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ABSTRACT

AN INQUIRY INTO THE METRICS FOR
EVALUATION OF LOCALIZATION ALGORITHMS IN

WIRELESS AD HOC AND SENSOR NETWORKS

Hidayet Aksu

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. İbrahim Körpeoğlu

January, 2008

In ad-hoc and sensor networks, the location of a sensor node making an obser-

vation is a vital piece of information to allow accurate data analysis. GPS is an

established technology to enable precise position information. Yet, resource con-

straints and size issues prohibit its use in small sensor nodes that are designed to

be cost efficient. Instead, most positions are estimated by a number of algorithms.

Such estimates, inevitably introduce errors in the information collected from the

field, and it is very important to determine the error in cases where they lead

to inaccurate data analysis. After all, many components of the application rely

on the reported locations including decision making processes. It is, therefore,

vital to understand the impact of errors from the applications’ point of view. To

date, the focus on location estimation was on individual accuracy of each sensor’s

position in isolation to the complete network. In this thesis, we point out the

problems with such an approach that does not consider the complete network

topology and the relative positions of nodes in comparison to each other. We

then describe the existing metrics, which are used in the literature, and also pro-

pose some novel metrics that can be used in this area of research. Furthermore,

we run simulations to understand the behavior of the existing and proposed met-

rics. After having discussed the simulation results, we suggest a metric selection

methodology that can be used for wireless sensor network applications.

Keywords: Wireless Sensor Networks, Localization, Topology Similarity, Relative

Accuracy, Error Metrics.
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ÖZET

TASARSIZ VE ALGILAYICI AĞLARDA YER
BELİRLEME ALGORİTMALARININ

DEĞERLENDİRİLMESİNDE KULLANILAN
METRİKLER ÜZERİNE BİR ARAŞTIRMA

Hidayet Aksu

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. İbrahim Körpeoğlu

Ocak, 2008

Algılayıcı ağlarında gözlem yapan bir algılayıcının yeri, doğru veri analizi

yapılması için hayati önem arz eder. Küresel Konumlama Sistemi (GPS) has-

sas yer tayinine imkan sağlayan oturmuş bir sistemdir. Buna karşın, kaynak

sınırlamaları ve boyut gereksinimleri söz konusu teknolojinin maliyet etkin olarak

tasarlanan küçük algılayıcılarda kullanılmasına olanak sağlamamaktadır. Bunun

yerine, çoğu konumlar birtakım algoritmalar kullanılarak tahmin edilmektedir.

Bu gibi tahminler sahadan toplanan veride kaçınılmaz olarak hata bulunmasına

neden olmaktadır. Hatalı veri analizine yol açabilecekleri durumlarda bu tür

hataların saplanması büyük önem arz etmektedir. Bununla birlikte, uygula-

maların çoğu bileşenleri karar verme süreçlerinde bildirilen konum verisine iti-

mat etmektedirler. Bu yüzden konumlama hatalarının etkilerini uygulama bakış

açısıyla anlamak önemlidir. Bu güne kadar, her algılayıcının ağdan izole edilmiş

bireysel konumu, konum belirlemede odak noktası olmuştur. Biz bu tezde,

karşılaştırmalarda bütün ağ topolojisini ve göreli algılayıcı konumlarını dikkate al-

mayan yaklaşımlarda bulunan problemlere dikkat çektik. Daha sonra literatürde

kullanılan metrikleri tarif edip, bu araştırma alanında kullanılabilecek birkaç yeni

metrik önerdik. Ayrıca, mevcut ve önerdiğimiz metriklerin davranışlarını an-

lamak amacıyla simülasyonlar koşturduk. Simülasyon sonuçlarını tartıştıktan

sonra kablosuz algılayıcı ağ uygulamaları için kullanılabilecek bir metrik seçim

metodolojisi önerdik.

Anahtar sözcükler : Kablosuz Ağlar, Yer Belirleme, Topolojik Benzerlik, Göreceli

Doğruluk, Hata Metrikleri.
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Chapter 1

Introduction

As a result of recent improvements in integrated circuits and device manufactur-

ing, deployment of sensor nodes, which are small, inexpensive, low-power, dis-

tributed devices with the capability of processing and wireless communication,

are becoming feasible [26, 32]. Sensor nodes are the simplest intelligent devices

used currently, main purpose of which is monitoring the environment near them

and giving alerts about the main events that are taking place. Applications

and systems built above them can make decisions according to the observations

received from these devices [7]. Although each sensor node has only a limited pro-

cessing capability, a group of sensor nodes working in coordination can achieve

the ability to monitor the environment in detail. Therefore, a sensor network can

be described as a group of sensor nodes which can perform some specific task in

coordination. Dense deployment and close coordination is usually essential for

sensor networks to carry out the task expected from them [2].

Wireless sensor networks (WSN) are emerging as an important platform that

is built on specialized hardware and network structure on which many applica-

tions related to distinct areas can run. Those applications include but are not

limited to environmental monitoring, industrial and manufacturing automation,

health-care, and military. Generally, wireless sensor networks are limited with

regard to power resources and computational capacity [23].

1
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WSNs are targeted for various classes of applications, thus different objectives

are considered in their design. Their design may aim to take required action on

time, so, they usually monitor a certain environment to detect the occurrences

of possible events. Their design may also aim to understand the behavior of

the monitored entity, therefore, they gather and process data from a certain

environment [23].

A fundamental issue in WSNs is determination of where sensor nodes reside,

i.e. determination of their positions. In essence, sensor nodes collect information

about the environment and transfer their observations to a data collection point,

a.k.a. the sink node [1], from where users can access the collected data without

the need to travel to the monitored area. In this regard, every user has to de-

pend on the location information provided by the sensor node that reports an

observation. As a result, the users view of the monitored area highly depends on

reported locations, therefore, it is critical to illustrate a representative picture of

observations to users. In ad hoc sensor networks, node positions are not known

prior to the deployment. In extreme cases, sensor nodes are dropped from the

air and scattered. The process of estimating the unknown node positions within

the network is referred to as localization. The limited power supply, size and cost

considerations in sensor networks prohibit the deployment of GPS (Global Posi-

tioning System) at each sensor node. Instead, it is preferred to limit the number

of nodes with GPS antennas and then rely on location estimation algorithms for

the rest of the nodes.

In the network shown in Figure 1.1, the solid nodes represent nodes with

known positions and the open nodes represent nodes with unknown positions.

Location estimation algorithms estimate the positions of open nodes given the

positions of solid nodes. In other words, the problem is:

• Given: the positions of some nodes (solid nodes)

• Find: the positions of all other nodes (open nodes)

Formally, the network is a graph where nodes are represented by vertices and

bi-directional communication constraints are shown by edges. Positions of some
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Figure 1.1: Graph illustrating nodes as vertices, communication constraints as
edges.

nodes are known while the remaining positions are not known. The localization

problem is then to find best approximation for unknown positions.

Obviously, errors are inevitable in estimations, and it is important to under-

stand the impact of errors for a particular application. In Figure 1.2, we illustrate

a simple example with three sensor nodes. The actual positions of P1, P2, and P3

are represented by solid circles in the figure. Recall that, in practical applications,

the actual positions of these nodes would not be known, and application user will

have to depend on the position estimations reported by the nodes. In Figure

1.2(a), we plot location estimates of these nodes by a localization algorithm as

P
′
1, P

′
2, and P

′
3 using dotted circles.

Now, consider another localization algorithm that produces location estimates

of P
′′
1 , P

′′
2 , and P

′′
3 for the same nodes as demonstrated in Figure 1.2(b). Following

the traditional approach in localization studies, we would evaluate these two sets

of estimations based on the Euclidean distance between the real and the estimated

positions of individual nodes.

When considered in isolation as in previous work, this would suggest a similar

error in both cases. However, these two sets of estimates have quite different im-

pacts for data management in practical applications. In particular, the relative

positions of P
′′
1 and P

′′
2 , and also P

′′
1 and P

′′
3 , etc. are incorrect in comparison to
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(a) position estimates, P
′
1, P

′
2, and P

′
3, for the sensor nodes P1,

P2, and P3, respectively.

(b) comparison with an alternative set of estimates with similar
pair-wise errors.

Figure 1.2: Representative topology is more important than reducing the indi-
vidual errors reported in isolation to the network: P1, P2, and P3 are the actual
positions of two sensor nodes. P

′
1, P

′
2, and P

′
3 are the estimates of one localization

algorithm. P
′′
1 , P

′′
2 , and P

′′
3 are the estimates of another algorithm that results

in a similar pair-wise error. However, the estimates, P
′′
1 , P

′′
2 , and P

′′
3 , result in a

completely misleading overall topology from the end users point of view.
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the original deployment. In consequence, this may result in misleading conclu-

sions during data analysis. For instance, the advection of a particulate pollutant

may appear to be in the reverse direction than it really is. In this scenario, even

though the Euclidean errors are the same, estimates (P
′
1, P

′
2, and P

′
3) are much

better than (P
′′
1 , P

′′
2 , and P

′′
3 ).

