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ABSTRACT 

FINITE PERTURBATION ANALYSIS METHODS FOR 
OPTIMIZATION OF PERIODIC (s,S) INVENTORY 

CONTROL SYSTEMS 

Erdinç Mert 
M.S. in Industrial Engineering 

Supervisor: Asst. Prof. Dr. Kağan Gökbayrak 
July, 2008 

 
We are dealing with single item inventory systems where the period time is constant 

and the unsatisfied demands are backordered. The demands are independent and 

identically distributed random variables, but the distribution of those variables are not 

known. The total cost of a period consists of; ordering cost "K" which is independent of 

the ordering quantity, holding cost "h" for each item that remains in stock, and penalty 

cost "p" for the each backordered item. In the considered system, it is known that when 

the parameters of an (s,S) inventory policy are chosen appropriate, then the expected 

period cost can be minimized. There are some exact methods or heuristics for finding 

the optimal s and S parameters in the literature for the case where the demand 

distribution is known. In our study, we introduce a perturbation analysis based method 

for finding the optimal s and S parameters where the demand distribution is not known. 

Our method anticipates the sensitivity of (s,S) parameters to the period cost for the 

observed demand quantities. This method's performance is compared with a method 

that uses Integer Programming with the past data and with a method that calculates the 

mean and standard variation values with the past data and feeds them to the Ehrhardt's 

Heuristic. 
Keywords: Inventory Policies, Perturbation Analysis, Simulation 
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ÖZET 

DAĞILIMI BİLİNMEYEN RASSAL AYRIK TALEPLER İÇİN 
PERİYODİK (s,S) ENVANTER DENETİM METODU 

Erdinç Mert 
Endüstri Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Yrd. Doç. Dr. Kağan Gökbayrak 
Temmuz, 2008 

 
Karşılanamayan taleplerin bekletilebildiği ve tedarik zamanlarının sabit olduğu tek 

öğeli envanter sistemlerini ele almaktayız. Gözlem periyotları içinde gelen talep 

miktarlarının bağımsız özdeşçe dağılmış ayrık rastgele değişkenler oldukları ancak bu 

değişkenlerin dağılımının bilinmediği kabul edilmektedir. Her periyot için maliyet, 

sipariş miktarından bağımsız K sipariş maliyeti, elde kalan her birim için h tutma 

maliyeti ve karşılanmak için bekletilen her birim talep için p yoksatma maliyeti 

toplamından oluşmaktadır. Ele alınan sistemde parametreleri doğru seçilmiş (s,S) 

envanter denetim politikasının beklenen periyot maliyetlerini en aza indirgeyebileceği 

bilinmektedir. Literatürde talep dağılımın bilinmesi durumunda en iyi s ve S 

parametrelerinin bulunabilmesi için önerilmiş tam veya sezgisel yöntemler 

bulunmaktadır. Bu çalışmamızda ise dağılımın bilinmediği durumda, yöntemimizin 

yakınsamasına yeterli süreler için dağılımın durağan kalacağı kabulu ile, en iyi s ve S 

değerlerinin bulunması için sarsım analizi tabanlı dağılım değişiklerine uyarlanabilir bir 

yöntem önermekteyiz. Gerçekleşen talep miktarları için periyot maliyetlerinin s ve S 

parametrelerine duyarlılıklarını tahmin eden ve bu parametreleri yenileyen 

yöntemimizin performansı geriye dönük tamsayı programlaması sonuçlarını uygulayan 

ve gerçekleşen miktarlar için hesaplanan ortalama ve standard sapma değerlerini 

Ehrhardt sezgiseline besleyen iki yöntemin performansları ile karşılaştırılmaktadır. 

      Anahtar Sözcükler: Envanter Politikaları, Sarsım Analizi, Simulasyon 

     

 



 v

 

 

 

To my family... 



 vi

 

 

ACKNOWLEDGMENTS 

 

I would like to express my sincere gratitude to Asst. Prof. Dr. Kağan Gökbayrak for all 

his attention and supports during my graduate study and for his valuable guidance and 

most importantly for his patience and trust. 

I am indebted to members of my dissertation committee: Asst. Prof. Dr. Osman Alp and 

Asst. Prof. Dr. Ayşe Kocabıyıkoğlu for showing of kindness to accept to read and 

review this thesis. I am grateful to them for their effort, sparing their valuable time for 

me and for their support. 

I am most thankful to members of Land and Missile Programs, especially to Mr. 

Aybars Küçük and Mr. Oğuz Yemişçiler, for their support and their patience. I would 

like also thank to my friends in Bilkent IE for their friendship. 

Finally, I would like to express my deepest gratitude on my family for believing in my 

work and sacrifices that they have made for me. I feel very lucky to have such a 

wonderful sister, father and mother. Without their love and support, I would never have 

finished this thesis. 

     



 vii

CONTENTS 

 

1   INTRODUCTION ........................................................................................................1 

2   BACKGROUND...........................................................................................................4 

     2.1   Iventory Systems ....................................................................................................4 

     2.2   Inventory Policies ...................................................................................................5 

     2.3   Problem Formulation..............................................................................................8 

     2.4  Determining Optimal (s,S) Policy Parameters......................................................13 

3   PERTURBATION ANALYSIS METHODS FOR OPTIMIZATION  

     OF POLICY PARAMETERS...................................................................................22 

     3.1   Perturbation Analysis Algorithms........................................................................22 

            3.1.1   Perturbation Analysis on "s" (Algorithm 1)...............................................23 

            3.1.2   Perturbation Analysis on "q" (Algorithm 2) ..............................................24 

    3.2   Finding Optimal (s*,q*) Pair.................................................................................26 

    3.3   Initializing Perturbation Analysis Parameters ......................................................29 

4  SIMULATION .............................................................................................................34 

     4.1  Logical Model........................................................................................................34 

     4.2  Simulation Models.................................................................................................37 

 



 viii

5   NUMERICAL EXAMPLES .....................................................................................39 

     5.1  Poisson Distribution...............................................................................................40 

     5.2  Comparison with Other Algorithms......................................................................44 

     5.3  Adaptability ...........................................................................................................46 

6   CONCLUSIONS AND FUTURE DIRECTIONS..................................................49 

REFERENCES ................................................................................................................52 

APPENDICES..................................................................................................................55 

     A  PA on "s" - Algorithm 1 ..........................................................................................55 

     B  PA on "q" - Algorithm 2 ..........................................................................................56 

     C  Finding Optimal (s*,q*) Pair - Algorithm 3 ...........................................................57 

     D  Ehrhardt's Heuristic Code........................................................................................80 

     E  Flowchart..................................................................................................................83 

     F  ARENA Simulation Model......................................................................................84 

     G  EXCEL Simulation Model ......................................................................................85 

     H  MATLAB Simulation Model..................................................................................86 

     I  GAMS Code..............................................................................................................91 

     J  Outputs of Numerical Examples ..............................................................................95 

 

  

 
 
 



 ix

LIST OF FIGURES 

     4.1  Numerical Example of Inventory Simulation for s=10, S=15 .............................36 

     4.2  Inventory Simulation Example..............................................................................37 

     J.1  (s*,S*) Graph for PA Alg. POI(10), γ=ALL HISTORY .....................................95 

     J.2  (s*,S*) Graph for PA Alg. POI(10), γ=3 ..............................................................95 

     J.3  (s*,S*) Graph for EHR Alg. POI(10), γ=ALL HISTORY ..................................96 

     J.4  (s*,S*) Graph for EHR Alg. POI(10), γ=3 ...........................................................96 

     J.5  (s*,S*) Graph for RIP Alg. POI(10), γ=ALL HISTORY ....................................97 

     J.6  (s*,S*) Graph for RIP Alg. POI(10), γ=3 .............................................................97 

     J.7  Comparison of (s*,S*) Graphs for POI(10), γ=ALL HISTORY ........................98 

     J.8  Comparison of (s*,S*) Graphs for POI(10), γ=3 .................................................98 

     J.9  Comparison of Cost Graphs for POI(10), γ=ALL HISTORY..............................99 

     J.10  Comparison of Cost Graphs for POI(10), γ=3 ....................................................99 

     J.11  (s*,S*) Graph for PA Alg. POI(25), γ=ALL HISTORY .................................100 

     J.12  (s*,S*) Graph for PA Alg. POI(25), γ=3 ..........................................................100 

     J.13  (s*,S*) Graph for EHR Alg. POI(25), γ=ALL HISTORY ..............................101 

     J.14  (s*,S*) Graph for EHR Alg. POI(25), γ=3 .......................................................101 

     J.15  (s*,S*) Graph for RIP Alg. POI(25), γ=ALL HISTORY ................................102 

     J.16  (s*,S*) Graph for RIP Alg. POI(25), γ=3 .........................................................102 



 

 x

     J.17  Comparison of (s*,S*) Graphs for POI(25), γ=ALL HISTORY ....................103 

     J.18  Comparison of (s*,S*) Graphs for POI(25), γ=3 .............................................103 

     J.19  Comparison of Cost Graphs for POI(25), γ=ALL HISTORY .........................104 

     J.20  Comparison of Cost Graphs for POI(25), γ=3 ..................................................104 

     J.21  Comparison of (s*,S*) Graphs for UNI(0,10) ..................................................105 

     J.22  Comparison of Cost Graphs for UNI(0,10).......................................................105 

     J.23  Comparison of (s*,S*) Graphs for NOR(5,1) ..................................................106 

     J.24  Comparison of Cost Graphs for NOR(5,1) .......................................................106 

     J.25  Comparison of (s*,S*) Graphs for Empirical Distribution ..............................107 

     J.26  Comparison of Cost Graphs for Empirical Distribution ...................................107 

     J.27  (s*,S*) Graph for PA Alg., δ=15, γ=3 ..............................................................108 

     J.28  (s*,S*) Graph for EHR Alg., δ=15, γ=3 ...........................................................108 

     J.29  (s*,S*) Graph for RIP Alg., δ=15, γ=3 .............................................................109 

     J.30  Comparison of (s*,S*) Graphs, δ=15, γ=3 .......................................................109 

     J.31  (s*,S*) Graph for PA Alg., δ=15, γ=ALL HISTORY .....................................110 

     J.32  (s*,S*) Graph for EHR Alg., δ=15, γ= ALL HISTORY .................................110 

     J.33  (s*,S*) Graph for RIP Alg., δ=15, γ= ALL HISTORY ...................................111 

     J.34  Comparison of (s*,S*) Graphs, δ=15, γ= ALL HISTORY .............................111 

     J.35  (s*,S*) Graph for PA Alg., δ=90, γ=ALL HISTORY .....................................112 

     J.36  (s*,S*) Graph for EHR Alg., δ=90, γ= ALL HISTORY .................................112 



 

 xi

     J.37  (s*,S*) Graph for RIP Alg., δ=90, γ= ALL HISTORY ...................................113 

     J.38  Comparison of (s*,S*) Graphs, δ=90, γ= ALL HISTORY .............................113 

 

 

 
 



 

 1

CHAPTER 1 
 

INTRODUCTION 
  

Inventories are assets held for sale in the ordinary course of business or in the process 

of production for such sale or supplies to be consumed in the production process or in 

the rendering of services. Some inventories have to be held due to the lead time of the 

goods and the ordering cost. Holding inventories in stock causes a cost, holding cost, 

because of the cost of storage, the opportunity cost, etc. On the other hand, if no 

inventories are held, the customers cannot find what they want and since the customer 

is not satisfied, there is a potential for the loss of future orders. Thus, having no 

inventories will also cause a cost; namely penalty cost. The third type of cost is named 

as ordering cost and it is the money given for the transportation of the goods, all 

possible administration tools to place an order, etc. 

