 1 2 - 1 - 1 -
Units

Total Cost 17 28 438 548 758 759 869 872 982 995

Fig. 4.1. Numerical Example of Inventory Simulation for s=10, S=15

low the s value. For the first day, the cost calculation is done as follows; we have 7 units in
inventory, which means a cost of 7x(unit holding cost)=$7. We have no shortages; thus no
costs occur from shortages. On the other hand, since we have given an order, an ordering
cost (=$10) is also occurred. As can be seen, at the end of first day, we have a total cost of
$17.

After the first day, the second day starts. We had an inventory of 7 units from the first
day. Also we had ordered 8 items the day before. However, since the leadtime is 2 days, we
do not receive any orders this day. At the end of second day, we have a 1 unit inventory on

hand, and order 6 items since the "inventory position" is 9 which is less than the "s value".

4.2 Simulation Models 37

Red=Beglnv, Green=Endlnv, *=Demands
15 T T T T T T T T T

14

12

10

1 2 4 a] g 10 12 14 16 13 20

Fig. 4.2. Inventory Simulation Example

Similarly, at the end of the third day, we have 4 backlogged units. From these short-
ages, we have a cost of 4x(unit shortage cost)=$400. At the beginning of fourth day, the
orders given in first day are received. And by these manner, the simulation continues. For
these 10-days simulation, we have an average cost of $99.5. The algorithms defined in
Chapter 3.1, calculates the optimal s and .S values that minimize this average cost by using

the method of Perturbation Analysis.

4.2 Simulation Models

Several simulation models were constructed to simulate the problem environment.

4.2 Simulation Models 38

e ARENA Model: An ARENA Model was constructed to simulate the problem
environment. The distribution of the demand, s, S values, the cost rates, and the
lead time are given into the system as the inputs. The outputs are number of holding
inventories, number of shortages, number of orders, and the totalcost. The ARENA

model can be seen in Appendix F.

e EXCEL Model: In the EXCEL Model, the inputs are the same as the ARENA
model. However in this model, the outputs can be seen period by period. For
example, it can be seen how many units were backordered in 17" period, what is the

total cost of 26" period, etc. Also the probability of shortage can also be seen in this

model. The EXCEL model can be seen in Appendix G.

e MATLAB Model: The MATLAB model works the same way with the EXCEL
model. However, it works much faster when compared to the EXCEL Model. Thus,
the MATLAB model will be used in the following applications. The MATLAB code

that models the simulation can be found in Appendix H.

CHAPTER 5

NUMERICAL EXAMPLES

In this chapter, the Perturbation Analysis Algorithm defined in Section 3.3 will be used
for different types of demand distributions. The aim of this chapter is to show that the
algorithms introduced in this thesis can find the optimal solutions for all different types
of demand distributions. In addition to this, the adaptability of the methods will be
compared. Adaptability means to find out the new optimal policy parameters after a
sudden change in demand.

Three new parameters will be introduced in this chapter;

e Delta Day (8): Period Length (in days)
e Period (®@): Simulation Length (in periods)

e Demand Period (y): Moving window's size (in periods)

0 is the time period that a single policy is run. After & day passes, the (s,S)
parameters will be updated and the second @ starts. As can be understood, @ is the time
period of 8. To give a simple example, lets take 6 = 7 days, and ® = 30. Then, the
parameters will be updated in every 7 days, and the total runtime will be 210 days.

v is the time that is used to compute the new optimal parameters. For example, if
we have & =7 days, y= 3, the new (s,S) parameters will be calculated by observing the
last 21 days' demand history. When v is larger, iteration number to find the optimal pair
will be less. On the other side, when you have very large vy, then the adaptability of the
code will be worse. The effects of these parameters will be seen in Section 5.1 and

Section 5.3.

39

5.1 Poisson Distribution 40

In this chapter, firstly, the demand distribution will be taken as Poisson Distribution.
In this section, I will compare my results with the results of Zheng&Federgruen (1991) to
discuss about the optimal solution. Also, the effects of ¢ and v values will be discussed in
this section.

After that section, the algorithm will be tested with Discrete Uniform and Discretized
Normal distributions, respectively. Also, a demand distribution that is created by compo-
sition method (Poisson(10) with 40% probability and Poisson(25) with 60% probability)
will be taken as the input; and it will be shown that the algorithm can also work with em-
pirical distributions. In all of these examples, the Perturbation Analysis Algorithm will
be compared to the Retrospective Integer Programming Method and Ehrhardt’s Heuristic.
Retrospective Integer Programming Method uses the past data and finds the optimal (s, .S)
pair by using integer programming. This problem is solved in GAMS environment and the
GAMS code can be found in Appendix 1.

Finally, at the last section of this chapter, the mean of the demand distribution will
change suddenly after some time, and the adaptability of the Perturbation Analysis Algo-
rithm, Retrospective Integer Programming Method and Ehrhardt’s Heuristic will be com-

pared for different 0 and ~ values.

5.1 Poisson Distribution

In this section, Poisson Distribution with mean 10, and with mean 25 will be taken as the
demand distributions. Zheng&Federgruen (1991) studied about the Poisson Distribution

and founded the following results:

5.1 Poisson Distribution 41

10| 6 | 40 | 35.022
25 | 19 | 56 | 54.262

The table shows that, for Poisson(10), the optimal solution is found as (6, 40) with an
average cost of 35.022. When the mean is 25, the optimal solution becomes (19, 56) with an
average cost of 54.262. The costs are taken as; holding cost rate h = 1, penalty cost rate p =
9, and fixed setup cost K = 64 with no leadtime (L = 0). In this section, to compare the
Perturbation Analysis Algorithm with the algorithm defined in Zheng&Federgruen (1991),
in all of the examples the input parameters will be taken as given above (h = 1, p = 9,

K =64, L =0).

5.1.1 Poisson Distribution (10) with No Lead Time

The optimal (s, S) parameters are found as (6,40) in Zheng&Federgruen (1991) for the
input parameters defined above. As defined in Section 3.3, the Perturbation Analysis Al-
gorithm initializes the s and S values with the Ehrhardt’s Algorithm. While the Ehrhardt’s
Heuristic is run for the first Period, sp = 7, Sg = 41 is found. Thus, the algorithm starts
with s(1) = 7,5(1) = 41. Then, different sample paths are generated for each runs. The
output of Perturbation Analysis Algorithm for 20 runs can be seen in Fig.J.1-Fig.J.2 in
Appendix J.

For v = 3, when we look at the graphs Fig.J.2, Fig.J.4, Fig.J.6, it is seen that the
optimal values oscillate a lot, and in the periods, the algorithms find different optimal values
in different runs. When we look at the ensemble average graph (Fig.J.8), it is seen that the

average values in Perturbation Analysis Algorithm converges to the optimal values. There

5.1 Poisson Distribution 42

is a dispersity because of the small v value. It means that the algorithms only take the
previous 3 Periods’ history and it cannot be enough to find the exact optimal values. When
the algorithms’ cost are compared (Fig.J.10), it can be seen that the Perturbation Analysis
Algorithm has the smallest cost where the Ehrhardt’s Heuristic has the largest cost.

When the v value is increased, the optimal (s, S) values start to oscillate near the
optimal values in Perturbation Analysis Algorithm (Fig.J.1). All of the runs give the same
optimal (s, S) values after some time. The Retrospective Integer Programming Method
and the Ehrhardt’s Heuristic also converge to some value, but they are not the optimal
values (Fig.J.3, Fig.J.5). Ehrhardt’s Heuristic overestimates the (s,.S) values where the
Retrospective Integer Programming Method usually underestimates. When looked at the
cost functions, Fig.J.9, as in the first part Perturbation Analysis Algorithm gives the least

cost where Ehrhardt’s Heuristic gives the most.