In general, the precise location of each sensor node is not necessary in most

sensor network applications [1]. Yet, accurate overall topologies are vital for

accurate identification1, routing, in-network processing as well as overall analysis

of observations. Our focus, therefore, is on the overall sensor network topology

constructed, rather than on individual estimates as has been the major focus in

previous studies, e.g. [24], [28], [15], [19], [22].

A network topology can be considered as a figure consisting of points that

represent the positions of each sensor node in the field. We, then, can consider

the similarity of the two figures constructed to represent each topology. Yet, even

when we reduce the problem to a well-studied field, there is no universal definition

of what figure is.

Indeed, definition of a figure and figure matching have been a major research

problem for hundreds of years, finally taking its form in computer science fields

such as computational geometry, etc. The traditional problem, however, deals

with transforming a figure (shape), and measuring the resemblance with another

one, using some similarity measure. For general figure matching, we have a

wide range of similarity measures which depend on the particular application at

hand, boundary matching, texture matching, etc. Yet, in sensor networks we are

interested in a superset of attributes than those already studied. For instance,

even when two figures are exactly the same, point-to point, it is still possible

that some points have switched their positions and actually report erroneous

positions with the observations they make. This makes comparison of two network

topologies, in particular, one consisting of actual node positions, and the other

consisting of estimates made by those nodes, a unique problem.

1For large scale deployments, producing arbitrary addresses for billions of nodes is not
feasible; if estimated accurately, geographic locations can help identify nodes, routing, etc.
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The main issue, after all, lays in the definition of a topology. What is a

topology, so that we can define the similarity of two topologies. It is obviously

possible to come up with various definitions of a topology. In our study, we

define topology to be a set of (x, y) coordinates in a two dimensional space. It

is possible to extend this definition to three dimensional space considering the

altitude of deployed sensors. Yet, for the sake of simplicity, and to enable a

common comparison basis with existing metrics, we will build our discussion on

the two dimensional space.

In general, defining the similarity of two sets of data points, two sequences

of coordinates, etc. has been a challenging question studied in a wide range of

computer science fields, i.e., information retrieval, graphics, genome studies, etc.

In our study, we focus on certain topological changes for sensor networks. Making

use of common-sense expectations, we outline some existing approaches to eval-

uate the accuracy of position estimates and also propose some novel approaches

to address the problems we discussed.

Many algorithms have been proposed in the literature [4, 11, 20, 30, 21, 29, 12]

on localization estimation problem of wireless sensor networks, however it is still

not clear how to choose which algorithm for a claimed application. Having so

many localization algorithms for wireless sensor networks, a method is required to

evaluate the success of available algorithms. Currently, Euclidean distance is used

for the evaluation of the localization algorithms. However, Euclidean distance is

not aware of the topology to which it is applied and thus, using this method

can be deceptive. Therefore, an inquiry into the metrics, from the perspective of

being used for measurement of topological distance between a given network and

its estimate, is required to assess the metrics and to find out the circumstances

they are reliable.

The main contributions of this thesis can be listed as follows:

1. We point out the need for a new distance measure for evaluation of local-

ization algorithms.

2. We analyze different metrics that can be employed for location estimation



CHAPTER 1. INTRODUCTION 7

algorithms evaluation.

3. We implemented a basic metric evaluation framework which makes the eval-

uation of the metrics and algorithms easier.

4. We propose a set of alternative metrics depending on the application re-

quirements.

5. We also suggest a methodology for metric selection based on the localization

needs of a wireless sensor network application.

The rest of this thesis is organized as follows. In Chapter 2 we provide some

background information and then describe traditional error metrics used in local-

ization studies. Then in Chapter 3, we present some novel alternatives that can

be used within this topic. We then discuss some simple scenarios to discuss the

performance of these metrics for various applications in Chapter 4. Finally, we

present our conclusions in Chapter 5.



Chapter 2

Preliminaries and Related Work

In this chapter we will first give some preliminary information and then briefly

describe some related work on evaluation of localization algorithms.

2.1 Mathematical Models

In the rest of thesis, following mathematical models will be used.

2.1.1 Network Model

Let a network be represented by a set S = (P1, ..., PN), with the nodes defined by

Pi in the Euclidean space where Pix and Piy indicates (x, y) coordinates of i’th

node in the set.

The above definition of the network topology, i.e. a set of node positions,

becomes identical with the visibility graph representation of the network, provided

that we fix a value for the maximum transmission range of the sensor nodes. This

is because we can easily derive the visibility graph representing a network when

we know the node positions and the maximum transmission range (assuming all

8
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nodes have the same maximum transmission range and assuming the ranges are

symmetric). This definition will be used in the rest of this thesis.

2.1.2 Definition of Distance Metric

In the literature, a distance metric on a set X is a function, called the distance

function, d : X ×X→R, where R is the set of real numbers. For all x, y, z in X,

this function is required to satisfy the following conditions:

1. d(x, y) ≥ 0 (non-negativity)

2. d(x, y) = 0 if and only if x = y (self-distance)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

In this thesis, the following metrics are discussed:

• Euclidean Distance,

• Hamming (Manhattan) Distance,

• Tanimoto Distance,

• Cosine Distance,

• Cumulative Vectorial Distance,

• Relative Euclidean Distance,

• Normalized Relative Euclidean Distance,

• Spring Distance.
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2.1.3 Localization Algorithm Model

Let a localization algorithm be represented by a function δf : S→S
′
, with S repre-

senting a wireless sensor network (i.e. a set of node positions) and S
′
representing

its estimation computed by the localization algorithm f .

2.1.4 Set Distance Metric Model

Let a set distance metric be represented by a function µ : (S, S
′
)→R, where S is a

wireless sensor network, S
′
is its estimation computed by a localization algorithm,

and R is the set of real numbers.

For all networks S, S
′
, H, this function is required to satisfy the following

conditions:

1. µ(S, S
′
) ≥ 0 (non-negativity)

2. µ(S, S
′
) = 0 if and only if S = S

′
(self-distance)

3. µ(S, S
′
) = µ(S

′
, S) (symmetry)

4. µ(S, S
′
) ≤ µ(S, H) + µ(H, S

′
) (triangle inequality)

This is an extension of the metric given in Section 2.1.2 which just gives

the distance between two points. This new metric model gives also the distance

between two sets of points.

2.2 Use Cases of Localization Algorithms

In this section we explore the cases in which a wireless sensor network makes use

of location information. Since localization algorithms’ aim is to approximate the

location of nodes, a research on use cases of location information in wireless sensor
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networks is useful and may be used as a guide and benchmark for assessment of

localization algorithms. By having a study of use of location information in a

number of applications, we can justify our proposed metrics by comparing their

result and expected ones.

In order to understand the dependency of applications on location information

and the impact of errors to application design objectives, we define two sensitiv-

ity classes regarding location estimations and errors for applications running on

sensor networks. These classes are:

1. shift sensitive or insensitive class, which indicates that whether the ap-

plication is responsive to shift errors in location information of the whole

topology.

2. rotation sensitive or insensitive class, which means that whether the appli-

cation is responsive to rotation effect in location information of the whole

topology.

In other words, when the estimated positions of all nodes in a network shift

together with their actual positions, if the application running on this network

does not came up with a misleading conclusion, then the application is said

to be shift insensitive. The same argument works for rotation sensitivity and

insensitivity cases.

Among various wireless sensor network applications, some well documented,

representative applications are briefly described below.

2.2.1 Bird Observation

In order to observe the breeding behavior of birds on Great Duck Island, Maine,

USA [17], a wireless sensor network is deployed. Since sensors can easily be

deployed on a small island where studying individually might be unsafe or un-

wise, and since sensors do not have disturbance effects on birds, a wireless sensor

network is used to understand the behavior of birds.
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The biologists are primarily interested in the usage pattern of birds’ nesting

burrows, changes in environmental conditions outside and inside the burrows

during the breeding season, variations among breeding sites, and the parameters

of preferred breeding sites.

Sensor nodes used in this application can measure humidity, pressure, tem-

perature, ambient light level, and sensors are installed inside the burrows and on

the surface.

Sensed data with location information is used to study the

• usage patterns of birds’ nesting burrows,

• changes in environmental conditions outside and inside the burrows during

the breeding season,

• variations among breeding sites,

• parameters of preferred breeding sites.

Study goals make it necessary to know the sensor positions in real environ-

ment, so location information is sensitive to both shift and rotation errors.

2.2.2 ZebraNet

To observe the behavior of animals within a large habitat [13], a wireless sensor

network is deployed at the Mpala Research Center in Kenya. Main goal is to

study the behavior of individual animals, interactions inside a species, interactions

among different species, and the impact of human activities on the species. The

study is planned for a year or more.

Sensor nodes are equipped with light sensors, and nodes are deployed on the

studied animals. Further sensors (head up or down, body temperature, ambient

temperature) are planned for the future.

Sensed data with location information is used to study the
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• individual animals activity patterns of grazing, graze-walking, and fast mov-

ing,

• interactions inside a species,

• grouping behavior and group structure of species.

Location information used for all of these study goals is required to be rela-

tively accurate, so node positions are shift insensitive and rotation insensitive.

