
COUNTERACTING FREE RIDING IN PURE
PEER-TO-PEER NETWORKS

a dissertation submitted to

the department of computer engineering

and the institute of engineering and science

of bi̇lkent university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

K. Murat KARAKAYA

March, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52925089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Özgür Ulusoy(Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Dr. İbrahim Körpeoğlu(Co-supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Assoc. Prof. Dr. Ahmet Coşar

ii

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Assoc. Prof. Dr. Nail Akar

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Dr. Ali Aydın Selçuk

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

iii

ABSTRACT

COUNTERACTING FREE RIDING IN PURE
PEER-TO-PEER NETWORKS

K. Murat KARAKAYA

Ph.D. in Computer Engineering

Supervisors: Prof. Dr. Özgür Ulusoy

Asst. Prof. Dr. İbrahim Körpeoğlu

March, 2008

The peer-to-peer (P2P) network paradigm has attracted a significant amount of

interest as a popular and successful alternative to traditional client-server model

for resource sharing and content distribution. However, researchers have observed

the existence of high degrees of free riding in P2P networks which poses a serious

threat to effectiveness and efficient operation of these networks, and hence to

their future. Therefore, eliminating or reducing the impact of free riding on P2P

networks has become an important issue to investigate and a considerable amount

of research has been conducted on it.

In this thesis, we propose two novel solutions to reduce the adverse effects of free

riding on P2P networks and to motivate peers to contribute to P2P networks.

These solutions are also intended to lead to performance gains for contributing

peers and to penalize free riders. As the first solution, we propose a distributed

and localized scheme, called Detect and Punish Method (DPM), which depends

on detection and punishment of free riders. Our second solution to the free riding

problem is a connection-time protocol, called P2P Connection Management Pro-

tocol (PCMP), which is based on controlling and managing link establishments

among peers according to their contributions.

To evaluate the proposed solutions and compare them with other alternatives,

we developed a new P2P network simulator and conducted extensive simulation

experiments. Our simulation results show that employing our solutions in a P2P

network considerably reduces the adverse effects of free riding and improves the

overall performance of the network. Furthermore, we observed that P2P networks

utilizing the proposed solutions become more robust and scalable.

Keywords: Free riding, Peer-to-Peer networks, distributed computing, perfor-

mance evaluation.

iv

ÖZET

YAPISAL OLMAYAN EŞLER ARASI BİLGİSAYAR
AĞLARINDA KATKISIZ KATILIMI ENGELLEME

K. Murat KARAKAYA

Bilgisayar Mühendisliği, Doktora

Tez Yöneticileri: Prof. Dr. Özgür Ulusoy

Yrd. Doç. Dr. İbrahim Körpeoğlu

Mart, 2008

Eşler arası bilgisayar aǧları yaklaşımı kaynak paylaşımı ve içerik daǧıtımında

geleneksel istemci-sunumcu yaklaşımına karşı yaygın ve başarılı bir seçenek olarak

oldukça dikkat çekmektedir. Ancak, araştırmacılar eşler arası bilgisayar aǧlarının

etkin ve verimli çalışmasını, dolayısıyla, bu yaklaşımın geleceǧini ciddi olarak

tehdit eden önemli miktarda “katkısız katılımı” bu aǧlarda gözlemlemişlerdir.

Bu nedenle, katkısız katılımın eşler arası bilgisayar aǧları üzerindeki olumsuz et-

kisini azaltmak veya kaldırmak önemli bir araştırma konusu haline gelmiş ve bu

alanda bir çok çalışma yapılmıştır.

Bu tezde, katkısız katılımın eşler arası bilgisayar aǧları üzerindeki olumsuz et-

kisinin azaltılması ve kullanıcıların katkı yapmaya teşvik edilmesi maksadıyla

iki yeni yaklaşım önerilmiştir. Bu ana yaklaşımlar, katkıda bulunan kul-

lanıcıların başarımını artırırken katkısız kullanıcıları cezalandırmayı saǧlayacak

şekilde tasarlanmıştır. Birinci ana yaklaşımda, katkısız kullanıcıların tespiti ve

cezandırılmasına dayanan daǧıtık ve yerselleştirilmiş bir çözüm önerilmiştir. Bu

yaklaşım, Bul ve Cezalandır Yöntemi olarak adlandırılmıştır. Eşler Arası Baǧlantı

Yönetim Protokolü adı verilen ikinci ana yaklaşımda ise, kullanıcılar arasındaki

baǧlantıları kullanıcıların katkısına göre yönetmeyi esas alan baǧlantı tabanlı bir

çözüm önerilmiştir.

Önerilen ana yaklaşımları deǧerlendirmek için yeni bir simülatör geliştirilmiş

ve bir çok deney yapılmıştır. Simülasyon sonuçları göstermiştir ki önerilen

ana yaklaşımların kullanılması, katkısız katılımın eşler arası bilgisayar aǧları

üzerindeki olumsuz etkisini azaltmış ve genelde başarımı artırmıştır. Bunlara ek

olarak, önerilen ana yaklaşımları kullanan aǧlar daha güçlü ve daha ölçeklenebilir

hale gelmişlerdir.

v

vi

Anahtar sözcükler : Bilgisayar ağlarının katkısız kullanımı, Eşler arası bilgisayar

ağları, dağıtık hesaplama, başarım değerlendirme.

vi

Biricik Anneme. . .

Acknowledgement

At the end of this study, I am very grateful that we have succeeded. I say “we”,

because this could not have been accomplished without the support of some

people.

First of all, I am very grateful to my supervisors, Prof. Dr. Özgür Ulusoy

and Asst. Prof. Dr. İbrahim Körpeoğlu for their invaluable support, guidance

and motivation during my graduate study, and for encouraging me a lot in my

academic life. Their vast experience and encouragement have been of great value

during the entire study. It was a great pleasure for me to have a chance of working

with them. I learned a lot from my supervisors, especially the endurance needed

for this kind of study.

I would like to thank my thesis committee members Assoc. Prof. Dr. Ahmet

Coşar, Assoc. Prof. Dr. Nail Akar, and Asst. Prof. Dr. Ali Aydın Selçuk for

their constructive comments and suggestions for improving the manuscript.

I owe my warmest thanks to my colleagues Türker Yılmaz and İ. Sengör

Altıngövde for their cooperation during this study. I would also like to thank my

friends Latif Orhan, Murat Paşa Uysal, Ömer Faruk Gürel, and Ziya Yıldırım for

their friendship and moral support. I have to express my gratitude to the Turk-

ish Land Forces (KKK), Turkish Military Academy (KHO), and my superiors for

supporting me during all these long years.

Above all, I am deeply thankful to my mother Saadet Karakaya and my sisters

Selma Bayrak, Pervin Gonüllü and Hülya Çelebi along with my nephews, who

supported me in each and every day. Without their everlasting love and encour-

agement, this thesis would have never been completed.

This work is partially supported by the Scientific and Research Council of Turkey

(TÜBİTAK) under Project Codes EEEAG-104E028 and EEEAG-105E065 and

with a Ph.D. scholarship.

vii

Contents

1 Introduction 1

1.1 Contributions . 3

1.2 Outline of the Dissertation . 4

2 Related Work and Background 5

2.1 P2P Network Types . 5

2.1.1 Pure P2P Networks . 7

2.1.2 Phases in P2P communication 7

2.2 Free Riding Problem in P2P Networks 10

2.2.1 Causes of Free Riding . 12

2.2.2 Impact of Free Riding . 13

2.3 Securing Free Riding Solutions . 16

2.4 Approaches Proposed Against Free Riding 18

2.4.1 Micropayment-based Approaches 19

2.4.2 Incentive-Based Approaches 22

2.4.3 Reputation-Based Approaches 25

2.5 Common Attacks or Cheats . 28

3 Detect and Punish Method 30

3.1 Main Approach . 31

3.2 Free Riding Types and Detecting Free Riders 34

3.2.1 Non-contributor . 35

3.2.2 Consumer . 36

3.2.3 Dropper . 37

3.3 Counter-Actions Against Free Riders 38

viii

CONTENTS ix

3.3.1 Modifying TTL Value . 39

3.3.2 Dropping Requests . 39

3.3.3 A Mixed Counter-Action 40

3.4 Summary . 40

4 A New P2P Connection Management Protocol 41

4.1 Main Approach . 44

4.2 A New Connection Type: One-Way Request Connections 46

4.3 Managing One-Way-Request Connections 49

4.3.1 Managing IN-Connections 50

4.3.2 Managing OUT-Connections 52

4.4 Connection Replacement Policy 53

4.5 A Peer’s Actions and PCMP . 54

4.6 PCMP Operation Example . 55

4.7 Summary . 57

5 GNUSIM: A new P2P Network Simulator 58

5.1 Assumptions and Parameters . 59

5.1.1 Network . 59

5.1.2 Peers . 60

5.1.3 Content . 62

5.1.4 Request . 63

5.2 Summary . 64

6 Experimental Results 65

6.1 Simulation Results for the Detect and Punish Method (DPM) . . 65

6.1.1 Assumptions . 65

6.1.2 Performance Metrics . 67

6.1.3 Simulation Results and Analysis 68

6.1.4 Effects of Different Parameter Values 78

6.1.5 Possible Attacks . 81

6.2 Simulation Results for the P2P Connection Management Protocol

(PCMP) . 91

6.2.1 Assumptions . 91

CONTENTS x

6.2.2 Performance Metrics . 93

6.2.3 Simulation Results and Analysis 95

6.2.4 Effects of Different Parameter Values 100

6.2.5 Possible Attacks . 104

6.3 A Discussion on the Comparison of DPM and PCMP 107

6.3.1 Comparing Characteristics of DPM and PCMP 107

6.3.2 Comparing Performance Results of DPM and PCMP . . . 109

7 Conclusion and Future Work 111

7.1 Conclusion . 111

7.2 Future Work . 113

A Analyzing Effects of PCMP 114

List of Figures

2.1 A classification of proposed solutions. 20

3.1 Peers are in two roles: monitoring and controlled. 32

4.1 A general P2P connection between two peers, which enables both

of them exchange all types of P2P messages. 47

4.2 An OWRC between two peers, which limits the direction and the

types of P2P messages exchangeable. 47

4.3 Two OWRCs between two peers, which enable each peer to request

service from the other. 47

4.4 A directed graph representation of a network consisting of OWRCs. 48

4.5 A sample topology layout. 56

4.6 After download, Peer P updates its IN-connection by adding C1. . 56

4.7 After download, Peer C1 updates its IN-connection by adding C2. 56

4.8 After download, Peer C2 updates its IN-connection by adding C1. 57

5.1 A mesh topology for network connections. 59

6.1 Success Ratio of detection mechanism in detecting free riders and

identifying their free riding types. 70

6.2 Decrease in free riding peers’ downloads when different counter-

actions are applied. 72

6.3 Increase in contributors’ downloads when different counter-actions

are applied. 73

6.4 Decrease in P2P messages of free riding peers when different

counter-actions are applied. 74

xi

LIST OF FIGURES xii

6.5 Decrease in P2P messages of all peers when different counter-

actions are applied. 74

6.6 Decrease in contributors’ uploads when counter-actions are applied. 76

6.7 Decrease in contributors’ download cost when counter-actions are

applied. 76

6.8 Decrease in contributors’ unsuccessful downloads when counter-

actions are applied. 77

6.9 Increasing utility values for increasing number of files shared by a

probe node. 77

6.10 Decrease in free riders’ downloads when different numbers of peers

are simulated. 79

6.11 Downloads of Free Riders when different counter actions are em-

ployed. 80

6.12 The Number of P2P messages of Free Riders when different counter

actions are employed. 81

6.13 The Success of the detection mechanism in the first 200 simulation

time. 87

6.14 The results for the Probe peer, when the attack is only applied by

the probe free riding peer. 88

6.15 The results for the Probe peer, when the attack is applied by all

the free riding peers. 88

6.16 The results for the Download/Query ratio, when the increased

number of neighbors attack is applied by a probe peer. 90

6.17 The results for the P2P Message/Simulation time ratio , when the

increased number of neighbors attack is applied by a probe peer. . 91

6.18 Increase in the number of connections among contributing peers. . 95

6.19 Decrease in the number of OUT-connections from free riders to

contributors. 96

6.20 The number of isolated free riders. 96

6.21 Decrease in free riding peers’ downloads. 97

6.22 Increase in contributors’ downloads. 98

6.23 Change in contributors’ uploads when PCMP is applied. 98

6.24 Decrease in contributors’ download cost. 99

LIST OF FIGURES xiii

6.25 Decrease in P2P messages from free riders. 99

6.26 Downloads of the probe node according to when it begins to share

its files. 100

6.27 The number of contributors’ downloads when different numbers of

peers are simulated. 101

6.28 The number of contributors’ downloads when different free rider

populations are simulated. 101

6.29 The number of contributors’ downloads with the existence of dif-

ferent file sizes. 102

6.30 The number of contributors’ downloads with different levels of file

replication. 103

6.31 The number of contributors’ downloads when free riders are non-

cooperative. 105

6.32 Increase in the number of connections among contributing peers

when free riders are noncooperative. 105

A.1 The relationship between contributors (Cont.) and free riders (FR)

at different levels. 115

List of Algorithms

1 Sample pseudo-code for managing IN-connections. A peer X will

execute this code after downloading a file from peer Y . This

pseudo-code is provided here to clarify the explanation in the text,

and ignores some issues present in a real implementation. The code

must be divided into several sub-functions, some of which can be

executed asynchronously, as, when a Ping message arrives. 51

2 Sample pseudo-code for managing OUT-connections. A peer Y will

execute this code after uploading a file to peer X. This pseudo-code

is provided here to clarify the explanation in the text and ignores

some issues present in a real implementation The code must be

divided into several sub-functions, some of which can be executed

asynchronously, as, when a Pong message arrives. 53

xiv

List of Tables

2.1 P2P network types. 6

2.2 Gnutella Protocol Descriptors . 9

2.3 Possible effects and consequences of free riding on P2P networks. . 14

2.4 Some common attacks to proposed solutions. 29

3.1 Observed Descriptors. 33

3.2 Summary of free riding types and their properties. 35

5.1 Peer Type Parameters . 61

5.2 P2P Protocol Parameters . 63

6.1 Properties of peer types. 66

6.2 Threshold values for detection mechanism. 70

6.3 Effect of τQT threshold values on the detection mechanism. 71

6.4 Effect of τnon contributor threshold values on the detection mechanism. 71

6.5 Effect of free rider population on the number of free riders’ down-

loads. 79

6.6 Effect of free rider population on the number of contributors’ down-

loads. 79

6.7 Effect of free rider population on the number of P2P messages of

all peers. 80

6.8 New Protocol Descriptor . 82

6.9 Results of free rider (FR) malicious TTL attack (mixed counter-

action applied). 84

6.10 Results of free riders (FR) insufficient cooperation attack (mixed

counter-action applied). 85

xv

LIST OF TABLES xvi

6.11 Properties of peer types. 92

6.12 Properties of different file sizes. 102

6.13 Properties of different levels of file replication. 103

6.14 Summary of DPM and PCMP performance results over the simu-

lated pure P2P network. 109

LIST OF TABLES xvii

List of Symbols and Abbreviations
DPM : Detect and Punish Method

OWRC : One-Way-Request Connection

P2P : Peer-to-Peer

PCMP : P2P Connection Management Protocol

Chapter 1

Introduction

The peer-to-peer (P2P) networking paradigm has attracted significant interest

because of its capacity for resource sharing and content distribution. There are

various architectures and applications of P2P networking, including file sharing,

distributed computing, storage, collaboration, and multimedia streaming. In

the ideal case, peers are expected to contribute to a P2P network by sharing

their resources in turn of utilizing the network and the other peers’ resources.