5.1.2 Poisson Distribution (25) with No Lead Time

This part is another example for the Poisson distribution. In Zheng&Federgruen (1991),
the optimal solution is calculated as (19, 56) and by the Perturbation Analysis Algorithm,
the graphs (Fig.J.11, Fig.J.12) in Appendix J are obtained after 20 runs.

The analysis made in Subsection 5.1.1 are also correct for this subsection. When
the ~ value is small, the optimal solutions of the algorithms oscillate a lot. However, the
ensemble average of the Perturbation Analysis Algorithm converges to the optimal values
(Fig.J.18). When this value is increased, the algorithms start to get better results. In ad-

dition to this, Ehrhardt’s Heuristic again overestimates the policy parameters and can only

5.1 Poisson Distribution 43

find values that are near optimal, not optimal. (Fig.J.13 - Fig.J.14) The Retrospective Inte-
ger Programming Method usually underestimates the policy parameters (Fig.J.15, Fig.J.16)
and the Perturbation Analysis Algorithm, again, has the minimum cost (Fig.J.19, Fig.J.20).

Zheng&Federgruen analyze 24 examples in their paper. I had also run all of these
examples with the Perturbation Analysis Algorithm, Ehrhardt’s Heuristic, and Retrospec-
tive Integer Programming Method, and found the following results (these results are the

averages of 20 runs for each example):

nlst@m|sr@Eml n |s* e | st ey st @RS EEHR
10 6 40 10 7 42
15| 10 49 15 11 51
20| 14 62 20 15 64
25| 19 56 25 21 59
3| 2 66 30 24 63
35| 77 35 29 79
40 | 33 g7 40 35 90
45 | 37 97 45) 99
50 | 4 108 50 44 111
55 | 47 118 55 43 121
60 | 52 129 60 53 131
65 | 36 75 65 57 77
70| &2 81 70 63 83
75 | 67 75 69 39
21| 15 65 21 17 62
2] 16 22 18 71
23| 17 52 23 19 55
24| 18 54 24 20 57
51| 43 110 51 44 112
52| 44 112 52 45 114
59 | 51 126 59 52 128
61 | 32 131 61 53 133
63| 34 73 63 55 75
64 | 55 74 64 56 76

In the table above, the green color represents optimal values, yellow values represent
the values that are above optimal and the red color represents the values that are below the

optimal. It is easy to see that the Perturbation Analysis Algorithm can find the same op-

5.2 Comparison with Other Algorithms 44

timal solutions as Zheng&Federgruen’s Algorithm for all of the 24 examples. Ehrhardt’s
Heuristic always overestimates the policy parameters and Retrospective Integer Program-

ming Method usually underestimates.

5.2 Comparison with Other Algorithms

In this section, several demand distributions will be compared by other algorithms; i.e.
Ehrhardt’s Heuristic and Retrospective Integer Programming Method. The aim is to check

whether the algorithms can find the optimal solutions for these distributions.

5.2.1 Uniform Distribution (0,10) with Lead Time=1 Day

In this section, Discrete Uniform Distribution with minimum value of 0, and maximum
value of 10 is taken as the demand distribution.

By running the algorithms presented in this thesis, the following results are obtained:

After running the code which is in Appendix H, the optimal s* and S* values are
found as 15 and 24 in a time of 40.12 seconds. It means that when all of the (s, S) pairs’
cost is calculated, the minimum cost will be satisfied with the (15, 24) pair.

For this distribution, as seen from Fig.J.21-Fig.J.22 Perturbation Analysis Algorithm
again converges to the optimal parameters and has the minimum cost when compared to

the other two methods.

5.2 Comparison with Other Algorithms 45

5.2.2 Normal Distribution (5,1) with Lead Time=1 Day

In this section, Normal Distribution is taken as the demand distribution with the parameters
of Mean=5, Std.Dev=1. Since normal distribution is a continuous distribution, the values
had been rounded to the nearest integer to have integer valued demands, and the negative
demands will be taken as no-demand.

By running the algorithms presented in this thesis, the following results are obtained:

After running the code which is in Appendix H, the optimal s* and S* values are
found as 11 and 18. It means that when all of the (s, S) pairs’ cost is calculated, the
minimum cost will be satisfied with the (11, 18) pair.

Again for the Normal Distribution, the Perturbation Analysis Algorithm converges
to the optimal parameters and has the minimum cost when compared to the other two

methods. The figures (Fig.J.23-Fig.J.24) can be seen in Appendix J.

5.2.3 Empirical Distribution

In this section, the demand distribution does not have a specific distribution. This distri-
bution is a combination of Poisson(10) and Poisson(25) distributions with 40% and 60%
probabilities, respectively where the demand distribution is created by the Composition
Method. In this case, all of the three algorithms can work well since all of them use the
previous data, without the knowledge of variance and mean. The optimal values of the
(s,S) parameters are found by the code in Appendix H and the optimal (s*, S*) values are

found as (14,49). Perturbation Analysis Algorithm has the minimum cost when compared

5.3 Adaptability 46

by the other two methods. The graphs about this section (Fig.J.25-Fig.J.26) can be seen in

Appendix J.

5.3 Adaptability

For the adaptability issue, in the first 20 periods the demand distribution is taken as POI(10).
After the 215 period, the demand distribution changes to POI(25). In this section, the aim

is to check if the methods can adapt themselves to the sudden demand changes.

5.3.1 ¢ = 15 Days, v = 3 Periods

When ~y value is very small, from Fig.J.27-30, it is seen that all of the methods (Perturbation
Analysis Algorithm, Retrospective Integer Programming Method and Ehrhardt’s Heuristic)
are all adaptive for sudden changes. When we analyze the rate of adaptability, it is seen
that the Perturbation Analysis Algorithm cannot adapt itself as quick as the other methods.
It is an expected result since the Perturbation Analysis Algorithm can update itself one
by one. The Retrospective Integer Programming Method and Ehrhardt’s Heuristic update
themselves very quickly since they only consider the last three periods’ demand data. On
the other hand, all of the algorithms cannot converge to a single value quickly. It means that
when the v value is very small, the methods cannot converge to the optimal value quickly
but the adaptability for sudden demand changes is quite good.

When the ensemble averages of the 20 runs are considered (Fig.J.30), it is seen that

the average optimal values of Perturbation Analysis Algorithm converge to the real optimal

5.3 Adaptability 47

values. On the other hand, Ehrhardt’s Heuristic overestimates and Retrospective Integer

Programming Method underestimates the optimal values as also discussed in Section 5.1.

5.3.2 § = 15 Days, v =All History

When we keep the 6 same but only increase the « value, it is seen that convergence rate
decreases (Fig.J.31-34).

For the Perturbation Analysis Algorithm, the S value starts to converge around a
value in 35" period where it was 337 period in Section 5.3.1. The s value also starts to
converge around a value in 39" period where it was 35" period in the previous section.

The change of the convergence rate can be seen better in Ehrhardt’s Heuristic. That
method could converge in five periods when v was very small. However, when it is in-
creased, it needs about ten periods to converge to the new values.

On the other hand, the values oscillate in specific values instead of a big range of
values when the ~ value is increased. When looked at Fig.J.28, the .S value in Perturbation
Analysis Algorithm converges to values between 54-58 when ~ value was small. However
in Fig.J.32, the algorithm converges to only three values; 55, 56, 57.

The ensemble average graph is very similar to the previous section. Perturbation
Analysis Algorithm can converge to the real optimal value where Ehrhardt’s Heuristic over-

estimates and Retrospective Integer Programming Method underestimate.

