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ABSTRACT

IMPLEMENTATION VIA CODE OF RIGHTS

YILDIZ, Kemal

M.A., Department of Economics

Supervisor: Prof. Semih Koray

JULY 2008

Implementation of a social choice rule can be thought of as a design of power

(re)distribution in the society whose ”equilibrium outcomes” coincide with

the alternatives chosen by the social choice rule at any preference profile of

the society. In this paper, we introduce a new societal framework for im-

plementation which takes the power distribution in the society, represented

by a code of rights, as its point of departure. We examine and identify how

implementation via code of rights (referred to as gamma implementation) is

related to classical Nash implementation via mechanism. We characterize

gamma implementability when the state space on which the rights structure

is to be specified consists of the alternatives from which a social choice is to be

made. We show that any social choice rule is gamma implementable if it sat-

isfies pivotal oligarchic monotonicity condition that we introduce. Moreover,

pivotal oligarchic monotonicity condition combined with Pareto optimality

is sufficient for a non-empty valued social choice rule to be gamma imple-

mentable. Finally we revisit liberal’s paradox of A.K. Sen, which turns out

to fit very well into the gamma implementation framework.

Keywords: Implementation, code of rights, Nash equilibrium, monotonicity,

iii



social choice rule

iv



ÖZET

HAKLAR YAPISI ARACILIĞIYLA

UYGULANABİLİRLİK

YILDIZ, Kemal

Yüksek Lisans, Ekonomi Bölümü

Tez Yöneticisi: Prof. Semih Koray

Temmuz 2008

Bir sosyal seçim kuralının uygulanması, her terçih profilinde denge sonuçları

ile sosyal seçim kuralı tarfından seçilen seçeneklerin örtüşmesini sağlayacak

kuvvet dağılımının tasarımı olarak düşünülebilir. Bu çalışmamızda, toplumda

haklar yapısı aracılığıyla temsil edilen kuvvet dağılımını hareket noktası alarak,

uygulama kuramı içn yeni bir toplumsal çerçeve sunuyoruz. Haklar yapısı

aracılığıyla uygulanabilirliğin(gama uygulanabilirlik olarak da isimlendirilmiş-

tir), mekanizma aracılığıyla klasik Nash uygulanabilirlikle olan ilişkisi ince-

lenmiştir. Üzerinde haklar yapısının belirleneceği durum uzayını yalnızca

aralarından toplumsal seçimin yapılacağı seçeneklerin oluşturduğu durumda

haklar yapısı aracılığıyla uygulanabilirliğin karakterizasyonu sunulmuştur. Her-

hangi bir sosyal seçim kuralının haklar yapısı aracılığıyla uygulanabilir ol-

ması için, tarafımızca ortaya atılan belirleyici oligarşik tekdüzelik koşulunu

sağlaması gerektiği gösterilmiştir. Bunun yanısıra, belirleyici oligarşik tekdüzelik

koşulu Pareto verimlilikle birlikte boş değerli olmayan bir sosyal seçim ku-

ralının gama uygulanabilir olması için yeterli olmaktadır. Son olarak da A.K.

Sen’e ait olan liberal ikilemi, incelenmesinin uygun düştüğü gözlemlenen hak-

lar yapısı çerçevesinde yeniden ele alınmıştır.
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Anahtar Kelimeler: Uygulama, Haklar Yapısı, Nash Dengesi, Tekdüzelik,

Sosyal Seçim Kuralı.
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CHAPTER 1

INTRODUCTION

In classical implementation a rights structure among the members of the so-

ciety can be induced from the mechanism, designed to implement a social

choice rule under the given solution concept. In other words, in classical im-

plementation we have an implicit specification of a power distribution among

the members of the society. In this thesis, we introduce a new institutional

design approach to implementation which explicitly specifies the rights struc-

ture in the society over the set of alternatives.

A constitution or a code of rights is used for the assignment of rights to the

members of the society.First in Arrow (1967) a notion of constitution, along

the same lines, is defined, where a ”well-behaved” social welfare function is

considered as a constitution. This notion leads to the conclusion of well known

Arrow’s Impossibility Theorem. In this study we define a code of rights as

a set valued function, which associates each ordered pair of alternatives with

a family of coalitions, indicating that each coalition in the specified family is

given the right to lead a switch from the first alternative to the second one.

In our framework code of rights is common knowledge, and is specified as

being invariant of preferences.

The definition for code of rights that we use in this thesis was introduced
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in Sertel (2002), where it is used as a design notion in the specification of

a Rechstaat. Parelelling the first and second welfare theorems of economics,

Sertel imparted to code of rights an invisible hand property and a property

of the preservation of the best public interest.

In a similar framework used in Sertel(2002), Peleg (1998) proposed a new

definition of constitution. This constitution specifies a rights structure among

the members of the society. Furthermore, Peleg (1998) investigated game

forms that represent the distribution of power which is dictated by this pre-

vailing rights structure in the society.

In classical implementation there are various examples indicating the con-

nection between monotonicity and implementability. Maskin (1977) showed

that any Nash implementable social choice rule is monotonic, and monotonic-

ity combined with some further assumptions as no veto power condition is

sufficient for Nash implementability. Danilov (1992), proposed an essential

monotonicity condition which turned out to be both necessary and sufficient

for Nash implementability with some further assumptions.

Kaya and Koray (2000) introduced the notion of oligarchy and oligarchic

monotonicity, where they show that; any oligarchic social choice rule satisfies

oligarchic monotonicity and oligarchic monotonicity combined with unanimity

condition is sufficient for a social choice rule to be oligarchic.

The organization of the thesis is as follows: In chapter 2 we introduce

the basic definitions and notation. Moreover, the relation between Nash im-

plementation and (A, γ)-implementation is examined in this chapter by the

given examples. In chapter 3, we introduce the pivotal oligarchic monotonic-

ity condition and related definitions and in sections 3.2 and 3.3 , (A, γ)-

implementation is characterized in terms of pivotal oligarchic monotonicity,

and Pareto optimality. In section 3.2, we show that any (A, γ)-implementable

social choice rule satisfies pivotal oligarchic monotonicity. The implemen-
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tation theorem is set in section 3.3, indicating that any non-empty valued,

Pareto optimal social choice rule, endowed with pivotal oligarchic monotonic-

ity is (A, γ)-implementable. We conclude chapter 3 with the presentation of

a structure for social decision making with a continuum of agents which turns

out to be completely compatible with (A, γ)-implementation framework. In

chapter 4, liberal’s paradox of Amartya K. Sen is revisited, and investigated

from (A, γ)-implementation perspective. Finally chapter 5 is devoted for the

presentation of some results related with the characteristics of manhattan

metric and examination of liberal’s paradox in this restriced framework.
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CHAPTER 2

(A, γ)- IMPLEMENTATION

2.1 Notation and Definitions

We use A to denote a non-empty, finite alternative set, while N , as usual,

denotes the set of agents which is also assumed to be non-empty and finite.

We will use N to denote the collection of all subsets of N . A coalition in

N , denoted by generic element K, is a member of N ; i.e K ∈ 2N = N .

A preference profile for N is an n-tuble where each component denotes the

preference of the associated agent over A; i.e for any i ∈ N and any a, b,

we represent, agent i prefers b to a under preference profile R, by bRia.

Collection of linear orders on A is denoted by L(A), where a linear order on

A is a complete, transitive, and antisymmetric binary relation on A. The

set of all linear order profiles on A is denoted by L(A)N . In this study, we

will restrict preference profiles to the set of linear order profiles. A social

choice rule F maps every preference profile on A into a subset of A; i.e.