However, it is observed that in many P2P networks, a considerable portion of

peers are reluctant to share their resources [3, 46, 48, 93, 101]. Thus, the primary

property of P2P networks, the implicit or explicit functional cooperation and

resource contribution of peers, may fail and lead to a situation called free riding.

In P2P context, free riding means exploiting P2P network resources (through

searching, downloading, or using services) without contributing to the network.

A free rider is a peer that uses the P2P network services but does not contribute

to the network or the other peers at an acceptable level. A contributor, on the

other hand, is a peer that makes enough contribution to the network by sharing

its resources with the other peers.

There may be various reasons and motivations for free riding. Bandwidth limi-

tation of peers’ connections may be one reason for free riding. Another reason

for free riding can be the peers’ concern of sharing “illegal” data on their own

computers even though they are not concerned about using this type of data.

1

CHAPTER 1. INTRODUCTION 2

Some peers also have security concerns if they share something.

Researchers have observed the existence of high degrees of free riding in P2P

networks, and they argue that free riding can become an important threat against

the existence and efficient operation of P2P networks [3, 37]. As a result, a

considerable amount of research has been done on free riding issue to diminish

the impact of it on P2P networks.

In this dissertation, we propose two different solutions to deal with the free riding

problem. These solutions aim to promote cooperation among peers and discour-

age free riding. As the first solution, we propose a distributed and localized

framework which is based on detection and punishment of free riders. We call

this framework Detect and Punish Method (DPM). Our second solution to the

free riding problem is a connection-based framework, which we call P2P Connec-

tion Management Protocol (PCMP).

In DPM, we aim to design a framework which detects free riders and takes some

counter actions against them. Thus, DPM consists of two separate mechanisms.

The first mechanism is for detecting free riders by monitoring network traffic

among one-hop neighboring peers. The second mechanism is for taking discour-

aging counter actions against the detected free riding peers. The mechanisms are

distributed and localized. Basically, each peer is required to monitor its one-hop

neighbors to decide if any of these peers is a free rider or not. Then the peer is

required to take actions against the detected free riders.

The second framework, PCMP, introduces a novel P2P connection type, One-

Way-Request Connection (OWRC) and a P2P connection management protocol

that dynamically establishes the OWRCs between peers, and adaptively modifies

the P2P topology in reaction to the observed contributions of peers. We de-

signed PCMP based on the idea that if we can adjust the P2P network topology

dynamically in reaction to peers’ contributions, the adapted topology can favor

the contributing peers in getting service from the P2P network. The adapted

topology can also exclude free riders from the P2P network, and in this way the

adverse effects of free riding can be reduced as well.

We implemented our solutions in a custom P2P network simulation tool that we

CHAPTER 1. INTRODUCTION 3

developed as part of this dissertation as well. Using our tool, we conducted exten-

sive simulation experiments to evaluate our solutions and compare them against

some alternatives. Our simulation results show that utilizing our frameworks

leads to significant performance improvements for P2P networks. Furthermore,

we observed that P2P networks employing the proposed free riding mechanisms

become more robust and scalable.

1.1 Contributions

The contributions of this dissertation are as follows:

• A detailed survey of free riding in P2P networks conducted,

• A custom-designed pure P2P network simulation tool developed,

• A novel P2P network connection type and its management protocol pro-

posed,

• A classification of observed free riding in P2P networks provided,

• Two novel frameworks against free riding designed, a detailed implemen-

tation of them in our simulator provided, and extensive simulation experi-

ments performed to evaluate the frameworks,

• Impact of possible attacks and malicious acts against the implementation

of the proposed frameworks evaluated.

The contributions presented in this dissertation have been published in two jour-

nals and a conference proceedings. Below is the list of these publications:

• M. Karakaya, İ. Körpeoğlu, and Ö. Ulusoy, “Counteracting Free Riding in

Peer-to-Peer Networks”, Computer Networks, Volume 52, Issue 3, February

2008.

• M. Karakaya, İ. Körpeoğlu, and Ö. Ulusoy, “A Connection Management

Protocol for Promoting Cooperation in Peer-to-Peer Networks”, Computer

Communications, Volume 31, Issue 2, February 2008.

CHAPTER 1. INTRODUCTION 4

• M. Karakaya, İ. Körpeoğlu, and Ö. Ulusoy, “A Distributed and

Measurement-Based Framework Against Free Riding in Peer-to-Peer Net-

works (short paper)”, IEEE International Conference on Peer-to-Peer Com-

puting (P2P’04), August 2004, Zurich, Switzerland.

• M. Karakaya, İ. Körpeoğlu, and Ö. Ulusoy, “GnuSim: A Gnutella Net-

work Simulator”, Technical Report BU-CE-0505, Department of Computer

Engineering, Bilkent University, 2005.

1.2 Outline of the Dissertation

In the next chapter, we provide the background and related work for P2P networks

and the free riding issue. In Chapter 3 and Chapter 4 we present our solutions to

the free riding problem, DPM and PCMP respectively. The P2P simulation tool

GNUSIM is presented in Chapter 5. In Chapter 6, we provide detailed results

of our simulation study using GNUSIM for both solutions along with possible

attacks to them. At the end of Chapter 6, we also compare the solutions and

their performance. Finally, we conclude the dissertation in Chapter 7.

Chapter 2

Related Work and Background

Eliminating or reducing the impact of free riding on P2P networks has become

an important research field in which a considerable amount of research has been

done. In this chapter, we first have a discussion on classification of P2P networks,

based on a variety of criteria. Then, we elaborate on the free riding problem in

each class of P2P networks, along with the proposed solutions. Some possible

attacks against these solutions are also discussed at the end of this chapter.

2.1 P2P Network Types

The impact of free riding and the effectiveness of a possible solution are related

with the P2P network features and the provided P2P services. Therefore, before

discussing the free riding issue further, we first would like to go briefly over various

types of P2P networks in this section, and discuss how free riding can affect each

of those in the next section.

P2P networks can be classified according to a variety of criteria [6, 68, 72] (see

Table 2.1). One possible classification can be based on two features of networks;

the “degree of centralization” and “degree of structure”. The degree of centraliza-

tion determines to what extent the P2P network relies on servers (none or some)

to assist the interaction between peers, whereas the degree of structure refers to

the way in which the content is indexed and located in the network. Using these

5

CHAPTER 2. RELATED WORK AND BACKGROUND 6

two criteria P2P networks can be classified into three types: centralized, decen-

tralized but structured (hybrid), and decentralized and unstructured (pure). In

centralized P2P networks there is a constantly-updated central directory which is

used by peers to find out the location of resources. Decentralized but structured

P2P networks (hybrid) do not have any central directory but they are structured,

i.e., P2P network topology is firmly controlled and file indices are systematically

placed at peers, following a certain algorithm. In this way queries can be re-

solved efficiently. In decentralized and unstructured (pure) P2P networks, there

is no centralized directory and not much control over the network topology. The

placement of file indices, if there is any, is not based on any knowledge of the

topology and file indices are not related with each other. The most typical query

method in such networks is flooding.

Criterion P2P Network Types

Degree of centralization and Centralized,
structure Decentralized but structured (Hybrid),

and Decentralized and unstructured (Pure).

Provided services Distributed computing, P2P storage,
File sharing, Collaboration, Platforms,
Multimedia streaming, etc.

Legality of the shared content All legal and Mostly illegal.

Table 2.1: P2P network types.

Another possible classification of P2P networks is with regards to the type

of services provided by them, such as distributed computing (e.g., Avaki [9],

Entropia [28], SETI@home [90]), storage (e.g., Freenet [33], Free Haven [34],

OceanStore [77], PAST [78]), file sharing (e.g., BitTorrent [11], Gnutella [18],

Napster [75], Publius [81]), collaboration (e.g., Jabber [50], Groove [38]), platforms

(e.g., JXTA [56], MS .NET [74], the P2PTrusted Library [97]), and multimedia

streaming (e.g., Freecast [32], Peercast [79], PPLive [80], UUSee [99]).

P2P networks can also be categorized according to the legality of the shared con-

tent in the network. For example, some P2P networks, such as official BitTorrent

and renewed Napster services, are designed for distributing content on legal basis.

However, there is a significant number of P2P networks which do not have any

concern and mechanism for enforcing copyright. As a matter of fact, users of

CHAPTER 2. RELATED WORK AND BACKGROUND 7

these systems can abuse P2P network services to share pirated content illegally.

Since our solutions are based on decentralized and unstructured (pure) P2P net-

works, below we discuss their properties and mechanisms in detail.

2.1.1 Pure P2P Networks

In designing our solutions, we focus on pure P2P networks like Gnutella, be-

cause of their popularity and well-known open protocols [18]. Below, some of the

distinct properties of pure P2P networks are summarized [1, 31, 88].

• There is no central coordination or central database.

• No peer has a global view of the system.

• Global behavior emerges from local interactions.

• All existing data and services should be accessible.

• Peers are autonomous and anonymous.

• Peers and connections are unreliable.

Some of these features enable pure P2P networks to be very successful, but some

of them bring important problems. Among the problems of such networks is the

so-called reputation problem. In a pure P2P network peers interact with unknown

peers and have no information about their reputations. In other words, they do

not know to what extent they can trust the other peers and the data provided

by them. As a result, the detection of free rider peers and actions against them

can not be easily implemented.

2.1.2 Phases in P2P communication

In a pure P2P network, a peer may go through four main phases which are

implemented with descriptors in Gnutella Protocol [18] (See Table 2.2).

• Connection phase: A peer first finds some peers (from its cache, a central

server, etc.) which have already connected to the P2P network. Then,

CHAPTER 2. RELATED WORK AND BACKGROUND 8

it requests connections from these peers by sending Ping messages. After

receiving Pong messages, the peer sets up connections with these peers.

Then, the peer can begin to communicate with the other peers in the P2P

network.

• Search Phase: When a peer needs a file, it initiates the request by broad-

casting the Query message to the P2P network through its neighbors. To

limit the broadcasting of a Query message, Time-To-Live (TTL) value is

included in the message header. The querying peer sets up TTL value to

the maximum value defined by the P2P protocol.

• Downloading Phase: If the peer receives a QueryHit message, it begins to

download the file from the source peer via a direct connection.

• Local Search and Routing Phase: Upon receiving a Query message via a

neighbor, the peer first checks its local resources. If it has the file it returns

a QueryHit message to the neighbor. No matter whether it has the file or

not, it decreases the (TTL) value of the Query message by one. If the TTL

value is greater than 1, the peer forwards the Query message to all neighbors

other than the one which has delivered the search. If any QueryHit message

arrives, the peer routes it back to the requesting neighbor.

A two-tiered P2P structure which divides peers into two groups (ultrapeers -or

superpeers- and leaf peers) has also been proposed. Leaf nodes are located at

the “edge” of the network and they are not responsible for any routing. The

leaves are connected to the overlay through a few ultrapeers. On the other hand,

the nodes which have high-bandwidth and are not behind firewalls are selected

as ultrapeers. Ultrapeers accept leaf connections and route their queries. This

approach reduces the number of messages forwarded towards leaf peers which in

turn increases the scalability of the network. In this dissertation we focus on the

flat pure P2P networks.

CHAPTER 2. RELATED WORK AND BACKGROUND 9

Descriptor Description Content

Ping Used to actively discover hosts on Nothing
the network. A servent receiving a Ping
descriptor is expected to respond
with one or more Pong descriptors.

Pong The response to a Ping. Includes the IP and port of responding
address of a connected Gnutella servent host, number and
and information regarding the amount of size of files shared
data it is making available to the
network.

Query The primary mechanism for searching Minimum speed
the distributed network. A servent requirement of the
receiving a Query descriptor will responding host;
respond with a QueryHit if a match is search string
found against its local data set.

QueryHit The response to a Query. This descriptor IP and port, speed of
provides the recipient with enough responding host;
information to acquire the data number of matching files and
matching the corresponding Query. their indexed result set

Push A mechanism that allows a firewalled Responding host id;
servent to contribute file-based data file index;IP and
to the network. port of requesting peer

Table 2.2: Gnutella Protocol Descriptors

CHAPTER 2. RELATED WORK AND BACKGROUND 10

2.2 Free Riding Problem in P2P Networks

The free riding problem is actually not unique to P2P systems. In the economics

literature, the tragedy of the commons [47] is a similar problem with the free

riding issue in P2P networks. The tragedy of the commons states the fact that

selfish consumption of public goods may exhaust the whole public value. In this

context, a public good can be defined as “a commodity for which use of a unit of

the good by one user does not prevent its use by other users”. Due to insufficient

motivations to control individual behavior, people excessively consumes public

goods, which leads to the tragedy of the commons problem. Over-fishing in deep

oceans, pollution in cities, and over use of pesticides can be given as common

examples of this problem.

In P2P networks, we can consider the services and digital objects as common

goods because, for example, downloading a file does not prevent other peers from

using it. As a P2P concept, free riding means exploiting P2P network resources

(through searching, downloading objects, or using services) without contributing

to the P2P network. A free rider is a peer that uses the P2P network services

but does not contribute to the network at an acceptable level. A contributor, on

the other hand, is a peer that contributes to the network by sharing its resources

with other peers.

Various aspects of P2P networks have been investigated by many researchers.

Some of the works on P2P networks have examined in detail the scalability,

reliability, and workload issues [15, 39, 54]. Some researchers have analyzed

the traffic and topology dynamics [39, 40, 84], while others have studied file

popularity and availability in P2P networks [8, 17, 70, 94]. None of the works

mentioned above, however, consider the free riding problem, its causes, or free

rider demographics. The first study which specifically addressed the free riding

problem in P2P networks was performed by Adar and Huberman [3].