Inventory policies are methods for determining when and how many units to 

order in order to minimize an inventory cost function. There are two types of inventory 

policies; continuous review policies and periodic review policies. In the first type, the 

inventory position is monitored continuously and when the inventory position falls 

below a pre-specified level, an order is given. In the periodic review policies, the 

inventory position is monitored in periods and the same action is taken. One of the 

periodic review policy is the (R,s,S) policy where the inventory position is checked in 

every period of R time units and if the inventory position is less than or equal to s, an 

order is placed to raise the position up to S. The inventory policy discussed in this 

thesis will be the (R,s,S) policy for given R time units, and the aim is to find the optimal 

(s,S) values to minimize the expected summation of holding cost, penalty cost and the 

ordering cost. 
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The aim is to design inventory control policies for random demand distributions that

can adapt themselves to sudden demand changes. For that purpose, Perturbation Analy-

sis Algorithm will be de�ned and will be compared with two other algorithms; Ehrhardt's

Heuristic and Retrospective Integer Programming Method. Perturbation Analysis Algo-

rithm is a perturbation analysis based method for �nding the optimal s and S parameters.

This method will anticipate the sensitivity of s, S parameters to the period cost for the ob-

served demand quantities. This algorithm can �nd the real optimal s; S parameters without

knowing the distribution, mean and the variance of the demand distribution.

Ehrhardt's Heuristic is a simple heuristic that calculates near-optimal (s; S) values

by calculating the mean and the standard deviation by the observed data. Retrospective

Integer Programming Method also uses the past data and �nds the minimum cost by integer

programming.

In the second chapter, some background information about the Inventory Systems and

Inventory Policies are given. The problem formulation is de�ned and a literature review

about how to determine optimal (s; S) parameters is mentioned.

In Chapter 3, the main method, Perturbation Analysis, is introduced. At the end of

this chapter, methods to �nd the optimal (s; S) pair are given.

In Chapter 4, the logical model is de�ned, and the simulation models are introduced.

Chapter 5 consists of numerical examples. In this chapter, several distributions are taken

as the demand distributions and the algorithms de�ned in Chapter 3 are tested. Also com-

parison of the algorithms (Perturbation Analysis Algorithm, Ehrhardt's Heuristic and Ret-
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rospective Integer Programming Method) can be found in this chapter. This chapter ends

with the adaptability issue.

The last chapter includes the conclusion and general discussion about the outputs of

numerical examples. At the end of this chapter, future directions are given and the thesis

ends with the appendices.
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CHAPTER 2 

 

BACKGROUND 
 

2.1 Inventory Systems  

Inventories are assets held for sale in the ordinary course of business or in the process 

of production for such sale or supplies to be consumed in the production process or in 

the rendering of services. Fogarty & Hoffman (1983) defines inventory as: 

 

Inventory ties up capital, uses storage space, requires handling, deteriorates, 
sometimes becomes obsolete, incurs taxes, requires insurance, can be stolen, 
and sometimes is lost ... the absence of the appropriate inventory will halt a 
production process; ... an expensive piece of earth moving equipment may be 
idled by lack of a small replacement part; a patient may die due to the 
unavailability of plasma; ... and, in many cases, a good customer may become 
irate and take his business elsewhere if the desired product is not immediately 
available. 

 

Thus, inventories serve the function of providing a buffer between customer 

demands and production capabilities (Aft 1987). There are three basic classes of 

inventories for a company; 

• Raw materials are the items that are purchased from another vendor to be 

processed further. 

• Work in process inventories are still not finished goods but processed raw 

materials. 

• Finished goods are the products that are available for sale. 

 

In this thesis, inventory will only represent the "finished goods" which are 

considered as discrete units. 
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An inventory system is a system in which the following three kinds of costs are

signi�cant; the cost of carrying inventories, the cost of incurring shortages, and the cost

of replenishing inventories (Eliezer 1982). After this part, these costs will be recalled as

holding cost, penalty cost, and ordering cost, respectively. Holding cost applies if there is

a positive inventory on hand, penalty cost applies if there is unsatis�ed order, and ordering

cost applies if order was made at that time.

2.2 Inventory Policies

Inventory policies are methods for determining when and how many units to order in order

to minimize an inventory cost function. Based on the inventory level, anticipated demand

and cost function, these policies answer the following questions:

1. When should the inventory be replenished?

2. How many units should be added to the inventory? (Eliezer 1982)

For the �rst question, following answers can be given;

� Inventory should be replenished when the amount in inventory is equal to or

below s quantity units

� Inventory should be replenished every R time units

For the second question, the answers can be;

� The quantity to be ordered is q quantity units
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� A quantity should be ordered so that the amount in inventory is brought to a

level of S quantity units

If the demand is deterministic, then some methods can be used to �nd the answers of

these questions. However, if the demand is stochastic, then some inventory policies should

be used. The quantities s; R; q; S used above are the policy parameters and de�ned as the

reorder point, scheduling period, lot size, and order-up-to level, respectively.

Based on the reviewing process, inventory policies are divided into two main groups;

continuous review policies and periodic review policies.

2.2.1 Continuous Review Policies

In continuous review policies, the inventory control system is designed so that the inventory

position (inventory on hand plus orders given but not received yet) is monitored continu-

ously. When the inventory level is suf�ciently low, an order is given at that time and the

given order is received after a certain lead time. Well known continuous review policies are

(s; S) Policy and (s;Q) Policy.

(s,S) Policy

In (s; S) Ordering Policy, whenever the inventory position falls to the reorder point s, an

order is placed enough to raise the position to the order-up-to level S:
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(s,Q) Policy

An (s;Q) Ordering Policy means that when the level of inventory position is less than or

equal to s, an order of �xed amount of Q is placed.

2.2.2 Periodic Review Policies

Another alternative of Continuous Review is to consider the inventory position only at

certain given points in time. The intervals between these reviews are constant and that

is called the Periodic Review. Well known periodic review policies are (R; s; S) Policy,

(R; s;Q) Policy and (R;S) Policy.

(R,s,S) Policy

In intervals of R time units, the inventory position is checked and if the inventory position

is less than or equal to s, an order is placed to raise the position up to S.

(R,s,Q) Policy

In (R; s;Q) policy, the inventory position is checked in every period of R time units and if

the inventory position is less than or equal to s, an order of amount Q is placed.

As can be seen easily, in the �rst policy, the inventory position is always increased to

same value after orders, where in the second policy, always the same quantity of orders are

given.
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(R,S) Policy (Base Stock Policy)

In this policy, an order up to S at the end of each period of R time units is placed, unless

the period demand is zero.

In this thesis, Periodic (R; s; S) Policy will be analyzed for a �xed and given time

period, R. After this part, "(s; S) Policies" will be used for "(R; s; S) Policies" and the aim

is to �nd optimal s and S values that minimize a total cost. For that purpose, we consider

a single-item inventory system where un�lled demand is backlogged with a �xed lead time

L between placement and delivery of an order where the holding cost and penalty cost are

linear, and the demand is random.

2.3 Problem Formulation

We have a stochastic inventory control problem with an unknown demand distribution. The

demand distribution shall not have any known distribution; the algorithms in this thesis

work for all kinds of distributions and also for empirical distributions. There is a non-

negative constant lead time and three types of costs (holding cost, penalty cost, and ordering

cost). Detailed information of the costs are given below.

Holding Cost: Holding cost applies while holding inventory on stock. Holding in-

ventory causes a cost because there is an opportunity cost (money invested in inventory

could be placed on bank for interest), storage cost (need for place to store the inventory),

deterioration cost (materials deteriorate over time), obsolescence problem (products may

become outdated), insurance cost (insurance protects against potential loss), etc.
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Thus, holding cost is applied if the inventory on hand is positive at the end of the

day. The holding cost per unit "h" is multiplied with the "Inventory on Hand", and the total

holding cost is calculated.

Penalty Cost: It is also known as stockout cost or shortage cost. There are two types

of penalty cost; in the �rst type, the customer is willing to backorder and to wait for the

delivery, where in the second, customer does not wait and the order is lost. In this thesis,

we assume full backlogging. However, it also causes a cost since you cannot satisfy your

customer and there is a potential for the loss of future orders (Aft 1987).

Thus, if the inventory on hand at the end of the day is negative, penalty cost is applied.

The penalty cost per unit "p" is multiplied by the total "Unsatis�ed Demand" at the end of

that period and the total penalty cost is calculated. Since backlogging policy is applied,

the unsatis�ed demand is forwarded to the following day until all of the past demands are

satis�ed.

Ordering Cost: There are usually �xed costs associated with a replenishment (inde-

pendent of the batch size). It may be described as a truck with in�nite capacity delivering

the orders and even if one order is placed, the same money will be given to the truck. Thus,

if order is given in a day, Ordering Cost (Set-Up Cost) "K" is also incurred. In other words,

this cost is independent of the ordered unit size, i.e. ordering 1 unit and 100 units will have

the same ordering cost.

Then, the total cost is de�ned as:

J = IfY � sgK + hmax(X; 0) + pmax(�X; 0)
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where Y is the inventory position at the end of the period, X is the inventory level at

the end of the period, and I is the indicator function.

2.3.1 Mathematical Model

The model of the problem can be formulated as:

min
s;S
E[(J = lim

n!1

1

n

nX
i=1

Ji)]

Ji = IfYi � sgK + hmax(Xi; 0) + pmax(�Xi; 0)

Xi = Xi�1 +Ri �Di

Yi = Xi�1 +Oi�1 �Di

Oi = Oi�1 +Qi �Ri

Qi = IfYi � sg(S � Yi)

Ri = Qi�L�1

X0 = S

O0 = 0

Q0 = 0
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where the problem parameters are as below:

Di : Demand Occurred at Period i

L : Constant Lead Time

h : Holding Cost per unit

p : Penalty Cost per unsatis�ed units

K : Ordering cost for placing an order, independent of number of units

s : Inventory control policy parameter, Reorder Point

S : Inventory control policy parameter, Order Up-To Level

and the state variables/decision variables of the problem are as below:

Ji : Total Cost at the end of Period i

Yi : Inventory Position at the beginning of Period i

Xi : Inventory Level at the beginning of Period i

Ri : Received Orders at the beginning of Period i

Qi : Order Quantity at the beginning of Period i

Oi : Outstanding Orders at the beginning of Period i

By Inventory Position, we mean inventory on hand plus on order minus backorders.