F : L(A)N → 2A. Let R ∈ L(A)N and a ∈ A, the lower contour set of

Ri with respect to alternative a ∈ A, is the set consisting of alternatives to

which a is preferred by agent i under preference profile R, which is denoted

by L(Ri, a).

4



A mechanism (or a game form) is a function g which maps every joint

strategy to an outcome in the alternative set; i.e. g : S → A, where

S = Πi∈NSi, Si stands for agent i’s strategy set. A mechanism g, com-

bined with a preference profile R ∈ L(A)N forms a normal form game and

the pure strategy Nash equilibria of the game is denoted by NE(g,R). We

say that a social choice rule F is Nash implementable via a mechanism g if

at each preference profile R, alternatives chosen by F coincide with the Nash

equilibrium outcomes of the game for given R; i.e for any R ∈ L(A)N , we

have {g(s) | s ∈ NE(g,R)} = F (R).

Any social choice rule F is said to be monotonic if and only if for any

R,R′ ∈ L(A)N , and any a ∈ F (A) where for any i ∈ N , L(Ri, a) ⊂ L(R′
i, a)

implies a ∈ F (R′). We say F is Pareto optimal if and only if there is no

alternative in A which Pareto dominates a with respect to given R; i.e for

any R ∈ L(A)N and a ∈ F (R), there is no b ∈ A such that for any i ∈ N ,

bRia.

For any given preference profile R ∈ L(A)N , the benefit function βR :

A × A → 2N , maps any pair of alternatives (a, b) ∈ A × A, to a member of

2N ; i.e. the class of all coalition families. For any (a, b) ∈ A×A, any K ∈ N ,

K ∈ βR(a, b) implies that; all the members of the coalition K prefers b to a

under preference profile R; i.e. for any i ∈ K, bRia.

A code of rights is defined to be a function γ which maps any pair of

alternatives (a, b) ∈ A×A, to a coalition family; i.e γ : A×A → 2N , where

for any (a, b) ∈ A×A, and any K ∈ N , K ∈ γ(a, b) represents that coalition

K is given the right to lead a switch from a to b, by the code of rights γ.

We assume that if any coalition is given the right to lead a switch from a to

b, then any coalition which contains this coalition preserves the same right;

i.e for any (a, b) ∈ A × A and for any K ∈ N , K ∈ γ(a, b) implies for any

K ′ ∈ N where K ⊂ K ′, we have K ′ ∈ γ(a, b). The collection of all code of
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rights defined on A× A for given N is denoted by Γ(A, N).

We assume that every coalition is able to make any switch, so we do not

specify an ability function α : A×A → 2N , which specifies the able coalitions

for leading a switch from an alternative to another one.

Before introducing (A, γ)-implementability notion, we need to specify an

equilibrium condition which plays the role of solution concepts in classical

implementation.

Definition. For any R ∈ L(A)N , and any a ∈ A, we say a is an (A, γ)-

equilibrium and denote it by a ∈ ε(A, γ, βR) if and only if for any b ∈ A \

{a}, γ(a, b) ∩ βR(a, b) = ∅.

If for any alternative a, there is no benefiting coalition which is given the

right to lead a switch from a to any other alternative, then alternative a is

referred as an (A, γ )-equilibrium.1

Definition. Any social choice rule F is said to be (A, γ)-implementable if

there is a γ ∈ Γ(A, N) such that for any R ∈ L(A)N , F (R) = ε(A, γ, βR).

For any social choice rule F , if we can find a code of rights γ : A×A → 2N

such that; at each preference profile R, alternatives chosen by F coincide with

the alternatives in the (A, γ)-equilibria for given R, then F is said to be (A, γ

)-implementable.

2.2 Examples

Example 1. Let N = {1, 2}, A = {a, b, c}, R and R′ be as specified below, and

the social choice rule F be such that; F (R) = {a), F (R′) = {b}
1Notion of (A, γ )-equilibria as well as (A, γ) implementation can be extended to (S, γ )

implementation, where S stands for any arbitrary strategy set.
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R

1 2

a c

c b

b a

.

R′

1 2

c b

a c

b a

Firstly it is worth to note that F is not Nash implementable. Suppose

not; i.e. there is a mechanism, g : S → A which implements F under

Nash equilibrium. Now, F (R) = g(NE(g,R)) = {a} implies there exists

(m̃1, m2) ∈ NE(g,R) such that g(m̃1, m2) = {a} combined with for any

y ∈ A, yR2a implies m̃1 such that for any m2 ∈ M2, g(m̃1, m2) = {a}. On

the other hand, F (R′) = g(NE(g,R′)) = {b} indicating that there exists

(m1, m̃2) ∈ NE(g,R) such that g(m1, m̃2 ) = {b} with for any y ∈ A, yR1b

implies m̃2 is such that for any m1 ∈ M1, g(m1, m̃2) = {b} hence g(m̃1, m̃2) =

{b} contradicting for any m2 ∈ M2, g(m̃1, m2) = {a}.

Secondly, let us construct a code of rights γ which would implement the

given social choice rule F . Let γ be such that;

∀x ∈ {b, c} γ(a, x) = {{1}, {1, 2}}

∀x ∈ {a, c} γ(b, x) = {{2}, {1, 2}}

∀x ∈ {a, b} γ(c, x) = {{1}, {2}, {1, 2}}

Now, for any x ∈ {b, c}, βR(a, x) = {{2}} but γ(a, x) = {{1}, {1, 2}}

implies βR(a, x) ∩ γ(a, x) = ∅ implies a ∈ ε(A, γ, βR).

{2} ∈ βR(b, c) ∩ γ(b, c) implies b 6∈ ε(A, γ, βR).
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{1} ∈ βR(c, a) ∩ γ(c, a) implies c 6∈ ε(A, γ, βR) implies a = ε(A, γ, βR) =

F (R) and for any x ∈ {a, c}, βR′(b, x) = {{1}} but γ(b, x) = {{2}, {1, 2}}

implies βR′(b, x) ∩ γ(b, x) = ∅ implies b ∈ ε(A, γ, βR′).

{1} ∈ βR′(a, c) ∩ γ(a, c) implies a 6∈ ε(A, γ, βR′).

{2} ∈ βR′(c, b) ∩ γ(c, b) implies c 6∈ ε(A, γ, βR′) implies b = ε(A, γ, βR′) =

F (R′). Hence we can conclude that F defined on R and R′, 2 is (A, γ)-

implementable.

From Example 1, we can conclude that there are social choice rules which

are not Nash implementable, but (A, γ )-implementable. However, converse

of this holds as well; i.e there are social choice rules which are Nash imple-

mentable but not (A, γ )-implementable 3. Following example establishes this

fact.

Example 2. Let N = {1, 2}, A = {a, b, c}, R, R′ and R′′ be as specified below,

and the social choice rule F be such that; F (R) = {b}, F (R′) = F (R′′) = {a}.

R

1 2

a c

b b

c a

R′

1 2

c b

a a

b c

R′′

1 2

b c

a a

c b

First let us show that F is Nash implementable. Consider the following

mechanism; let S1 = S2 = {{a, b}, {a, c}, {b, c}}, g : S → A, where for any

s ∈ S = S1 × S2, g(s) = s1 ∩ s2, if there is only one x ∈ A such that

x ∈ s1 ∩ s2, otherwise ties are broken with respect to the first component of

first agent’s strategy. Note that, for any s ∈ S, there is only one x ∈ A such

that x ∈ g(s). Now for given R, let s̄ = ({a, b}, {b, c}), g(s̄) = {b}. For given

2We can extend F to the full domain by inducing F (R̃) from the (A, γ )-equilibria for
any given R̃; i.e for any R̃ ∈ L(A)N , F (R̃) = ε(A, γ, βR).