5.3 Adaptability 48

5.3.3 0 = 90 Days, v =All History

In this section, the effect of § will be analyzed. From Fig.J.35-38, it is seen that when
the 0 value increases, convergence to a single value can be satisfied earlier since much
more days’ demands are observed. After observing 90 days’ demand, the (s, S) values
are updated and it helps to converge to a specific value. The disadvantage of increasing
cannot be seen from the graph. However, when the ¢ is taken as a big value, then the s, S
values cannot be updated for a large number of days and it decreases the flexibility of the

inventory policy since the period time increases.

CHAPTER 6

CONCLUSIONS AND FUTURE
DIRECTIONS

Inventory policies are used to determine when and how many units to order. For the
periodic review policies, the most common inventory policy is the (R,s,S) policy. In this
policy, it is known that if the parameters of the system are chosen appropriate, there is
always an optimal solution, i.e. the expected period cost can be minimized.

For finding the optimal policy parameters, if the demand distribution is known,
exact methods and heuristics are used in the literacy. In this thesis, it is assumed that
the demand distribution is not known. The mean and the variance of the demand
distribution are also not known. For this case, a perturbation analysis based method is
introduced. This method (Perturbation Analysis Algorithm) initializes itself from a
heuristic named Ehrhardt's Revised Power Approximation. After the initialization, the
method anticipates the sensitivity of (s,S) parameters to the period cost and updates
itself to find the optimal (s*,S*) pair.

The outputs of Perturbation Analysis Algorithm were firstly compared with the
results of Zheng&Federgruen (1991) for the Poisson Distribution. In all of the twenty-
four examples, the Perturbation Analysis Algorithm could find the same optimal values.
After that, the Perturbation Analysis Algorithm was compared by two other methods,
Ehrhardt's Heuristic and Retrospective Integer Programming Method for several
demand distributions, including the empirical distribution for twenty runs. In all of the

examples, the Perturbation Analysis Algorithm could oscillate on the optimal solution.

49

6 Conclusions and Future Directions 50

When the ensemble average of these twenty runs are taken, the Perturbation Analysis
Algorithm can find the real optimal (s*, S*) values. On the other hand, Ehrhardt’s Heuris-
tic always overestimates the optimal values where the Retrospective Integer Programming
Method usually underestimates. When the cost graphs were compared, in all of the cases,
Perturbation Analysis Algorithm gives the minimum cost.

Adaptability to sudden demand changes was also discussed. When a sudden de-
mand change occurs, all of the three methods can adapt themselves to the new demand
distribution. However, the Perturbation Analysis Algorithm adapts itself very slowly when
compared with the other two methods. This is an expected result since the Perturbation
Analysis Algorithm, by definition, can update itself one by one while the others can update
themselves suddenly. On the other hand, the Perturbation Analysis Algorithm again finds
the optimal value after a time and oscillates there where the other two methods oscillate in
near-optimal values.

To conclude, the algorithm defined in this thesis works really well for all kinds of dis-
tributions and does not require any knowledge of the distribution, mean or variance. It can
adapt itself to demand changes and always finds the optimal solution. Another advantage
of this algorithm is, it finds the optimal solution in a very short time. The Complete Enu-
meration Method finds the optimal solution in 3-4 minutes (with MATLAB code) and the
Retrospective Integer Programming Method solves in several hours (with GAMS code);
however, the Perturbation Analysis Algorithm finds the solution in average of 7 seconds.

There are also some future works that can be done for improving this algorithm. As

mentioned before, the weakest point of the algorithm is that it can adapt itself very slowly

6 Conclusions and Future Directions 51

since it updates the values one by one. For that point, a “Step Size” can be defined and
while the cost difference between (s,¢q) and (s + 1,¢) is very high, the s value can be
increased more than 1 (regarding to Step Size). By that way, the time to adapt to changes
would be decreased, but it may start not finding the exact optimal point if Step Size is very
large.

Another solution would be to update the Perturbation Analysis Algorithm from the
output of Ehrhardt’s Heuristic. This heuristic can not find the exact optimal point but
gives a point which is not so far from the optimal in a very short time. Thus, if a sudden
demand change has occurred, the Ehrhardt’s Heuristic could be used for one period to re-
initialize the Perturbation Analysis Algorithm and then continue with Perturbation Analysis
Algorithm.

Another trade-off is about the 6 and v values. When these values are taken very
small, the algorithms cannot converge to a specific value. When these values are increased,
then the algorithms cannot adapt themselves quickly in sudden demand changes. Thus,
there may be some varying J, v values (not fixed). These values can increase if the de-
mand variance decreases for finding the exact optimal solutions, and vice versa for quick

adaptability.

References

AFT, L.S. 1987. "Production and Inventory Control", San Diego: Harcourt Brace Jo-
vanovich.

ARCHIBALD, B., SILVER, E. 1978. "(s,S) Policies Under Continuous Review and Discrete
Compound Poisson Demands", Management Science, Vol. 24, 899-908.

ARROW, K.J., HARRIS, T., MARSCHAK, J. 1951. "Optimal Inventory Policy", Econometrica,
Vol. 19, No. 13, 250-272.

AXSATER, S. 2004. "Inventory Control", Boston: Kluwer Academic.

Basuvawm, S., FU, M.C. 1998. "Optimization of (s,S) Inventory Systems with Random Lead
Times and a Service Level Constraint", Management Science, Vol. 44, No. 12, 243-255.

BELL, C., 1970. "Improved Algorithms for Inventory and Replacement Stock Problems",
SIAM Journal of Applied Mathematics, Vol. 18, 558-566.

CAsSANDRAS, C.G., DAl L., PANAYIOTOU, C.G. 1997. "Ordinal Optimization for Determin-
istic and Stochastic Discrete Resource Allocation", Decision and Control Proceedings
of the 36th IEEE Conference, Vol. 1, 662-667.

DANIEL, J.R., RAJENDRAN, C. 2005. "A Simulation-Based Genetic Algorithm for Inven-

tory Optimization in a Serial Supply Chain", International Transactions in Operational
Research, Vol. 12 (1), 101-127.

EHRHARDT, R. 1979. "The Power Approximation for Computing (s,S) Inventory Policies",
Management Science, Vol. 25, No. 8, 777-786.

EHRHARDT, R. 1984. "(s,S) Policies for a Dynamic Inventory Model with Stochastic Lead
Times", Operations Research, Vol. 32, No. 1, 121-132.

FEDERGRUEN, A., ZIPKIN, P. 1984. "An Efficient Algorithm for Computing Optimal (s,S)
Policies", Operations Research, Vol. 32, No. 6, 1268-1285.

FEDERGRUEN, A., ZHENG, Y.S. 1992. "An Efficient Algorithm for Computing an Optimal
(r,Q) Policy in Continuous Review Stochastic Inventory Systems", Operations Re-
search, Vol. 40, No. 4, 808-813.

52

References 53

FENG, Y., X140, B. 2000. "A New Algorithm for Computing Optimal (s,S) Policies in a

Stochastic Single Item/Location Inventory System", //E Transactions, Vol. 32, 1081-
1090.

FoGarty, D.W., HoFFMAN, T.R. 1983. "Production and Inventory Control", Cincinnati:
South-Western Publishing

Fu, M.C., HEALY, K.J. 1992. "Simulation Optimization of (s,S) Inventory Systems", Pro-
ceedings of the 1992 Winter Simulation Conference, 506-514.

Fu, M.C., HEALY, K.J. 1997. "Techniques for Optimization via Simulation: An Experimen-
tal Study on an (s,S) Inventory System", IIE Transactions, Vol. 29, 191-199.