By Inventory Level, we mean inventory on hand minus backorders. Lead Time is the time

between the placement of an order and the arrival of that order.
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For linearizing the problem, the model was rewritten as below:

minZ =
X
i

J(i)

J(i) � KI1(i) + hX(i)

J(i) � KI1(i)� pX(i)

X(1) = S �D(1)

X(i) = X(i� 1) +R(i)�D(i); for i > 1

Y (1) = X(1)

Y (i) = X(i� 1) +O(i� 1)�D(i); for i > 1

O(1) = Q(1)

O(i) = O(i� 1) +Q(i)�R(i); for i > 1

Q(i) � S � Y (i)�M(1� I1(i))

Q(i) � S � Y (i) +M(1� I1(i))

Q(i) � MI1(i)

R(1) = 0

R(i) = Q(i� L� 1); for i > 1

s � S

MI1(i) � s� Y (i) + 1

MI2(i) � Y (i)� s

I1(i) � 1� I2(i)
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where

M is a very big number,

I1 and I2 are binary variables,

s and S are integers,

J;R;O and Q are positive variables.

2.4 Determining Optimal (s,S) Policy Parameters

In this section, the literature about determining the optimal (s; S) inventory policy para-

meters will be reviewed. The analysis of (s; S) inventory policies started out as a research

topic after the introduction of the multistage periodic review inventory model in the pa-

per by Arrow, Harris & Marschak (1951). In that paper, they studied uncertainty models�a

static and a dynamic one�in which the demand �ow is a random variable with a known

probability distribution. The best maximum stock and the best reordering point are deter-

mined as functions of the demand distribution, the cost of making an order, and the penalty

of stock depletion.

Scarf (1960) and Iglehart (1963) showed that an optimal policy can be found within

the class of (s; S) policies where there are linear costs, stochastic demand, and a �xed

lead time. Thus, since our assumptions satisfy these requirements, there will always be

an optimal (s; S) policy that minimizes the average cost. However, computing the opti-

mal policy that minimizes the long term average cost has become a big problem for years

since there are a potentially in�nite number of (s; S) combinations. There are mainly two

categories for �nding the optimal (s; S) pair; exact method and heuristics. Iglehart (1963),
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Veinott&Wagner (1965), Bell (1970), Archibald&Silver (1978), Federgruen&Zipkin (1984),

Zheng&Federgruen (1991), Feng&Xiao (2000) and Daniel&Rajendran (2005) are all ex-

amples about the �rst category, exact method. On the other side, Naddor (1975), Ehrhardt

(1979, 1984) and Roundy&Muckstadt (2000) are the most known papers that introduce

heuristics for (s; S) optimization.

Exact Methods (For known demand distribution):

Iglehart (1963) gives bounds for the sequences fsng and fSng and discusses their lim-

iting behavior. The limiting (s; S) policy characterizes the optimal ordering policy for

the in�nite horizon problem. In Veinott&Wagner (1965), a complete computational ap-

proach for �nding optimal (s; S) inventory policies is developed. The model is named

as a dynamic inventory model in which demands for a single product are independent,

identically distributed (i.i.d) discrete random variables. There is a constant lead time, a

discount factor 0 � � � 1; a �xed non-negative set up cost, a linear purchase cost, a con-

vex expected holding and penalty cost function, and total backlogging of un�lled demand.

The objective of the paper is to choose the control parameters (s; S) which minimizes the

long run average cost per period. The methods of Veinott&Wagner (1965), Bell (1970),

and Archibald&Silver (1978) apply complete enumeration method where it is bounded by

lower bounds s, S and upper bounds s, S for �nding the optimal values of s� and S�.

Sahin (1982) analyzes the behavior of (s; S) inventory models. Both for periodic and

continuous review systems, Sahin states that for constant lead times and full backlogging,

expected cost E(s;�) is convex in s where� = S� s: From that point, he proves that both
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for periodic and continuous review systems with full backlogging, constant lead times,

and linear holding and shortage costs, E(s1(�);�) is pseudoconvex on � � 0: After

that, in Federgruen&Zipkin (1984), an iterative algorithm to compute an optimal (s; S)

policy under standard assumptions (stationary data, well-behaved one-period costs, discrete

demand, full backlogging) is presented. The algorithm starts with a given (s; S) policy and

evaluates a sequence of policies, and converges to an optimal one in a �nite number of

iterations.

In Zheng&Federgruen (1991), a new algorithm for computing optimal (s; S) policies

is derived based upon a number of new properties of the in�nite horizon cost function

c(s; S) as well as a new upper bound for optimal order-up-to levels S� and a new lower

bound for optimal reorder levels s�. In other words, Zheng&Federgruen (1991) propose

a simple and ef�cient algorithm that searches directly on (s; S) plane. While improving

the average cost c(s; S), the search moves vertically up and horizontally right to upgrade

the s and S values at each step until reaching the optimal s�; S� pair. The algorithm's

computational complexity is 2.4 times that required to evaluate a single (s; S) policy and

this algorithm can be applied both to periodic review and continuous review inventory

systems. Zheng&Federgruen de�nes:

D = the one-period demand (random variable);

pj = Pr fD = jg, j = 0; 1; 2; :::;

K = the �xed cost to place an order;

G(y) = the one-period expected costs where,
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G(y) =

8>>>><>>>>:
Ch �

yX
d=0

(y � d) � Pr(D = d) + Cp �
1X

d=y+1

(d� y) � Pr(D = d) for y � 1

Cp �
1X
d=0

(d� y) � Pr(D = d) for y < 1

After de�ning this G function, the long-run average cost c(s; S) is calculated as:

c(s; S) =M(S � s)K +

S�s�1X
j=0

m(j)G(S � j)

where

m(0) = (1� p0)�1

M(0) = 0

m(j) =

jX
l=0

plm(j � l); j = 1; 2; :::

M(j) = M(j � 1) +m(j � 1); j = 1; 2; :::

Feng&Xiao (2000) uses the method that Zheng&Federgruen (1991) introduced, and

proposes a new approach to solve the optimal (s; S) inventory policy. A dummy cost factor

and an auxiliary function were introduced in this paper. The algorithm searches for the

optimal dummy cost through continuously evaluating the auxiliary function.

Daniel&Rajendran (2005) studies the performance of a single-product serial supply

chain operating with a base-stock policy and optimizes the inventory levels in the supply to

minimize the total supply chain cost with holding and shortage costs. A genetic algorithm

is proposed to optimize the base-stock levels with the objective of minimizing the sum of

holding and shortage costs in the entire supply chain. Simulation is used to evaluate the

base-stock levels generated by the genetic algorithm. The effectiveness of this algorithm is

compared with a random search procedure. Optimal base-stock levels are obtained through
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complete enumeration of the solution space and compared with those yielded by this algo-

rithm. It is found that the solutions generated by the proposed algorithm do not signi�cantly

differ from the optimal solution obtained through complete enumeration for different sup-

ply chain settings, thereby showing the effectiveness of the proposed algorithm.

Heuristics (For known demand distribution):

Asmentioned before, there are also some papers that introduce heuristics to �nd the optimal

pair of (s; S). Naddor (1975) derives a heuristic decision rule that computes optimal s�

and S� values. The rule requires the knowledge of the mean and standard deviation of

demand, probability of no demand, carrying and replenishing costs, desired availability, and

leadtime. Ehrhardt (1979) presents an analytic approximation for computing (s; S) policies

for single items under periodic review with a set up cost, linear holding and shortage costs,

�xed lead time, and backlogging of un�lled demand. He calls the approximation as the

"Power Approximation". By that approximation, it is very easy to compute the optimal s

and S values by only knowing the mean and the variance of the demand.

The Power Approximation is de�ned as follows:

Let �L = (L+ 1)� and �L = �
p
L+ 1:

Then,

qp = 1:463�0:364(k=h)0:498�0:138L ;

z = fqp=[(1 + p=h)�L]g0:5;

sp = �L + �
0:832
L (�2=�)0:187(0:220=z + 1:142� 2:866z)
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And if qp=� is greater than 1.5, then s� = sp and S� = sp + qp. If demands are to be

integer values, sp and qp values are rounded to the nearest integer.

Ehrhardt (1984) introduces the Revised Power Approximation. In Ehrhardt (1979),

it is likely that the accuracy of the Power Approximation will suffer when the variance of

demand is very small. Thus, a revised version of the Power Approximation is published.

The Revised Power Approximation is de�ned as follows:

Let �L = (L+ 1)� and �L = �
p
L+ 1:

Then,

qp = 1:3�0:494(k=h)0:506(1 + �2L=�
2)0:116;

z = [qp=(�L � p=h)]1=2 ;

sp = 0:973�L + �L(0:183=z + 1:063� 2:192z)

Roundy&Muckstadt (2000) study the problem of determining production quantities

in each period of an in�nite horizon for a single item produced in a capacity-limited facility.

The demand for the product is random, and it is independent and identically distributed

from period to period. Un�lled demand is backordered. A base stock or order-up-to policy

is used. They develop a new approximation for this distribution, and perform extensive

computational tests of existing approximations. Their new approximation works extremely

well as long as the coef�cient of variation of the demand is less than two.
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Retrospective Approaches (If demand distribution is not known):

All of the methods until this part, we had the assumption of knowing the demand distrib-

ution or at least the mean and the variance. After this part, some retrospective approaches

will be introduced. In Fu&Healy (1992), a periodic review (s; S) inventory system is con-

sidered. The problem in this paper considers the inventory control of an item which is

measured in continuous units. The in�nite horizon problem is considered and simulation is

used to �nd the optimal s and S values that minimize the average cost per period. The gen-

eral assumptions of this paper are; general independent and identically distributed (i.i.d.)

continuous demands, zero lead time, full backlogging of orders, and linear ordering, hold-

ing and shortage costs.

Two approaches are introduced in this paper: a deterministic "retrospective" algo-

rithm and a gradient-based, steepest-descent algorithm. The more important approach is

the second one which involves estimating the gradient of the performance measure of in-

terest and adjusting the parameters according to the gradient during the evolution of the

simulation. The simulation terminates when the gradient is "close enough" to zero. As

L'Ecuyer (1991) states, there are two main techniques for gradient estimation; perturbation

analysis and likelihood ratio. Perturbation analysis is a technique for gradient estimation

from a single simulation of a discrete-event system.