3In the (S, γ )-implementation framework one can show that any Nash implementable
social choice rule F is (S, γ)-implementable.
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s̄1 = {a, b}, player 2 should choose either a or b, where bR2a implies ∀s2 ∈ S2,

g(s̄)R2g(s̄1, s2) implies s̄ ∈ NE(g,R). Moreover it is easy to check s̄ is the

unique Nash equilibrium of the defined game under R. If one of R′ or R′′ is

given, then we can similarly conclude that {a} is the unique Nash equilibrium

outcome. Moreover, one can extend F to the full domain by inducing F from

the Nash equilibria outcomes of the defined mechanism.

Now let us show that F is not (A, γ)-implementable. Suppose not; i.e.

there exists a γ ∈ Γ(A, N) such that for any R ∈ L(A)N , F (R) = ε(A, γ, βR)

implies F (R′) = ε(A, γ, βR′) = {a} and {2} ∈ βR′(a, b) implies {2} 6∈ γ(a, b),

similarly from F (R′′) = {a}, we get {2} 6∈ γ(a, c), with {{2}} = βR(a, b) =

βR(a, c) implies for any x ∈ A \ {a}, γ(a, x) ∩ βR(a, x) = ∅ implies {a} ∈

ε(A, γ, βR) = F (R), contradicting F (R) = {b}. Hence we can conclude that

F is not (A, γ)-implementable.

9



CHAPTER 3

CHARACTERIZATION OF

(A, γ)-IMPLEMENTABILITY

3.1 Pivotal Oligarchic Monotonicity

In order to state our monotonicity condition, first we need to introduce some

auxiliary notions.

Definition. For any R ∈ L(A)N , and any (a, b) ∈ A×A, MR(a, b) stands for

the maximal coalition in the coalition family βR(a, b); i.e MR(a, b) ∈ βR(a, b)

and for any K ∈ βR(a, b), K ⊂MR(a, b).

Since N is finite we know that; there always exists a unique maximal

coalition, possibly empty set, in the coalition family βR(a, b).

Definition. A social choice rule F is said to be monotonic if and only if for

any R,R′ ∈ L(A)N , any a ∈ F (R) satisfying condition

∀b ∈ A,MR′(a, b) ⊂MR(a, b) (3.1)

implies a ∈ F (R′).

Maskin introduced the monotonicity condition in terms of sets consisting

alternatives, specified for each agent; here we restate the monotonicity con-

10



dition by specifying coalitions for each alternative associated with the ones

chosen by F .

Definition. For any (a, b) ∈ A × A, any K ∈ 2N , K is said to be an (a, b)-

oligarchy if and only if for any R ∈ L(A)N , bRKa implies a /∈ F (R).

If there is a coalition K such that; b is preferred to a by all the members

of K implies a is not chosen by F , then we call K; an a-oligarchy via b or

simply an (a, b)-oligarchy.

Definition. For any R ∈ L(A)N , any a ∈ F (R), any b ∈ A, and any K ∈ 2N ,

K is said to be a pivotal (a, b, R) oligarchy if and only if MR(a, b)∪K is an

(a, b)-oligarchy.

Any coalition K is considered as a pivotal coalition for having an (a, b)-

oligarchy, if the coalition formed by unification of the largest coalition which

prefers b to a under R and K forms an (a, b)-oligarchy.

Definition. For any R ∈ L(A)N , any a ∈ F (R), any b ∈ A , and any K ∈ 2N ,

K is said to be a non-pivotal (a, b, R)-oligarchy denoted by K ∈ CNPO(a, b, R)

[CNPO(a, b, R) stands for family of non-pivotal (a, b, R)-oligarchies] if and only

if K is not a pivotal (a, b, R) oligarchy. Moreover, K is said to be a maximal

non-pivotal (a, b, R)-oligarchy denoted by K ∈ CMNPO(a, b, R) if and only if

K ∈ CNPO(a, b, R) and there is no K ′ ∈ CNPO(a, b, R) such that K ⊂ K ′.

Remark 1. Any alternative a, being chosen by F under R indicates that;

MR(a, b) is not an (a, b) oligarchy, if not clearly a should not be chosen by

F , hence we know that MR(a, b) is in the family of non-pivotal (a, b, R)-

oligarchies, CNPO(a, b, R), and clearly any member of CMNPO(a, b, R) con-

tains MR(a, b).

Definition. (Pivotal oligarchic monotonicity, POM) Any social choice rule

F satisfies POM if and only if for any R,R′ ∈ L(A)N and any a ∈ F (R)

11



satisfying condition

∀b ∈ A,∃K ∈ CMNPO(a, b, R) : MR′(a, b) ⊂MR(a, b) ∪K (3.2)

implies a ∈ F (R′).

Intuitively, POM means that alternative a continues to be chosen by F ,

unless there is an (a, b)-oligarchy which prefers b to a under R′.

Lemma 1. Any social choice rule F endowed with POM is monotone.

Proof. Take any R, R′ ∈ L(A)N , and a ∈ F (R), where condition (1) is sat-

isfied. Now for any b ∈ A, MR′(a, b) ⊂ MR(a, b) implies (3.2) holds, hence

a ∈ F (R′).

3.2 Necessity of POM for (A, γ)-implementability

Lemma 2. For any (A, γ)-implementable social choice rule F , let γ be a code

of rights which implements F , for any (a, b) ∈ A× A, and any K ∈ 2N such

that K 6= ∅, we have K ∈ γ(a, b) if and only if K is an (a, b)-oligarchy.

Proof. (⇒) For any(a, b) ∈ A × A, assume that ∅ 6= K ∈ γ(a, b). Now

K ∈ γ(a, b) implies for any R ∈ L(A)N such that K ∈ βR(a, b), K ∈ γ(a, b)∩

βR(a, b), and K 6= ∅ implies γ(a, b)∩βR(a, b) 6= ∅ hence we get a /∈ ε(A, γ, βR),

now since F is (A, γ)-implementable we get a /∈ F (R).

(⇐) Assume not; i.e. K is an (a, b)-oligarchy but K /∈ γ(a, b). Take

any R such that for any i ∈ N \K, aRib, and bRKa; [ i.e. K = MR(a, b)] .

Now K is an (a, b)-oligarchy implies a /∈ F (R), and F is(A, γ)-implementable

indicates that a /∈ ε(A, γ, βR) thus, we can conclude that ∃K ′ ⊂ K such that

K ′ ∈ γ(a, b) implies K ∈ γ(a, b) contradicting K /∈ γ(a, b).

Theorem 1. Any (A, γ)-implementable social choice rule F satisfies POM.

12



Proof. Take any (A, γ)-implementable social choice rule F , any a ∈ F (R),

and any R,R′ ∈ L(A)N such that condition (2) holds.

Now condition (2) implies for any b ∈ A, there exists K ∈ CMNPO(a, b, R)

such that MR′(a, b) ⊂ MR(a, b) ∪ K where MR(a, b) ∪ K is not an (a, b)-

oligarchy, hence MR′(a, b) is not an (a, b)-oligarchy, by the lemma above

we get; MR′(a, b) /∈ γ(a, b) combined with MR′(a, b) being maximal implies

γ(a, b) ∩ βR′(a, b) = ∅, so a ∈ ε(A, γ, βR′) now, F being (A, γ)-implementable

implies a ∈ F (R′) hence F satisfies POM.