2.2.3 Self-Healing Mine Field

Main idea is to have anti-tank land mines equipped with sensing and communica-

tion capabilities to make sure that a certain area remains covered after a mine is

destroyed to create a breach lane [18]. When the mine network detects a tamper

in the network, one of the undamaged mines is selected and the mine jumps to

the breach using its specialized hardware.

In this application the location information is used to

• detect nodes failures,

• move toward the failed node.

For all use cases in which location information is used, positions are required

to be accurate relative to the network, so node positions are shift insensitive and

rotation insensitive.

2.2.4 Sniper Localization

In order to locate trajectory of bullets and snipers [31], a wireless sensor network

is used. Data gathered by this network provides valuable information for law

enforcement. Nodes measure the muzzle blast and shock wave using acoustic
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sensors, then the sensor nodes form a multi-hop ad hoc network, and by comparing

the time of arrival at distributed sensor nodes, the sniper can be localized with

an accuracy of about one meter, and with a latency of under two seconds. The

sensor nodes use a special hardware to carry out the complicated signal processing

functions.

In sniper localization application, location information is used for following

objectives

• localize sniper,

• locate trajectory of bullets.

The objectives of this application make it necessary to use the absolute posi-

tion of nodes, not positions relative to the network, therefore node positions are

shift sensitive and rotation sensitive.

2.2.5 Geographic Routing

Geographic routing is a routing approach that is based on geographic position

information. It is based on the idea that the source node sends messages to the

geographic location of the destination node instead of using the network address.

Geographic routing uses location information in order to

• determine the route to destination

In geographic routing, decisions are made based on node locations and these

decisions are used for routing in the same network. Use of location information in

this application requires accuracy of positions relative to the network, therefore,

node positions are shift insensitive and rotation insensitive.
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2.3 Metrics Used in the Literature

In this section we present some existing metrics that can be applied to measure

the distance between the actual and the estimated topologies, S and S
′
. The

metrics studies in the literature are summarized in Table 2.1.

Name: Formulation (For N Points):

Euclidean
Distance

µ(S, S
′
) = 1

N

∑N
i=1

[(
x

′
i − xi

)2
+
(
y

′
i − yi

)2]1/2

Hamming
Distance

µ(S, S
′
) = 1

N

∑N
i=1

∣∣x′
i − xi

∣∣+ ∣∣y′
i − yi

∣∣
Tanimoto
Distance

For each pair of nodes P1 and P2 in S,

d (P1, P2) =

(
1− ~V · ~V ′

/

(∣∣∣~V ∣∣∣2 +
∣∣∣~V ′
∣∣∣2 − ∣∣∣~V · ~V ′

∣∣∣)) ∗ 10

where ~V = ~P1P2 and ~V
′
= ~P

′
1P

′
2 then

µ(S, S
′
) = 2

N∗(N−1)

(∑N
i=1

∑N
j=i+1 d(Pi, Pj)

)
Cosine Dis-
tance

For each pair of nodes P1 and P2 in S,

d(P1, P2) =
(
1− ~V · ~V ′

/
(∣∣∣~V ∣∣∣× ∣∣∣~V ′

∣∣∣)) ∗ 10

where ~V = ~P1P2 and ~V
′
= ~P

′
1P

′
2 then

µ(S, S
′
) = 2

N∗(N−1)

(∑N
i=1

∑N
j=i+1 d(Pi, Pj)

)
Table 2.1: List of the metrics used in the literature. Details of the metrics are
given in Section 2.3.1.

2.3.1 Metric Details

Here we describe the metrics in detail. For each metric we first give its description

followed by its formulation, then provide the motivation behind it if applicable,

and finally run it on an example network and its estimation. The example network

is the sample network setup shown in Figure 2.1, where the actual network S and

its estimation S
′
are given as follows:

S = {P1(1, 3), P2(3, 3)} and S
′
=
{
P

′
1(1, 2), P

′
2(4, 3)

}
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For this network, the vectors ~V = ~P1P2 and ~V
′

= ~P
′
1P

′
2 represent the rela-

tive positions of the nodes. Moving these vectors to origin, we get the setup in

Figure 2.2.

Figure 2.1: Test network setup with P1(1, 3), P2(3, 3); P
′
1(1, 2), P

′
2(4, 3).

Figure 2.2: The vectors representing relative positions of the nodes. All examples
are based on this network setup.

2.3.1.1 Euclidean Distance

Euclidean distance (error) is the most widely used distance metric. Vest majority

of the studies on wireless sensor network localization issues make use of this



CHAPTER 2. PRELIMINARIES AND RELATED WORK 17

metric [5, 33, 38, 14, 6, 34, 16, 27, 25, 35, 8, 10, 3, 37, 36]. It is defined to be the

shortest distance (the length of the straight line) between two points.

In literature, Euclidean distance between two sets of points is computed by

µeuclidean(S, S
′
) =

1

N

N∑
i=1

[
(x

′

i − xi)
2 + (y

′

i − yi)
2
]1/2

(2.1)

where S and S
′

contain N points, and xi and yi are the actual coordinates

of the node i while xi
′ and yi

′ are the estimated coordinates of the node i. For

sensor network topologies, this metric has been applied using the set of actual

node positions and estimated node positions and the average error has been re-

ported as the overall error of the localization algorithm. As we discussed in the

introduction, however, since this metric does not take the relative position of a

node with respect to other nodes in the network into consideration, it is prone

to be erroneous for applications for which relative positions of nodes are more

important than absolute positions.

Figure 2.3: Euclidean distance is the straight line distance between two points.

Example: For our test network setup, the Euclidean distance between S

and S
′
is:
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µeuclidean(S, S
′
) =

1

N

N∑
i=1

[
(x

′

i − xi)
2 + (y

′

i − yi)
2
]1/2

=
1

2

([
(x

′

1 − x1)
2 + (y

′

1 − y1)
2
]1/2

+
[
(x

′

2 − x2)
2 + (y

′

2 − y2)
2
]1/2
)

=
1

2

([
(1− 1)2 + (2− 3)2

]1/2
+
[
(4− 3)2 + (3− 3)2

]1/2
)

=
1

2

([
(0)2 + (−1)2

]1/2
+
[
(1)2 + (0)2

]1/2
)

=
1

2

(
[0 + 1]1/2 + [1 + 0]1/2

)
=

1

2
(1 + 1)

= 1

2.3.1.2 Hamming (Manhattan) Distance

Hamming (Manhattan) distance is a popular metric due to its simplicity and its

dependence on a two dimensional coordinate system. It is the distance between

two points measured along the axes at right angles. In other words, assuming

that you can move only along the x and y axis in the plane (not in any arbitrary

direction as in the case of Euclidean distance), it measures the distance to get

to one point from the other. For sensor network topologies, similar to Euclidean

distance, this metric has been applied to each individual node position and the

average error has been reported as the overall error of the localization algorithm.

Formulation:

µhamming(S, S
′
) =

1

N

N∑
i=1

(∣∣∣x′

i − xi

∣∣∣+ ∣∣∣y′

i − yi

∣∣∣) (2.2)

where S and S
′
contain N points and xi and yi are the actual coordinates of

node i while xi
′ and yi

′ are the estimated coordinates of the node i.
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Figure 2.4: Hamming distance is the distance between two points measured along
axes at right angles.

Example: For our test network setup, the Hamming distance between S

and S
′
is:

µhamming(S, S
′
) =

1

N

N∑
i=1

(∣∣∣x′

i − xi

∣∣∣+ ∣∣∣y′

i − yi

∣∣∣)
=

1

2

2∑
i=1

(∣∣∣x′

i − xi

∣∣∣+ ∣∣∣y′

i − yi

∣∣∣)
=

1

2

[∣∣∣x′

1 − x1

∣∣∣+ ∣∣∣y′

1 − y1

∣∣∣+ ∣∣∣x′

2 − x2

∣∣∣+ ∣∣∣y′

2 − y2

∣∣∣]
=

1

2
[|1− 1|+ |2− 3|+ |4− 3|+ |3− 3|]

=
1

2
[|0|+ |−1|+ |1|+ |0|]

=
1

2
[0 + 1 + 1 + 0]

= 1

2.3.1.3 Tanimoto Coefficients and Tanimoto Distance

The Tanimoto coefficient (TC) is a more complex metric that considers vectors

rather than points. It is a highly popular metric in text matching problems of
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information retrieval. It is defined as the size of the intersection divided by the

size of the union of the sample sets. The interpretation in our domain is then

as follows. To find the coefficient, we first get the relative position of points in

both sets as vectors and then move these vectors to have their first points at the

origin. We then compute Tanimoto coefficient for these vectors. For each pair of

nodes P1 and P2 in S,

TC(P1, P2) = ~V · ~V ′
/

(∣∣∣~V ∣∣∣2 +
∣∣∣~V ′
∣∣∣2 − ~V · ~V ′

)
(2.3)

is the Tanimoto coefficient for the node P1 and P2, where ~V is the vector that

combines the actual positions of the nodes (i.e. ~V = ~P1P2), and ~V
′
is the vector

that combines the estimated positions of the nodes (i.e. ~V
′
= ~P

′
1P

′
2).