Fu, M.C. 1994. "Sample Path Derivatives for (s,S) Inventory Systems", Operations Re-
search, Vol. 42, No. 2, 351-364.

GLASSERMAN, P., TAYUR, S. 1995. "Sensitivity Analysis for Base-Stock Levels in Multiech-
elon Production-Inventory Systems", Management Science, Vol. 41, No. 2, 263-281.

GREENE, J.H. 1987. "Production and Inventory Control Handbook", New York: McGraw-
Hill.

IGLEHART, D.L. 1963. "Optimality of (s,S) Policies in the Infinite Horizon Dynamic Inven-
tory Problem", Management Science, Vol. 9, 259-267.

KaprLAN, R.S. 1970. "A Dynamic Inventory Model with Stochastic Lead Times", Manage-
ment Science, Vol. 16, No. 7, 491-507.

L’ECUYER, P. 1991. "An Overview of Derivative Estimation", Proceedings of the 1991 Win-
ter Simulation Conference, 207-217.

NADDOR, E. 1975. "Optimal Heuristic Decisions for the s,S Inventory Policy", Management
Science, Vol. 21, No. 9, 1071-1072.

NADDOR, E. 1982. "Inventory Systems", Florida: Krieger.

RounDpy, R.O., MUCKSTADT, J.A. 2000. "Heuristic Computation of Periodic-Review Base
Stock Inventory Policies", Management Science, Vol. 46, 104-109.

SaHIN, 1. 1982. "On the Objective Function Behavior in (s,S) Inventory Models", Opera-
tions Research, Vol. 30, No. 4, 709-724.

References 54

Scarr, H. 1960. "The Optimality of (S,s) Policies in the Dynamic Inventory Problem",
Mathematical Methods in the Social Sciences.

VEINOTT, A.F., WAGNER, H.M. 1965. "Computing Optimal (s,S) Inventory Policies", Man-
agement Science, 525-552.

ZHAO, Y., MELAMED, B. 2004. "Make-to-Stock Systems with Backorders: IPA Gradients",
Winter Simulation Conference, 559-567.

ZHENG, Y.S., FEDERGRUEN, A. 1991. "Finding Optimal (s,S) Policies is about as Simple as
Evaluating a Single Policy", Operations Research, Vol. 39, No. 4, 654-665

Appendix A
PA on “s” — Algorithm 1

STEP 2: STEP 3.
For calculating TOTALCOST(s4+17) For calculating TOTALCOST(s-1)
STEP 1 —_— | Aot <
Initialize ¥ Holdings(s)+1 Holdings{si-1
s
Start with
initial 5
walua
Mo
Shoragestss1) = Shoftagests-1) =
Shartages(s)-1 | ™ shoragesisie1
R DELTACOST{s-1) = DELTACOST{s+1) =
TOTALCOST(s-1) - |e TOTALCOST{5+1) -
EEEd TOTALCOST(s) TOTALCOST(s)
STEP 4.
o Calculate DEL TAGOST{s-1) and
DELTACQST (s+1)
Updaia
sE STEP 5:

Update s

56

Appendix B
PA on “q” — Algorithm 2

STEP 3: STEP 4:
For calculating TOTALCOST(q+1) For calculating TOTALCOST(g-1)
STEP 1 Holdings(q+1) = Holdings(g-1) =
Initialize STEP 2 Holdings(q)+Delta “| Holdings(q)-Delta
Yes
Start with
initial q > Pi?f?jsrg:gt;g?h Is EndInv-Delta > 0? Is EndInv-Delta > 1?
value
(o]
Shortages(q+1) = .| Shortages(g-1) =
Shortages(q)-Delta Shortages(q)+Delta
- DELTACOST(g-1) = DELTACOST(q+1) =
5 0 nof DELTACOST(q+1) TOTALCOST(q-1) - |« TOTALCOST(q+1) - |«
change q TOTALCOST(q) TOTALCOST(q)
i STEP 5:
q'iq?‘f Calculate DELTACOST(g-1) and
DELTACOST (g+1)
Update
=l STEP 6:
Update q

Appendix C
Finding Optimal (s*, ¢*) Pair: Algorithm3.m

C.1 Main Code

cle
clear
global opts
global day
global D
global Beglnv
global EndInv
global IP
global shortage
global order amount
global WaitingOrders
global hold_array
global short_array
global holdingcost
global shortagecost
global orderingcost

global holdings

57

global shortages

global totalcost

global totalcost_array

global order

global maxs

global loop

global L

global S

global s

global q

global Cs

global Co

global Ch

global TOTALCOST

load demNOR_5 1.mat

t=cputime;

day=20000;

q_array(1)=5;

s_array(1)=5;

q=q_array(1);

s=s_array(1);

L=2;

C.1

Main Code

58

C.1 Main Code

Cs=100;

Co=10;

maxs=50;

totalcost=0;

finish=0;

loop=1;

while finish==0

init

q=q_array(loop);

create_path

calc_costl

der s

s_array(loop+1)=s;

init

der_q prep

calc_cost

%%%%%%%%% PA FOR Q %%%%%%%%%%

orderl=zeros(1,day); % Endlnv

order2=zeros(1,day); % PLUS

order3=zeros(1,day); % MINUS

59

C.1 Main Code

%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% for g+l %%%%%%%

%%0%%%%%%%%%%%%%%%%%%%%%

for i=1:(L+1)

PL(i)=EndInv(i)+1;

end

[Pplus(1)=PL(1);

if IPplus(1)<=s

IPplus(1)=s+q+1;

end

if (IPplus(1)==s+q+1 & D(1)>0)

order2(1)=1;

end

for i=1:L

IPplus(i+1)=IPplus(i)-D(i+1);

if IPplus(i+1)<=s

IPplus(i+1)=s+q+1;

end

60

end

C.1 Main Code

if (IP(i+1)==s+q & D(i+1)>0)

order1(i+1)=1;

end

if (IPplus(i+1)==s+q+1 & D(i+1)>0)

order2(i+1)=1;

end

delta=1;

for i=(L+2):day

if (order1(i-L-1)==0 & order2(i-L-1)==0)

PL(i)=EndInv(i)+delta;

elseif (order1(i-L-1)==1 & order2(i-L-1)==1)

delta=1;

PL(i)=EndInv(i)+delta;

elseif (orderl1(i-L-1)==1)

PL(i)=EndInv(i)+IPplus(i-L-1)-g-s;

delta=IPplus(i-L-1)-g-s;

elseif (order2(i-L-1)==1)

PL(i)=EndInv(i)+q+s+1-IP(i-L-1);

61

end

C.1 Main Code

delta=q+s+1-IP(i-L-1);

else

%

end

IPplus(i)=IPplus(i-1)-D(i);

if IPplus(i)<=s

IPplus(i)=s+q+1;

end

if (IP(i)==s+q & D(i)>0)

order1(i)=1;

end

if (IPplus(i)==s+q+1 & D(i)>0)

order2(i)=1;

end

%%%%%%%%%%%% COST FOR q+1 %%%%%%%%%%%%% %%

62

C.1 Main Code

holdingcost_plus=0;

shortagecost _plus=0;

orderingcost_plus=0;

for i=1:day

if PL(i)>0

holdingcost plus=holdingcost plus+PL(i)*Ch;

else
shortagecost_plus=shortagecost plus-PL(i)*Cs;
end
if order2(i)==
orderingcost_plus=orderingcost plus+Co;
end

end

%%0%%%%%%%%%%%%%%%%%%%% %

%%%%%%% for g-1 %%%%%%%

%%%%0%%%%0%%%%%%%%%:%%%%%%

for i=1:(L+1)