3.3 The Implementation Theorem

In this section we state a converse result to Theorem 1. We construct a code

of rights to implement a social choice rule F , which is non-empty valued

Pareto optimal, and which satisfies pivotal oligarchic monotonicity.

Theorem 2. Any non-empty valued, Pareto optimal social choice rule F,

endowed with POM, is (A, γ)-implementable.

Proof. First let us construct the code of rights, γ such that; for any (a, b) ∈

A × A, and any K ∈ 2N , we have K ∈ γ(a, b) if and only if K is an (a, b)-

oligarchy. Now, for any R ∈ L(A)N , a ∈ F (R), and b ∈ A; a ∈ F (R)

implies MR(a, b) is not an (a, b)-oligarchy indicating that MR(a, b) /∈ γ(a, b),

MR(a, b) being maximal implies γ(a, b) ∩ βR(a, b) = ∅, so a ∈ ε(A, γ, βR).

This implies F (R) ⊂ ε(A, γ, βR).

Conversely to show that; ε(A, γ, βR) ⊂ F (R), for any R ∈ L(A)N , take

any a ∈ ε(A, γ, βR), and assume that a /∈ F (R). Now F is non-empty valued

implies there exists b ∈ A \ {a} such that b ∈ F (R). Since F is Pareto

optimal, there exists K ∈ 2N such that K 6= ∅, and K ∈ βR(a, b). Assume

without loss of generality that K = MR(a, b).

Now construct a new preference profile R′ such that for any j ∈ N \K,
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L(R′
j, a) = A, and for any c 6= a, L(R′

j, c) \ {a} = L(Rj, c) \ {a}, moreover

let for any i ∈ K, R′
i = Ri. We claim that a /∈ F (R′), suppose not; i.e.

a ∈ F (R′). Take any c ∈ A, and considerMR′(a, c), clearly we haveMR′(a, c)

⊂ K, andMR′(a, c) = MR(a, c) ∩ K, as R′
K = RK . Let K̄ ∈ 2N such that

K̄ = MR(a, c) ∩ (N \ K); i.e. K̄ is the maximal subcoalition in N \ K

which prefers c to a under R, it is clear that K̄ ∪MR′(a, c) ∈ βR(a, c). Now,

a ∈ ε(A, γ, βR) implies γ(a, c) ∩ βR(a, c) = ∅ hence K̄ ∪MR′(a, c) /∈ γ(a, c)

implies K̄∪MR′(a, c) is not an (a, c)-oligarchy, thus we get K̄ is an non-pivotal

(a, c, R′)-oligarchy. This implies that, there exists K̃ ∈ CMNPO(a, c, R′)

such that K̄ ⊂ K̃. Now we have shown that; for any c ∈ A, there exists

K̃ ∈ CMNPO(a, c, R′) such that MR(a, c) ⊂ MR′(a, c) ∪ K̃. Thus by POM

we can say that a ∈ F (R), contradicting that a /∈ F (R). Hence we can

conclude that a /∈ F (R′).

Let preference profile, R′′ be such that for any j ∈ N \K, R′′
j = R′

j, and

for any i ∈ K, L(R′′
i , a) = A\{b}, and for any c ∈ A\{a, b}, L(R′′

i , c)\{a, b} =

L(R′
i, c) \ {a, b}. We claim that; a /∈ F (R′′), assume contrary; i.e. a ∈ F (R′′).

Now, take any c ∈ A \ {a, b}, we have MR′′(a, c) = ∅. Let K be such that

K = MR(a, c) ∩ K, note that by construction of R′ we have; MR′(a, c) =

MR(a, c)∩K, and clearly K ∈ βR(a, c). Now a ∈ ε(A, γ, βR) implies γ(a, c)∩

βR(a, c) = ∅ implies K∪MR′′(a, c) = K∪∅ = K /∈ γ(a, c) indicating K is not

an (a, c)-oligarchy, so K is an non-pivotal (a, c, R′′)−oligarchy. This implies

there exists K̃ ∈ CMNPO(a, c, R′′) such that K ⊂ K̃. Moreover if c = b, we

have MR′(a, b) = K = MR′′(a, b) implies there exists K̃ ∈ CMNPO(a, b, R′′)

such that ∅ ⊂ K̃. Thus for any c ∈ A, there exists K̃ ∈ CMNPO(a, c, R′′) such

that MR′(a, c) ⊂ MR′′(a, c) ∪ K̃ by POM, implies a ∈ F (R′), contradicting

that a /∈ F (R′). Hence we can conclude a /∈ F (R′′).

Now we know that; a /∈ F (R′′) where K = MR′′(a, b) ; i.e. K is the largest

coalition which prefers b to a under R′′, moreover for any R̃ ∈ L(A)N such
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that bR̃Ka, we clearly have; for any i ∈ N , L(R̃i, a) ⊂ L(R′′
i , a) combined

with monotonicity which is known to be implied by POM from Lemma 1

shows that a /∈ F (R̃) indicating that K is an (a, b)-oligarchy, thus K ∈ γ(a, b)

implies K ∈ γ(a, b)∩βR(a, b), with K 6= ∅ we can say that γ(a, b)∩βR(a, b) 6=

∅, contradicting a ∈ ε(A, γ, βR). Hence we can conclude that; a ∈ F (R),

indicating; ε(A, γ, βR) ⊂ F (R).

3.4 Implementation of SDRs with a Contin-

uum of Agents

One of the famous impossibility theorems in economics, Muller-Satterthwaite

(1977) Theorem tells that in Arrowian framework the unique onto social

choice function which satisfies monotonicity condition is dictatoriality. This

conclusion leads pessimisim for implementabilty, since monotonicity is a nec-

essary condition for a social choice rule to be Nash-implementable. Although

under implementation via code of rights framework the class of implementable

social choice rules is extended, our results from the previous chapter indicates

that monotonicity preserves its necessity for implementation in this frame-

work. This yields a rather pessimistic conclusion for implementability. On

the other hand, for many social choice situations as general elections for as-

semblies, any particular voter is quite negligible for changing the result of

the election. This observation motives to form a notion of social decision

rule with a continuum of agents associated with a non-atomic measure space.

Following definitions serves for establishing counter part of a social choice

rule in such a setting with its most generality. It is worth to observe that,

in this framework it can be directly shown that any social decision rule is

(A, γ)-implementable.

Suppose X = [0, 1] is the set of agents, and A denotes the non-empty,
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finite set of alternatives. We will use Σ to denote the Borel σ-algebra on X.

Lebesgue measure defined on Σ will be denoted by λ. F+(X, Σ, λ) will stand

for the collection of all non-negative, Lebesgue measurable functions defined

on Σ. For any K ∈ Σ and any a, b ∈ A, we represent, coalition K prefers b

to a under R, by bRKa.

The set of all preference profiles on A is denoted by L(A)Σ.

A complete preorder on A is a complete binary relation defined on A. We

will use l(A) to denote the set of all complete orderings on A with generic

element �∈ l(A).

We define a code of rights similar to the one defined for finite set of

agents, as a function γ which maps any pair of alternatives (a, b) ∈ A×A, to

a coalition family in 2Σ ; i.e γ : A× A → 2Σ, where for any (a, b) ∈ A× A,

and any K ∈ Σ, K ∈ γ(a, b) implies that coalition K is given the right to

lead a switch from a to b, by the code of rights γ. The only difference in the

definition is that we require any coalition to be a member of Borel σ-algebra

on [0, 1].