Adar and Huberman extensively analyzed the peer traffic on the Gnutella network

and they observed that 70% of peers do not share any files at all. Furthermore,

63% of the peers who share some files do not get any queries for these files.

Another interesting observation is that 25% of the peers provide 99% of the all

CHAPTER 2. RELATED WORK AND BACKGROUND 11

query hits in the network. Having observed the existence of high degrees of free

riding in P2P networks, the authors argue that free riding is an important threat

against the existence and efficient operation of P2P networks.

Saroiu et al. confirmed that there is a lot of free riding in Gnutella as well

as in Napster [92, 93]. They observed that 7% of the peers provide more files

than all of the other peers combined. Moreover, Saroiu et al. compared the

connection bandwidth reported by peers with the bandwidth calculated by direct

observation, and found out that many peers misreport their bandwidth.

In a recent work [48] Hughes et al. pointed to an increasing downgrade in the

network’s overall performance due to free riding. Their results indicated an in-

creasing level of free riding compared to Adar and Huberman’s work. For exam-

ple, they observed that 85 percent of peers share no files at all. They concluded

that free riding is becoming more prevalent. The other findings of that work

confirmed Adar and Huberman’s overall findings. For example, they found that

the top 25 percent of peers provide 98 percent of all query hits.

In another work, Yang et al. reported their findings about free riding in the Maze

P2P system [101]. They also found a high level of free riding (about 80% of the

peers). They observed that free riders were responsible for 51% of downloads,

but for only 7.5% of uploads. These statistics suggest the existence of free riding

in spite of the incentive mechanism provided by the Maze P2P system.

Recently, Handurukande et al. observed free riding in the eDonkey P2P net-

work [46]. According to their findings approximatively 80% of the clients are free

riders. Like the other research results mentioned above, most of the remaining

clients share a small number of files. Less than 10% of the peers who are not

free riders share considerable amount of files. As the authors concluded, the free

riding phenomenon is common to most peer-to-peer file sharing systems, and the

eDonkey P2P network is no exception.

It has been almost taken for granted that free riding is an unwelcome behavior

and an important threat against the existence of P2P networks since the first

observation. However, P2P networks succeed to survive in practice. Among

possible reasons for this fact, altruism is of key importance. There are usually

CHAPTER 2. RELATED WORK AND BACKGROUND 12

altruistic peers in a P2P network, which can provide the required services, and

the existence of them may enable P2P networks to survive despite free riders

that exhibit selfish behavior [29]. The sense of being a member of a community,

servicing other members, and gaining prestige among the others can be the mo-

tives for behaving altruistically [37, 53]. For example, SETI@home users share

their computation power and bandwidth to detect intelligent life outside Earth

without having a direct benefit. Other than altruism, peers can continue to share

their resources by expecting that sharing resources helps to decrease the traffic at

other peers from which they request some service [62]. Security concerns can be

another important motive for some peers to stay obedient to P2P protocols. For

instance, peers may still use an original client program that disables free riding

instead of using a malicious version which enables free riding.

Even though generosity and altruism can play an important role in keeping on

peer contribution in some P2P networks, not all P2P networks can depend solely

on volunteer cooperation to achieve and maintain the desired level of service. In

the absence of external motives, the amount and impact of free riding can exceed

the acceptable levels depending on the requirements of different P2P networks. By

employing free riding solutions, peers can be encouraged to contribute, negative

effect of free riding can be diminished, and as a result, the aggregate utility of

the network can be improved [62]. Therefore, eliminating or reducing the impact

of free riding on P2P networks has become an important issue to investigate, and

a considerable amount of research has been devoted to it.

2.2.1 Causes of Free Riding

There may be various possible reasons and motivations for free riding in P2P

networks.

• Sharing resources is actually not free and may cost sharing peers in terms

of bandwidth, hard-disk space, CPU cycles, etc. Therefore, a peer may

want to avoid these costs by not sharing. For example, a peer may want to

avoid the bandwidth cost of uploading. Many ISPs provide asymmetric con-

nections which have relatively low uploading bandwidth. Therefore, peer’s

CHAPTER 2. RELATED WORK AND BACKGROUND 13

bandwidth limitation and the network connections motivate free riding.

• If peers cooperation incurs some cost to themselves, and if the existing P2P

protocol does not differentiate between free-riders and contributors, then

peers do not have strong incentives to share. Since peers do not benefit

from serving others, many peers decline to perform this altruistic act and

become free-riders.

• Most of the P2P protocols are designed as if each peer were volunteered to

cooperate and each peer contributes to the system equally, and thus they

lack incentives and/or enforcements for sharing. Therefore, all peers enjoy

the equal and same services even though some of them do not obey the

expectations. If peers can use the P2P system and its resources for free

and if they are not required to pay or to provide content in exchange of the

service they get, then they may not be concerned about contributing to the

system.

• Another reason for free riding can be the peers’ concern of sharing copyright-

infringing content from their own computers even though they are not con-

cerned about using this type of content.

• Furthermore, some peers with a Network Address Translation (NAT) ad-

dress act as a free rider even they do not intend to. Because, multiple

computers share the same domain of IPs through NAT, and, if both peers

are using NAT-based IP, they cannot download files from each other. These

peers cannot upload files and therefore they would become free riders even

they share files.

2.2.2 Impact of Free Riding

Free riding has some serious negative side effects on P2P networks as summarized

in Table 2.3. In a free riding environment, a small number of peers serve a

large population. Therefore, many download requests are directed towards a few

serving peers, which may lead to scalability problems [82]. This also leads to a

more client-server like paradigm [84, 92] and negates many advantages of the P2P

CHAPTER 2. RELATED WORK AND BACKGROUND 14

network structure. For example, the fault-tolerant properties of P2P networks

may be weakened because a very small portion of the peers provides most of the

content1. Renewal or presentation of interesting content may decrease in time;

thus the number of shared files may become limited or may grow very slowly.

The quality of searches process may degrade due to an increasing number of free

riders in the search horizon. As the peers age in the network, they may begin

not to find interesting files and may leave the system for good with all the files

they shared earlier [39, 82]. Moreover, the large number of free riders and their

queries will generate a large amount of P2P network traffic, which may lead to

degradation of P2P services. Furthermore, underlying available network capacity

and resources will be occupied by free riders, which will cause extra delay and

congestion for non-P2P traffic as well.

Effect Possible Consequences

A small number of peers serves Leads to more client-server like paradigm.
a large number of requests. Causes scalability problem.

Weakens fault tolerance property.

Renewal and presentation of Satisfaction level of peers will decrease.
new content may decrease Number of queries that will not receive
in time. any hit will increase.

Quality of search process Less number of hits will be returned.
may decrease. Satisfaction level of peers will decrease.

Peers may stop using the system.
Peer population may decrease.

Network traffic will increase. P2P services may degrade.
Delay, congestion, and loss will increase.

Table 2.3: Possible effects and consequences of free riding on P2P networks.

How serious is the effect of free riding on a P2P network depends on many factors

including the P2P network type and its requirements (see Table 2.3). Since some

resource types are not renewable, such as CPU cycles or disk space, it is very

important what portion of peers are free riders in a P2P network that share

those types of resources. For example, in P2P CPU-Sharing Grids, an example

of P2P distributed computing systems, without sufficient level of CPU resource

contribution, free riding can easily decrease the utility of the system or even can

11% of the peers provide 37% of the content [3].

CHAPTER 2. RELATED WORK AND BACKGROUND 15

collapse the system [4]. Similarly, in P2P media streaming systems, peers gain

utility not only from the availability of files, but also from the ability to achieve

high quality streams of these files [42]. The quality of a streaming session depends

on a combination of factors, ranging from the characteristics of the streaming

sources to the characteristics of the network paths. While a conventional file

sharing system may be persistent with a low level of cooperation, a P2P streaming

system cannot offer high streaming quality to its users if only a small portion of

users cooperate [42]. Even though the network is not heavily congested, if the

level of cooperation is low, the streaming quality would be poor [42]. Another type

of P2P application that is very vulnerable to free riding is P2P video multicasting

systems. In these networks, a piece of data (part of a video stream) arrives at

a receiver over multiple hops of intermediate relaying peers. If an intermediate

peer starts acting selfishly and refuses to relay data, the video stream will not

arrive at any node in the sub-tree rooted at that free riding peer. Hence all nodes

in that subtree of the multicast tree will not be able to receive the video stream.

This is a fatal error for this application [73].

Structured P2P networks can be more vulnerable to some sorts of free riding

than unstructured ones. In a structured P2P network that uses CAN (Content

Addressable Network) protocol [83], for example, peers are responsible to store

key-value pairs for keys that fall into their zone. A query in CAN is simply a

key in the key space and its result is the corresponding value. A peer replies a

query if the key is in its zone. Otherwise, it forwards the query to a neighbor.

In the context of CAN, peers can also free ride by not storing key-value pairs in

their zone and by ignoring incoming queries. This is a different type of free riding

where a peer is not sharing an index either, not just the resource. If most of the

peers free ride in this manner, CAN may easily fall apart and it can not resolve

most of the queries [12].

The difference in P2P networks with regard to restrictions on sharing copyrighted

content illegally plays an important role in free riding considerations as well. Most

“illegal” content (pirated music, movies, books, etc.) sharing P2P applications do

not care about free riding at all, since good P2P network performance and high

user satisfaction are not that important for these networks. As the users of these

CHAPTER 2. RELATED WORK AND BACKGROUND 16

networks share copyrighted materials for almost free, they can bear degraded

services. However, in “legal” content sharing, P2P applications care about their

performance and user satisfactions.

As a result, free riding affects P2P networks in many ways and the level of impact

may vary depending on the type of the P2P network and the application require-

ments. The effect may range from simply annoying the users to crashing the

whole system. Therefore, a solution designed and implemented to deal with the

free riding problem should be shaped according to the expected level of impact

of free riding.

2.3 Securing Free Riding Solutions

Free riding and security problems should be studied together because solutions

against free riding usually involve security mechanisms for protection from ma-

licious acts [13]. However, deploying security mechanisms in P2P networks is

quite difficult due to the characteristics of P2P paradigm such as anonymity,

decentralization, self-organization and frequent disconnections [13].

Most security solutions used in networks of global scale require use of public keys

for authentication, shared secret establishment, or integrity checking, and hence

somehow depend on a public key infrastructure (PKI). Therefore we need to con-

sider how PKI can be efficiently integrated into a P2P network. PKI is needed by

asymmetric cryptography to establish the validity of the public keys. In asym-

metric cryptography, a user needs two keys: a private key that is known only

to the user, and a public key that is accessible to anyone. To authenticate the

validity of the public keys, PKI stores digital certificates that attach a public key

to the name of its owner by the digital signature of a trusted third party called

the Certification Authority (CA). The management of certificates is a complex

duty that requests a substantial infrastructure, especially in large-scale applica-

tions [13]. The services provided by the PKI cover up the whole life cycle of the

certificates, including their issuance, distribution, suspension, and revocation.

In P2P context, direct implementation of PKI may be problematic. First of

CHAPTER 2. RELATED WORK AND BACKGROUND 17

all, pure P2P networks do not have any central management, which makes the

standard PKI implementation based on CA hierarchy very difficult. Even in P2P

networks with servers (hybrid or centralized), these servers usually do not fully

control the peer behaviors as much as servers can do in a conventional client-

server model. Thus, the centralized architecture of PKI may introduce several

important problems that contradict with the important characteristics of the

P2P networks [96]. One of the serious problems can be that the central servers

and services may easily turn out to be the bottleneck of system performance,

and thus the scalability of P2P network may become limited. For the network

management, the realization of PKI entails a remarkable amount of resources to

plan, install, deploy and maintain. For instance, PKI may need its own dedicated

servers to function effectively. Furthermore, the huge number of users and high

turn-overs in P2P networks make key management a challenge by itself. All

these requirements hurt important characteristics of P2P paradigm by adding

complexity. Reminding that specification document of the Gnutella protocol [18]

version 0.4 is only 10 pages including the appendices, the complexity introduced

by PKI would be understood better.

Another important issue of implementing security mechanisms is related with

anonymity of peers which is one of the benefits of P2P networks provided to

its users. Anonymity is related with hiding who performed a given action [13].

Providing anonymity, however, can open the doors for various security threats and

malicious actions [96]. For instance, free riders can hide themselves or constantly

change their online identities by exploiting anonymity mechanisms. A solution

can be using a central trusted server, e.g., a CA, which can produce certificates for

peer identification and supervise the validity of them. Rather than binding user

identity to an arbitrary user information (an e-mail address, user name, etc.),

these certificates can bind the identification to a public key. In this solution,

new peers must connect to the CA before joining the network to get a certificate.

However, if peer identities (for example IP addresses) are revealed peer anonymity

is damaged to a certain extent. This means that user anonymity may be sacrificed

to some extent for the sake of security.

A relevant concept to anonymity is privacy. If one can control when, where, and

CHAPTER 2. RELATED WORK AND BACKGROUND 18

how information about oneself is used and by whom, then it has the privacy [13].

To provide privacy, pseudonyms can be used to identify peers rather than their

real identifiers [13]. The other peers in the system should not be able to link

the pseudonym and the real identifier of a peer. Thus, pseudonyms can be used

to refer to the subject that performed a given action without jeopardizing the

privacy of that subject. However, in some of P2P networks, peers usually do

not have a long-standing association with each other and with the network. As

a consequence, user authentication depending on long-term secret keys, like in

corporate networks [13], may not fit well. Therefore, in practice, a simple but

less secure password-based user authentication has been extensively employed.

In summary, well-known client-server security solutions should be adapted for

P2P paradigm to have robust and secure free riding solutions that can function

in various P2P networks. Direct implementation of these solutions into P2P

networks, however, may not fit the requirements and characteristics of P2P net-

works. In our solutions we do not require to use any kind of PKI implementations.

Thus our solutions are free from the issues regarding security infrastructure which

makes them practical and efficient.

The proposed solutions in this dissertation do not require any kind of extra se-

curity infrastructure, and, thus, they do not cause any significant overhead for

securing them in the existing P2P networks. The data structures used in the pro-

posed solutions are stored locally and there is no need to exchange information

(score, utility value, reputation, etc.) about other peers in the network. However,

malicious peer can still attack the solutions in various different ways. We discuss

the possible attacks and how they can be dealt with in Chapter 6.