Tanimoto coefficient, in fact, measures the similarity of topologies while met-

rics are expected to measure the distance. In Section 4, behaviors of the metrics

are discussed. In order to make comparison of results sounder, we introduce

Tanimoto distance so that it gives a distance value from a Tanimoto coefficient.

The measure of distance is derived by subtracting the computed similarity from

the measure of perfect similarity. Then we scaled the distance by 10 to make its

value comprehensible for the experiments we conduct, in which errors up to the

magnitude 10 are introduced. As a result,

d(P1, P2) =

(
1− ~V · ~V ′

/

(∣∣∣~V ∣∣∣2 +
∣∣∣~V ′
∣∣∣2 − ~V · ~V ′

))
∗ 10 (2.4)

gives Tanimoto distance for the pair of nodes P1 and P2.

Then

µtanimoto(S, S
′
) =

2

N ∗ (N − 1)

(
N∑

i=1

N∑
j=i+1

d(Pi, Pj)

)
(2.5)

is the Tanimoto distance between the set S and its estimate S
′
.
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Example: For our test network setup, we can compute the Tanimoto

distance of S and S
′
as:

d(P1, P2) = (1− ~V · ~V ′
/(|~V |2 + |~V ′|2 − |~V · ~V ′|)) ∗ 10

where ~V = ~P1P2 and ~V
′
= ~P

′
1P

′
2

∣∣∣~V ∣∣∣ =
(
22 + 02

)1/2
= 2∣∣∣~V ′

∣∣∣ =
(
32 + 12

)1/2 ∼= 3.16

~V · ~V ′
=

∣∣∣~V ∣∣∣ ∗ ∣∣∣~V ′
∣∣∣ ∗ cos(α) = 3.16 ∗ 2 ∗ (3/3.16) = 6

d(P1, P2) = (1− ~V · ~V ′
/(|~V |2 + |~V ′|2 − |~V · ~V ′|)) ∗ 10

d(P1, P2) =
(
1− 6/

(
(3.16)2 + 22 − 6

))
∗ 10

d(P1, P2) = (1− 6/8) ∗ 10

d(P1, P2) = 2.5

µtanimoto(S, S
′
) =

2

N ∗ (N − 1)

(
N∑

i=1

N∑
j=i+1

d(Pi, Pj)

)

then

=
2

2 ∗ (2− 1)

(
2∑

i=1

2∑
j=i+1

d(Pi, Pj)

)

=
2

2 ∗ 1
(d(P1, P2))

=
2

2 ∗ 1
(2.5)

= 2.5
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2.3.1.4 Cosine Similarity and Cosine Distance

When we consider approaches that consider not only a single node but more nodes

at the same time, Cosine similarity (CS) is another well-known technique. In this

case we can consider two nodes with their actual and estimated positions as two

vectors, as shown in Figure 2.5. In the figure, the actual positions of two nodes

P1 and P2 are represented by the solid circles and the vector that combines these

two positions ~V = ~P1P2 is shown by the solid edge that can be used to define their

actual relative positioning difference in the deployment area. The dashed circles

represent the estimated positions of these nodes and the dashed edge in between

represents the vector ~V ′ = ~P
′
1P

′
2 which can be used to define estimated relative

positioning. Cosine similarity then can be used to define the angle between these

vectors. For instance, if the vectors ~V and ~V ′ are parallel, then Cosine similarity

would suggest that the two sets of topologies were perfectly similar.

Note that Cosine similarity is a good metric for applications that only care

about the relative direction of nodes regardless of the actual distance between

the pairs of estimates. The distance between the nodes is, however, not captured

by this metric.

Figure 2.5: Two sensor node positions P1 and P2 are shown with solid circles, with
the edge between them describing their actual relative positioning. P1

′ and P2
′

are the position estimates produced by these nodes and the dashed edge between
them is used to define their relative positioning based on the estimated positions.
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Formulation: For each pair of nodes P1 and P2 in S,

CS(P1, P2) = ~V · ~V ′
/
(∣∣∣~V ∣∣∣× ∣∣∣~V ′

∣∣∣) (2.6)

is Cosine similarity for the node P1 and P2, where ~V is the vector that combines

the actual positions of the nodes (i.e. ~V = ~P1P2), and ~V
′

is the vector that

combines the estimated positions of the nodes (i.e. ~V
′
= ~P

′
1P

′
2).

Similar to Tanimoto coefficient, Cosine similarity, too, measures the similarity

of topologies. As discussed in Tanimoto coefficient topic, metrics need to be dis-

tance, hence we introduced Cosine distance such that it produces distance values

from Cosine similarity. As done previously, the measure of distance is derived by

subtracting the computed similarity from the measure of perfect similarity and

scaling it by 10. As a result,

d(P1, P2) =
(
1− ~V · ~V ′

/
(∣∣∣~V ∣∣∣× ∣∣∣~V ′

∣∣∣)) ∗ 10 (2.7)

gives Cosine distance for the pair of nodes P1 and P2.

Then

µcosine(S, S
′
) =

2

N ∗ (N − 1)

(
N∑

i=1

N∑
j=i+1

d(Pi, Pj)

)
(2.8)

gives Cosine distance between the set S and its estimate S
′
.

Example: For our test network setup, we can compute the Cosine distance

of S and S
′
as:

d(P1, P2) = (1− ~V · ~V ′
/(|~V | × |~V ′|)) ∗ 10
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where ~V = ~P1P2 and ~V
′
= ~P

′
1P

′
2

∣∣∣~V ∣∣∣ =
(
22 + 02

)1/2
= 2∣∣∣~V ′

∣∣∣ =
(
32 + 12

)1/2 ∼= 3.16

~V · ~V ′
=

∣∣∣~V ∣∣∣ ∗ ∣∣∣~V ′
∣∣∣ ∗ cos(α) = 3.16 ∗ 2 ∗ (3/3.16) = 6

d(P1, P2) = (1− ~V · ~V ′
/(|~V | × |~V ′|)) ∗ 10

d(P1, P2) = (1− 6/ ((3.16)× 2)) ∗ 10

d(P1, P2) = (1− 6/6.32) ∗ 10

d(P1, P2) = 0.51

then

µcosine(S, S
′
) =

2

N ∗ (N − 1)

(
N∑

i=1

N∑
j=i+1

d(Pi, Pj)

)

=
2

2 ∗ (2− 1)

(
2∑

i=1

2∑
j=i+1

d(Pi, Pj)

)

=
2

2 ∗ 1
(d(P1, P2))

=
2

2 ∗ 1
(0.51)

= 0.51

So far, we have presented some existing metrics which deal with the measure

of distance between two topologies. We have described the metrics in detail: we

gave their descriptions, wrote down the formulations, and then estimated the

distance between two basic topologies by the presented metrics. We will talk

about these metrics again after we have put forward some other metrics, those

proposed in this work. Then all metrics will be evaluated through simulations,

and then the results which indicate the metric characteristics will be revealed.



Chapter 3

Proposed Work

In this chapter we propose new metrics that can be used to measure the distance

between the actual and estimated topologies, S and S
′
. We focus on different

approaches that can be used to evaluate localization errors. We provide some

new metrics developed using these different approaches and give the details of

each metric.

3.1 The Proposed Metrics

Here, we present some novel metrics we came up with during the course of our

study to address the issues we have raised. The proposed metrics are summarized

in Table 3.1.

3.2 Metric Details

As we did in Section 2.3.1, for each metric we first give its description followed by

its formulation and then provide the motivation behind it (if exists) and finally

run it on an example network. The example network is the network setup shown

in Figure 3.1, where the actual network S and its estimation S
′
are:

25
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Name: Formulation (For N Points):

Cumulative
Vectorial
Distance

µ(S, S
′
) =

1
N

([∑N
i=1(x

′
i − xi)

]2
+
[∑N

i=1(y
′
i − yi)

]2)1/2

Relative Eu-
clidean Dis-
tance

For each pair of nodes P1 and P2 in S,

d(P1, P2) =
[
(|~V |2 + |~V ′|2 − 2~V · ~V ′

)
]1/2

where ~V = P1P2 and ~V
′
= P

′
1P

′
2 then

µ(S, S
′
) = 2

N∗(N−1)

(∑N
i=1

∑N
j=i+1 d(Pi, Pj)

)
Normalized
Relative
Euclidean
Distance

For each pair of nodes P1 and P2 in S,

d(P1, P2) =
[
(|~V |2 + |~V ′|2 − 2~V · ~V ′

)
]1/2

/(|~V |+ |~V ′|) where ~V =

P1P2 and ~V
′
= P

′
1P

′
2 then

µ(S, S
′
) = 2

N∗(N−1)

(∑N
i=1

∑N
j=i+1 d(Pi, Pj)

)
Spring Dis-
tance

For each pair of nodes P1 and P2 in S,

d(P1, P2) = 1/
∣∣∣~V ∣∣∣ ∗ ∣∣∣∣∣∣~V ∣∣∣− ∣∣∣~V ′

∣∣∣∣∣∣
+1/

∣∣∣~V ∣∣∣ ∗ (|dVs1|+ |dVs2|) ∗m

+1/
∣∣∣~V ∣∣∣ ∗ [∣∣∣~V ∣∣∣2 +

∣∣∣~V ′
∣∣∣2 − 2~V · ~V ′

]1/2

∗ n

where ~dVs1 = ~P1P
′
1,

~dVs2 = ~P2P
′
2, ~V = ~P1P2, ~V

′
= ~P

′
1P

′
2, m is

shift sensitivity and n is rotation sensitivity , then

µ(S, S
′
) = 2

N∗(N−1)

(∑N
i=1

∑N
j=i+1 d(Pi, Pj)

)
Table 3.1: List of the metrics developed in study of this thesis. Details of the
metrics are given in Section 3.2.