For any given preference profile R ∈ L(A)N , the benefit function βR :

A × A→ 2Σ, notions of (A, γ)-equilibrium and (A, γ)− implementation are

defined accordingly.

Definition. A social aggregation rule on X, F̄ is described by the collection

{(fa,b, αa,b)}a,b∈A:a 6=b where for any a, b ∈ A such that a 6= b,

fa,b ∈ F+(X, Σ, λ),

∫
X

fa,bdλ ≤ 1, αa,b ∈ [0,

∫
X

fa,b]. (3.3)

fa,b = f b,a, αb,a =

∫
X

fa,bdλ− αa,b (3.4)

Now, we can define F̄ : L(A)Σ → l(A) such that for any R ∈ L(A)Σ, and any
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a, b ∈ A where a 6= b, b �F̄ (R) a if and only if
∫
MR(a,b)

fa,bdλ > αa,b.

Definition. A social decision rule, F : L(A)Σ → 2A \ {∅}, such that for any

R ∈ L(A)Σ, a ∈ Aa a ∈ F (R) iff ∀b 6= a, b �F̄ (R) a

Note that our definition of a social decision rule is quite general that it

neither necessarily needs to be neutral nor anonymous.

Claim. Any social decision rule F is (A, γ)-implementable.

Proof. Simply define the code of rights γ such that, for any a, b ∈ A such

that a 6= b, any coalition K ∈ Σ, K ∈ γ(a, b) if and only if
∫

K)
fa,bdλ > αa,b.

Now, for any R ∈ L(A)Σ, any a ∈ A, a ∈ F (R) implies that for any b 6= a,∫
MR(a,b)

fa,bdλ ≤ αa,b indicating that for any K ∈ βR(a, b),
∫

K
dλ ≤ αa,b,

hence K 6∈ γ(a, b) implies that a ∈ ε(A, γ, βR).

Conversely for any a ∈ A, a ∈ ε(A, γ, βR) implies that for any b 6= a, βR(a, b)∩

γ(a, b) = ∅. Hence MR(a, b) 6∈ γ(a, b) indicating that
∫
MR(a,b)

fa,bdλ ≤ αa,b.

Hence we can conclude that there does not exist b ∈ A such that b �F̄ (R) a

indicating that a ∈ F (R), thus we have F (R) = ε(A, γ, βR).
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CHAPTER 4

SEN’S LIBERAL PARADOX

4.1 (A, γ)-IMPLEMENTATION and SEN’S LIB-

ERAL PARADOX

In this section, we consider Sen’s paradox of the Paretian liberal from the

(A, γ)-implementation perspective that we have introduced in section 3. We

show that; we can design codes of rights that are consistent with Sen’s min-

imal liberalism, and Pareto optimality. Finally we revisit Sen’s conclusion

of impossibility of a Paretian liberal in terms of (A, γ)-implementability. To

establish the desired result we first introduce the familiar definitions used by

Sen, under the general framework that is described in section 2.

Definition. Any social choice rule F satisfies minimal liberalism if there exist

{i, j} ⊂ N such that i 6= j, and for any l ∈ {i, j}, there exist xl, yl ∈ A such

that for any R ∈ L(A)N , xlRly
l implies yl /∈ F (R), and respectively ylRlx

l

implies xl /∈ F (R).

Minimal liberalism implies that there are at least two individuals such

that for each of them there are at least a pair of alternatives (x,y) over

which he is decisive, that is whenever he prefers x to y, y is not chosen,
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and respectively whenever he prefers y to x, x is not chosen. In other words

any social choice rule F satisfies minimal liberalism if there are at least two

individuals {i, j} ⊂ N such that i 6= j, where for each of them there are at

least a pair of alternatives (xi,yi), (xj,yj) such that i is an (xi,yi)-oligarchy,

and j is an (xj,yj)-oligarchy. Moreover, let us characterize minimal liberalism

in terms of codes of rights.

Definition. Any code of rights γ is said to satisfy minimal liberalism, and

denoted by γL, if

(3) There exist {i, j} ⊂ N such that i 6= j, and for any l ∈ {i, j} there

exists xl, yl ∈ A such that for any K ∈ 2N , K ∈ γ(xl, yl) or K ∈ γ(yl, xl) if

and only if l ∈ K holds.

Now, let us show that for any social choice rule F , being (A, γL)-implementable

that is; having code of rights which satisfies minimal liberalism and which im-

plements F , implies F satisfies minimal liberalism.

Lemma 3. Any (A, γL)-implementable social choice rule F satisfies minimal

liberalism.

Proof. Let F be an (A, γL)-implementable social choice rule then there is

a code of rights,γ, which implements F and satisfies (3) implies there exist

{i, j} ⊂ N such that i 6= j ,and for any l ∈ {i, j} there exist xl, yl ∈ A

such that for any R ∈ L(A)N such that xlRly
l, [{l} ∈ γL(xl, yl) ∩ βR(xl, yl)]

implies yl 6∈ ε(A, γL, βR), thus yl 6∈ F (R) as F is (A, γL)-implementable.

Similarly for any R ∈ L(A)N such that ylRkx
l, {l} ∈ γL(yl, xl) ∩ βR(yl, xl)

implies xl 6∈ ε(A, γ, βR), so xl 6∈ F (R) indicating that F satisfies minimal

liberalism.

Moreover, via Lemma 2 it can easily be shown that; any social choice rule

F which is (A, γ )-implementable, and which satisfies minimal liberalism is

indeed (A, γL)-implementable.
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Definition. Any code of rights γ is said to satisfy Pareto optimality, and

denoted by γP , if for any a, b ∈ A such that a 6= b, N ∈ γ(a, b).

Lemma 4. Any (A, γP )-implementable social choice rule F satisfies Pareto

optimality.

Proof. Assume not; i.e. F is (A, γP )-implementable, but F is not Pareto

optimal implies there exists R ∈ L(A)N , and there exist a, b ∈ A such that

a ∈ F (R), for any i ∈ N bRia implies N ∈ βR(a, b) thus N ∈ βR(a, b) ∩

γ(a, b) indicating a 6∈ ε(A, γ, βR) this implies that a 6∈ F (R) as F is (A, γ

)-implementable, contradicting a ∈ F (R).

Now we can state the theorem indicating impossibility of a Paretian lib-

eral, in terms of (A, γ)-implementability.

Theorem 3. There is no non-empty valued social choice rule F which is

(A, γPL)-implementable [i.e implementable by a γ, which satisfies minimal

liberalism, and Pareto optimality].

Proof. Assume not; i.e. there is a non-empty valued social choice rule F such

that for any R ∈ L(A)N , and F is (A, γPL)-implementable for N = {1, 2}

implies (3) that is; there exist x, y, z, w ∈ A such that for any K ∈ 2N , K ∈

γ(x, y) or K ∈ γ(y, x) if and only if 1 ∈ K and K ∈ γ(z, w) or K ∈ γ(w, z)

if and only if 2 ∈ K holds. Now, if (x, y) = (z, w), then let A = {x, y},

and consider R such that xR1y, yR2x, implies {1} ∈ βR(x, y) ∩ γ(x, y), and

{2} ∈ βR(y, x) ∩ γ(y, x) implies ε(A, γ, βR) = ∅, hence we getF (R) = ∅,

contradicting F being non-empty valued. Assume without loss of generality,

x = z, and y 6= w. Now for A = {x, y, w} consider R given below, note that
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only Pareto optimal outcomes are x, y, this implies ε(A, γ, βR) ⊂ {x, y}.