The perturbation analysis estimators for continuous demand is derived in Fu (1994)

and PA algorithms for @J=@s and @J=@q (for continuous demand and zero lead time) are

given where J denotes the average cost per period.
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In Fu (1994), sample path derivatives of performance measures were derived for

(s; S) inventory systems. The objective is again to �nd optimal s and S values that mini-

mize the average total cost. In this paper, nondiscounted periodic review system with i.i.d

continuous demands, full backlogging, constant lead time and general holding, shortage

costs are considered. The approach is sample path analysis with the focus on sample path

derivatives. Since it deals with derivative estimation, the paper assumes that demands take

continuous values. Also, in this paper Fu focuses on in�nitesmall perturbation analysis

(IPA) and smoothed perturbation analysis (SPA) for �nding the estimators of s and S.

Fu&Healy (1997) utilizes the perturbation analysis estimators derived in Fu (1994)

for zero lead time. In this paper, two approaches (gradient-based methods and retrospective

approach) for the optimization of a periodic review (s; S) inventory systems are compared,

and a Perturbation Analysis algorithm that combines these two approaches is proposed.

Glasserman&Tayur (1995) develop simulation-based methods for estimating sensi-

tivities of inventory costs with respect to policy parameters. They consider capacitated,

multiechelon systems operating under base-stock policies and develop estimators of deriv-

atives with respect to base-stock levels. They formulate and validate in�nitesimal per-

turbation analysis derivative estimates for multiechelon capacitated production-inventory

systems. It means that they introduce appropriate algorithms and show that they converge

to the correct values. The convergence is shown over the number of independent simula-

tion runs for derivatives of �nite-horizon costs and over an in�nite horizon for derivatives

of steady-state costs. The model can be de�ned as a periodic-review, continuous-demand,

�xed lead time multiechelon system with limited production capacity at each stage. There
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are linear holding and shortage costs, all unsatis�ed orders are backlogged, where there is

no �xed ordering cost. When compared with Fu (1994), Fu's estimator is more complex

than the Glasserman&Tayur's estimator.

Zhao&Melamed (2004) considers single-stage, single-product Make-to-Stock sys-

tems with random demand and random service (production) rate, where demand shortages

at the inventory facility are backordered. IPA (In�nitesimal Perturbation Analysis) gradi-

ents of various performance metrics are derived with respect to parameters of interest and

are showed to be easy to compute.

In all of the papers de�ned in this section, the main purpose is to �nd the optimal

(s; S) pair. For that purpose, this thesis will present a method named Perturbation Analysis

and this method will �nd the optimal inventory control parameters by calculating the delta

costs of neighbor points by only one simulation.
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CHAPTER 3 

 

PERTURBATION ANALYSIS 

METHODS FOR OPTIMIZATION OF 

POLICY PARAMETERS 
 

3.1 Perturbation Analysis Algorithms 

Perturbation Analysis is a technique for gradient estimation from a single simulation. 

For Perturbation Analysis algorithms, q=S-s will be defined for simplifications. 

 

 As can be seen from the graph above, the aim is to find the costs of four 

neighbors of point (s,q) by only making the simulation for (s,q). Firstly the Perturbation 

Analysis Algorithm is applied to the parameter s to calculate the delta costs of (s-1,q) 

and (s+1,q). After that, the delta costs of (s,q+1) and (s,q-1) are calculated by 

Perturbation Analysis on q parameter. Detailed information about these algorithms can 

be found below. 
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3.1.1 Perturbation Analysis on "s" (Algorithm 1)

In this algorithm, the perturbation is done on "s". It means that we leave the S � s value

(q value) constant and perturbate the system on s to determine the descent direction for the

given constant q.

Perturbation on s one by one (Constant q)

Figure that is above shows the effect on sample path where q is �xed and s is per-

turbed. Red lines denote the On-Hand Inventory when s = 6; q = 9. Green lines denote

the On-Hand Inventory when s = 7; q = 9, and blue lines denote the On-Hand Inventory

when s = 5; q = 9: It can be easily seen that a perturbation in s shifts the entire sam-

ple path by the same perturbation. When s is perturbed by 1 unit, all of the sample path
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is perturbed 1 unit. It means that, when we change s value and keep q value constant, the

ordering policy does not change, i.e., we still order the same amount at the same periods.

The effect of increasing s is to increase the on hand inventory or to decrease the shortage

amount resulting with the change in cost determined by the following algorithm.

Algorithm 1:

The �owchart of Algorithm 1 can be found in Appendix A.

3.1.2 Perturbation Analysis on "q" (Algorithm 2)

In this section s value is kept constant and q value is perturbed.
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As seen from the �gure above, the perturbation in q may result with a major change

on the sample path. Thus, the ordering policies change, i.e. in perturbed path an order may

be placed where there was no order in the nominal path.

In the table below, the policy (s = 1; S = 61) is perturbed to become (s = 1; S = 62)

for the case of zero Lead Time.

In the table above, the �rst row is the demand occured that period. The second row

is the Ending Inventory if (s; S) policy is used (Nominal Path). The third row shows the

Inventory Position for (s; S) policy. And the last row is the Ending Inventory if (s; S + 1)

policy is used (Perturbed Path). To be short, POL1 will be used for (s; S) policy and POL2

will be used for (s; S + 1) policy afterwards. From the table above, we can also see the

following points:

Firstly, it is seen that we have to deal with "Delta" values to construct the perturbed

sample path. "Delta" value can be de�ned as the value in the fourth row minus the value

in the second row (how many more units to hold in the perturbed path compared to the

nominal path). At the beginning, the perturbed path can be easily calculated as the previous

section (only one unit difference between the two paths). However, after some point, the
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perturbed path starts to become different from the nominal path. When the path is analyzed

carefully, it can be seen that the system starts to get out of order ("delta" values change)

after the numbers with red circles in the third row. 61 is the S value of the nominal path.

Thus, we can see numerically that the perturbed path gets out of order when Inventory

Position reaches the S value. It means that when we reach the S value in POL1, we place

an order. However, the S value of POL2 is 62, i.e. we do not place an order in POL2 in the

cases where Ending Inventory falls exactly to s in POL1. So, there is an ordering change.

From now on, we focus on the "Delta" values. If POL1 orders and POL2 does not

order, we have a "Delta"=-59 for one period and after that period, we have a completely

different "Delta" value until we reach another red circle. When we reach the red circle, if

both policies order, everything becomes �ne, "Delta" again decreases to 1 and continues as

1 until reaching another red circle.

After calculating the perturbed path, things will become similar to Section 3.1.1.

We consider the cost differences if we increase or decrease q by 1, and try to solve this

optimization problem until we reach the optimal q value for the speci�c constant s value.

Algorithm 2:

The �owchart of Algorithm 2 can be found in Appendix B.

3.2 Finding Optimal (s*,q*) Pair

For �nding the optimal parameters by the perturbation analysis method, the cost graph

should be convex. Thus, the cost graph must be convex in s when q is �xed, and vice
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versa. Sahin (1982) showed that the cost graph is convex in s for �xed q values. Thus,

the perturbation analysis method can �nd the optimal s value by Algorithm 1. However,

there are no proofs for Algorithm 2's optimality. When s is �xed, there may be some

local optimal values such that the perturbation algorithm method can stuck on these values.

Since we have different demand sample paths in each period, the local optimal values, if

any, change from period to period. Thus, if there are some local optimal values, we can get

rid of them while the simulation runs long enough. The convergence to the global optimal

value can be satis�ed since the global optimal value remains the same in each period.

This chapter will be a combination of Section 3.1.1 and Section 3.1.2. In those sec-

tions, how to update one of the control parameters are discussed. In addition to this, by

using the methods in the mentioned sections, how to �nd the optimal pair will be discussed

in this section. s and q values will be updated one by one until the optimal pair is reached.

Firstly, we start with an arbitrary (s; q) pair. After that, using Algorithm 1, s value will be

updated to s+1, s or s�1. Then, we have the updated s+1 value and initial q value. Now,

we will perturbate on q value, and update it to q + 1; q or q � 1. The process continues on

until q and s values do not oscillate.

Algorithm 3:

� STEP1: Start with initial s and q values

� STEP2: Use Algorithm 1 and update s value (s+ 1, s or s� 1)

� STEP3: Use Algorithm 2 and update q value (q + 1; q or q � 1)
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� STEP4: if s and q values were both same at the previous iteration

s� = s and q� = q

else

go back to STEP2.

Example 1 Finding optimal (s; S) pair for the problem below by using Algorithm 3.

Demand ~N(5; 2): round the numbers to have integer demands, negative demands

are assumed to be zero

Lead Time: 1 day

Holding cost/unit: $0.1

Ordering cost: $1

Penalty cost/unit: $30

After starting with initial s = 5 and q = 5, s� = 15 and q� = 9 (S� = 24) is found

by running code in Appendix C. The optimal solution could be found in 15 iterations and

the �gure below shows the iterations from (5,10) to (15,24).
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Iterations on s and S

3.3 Initializing Perturbation Analysis Parameters

The Perturbation Analysis will be initialized with values that are the outputs of the Ehrhardt's

Heuristic. Thus, the Perturbation Analysis Algorithm will have two main stages:

1. Finding Rough Estimate by using Ehrhardt's Revised Power Approximation

2. Fine Tuning by Perturbation Analysis

As mentioned in Section 2.4, Ehrhardt introduces two heuristics that compute ap-

proximation of optimal sE and SE values with simple equations; Power Approximation

and Revised Power Approximation. These values are really good approximations of the
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optimal values. Both of these heuristics need the knowledge of mean and variance of the

demand distribution.

In this thesis, Ehrhardt's Revised Power Approximation will be used without the

knowledge of mean and variance. This new heuristic will work as follows; the demand will

be observed for some time period. The mean and the variance of this observed demand will

be calculated and these calculated values will be used to �nd the optimal s and S values.

After that period, the policy parameters will be updated and the new mean and variance will

be calculated with the new demand data. The MATLAB Code of the Ehrhardt's Heuristic

can be found in Appendix D.

The main issue is why to use Ehrhardt's Revised Power Approximation to initial-

ize the problem. For running the Perturbation Analysis Algorithm, it is a must to start

with some initial values. Ehrhardt's Revised Power Approximation is a very good approx-

imation for the optimal parameters. It cannot always �nd the optimal but is a really good

approximation that only requires some nanoseconds. If the Ehrhardt's Revised Power Ap-

proximations is not used, you have to start from an initial point; let's say (10; 30): Then,

the Perturbation Analysis will work as the graph below:
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However, if the Ehrhardt's Revised Power Approximation were used to initialize the

values, the following graph would be obtained:
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As can be seen, the PA Algorithm can �nd the optimal solution in both cases. How-

ever, since the PA Algorithm can update itself one by one, it takes some time to reach the

optimal solution in the �rst case. Thus, initializing the (s; S) values by Ehrhardt's Revised

Power Approximation Method is very advantageous. The graph converges to the optimal

value in the 6th period. However, after a while, the S value again starts to oscillate because

of different demand sample paths. If the sample path was always the same, after the con-

vergence there would be no more oscillations. The converged value would be the optimal

value where the Perturbation Analysis method cannot move in either sides for the same

demand data.
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To conclude, the Perturbation Analysis Algorithm works in the following way:

� STEP1: Determine a short time period, R (i.e. 7 days)

� STEP2: Observe the problem environment for R days

� STEP3: Calculate the mean and variance of the demand for the �rst R days

� STEP4: Use Ehrhardt's Heuristic to calculate the approximate values of sE and SE ,

and start with s = sE and q = SE � sE

� STEP5: Use Algorithm 1 and update s value (s+ 1; s or s� 1)

� STEP6: Use Algorithm 2 and update q value (q + 1; q or q � 1)

� STEP7: if s and q values were both same at the previous iteration

s� = s and q� = q

else

go back to STEP5
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CHAPTER 4  

 

SIMULATION 
 

4.1 Logical Model 

The logical model of the problem can be summarized as the figure below: 

 

 
 

As seen from the figure, there are mainly three types of events in our problem; 

order arrival event at the beginning of the day, demand event during the day, and 

inventory review event at the end of the day. 