2.4 Approaches Proposed Against Free Riding

While cooperation is key to the existence and success of any P2P system, it is

difficult to realize it without effective mechanisms. In fact, most of the imple-

mented P2P systems lack such a mechanism and subsequently suffer from free

CHAPTER 2. RELATED WORK AND BACKGROUND 19

riding. Only a small portion of existing P2P systems have some mechanisms im-

plemented against free riding, such as the ones described in [19, 26, 27, 71, 101].

To address this requirement, a number of approaches have been proposed

to make P2P networks “contribution-aware” in order to combat free riding

[5, 10, 12, 22, 25, 35, 37, 41, 42, 43, 44, 45, 58, 61, 62, 66, 69, 82, 95, 98, 102].

As the number of proposed solutions is quite large, we classified them into a

number categories to aid the presentation and reading. This classification does

not consist of an exhaustive list of all published work and does not imply that

a single classification is possible. We put the solutions that have similar charac-

teristics into the same category. There can be different ways of classification and

naming of the categories. We tried to stick to the terminology which is already

established in the literature.

The approaches proposed to deal with free riding problem can be categorized into

three main groups (see Figure 2.1):

• Micropayment-based Approaches: These methods have been proposed to

promote cooperation and discourage free riding within P2P networks by

implementing micropayments.

• Incentive-based Approaches: These methods have been suggested as non-

monetary mechanisms based on creating incentives for peers to share their

resources.

• Reputation-based Approaches: These methods have been designed to create

and distribute reputations of the peers by monitoring their past contribu-

tions.

2.4.1 Micropayment-based Approaches

In most of the P2P networks, the exchange of resources and services does not in-

volve any monetary transaction. By providing efficient and secure pricing mecha-

nisms, micropayment approaches are based on pricing peers for the services they

get.

CHAPTER 2. RELATED WORK AND BACKGROUND 20

Figure 2.1: A classification of proposed solutions.

There are two key mechanisms in any micropayment system: an accounting mod-

ule to securely store the virtual currency held by each peer, and a settlement

module to fairly exchange virtual currency for services. The basic implementa-

tion of these components is to centralize their functions within a single central

authority (a trusted third-party, a central bank, a broker, or a group of peers).

This central authority manages each peer’s balance and transactions by tracking

accounts, distributing and cashing virtual currency. Most of the proposed solu-

tions depend on a Public Key Infrastructure (PKI) for providing security against

frauds and errors. As we discussed in Section 2.3, PKI implementation in P2P

networks, however, has important issues. In essence, PKI has relatively heavy

components which pose an additional burden on a P2P network [13].

As micropayment solutions deal with payments of small amounts, the incorpo-

rated security mechanisms should be quite lightweight [100]. Otherwise, the

cost of the micropayment approach would overshadow the value of the payment.

Therefore, most micropayment solutions do not guarantee totally fair exchange

of goods and payment [100]. A tight security service would cause transactions to

be more expensive (in terms of computation and communications) than the value

of the exchanged goods. For example, in an off-line micropayment solution [100]

coin fraud (analogy with using a counterfeit coin in a vending machine) may not

be revealed until after the fact. However, offline payments may be preferred from

a practical standpoint of performance improvements, such as lower latency, and

lower communication and computational costs. This example shows the necessity

of the question to what degree a network should be protected against malicious

CHAPTER 2. RELATED WORK AND BACKGROUND 21

and selfish peers. The reply to this question depends on the context of the net-

work deployment and on the scale of the risk. Excess of protection can be harmful

to the protection itself due to increasing complexity of the systems [13]. Effective

micropayment systems simply require “good enough” security where fraud is de-

tectable, traceable and unprofitable, while preserving high efficiency. A malicious

peer should be avoided and disabled to continue using the services in the future.

Micropayment approaches are implemented using two different payment methods:

online and offline. In online payment methods, the exchange of virtual currency

takes place at the same time as the exchange of the services. This solution can

prevent most of the payment frauds. To apply this method, the central authority

must be reachable at the moment of transactions. On the other hand, in offline

payment methods, the payment can be executed after the exchange of services if

the central authority is not available at the moment. However, in offline payment

methods, there are several important restrictions on the proposed systems, such

as permanent identifications. Furthermore, because payments are offline, coin

fraud (using a counterfeit coin) may not be discovered until after the fact. Still,

offline payments might be preferred from a practical standpoint because they

cause lower latency, and lower communication and computational costs.

Various micropayment approaches have been proposed in the context of P2P

networks such as [35, 37, 44, 69, 71, 98, 100] among many others.

2.4.1.1 Implementation Issues

Micropayment-based approaches have several limitations when applied to P2P

networks.

• Centralization: All proposed solutions require some centralized authority

to monitor each peer’s balance and transactions. However, this require-

ment conflicts with P2P paradigm, which is, by its nature, highly dis-

tributed. Furthermore, there is no simple way to decentralize micropay-

ment approaches given that the central authority plays an important role

in them.

CHAPTER 2. RELATED WORK AND BACKGROUND 22

• Scalability: Although payments could be online or offline, eventually the

central authority must take some action for every transaction; as a result,

the central authority’s load is always directly proportional to the number

of peers and transactions. It is clear that when scalability is of primary

concern, a central authority constitutes both a bottleneck and a single point

of failure.

• Persistent identifiers: To store peer balances and manage transactions, mi-

cropayment approaches require persistent user identifiers. Providing persis-

tent identifiers, however, is complicated by the anonymity of peers, collec-

tions of widely dispersed peers, and the ease with which peers can modify

their online identity in most of the unstructured and decentralized P2P

networks.

• Mental transaction costs: Peers mostly dislike micropayments because of the

fact that they have to decide before each download if the service is worth

a few cents or not [44]. This leads to confusion and mental decision costs.

Thus, micropayment solutions involve peers’ mental effort in exchange for

inexpensive resources, such as content, cycles, disk, etc.

• Communication overhead: There are two sources of communication over-

head caused by introducing micropayments. The first overhead is created by

dissemination of virtual currency value announcements, transaction records,

etc. The second overhead is caused by the application of auditing mecha-

nisms for integrity checking and expenditure monitoring.

2.4.2 Incentive-Based Approaches

In incentive-based approaches, P2P protocols promote cooperation among peers

by providing some incentives. Service quality differentiation or prioritization

of peers are common methods used by incentive-based approaches. In general,

peers maintain histories of past behavior of other peers and use this information

in their service differentiation decision. These approaches can be based on direct

incentive (tit-for-tat) or indirect incentive (utility-based). In direct incentive

approaches, a peer decides how to serve another peer based solely on the direct

CHAPTER 2. RELATED WORK AND BACKGROUND 23

service exchange between itself and this peer in the past. In contrast, in indirect

incentive approaches, the decision of the peer also depends on the service that

the other peer has provided not only to its neighbor but also to all peers in

the system. Direct incentive approaches are appropriate for the networks where

peers stay connected with long session durations, as they provide opportunities

for creating a fair and realistic history of reciprocity between pairs of peers.

Indirect incentive approaches are useful when the peer population is large and

the chance of direct interaction with the same peer is low. The indirect incentive

approaches provide faster information about a peer’s past activities compared to

direct incentive approaches.

Below, we provide more details about these two approaches.

2.4.2.1 Direct Incentive (Tit-for-Tat) Approaches

This kind of methods employs incentive mechanisms to encourage cooperative be-

havior between two or a set of peers. Each peer decides how to react to another

peer’s request depending on the past behavior of the other peer to its requests.

Some existing P2P applications have implemented Tit-for-Tat approaches. For

example, BitTorrent splits the original file into fragments [19]. To download all

the fragments of a file, peers are required to exchange already downloaded frag-

ments with the other downloading peers at the same time. In this way BitTorent

employs a Tit-for-Tat approach by enforcing exchange of fragment among down-

loading peers. Additionally, the protocol increases the download speed of a peer

if the peer provides more upload bandwidth.

The solutions that we propose in this dissertation implement a direct incentive

mechanism. The Detect and Punish Method (DPM) is based on the local inter-

action of peers to create a direct incentive mechanism. Each peer assigns ratings

to its neighbors based on the reaction of the neighbors to its service requests, and

those ratings determine the service quality offered to the neighbors. In the P2P

Connection Management Protocol (PCMP), we propose exploiting P2P network

connection management as a direct incentive mechanism to promote contribution

by reconnecting the contributors to each other and pushing the free riders away

CHAPTER 2. RELATED WORK AND BACKGROUND 24

from the contributors.

2.4.2.2 Indirect Incentive (Utility) based Approaches

These methods measure both a peer’s contribution to the network and its resource

consumption. This measure is termed the utility of the peer to the system which

governs each peer’s ability to consume network resources in the future. Utility-

based approaches create incentives by providing better network services to the

peers with higher utility. Peers with low utility value can face some form of

penalty. For instance, they cannot download files or cannot even submit search

requests if their utility value is less than the utility value of others or some

threshold value.

As an example for indirect incentive-based approaches, in [60], the EigenTrust

algorithm is used to measure a peer’s contribution level to the P2P network by

computing the peer’s uptime, and the number, popularity and diversity of its

shared files. The peers with high EigenTrust score are rewarded by better service

quality, such as faster download or increased view of the network. Other examples

of utility-based approaches against free riding include [42, 69].

2.4.2.3 Implementation Issues

There exist some critical issues to be considered regarding the realization of the

incentive-based approaches.

• Fake files: A peer can share some small files with fake filenames resembling

popular filenames. If these files are downloaded by others, this peer’s utility

value may increase.

• Credibility of the utility value: Some of the proposed incentive-based meth-

ods depend on accurate information about peers and this information is

provided or stored by the peers themselves. A P2P network depending on

such an approach can be cheated by writing malicious client programs.

CHAPTER 2. RELATED WORK AND BACKGROUND 25

• Peer identity management: Peers are linked with their utility value through

their identities. However, a free rider can try to get rid of its reduced utility

by whitewashing, i.e., by constantly getting a new identity, if newcomers

are assigned a standard utility value which is higher than that of the free

rider. Whitewashing issue is discussed in Section 2.5.

2.4.3 Reputation-Based Approaches

The goal of reputation systems is to allow peers to avoid dealing with peers who

have bad reputations of being malicious or providing poor service in the past.

These systems use the interactions among peers to build up a good reputation

for contributing peers and a bad reputation for free riders.

In a reputation-based system, the information exchanged among peers can be pos-

itive reputations, negative reputations, or a combination of both. The systems

that distribute only positive reputations take only the successful transactions into

account to compute peer reputations. On the other hand, negative reputation-

based systems share only negative feedbacks or complaints about peers. As a

hybrid approach, a combination of positive and negative reputations can be dis-

seminated and used in the network to make the reputation mechanism more

accurate and reliable.

The reputation-based methods can be categorized into two main groups: au-

tonomous (local) reputation approaches, in which peers use only their own expe-

riences (local information), and global reputation approaches, in which peers use

the experiences of other peers (global information) in evaluating peers.

2.4.3.1 Autonomous (Local) Reputation-Based Approaches

In an autonomous reputation scheme, a peer builds up local reputation informa-

tion about other peers with which it has interacted by itself. Therefore, each peer

can have different reputation values for the same peer. Unlike global reputation

systems, autonomous reputation-based approaches do not aim to merge and dis-

tribute these local reputations to create a global consideration. As a result, they

CHAPTER 2. RELATED WORK AND BACKGROUND 26

are relatively simple to implement, because they do not call for a security infras-

tructure or centralized storage in order to assure the integrity of local reputations

from other peers, unlike global reputation systems. Autonomous reputation ap-

proaches are used in some existing P2P networks such as eMule and GNUnet.

2.4.3.2 Global Reputation-Based Approaches

For a P2P network with a large peer population, any two peers may seldom or

never interact. Therefore, it can take a long time to observe enough interaction

between two peers to create useful reputations for their behavior toward each

other. Global reputation-based approaches employ a reputation mechanism which

depends not only on a peer’s local interactions but also on other peers’ interactions

by consolidating all peers’ local information. Various attacks can target at the

reliability and integrity of global reputation information. Despite the security

risks, global reputation approaches have the advantage of considerably speeding

up identifying free riders, as peers can learn from others’ interactions as well.

The reputation information can be distributed through the system in different

ways. For example, in the XRep system [22], the reputation information that is

locally created is stored at each peer, whereas in EigenRep [58], in addition to

local reputation values stored at peers, the global reputation information derived

from multiple local values is also stored at random peers. A peer retrieves any

peer’s reputation information from the system by using a retrieval mechanism.

2.4.3.3 Implementation Issues

Below we discuss some important issues that need to be considered when imple-

menting reputation-based solutions.

• Reliability: Guaranteeing reliability and consistency of the reputation in-

formation gathered about peers is an important issue. There are a number

of proposals against malicious acts such as using a voting scheme to collect

opinions about a peer, implementing heuristics to find groups of potentially

malicious voters, and applying a distributed cryptographic infrastructure

CHAPTER 2. RELATED WORK AND BACKGROUND 27

to confirm the identities of peers involved in a transaction.

• Communication overhead: In a global reputation system, peers need to

communicate with each other or a special group of peers to exchange and

consolidate reputation information, which increases P2P network traffic and

can lead to scalability problems.

• Complexity: In a global reputation system, the need for ensuring the relia-

bility of information received from other peers about their interactions with

third parties can be met by adding security mechanisms to P2P network

such as a cryptographic infrastructure like a PKI. A Certification Authority

(CA) can be integrated into the P2P network to authenticate the reputation

information being shared. This type of infrastructure might suit better to

hybrid or centralized P2P networks, such as Napster or BitTorrent, than

pure P2P networks, such as Gnutella. As discussed in Section 2.3, the im-

plementation of PKI adds significant complexity to P2P management by

entailing a remarkable amount of resources to plan, install, deploy, and

maintain. Furthermore, the huge number of users and high turnovers in

P2P networks make key management a complex issue.

• Peer identity management: Peers are linked with their reputations through

their identities. Free riders can try to get rid of their bad reputations

by constantly renewing their identities. Thus, P2P networks implementing

reputation-based approaches should deal with identity management as well.

• False recommendations: Most global reputation systems assume that peers

report their interactions with other peers honestly and impartially. How-

ever, a peer can cheat the system to benefit more at the cost of the others

by misreporting the services received from other peers. If false recommen-

dations can not be filtered out the fairness and effectiveness of a reputation-

based approach will be jeopardized.

• Centralization: Global reputation systems may rely on a centralized au-

thority to store and manage reputation ratings. Therefore monitoring peer

reputations in a decentralized (pure) P2P network is problematic due to

CHAPTER 2. RELATED WORK AND BACKGROUND 28

the lack of a central authority. Furthermore, the required central infras-

tructure costs may be unreasonably high compared to the existing P2P

infrastructure, and scalability of such a centralized system may be quite

limited. For instance, it is argued that trust management in P2P networks

does not scale well to many peers (i.e., when the number of peers is larger

than 100,000) [12].