R

1 2

x y

y w

w x

However, {2} ∈ βR(x, w) ∩ γ(x, w) implies x 6∈ ε(A, γ, βR); {1} ∈ βR(y, x) ∩

γ(y, x) implies y 6∈ ε(A, γ, βR), so ε(A, γ, βR) = ∅, but F is non-empty valued,

contradicting F is (A, γPL)-implementable.

Now if x,y,z,w are all distinct then consider R given below, again note

that only Pareto optimal outcomes are w, y implies ε(A, γ, βR) ⊂ {w, y}

R

1 2

w y

x z

y w

z x

However, {2} ∈ βR(w, z) ∩ γ(w, z) implies w 6∈ ε(A, γ, βR); {1} ∈ βR(y, x) ∩

γ(y, x) implies y 6∈ ε(A, γ, βR), thus ε(A, γ, βR) = ∅, but F is non-empty

valued, contradicting F is (A, γPL)-implementable.
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4.2 The Manhattan Metric

4.2.1 Preliminaries

For any given alternative set A, social ordering s ∈ L(A) and k ∈ {0, 1, .....n∗(n−1)
2

},

Dk(A, s) stands for the set of linear orderings such that any linear ordering,

p is contained in this set if and only if the distance between p and s is less

than or equal to k, with respect to Manhattan metric; i.e. Dk(A, s) = {p ∈

L(A) : δ(p, s) ≤ k}. Moreover Ck(A, s) consists of linear orderings over A

such that any linear ordering, p is contained in this set if and only if the

distance between p and s is equal to k, with respect to Manhattan metric;

i.e. Ck(A, s) = {p ∈ L(A) : δ(p, s) = k}. We can also represent Dk(A, s)

as the union of {Ch(A, s)}h≤k ; i.e Dk(A, s) = ∪h≤k Ch(A, s). Moreover for

any given set of agents N , DN
k (A, s) stands for the collection of linear order

profiles where each agent’s ordering, Ri belongs to Dk(A, s). In section 4.3,

Dk(A, s)isgoingtobeusedinsteadofDN
k (A, s), where it leads no confusion.

Definition. Let p1 and p2 be two linear orderings. Distance between these

two orderings with respect to Manhattan metric denoted by, δ(p1, p2), is the

minimum number of binary alterations needed to obtain p2 from p1.

Remark 2. Note that δ(p1, p2) is equal to the number of pairs {a1, a2} such

that their relative rankings in p1 and p2 are different. This observation leads

us to conclude that indeed Manhattan metric is equivalent to well known

Kemeny metric.

4.2.2 Uniqueness of Center in Socially Centered Do-

mains

Definition. For any p ∈ L(A) and B ⊂ A, B is said to be a block in p if for

any b ∈ A, there exist a, c ∈ B such that a �p b �p c implies b ∈ B.
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Definition. Let p1 and p2 be two linear orderings and B be a block in p1.

T (p1, p2, B) is defined as a member of L(A) such that;

T (p1, p2, B) |A\B= p1 |A\B

T (p1, p2, B) |B= p2 |B

∀a ∈ A \B ∀b ∈ B, T (p1, p2, B) |{a,b}= p1 |{a,b}

holds.

Remark 3. For any p1 and p2 ∈ L(A) and B ⊂ A such that B is a block in

p1, by Remark 1 we have;

δ(p1, p2) = δ(p1, T (p1, p2, B)) + δ(T (p1, p2, B), p2) (4.1)

Lemma 5. For any p1, p2 ∈ L(A) such that δ(p1, p2) < n∗(n−1)
2

, there is a

p3 ∈ L(A) such that;

δ(p2, p3) = 1 (4.2)

δ(p1, p3) = δ(p1, p2) + 1 (4.3)

holds.

Proof. Since δ(p1, p2) < n∗(n−1)
2

we know that p2 6= p−1
1 where δ(p1, p

−1
1 ) =
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n∗(n−1)
2

. Hence we can conclude that there exist a, b ∈ A such that {a, b}

forms a block in p2 and if a �p2 b then b �p−1
1

a; similarly if b �p2 a then

a �p−1
1

b. Now, set B = {a, b}. By our choice of {a, b} it is clear that

δ(p2, T (p2, p
−1
1 , B)) = 1 as we obtain T (p2, p

−1
1 , B) from p2 only by replacing

the positions of a and b. Moreover, by Remark 2,

δ(p2, p
−1
1 ) = δ(p2, T (p2, p

−1
1 , B)) + δ(T (p2, p

−1
1 , B), p−1

1 ) ⇒ δ(T (p2, p
−1
1 , B), p−1

1 )

= δ(p2, p
−1
1 )− δ(p2, T (p2, p

−1
1 , B)) = δ(p2, p

−1
1 )− 1= (

n ∗ (n− 1)

2
− δ(p1, p2))− 1 .

Since, δ(T (p2, p
−1
1 , B), p−1

1 ) = n∗(n−1)
2

−δ(T (p2, p
−1
1 , B), p1) we get δ(T (p2, p

−1
1 , B), p1) =

n∗(n−1)
2

− ((n∗(n−1)
2

− δ(p1, p2)) − 1) = δ(p1, p2) + 1. Now, finally by setting

p3 = T (p2, p
−1
1 , B) we can conclude that both 5.2 and 5.3 holds.

Theorem 4. For any s ∈ L(A) and d̄ < n∗(n−1)
2

, there does not exist s
′ ∈

L(A) such that s
′ 6= s and Dd̄(A, s

′
) = Dd̄(A, s)

Proof. For any s
′ ∈ L(A) such that s

′ 6= s, if δ(s, s
′
) = n∗(n−1)

2
then since

d̄ < n∗(n−1)
2

we have s
′ 6∈ Dd̄(A, s), hence Dd̄(A, s) 6= Dd̄(A, s

′
). Suppose

1 ≤ δ(s, s
′
) < n∗(n−1)

2
. Now, by Lemma 1, we know that there is a p1 ∈

L(A) such that δ(s
′
, p1) = 1 and δ(s, p1) = δ(s, s

′
) + 1. If δ(s, s

′
) = d̄ or

δ(s, s
′
) + 1 = n∗(n−1)

2
, then we will be done; if not then we have δ(s, p1) <

n∗(n−1)
2

hence again by using Lemma 2 we get that there exist p2 ∈ L(A)

such that δ(p1, p2) = 1 and δ(s, p2) = δ(s, p1) + 1 = δ(s, s
′
) + 2. Note that

δ(s
′
, p2) ≤ δ(s

′
, p1) + δ(p1, p2) = 2 by triangle inequality. Thus, if δ(s, s

′
) =

d̄ − 1 or δ(s, s
′
) + 2 = n∗(n−1)

2
, then we will be done; if not then we have

δ(s, p2) < n∗(n−1)
2

again by proceeding similarly after finitely many steps we

will reach the conclusion that there exist p̄ ∈ L(A) such that δ(s
′
, p̄) ≤ d̄

and δ(s, p̄) = min{(δ(s, p̄) + d̄), n∗(n−1)
2

}. Indicating that p̄ ∈ Dd̄(A, s
′
) but

p̄ 6∈ Dd̄(A, s), hence we can conclude that Dd̄(A, s) 6= Dd̄(A, s
′
).
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4.2.3 On the Density of Socially Centered Domains

Proposition 1. For any alternative set A where |A| = n > 1, any social

ordering s ∈ L(A), any distance d ∈ {0, 1, .....n∗(n−1)
2

}, and any x ∈ A, the

relation;

|C
d
(A, s)| =

min{n−1,d}∑
k=0

| C
d−k

(A \ {x}, s)| (4.4)

holds.