S = {P1(1, 3), P2(3, 3)} and S
′
=
{
P

′
1(1, 2), P

′
2(4, 3)

}

For this network, the vectors ~V = ~P1P2 and ~V
′
= ~P

′
1P

′
2 hold the relative posi-

tions of the nodes. Moving these vectors to origin, we get the setup in Figure 3.2.

3.2.1 Cumulative Vectorial Distance (CVD)

In this metric we propose, we thought about a way to include the distance as well

as direction into the equation. In this regard, we record the distance between



CHAPTER 3. PROPOSED WORK 27

Figure 3.1: Test network setup with P1(1, 3), P2(3, 3); P
′
1(1, 2), P

′
2(4, 3).

Figure 3.2: The vectors representing relative positions of the nodes. All examples
are based on this network setup.
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a real and corresponding estimated point as a vector. Then for all points in

the network, we sum up these vectors to form the cumulative vector, which is

recorded as the measure of distance. In particular,

µcvd(S, S
′
) =

1

N

∣∣∣∣∣
N∑

i=1

~Vi

∣∣∣∣∣ where ~Vi = ~PiP
′
i (3.1)

we know that

∣∣∣~Vi + ~Vj

∣∣∣ =
∣∣∣((x′

i − xi

)
+
(
x

′

j − xj

))
,
((

y
′

i − yi

)
+
(
y

′

j − yj

))∣∣∣ (3.2)

=

√[(
x

′
i − xi

)
+
(
x

′
j − xj

)]2
+
[(

y
′
i − yi

)
+
(
y

′
j − yj

)]2
(3.3)

Substituting (3.3) into (3.1) we get

µcvd(S, S
′
) =

1

N

[ N∑
i=1

(x
′

i − xi)

]2

+

[
N∑

i=1

(y
′

i − yi)

]2
1/2

(3.4)

where the topologies S and S
′
contain N points.

Example: For the example topology shown in Figure 3.2, the distance can

be computed using this method as:
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Figure 3.3: The distance between pair (P1, P
′
1) and (P2, P

′
2) are recorded as vectors

V1 and V2. Then, by adding these vectors we get distance dV representing the
distance between two topologies.

µcvd(S, S
′
) =

1

N

[ N∑
i=1

(x
′

i − xi)

]2

+

[
N∑

i=1

(y
′

i − yi)

]2
1/2

=
1

2

[ 2∑
i=1

(x
′

i − xi)

]2

+

[
2∑

i=1

(y
′

i − yi)

]2
1/2

=
1

2

([
(x

′

1 − x1) + (x
′

2 − x2)
]2

+
[
(y

′

1 − y1) + (y
′

2 − y2)
]2)1/2

=
1

2

(
[(1− 1) + (4− 3)]2 + [(2− 3) + (3− 3)]2

)1/2

=
1

2

(
[0 + 1] 2 + [−1 + 0] 2)1/2

=
1

2
(1 + 1)1/2

=
1

2
(2)1/2

= 0, 71
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3.2.2 Relative Euclidean Distance

Relative Euclidean Distance (RED) is a metric that we propose based on our

observations on how Euclidean distance fails to capture the relative positions of

a pair of nodes. Euclidean distance considers a point in reference to the origin

which is a fixed point. With this metric, instead, we try to capture the relative

positional difference between two sets of points: the actual positions set and the

estimated positions set. We consider the positions in pairs. Each pair of positions

(i.e. points) in a set is represented with a vector.

Considering two such points P1 and P2, we first get the relative position of

points in both sets as vectors and then move these vectors to have their starting

point at the origin. We then compute the Euclidean distance between the end

points of these two vectors. The process is illustrated in Figure 3.4. Note that

RED, unlike Euclidean distance, allows directional errors to be caught as well as

distance errors.

In particular, for each pair of nodes P1 and P2 in S, let ~V = ~P1P2 and

~V
′
= ~P

′
1P

′
2 then

d(P1, P2) =

[(∣∣∣~V ∣∣∣2 +
∣∣∣~V ′
∣∣∣2 − 2~V · ~V ′

)]1/2

Hence

µred(S, S
′
) =

2

N ∗ (N − 1)

(
N∑

i=1

N∑
j=i+1

d(Pi, Pj)

)
(3.5)

gives RED between the set S and its estimate S
′
.

Example:

d(P1, P2) =
[
(|~V |2 + |~V ′|2 − 2~V · ~V ′

)
]1/2
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Figure 3.4: The distance between pair (P1, P2) and (P
′
1, P

′
2) are vectors V and

V
′
. Relative Euclidean Distance (dV ) is the distance between two vectors’ end

points when combined at a common starting point.

where ~V = ~P1P2 and ~V
′
= ~P

′
1P

′
2

|~V | =
(
22 + 02

)1/2
= 2∣∣∣~V ′

∣∣∣ =
(
32 + 12

)1/2 ∼= 3.16

~V · ~V ′
=

∣∣∣~V ∣∣∣ ∗ ∣∣∣~V ′
∣∣∣ ∗ cos(α) = 3.16 ∗ 2 ∗ (3/3.16) = 6

d(P1, P2) =
[
(|~V |2 + |~V ′|2 − 2~V · ~V ′

)
]1/2

d(P1, P2) =
[
(3.16)2 + 22 − 2 ∗ 6

]1/2

d(P1, P2) = 1.41

then
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µred(S, S
′
) =

2

N ∗ (N − 1)

(
N∑

i=1

N∑
j=i+1

d(Pi, Pj)

)

=
2

2 ∗ (2− 1)

(
2∑

i=1

2∑
j=i+1

d(Pi, Pj)

)

=
2

2 ∗ 1
(d(P1, P2))

=
2

2 ∗ 1
(d(P1, P2))

=
2

2 ∗ 1
(1.41)

= 1.41

3.2.3 Normalized Relative Euclidean Distance

Normalized Relative Euclidean Distance (NRED) is another metric we came up

with based on our observations on previous techniques and sensor network appli-

cation requirements. In this approach we start off as RED and then normalize

the distance according to the length of the vectors. This is done by dividing the

distance by the sum of vector magnitudes.

NRED is motivated by two observations. First one is that the topology is not

just about the distance of individual points, but it is more about the relative po-

sition of the pairs that compose the network. Second one is that, direct distances

may be misleading i.e. 10001 - 10003 and 1-3 both pairs have the same direct

distance while 10001-10003 is closer in topological view.

For each pair of nodes P1 and P2 in S,

d (P1, P2) =

[(∣∣∣~V ∣∣∣2 +
∣∣∣~V ′
∣∣∣2 − 2~V · ~V ′

)]1/2

/
(∣∣∣~V ∣∣∣+ ∣∣∣~V ′

∣∣∣)

where ~V is the vector that combines the actual positions of the nodes (i.e.
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~V = ~P1P2) and ~V
′

is the vector that combines the estimated positions of the

nodes (i.e. ~V
′
= ~P

′
1P

′
2).

Then

µnred(S, S
′
) =

2

N ∗ (N − 1)

(
N∑

i=1

N∑
j=i+1

d (Pi, Pj)

)
(3.6)

gives NRED between the set S and its estimate S
′
.

Example:

d(P1, P2) =
[
(|~V |2 + |~V ′|2 − 2~V · ~V ′

)
]1/2

/(|~V |+ |~V ′|)

where ~V = ~P1P2 and ~V
′
= ~P

′
1P

′
2

∣∣∣~V ∣∣∣ =
(
22 + 02

)1/2
= 2∣∣∣~V ′

∣∣∣ =
(
32 + 12

)1/2 ∼= 3.16

~V · ~V ′
=

∣∣∣~V ∣∣∣ ∗ ∣∣∣~V ′
∣∣∣ ∗ cos(α) = 3.16 ∗ 2 ∗ (3/3.16) = 6

d(P1, P2) =
[
(|~V |2 + |~V ′|2 − 2~V · ~V ′

)
]1/2

/(|~V |+ |~V ′|)

d(P1, P2) =
[
(3.16)2 + 22 − 2 ∗ 6

]1/2
/(3.16 + 2)

d(P1, P2) = 1.41/5.16

d(P1, P2) = 0.27

then
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µnred(S, S
′
) =

2

N ∗ (N − 1)

(
N∑

i=1

N∑
j=i+1

d(Pi, Pj)

)

=
2

2 ∗ (2− 1)

(
2∑

i=1

2∑
j=i+1

d(Pi, Pj)

)

=
2

2 ∗ 1
(d(P1, P2))

=
2

2 ∗ 1
(0.27)

= 0.27

3.2.4 Spring Distance

Figure 3.5: The vectors ~V : (P1, P2), ~V ′ : (P
′
1, P

′
2),

~dVs1 : (P1, P
′
1) and ~dVs2 :

(P2, P
′
2) are made up of strings. ~dVa which equals to | ~V ′| − |~V | is the distance

observed as absolute change. ~dVr which equals to | ~V ′−~V | is the distance observed

as rotation change. ~dVs1 and ~dVs2 are the distance observed as shift changes.