Orders arrive at the beginning of the working days. If there is a lead time of zero, 

the orders arrive in the following morning. On the other hand, the orders will not arrive 

before the lead time passes. At the beginning of the first day, no orders arrive since no 

orders were given before. Demands occur during the whole day as integers. Random 

demands occur in the problem and the distribution of the demands can be any kind of 

distribution or may have empirical distribution. Thus, during the day, demand D occurs 

and the ending inventory of the first day becomes "S-D". Inventory position also 

becomes "S-D". 
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The inventory is reviewed at the end of every day. At the end of the day, the inventory

position is calculated and order is given if the inventory position is below or equal to s. "S�

Inventory position" units are ordered and waiting orders is updated. Since order is given,

the new inventory position will be S. The inventory on hand is also calculated when the

shop is closed. Then, we calculate the cost of the �rst day from the inventory level. If we

have inventory on hand, we will have holding cost at the end of the �rst day. On the other

hand, if there are unsatis�ed demands, there will be penalty cost at the end of the day. Also,

an ordering cost will be applied if we have given an order.

The objective of the problem is to choose s and S values such that the summation of

the daily costs is minimized.

The general �owchart of the problem can be seen in Appendix E.

Numerical Example

To visualize the problem, a simple numerical example is given below. The example is given

for a period of 10 days and the (s; S) values are de�ned as (10,15). We have a constant

Lead Time of 2 days and demand is uniformly distributed between 1 and 10 units. Demands

arrive as integers and the costs are de�ned as; holding cost/unit=$1, penalty cost/unit=$100,

ordering cost=$10.

As shown from Figure 4.1 and 4.2, at the beginning of day one, the beginning inven-

tory is 15. During day one, 8 units are demanded. Since we had inventory on hand, we

have sold all of the 8 items to the customers and at the end of the day we have remaining

7 items on inventory. We order S � Y1 (15-7=8) items since the "inventory position" is be-
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Fig. 4.1. Numerical Example of Inventory Simulation for s=10, S=15

low the s value. For the �rst day, the cost calculation is done as follows; we have 7 units in

inventory, which means a cost of 7x(unit holding cost)=$7. We have no shortages; thus no

costs occur from shortages. On the other hand, since we have given an order, an ordering

cost (=$10) is also occurred. As can be seen, at the end of �rst day, we have a total cost of

$17.

After the �rst day, the second day starts. We had an inventory of 7 units from the �rst

day. Also we had ordered 8 items the day before. However, since the leadtime is 2 days, we

do not receive any orders this day. At the end of second day, we have a 1 unit inventory on

hand, and order 6 items since the "inventory position" is 9 which is less than the "s value".
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Fig. 4.2. Inventory Simulation Example

Similarly, at the end of the third day, we have 4 backlogged units. From these short-

ages, we have a cost of 4x(unit shortage cost)=$400. At the beginning of fourth day, the

orders given in �rst day are received. And by these manner, the simulation continues. For

these 10-days simulation, we have an average cost of $99.5. The algorithms de�ned in

Chapter 3.1, calculates the optimal s and S values that minimize this average cost by using

the method of Perturbation Analysis.

4.2 Simulation Models

Several simulation models were constructed to simulate the problem environment.
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� ARENA Model: An ARENA Model was constructed to simulate the problem

environment. The distribution of the demand, s; S values, the cost rates, and the

lead time are given into the system as the inputs. The outputs are number of holding

inventories, number of shortages, number of orders, and the totalcost. The ARENA

model can be seen in Appendix F.

� EXCEL Model: In the EXCEL Model, the inputs are the same as the ARENA

model. However in this model, the outputs can be seen period by period. For

example, it can be seen how many units were backordered in 17th period, what is the

total cost of 26th period, etc. Also the probability of shortage can also be seen in this

model. The EXCEL model can be seen in Appendix G.

� MATLAB Model: The MATLAB model works the same way with the EXCEL

model. However, it works much faster when compared to the EXCEL Model. Thus,

the MATLAB model will be used in the following applications. The MATLAB code

that models the simulation can be found in Appendix H.
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CHAPTER 5  

 

NUMERICAL EXAMPLES 
 

In this chapter, the Perturbation Analysis Algorithm defined in Section 3.3 will be used 

for different types of demand distributions. The aim of this chapter is to show that the 

algorithms introduced in this thesis can find the optimal solutions for all different types 

of demand distributions. In addition to this, the adaptability of the methods will be 

compared. Adaptability means to find out the new optimal policy parameters after a 

sudden change in demand. 

Three new parameters will be introduced in this chapter;   

• Delta Day (δ): Period Length (in days) 

• Period (Φ): Simulation Length (in periods) 

• Demand Period (γ): Moving window's size (in periods) 

δ is the time period that a single policy is run. After δ day passes, the (s,S) 

parameters will be updated and the second Φ starts. As can be understood, Φ is the time 

period of δ. To give a simple example, lets take δ = 7 days, and Φ = 30. Then, the 

parameters will be updated in every 7 days, and the total runtime will be 210 days. 

γ is the time that is used to compute the new optimal parameters. For example, if 

we have δ =7 days, γ= 3, the new (s,S) parameters will be calculated by observing the 

last 21 days' demand history. When γ is larger, iteration number to find the optimal pair 

will be less. On the other side, when you have very large γ, then the adaptability of the 

code will be worse. The effects of these parameters will be seen in Section 5.1 and 

Section 5.3. 
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In this chapter, �rstly, the demand distribution will be taken as Poisson Distribution.

In this section, I will compare my results with the results of Zheng&Federgruen (1991) to

discuss about the optimal solution. Also, the effects of � and  values will be discussed in

this section.

After that section, the algorithm will be tested with Discrete Uniform and Discretized

Normal distributions, respectively. Also, a demand distribution that is created by compo-

sition method (Poisson(10) with 40% probability and Poisson(25) with 60% probability)

will be taken as the input; and it will be shown that the algorithm can also work with em-

pirical distributions. In all of these examples, the Perturbation Analysis Algorithm will

be compared to the Retrospective Integer Programming Method and Ehrhardt's Heuristic.

Retrospective Integer Programming Method uses the past data and �nds the optimal (s; S)

pair by using integer programming. This problem is solved in GAMS environment and the

GAMS code can be found in Appendix I.

Finally, at the last section of this chapter, the mean of the demand distribution will

change suddenly after some time, and the adaptability of the Perturbation Analysis Algo-

rithm, Retrospective Integer Programming Method and Ehrhardt's Heuristic will be com-

pared for different � and  values.

5.1 Poisson Distribution

In this section, Poisson Distribution with mean 10, and with mean 25 will be taken as the

demand distributions. Zheng&Federgruen (1991) studied about the Poisson Distribution

and founded the following results:
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� s� S� c�

10 6 40 35:022
25 19 56 54:262

The table shows that, for Poisson(10), the optimal solution is found as (6; 40) with an

average cost of 35:022. When the mean is 25, the optimal solution becomes (19; 56)with an

average cost of 54:262: The costs are taken as; holding cost rate h = 1, penalty cost rate p =

9, and �xed setup cost K = 64 with no leadtime (L = 0). In this section, to compare the

Perturbation Analysis Algorithm with the algorithm de�ned in Zheng&Federgruen (1991),

in all of the examples the input parameters will be taken as given above (h = 1; p = 9;

K = 64; L = 0).

5.1.1 Poisson Distribution (10) with No Lead Time

The optimal (s; S) parameters are found as (6; 40) in Zheng&Federgruen (1991) for the

input parameters de�ned above. As de�ned in Section 3.3, the Perturbation Analysis Al-

gorithm initializes the s and S values with the Ehrhardt's Algorithm. While the Ehrhardt's

Heuristic is run for the �rst Period, sE = 7; SE = 41 is found. Thus, the algorithm starts

with s(1) = 7; S(1) = 41: Then, different sample paths are generated for each runs. The

output of Perturbation Analysis Algorithm for 20 runs can be seen in Fig.J.1-Fig.J.2 in

Appendix J.

For  = 3; when we look at the graphs Fig.J.2, Fig.J.4, Fig.J.6, it is seen that the

optimal values oscillate a lot, and in the periods, the algorithms �nd different optimal values

in different runs. When we look at the ensemble average graph (Fig.J.8), it is seen that the

average values in Perturbation Analysis Algorithm converges to the optimal values. There
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is a dispersity because of the small  value. It means that the algorithms only take the

previous 3 Periods' history and it cannot be enough to �nd the exact optimal values. When

the algorithms' cost are compared (Fig.J.10), it can be seen that the Perturbation Analysis

Algorithm has the smallest cost where the Ehrhardt's Heuristic has the largest cost.

When the  value is increased, the optimal (s; S) values start to oscillate near the

optimal values in Perturbation Analysis Algorithm (Fig.J.1). All of the runs give the same

optimal (s; S) values after some time. The Retrospective Integer Programming Method

and the Ehrhardt's Heuristic also converge to some value, but they are not the optimal

values (Fig.J.3, Fig.J.5). Ehrhardt's Heuristic overestimates the (s; S) values where the

Retrospective Integer Programming Method usually underestimates. When looked at the

cost functions, Fig.J.9, as in the �rst part Perturbation Analysis Algorithm gives the least

cost where Ehrhardt's Heuristic gives the most.

5.1.2 Poisson Distribution (25) with No Lead Time

This part is another example for the Poisson distribution. In Zheng&Federgruen (1991),

the optimal solution is calculated as (19; 56) and by the Perturbation Analysis Algorithm,

the graphs (Fig.J.11, Fig.J.12) in Appendix J are obtained after 20 runs.