Proof. Clearly for n = 1 we have n∗(n−1)
2

= 0, hence |C0(A, s)| = 1, where

simply s = a. For any n > 1, consider any social ordering s ∈ L(A). Assume

w.l.o.g. that x is the bottom ranked alternative in s; i.e σ(x, s) = n. Now,

for any d ∈ {0, 1, .....n∗(n−1)
2

} and any m ∈ {1, .....n}, let Pm(x, d) = {p ∈

Cd(A, s)|σ(x, p) = m}. It is evident that, Cd(A, s) = ∪m∈{1,.....n}Pm(x, d)

where for some m ∈ {1, .....n} it is possible that Pm(x, d) = ∅.

Claim. For any p ∈ Cd(A, s) and m ∈ {1, .....n}, we have p ∈ Pm(x, d) if

and only if p|A\x ∈ Cd−(n−m)(A \ x, s|A\x)

Proof. For any p ∈ Cd(A, s), firstly suppose p ∈ Pm(x, d) for some m ∈

{1, .....n}. Now, L(p, x) = {y ∈ A|x �p y} clearly forms a block in p, hence

by Remark 2 we know that;

δ(p, s) = δ(p, T (p, s, L(p, x))) + δ(T (p, s, L(p, x)), s) (4.5)

Moreover, L(p, x) ∪ {x} forms a block in T (p, s, L(p, x)), hence we get;

δ(T (p, s, L(p, x)), s) = δ(T (p, s, L(p, x)), T (T (p, s, L(p, x)), s, L(p, x) ∪ {x}))
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+ δ(T (T (p, s, L(p, x)), s, L(p, x) ∪ {x}), s) .

Note that by construction, for any z ∈ L(p, x), σ(z, T (p, s, L(p, x))) = σ(z, s|L(p,x)),

thus combined with σ(x, s) = n, we can conclude that δ(T (p, s, L(p, x)), T (T (p, s, L(p, x)), s, L(p, x)∪

{x})) = σ(x, s) − σ(x, p) = n −m. Moreover substituting this in the above

equation implies;

δ(T (T (p, s, L(p, x)), s, L(p, x) ∪ {x}), s) = δ(T (p, s, L(p, x)), s)− (n−m)

and by using 4.5,

δ(T (p, s, L(p, x)), s)− (n−m) = δ(p, s)− δ(p, T (p, s, L(p, x)))− (n−m)

hence by rearranging we get;

δ(T (T (p, s, L(p, x)), s, L(p, x) ∪ {x}), s) + δ(p, T (p, s, L(p, x)))

= δ(p, s)− (n−m) = d− (n−m) as p ∈ C
d
(A, s) . (4.6)

Now, consider δ(p|A\x, s|A\x), by construction we know x 6∈ L(p, x), so

L(p, x) continues to form a block in p|A\x. Now, by applying 4.5 for p|A\x and

s|A\x we get that;

δ(p|A\x, s|A\x) = δ(p|A\x, T (p|A\x, s|A\x, L(p, x))) + δ(T (p|A\x, s|A\x, L(p, x)), s|A\x) (4.7)

In addition as σ(x, s) = n = σ(x, T (T (p, s, L(p, x)), s, L(p, x) ∪ {x})) we

have

δ(T (T (p, s, L(p, x)), s, L(p, x) ∪ {x}), s) = δ(T (p|A\x, s|A\x, L(p, x)), s|A\x) (4.8)
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Since σ(x, p) = σ(x, T (p, s, L(p, x))) and clearly L(x, p) = L(x, T (p, s, L(p, x)))

we get;

δ(p, T (p, s, L(p, x))) = δ(p|A\x, T (p|A\x, s|A\x, L(p, x))) (4.9)

Finally, by substituting 4.8 and 4.9 in 4.7 and by using the relation in 4.6 we

can conclude that;

δ(p|A\x, s|A\x) = d− (n−m)

indicating that p|A\x ∈ Cd−(n−m)(A, s|A\x).

Conversely, suppose p|A\x ∈ Cd−(n−m)(A, s|A\x) this combined with equa-

tions 4.7,4.8 and 4.9 implies that;

d− (n−m) = δ(p|A\x, s|A\x) = δ(p, T (p, s, L(p, x)))

+ δ(T (T (p, s, L(p, x)), s, L(p, x) ∪ {x}), s) . (4.10)

Moreover, by adding δ(T (p, s, L(p, x)), T (T (p, s, L(p, x)), s, L(p, x)∪ {x})) to

both sides of equation, which we have shown to be equal to n−m, we get;

d = δ(p, T (p, s, L(p, x))) + δ(T (p, s, L(p, x)), T (T (p, s, L(p, x)), s, L(p, x) ∪ {x}))

+ δ(T (T (p, s, L(p, x)), s, L(p, x) ∪ {x}), s) = δ(p, s) .(4.11)

Thus, we can conclude that p ∈ Cd(A, s).

Now, note that for any m ∈ {1, .....n}, and any p, q ∈ Pm(x, d), σ(x, p) =

σ(x, q) = m implies that p 6= q if and only if p|A\x 6= q|A\x, indicating

that Pm(x, d) and Cd−(n−m)(A \ x, s|A\x) are in one to one correspondence,

combined with Cd(A, s) = ∪m∈{1,.....n}Pm(x, d) indicates that;

|C
d
(A, s)| =

n∑
m=1

|Pm(x, d)| =
n∑

m=1

| C
d−(n−m)

(A \ x, s|A\x)| =
n−1∑
k=0

| C
d−k

(A \ x, s|A\x)| .
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Since for any k > d, we have d− k < 0 indicates that |Cd−k(A, s)| = 0, hence

from above expression we finally get;

|C
d
(A, s)| =

min{n−1,d}∑
k=0

| C
d−k

(A \ x, s|A\x)|

Following table demonstrates the cardinalities of Cd(A, s) for n ∈ {1, 2, 3, 4, 5}

and for corresponding distances.

n \ d 0 1 2 3 4 5 6 7 8 9 10

1 1

2 1 1

3 1 2 2 1

4 1 3 5 6 5 3 1

5 1 4 9 15 20 22 20 15 9 4 1

4.3 Paretian Liberal in Socially Centered Do-

mains

Following example shows that when |A| = 4, for any social ordering s, there

is a social choice function F defined on D3(A, s) which satisfies Pareto opti-

mality and minimal liberalism.

Example 3. Let A = {a, b, c, d}, and N = {1, 2}. Assume w.l.o.g that

a �s b �s c �s d, and let F : D3(A, s) → A be such that for any R ∈ D3(A, s);

F (R) ∈ {T (R1), T (R2)} \ {c, d} if {T (R1), T (R2)} \ {c, d} 6= ∅

F (R) = c if {T (R1), T (R2)} = {c}

F (R) = d if {T (R1), T (R2)} = {d}
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F (R) = a, otherwise.

Where, T (Ri stands for the top ranked alternative in the ordering of ith

individiual under preference profile R.It is clear that in any of the four

cases, F is a well-defined function on D3(A, s). Moreover in any of the first

three cases F (R) ∈ {T (R1), T (R2)} indicates that F (R) ∈ PO(R) Now, we

need to show that, if none of the first three cases hold, then a is Pareto

optimal. Since we have none of the first three cases we can suppose that

w.l.o.g that c = T (R1) and d = T (R2). Now, R2 ∈ D3(A, s) implies that we

have d �R2 a �R2 b �R2 c, moreover since R1 ∈ D3(A, s) we have a �R1 d,

hence a can not be Pareto dominated by any other alternative. Thus we can

conclude that F satisfies Pareto optimality.