Generally, the more force applied to a system, the more changes occur on

it. Hence, having a physical model for a network and measuring the changes on

it via the amount of the force, which is applied to make such a change on it,

motivated us for this metric. We assumed that the vector representing the actual

relative placement of two points is made out of a spring that we try to keep in the
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same state after the estimates are completed. That is, if after the estimates are

done, assuming perfect accuracy, there would not be any change in the new vector

between the estimated coordinates. Yet, if the estimates are further apart than

they should be, this means we have applied a force to stretch the spring. Similarly,

if they are much closer to each other, that means we applied a force to compress

the spring. With this motivation, we propose the spring distance measure as

follows. The distance between two vectors, one representing the actual relative

placement of two points and the other the estimated relative placement of these

two points can be measured by the force applied to alter the position/spring.

Note that if all nodes are connected to each other with springs, moving the

complete plane on which the topology resides would not flag any error. For this

reason, we also assumed that each node is connected to the ground and axes by

another two sets of springs such that absolute relocations and rotations can also

be recorded. In order to accommodate whole changes, we assumed three sets of

strings attached to each node.

The strings in the first set which connect nodes to each other are responsive

for changes in relative distances and these strings’ force constant is assumed to

be one. In addition, the strings in the second set, which connect node positions

to the ground are responsive for changes in absolute distances, so these strings’

force constant is proportional to shift sensitivity parameter. Moreover, the string

in the third set, which connects node positions to axes are responsive for changes

in direction, so these string’s force constant is proportional to rotation sensitivity

parameter. In particular, we assume that the sensor network consists of nodes

connected to each other with springs and also that each one is connected to the

ground and axes with springs. We then calculated the force applied to these

springs to end up in the topology suggested by the estimated positions.

The forces applied on the springs are then measured using Hook’s law:

F = − c

λ
x

where F is the restoring force exerted by the spring, c is the spring constant



CHAPTER 3. PROPOSED WORK 36

or force constant of the spring, λ is the length of string, and x is the distance the

spring is elongated by.

Name: shift sensitivity constant rotational sensitivity constant

Spring A Distance 0.5 0.5
Spring B Distance 1 0
Spring C Distance 0 1
Spring D Distance 0 0

Table 3.2: List of Spring Distance variations.

Force constants of springs affect the behavior of spring distance metric. By in-

crasing/decreasing the shift sensitivity and rotation sensitivity parameters, met-

ric’s response to changes can be adjusted. In the simulations, as listed in Ta-

ble 3.2 we use four versions of spring distance: Spring A distance is the one with

shift sensitivity = rotational sensitivity = 0.5; Spring B distance is the one with

shift sensitivity = 1 and rotational sensitivity = 0; Spring C distance is the one

with shift sensitivity = 0 and rotational sensitivity = 1; Spring D distance is the

one with shift sensitivity = 0 and rotational sensitivity = 0. Computed force

on the strings quantifies the change in the network and is used as the distance

between networks.

Formulation: For each pair of nodes P1 and P2 in S,

d(P1, P2) = 1/
∣∣∣~V ∣∣∣ ∗ ∣∣∣∣∣∣~V ∣∣∣− ∣∣∣~V ′

∣∣∣∣∣∣
+ 1/

∣∣∣~V ∣∣∣ ∗ (|dVs1|+ |dVs2|) ∗m

+ 1/
∣∣∣~V ∣∣∣ ∗ [∣∣∣~V ∣∣∣2 +

∣∣∣~V ′
∣∣∣2 − 2~V · ~V ′

]1/2

∗ n

where ~dVs1 = ~P1P
′
1,

~dVs2 = ~P2P
′
2, ~V = ~P1P2, ~V

′
= ~P

′
1P

′
2, m is shift sensitivity

and n is rotation sensitivity, then

µspring(S, S
′
) =

2

N ∗ (N − 1)

(
N∑

i=1

N∑
j=i+1

d(Pi, Pj)

)
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is Spring distance between the topologies S and S
′
.

Example:

d(P1, P2) = 1/
∣∣∣~V ∣∣∣ ∗ ∣∣∣∣∣∣~V ∣∣∣− ∣∣∣~V ′

∣∣∣∣∣∣
+ 1/

∣∣∣~V ∣∣∣ ∗ (|dVs1|+ |dVs2|) ∗m

+ 1/
∣∣∣~V ∣∣∣ ∗ [∣∣∣~V ∣∣∣2 +

∣∣∣~V ′
∣∣∣2 − 2~V · ~V ′

]1/2

∗ n

where ~dVs1 = ~P1P
′
1,

~dVs2 = ~P2P
′
2, ~V = ~P1P2, ~V

′
= ~P

′
1P

′
2, m is shift sensitivity

and n is rotation sensitivity,

∣∣∣ ~dVs1

∣∣∣ = 1∣∣∣ ~dVs2

∣∣∣ = 1∣∣∣~V ∣∣∣ =
(
22 + 02

)1/2
= 2∣∣∣~V ′

∣∣∣ =
(
32 + 12

)1/2 ∼= 3.16

~V · ~V ′
=

∣∣∣~V ∣∣∣ ∗ ∣∣∣~V ′
∣∣∣ ∗ cos(α) = 3.16 ∗ 2 ∗ (3/3.16) = 6

d(P1, P2) = 1/
∣∣∣~V ∣∣∣ ∗ ∣∣∣∣∣∣~V ∣∣∣− ∣∣∣~V ′

∣∣∣∣∣∣
+ 1/

∣∣∣~V ∣∣∣ ∗ (|dVs1|+ |dVs2|) ∗m

+ 1/
∣∣∣~V ∣∣∣ ∗ [∣∣∣~V ∣∣∣2 +

∣∣∣~V ′
∣∣∣2 − 2~V · ~V ′

]1/2

∗ n

d(P1, P2) = 1/2 ∗ |2− 3.16|+ 1/2 ∗ (1 + 1) ∗ 0.5

+ 1/2 ∗
[
(22 + (3.16)2 − 2 ∗ 6)

]1/2 ∗ 0.5

d(P1, P2) = 0.5 ∗ 1.16 + 0.5 ∗ 2 ∗ 0.5 + 0.5 ∗ 1.41 ∗ 0.5

d(P1, P2) = 0.58 + 0.5 + 0.35

d(P1, P2) = 1.43

then



CHAPTER 3. PROPOSED WORK 38

= µspring(S, S
′
) =

2

N ∗ (N − 1)

(
N∑

i=1

N∑
j=i+1

d(Pi, Pj)

)

=
2

2 ∗ (2− 1)

(
2∑

i=1

2∑
j=i+1

d(Pi, Pj)

)

=
2

2 ∗ 1
(d(P1, P2))

=
2

2 ∗ 1
(d(P1, P2))

=
2

2 ∗ 1
(1.43)

= 1.43

This section concludes the introduction and detailed description of existing

metrics and new metrics that we proposed. We have proposed four new distance

metrics. The distance metrics we described can be used to evaluate localization

algorithms. This is a critical issue. How a metic can help in evaluating various

localization algorithms may depend on the application scenario and on the type

of errors that are tolerable by the users of the location data. Therefore, metrics

too need to be evaluated. In the next section, we will evaluate the various existing

and new metrics we discussed in the thesis. We will try to identify the cases and

circumstances under which a particular metric is more useful compared to other

ones.



Chapter 4

Experiments and Results

In this chapter we will study some basic topology scenarios for comparing the

metrics presented in the previous chapters. For each topology and metric we will

discuss the impact of errors and the expected accuracy values for some sample

applications.

4.1 Topology Scenarios

We run simulations for three scenarios. Each of these scenarios represents a

certain topological change. Simulation inputs are:

• S (Actual Network),

• S ′ (Estimated Network),

• M (Set of metrics).

Here, actual network S is deployed randomly with certain densities. Estimated

network S
′
is generated by localization functions.

Following localization functions are used for simulation scenarios and each of

them is considered as a topological change.

39
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1. δshift(n) : ∀i, pi ∈ S ∧ p
′
i ∈ S

′ → pi
′
x = pix + n ∧ pi

′
y = piy + n

2. δrotate(α) : ∀i, pi ∈ S ∧ p
′
i ∈ S

′ → pi
′
x = rotatepointα(pix) ∧ pi

′
y =

rotatepointα(piy) where rotatepointα(k) rotates point k around cen-

ter point of S by α degrees and retuns the resulting point.

3. δarbitrary(n) : ∀i, pi ∈ S ∧ p
′
i ∈ S

′ → pi
′
x = pix± n∧ pi

′
y = piy ± n where value

of ± determined randomly.