MIN(i)=EndInv(i)-1;

end

63

C.1 Main Code

IPminus(1)=MIN(1);

if IPminus(1)<=s

[Pminus(1)=s+q-1;

end

if (IPminus(1)==s+q-1 & D(1)>0)

order3(1)=1;

end
fori=1:L
[Pminus(i+1)=IPminus(i)-D(i+1);
if IPminus(i+1)<=s
IPminus(i+1)=s+q-1;
end
if (IPminus(i+1)==s+q-1 & D(i+1)>0)
order3(i+1)=1;
end
end

delta=1;

64

C.1 Main Code

for i=(L+2):day

if (order1(i-L-1)==0 & order3(i-L-1)==0)

MIN(i)=EndInv(i)-delta;

elseif (order1(i-L-1)==1 & order3(i-L-1)==1)

delta=1;

MIN(i)=EndInv(i)-delta;

elseif (order1(i-L-1)==1)

MIN(i)=EndInv(i)-(s+q-IPminus(i-L-1));

delta=s+q-IPminus(i-L-1);

elseif (order3(i-L-1)==1)

MIN(i)=EndInv(i)+q+s-1-IP(i-L-1);

delta=-(qr+s-1-IP(i-L-1));

else

%

end

IPminus(i)=IPminus(i-1)-D(i);

if IPminus(i)<=s

[Pminus(i)=s+q-1;

end

65

end

C.1 Main Code

if (IPminus(i)==s+q-1 & D(i)>0)

order3(i)=1;

end

%%%%%%%%%%%% COST FOR g-1 %%%%%%%%%%%%%%%

holdingcost minus=0;

shortagecost minus=0;

orderingcost_minus=0;

for i=1:day

end

if MIN(i)>0

holdingcost minus=holdingcost minus+MIN(i)*Ch;

else
shortagecost minus=shortagecost minus-MIN(i)*Cs;
end
if order3(i)==
orderingcost_minus=orderingcost minus+Co;
end

66

C.1 Main Code

TOTALCOST_ PLUS=holdingcost plus+shortagecost plus+orderingcost plus;

TOTALCOST MINUS=holdingcost _minus+shortagecost minus+torderingcost minus;

COST DIF_PLUS=TOTALCOST PLUS-TOTALCOST;

COST_DIF_MINUS=TOTALCOST_MINUS-TOTALCOST;

if (COST DIF PLUS>=0 & COST DIF MINUS>=0)

q_array(loop+1)=q_array(loop);

elseif COST_DIF_PLUS>=0

q_array(loop+1)=q_array(loop)-1;

elseif COST_DIF_MINUS>=0

q_array(loop+1)=q_array(loop)+1;

else

if COST DIF_PLUS<COST DIF MINUS

q array(loop+1)=q_array(loop)+1;

else

q_array(loop+1)=q_array(loop)-1;

end

end

if loop>=2

67

C.1 Main Code

if (s_array(loop)==s_array(loop-1) & q_array(loop)==q_array(loop-1))
finish=1;
optimals=s_array(loop);
optimalq=q_array(loop);

end

end

loop=loop+1;

end

time=cputime-t

optimals
optimalS=optimals+optimalq
%loop
plot(s_array+q_array,’g’)
hold

plot(s_array,’b’)
plot(q_array,’r’)

titleCBLUE=s, RED=q, GREEN=S")

C.2 Initialization (init.m)

68

C2

function init

global Beglnv

global EndInv

global IP

global shortage

global order_amount

global WaitingOrders

global hold_array

global short_array

global totalcost_array

global order

global maxs

global S

global s

global q

global day

global holdingcost

global shortagecost

S=s+q;

Beglnv=zeros(1,day);

EndInv=zeros(1,day);

Initialization (init.m)

69

C.3 Creating the Path (create path.m)

IP=zeros(1,day);
shortage=zeros(1,day);
order amount=zeros(1,day);
Beglnv(1)=S;
WaitingOrders=0;

order=0;
hold_array=zeros(1,maxs);
short_array=zeros(1,maxs);

totalcost_array=zeros(1,maxs);

holdingcost=0;

shortagecost=0;

C.3 Creating the Path (create _path.m)

function create path
global day
global loop
global L
global S
global s
global q

global day

70

C.3 Creating the Path (create path.m)

global EndInv

global Beglnv

global D

global WaitingOrders
global IP

global order

global order_amount
global shortage

S=s+q;

for i=1:day

EndInv(i)=Beglnv(i)-D(i);

IP(i)=EndInv(i)+WaitingOrders;

if IP(1)<=s
order=order+1;
order_amount(i)=S-1P(i);
WaitingOrders=WaitingOrders+order_amount(i);
IP(i)=EndInv(i)+WaitingOrders;

end

if D(i)>Beglnv(i)

shortage(i)=D(i)-Beglnv(i);

71

C.4 Calculating the Costl (calc_costl.m)

end

ifi<=L
Beglnv(i+1)=EndInv(i);
else
Beglnv(i+1)=EndInv(i)+order_amount(i-L);
WaitingOrders=WaitingOrders-order _amount(i-L);
end

end

C.4 Calculating the Costl (calc_costl.m)

function calc_costl
global day
global EndInv
global Ch
global Cs
global Co
global order
global TOTALCOST
global holdingcost
global shortagecost

global orderingcost

72

C.5 PAon'"s"(der s.m)

global holdings
global shortages
global shortage
holdings=0;
shortages=0;
for i=1:day
% holding cost
if EndInv(i)>0
holdings=holdings+EndInv(i);
else
% shortage cost
shortages=shortages+shortage(i);
end
end
holdingcost=holdings*Ch;
shortagecost=shortages*Cs;
orderingcost=order*Co;

TOTALCOST=holdingcost-+shortagecost+orderingcost;

C.5 PAon'"s" (der_s.m)

function der_s

global EndInv

73

global day

global Ch

global Cs

global s

global orderingcost

global TOTALCOST

global opts

global holdings

global shortages

state1=0;

state2=0;

state3=0;

state4=0;

for i=1:day

if EndInv(i)>=0

statel=statel+1;

else

state2=state2+1;

end

if EndInv(i)>=1

state3=state3+1;

else

C5

PA on "s" (der_s.m)

74

C.5 PAon'"s"(der s.m)

state4=state4+1;
end
end
holding plus=holdings+state1;
hc_plus=holding_plus*Ch;
shortages_plus=shortages-state2;
sc_plus=shortages plus*Cs;

totalcost_plus=hc_plustsc_plustorderingcost-TOTALCOST;

%%% for s-1
holding_minus=holdings-state3;
hc_minus=holding_minus*Ch;
shortages minus=shortages+state4;
sc_minus=shortages minus*Cs;
totalcost_minus=hc_minus+sc_minus+orderingcost-TOTALCOST;
if (totalcost_plus>0 & totalcost minus>0)
opts=s;
elseif (totalcost_plus<=0)
opts=s+1;
elseif (totalcost minus<=0)
opts=s-1;

else

75

C.6 Preparation for PA on "q" (der_q_prep.m)

if (totalcost_plus<totalcost_minus)
opts=s+1;
else
opts=s-1;
end
end

s=opts;

C.6 Preparation for PA on "q" (der_q_prep.m)

function der_q_prep
global day
global EndInv
global Beglnv
global D
global IP
global s
global order
global order amount
global S
global WaitingOrders
global shortage

global L

76

C.6 Preparation for PA on "q" (der_q_prep.m)

for i=1:day

EndInv(i)=Beglnv(i)-D(i);