For any x ∈ {c, d}, R ∈ D3(A, s), x = F (R) if and only if x = T (R1) and

x = T (R2) implies that both agent 1 and agent 2 have liberal rights over

(c, d) pair.

Proposition 2. For |A| = n ≥ 5, for any s ∈ L(A) and k ∈ {0, 1, .....n∗(n−1)
2

}

if k ≥ 3n− 9, then there is no social choice function F : Dk(A, s) → A which

satisfies minimal liberalism and Pareto optimality.

Proof.

Case 1. Suppose both agents 1 and 2 have minimal rights over the pair of

alternatives (a, b). Assume w.l.o.g that a �s b and consider the following

contradictory profile where R1|A\{a,b} = s|A\{a,b} and similarly R2|A\{b} =

s|A\{b}.
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R

1 2

a b

b .

. .

Now, δ(s, R1) = [σ(a, s)−1]+[σ(b, s)−2] ≤ 2n−4 ≤ 3n−9 for n ≥ 5 and

δ(s, R2) = σ(b, s)− 1 ≤ n− 1 ≤ 3n− 9 for n ≥ 5. Hence we get contradictory

profile R ∈ D3n−9(A, s).

Case 2. Suppose agent 1 has minimal rights over (a, b)-pair and agent 2 has

minimal rights over the (b, c)-pair. Consider the following two contradic-

tory profiles where for any i ∈ {1, 2}, Ri|A\{a,b,c} = s|A\{a,b,c} and similarly

R
′
i|A\{a,b,c} = s|A\{a,b,c}.

R

1 2

c b

. c

. .

a .

b a

. .

R′

1 2

a b

. a

. .

c .

b c

. .

Now, let [s] stands for the class of linear orderings such that for any

x ∈ A \ {a, c} we have x �s a �s c for any s ∈ [s]. Similarly let [s
′
] stands

for the class of linear orderings such that for any x ∈ A \ {c, b} we have

x �s
′ c �s

′ b for any s
′ ∈ [s

′
]. Form of linear orderings belonging to [s] and

[s
′
] are depicted below.
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s

.

.

.

.

a

c

s
′

.

.

.

.

c

b

It is easy to see that for any p ∈ L(A) \ [s], δ(R1, p) < δ(R1, s) for any s ∈ [s]

and similarly for any p ∈ L(A) \ [s
′
], δ(R2, p) < δ(R2, s

′
) for any s

′ ∈ [s
′
].

Note that, δ(R1, s) = (n − 1) + (n − 2) = 2n − 3 > 3n − 9 for n = 5 and

δ(R2, s
′
) = (n− 1) + (n− 2) = 2n− 3 > 3n− 9 for n = 5. However, for any

p ∈ L(A) \ [s], δ(R1, p) < δ(R1, s) = 2n− 3 implies that δ(R1, p) ≤ 2n− 4 ≤

3n − 9 for n ≥ 5 and similarly for any p ∈ L(A) \ [s
′
], δ(R2, p) < δ(R2, s

′
) =

2n − 3 implies that δ(R2, p) ≤ 2n − 4 ≤ 3n − 9 for n ≥ 5. Thus we can

conclude that for any p ∈ L(A) \ ([s] ∪ [s
′
]), R ∈ D3n−9(A, p). Moreover it

can easily be checked that, for any s ∈ [s] and i ∈ {1, 2}, δ(R
′
i, s) ≤ 3n − 9

for n ≥ 5 and δ(Ri, s
′
) ≤ 3n − 9 for n ≥ 5. This indicates that, for any

p ∈ [s]∪[s
′
], R

′ ∈ D3n−9(A, p). Now, we can conclude that for any p ∈ L(A) we

have R ∈ D3n−9(A, p) or R
′ ∈ D3n−9(A, p) where R and R

′
are contradictory

profiles.

Case 3. Suppose agent 1 has minimal rights over (a, b)-pair and agent 2 has

minimal rights over the (c, d)-pair where a, b, c, d are all different than each

other. Now consider the following three {a, b, c, d} restricted social orderings;

p1

a

d

c

b

p2

a

c

b

d

p3

a

b

c

d
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Observe that from these 3 orderings by replacing (a, b) we can get 6 differ-

ent orderings, further by replacing (c, d) we can get 12 different orderings and

finally by replacing the positions of (a, b)-pair and (c, d)-pair we can get all 24

possible different {a, b, c, d} restricted orderings. Now, consider the following

two contradictory profiles;

R

1 2

d a

b .

a c

. d

c b

. .

R′

1 2

c a

b .

a d

. c

d b

. .

Let for any k ∈ {1, 2, 3}, [sk] = {s ∈ L(A)|s|a,b,c,d = p1}. Now, for any

s ∈ [s1], δ(s, R1) = [σ(d, s) − 1] + [σ(b, s
′
) − 2] + [σ(a, s

′′ − 3)] ≤ (n − 3) +

(n− 2) + (n− 4) = 3n− 9 where s
′
stands for the linear ordering such that

σ(d, s
′
) = σ(d,R1) and s

′|A\{d} = s|A\{d}, similarly s
′′

is such that σ(b, s
′′
) =

σ(b, R1) and s
′′|A\{b} = s

′|A\{b}. By calculating the distances similarly we

get δ(s, R2) ≤ 2n − 7 < 3n − 9 for n ≥ 5. Hence we can conclude that

contradictory profile R ∈ D3n−9(A, s).

Moreover, for any s ∈ [s2], δ(s, R
′
1) ≤ 3n − 10 < 3n − 9 and δ(s, R

′
2) ≤

3n−11 < 3n−9, thus contradictory profile R
′ ∈ D3n−9(A, s). Finally for any

s ∈ [s3], δ(s, R
′
1) ≤ 3n−9 and δ(s, R

′
2) ≤ 3n−9 indicating that contradictory

profile R
′ ∈ D3n−9(A, s). Now, for any s ∈ L(A) such that s belongs neither

of [s1], [s2], [s3] we know that s can be obtained from these classes by making

the necessary replacements among {a, b, c, d} and also by making the same

replacements over R or R
′
one gets the associated contradictory profile which
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belongs to D3n−9(A, s). Thus we can conclude that for any s ∈ L(A) a

contradictory profile in the form of R or R
′
belongs to D3n−9(A, s).

These three cases show that regardless of how we define the minimal

rights of agents 1 and 2, we can reach to a contradictory profile R such

that R ∈ D3n−9(A, s). Hence, we can conclude that there is no social choice

function F : D3n−9(A, s) → 2A which satisfies minimal liberalism and Pareto

optimality.
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CHAPTER 5

CONCLUSION

In this thesis, we introduced the notion of (A, γ)-implementation, and pro-

vided a characterization in terms of Pareto optimality, and pivotal oligarchic

monotonicity.(A, γ)-implementation differs from classical implementation main-

ly in two respects: (i) In (A, γ)-implementation, we explicitly specify a rights

structure among the members of the society, which is independent of their

preferences, where outcomes are determined as a result of this rights struc-

ture and preferences. (ii) In classical implementation we deal with general

strategy sets whereas in (A, γ)-implementation we choose the strategy set be-

ing equivalent to the alternative set, which leads to a rather simple framework.

Our work in this thesis also paves the way for the analysis of (S, γ)-

implementation, and its characterization. Moreover, identifying the relation

between implementation under other solution concepts, and (A, γ)-implementa-

tion are other subjects for further research.
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