The metric list, M , consists of the metrics in the literature and the metrics

developed by us. Therefore, the list consists of:

• Euclidean Distance,

• Hamming (Manhattan) Distance,

• Tanimoto Distance,

• Cosine Distance,

• CVD,

• RED,

• NRED,

• Spring Distance.

4.2 Simulation Parameters

The simulations are performed over 20 × 20 unit sized square area. For each

density, 100% (400 nodes), 90% (360 nodes) down to 10% (40 nodes), nodes are

randomly distributed over this area. In this manner, 10 networks (actual network

S) are generated. Then, each localization function is applied to these networks, as

a result we get 10 networks (estimated network S
′
) for each localization algorithm.
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Subsequently, each metric is applied to each pair (S, S
′
) of these networks and

the results are recorded.

4.3 Simulation Environment

In the community of wireless sensor networks, proposals are usually supported

by simulation. As a result of this, many simulation tools specialized to wireless

sensor networks are available in public domain i.e. NS-2 [9]. These simulation

tools contain many features, and reduce the overhead of rewriting numerous well-

known algorithms and protocols. However, for simulations we designed, there is

no need for such complex simulators. We just deploy sensor networks, then apply

localization algorithms to compute estimated networks, and then execute a set of

metrics on the networks. Therefore, we designed and implemented a simulation

program with visual support which is specialized to this work and focused on our

needs. The program randomly deploys a network, applies estimation algorithms

to generate estimated networks, and computes the distances based on a given set

of metrics.

4.4 Evaluation Based on the Metrics

In this section, we show the simulation results classified by metrics and try to

figure out metrics behavior against the changes in the network.

4.4.1 Euclidean Distance Behavior

In Figure 4.1(a), the metric value is drawn against the distortion amount, increas-

ing from 1 to 10. Having more distorted topology, the metric suggests more error,

thus Euclidean distance is distortion sensitive and it is linearly proportional to

the magnitude of distortion. The metric value is drawn against the shift amount

increasing from 1 to 10 in Figure 4.1(b). Here, the metric value is proportional
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to shift amount, thus we conclude that Euclidean distance demonstrates similar

behavior for shifted topologies and for distorted topologies. In case of rotated

topologies, presented in Figure 4.1(c) where metric value is drawn against the

rotation, Euclidean distance reports greater error when angle increases from 0 to

180 and smaller error when angle increases from 180 to 360.

Simulation results show that Euclidean distance metric does not tolerate

topology preserving localization errors. Especially, the similarity in its behavior

against distorted and shifted topologies illustrates how it is unaware of network

topology. The behavior of Euclidean distance metric can be stated as:

• Shift Sensitive,

• Rotation Sensitive.

4.4.2 Hamming (Manhattan) Distance Behavior

Figures 4.2(a), (b) and (c) show us that the Hamming distance is distortion, shift

and rotation sensitive. Comparing Figure 4.2(a) and (b), we find out that the

metric behavior is similar for distorted and shifted topologies. Simulation results

indicate that Hamming distance metric does not tolerate topology preserving

localization errors. Especially, the similarity in its behavior against distorted and

shifted topologies illustrates how it is unaware of network topology, similar to

Euclidean distance. The behavior of Hamming distance metric can be declared

as:

• Shift Sensitive,

• Rotation Sensitive.
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(a)

(b)

(c)

Figure 4.1: Euclidean distance metric behavior against certain changes in topol-
ogy. In (a) the metric value is drawn against the distortion amount, in (b) the
metric value is drawn against the shift amount, and in (c) the metric value is
drawn against the rotation angle.
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(a)

(b)

(c)

Figure 4.2: Hamming distance metric behavior against certain changes in topol-
ogy. In (a) the metric value is drawn against the distortion amount, in (b) the
metric value is drawn against the shift amount, and in (c) the metric value is
drawn against the rotation angle.
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4.4.3 Tanimoto Distance Behavior

Figures 4.3(a) and (c) show us that the Tanimoto distance is distortion and rota-

tion sensitive, while Figure 4.3(b) indicates that it is shift insensitive. The metric

shows totally different behavior against distorted and shifted topologies. Simula-

tion results indicate that Tanimoto distance metric tolerates topology preserving

shift class localization errors. On the other hand, it behaves similar to Euclidean

and Hamming distance metrics in case of rotated topologies. The behavior of

Tanimoto distance metric can be reported as:

• Shift Insensitive,

• Rotation Sensitive.

4.4.4 Cosine Distance Behavior

Figures 4.4(a) and (c) show us that the Cosine distance is distortion and ro-

tation sensitive, however Figure 4.6(b) shows that it is shift insensitive. The

metric shows completely different behavior against distorted and shifted topolo-

gies. Simulation results point out that Cosine distance metric tolerate topology

preserving shift class localization errors. In case of rotated topologies, it behaves

similar to Euclidean, Hamming and Tanimoto distance metrics. The behavior of

Cosine distance metric is:

• Shift Insensitive,

• Rotation Sensitive.

4.4.5 CVD Behavior

Figures 4.5(a), (b) and (c) show us that the CVD is distortion, shift and rotation

sensitive. Comparing Figure 4.5(a) and (b), we find out that the metric behavior
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(a)

(b)

(c)

Figure 4.3: Tanimoto distance metric behavior against certain changes in topol-
ogy. In (a) the metric value is drawn against the distortion amount, in (b) the
metric value is drawn against the shift amount, and in (c) the metric value is
drawn against the rotation angle.
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(a)

(b)

(c)

Figure 4.4: Cosine distance metric behavior against certain changes in topology.
In (a) the metric value is drawn against the distortion amount, in (b) the metric
value is drawn against the shift amount, and in (c) the metric value is drawn
against the rotation angle.



CHAPTER 4. EXPERIMENTS AND RESULTS 48

is similar for distorted and shifted topologies. Simulation results indicate that

CVD metric does not tolerate topology preserving localization errors.

The behavior of CVD metric can be reported as:

• Shift Sensitive,

• Rotation Sensitive.

4.4.6 RED Behavior

Figures 4.6(a) and (c) show us that the RED is distortion and rotation sensi-

tive, however Figure 4.6(b) implies that it is shift insensitive. The metric shows

completely different behavior against distorted and shifted topologies. Simula-

tion results point out that RED metric tolerate topology preserving shift class

localization errors. In case of rotated topologies, it behaves similar to Euclidean,

Hamming, Tanimoto and CVD metrics. The behavior of RED metric is:

• Shift Insensitive,

• Rotation Sensitive.

4.4.7 NRED Behavior

Figure 4.7(a) and (c) show us that the NRED is distortion and rotation sensitive.

On the other hand Figure 4.7(b) implies that it is shift insensitive. The metric’s

behaviors are similar to RED. The behavior of NRED metric can be summarized

as:

• Shift Insensitive,

• Rotation Sensitive.
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(a)

(b)

(c)

Figure 4.5: Cumulative Vectorial distance metric behavior against certain changes
in topology. In (a) the metric value is drawn against the distortion amount, in
(b) the metric value is drawn against the shift amount, and in (c) the metric
value is drawn against the rotation angle.



CHAPTER 4. EXPERIMENTS AND RESULTS 50

(a)

(b)

(c)

Figure 4.6: RED metric behavior against certain changes in topology. In (a) the
metric value is drawn against the distortion amount, in (b) the metric value is
drawn against the shift amount, and in (c) the metric value is drawn against the
rotation angle.
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(a)

(b)

(c)

Figure 4.7: NRED metric behavior against certain changes in topology. In (a)
the metric value is drawn against the distortion amount, in (b) the metric value
is drawn against the shift amount, and in (c) the metric value is drawn against
the rotation angle.
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4.4.8 Spring Distance Behavior

4.4.8.1 Spring A Distance Behavior

Figures 4.8(a), (b) and (c) show us that the Spring A distance is distortion, shift

and rotation sensitive. Comparing Figure 4.8(a) and (b), we realize that the

metric behavior is similar for distorted and shifted topologies. Thus Spring A

metric does not tolerate topology preserving localization errors. Specifically, its

behavior against distorted and shifted topologies demonstrate how it is unaware

of topological changes similar to some other distance metrics including Euclidean

and Hamming distance metrics. The behavior of Spring A distance metric can

be declared as:

• Shift Sensitive,

• Rotation Sensitive.

4.4.8.2 Spring B Distance Behavior

Figures 4.9(a), (b) and (c) show us that the Spring B distance is distortion, shift

and rotation sensitive. Comparing Figure 4.8 and Figure 4.9, we realize that

Spring A and Spring B show similar behavior. The behavior of Spring B distance

metric can be listed as:

• Shift Sensitive,

• Rotation Sensitive.

4.4.8.3 Spring C Distance Behavior

Figures 4.10(a) and (c) show us that the Spring C distance is distortion and

rotation sensitive. However, Figure 4.10(b) indicates that it is shift insensitive.
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(a)

(b)

(c)

Figure 4.8: Spring A distance metric behavior against certain changes in topology.
In (a) the metric value is drawn against the distortion amount, in (b) the metric
value is drawn against the shift amount, and in (c) the metric value is drawn
against the rotation angle.