2.5 Common Attacks or Cheats

Some free rider peers could try to work around the free riding mechanisms if

this would increase their benefits from the system. Solutions provided to prevent

free riding should be robust enough against these kinds of attacks. Below we

list some of the common attacks that can be mounted against the free riding

solutions [10, 30, 44, 45, 58, 101]. These attacks are also summarized in Table 2.4.

• Collusion: A group of malicious peers can attempt to collectively challenge

and fool the free riding mechanisms. For instance, a group of peers can

collude to promote one or more peers in the group, or, to damage the

reputation of a victim in a global reputation system. As another example,

in some of the solutions against free riding, a peer can detect and announce

a misbehaving peer. To evade being detected, cheaters may exploit these

mechanisms by announcing an innocent peer or a potential announcer as a

cheater.

• Modifying virtual currency/utility/reputation value: A cheater may exagger-

ate its virtual currency, utility, or reputation value by providing incorrect

information about itself. Cheaters can do this by modifying client programs,

cracking locally saved values, and so on.

• Whitewashing: In most current P2P networks, it is cost-free for a peer

to join the network and obtain an online identity. This enables growing

the network rapidly, since newcomers can easily join the system [29]. On

the other hand, cheaters can use this fact to change their online identity

anytime, and thus have all the advantages and rights of a newcomer. This

CHAPTER 2. RELATED WORK AND BACKGROUND 29

is called whitewashing. A free rider may choose to whitewash repeatedly to

avoid being detected and getting punished. Incentive and reputation-based

approaches are very prone to this kind of attack.

In many P2P networks, the real world identification of a peer is not bound

to its online identity. Therefore, these systems can not easily locate a peer

who has more than one account in the system or who enters the system

repeatedly using a new identity each time. Distinguishing whitewashers

from legitimate newcomers is an important issue to stop or restrict the

cheaters.

A robust and long-term free riding solution should consider the possibility of these

attacks and should incorporate mechanisms that can successfully deal with these

kinds of attacks. For example, one technique that can be used against white-

washing is attaching a high cost to acquiring new identities for all newcomers

using proof of work (POW) protocols [52]. As another measure against white-

washing attack, the free riding solution may require use of free but irreplaceable

pseudonyms for peers through the assignment of strong identities by a trusted

central authority [29]. An irreplaceable pseudonym for a peer can be, for exam-

ple, the unique MAC (medium access control) address of the computer the peer

is using. It is better that we consider the possible attacks as early as possible

while designing a free riding solution, so that at the end we have a mechanism

that can effectively deal with free riders and their workarounds.

Attack Type Description

Collusion A group of malicious peers arrange an attack
and report incorrect information or promote each other.

Modifying Values A cheater may exaggerate its virtual currency value.

Whitewashing Cheaters change their identities and connections
to erase their past records.

Table 2.4: Some common attacks to proposed solutions.

Chapter 3

Detect and Punish Method

In this chapter, we propose a new framework, the Detect and Punish Method

(DPM), which is a distributed and localized solution against free riding in un-

structured P2P networks. In DPM, peers’ contribution to the network is mon-

itored, and peers are enforced to act cooperatively in sharing network services

and resources. The goal of this framework is not to eliminate all possible kinds of

free riding. It is neither aimed to promote or enforce new content contribution by

peers, as this may not be feasible. The aim of our low-overhead framework is to

improve the current situation and reduce the ill-effects of free riding by detecting

free riders, and reducing the amount of service they get from the network. In this

way, peers are enforced to cooperate in order to use the services provided by a

P2P network.

The benefits of DPM over the other mechanisms against free riding that have

appeared in the literature can be summarized as below.

• In our work, we do not propose to use any scoring value for a peer’s utility

to the system. Thus, we do not need to bother with storing, retrieving,

and saving a utility value. Each peer just stores information about the

neighbors’ messages which are routed through it.

• Unlike the other proposals against free riding, DPM does not require any

permanent identification of peers or security infrastructures for maintaining

a global reputation system.

30

CHAPTER 3. DETECT AND PUNISH METHOD 31

• DPM does not require explicit cooperation of any group of peers to make

the system work. Each peer executes the same kind of mechanisms alone

and does not depend on any other peer’s cooperation.

• As opposed to many solutions that execute the counter-actions at the down-

load request phase, our solution executes some counter-actions at the query

forwarding phase, i.e., during the search operation. In this way, our solu-

tion reduces not only the downloads performed by free riders, but also the

query messages flowing in the network due to free riders. This considerably

reduces the network traffic overhead.

• DPM requires minimal changes to the current protocol processing rules and

it does not require any architecture changes.

• Both the detection mechanism and counter-actions are simple, practical and

effective. Nor do they use large amount of resources.

• DPM categorizes the free riders into several categories. This enables us to

apply several different counter-actions that are tailored to the types of free

riding.

• DPM assesses the contribution of each individual neighbor to the monitoring

peer and the overall system, on contrary to some other approaches which

evaluate the contribution of the sub-network reachable via each neighbor.

In the following sections, we present the details about DPM, more specifically,

the approach, the detection mechanism, the proposed free riding types, and the

counter actions.

3.1 Main Approach

Our approach against free riding requires every peer to passively monitor its

neighbors. Two roles are defined for each peer: monitoring and being controlled

(see Figure 3.1). A peer takes both roles at the same time. As a monitoring peer,

a peer monitors and records the number of messages coming from and going

towards its neighbors (i.e., keeps some statistical information). The neighbors

CHAPTER 3. DETECT AND PUNISH METHOD 32

Figure 3.1: Peers are in two roles: monitoring and controlled.

are controlled peers. At the same time, the peer is also a controlled peer, which

implies that its messages are monitored and recorded by its neighboring peers.

By monitoring the messages of its neighbors, a monitoring peer can decide if a

neighbor is acting like a free rider. Upon deciding that the neighbor is acting as a

free rider, the monitoring peer can take counter-measures against that neighbor

to reduce the adverse effects of free riding.

The statistical information1 that a monitoring peer maintains about a controlled

peer P consists of a set of counters that are shown in Table 3.1. These counters

are maintained and updated by the monitoring peer as follows.

• QRP , the number of Query messages routed by peer P , is incremented

whenever the monitoring peer receive a Query message from peer P in which

the TTL value is less than the fixed max TTL. The Queries originating from

peer p are not counted; only the Queries originated at somewhere else and

routed by peer P are counted. The monitoring peer decides if the Query

originated by the neighbor or not by looking to the TTL value. If the

neighbor P has originated the Query, then the Query message would have

a TTL value equal to the fixed max TTL.

• QTP , the number of Query messages routed towards peer P , is incremented

whenever the monitoring peer sends a Query message to the neighbor P .

Both the Query messages originated at the monitoring peer and the Query

messages just forwarded by the monitoring peer are counted.

1Due to the power-law distribution of node degrees observed in P2P networks [55], we expect
the average number of neighbors of a peer to be around 3-4, and therefore the overhead imposed
by the solution on each peer will not be very large. Even the number of neighbors is larger
than the average, the space and processing requirements are very low. This implies that the
framework is scalable, thanks to its distributed nature.

CHAPTER 3. DETECT AND PUNISH METHOD 33

Symbol Description

QRP Number of Query messages routed by peer P .
QTP Number of Query messages routed towards peer P .
QHP Number of QueryHit messages submitted by peer P .
QHRP Number of QueryHit messages routed by peer P .
QHSP Number of QueryHit messages satisfying queries of peer P .

Table 3.1: Observed Descriptors.

• QHP , the number of QueryHit messages submitted by peer P , is incre-

mented whenever the monitoring peer receives a QueryHit message from

peer P . The message must be originated (not forwarded) by peer P . The

monitoring peer can decide this by checking the IP address field of the

message, which stores the IP address of the originator of the message.

• QHRP , the number of QueryHit messages routed by peer P , is incre-

mented whenever the monitoring peer receives a QueryHit message from

peer P in which the IP Address field in the message contains an IP address

different than that of peer P .

• QHSP , the number of QueryHit messages satisfying queries of peer P ,

is incremented whenever a Query message formerly submitted by peer P

receives a QueryHit. To observe this, whenever a monitoring peer receives

a Query message whose TTL is the fixed max TTL, it records in its internal

table (using the message ID of the Query message) that the Query originated

from the neighbor P . Then, after receiving a QueryHit message with the

same message ID, the monitoring peer decides that the QueryHit message

is for that controlled neighbor and increments the counter QHSP . The

monitoring peer counts only once for all the QueryHit messages received

for the same query.

The values of these counters indicate both whether the neighbor is a free rider

and the type of free riding. A different set of counters is maintained for each

neighbor. The details of how we employ these counters are explained in the

following sections.

We need to consider the issue of whether there is enough time during a typical

CHAPTER 3. DETECT AND PUNISH METHOD 34

monitoring process to collect sufficient information about the neighbors to make

correct decisions about their behavior. In one study [84], about 40% of peers in a

Gnutella network leave the network in less than 4 hours; only 25% of the peers are

alive for more than 24 hours. In another work [92], the average session duration

of both Napster and Gnutella network clients is reported to be about 60 minutes.

A similar work [39] found that 90% of Kazaa clients have sessions averaging 30

minutes in length. All these studies show that most peers in a P2P network

stay connected long enough for monitoring peers to collect enough information

to make correct decisions.

Another issue is whether a monitoring peer can monitor enough messages. In

one study [70], the average number of queries received per second for three peers

located at three different locations is about 50. In that same study, each peer

received or sent an average of 30 query responses per second and the query re-

sponse ratio per peer is around 10%-12%. This study shows that a monitoring

peer will have enough messages forwarded through itself to or from a neighbor to

judge if the neighbor is a free rider.

3.2 Free Riding Types and Detecting Free Rid-

ers

Previous works on free riding [4, 5, 37, 59, 98] have generally assumed that only

one type of free riding is exhibited in a P2P network. However, studies [3, 39, 70,

82, 92] on P2P network traffic and user behavior suggest that not all free riders

behave the same. Therefore, in this thesis we define three types of free riding

(non-contributor, consumer, dropper) with different properties as summarized in

Table 3.2. The types of free riding that we define here are not exhaustive. It

is possible to define new types of free riding with different properties [61]. We

believe that three types are sufficient for developing a general framework, and

these free riding types that we focus on in this dissertation constitute a large

fraction of all free riders. A detailed description of each type is given below.

CHAPTER 3. DETECT AND PUNISH METHOD 35

Free Riding Type NONE NON-CONTR. CONSUMER DROPPER

Sharing Content? Yes, much No Yes, but little No
Replicating Content? Yes No No No
Routing Messages? Yes Yes Yes No
Request Gen. Rate Normal Normal Higher Normal

Table 3.2: Summary of free riding types and their properties.

3.2.1 Non-contributor

If a peer does not share anything at all or shares uninteresting files, it is identified

as a non-contributor. A controlled peer P exhibiting this type of free riding can

be detected by a monitoring peer who counts the QueryHit messages (QHP) orig-

inating from the neighbor and compares them to the number of Query messages

(QTP) sent to the neighbor (Table 3.1) 2.

If the number of QueryHit messages received is very few compared to the number

of Query messages sent, then the neighbor is identified as a non-contributor. More

precisely, if the ratio (QHP /QTP) is below a threshold value, then the peer is

identified as a non-contributor.

Not receiving (or receiving very few) QueryHit messages from a neighbor may

indicate that the neighbor is either not sharing any files at all, or is sharing

files that are not interesting and therefore they do not match the search queries.

Unfortunately, a method like this, which is based on counting the QueryHit mes-

sages, cannot distinguish between these two types of reasons of not responding 3.

Different approaches for setting up a threshold value can be used 4. Whatever the

2We can identify the source of a QueryHit message by looking at the IP Address field in
the message, which stores the IP address of the responder.

3Peers who are cooperative but share unpopular files would be affected by false positives.
From the perspective of the performance measures we have investigated, it seems that punishing
such kind of users has a small impact on the overall performance of the network. A bias
against these peers is one unintended consequence of emphasizing performance in an incentive
mechanism. We acknowledge that the solution of this issue is beyond the scope of this thesis.

4We may, for example, set up a fixed value (say 100) for unsatisfied query number as a
threshold. In this case, if QTP −QHP is greater than this threshold, the neighbor is identified
as non-contributor. As another approach, we may use a time-based threshold, such as 10
minutes, during which we monitor for QueryHit messages from the neighbor. If there is no
QueryHit message received from the neighbor during this time period, the peer can be treated
as a non-contributor.

CHAPTER 3. DETECT AND PUNISH METHOD 36

approach, however, the proposed framework enables a monitoring peer to judge if

a neighbor is a non-contributor just by observing the neighbor’s existing protocol

messages, without requiring that any new control message be defined for detection

of free riders. Below, we formulate our method to detect non-contributors as a

condition that is evaluated whenever an update is performed on the values of the

respective counters. We have used this formula in our simulation experiments.

if (QTP > τQT) and (QHP

QTP
< τnon contributor) then

peer P is considered as a non-contributor

endif

To eliminate the warm-up period and to obtain valid statistical information we

propose using a threshold value, τQT , for the number of forwarded Query messages

to the controlled peer. A monitoring peer starts making a decision about the

controlled peer after this threshold is exceeded.

3.2.2 Consumer

Peers may contribute some content to the network. They are not therefore non-

contributors, but the services they use may greatly exceed their contribution.

This is not a desirable behavior in terms of the long term stability of the P2P

network and fairness to other peers.

To identify whether a controlled peer P is a consumer, a monitoring peer counts

the QueryHit messages that originate from the neighbor (QHP) and the QueryHit

messages that are destined to the neighbor (QHSP). By comparing the ratio of

these two values against a threshold value τconsumer, the monitoring peer can

decide if the neighbor is a consumer or not.

In identifying consumers, the number of actual downloads, instead of QHSP ,

could have been used. However, in unstructured P2P networks, the download

process is executed directly between two peers [18]. Therefore, the intermediate

nodes are not aware of the download process. This means that, the monitoring

peers are not able to use actual download numbers to identify the consumers.

Therefore, we propose using the QueryHit messages as an indication of possible

CHAPTER 3. DETECT AND PUNISH METHOD 37

downloads. We assume that if a query gets one or more QueryHits, the owner of

the query would download at least one copy of the requested file 5.