The analysis made in Subsection 5.1.1 are also correct for this subsection. When

the  value is small, the optimal solutions of the algorithms oscillate a lot. However, the

ensemble average of the Perturbation Analysis Algorithm converges to the optimal values

(Fig.J.18). When this value is increased, the algorithms start to get better results. In ad-

dition to this, Ehrhardt's Heuristic again overestimates the policy parameters and can only
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�nd values that are near optimal, not optimal. (Fig.J.13 - Fig.J.14) The Retrospective Inte-

ger Programming Method usually underestimates the policy parameters (Fig.J.15, Fig.J.16)

and the Perturbation Analysis Algorithm, again, has the minimum cost (Fig.J.19, Fig.J.20).

Zheng&Federgruen analyze 24 examples in their paper. I had also run all of these

examples with the Perturbation Analysis Algorithm, Ehrhardt's Heuristic, and Retrospec-

tive Integer Programming Method, and found the following results (these results are the

averages of 20 runs for each example):

In the table above, the green color represents optimal values, yellow values represent

the values that are above optimal and the red color represents the values that are below the

optimal. It is easy to see that the Perturbation Analysis Algorithm can �nd the same op-
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timal solutions as Zheng&Federgruen's Algorithm for all of the 24 examples. Ehrhardt's

Heuristic always overestimates the policy parameters and Retrospective Integer Program-

ming Method usually underestimates.

5.2 Comparison with Other Algorithms

In this section, several demand distributions will be compared by other algorithms; i.e.

Ehrhardt's Heuristic and Retrospective Integer Programming Method. The aim is to check

whether the algorithms can �nd the optimal solutions for these distributions.

5.2.1 Uniform Distribution (0,10) with Lead Time=1 Day

In this section, Discrete Uniform Distribution with minimum value of 0, and maximum

value of 10 is taken as the demand distribution.

By running the algorithms presented in this thesis, the following results are obtained:

After running the code which is in Appendix H, the optimal s� and S� values are

found as 15 and 24 in a time of 40.12 seconds. It means that when all of the (s; S) pairs'

cost is calculated, the minimum cost will be satis�ed with the (15; 24) pair.

For this distribution, as seen from Fig.J.21-Fig.J.22 Perturbation Analysis Algorithm

again converges to the optimal parameters and has the minimum cost when compared to

the other two methods.
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5.2.2 Normal Distribution (5,1) with Lead Time=1 Day

In this section, Normal Distribution is taken as the demand distribution with the parameters

of Mean=5, Std.Dev=1. Since normal distribution is a continuous distribution, the values

had been rounded to the nearest integer to have integer valued demands, and the negative

demands will be taken as no-demand.

By running the algorithms presented in this thesis, the following results are obtained:

After running the code which is in Appendix H, the optimal s� and S� values are

found as 11 and 18. It means that when all of the (s; S) pairs' cost is calculated, the

minimum cost will be satis�ed with the (11; 18) pair.

Again for the Normal Distribution, the Perturbation Analysis Algorithm converges

to the optimal parameters and has the minimum cost when compared to the other two

methods. The �gures (Fig.J.23-Fig.J.24) can be seen in Appendix J.

5.2.3 Empirical Distribution

In this section, the demand distribution does not have a speci�c distribution. This distri-

bution is a combination of Poisson(10) and Poisson(25) distributions with 40% and 60%

probabilities, respectively where the demand distribution is created by the Composition

Method. In this case, all of the three algorithms can work well since all of them use the

previous data, without the knowledge of variance and mean. The optimal values of the

(s; S) parameters are found by the code in Appendix H and the optimal (s�; S�) values are

found as (14; 49): Perturbation Analysis Algorithm has the minimum cost when compared
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by the other two methods. The graphs about this section (Fig.J.25-Fig.J.26) can be seen in

Appendix J.

5.3 Adaptability

For the adaptability issue, in the �rst 20 periods the demand distribution is taken as POI(10).

After the 21st period, the demand distribution changes to POI(25). In this section, the aim

is to check if the methods can adapt themselves to the sudden demand changes.

5.3.1 � = 15 Days,  = 3 Periods

When  value is very small, from Fig.J.27-30, it is seen that all of the methods (Perturbation

Analysis Algorithm, Retrospective Integer Programming Method and Ehrhardt's Heuristic)

are all adaptive for sudden changes. When we analyze the rate of adaptability, it is seen

that the Perturbation Analysis Algorithm cannot adapt itself as quick as the other methods.

It is an expected result since the Perturbation Analysis Algorithm can update itself one

by one. The Retrospective Integer Programming Method and Ehrhardt's Heuristic update

themselves very quickly since they only consider the last three periods' demand data. On

the other hand, all of the algorithms cannot converge to a single value quickly. It means that

when the  value is very small, the methods cannot converge to the optimal value quickly

but the adaptability for sudden demand changes is quite good.

When the ensemble averages of the 20 runs are considered (Fig.J.30), it is seen that

the average optimal values of Perturbation Analysis Algorithm converge to the real optimal
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values. On the other hand, Ehrhardt's Heuristic overestimates and Retrospective Integer

Programming Method underestimates the optimal values as also discussed in Section 5.1.

5.3.2 � = 15 Days,  =All History

When we keep the � same but only increase the  value, it is seen that convergence rate

decreases (Fig.J.31-34).

For the Perturbation Analysis Algorithm, the S value starts to converge around a

value in 35th period where it was 33rd period in Section 5.3.1. The s value also starts to

converge around a value in 39th period where it was 35th period in the previous section.

The change of the convergence rate can be seen better in Ehrhardt's Heuristic. That

method could converge in �ve periods when  was very small. However, when it is in-

creased, it needs about ten periods to converge to the new values.

On the other hand, the values oscillate in speci�c values instead of a big range of

values when the  value is increased. When looked at Fig.J.28, the S value in Perturbation

Analysis Algorithm converges to values between 54-58 when  value was small. However

in Fig.J.32, the algorithm converges to only three values; 55, 56, 57.

The ensemble average graph is very similar to the previous section. Perturbation

Analysis Algorithm can converge to the real optimal value where Ehrhardt's Heuristic over-

estimates and Retrospective Integer Programming Method underestimate.
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5.3.3 � = 90 Days,  =All History

In this section, the effect of � will be analyzed. From Fig.J.35-38, it is seen that when

the � value increases, convergence to a single value can be satis�ed earlier since much

more days' demands are observed. After observing 90 days' demand, the (s; S) values

are updated and it helps to converge to a speci�c value. The disadvantage of increasing �

cannot be seen from the graph. However, when the � is taken as a big value, then the s, S

values cannot be updated for a large number of days and it decreases the �exibility of the

inventory policy since the period time increases.
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE 

DIRECTIONS 

 
Inventory policies are used to determine when and how many units to order. For the 

periodic review policies, the most common inventory policy is the (R,s,S) policy. In this 

policy, it is known that if the parameters of the system are chosen appropriate, there is 

always an optimal solution, i.e. the expected period cost can be minimized. 

For finding the optimal policy parameters, if the demand distribution is known, 

exact methods and heuristics are used in the literacy. In this thesis, it is assumed that 

the demand distribution is not known. The mean and the variance of the demand 

distribution are also not known. For this case, a perturbation analysis based method is 

introduced. This method (Perturbation Analysis Algorithm) initializes itself from a 

heuristic named Ehrhardt's Revised Power Approximation. After the initialization, the 

method anticipates the sensitivity of (s,S) parameters to the period cost and updates 

itself to find the optimal (s*,S*) pair. 

The outputs of Perturbation Analysis Algorithm were firstly compared with the 

results of Zheng&Federgruen (1991) for the Poisson Distribution. In all of the twenty-

four examples, the Perturbation Analysis Algorithm could find the same optimal values. 

After that, the Perturbation Analysis Algorithm was compared by two other methods, 

Ehrhardt's Heuristic and Retrospective Integer Programming Method for several 

demand distributions, including the empirical distribution for twenty runs. In all of the 

examples, the Perturbation Analysis Algorithm could oscillate on the optimal solution.  
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When the ensemble average of these twenty runs are taken, the Perturbation Analysis

Algorithm can �nd the real optimal (s�; S�) values. On the other hand, Ehrhardt's Heuris-

tic always overestimates the optimal values where the Retrospective Integer Programming

Method usually underestimates. When the cost graphs were compared, in all of the cases,

Perturbation Analysis Algorithm gives the minimum cost.

Adaptability to sudden demand changes was also discussed. When a sudden de-

mand change occurs, all of the three methods can adapt themselves to the new demand

distribution. However, the Perturbation Analysis Algorithm adapts itself very slowly when

compared with the other two methods. This is an expected result since the Perturbation

Analysis Algorithm, by de�nition, can update itself one by one while the others can update

themselves suddenly. On the other hand, the Perturbation Analysis Algorithm again �nds

the optimal value after a time and oscillates there where the other two methods oscillate in

near-optimal values.

To conclude, the algorithm de�ned in this thesis works really well for all kinds of dis-

tributions and does not require any knowledge of the distribution, mean or variance. It can

adapt itself to demand changes and always �nds the optimal solution. Another advantage

of this algorithm is, it �nds the optimal solution in a very short time. The Complete Enu-

meration Method �nds the optimal solution in 3-4 minutes (with MATLAB code) and the

Retrospective Integer Programming Method solves in several hours (with GAMS code);

however, the Perturbation Analysis Algorithm �nds the solution in average of 7 seconds.

There are also some future works that can be done for improving this algorithm. As

mentioned before, the weakest point of the algorithm is that it can adapt itself very slowly
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since it updates the values one by one. For that point, a �Step Size� can be de�ned and

while the cost difference between (s; q) and (s + 1; q) is very high, the s value can be

increased more than 1 (regarding to Step Size). By that way, the time to adapt to changes

would be decreased, but it may start not �nding the exact optimal point if Step Size is very

large.

Another solution would be to update the Perturbation Analysis Algorithm from the

output of Ehrhardt's Heuristic. This heuristic can not �nd the exact optimal point but

gives a point which is not so far from the optimal in a very short time. Thus, if a sudden

demand change has occurred, the Ehrhardt's Heuristic could be used for one period to re-

initialize the Perturbation Analysis Algorithm and then continue with Perturbation Analysis

Algorithm.