IP(i)=EndInv(i)+WaitingOrders;

if IP(1)<=s
order=order+1;
order_amount(i)=S-1P(i);
WaitingOrders=WaitingOrders+order_amount(i);
IP(i)=EndInv(i)+WaitingOrders;

end

if D(i)>Beglnv(i)
shortage(i)=D(i)-Beglnv(i);

end

ifi<=L
Beglnv(i+1)=EndInv(i);
else
Beglnv(i+1)=EndInv(i)+order amount(i-L);
WaitingOrders=WaitingOrders-order amount(i-L);
end

end

77

C.7 Calculating the Cost2 (calc_cost.m)

C.7 Calculating the Cost2 (calc_cost.m)

function calc_cost
global day
global EndInv
global Ch
global Cs
global Co
global order
global TOTALCOST
global holdingcost
global shortagecost

global orderingcost

for i=1:day
% holding cost
if EndInv(i)>0
holdingcost=holdingcost+EndInv(i)*Ch;
else
% shortage cost
shortagecost=shortagecost-EndInv(i)*Cs;
end
end

orderingcost=order*Co;

78

C.7 Calculating the Cost2 (calc_cost.m)

TOTALCOST=holdingcost-+shortagecost+orderingcost;

79

Appendix D
Ehrhardt’s Heuristic Code

cle

clear
t=cputime;
load demNOR_5_2.mat
delta_day=30;
period=30;
dem_per=15;
h=1;

p=9;

K=64;

L=0;

for i=1:period
for j=1:(delta_day*i)
demand(j)=D(j);

end

day=min(dem_per,i)*delta_day;

difference=(delta_day*i)-day;

80

Appendix D Ehrhardt’s Heuristic Code

for j=1:day
demand(j)=D(j+difference);

end

meannn=mean(demand);

varia=var(demand);

sigmal=sqrt((L+1)*varia);

meanL=(L+1)*meannn;
Dopt=1.3*(meannn"0.494)*((K/h)"0.506)*(1+sigmal"2/meannn”2)"0.116;
z=(Dopt/(sigmaL*p/h))"0.5;
sopt=0.973*meanL+sigmal.*(0.183/z+1.063-2.192*z);
Dopt/meannn;

sopt;

Sopt=sopt+Dopt;

opt_s(i)=round(sopt);

opt_S(i)=round(Sopt);

end

figure

plot(opt_s,’gx’)

hold

81

plot(opt_S,rx’)

Appendix D Ehrhardt’s Heuristic Code

82

IMITIALLZATICN:
Baglnw=5
Endirv=0

Wailing Oreiera=0
InwPos=5

arriva?

Appendix E

Flowchart

83

W Beglrv =
= Ordershrrived +
Endlin
Demand I occurs | Endinv=Beglmn-0
luring the day InvPas=invPos-0
Beglrv =
Endlin
Nao
_= L Update N Cridar
Pz =5 1+ woilingOrdars [* SnyPos

Appendix F
ARENA Simulation Model

CJ@—EI

[l
=

=

-EEHE
o H=He

HE

Y %@\

ég

ﬁ?g

]

84

Appendix G

EXCEL Simulation Model

e m——
S —
 —

botdn 1 A)

—
—

T

=

10 rli | 1

5] '

O T T I T T T T T A T T
EEEEEREEREFEERENEE RS-

-5 -

EXCEL Simulation Model

&5

LR - T R SR TR =]

]

10
11
12
13
14
15
16
17
13
13
20
21
22
23
24
25
26
27
23
23
a0
a1

[10
c [t}
h 1
[100
15
5 25
Total Cost 176497
Average Cost 17.697
#5hortage Days 14
Frob.Shortage 0.014
Xi

30

5

0

u]

[

R =Ry LT, R TR TU - TR R = RISl R SR = SR - R = R R R = = - T

25
22
14
14
15
14
13
11

13
14
14
17
13
11
19
13

10

17
14

L]

14
11
21
13

1z
15
15
13

22
14
25
15
24
13
11
13
13
14
25
17
13
23
19
13
16
10
24
17
14
17
14
22
21
13
20
1z
15
25
13

=

11
11
10
10

14
14

11
11

12
12

12
12
15
15

11
11
11
11

12
12

10
10

22
24
14
25
14
13
21

13
24
14
17
23
11
19
23

20

17
24

L]

24
11
21
23

1z
25
15
13

Appendix H
MATLAB Simulation Model

cle
clear
day=20000;
%%% Creating Demand
for i=1:day
D(i)=random(’Normal’,5,2);
D(i)=round(D(1));
if D(1)<0
D(i)=0;
end

end

Co=10;
Cs=100;
maxs=90;

maxS=100;

%% % Initializations

for i=1:maxs

86

Appendix H MATLAB Simulation Model

for j=1:maxS
holdingcost(i,j)=0;
shortagecost(i,j)=0;
orderingcost(i,j)=0;
end

end

for s=1:maxs
for S=s+1:maxS

Beglnv=zeros(1,day);

EndInv=zeros(1,day);

IP=zeros(1,day);

shortage=zeros(1,day);

order_amount=zeros(1,day);

WaitingOrders=0;

Beglnv(1)=S;

order=0;

for i=1:day
EndInv(i)=Beglnv(i)-D(i);
IP(i)=EndInv(i)+WaitingOrders;
if IP(i)<=s

order=order+1;

order_amount(i)=S-IP(i);

87

Appendix H MATLAB Simulation Model

WaitingOrders=WaitingOrders+order amount(i);
IP(i)=EndInv(i)+WaitingOrders;
end
if D(i)>BeglInv(i)
shortage(i)=D(i)-Beglnv(i);
end
ifi<=L
Beglnv(i+1)=EndInv(i);
else
Beglnv(i+1)=EndInv(i)torder amount(i-L);
WaitingOrders=WaitingOrders-order amount(i-L);
end
end
%%% cost calculations
for i=1:day
% holding cost
if EndInv(i)>0
holdingcost(s,S)=holdingcost(s,S)+EndInv(i)*Ch;
end
% shortage cost
shortagecost(s,S)=shortagecost(s,S)+shortage(i)*Cs;

end

88

Appendix H MATLAB Simulation Model

% ordering cost
orderingcost(s,S)=order*Co;
totalcost(s,S)=holdingcost(s,S)+shortagecost(s,S)+orderingcost(s,S);
averagecost=totalcost/day;

end
end
%%% Finding the minimum average cost
for i=1:maxs

for j=1:maxS

if averagecost(i,j)==0 % where S<s
new_tot(i,j)=9999999999; % very large number

else
new_tot(i,j)=averagecost(i,j);

end
end
end
min_av_cost=min(min(new_tot));
%%% Finding the optimal (s,S) pair
for i=1:maxs
for j=1:maxS
if new_tot(i,j)==min_av_cost

opts=i;

Appendix H

optS=j;
end
end
end
opts

optS

MATLAB Simulation Model

90

Appendix I
GAMS Code

$include ’D:\0607tez\partSON\demand.txt’;
Scalars

h holding cost /1/

p shortage cost /100/

k order cost /10/

eval /0.000000000001/

Mval big M /100/;
Variables

j(@i) cost of period i

x(i) inventory level at period i

y(i) inventory position at period i

o(i) outstanding orders at period i

q(i) order quantity at period i

r(i) received quantity at period i
Inda(i) order indicator at period i
Indb(i) secondary indicator at period i
z total cost

small reorder point

Slarge order-up-to level

91

Appendix I GAMS Code

positive variables j,0,q,r;

binary variables Inda,Indb;

integer variables small,Slarge;