The following condition is checked to decide if a neighbor is a consumer or not

whenever a respective counter maintained for the neighbor and used in the for-

mula is modified. Again threshold for QTP counter is used to eliminate the

warm-up period before starting making decision about the behavior of a neigh-

bor.

if (QTP > τQT) and (QHP

QHSP
< τconsumer) then

peer P is considered as a consumer

endif

3.2.3 Dropper

A peer is identified as a dropper if the peer drops others’ queries. Some peers

might not forward protocol messages (Query, QueryHit, etc.) in order to save

their connection bandwidth.

In order to detect a dropper peer P , a monitoring peer can count Query (QRP)

and QueryHit messages (QHRP) forwarded by this neighbor. If the sum of these

two values is very low compared to the number of Query messages sent toward

the neighbor (QTP), it can be assumed that either the neighbor does not have

enough connections (to receive Query or QueryHit messages and forward them),

or it drops Query and/or QueryHit messages. Again we can use a threshold value,

τdropper, for the ratio.

if (QTP > τQT) and (QRP +QHRP

QTP
< τdropper) then

peer P is considered as a dropper

endif

5We only count once for all the QueryHit messages received for the same query. All
QueryHits that is received for the same Query message will have the same unique message
ID value.

CHAPTER 3. DETECT AND PUNISH METHOD 38

3.3 Counter-Actions Against Free Riders

When a peer identifies a controlled peer as a free rider, the peer can start taking

some actions against it. Here, we will focus on some sample counter-actions that

can be implemented simply by modifying the existing P2P protocols.

Before discussing the details of counter actions, we would like to explain the

relation between detection and counter acting. The detection of free riding and

its type is determined according to the values of statistical counters maintained for

a neighbor in the log table of a monitoring peer. When the values of the counters

change, it may indicate that the type of free riding practiced by the neighbor

has changed. For example, if the (QHP /QTP) ratio for a neighbor P is smaller

than the respective threshold (i.e., the neighbor is a non-contributor), and later

becomes greater than that threshold, the neighbor is no longer a non-contributor.

Thus, monitoring peer would stop applying counter-action to the controlled peer

since it is no longer a non-contributor. In essence, the counter-actions to peers

are dynamic and changed according to the detection mechanism.

Our counter-actions are based on ignoring Query messages submitted by free

riders or reducing the scope of these queries. In this way we reduce the amount

of service that free riders get from the network. There are two main services

that a peer can get from a P2P network: 1) searching for files by issuing Query

messages; 2) downloading files after getting answers to the queries. If we reduce

the amount of searching service that a free rider gets, we also cause a reduction

in the amount of downloading service that it gets. Therefore, our counter-actions

aim to reduce the propagation of Query messages submitted by free riders; then

the free riders will have less chance of getting QueryHit messages and will perform

fewer downloads.

We propose two types of counter-action schemes: 1) single counter-action

schemes, and 2) mixed counter-action schemes. A single counter-action applies

the same action to all types of free riders. A mixed counter-action scheme applies

a different counter-action for each type of free riding.

The proposed single counter-actions are described in more detail below.

CHAPTER 3. DETECT AND PUNISH METHOD 39

3.3.1 Modifying TTL Value

When a peer receives a Query message from a controlled peer, it first executes

a search on local files for a match, and then forwards the Query to its other

neighbors. Before the Query message is forwarded, its TTL value is normally

decreased by one. However, the monitoring peer can play with this TTL value,

i.e., the monitoring peer can decrement the TTL value by more than one before

forwarding it further. In this way, the search horizon of the free-riding peer is

narrowed. This also reduces the overhead imposed by Query messages on the

network. To observe the effect of this counter-action at a finer granularity for

different values of TTL reduction, we propose to employ two different values, i.e.,

2 and 4, for decreasing TTL6. We call the corresponding counter-actions TTL-2

and TTL-4, respectively.

3.3.2 Dropping Requests

As a sharper counter-action, the monitoring peer can simply ignore all the search

requests coming from a neighbor identified as a free rider. Dropping a Query

message means not searching the local files for a match and not forwarding the

Query any further; this is totally different from what happens in the Modifying

TTL counter-action. We call this counter-action DROP.

Dropping the search requests of free riders or narrowing down their search hori-

zon by modifying TTL not only punishes the free riders, but it also significantly

decreases the overhead of P2P control messages over the underlying infrastruc-

ture. Uncontrolled query messages in a flooding-based P2P network can become

a significant portion of overall network traffic7. We believe that decreasing the

6Actually, we implemented and observed the effects of different values between 2 and 6 in the
simulation experiments. The results are provided in Section 6.1.4. We observed that TTL-2 has
the least improvement effect on the performance and, TTL-6 and TTL-5 yield similar results
to those of the DROP counter-action. TTL-4 produces a mid-point between them. Therefore,
to give some insight about the effect of the Modifying TTL Action with different reduction
amounts on the system performance, we select TTL-2 and TTL-4 as representative values in
this thesis.

7For example, as it is pointed out in [85], 18 bytes of search string in a Query message
may cause 90 megabytes of data to be forwarded by the peers of a P2P network. As another
example, [2] states that the total number of messages including the responses triggered by a

CHAPTER 3. DETECT AND PUNISH METHOD 40

number of queries submitted by free riders may help improve the performance

and scalability of both P2P networks and the underlying Internet.

3.3.3 A Mixed Counter-Action

A monitoring peer that would like to execute a mixed counter-action scheme can

apply an appropriate counter-action depending on the type of free riding. As

mentioned earlier, a free-riding peer can be either a non-contributor, a dropper,

or a consumer. Thus, a possible mixed counter-action scheme may dictate that

counter-action TTL-2 is applied if the free rider is a consumer, counter-action

TTL-4 is applied if the free rider is a non-contributor, and counter-action DROP

is applied if the free rider is a dropper. In these settings, we aim to apply more

severe counter-actions to free riding types that will cause more severe damage to

the P2P network. A neighbor that is not identified as a free rider will not invite

any counter-action.

3.4 Summary

In this chapter, we present the details of DPM by explaining the main approach,

the proposed free riding types, the detection mechanism, and the counter actions.

As a summary, DPM requires each peer to monitor the network traffic of its

neighbors. By monitoring the messages of its neighbors, a peer can decide if a

neighbor is acting like a free rider. If a peer determines that a neighbor is acting

as a free rider, the peer can take counter-measures against that neighbor to reduce

the adverse effects of free riding.

To evaluate DPM in a P2P network environment, we have conducted extensive

simulation tests. In Chapter 6, we present and discuss the simulation results of

the proposed solution in detail.

single Query message can be as large as 26240 (assuming 4 connections per peer).

Chapter 4

A New P2P Connection

Management Protocol

Our second solution in this thesis, called P2P Connection Management Protocol

(PCMP), is a connection-time solution that can be used to deal with free rid-

ing at connection establishment time. In this way it is quite different from the

other methods that have appeared in the literature. PCMP is based on manag-

ing connections among peers to discourage free riding and to provide incentives

for cooperation. PCMP involves the use of a novel connection type, One-Way-

Request Connection (OWRC), and a P2P connection management protocol that

dynamically establishes the connections between peers, and it adaptively mod-

ifies the P2P topology in reaction to the contributions of peers. Our claim is

that if we can adjust the P2P network topology dynamically in reaction to peers’

contributions, the adapted topology can favor the contributing peers in getting

service from the P2P network. The adapted topology can also exclude the free

riders from the P2P network, and thus the adverse effects of free riding can be

reduced as well. Furthermore, it helps a P2P network to become more scalable

and robust.

There exist some other studies which also focus on modifying P2P topology in-

cluding the ones presented in [14, 16, 20, 67, 91]. However, they do not attack

the free riding problem directly. These works basically aim either to solve the

41

CHAPTER 4. A NEW P2P CONNECTION MANAGEMENT PROTOCOL42

topology mismatching problem for improving the search quality, or to modify the

topology for decreasing overhead and increasing performance.

The boot-up and connection management mechanism in unstructured P2P net-

works allows a peer to join and leave a P2P network randomly, which causes

topology mismatching between the P2P logical overlay network and the physical

underlying network. The topology mismatching issue can cause a great amount

of unnecessary congestion in the Internet infrastructure and seriously restrict the

performance gain from various search or routing techniques. In [67], Liu et al.

proposed a method called the Adaptive Overlay Topology Optimization (AOTO)

to optimize inefficient overlay topologies for improving P2P search and routing

efficiency. In another work [20], Crameret et al. also aimed to create a topol-

ogy refinement by modifying the bootstrapping mechanism in the P2P network.

Bootstrapping is an important core functionality required by every P2P overlay

network. Peers intending to participate in such an overlay network initially have

to find at least one other peer that is already connected to the network. The

main idea of their approach is to use IP addresses to connect physically nearby

peers together. For this, the proposed solution requires a peer that is part of

the network to publish a reasonable (arbitrary k-bit) prefix of its IP address into

a DHT (distributed hash table) directory. Then, a newly joining peer consults

to this directory to find some physically close peers. In this way, peers try to

establish connections with other peers that are physically close.

In [91], Singh and Haahr proposed to modify the P2P network topology so that

peers with similar properties (bandwidth, geographic location, amount or type

of shared resources, etc.) become close to each other. Similarly, in [14], Cai and

Wang proposed a two-layer (neighbors and friends) unstructured P2P system for

better keyword searches. The neighbors overlay is created according to network

proximity while the friends overlay is built according to the online query activities.

In order to increase the search quality, they try to avoid the free riders in the

system while routing the queries. Primarily, the friends overlay is used to route

the queries. Because, the friends overlay is constructed in such a way that free

riders can not be friends of any peer. Thus the query would avoid free riders

at the first place. In our proposal, we implement only a single overlay network

CHAPTER 4. A NEW P2P CONNECTION MANAGEMENT PROTOCOL43

and our aim is to stop query submissions of free riders as well. However, in their

system any peer, including free riders, may issue queries to the system which

allows free riders to use the network resources. Actually, unlike our protocol,

their proposal is not designed specifically against free riders. Chawathe et al.

focused on scalability problem in unstructured P2P networks and applied dynamic

topology adaptation [16]. They specifically aimed to match the query capacity of

the peers with the routed queries to avoid the peers become overloaded by high

query rates.

The properties of PCMP and its differences from the related previous works in

the literature can be summarized as below.

• In our work, we do not propose to use any scoring value for a peer’s utility

to the system. Thus, we do not need bother with storing, retrieving, and

saving a utility value.

• Unlike other proposals against free riding, PCMP does not require any

permanent identification of peers or security infrastructures for maintaining

a global reputation system.

• PCMP does not require the explicit cooperation of any group of peers to

make the system work. Each peer executes the same kind of mechanisms

alone and does not depend on any other peer’s cooperation.

• PCMP is a dynamic approach. The connections are updated and changed

dynamically depending on the interaction of peers.

• PCMP is autonomous. Each peer takes part in the connection management

protocol autonomously (i.e., accepts a connection request by itself). No

central management is required.

• PCMP depends on first hand observations. Decisions about connections

are taken upon direct interaction with each peer. Therefore, the potential

attacks by malicious peers are limited.

• PCMP is a simple protocol. The proposed method is very simple to imple-

ment and has a very small overhead for peers.

CHAPTER 4. A NEW P2P CONNECTION MANAGEMENT PROTOCOL44

• The amount of change required to implement PCMP in the current un-

structured P2P networks is not much, so the proposal is practical.

In the following sections, we first describe our main approach and highlight its

benefits briefly. We then give the details of our two new connection types and

the connection management protocol. We describe in detail how we establish and

manage the connections between contributors and free riders. We also provide

an example that shows how PCMP works and modifies a topology for the benefit

of contributing peers.

4.1 Main Approach

P2P network topology affects the propagation of queries, the quality and quantity

of search results, and the overhead imposed on the underlying physical network.

Therefore, the connections among peers should be carefully controlled and man-

aged. However, in current pure P2P networks, peers can try to connect to any

other peer, and they can refuse any connection request to them. Each peer has

equal right to do so, independent of their contribution level. Moreover, each peer

can use all of its connections to send its queries. In our framework, we change

these two properties of pure P2P network protocols to create an incentive for

cooperation and to discourage free riding.

First, instead of a single connection type that exists in P2P networks to send

and receive queries, we define the One-Way-Request Connection (OWRC) which

introduces two new connection types: IN and OUT connections. IN connections

are only used to receive queries and to reply them (i.e., provide service). OUT

connections, on the other hand, are used just to send queries and to receive replies

(i.e., request service). By using two types of connections, we can now differentiate

and control service request and service provision separately.

Second, we propose a P2P Connection Management Protocol (PCMP) to estab-

lish and release these two types of connections. The protocol considers the peer

contributions while establishing and releasing connections. Hence free riders can

be disconnected from contributing peers and even get isolated sometimes. In

CHAPTER 4. A NEW P2P CONNECTION MANAGEMENT PROTOCOL45

this way, the associated problems with free riding can be alleviated. Moreover,

contributing peers may establish connections to not free riders, but to other con-

tributors and therefore the number of contributors in their search horizon can

be increased. Thus, contributors can have better chance to get query hits and

downloads.

We foreseen several benefits of applying our protocol. The connectivity of free

riders to the contributing peers can be reduced; in some situations, free riders can

be totally isolated from the contributors. Furthermore, the connectivity among

contributor peers can be increased. Also, the workload of a contributor peer can

be reduced, since it will not serve many free riders anymore. As a result, better

scalability and robustness can be achieved in the P2P network, since the querying

overhead on contributor peers due to free riding can be reduced.

With those benefits, we can see improvement in terms of the following quantifiable

metrics:

• Downloads for contributing peers can be increased;

• Downloads for free riders can be decreased;

• Amount of query traffic in the network can be reduced.

A motivational example and analysis about how PCMP can improve the perfor-

mance in terms of some of these metrics in a P2P network is given in Appendix A.

An important issue in realizing our approach is to identify free riders efficiently

and correctly. For this, we use a heuristic approach which depends on mutual ex-

changes of files and query hits between a pair of peers. Based on these exchanges,

peers try to identify free riders and contributors. After then, they take necessary

actions to modify their connections.

CHAPTER 4. A NEW P2P CONNECTION MANAGEMENT PROTOCOL46

4.2 A New Connection Type: One-Way Re-

quest Connections

In the current pure P2P networks like Gnutella, a connection established between

a pair of peers is used to exchange all types of P2P protocol messages in both

directions including Queries, Query Hits, Pings and Pongs (Figure 4.1). PCMP

modifies this assumption by proposing a new P2P connection type called One-

Way-Request Connection (OWRC). As seen in Figure 4.2, an OWRC between

two peers is still a TCP connection and can carry messages in both directions.