Another trade-off is about the � and  values. When these values are taken very

small, the algorithms cannot converge to a speci�c value. When these values are increased,

then the algorithms cannot adapt themselves quickly in sudden demand changes. Thus,

there may be some varying �,  values (not �xed). These values can increase if the de-

mand variance decreases for �nding the exact optimal solutions, and vice versa for quick

adaptability.
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Appendix A 
PA on “s” – Algorithm 1 
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Appendix B 
PA on “q” – Algorithm 2 
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Appendix C
Finding Optimal (s�; q�) Pair: Algorithm3.m

C.1 Main Code

clc

clear

global opts

global day

global D

global BegInv

global EndInv

global IP

global shortage

global order_amount

global WaitingOrders

global hold_array

global short_array

global holdingcost

global shortagecost

global orderingcost

global holdings
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global shortages

global totalcost

global totalcost_array

global order

global maxs

global loop

global L

global S

global s

global q

global Cs

global Co

global Ch

global TOTALCOST

load demNOR_5_1.mat

t=cputime;

day=20000;

q_array(1)=5;

s_array(1)=5;

q=q_array(1);

s=s_array(1);

L=2;
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Ch=1;

Cs=100;

Co=10;

maxs=50;

totalcost=0;

�nish=0;

loop=1;

while �nish==0

init

q=q_array(loop);

create_path

calc_cost1

der_s

s_array(loop+1)=s;

init

der_q_prep

calc_cost

%%%%%%%%% PA FOR Q %%%%%%%%%%

order1=zeros(1,day); % EndInv

order2=zeros(1,day); % PLUS

order3=zeros(1,day); % MINUS
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%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% for q+1 %%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%

for i=1:(L+1)

PL(i)=EndInv(i)+1;

end

IPplus(1)=PL(1);

if IPplus(1)<=s

IPplus(1)=s+q+1;

end

if (IPplus(1)==s+q+1 & D(1)>0)

order2(1)=1;

end

for i=1:L

IPplus(i+1)=IPplus(i)-D(i+1);

if IPplus(i+1)<=s

IPplus(i+1)=s+q+1;

end



C.1 Main Code 61

if (IP(i+1)==s+q & D(i+1)>0)

order1(i+1)=1;

end

if (IPplus(i+1)==s+q+1 & D(i+1)>0)

order2(i+1)=1;

end

end

delta=1;

for i=(L+2):day

if (order1(i-L-1)==0 & order2(i-L-1)==0)

PL(i)=EndInv(i)+delta;

elseif (order1(i-L-1)==1 & order2(i-L-1)==1)

delta=1;

PL(i)=EndInv(i)+delta;

elseif (order1(i-L-1)==1)

PL(i)=EndInv(i)+IPplus(i-L-1)-q-s;

delta=IPplus(i-L-1)-q-s;

elseif (order2(i-L-1)==1)

PL(i)=EndInv(i)+q+s+1-IP(i-L-1);
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delta=q+s+1-IP(i-L-1);

else

%

end

IPplus(i)=IPplus(i-1)-D(i);

if IPplus(i)<=s

IPplus(i)=s+q+1;

end

if (IP(i)==s+q & D(i)>0)

order1(i)=1;

end

if (IPplus(i)==s+q+1 & D(i)>0)

order2(i)=1;

end

end

%%%%%%%%%%%% COST FOR q+1 %%%%%%%%%%%%%%%
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holdingcost_plus=0;

shortagecost_plus=0;

orderingcost_plus=0;

for i=1:day

if PL(i)>0

holdingcost_plus=holdingcost_plus+PL(i)*Ch;

else

shortagecost_plus=shortagecost_plus-PL(i)*Cs;

end

if order2(i)==1

orderingcost_plus=orderingcost_plus+Co;

end

end

%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% for q-1 %%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%

for i=1:(L+1)

MIN(i)=EndInv(i)-1;

end
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IPminus(1)=MIN(1);

if IPminus(1)<=s

IPminus(1)=s+q-1;

end

if (IPminus(1)==s+q-1 & D(1)>0)

order3(1)=1;

end

for i=1:L

IPminus(i+1)=IPminus(i)-D(i+1);

if IPminus(i+1)<=s

IPminus(i+1)=s+q-1;

end

if (IPminus(i+1)==s+q-1 & D(i+1)>0)

order3(i+1)=1;

end

end

delta=1;
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for i=(L+2):day

if (order1(i-L-1)==0 & order3(i-L-1)==0)

MIN(i)=EndInv(i)-delta;

elseif (order1(i-L-1)==1 & order3(i-L-1)==1)

delta=1;

MIN(i)=EndInv(i)-delta;

elseif (order1(i-L-1)==1)

MIN(i)=EndInv(i)-(s+q-IPminus(i-L-1));

delta=s+q-IPminus(i-L-1);

elseif (order3(i-L-1)==1)

MIN(i)=EndInv(i)+q+s-1-IP(i-L-1);

delta=-(q+s-1-IP(i-L-1));

else

%

end

IPminus(i)=IPminus(i-1)-D(i);

if IPminus(i)<=s

IPminus(i)=s+q-1;

end
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if (IPminus(i)==s+q-1 & D(i)>0)

order3(i)=1;

end

end

%%%%%%%%%%%% COST FOR q-1 %%%%%%%%%%%%%%%

holdingcost_minus=0;

shortagecost_minus=0;

orderingcost_minus=0;

for i=1:day

if MIN(i)>0

holdingcost_minus=holdingcost_minus+MIN(i)*Ch;

else

shortagecost_minus=shortagecost_minus-MIN(i)*Cs;

end

if order3(i)==1

orderingcost_minus=orderingcost_minus+Co;

end

end
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TOTALCOST_PLUS=holdingcost_plus+shortagecost_plus+orderingcost_plus;

TOTALCOST_MINUS=holdingcost_minus+shortagecost_minus+orderingcost_minus;

COST_DIF_PLUS=TOTALCOST_PLUS-TOTALCOST;

COST_DIF_MINUS=TOTALCOST_MINUS-TOTALCOST;

if (COST_DIF_PLUS>=0 & COST_DIF_MINUS>=0)

q_array(loop+1)=q_array(loop);

elseif COST_DIF_PLUS>=0

q_array(loop+1)=q_array(loop)-1;

elseif COST_DIF_MINUS>=0

q_array(loop+1)=q_array(loop)+1;

else

if COST_DIF_PLUS<COST_DIF_MINUS

q_array(loop+1)=q_array(loop)+1;

else

q_array(loop+1)=q_array(loop)-1;

end

end

if loop>=2
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if (s_array(loop)==s_array(loop-1) & q_array(loop)==q_array(loop-1))

�nish=1;

optimals=s_array(loop);

optimalq=q_array(loop);

end

end

loop=loop+1;

end

time=cputime-t

optimals

optimalS=optimals+optimalq

%loop

plot(s_array+q_array,'g')

hold

plot(s_array,'b')

plot(q_array,'r')

title('BLUE=s, RED=q, GREEN=S')

C.2 Initialization (init.m)
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function init

global BegInv

global EndInv

global IP

global shortage

global order_amount

global WaitingOrders

global hold_array

global short_array

global totalcost_array

global order

global maxs

global S

global s

global q

global day

global holdingcost

global shortagecost

S=s+q;

BegInv=zeros(1,day);

EndInv=zeros(1,day);
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IP=zeros(1,day);

shortage=zeros(1,day);

order_amount=zeros(1,day);

BegInv(1)=S;

WaitingOrders=0;

order=0;

hold_array=zeros(1,maxs);

short_array=zeros(1,maxs);

totalcost_array=zeros(1,maxs);

holdingcost=0;

shortagecost=0;

C.3 Creating the Path (create_path.m)

function create_path

global day

global loop

global L

global S

global s

global q

global day
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global EndInv

global BegInv

global D

global WaitingOrders

global IP

global order

global order_amount

global shortage

S=s+q;

for i=1:day

EndInv(i)=BegInv(i)-D(i);

IP(i)=EndInv(i)+WaitingOrders;

if IP(i)<=s

order=order+1;

order_amount(i)=S-IP(i);

WaitingOrders=WaitingOrders+order_amount(i);

IP(i)=EndInv(i)+WaitingOrders;

end

if D(i)>BegInv(i)

shortage(i)=D(i)-BegInv(i);
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end

if i<=L

BegInv(i+1)=EndInv(i);

else

BegInv(i+1)=EndInv(i)+order_amount(i-L);

WaitingOrders=WaitingOrders-order_amount(i-L);

end

end

C.4 Calculating the Cost1 (calc_cost1.m)

function calc_cost1

global day

global EndInv

global Ch

global Cs

global Co

global order

global TOTALCOST

global holdingcost

global shortagecost

global orderingcost
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global holdings

global shortages

global shortage

holdings=0;

shortages=0;

for i=1:day

% holding cost

if EndInv(i)>0

holdings=holdings+EndInv(i);

else

% shortage cost

shortages=shortages+shortage(i);

end

end

holdingcost=holdings*Ch;

shortagecost=shortages*Cs;

orderingcost=order*Co;

TOTALCOST=holdingcost+shortagecost+orderingcost;

C.5 PA on "s" (der_s.m)

function der_s

global EndInv
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global day

global Ch

global Cs

global s

global orderingcost

global TOTALCOST

global opts

global holdings

global shortages

state1=0;

state2=0;

state3=0;

state4=0;

for i=1:day

if EndInv(i)>=0

state1=state1+1;

else

state2=state2+1;

end

if EndInv(i)>=1

state3=state3+1;

else



C.5 PA on "s" (der_s.m) 75

state4=state4+1;

end

end

holding_plus=holdings+state1;

hc_plus=holding_plus*Ch;

shortages_plus=shortages-state2;

sc_plus=shortages_plus*Cs;

totalcost_plus=hc_plus+sc_plus+orderingcost-TOTALCOST;

%%% for s-1

holding_minus=holdings-state3;

hc_minus=holding_minus*Ch;

shortages_minus=shortages+state4;

sc_minus=shortages_minus*Cs;

totalcost_minus=hc_minus+sc_minus+orderingcost-TOTALCOST;

if (totalcost_plus>0 & totalcost_minus>0)

opts=s;

elseif (totalcost_plus<=0)

opts=s+1;

elseif (totalcost_minus<=0)

opts=s-1;

else
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if (totalcost_plus<totalcost_minus)

opts=s+1;

else

opts=s-1;

end

end

s=opts;

C.6 Preparation for PA on "q" (der_q_prep.m)

function der_q_prep

global day

global EndInv

global BegInv

global D

global IP

global s

global order

global order_amount

global S

global WaitingOrders

global shortage

global L
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for i=1:day

EndInv(i)=BegInv(i)-D(i);

IP(i)=EndInv(i)+WaitingOrders;

if IP(i)<=s

order=order+1;

order_amount(i)=S-IP(i);

WaitingOrders=WaitingOrders+order_amount(i);

IP(i)=EndInv(i)+WaitingOrders;

end

if D(i)>BegInv(i)

shortage(i)=D(i)-BegInv(i);

end

if i<=L

BegInv(i+1)=EndInv(i);

else

BegInv(i+1)=EndInv(i)+order_amount(i-L);

WaitingOrders=WaitingOrders-order_amount(i-L);

end

end
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C.7 Calculating the Cost2 (calc_cost.m)

function calc_cost

global day

global EndInv

global Ch

global Cs

global Co

global order

global TOTALCOST

global holdingcost

global shortagecost

global orderingcost

for i=1:day

% holding cost

if EndInv(i)>0

holdingcost=holdingcost+EndInv(i)*Ch;

else

% shortage cost

shortagecost=shortagecost-EndInv(i)*Cs;

end

end

orderingcost=order*Co;
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TOTALCOST=holdingcost+shortagecost+orderingcost;