Equations

cost define objective function

percosta(i) first equation for period cost

percostb(i) second equation for period cost

initx first period inventory level

xdyn(i) inventory level dynamics

inity first period inventory position

ydyn(i) inventory position dynamics

inito first period outstanding order dynamics

odyn(i) outstanding order dynamics

ordquana(i) first inquality for order quantity dynamics
ordquanb(i) second inquality for order quantity dynamics
ordquanc(i) third inquality for order quantity dynamics
con s and S relation

con2

initra

initrb

rdyn(i)

indadyn(i) Inda variable dynamics

92

Appendix I GAMS Code

indbdyn(i) Indb variable dynamics

indabrel(i) Inda and Indb relation;

cost .. z=e=sum(i,j(i));

percosta(i).. j(i)=g=k*Inda(i)+h*x(i);
percostb(i).. j(i)=g=k*Inda(i)-p*x(i);

initx.. x(’1’)=e=Slarge-d(’1’);
xdyn(i)$(ord(i)>1).. x(1)=e=x(i-1)+r(i)-d(i);
inity.. y(C1”)=e=x("1");

ydyn(i)$(ord(i)>1).. y(i)=e=x(i-1)+o(i-1)-d(i);
inito.. o(’1”)=e=q(’1’);

odyn(i)$(ord(i)>1).. o(i)=e=0(i-1)+q(i)-r(i);
ordquana(i).. q(i)=g=(Slarge-y(i))-Mval*(1-Inda(i));
ordquanb(i).. q(i)=I=(Slarge-y(i))+Mval*(1-Inda(i));
ordquanc(i).. q(i)=I=Mval*Inda(i);

initra.. r(’1’)=e=0;

initrb.. 1(°2”)=e=0;

rdyn(i)$(ord(i)>2).. r(i)=e=q(i-2);

con.. small == Slarge;

con2.. Slarge =I= 65;

indadyn(i).. Mval*Inda(i)=g=small-y(i)+1;
indbdyn(i).. Mval*Indb(i)=g=y(i)-small;

indabrel(i).. Inda(i)=1=1-Indb(i);

93

Appendix I GAMS Code

Model sSinventory /all/;

Solve sSinventory using mip minimizing z ;
option small:3:0:1;

option Slarge:3:0:1;

display Inda.Lx.1,y.1,q.1,0.Lr.Lj.1;

Display small.l, Slarge.l ;

94

AppendixJ Outputs of Numerical Examples

Appendix J
Outputs of Numerical Examples

I.1. Poisson Distribution (10)

s* and 5% Yalues

45

40

34

30

25

20

14

10

5

j

I!
E
<
%!
¥
G
E
i

R R TR b e b b b r b ks

0 5 10 15 20 25 30
Period

Fig. J.1. (s*,S*) Graph for PA Alg. POI(10), yY=ALL HISTORY

s* and 5% Values

45

40

34

30

25

20

14

10

Period

Fig. J.2. (s*,S*) Graph for PA Alg. POI(10), y=3

95

AppendixJ Outputs of Numerical Examples

s* and 5% Yalues

45

40

34

30

25

20

15

Feriod

Fig. J.3. (s*,5*) Graph for EHR Alg. POI(10), yY=ALL HISTORY

s* and 5* “alues

a0

45

40

34

30

24

20

14

10

] 5 10 15 20 25 30
Period

Fig. J.4. (s*,S*) Graph for EHR Alg. POI(10), y=3

96

AppendixJ Outputs of Numerical Examples

s* and 5% Yalues

45

40

34

30

25

20

15

10

|
a 5 10 14 20 25 30

FPeriod

Fig. J.5. (s*,5*) Graph for RIP Alg. POI(10), yY=ALL HISTORY

z* and 5* Values

45

40

34

30

25

20

15

10

|
a 5 10 14 20 25 30

Period

Fig. J.6. (s*,S*) Graph for RIP Alg. POI(10), y=3

97

AppendixJ Outputs of Numerical Examples

5% and 5% Average Walues

PA=x, EHR=Cirzle, RIP=Diamond
45

C'C'DD
® i e iy
i

G TSN LO0000000000000000000

o

RS RGRGRORORIRGRCRIRORERSRORGRILGRERG NS RERGLS R

LT

J
-
&

o] [L WA
] m] M
T T T T

—_—
m
T

10

Period

Fig. J.7. Comparison of (s*,S*) Graphs for POI(10), y=ALL HISTORY

s* and 5% Average Walues

PA=x, EHR=Cirzle, RIP=Diamond
45 -
E??'ﬁg':;:"E{:'C":}ODDGOODDOGODE}DGGDDOGGO
i I P R S I

34

30

25

20

15

10

98

Fig. J.8. Comparison of (s*,S*) Graphs for POI(10), y=3

AppendixJ Outputs of Numerical Examples

Curmulative Cost

Exmﬁ PA=x RIP=. EHR=0

16} o %

1.4F o2
E

0af o
*

04 Qt?

0.2

L))

1
] 5 10 15 20 25 30
Period

Fig. J.9. Comparison of Cost Graphs for POI(10), y=ALL HISTORY

Curmnulative Cost

% 10 PA=x RIP=
&

EHR=0

O
281 o, *

B &
0.5)

1
] 5 10 15 20 25 30
Period

Fig. J.10. Comparison of Cost Graphs for POI(10), y=3

99

AppendixJ Outputs of Numerical Examples

1.2. Poisson Distribution (25)

100

5 and 5F Walues

Ba

B0

85

a0

45

40

35

30

25

20 =%
E_,-f @E!

15 1 1 |
a 5 10 14 20 25 30

Period

Fig. J.11. (s*,S*) Graph for PA Alg. POI(25), y=ALL HISTORY

s* and 5% Values

Ba

B0

85

a0

45

40

35

30

25

zu-% $!£ T
15 1 1 1 1 1 1
0 5 10 15 20 25 30

Period

Fig. J.12. (s*,S*) Graph for PA Alg. POI(25), y=3

AppendixJ Outputs of Numerical Examples

101

z* and 5* Values

B4

il

55

a0

45

40

34

30

25

20F

-‘I 5 1 1 1 1 1]
]
Period

Fig. J.13. (s*,S*) Graph for EHR Alg. POI(25), y=ALL HISTORY

s* and 5* Yalues

Ba

B0

85

a0

45

40

35

30

25

20

15 1 1 | | | |
a 5 10 14 20 25 30

Period

Fig. J.14. (s*,S*) Graph for EHR Alg. POI(25), y=3

AppendixJ Outputs of Numerical Examples

102

s* and 5% Yalues

B0

55

a0

45

40

34

30

24

20

15
a

1
5 10 15 20 25 30
Period

Fig. J.15. (s*,S*) Graph for RIP Alg. POI(25), y=ALL HISTORY

s* and 5* Values

alll

55

a0

45

40

34

30

25

20

15
a

Period

Fig. J.16. (s*,S*) Graph for RIP Alg. POI(25), y=3

AppendixJ Outputs of Numerical Examples

103

5™ and 5% Average Walues

B0

55

a0

45

40

34

30

24

20

PA=x, EHR=Cirzle, RIP=Diamond

8% %Y ooooooocoococcoccacooooono

B W B B B B R B B R W O W R

15
a

Fig.