CHAPTER 4. EXPERIMENTS AND RESULTS 54

(a)

(b)

(c)

Figure 4.9: Spring B distance metric behavior against certain changes in topology.
In (a) the metric value is drawn against the distortion amount, in (b) the metric
value is drawn against the shift amount, and in (c) the metric value is drawn
against the rotation angle.
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The metric behavior for distorted and shifted topologies is different. As simulation

results indicate, Spring C distance metric tolerate topology preserving shift class

localization errors, however, it shows similar behavior to other distance metrics

in case of rotated topologies. The behavior of Spring C distance metric can be

listed as:

• Shift Insensitive,

• Rotation Sensitive.

4.4.8.4 Spring D Distance Behavior

For our last metric, in Figure 4.11(a) we find out that the Spring D distance is

only distortion sensitive. Moreover, Figure 4.10(b) indicates that it is shift insen-

sitive and Figure 4.10(c) reveals that the metric is rotation insensitive. Spring

D distance metric tolerates both shift class and rotation class localization errors.

This behavior is unique to this metric. The behavior of Spring D distance metric

can be listed as:

• Shift Insensitive,

• Rotation Insensitive.

4.5 Evaluation Based on the Topologies

4.5.1 Rotated Topologies

In this section we study topologies that are rotated with respect to the coordinate

system. For instance, we place all nodes on a moving plane, and then rotate the

plane such that the distance between nodes stay exactly the same while the
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(a)

(b)

(c)

Figure 4.10: Spring C distance metric behavior against certain changes in topol-
ogy. In (a) the metric value is drawn against the distortion amount, in (b) the
metric value is drawn against the shift amount, and in (c) the metric value is
drawn against the rotation angle.
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(a)

(b)

(c)

Figure 4.11: Spring D distance metric behavior against certain changes in topol-
ogy. In (a) the metric value is drawn against the distortion amount, in (b) the
metric value is drawn against the shift amount, and in (c) the metric value is
drawn against the rotation angle.
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overall alignment differs. This simple scenario is presented to provide a better

understanding of the metrics being studied.

In this scenario S
′

is generated by using rotate localization functions. i.e.

S
′←δrotate(α) (S) for α = 0 . . . 360 degrees

For this purpose we run simulations using this scenario, and Figure 4.12

demonstrates the results as the plane is rotated at an increasing angle. In the

figure, the distance between the original and estimated topology is plotted for

various metrics and for increasing angles. As shown in the figure, all metrics,

except Spring D, report an increasing diversion from the original topology as the

angle is increased up to 180. The behavior is fully symmetric for all these metrics

peaking at 180 and returning back to normal as further increased to 360, which is

the original topology. However, Spring D reports the distance zero independent

of rotation angle.

In traditional pattern matching problems we would expect similarity degrees

to be high since the shape on the plane does not change when we rotate the plane.

Yet, in environmental engineering applications the reference to the coordinate

system does play a significant role in the interpretation of the observations from

the network. In this regard, among all metrics RED seems to be the most sensitive

metric for rotated topologies. On the other hand, Spring D distance metric is not

sensitive to rotation operation, at all.

4.5.2 Shifted Topologies

The second scenario we will study is a topology with a perfect shift. That is all

nodes in the network are subject to an absolute distortion in a particular direction.

For instance, all nodes deployed on a lake surface are moved 2 meters northeast by

wind effects. In some cases, tolerable shifts that maintain the relative positioning

of nodes are acceptable for environmental monitoring applications. For instance,

a pollutant flow in northeast direction will still appear in the same direction if

all nodes maintain their relative positioning.
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Figure 4.12: Estimation errors in case of estimates that are simply rotated replicas
of the original topology: On the x-axis the rotation angle is increased from 0 to
360 and the metric value comparing the original and the rotated topology is
reported on the y-axis.

To study this type of topology changes, we imposed various shifts and eval-

uated the resulting topologies using each metric. Here we will present results

from a case where we applied a position shift such that each node will have the

coordinate (x + n, y + n), where (x, y) is the original coordinate of the node and

n is a positive number representing the shift amount, between 1-10. Even though

this is a rather simplified version, i.e., in practice some node can move more than

others, the scenario will help us observe the behavior of metrics for the general

case of shifted topologies.

In Figure 4.13, we demonstrate the metric values to reflect the distance of the

original and the shifted topology, as the magnitude of the shift (n) is increased

on the x-axis. As demonstrated, even though the complete topology (graph rep-

resentation of the network) is preserved perfectly, Euclidean distance, Manhattan
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distance, CVD, Spring A distance and Spring B distance are not able to capture

this fact. All these metrics report an error that is directly proportional to the

shift amount.

Figure 4.13: Estimation errors in case of topology shifts. On the x-axis the shift
amount is increased from 1 to 10.

4.5.3 Distorted Topologies

Distorted topologies are the category that represents arbitrary errors made in

position estimates. In this category we study a scenario where node positions

are shifted along arbitrary directions within a distance of n from the node. In

this scenario we apply an independent shift to each node such that the resulting

topology will have some relative accuracy errors.

Since all localization algorithms are de facto distortion sensitive, it is not

defined in Section 2.2 as a separate class. However, it is significant to know the

magnitude of sensitivity

In Figure 4.14 we plot the metric values as the maximum distance from the

original position is increased on the x-axis. Note that Manhattan distance and

Euclidean distance report relatively smaller errors in this arbitrary topology case

since they do not consider the relative positioning of nodes. Spring distances
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Figure 4.14: Estimation errors in case of topology distortions. On the x-axis the
distortion amount is increased from 1 to 10.

and RED, on the other hand, which were reporting the topology to be similar in

the previous section, now report significant divergence in this arbitrary topology

change scenario.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

There are various applications of wireless sensor networks some of which require

precise location information, e.g. sniper localization [31], while some other appli-

cations may only need relatively accurate location information, e.g. ZebraNet [13]

where behaviors of animals were observed. The impact of errors in location in-

formation to the applications mostly depends on how the applications use the

location data. Therefore, while selecting a metric to evaluate some alternative lo-

calization algorithms and their errors, characteristics of the location information

required by an application should be considered as well.

As shown in Figure 5.1, for a planned wireless sensor network application, we

suggest identifying and listing the characteristics of the required location data

based on its sensitivity to shift and rotation errors. Then, appropriate metric can

be chosen by looking up the Table 5.1, in which we suggest metrics according to

application requirements on location data. Subsequently, candidate algorithms

may be simulated, and their performance is evaluated by the chosen distance

metric. Finally, the localization algorithm which is the most appropriate for the

planned application is ready to be picked up.

62
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Figure 5.1: Suggested steps to choose appropriate algorithm for a planned wireless
sensor network application.

SHIFT ROTATE SUGGESTED METRICS

sensitive sensitive Spring A, Euclidean
sensitive insensitive CVD, Spring B

insensitive sensitive Spring C, RED, Cosine
insensitive insensitive Spring D

Table 5.1: Metric suggestions based on location characteristics.

Localization (i.e. estimating location of sensor nodes), is a hot research area.

A number of algorithms have been proposed in this regard. Yet, the evaluation of

these algorithms traditionally depends on fairly simplistic metrics based on the

original and the estimated position of each node in isolation to the rest of the

network. In this work we discussed implications of errors considering the expec-

tations of the end user. We discuss that there is a need for a new metric that

will consider the relative positioning of each node with respect to the original

topology for accurate data analysis. With this motivation we studied and also

proposed alternative metrics to evaluate the localization errors of algorithms. We

studied these metrics for various simplistic scenarios to provide a better under-

standing of the issues. We discussed the advantages of one metric to the other for

specific applications. We suggest a methodology that is summarized into a table

for metric selection based on the localization needs of a wireless sensor network

application.
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5.2 Future Work

In this work, we point out the need for topology and application aware distance

metrics. We, then, try to understand the behavior of existing metrics and the

metrics we proposed. Our study is based on some certain topological changes:

shifted topologies and rotated topologies. Here, the topology concept might be

studied further. A proposal for a different topology definition in context of wire-

less sensor network will make it easier to evaluate and understand the metrics.

We propose some new metrics to be used in evaluation of localization algo-

rithms. These metrics are designed to satisfy some certain needs of specific wire-

less sensor network applications, e.g. rotation insensitivity for ZebraNet which

is discussed in Section 2.2.2. As a result of these application dependent metric

proposals, for each wireless sensor network application it is necessary to deter-

mine the application objectives for location sensitivity, and then choose the most

appropriate metric to be used in selection of localization algorithm. A topological

distance metric, which can be used for general sensor network applications, will

be a good contribution to the localization studies in wireless sensor networks.

The performance of localization algorithms is determined by use of different

metrics one of which is distance metric. Having designed a novel topological

distance metric, a new localization algorithm that tries to minimize distance

error reported by this metric would be a proper use of it. To sum up, the future

work is composed of:

• a proposal for a different topology definition in context of wireless sensor

networks,

• a topological distance metric that can be used for general sensor network

applications,

• a new localization algorithm that tries to minimize distance error reported

by the topological distance metric.
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