Appendix D
Ehrhardt's Heuristic Code

clc

clear

t=cputime;

load demNOR_5_2.mat

delta_day=30;

period=30;

dem_per=15;

h=1;

p=9;

K=64;

L=0;

for i=1:period

for j=1:(delta_day*i)

demand(j)=D(j);

end

day=min(dem_per,i)*delta_day;

difference=(delta_day*i)-day;

80
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for j=1:day

demand(j)=D(j+difference);

end

meannn=mean(demand);

varia=var(demand);

sigmaL=sqrt((L+1)*varia);

meanL=(L+1)*meannn;

Dopt=1.3*(meannn^0.494)*((K/h)^0.506)*(1+sigmaL^2/meannn^2)^0.116;

z=(Dopt/(sigmaL*p/h))^0.5;

sopt=0.973*meanL+sigmaL*(0.183/z+1.063-2.192*z);

Dopt/meannn;

sopt;

Sopt=sopt+Dopt;

opt_s(i)=round(sopt);

opt_S(i)=round(Sopt);

end

�gure

plot(opt_s,'gx')

hold
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plot(opt_S,'rx')
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Appendix E 
Flowchart 

 
 
 

 



Appendix F
ARENA Simulation Model
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Appendix G
EXCEL Simulation Model

EXCEL Simulation Model
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Appendix H
MATLAB Simulation Model

clc

clear

day=20000;

%%% Creating Demand

for i=1:day

D(i)=random('Normal',5,2);

D(i)=round(D(i));

if D(i)<0

D(i)=0;

end

end

L=2;

Ch=1;

Co=10;

Cs=100;

maxs=90;

maxS=100;

%%% Initializations

for i=1:maxs

86
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for j=1:maxS

holdingcost(i,j)=0;

shortagecost(i,j)=0;

orderingcost(i,j)=0;

end

end

for s=1:maxs

for S=s+1:maxS

BegInv=zeros(1,day);

EndInv=zeros(1,day);

IP=zeros(1,day);

shortage=zeros(1,day);

order_amount=zeros(1,day);

WaitingOrders=0;

BegInv(1)=S;

order=0;

for i=1:day

EndInv(i)=BegInv(i)-D(i);

IP(i)=EndInv(i)+WaitingOrders;

if IP(i)<=s

order=order+1;

order_amount(i)=S-IP(i);
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WaitingOrders=WaitingOrders+order_amount(i);

IP(i)=EndInv(i)+WaitingOrders;

end

if D(i)>BegInv(i)

shortage(i)=D(i)-BegInv(i);

end

if i<=L

BegInv(i+1)=EndInv(i);

else

BegInv(i+1)=EndInv(i)+order_amount(i-L);

WaitingOrders=WaitingOrders-order_amount(i-L);

end

end

%%% cost calculations

for i=1:day

% holding cost

if EndInv(i)>0

holdingcost(s,S)=holdingcost(s,S)+EndInv(i)*Ch;

end

% shortage cost

shortagecost(s,S)=shortagecost(s,S)+shortage(i)*Cs;

end
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% ordering cost

orderingcost(s,S)=order*Co;

totalcost(s,S)=holdingcost(s,S)+shortagecost(s,S)+orderingcost(s,S);

averagecost=totalcost/day;

end

end

%%% Finding the minimum average cost

for i=1:maxs

for j=1:maxS

if averagecost(i,j)==0 % where S<s

new_tot(i,j)=9999999999; % very large number

else

new_tot(i,j)=averagecost(i,j);

end

end

end

min_av_cost=min(min(new_tot));

%%% Finding the optimal (s,S) pair

for i=1:maxs

for j=1:maxS

if new_tot(i,j)==min_av_cost

opts=i;
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optS=j;

end

end

end

opts

optS



Appendix I
GAMS Code

$include 'D:n0607teznpartSONndemand.txt';

Scalars

h holding cost /1/

p shortage cost /100/

k order cost /10/

eval /0.000000000001/

Mval big M /100/;

Variables

j(i) cost of period i

x(i) inventory level at period i

y(i) inventory position at period i

o(i) outstanding orders at period i

q(i) order quantity at period i

r(i) received quantity at period i

Inda(i) order indicator at period i

Indb(i) secondary indicator at period i

z total cost

small reorder point

Slarge order-up-to level

91
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positive variables j,o,q,r;

binary variables Inda,Indb;

integer variables small,Slarge;

Equations

cost de�ne objective function

percosta(i) �rst equation for period cost

percostb(i) second equation for period cost

initx �rst period inventory level

xdyn(i) inventory level dynamics

inity �rst period inventory position

ydyn(i) inventory position dynamics

inito �rst period outstanding order dynamics

odyn(i) outstanding order dynamics

ordquana(i) �rst inquality for order quantity dynamics

ordquanb(i) second inquality for order quantity dynamics

ordquanc(i) third inquality for order quantity dynamics

con s and S relation

con2

initra

initrb

rdyn(i)

indadyn(i) Inda variable dynamics
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indbdyn(i) Indb variable dynamics

indabrel(i) Inda and Indb relation;

cost .. z=e=sum(i,j(i));

percosta(i).. j(i)=g=k*Inda(i)+h*x(i);

percostb(i).. j(i)=g=k*Inda(i)-p*x(i);

initx.. x('1')=e=Slarge-d('1');

xdyn(i)$(ord(i)>1).. x(i)=e=x(i-1)+r(i)-d(i);

inity.. y('1')=e=x('1');

ydyn(i)$(ord(i)>1).. y(i)=e=x(i-1)+o(i-1)-d(i);

inito.. o('1')=e=q('1');

odyn(i)$(ord(i)>1).. o(i)=e=o(i-1)+q(i)-r(i);

ordquana(i).. q(i)=g=(Slarge-y(i))-Mval*(1-Inda(i));

ordquanb(i).. q(i)=l=(Slarge-y(i))+Mval*(1-Inda(i));

ordquanc(i).. q(i)=l=Mval*Inda(i);

initra.. r('1')=e=0;

initrb.. r('2')=e=0;

rdyn(i)$(ord(i)>2).. r(i)=e=q(i-2);

con.. small =l= Slarge;

con2.. Slarge =l= 65;

indadyn(i).. Mval*Inda(i)=g=small-y(i)+1;

indbdyn(i).. Mval*Indb(i)=g=y(i)-small;

indabrel(i).. Inda(i)=l=1-Indb(i);
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Model sSinventory /all/;

Solve sSinventory using mip minimizing z ;

option small:3:0:1;

option Slarge:3:0:1;

display Inda.l,x.l,y.l,q.l,o.l,r.l,j.l;

Display small.l, Slarge.l ;
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Appendix J 
Outputs of Numerical Examples 

 
I.1. Poisson Distribution (10) 

 
Fig. J.1. (s*,S*) Graph for PA Alg. POI(10), γ=ALL HISTORY 

 

 
Fig. J.2. (s*,S*) Graph for PA Alg. POI(10), γ=3 
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Fig. J.3. (s*,S*) Graph for EHR Alg. POI(10), γ=ALL HISTORY 

 
 

 
Fig. J.4. (s*,S*) Graph for EHR Alg. POI(10), γ=3 
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Fig. J.5. (s*,S*) Graph for RIP Alg. POI(10), γ=ALL HISTORY 

 
 

 
Fig. J.6. (s*,S*) Graph for RIP Alg. POI(10), γ=3 
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Fig. J.7. Comparison of (s*,S*) Graphs for POI(10), γ=ALL HISTORY 

 
 

 
Fig. J.8. Comparison of (s*,S*) Graphs for POI(10), γ=3 
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Fig. J.9. Comparison of Cost Graphs for POI(10), γ=ALL HISTORY 

 
 

 
Fig. J.10. Comparison of Cost Graphs for POI(10), γ=3 
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I.2. Poisson Distribution (25) 
 

 
Fig. J.11. (s*,S*) Graph for PA Alg. POI(25), γ=ALL HISTORY 

 
 

 
Fig. J.12. (s*,S*) Graph for PA Alg. POI(25), γ=3 
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Fig. J.13. (s*,S*) Graph for EHR Alg. POI(25), γ=ALL HISTORY 

 
 

 
Fig. J.14. (s*,S*) Graph for EHR Alg. POI(25), γ=3 
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Fig. J.15. (s*,S*) Graph for RIP Alg. POI(25), γ=ALL HISTORY 

 
 

 
Fig. J.16. (s*,S*) Graph for RIP Alg. POI(25), γ=3 
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Fig. J.17. Comparison of (s*,S*) Graphs for POI(25), γ=ALL HISTORY 

 
 

 
Fig. J.18. Comparison of (s*,S*) Graphs for POI(25), γ=3 
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Fig. J.19. Comparison of Cost Graphs for POI(25), γ=ALL HISTORY 

 
 

 
Fig. J.20. Comparison of Cost Graphs for POI(25), γ=3 
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I.3. Uniform Distribution (0,10) 
 

 
Fig. J.21. Comparison of (s*,S*) Graphs for UNI(0,10) 

 
 

 
Fig. J.22. Comparison of Cost Graphs for UNI(0,10) 
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I.4. Normal Distribution (5,1) 

 

 
Fig. J.23. Comparison of (s*,S*) Graphs for NOR(5,1) 

 
 

 
Fig. J.24. Comparison of Cost Graphs for NOR(5,1) 
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I.5. Empirical Distribution 

 

 
Fig. J.25. Comparison of (s*,S*) Graphs for Empirical Distribution 

 
 

 
Fig. J.26. Comparison of Cost Graphs for Empirical Distribution 
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I.6. Adaptability 

 

 
Fig. J.27. (s*,S*) Graph for PA Alg., δ=15, γ=3 

 
 

 
Fig. J.28. (s*,S*) Graph for EHR Alg., δ=15, γ=3 
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Fig. J.29. (s*,S*) Graph for RIP Alg., δ=15, γ=3 

 
 

 
Fig. J.30. Comparison of (s*,S*) Graphs, δ=15, γ=3 
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Fig. J.31. (s*,S*) Graph for PA Alg., δ=15, γ=ALL HISTORY 

 
 

 
Fig. J.32. (s*,S*) Graph for EHR Alg., δ=15, γ=ALL HISTORY 
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Fig. J.33. (s*,S*) Graph for RIP Alg., δ=15, γ=ALL HISTORY 

 
 

 
Fig. J.34. Comparison of (s*,S*) Graphs, δ=15, γ=ALL HISTORY 
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Fig. J.35. (s*,S*) Graph for PA Alg., δ=90, γ=ALL HISTORY 

 
 

 
Fig. J.36. (s*,S*) Graph for EHR Alg., δ=90, γ=ALL HISTORY 
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Fig. J.37. (s*,S*) Graph for RIP Alg., δ=90, γ=ALL HISTORY 

 
 

 
Fig. J.38. Comparison of (s*,S*) Graphs, δ=90, γ=ALL HISTORY 

 
 
 