J.17. Comparison of (s*,S*) Graphs for POI(25), y=ALL HISTORY

s and 5% Average Values

b5

alll

55

a0

45

40

34

30

25

20

PA=x, EHR=Cirzle, RIP=Diamond

« C%C%nnoooocooo oo oooo

15
a

Fig. J.18. Comparison of (s*,S*) Graphs for POI(25), y=3

104

AppendixJ Outputs of Numerical Examples
4
1B¥1D Pa=x RIP=. EHRH=0
16} “
14| o 8
o
8 @ %
5 12r o,k
o o o %
© 10} o gt
= (O
= *
=
2 ol 508t
3 o, *
.
oy
ol o
o
*
4t o ¥
o ¥
2r ®
=
I:I _ﬁ 1 1 | | | |
0 5 10 15 20 25 30
Feriod
Fig. J.19. Comparison of Cost Graphs for POI(25), y=ALL HISTORY
4
3f1ﬂ Pa=x RIP=. EHH=o
o
254 &
o
o
o
o . %
- 2r o 2
=1 3 *
L] e . %
g oo
5 151 S
= O *
= .
O
= 50 *
Tt oo *
[
o x
{2 ¥
05¢ 1%
W
&
&)
I:I _ﬁ 1 1 | | | |
0 5 10 15 20 25 30
Feriod

Fig. J.20. Comparison of Cost Graphs for POI(25), y=3

AppendixJ Outputs of Numerical Examples

1.3. Uniform Distribution (0,10)

105

™ and 5% Average Walues

20

26

24

22

20

13

16

Pa=x, EHR=Circle, RIP=Diarmond

o 0O
- O Q00O ooCoCooooo0oo o000

oK

Fa FA A N
wr AR

R SRR R R CR R C R R R R R R Rt R Rt R R R

RGO RO RN NI RO RGN ROIRCRORGRORIRO RGNS RORORILGRIRO RO RS RGNS

Period

Fig. J.21. Comparison of (s*,S*) Graphs for UNI(0,10)

Curmnulative Cost

1.8

1.6

1.4

1.2

0.8

0.&

0.4

0.2

x 10 Pa=x RIP=. EHR=0
. o
o
o
I % s
o} . F
i o %
o s
o .
o :
o) kk
G .
e
i o,
ot
oo
- ':::' k
DO*%
| D:!e;k
oo
.:::.!
n ,:;I!k
Q‘E‘
i o
@
@
_ﬁ 1 1 1 1 1]
0 g 10 15 20 25 a0
Feriod

Fig. J.22. Comparison of Cost Graphs for UNI(0,10)

AppendixJ Outputs of Numerical Examples

I.4. Normal Distribution (5,1)

106

PA=x, EHR=Cirzle, RIP=Diamond
L0000]
[COoOoDoDo oOoooooDoD D000 0
20F £ o
w 1BF 05 £ &
=
E O OGO D LHOOOLeON ol GO0 0N oG
= 16}
s
[ak}
kS
ONRFYS
E o
o 2F=&8000 CQOOoO0O COoooooooooooooo0
{} i i £
WE & SGOoEe0e0 SO0 00 L0000 00000600
4 O
B 1 1 1 1 1]
0 5 10 15 20 25 a0
Period
Fig. J.23. Comparison of (s*,S*) Graphs for NOR(5,1)
3}{105 PA=x RIP=. EHR=o
]
]
]
o .
25} o %
2 %
Q %
> %
] §§<
5 4 o,
o o *
o o, x
= o e
= 15} Dg%
= oLt
& Q!*
]
1F O o *
[
.:::.:k
I:El!k
05t QQ
nd
]
o
D_g 1 1 | | | |
]) 10 15 20 25 30
Period

Fig. J.24. Comparison of Cost Graphs for NOR(5,1)

AppendixJ Outputs of Numerical Examples

1.5. Empirical Distribution

107

PA=x, EHR=Circle, RIP=Diarmond
| o DD o [DD
i o D DO T ooo T o0 (SRS RS IS]
(R e
L8, ,000x8.0 ., ¥
ERVE IR UL e 000 R R R
45
[y}
[ak]}
= 40F
[
=
[ak]
o adsF
=
=
< o}
tn
=]
=
1] 25_
kl'.l'.l
201
ao @
[[o L]
BEG g " wPe®a® ®B000Q 00 G 2 QOO0
R TR T iR i R {}%%g_gv{}{}{}ﬁ{}{}i‘}
"Il:l 1 1 1 1 1]
1] 5 10 15 20 25 30
Period
Fig. J.25. Comparison of (s*,S*) Graphs for Empirical Distribution
3.55{105 PA=x RIP=. EHR=0
DD
3t o
o -
':::ID g{ix
25} o oyt
i o o F
S o° g
wm 21 o 3
= .
. SR
= o *
= 15l DOEE
G Tyt
Oy
O
0w
1F oo
.:::.!K
,:;I!k
05t Q{;}
A
[
L
D_ﬁ 1 1 1 1 1]
1] 5 10 15 20 25 30
Period

Fig. J.26. Comparison of Cost Graphs for Empirical Distribution

1.6. Adaptability

Appendix J

Outputs of Numerical Examples

108

ol
[k}
=
(1]
=
ta 30}
s
=
(1]
+cLl'.l
[ix]
[a k)
=
[1ud
=
+
hia]
-
=
(1]
*l'.lfl
D 1 1 1 1 1 1 1]
] 5 10 15 20 25 30 35 40
Period

Fig. J.28. (s*,S*) Graph for EHR Alg., =15, y=3

109

Outputs of Numerical Examples

Appendix J

40

34
3

a0
15,y

24

20
Feriod

Fig. J.30. Comparison of (s*,S*) Graphs, o

14

a

1

Im m
o
&
|% m
T
e &
18 |2 o
I - @
%) = O
o m [E
e = R, =
e < & xx
o o
o & 5
1= & |5 L3 S
T £ g
o= = Ot
5 o SE
o m] o
5 |y S
- 1l
% I e
o &z o o
° | 33
~ 2L
o &
- e M
(e
O ko
% s
L L L L L vA-”..f.__ﬁ\v L
S SEEE
sanjes Lo pUE L8 sonjes ofelany o pue s

AppendixJ Outputs of Numerical Examples

110

s* and 5* Values

30

a 5 10 14 20 24 30 34 40

Period

Fig. J.31. (s*,S*) Graph for PA Alg., 6=15, y=ALL HISTORY

s* and 5* Values

30

] 5 10 15 20 25 30 35 40
Feriod

Fig. J.32. (s*,S*) Graph for EHR Alg., 5=15, y=ALL HISTORY

AppendixJ Outputs of Numerical Examples

111

a1l

o
ak}
=
[
=3
£ 30
ra
=
[
icU'.l

|:| | | | | | | | |

] o 10 15 20 25 a0 35 40
Feriod
Fig. J.33. (s*,S*) Graph for RIP Alg., =15, y=ALL HISTORY
PA=x, EHR=Circle, RIP=Diarmond

B0

a0+
[iy]
S 4t
(]
=
=
E 0
+
ia]
=
+=l'.l'.l

] 5 10 15 20 25 30 35
Period

Fig. J.34. Comparison of (s*,S*) Graphs, 6=15, y=ALL HISTORY

AppendixJ Outputs of Numerical Examples

112

@
=
=
£o30f
e
=
a4
kl'.l'.l
|:| | | | | | | | |
0 a 1a 15 20 25 a0 35 40
Feriod
Fig. J.35. (s*,S*) Graph for PA Alg., =90, y=ALL HISTORY
o
o
=
[
>
th 30
=
=
T
icl'.l'.l

] 5 10 15 20 25 30 35 40
Period

Fig. J.36. (s*,S*) Graph for EHR Alg., 5=90, y=ALL HISTORY

AppendixJ Outputs of Numerical Examples

113

a1l

[iy]
[ak]
=
(]
=
tn S0}
]
=
[as]
kU'.l
|:| | | | | | | | |
] o 10 15 20 25 a0 35 40
Period
Fig. J.37. (s*,S*) Graph for RIP Alg., =90, y=ALL HISTORY
PA=x, EHR=Circle, RIP=Diarmond
B0
a0+
oy
2
= 40F
=
=
e
T a0F
=y
*
bia]
=
=
s
kl’.l'.l

Period

Fig. J.38. Comparison of (s*,S*) Graphs, =90, y=ALL HISTORY