However, there is a restriction on what types of messages can be carried in which

direction of the connection. The connection is called one way because it can

transfer requests in only one direction. In other words, over any OWRC the

requests (Query, Ping) can only travel in one direction and the replies (Query

Hit, Pong) can only travel in the other direction. Such a connection cannot be

used to send and receive all kinds of protocol messages in both directions at the

same time. The restrictions on the type of messages and their directions are

enforced at the application level by PCMP.

In Figure 4.2, one end of the OWRC can be considered a requester (Peer A)

and the other end as a responder (Peer B). The requester sends Query and Ping

messages and receives the corresponding Pong and Query Hit messages via the

OWRC. A responder, on the other hand, receives Query and Ping messages and

replies with Query Hit and Pong messages through the same OWRC. In the rest

of the thesis, we will call such an OWRC an OUT-connection at the requester

end and an IN-connection at the responder end. Hence, in Figure 4.2, peer A has

an OUT-connection and peer B has an IN-connection. We will also say that peer

A has an OUT-connected peer, which is peer B. And peer B has an IN-connected

peer, which is peer A.

If we would like to transfer requests from the other direction as well, from B

to A, we need to establish another OWRC directed from B to A as depicted in

Figure 4.3. However, we stress again that these connections are logical and can

be implemented on top of either one or two TCP connections.

CHAPTER 4. A NEW P2P CONNECTION MANAGEMENT PROTOCOL47

Figure 4.1: A general P2P connection between two peers, which enables both of
them exchange all types of P2P messages.

Figure 4.2: An OWRC between two peers, which limits the direction and the
types of P2P messages exchangeable.

Figure 4.3: Two OWRCs between two peers, which enable each peer to request
service from the other.

CHAPTER 4. A NEW P2P CONNECTION MANAGEMENT PROTOCOL48

Figure 4.4: A directed graph representation of a network consisting of OWRCs.

A P2P network established using OWRCs can be modelled as a directed graph. A

directed arc represents an OWRC: the tail of the arc has the peer that considers

the connection as an OUT-connection, and the head of the arc (i.e., the pointing

part) has the peer that considers the connection as an IN-connection. Hence the

requests can flow along the direction of the arcs.

Figure 4.4 shows an example model of a P2P network consisting of OWRCs.

Here, peer A has 6 neighbors. It has four OUT-connected neighbors (B, D, F, G)

and three IN-connected neighbors (C, E, G). In other words, the IN-connections

of A are {C, E, G}, and the OUT-connections of A are {B, D, F, G}. When Peer

A would like to search the network it can submit the Query only to its OUT-

connected neighbors, namely B, D, F, and G. It will process the Queries only

coming from its IN-connected neighbors (C, E, G). If it receives any Query from

OUT-connected neighbors it drops the request. The details of a peer interaction

with PCMP are explained in Section 4.5.

We believe that peers would like to minimize the number of IN-connections,

and they would like to maximize the number of OUT-connections. Because,

IN-connections require a peer to process incoming Query and Ping messages,

forwarding them and returning any replies to the originator. In contrast, more

OUT-connections will help a peer to reach more peers and increase the probability

of receiving a hit to its queries. In short, IN-connections require a peer to serve

other peers, while OUT-connections allow a peer to use services offered by the

CHAPTER 4. A NEW P2P CONNECTION MANAGEMENT PROTOCOL49

network.

4.3 Managing One-Way-Request Connections

PCMP manages OWRCs by taking the peers’ contributions into account. Net-

work topology adaptation as a result of PCMP actions aims to enable contributing

peers discover each other more quickly and get connected to each other more di-

rectly. In this way, PCMP eventually results in topologies in which contributing

peers are more closely located with respect to each other and free riders are more

isolated.

Each peer executing PCMP can maintain zero or more IN-connections, and zero

or more OUT-connections. Maximum number of IN- and OUT-connections is

limited by the available bandwidth and determined by peers. The following data

structures can be used to define an IN and OUT connection1.

IN_Connection {

long int PeerID; /*ID of the other peer*/

long int Downloads; /*download counter*/

double LastDwnldTime; /*last download time*/

}

OUT_Connection {

long int PeerID; /*ID of the other peer*/

long int QueryHits; /*Query Hit counter*/

double LastQHitTime; /*last Query Hit time*/

}

According to PCMP, connections are updated at a peer whenever that peer is

involved in a download or upload operation; otherwise, PCMP does not update

1Since node degrees in P2P networks follow a power-law distribution and average number
of neighbors of a peer is observed to be around 3-4 [55, 68], we can argue that the overhead
imposed by the solution on each peer will not be very large.

CHAPTER 4. A NEW P2P CONNECTION MANAGEMENT PROTOCOL50

the connections of the peer2. The details of the PCMP operations that take place

at requesting and providing peers are given below.

4.3.1 Managing IN-Connections

PCMP attempts to create an OWRC between the requesting peer (downloader)

and the providing peer (uploader). The downloader will have an IN-connection

from the uploader through which it can serve any future requests of the uploader.

Since, the new OWRC is directed from the uploader to the downloader, it is an

OUT-connection for the uploader on which the uploader can request service from

the downloader.

The details of how an IN-connection is created by the downloader are given below.

• After the download, the downloader checks if there is an already created

IN-connection coming from the uploader. If so, only the connection data

structure is updated, i.e., the download counter is incremented by 1 and

the last download time is set to the current time.

• If there is no existing IN-connection from the uploader to the downloader,

a TCP connection is created between the downloader and the uploader3.

The downloader waits for a Ping message from the uploader over the TCP

connection. Because, after uploading, uploader is expected to request an

IN-connection from downloader by sending a Ping message.

• If the downloader receives the expected Ping message from the uploader, it

proceeds with the following steps:

– If the downloader can accommodate a new IN-connection, it creates a

new connection to the uploader. It then replies with a Pong message

to the uploader. In addition, it creates an IN-connection structure,

setting the download counter to 1 and the last download time to the

2Alternatively, the connections can be updated periodically rather than with every up-
load/download operation.

3This TCP connection will be used for PCMP’s message exchange to create the new OWRC
connection. If desired, the TCP connection used for file download can be used for this purpose
as well.

CHAPTER 4. A NEW P2P CONNECTION MANAGEMENT PROTOCOL51

current time.

– If there is no space to create a new IN-connection, connection replace-

ment takes place. An existing IN-connection is replaced with the new

IN-connection, i.e., the existing connection is released. The connection

replacement policy is discussed in Section 4.4. Then, the downloader

replies with a Pong message to the uploader. Again, the data structure

for the connection is updated.

Algorithm 1 presents the pseudo-code for managing IN-connections.

Algorithm 1 Sample pseudo-code for managing IN-connections. A peer X will
execute this code after downloading a file from peer Y . This pseudo-code is pro-
vided here to clarify the explanation in the text, and ignores some issues present
in a real implementation. The code must be divided into several sub-functions,
some of which can be executed asynchronously, as, when a Ping message arrives.

Download of a file F from peer Y has been finished;
InConn = Search for an IN Connection to Peer Y ;
if (InConn is FOUND) then

/* update the connection structure */
InConn.Downloads++;
InConn.LastDwnldT ime = now();

else
Wait for a Ping message from Y ;
if (a Ping arrives from Y) then

newInConn = Create IN Connection();
newInConn.peerID = Y ;
newInConn.Downloads = 1;
newInConn.LastDwnldT ime = now();
if (there is space in the IN connection list) then

Add(newInConn, IN connections);
Send a Pong message to Y ;

else
victimInConn = SelectVictim(IN Connections);
Release(victimInConn);
Add(newInConn, IN connections);
Send a Pong message to Y ;

end if
end if

end if

CHAPTER 4. A NEW P2P CONNECTION MANAGEMENT PROTOCOL52

4.3.2 Managing OUT-Connections

Upon uploading a file, PCMP attempts to create an OUT-connection from up-

loader to the downloader. If the connection is successfully established, the up-

loader can then use this new connection to send requests to downloader. The

operations performed by the uploader to create an OUT-connection are described

below.

• If there is an already-established OUT-connection at the peer to the down-

loader, the peer does not have to do anything, except possibly update some

statistics.

• If there is no already-established OUT-connection to the downloader, the

peer first creates a TCP connection to the downloader, through which fur-

ther P2P messaging to create the OUT-connection can be done4. Then

the uploader sends a Ping message to the downloader through this connec-

tion. Ping signifies that the uploader would like to establish an OWRC

to the downloader. The downloader will consider the new OWRC an IN-

connection, and it can either accept or reject the connection request. Nor-

mally, the downloader should accept the request if it obeys PCMP and if

the downloaded file is not a fake file. The downloader will then send a Pong

message back if it accepts the request.

• If a corresponding Pong message arrives from the downloader, the following

operations are executed.

– If the peer can accommodate a new OUT-connection, an OUT-

connection to the downloader is created. The information about down-

loader is initialized: the downloader’s ID is stored, Query Hit counter

is set to zero, and the last Query Hit time is set to -1 (i.e., the value

used when no Query Hit has been received yet).

– If there is no space for a new OUT-connection, then the connection re-

placement policy is executed and one of the existing OUT-connections

is replaced with the new connection.

4The existing TCP connection through which the upload has been performed can be used
for this purpose as well, if we do not want to a create a new TCP connection.

CHAPTER 4. A NEW P2P CONNECTION MANAGEMENT PROTOCOL53

According to the PCMP protocol, a peer sends query messages to OUT-connected

peers through OUT-connections. If a Query Hit is received from an OUT-

connected peer, the respective data structure for the OUT-connection is updated:

the Query Hit counter is incremented by one, and the last Query Hit time is set

to the current time.

Algorithm 2 shows the pseudo-code for managing OUT-connections.

Algorithm 2 Sample pseudo-code for managing OUT-connections. A peer Y will
execute this code after uploading a file to peer X. This pseudo-code is provided
here to clarify the explanation in the text and ignores some issues present in a
real implementation The code must be divided into several sub-functions, some
of which can be executed asynchronously, as, when a Pong message arrives.

Upload of a file F to a peer X has been finished;
OutConn = Search for an Out Connection to Peer X;
if (OutConn is FOUND) then

Update statistics;
else

Send a Ping message to X;
if (a Pong arrives from X) then

newOutConn = Create OUT Connection();
newOutConn.peerID = X;
newOutConn.QueryHits = 0;
newOutConn.LastQHitT ime = -1;
if (there is space in the OUT connection list) then

Add(newOutConn, OUT Connections);
else

victimOutConn = SelectVictim(OUT Connections);
Release(victimOutConn);
Add(newOutConn, OUT Connections);

end if
end if

end if

4.4 Connection Replacement Policy

The connection replacement policy determines how to manage a limited number

of IN and OUT-connections when all available connections of a peer are occupied

and a new connection is required. There can be several different approaches for

CHAPTER 4. A NEW P2P CONNECTION MANAGEMENT PROTOCOL54

designing replacement policies. In this dissertation, we propose two connection

replacement policies. In the first policy, the number of downloads or the number

of hit messages provided from the neighboring peer is employed to decide which

connection to replace. The connection with the least number of downloads or hit

messages provided is selected as a victim. We call the PCMP protocol employing

this policy Contribution-based PCMP (C-PCMP). In the second connection re-

placement policy, the time of the last download or the time of the last Query Hit

provided from the neighboring peer is used to select the connection for replace-

ment. The connection with the oldest time of the last download or hit messages

provided is selected as a victim. We call the PCMP protocol that applies this

policy Time-based PCMP (T-PCMP).

4.5 A Peer’s Actions and PCMP

Search: When a peer requires a file, it submits a Query through its OUT-

connections.

Forward Queries: When a peer receives a Query from one of its IN-connections,

it first searches its local files and replies according to whether the file was found.

If the TTL value of the query is greater than 0, it forwards the Query through

its OUT-connections.

Forward Query Hits: When a peer receives a Query Hit message from one of its

OUT-connections and if the message is not destined to itself, the peer forwards

the message towards the destination by using the IN-connection through which

it has received the respective Query. The peer also updates the OUT-connected

peer data accordingly.

Download: When a peer receives a Query Hit message from one of its OUT-

connections as an answer to its Query, the peer requests the file from the uploading

peer indicated in the Query Hit. A TCP connection is established between the

peer and the uploader, and the download is started. Upon completion of the

download, the peer receives a Ping message from the uploader; an IN-connection

is created at the peer, and a Pong message is sent to the uploader as a reply to

CHAPTER 4. A NEW P2P CONNECTION MANAGEMENT PROTOCOL55

the Ping.

Upload: When a peer receives a Query message through one of its IN-connections,

it first searches its local files. If it can locate a matching file, it replies with a

Query Hit message. Upon receiving the Query Hit, the Query originator requests

the file from the peer. Upon completion of the upload, the peer sends a Ping

message to the downloader to establish an OUT-connection towards that peer.

Upon receiving a corresponding Pong message from the downloader, the OUT-

connection is created and the peer can use it to send Queries.

4.6 PCMP Operation Example

As a simple example, consider the P2P network topology given in Figure 4.5.

Assume each peer can only support up to 4 IN and 4 OUT-connections and the

TTL is set to 2. The dashed circles represent the contributors (C1 and C2). In

the given topology, the Query message of an indicated contributor (C1 or C2)

cannot reach to the other one, since the indicated contributors are separated from

each other by more than two hops. Assume a file F1 and a file F3 are stored on

contributor C1, and a file F2 is stored on contributor C2. If the proposed PCMP

is applied, the following scenario will occur.

• Peer P searches P2P network for file F1 with TTL 2. C1 replies with a

Query Hit message. Then, Peer P downloads the file from the contributor

peer C1. Upon download, Peer P deletes one of its IN-connections and

adds a connection to C1 as a new IN-connection. C1 also removes (tears

down) one of its OUT-connections and adds a connection to peer P as a

new OUT-connection (see Figure 4.6).

• Then, contributor C1 searches for file F2 and the respective Query message

reaches C2 via peer P. C2 replies with a Query Hit message, and C1 down-

loads the file from C2. After download, a new connection is set up from C2

to C1. It is an OUT-connection for C2 and an IN-connection for C1 (see

Figure 4.7).

• Then, C2 searches for file F3, and C1 replies with a Hit message. After the

CHAPTER 4. A NEW P2P CONNECTION MANAGEMENT PROTOCOL56

Figure 4.5: A sample topology layout.

Figure 4.6: After download, Peer P updates its IN-connection by adding C1.

download has been finished, a new connection is established between C1

and C2. This time the connection is established from C1 to C2; hence it is

an OUT-connection for C1 and an IN-connection for C2 (see Figure 4.8).

As seen in the above example, when PCMP is used, two contributing peers dis-

cover each other and get connected directly. Additionally, the free riders become

further away from the contributing peers. If PCMP is not used, the two contrib-

utors could not benefit from each other; only free riders would benefit from this

situation.

Figure 4.7: After download, Peer C1 updates its IN-connection by adding C2.

CHAPTER 4. A NEW P2P CONNECTION MANAGEMENT PROTOCOL57

Figure 4.8: After download, Peer C2 updates its IN-connection by adding C1.

4.7 Summary

In this chapter, we present the details of PCMP by describing the main approach

and highlighting its benefits. The details of two new connection types and a con-

nection management protocol are also given. Briefly, we adjust the P2P network

topology dynamically in reaction to peers’ contributions. The adapted topology

favors the contributing peers in getting service from the P2P network and restricts

free riders’ utilization from the P2P network.

To evaluate PCMP in a P2P network environment, extensive simulation tests have

been conducted. The simulation results of the proposed solution are presented in

Chapter 6.

Chapter 5

GNUSIM: A new P2P Network

Simulator

In this chapter, we introduce a new P2P network simulation tool which we call

GNUSIM. We implemented GNUSIM as an event-driven P2P network and pro-

tocol simulator using CSIM 18 [89] simulation library and C++ programming

language on the WINDOWS OS. GNUSIM has been developed as a general pur-

pose P2P network simulator, while it is used in this thesis specifically to:

• validate the proposed frameworks,

• measure and evaluate their performance,

• observe their effects on a P2P network, and

• compare the proposed frameworks and their variations.

The simulated P2P network model has many levels of detail such as the number

of peers and files, network topology, content distribution, content replication,

message handling, query pattern, query generation rate, free riding, and so on.

Therefore, the model can be easily extended to simulate various types of P2P

networks and protocols.

In the following sections we present the assumptions and simulation parameters

associated with GNUSIM.

58

CHAPTER 5. GNUSIM: A NEW P2P NETWORK SIMULATOR 59

5.1 Assumptions and Parameters

The basic characteristics of the model are set to be similar to those of Gnutella

network by implementing the protocol described in [18]. We present the main

parameters of the simulation environment in Tables 5.1 and 5.2. Below, details

of the important parameters and related assumptions are provided.

5.1.1 Network

Network Topology: The network topology defines the connectivity between

peers. Any network topology configuration can be created by using a topology

generator and then can be fed to GNUSIM. GNUSIM simply reads the topology

from an input file. In performance tests, as a default setting we use a mesh

structure to model the network topology (see Fig. 5.1).

Figure 5.1: A mesh topology for network connections.

Messaging: There are two mailboxes within each peer. One mailbox is used for

P2P network messages, and the other is used for TCP protocol messages, namely

the download request and downloads. In this way, each mailbox simulates a port

in Gnutella and TCP/IP protocol stack running on a peer.

Connection duration: A peer is supposed to stay connected in the network

during the whole simulation lifetime.

Pinging Frequency: To check the validity of the connections with its neighbors,

each peer submits a PING message at every PINGFREQ seconds.

CHAPTER 5. GNUSIM: A NEW P2P NETWORK SIMULATOR 60

Time-To-Live (TTL): In pure P2P networks, messages are broadcast into the

network. The TTL parameter is used to limit the broadcast horizon in the net-

works.

5.1.2 Peers

Peers and Peer Types: We simulate a population of peers, consisting of both

free riders and contributors. Peers are grouped based on the value assigned to

the parameter which specifies the number of peer types and the corresponding

properties that are provided in Table 5.1. We selected the default values for the

peer type parameters in accordance with the observations provided in [3, 39, 70,

82, 92].

Ratio of Free Riders: At the beginning of the simulation, peers are grouped

into different types based on the NUM OF PEER TYPES parameter. The num-

ber of peers in each type is determined according to the POPULATION RATIOS

parameter considering the total number of peers (NUM PEERS). For each peer

type, we can set FREE RIDING TYPE to determine the free riding type of

peers in that group. The values that can be assigned to FREE RIDING TYPEs

are: NONE, NON CONTRIBUTOR, CONSUMER, DROPPER, and MIXED.

MIXED means that the peers in that type are equally and randomly distributed

among all the free riding types defined. Peers’ free riding types will not change

during a single run of a simulation (i.e., during the simulation lifetime).

Download and Upload Bandwidth Capacity: We assume that each peer

has a limited bandwidth capacity to download and upload files. Download ca-

pacity is assumed to be 1. There is only one download operation that can

be executed at a time. However, a peer can upload more than one file at

the same time, and the number of simultaneous uploads is limited by the

NO OF MAXIMUM UPLOADS parameter.

Download Attempts: If a peer reaches to NO OF MAXIMUM UPLOADS,

it can refuse more uploads. If a requesting peer is refused by a resource

peer, it can try another source peer if there is any in the queryHitList.

MAX DL ATTEMPT NUMBER specifies how many times a peer should try to

CHAPTER 5. GNUSIM: A NEW P2P NETWORK SIMULATOR 61

Parameter Definition Default Value

NUM OF PEER Number of peer types in the simulation. 3
TYPES
POPULATION Population ratios of each peer type. {0.10, 0.20,
RATIOS 0.70}
FREE RIDING Free riding types of each peer type. {NONE,
TYPE NONE,

MIXED}
SHARED Ratio of the number of shared files {0.87, 0.12,
FILE of each peer type to total number of 0.1}
RATIOS files in the simulation.
NO OF Maximum number of uploads a peer can {10, 10, 10}
MAXIMUM provide at a given time.
UPLOADS
QUERY The mean value of the exponential {60, 60, 60}
GENERATION distribution that defines the time between
MEAN two consecutive generated queries.
CONSUMER The mean value of the exponential 60
QUERY distribution that defines the time between
GENERATION two consecutive queries generated by
MEAN Consumer peers.
REPLICATION If peers’ REPLICATION property is set {true, true, false}

“true” then the downloaded files are
replicated and shared.

Table 5.1: Peer Type Parameters

CHAPTER 5. GNUSIM: A NEW P2P NETWORK SIMULATOR 62

download the same file from different source peers if any peer refuses to upload

the requested file.

5.1.3 Content

Content distribution: We distribute the content to peers uniformly

and randomly. First, peers are grouped into different types based on

the NUM OF PEER TYPES parameter. Next, according to the given

SHARED FILE RATIOS parameter, the number of files to be distributed for

each peer type is calculated. Then, for each type of peers, the determined num-

ber of files are distributed uniformly and randomly. However, if a free rider peer

is specified as a dropper or a non-contributor, no files are distributed to it. The

files saved from this kind of peers are redistributed to consumer peers of the same

peer type.

Content replication during simulation: The settings given for the content

distribution above are valid at the beginning of the each run of the simulation.

During the simulation the content distribution can be changed according to peers’

property to replicate the downloaded files. If peers’ REPLICATION property is

set “true” then the downloaded files are replicated and shared after a successful

download. Therefore, the content distribution in the system is dynamic during

the simulation time.

Size of files: We assume that each file has the same size and the download

time for all the files are the same which is specified by the DOWNLOAD TIME

parameter.

Uniqueness of the content: The number of distinct files (DISTINCT FILES)

and replication number of these files (COPY) determine the total number of files

(TOTAL FILES) to be distributed. For example if the number of distinct files

(DISTINCT FILES) is 100 and the COPY parameter is 2, it means that the total

number of files (TOTAL FILES) in the simulation would be 200.

CHAPTER 5. GNUSIM: A NEW P2P NETWORK SIMULATOR 63

Parameter Definition Default

MESSAGE Time to process any message. 0.1
PROCESSING
TIME
MESSAGE The time duration of a peer to listen 0.1
WAITING to its mailbox for any incoming message.
TIMEOUT
MESSAGE The time for keeping information about 5.0
STORING a message: when timeout occurs all information
TIMEOUT about that message is deleted from routing table.
HIT The time for a peer to wait for the QUERY HIT 5.0
WAIT messages arriving at itself before beginning
TIME to download process.
PINGFREQ The time between two consecutive Ping messages. 20.0
SATISFIED Minimum number of QUERY HITS arrived to 3
QUERY requesting peer to begin download process.
HIT
TIME TO The maximum number of hops that a message 3
LIVE can be transferred over.
MAX DL The maximum number of attempts to download 3
ATTEMPT a file from arrived QUERY HITS.
NUMBER

Table 5.2: P2P Protocol Parameters

5.1.4 Request

Request-File Matching: We assume that the system replies the queries with

exact matches only.

Request Pattern: Following a uniform distribution, peers randomly select a file

to be requested from the P2P network. After selecting a file id to be requested,

it is checked if the peer itself has the file. If the peer does not have the file, then

it generates a Query message and submits it to all its neighbors.

Request Generation Rate: The inter arrival time distribution of requests

follows exponential distribution with a mean value specified by the parameter

QUERY GENERATION MEAN.

CHAPTER 5. GNUSIM: A NEW P2P NETWORK SIMULATOR 64

5.2 Summary

In this chapter, we present the details of our P2P network simulator, namely

GNUSIM. We have developed GNUSIM as a general purpose P2P network simu-

lator, which is used in this thesis specifically to validate and compare the proposed

solutions. Using GNUSIM we have conducted extensive simulation tests to evalu-

ate our solutions in a P2P network environment. In the next chapter, we provide

detailed performance results for our frameworks.

Chapter 6

Experimental Results

In this chapter, we present and discuss the results of the simulation experiments

for our two different frameworks, namely the Detect and Punish Method (DPM)

and the P2P Connection Management Protocol (PCMP). At the end, we provide

a discussion on the comparison of these two frameworks as well.

6.1 Simulation Results for the Detect and Pun-

ish Method (DPM)

Below we first present the assumptions and parameter values for the simulation

experiments. Then, we explain the performance metrics observed in evaluating

DPM. We then provide and discuss the results obtained in the simulation exper-

iments in terms of the performance metrics. We also study some possible attacks

to the proposed framework and their effects on the system.

6.1.1 Assumptions

Our model simulates a P2P network of 900 peer nodes. The peers are inter-

connected to form a mesh topology at the beginning of a simulation run. We

assume that all peers stay connected in the same way until the end of a simulation

65

CHAPTER 6. EXPERIMENTAL RESULTS 66

Property Type A Type B Type C

Free riding type of the peers in the peer type. NONE NONE MIXED
Population ratios of each peer type. 10% 20% 70%
Ratio of shared files of each peer type to total files. 87% 12% 1%
Peers replicate the files they downloaded. True True False

Table 6.1: Properties of peer types.

run.

We assume that there are three types of peers in the simulated network: type A,

type B, and type C. Type A and type B peers are contributors. Type C peers

are free riders which can further be classified as non-contributors, droppers, or

consumers. A type C peer is randomly and uniformly assigned to one of these 3

types of free riding. The properties of peer types are summarized in Table 6.1.

The properties of each peer type include the population ratio, shared file ratio,

maximum number of simultaneous uploads possible, query generation mean, and

whether peers replicate the downloaded files or not. The default values of each

of these properties are set similar to the values reported in [3, 46, 48, 92, 101].

At the beginning of each simulation run, peers are created according to the setup

explained above and assigned to one of three main types (A,B, or C). During

simulation, peers interact with other peers according to their assigned types. For

example, a dropper drops all the messages, a non-contributor does not share any

file, etc.

There are 9000 distinct files, with four copies of each, distributed to the peer

nodes at the beginning of each simulation run. These 36000 files are uniformly

distributed to peer groups according to the type of the groups and the file sharing

ratios presented in Table 6.1. We do not distribute any files to peers that are

free riders of the non-contributor or dropper type. We assume that each file is

the same size and can be downloaded in 60 units of simulation time. During

a simulation run, peers randomly select files to search and download, and they

submit search queries for them. The inter-arrival time between search requests

generated by a peer follows an exponential distribution with a mean of 60 time

units. We assume that the query generation rate of consumer peers is twice that

of other free-riding peers.

CHAPTER 6. EXPERIMENTAL RESULTS 67

Each peer’s upload capacity (the number of simultaneous uploads the peer can

perform) is limited to 10. If a peer reaches upload capacity, a new upload request

is rejected by the peer. The requesting peer can then try to download the file from

another peer, selected from a list of peers obtained from the QueryHit message.

We assume that the requesting peer repeats the same request a maximum of three

times. After that, the peer gives up the downloading attempt and records this as

an unsuccessful download. Then, it can initiate a request for another file.

Each simulation experiment is run for 2000 units of simulated time, repeated 10

times, and plotted on a 95% confidence interval.

6.1.2 Performance Metrics

In order to measure the performance improvement of DPM, we first determined

a number of performance metrics. Below, we describe our metrics in detail.

• Number of downloaded files: This is an important metric indicating the

number of downloads that can be performed in a P2P system during a

fixed time interval. If peers can download more files from the P2P network,

then level of satisfaction with the network will be higher.

• Number of unsuccessful downloads: The availability of content and services

in a P2P network is an important issue. A network that is providing good

service should not reject many of the contributing peers’ requests. Since the

network resources are limited, the upload capacity of peers contributing to

the network will also be limited. If this limit is exceeded, the peers will start

refusing download requests. If a peer can not be successful in downloading

a file from up to three different source peers, it gives up downloading and

records this downloading attempt as an Unsuccessful Download.

• Number of uploads by contributors: This metric indicates the load imposed

on a peer. Contributors can become overloaded due to the excessive number

of search and download operations they are involved in. Adapting free riding

mechanisms in a P2P system, decreases the load on contributor peers by

reducing requests from free riders.

CHAPTER 6. EXPERIMENTAL RESULTS 68

• Download cost: We define the download cost for a peer as the ratio be-

tween the number of uploads and the number of downloads (i.e., #up-

loads/#downloads) performed by the peer. This ratio indicates the load

imposed on a peer compared to the service the peer gets from the network.

The smaller the ratio is, the better it is from the perspective of the peer.

• Number of P2P network protocol messages: This metric shows the mes-

saging overhead in the P2P network and the underlying infrastructure.

Messaging overhead affects the scalability of a system. In unstructured

P2P networks particularly, the messaging overhead may be high due to the

flooding approach used in querying. High numbers of protocol messages

sent over the network also increase the level of congestion in the network.

Congestion affects the performance of several network services in various

ways, such as causing long delays for remote login applications, increasing

query resolution time, and decreasing the speed of downloads [7].

• Fairness: Fairness metric shows that the level of service that can be used

by a peer is proportional to the level of contribution that is provided by

that peer. In other words, a peer contributing more than what is needed

to overcome the thresholds is fairly compensated with more services. Thus,

the solution encourages peers to contribute more and rewards peers based

on the extent of their contributions.

6.1.3 Simulation Results and Analysis

In simulation experiments, we first tested the effectiveness of our detection mech-

anism in DPM. Afterwards, we conducted experiments to observe changes in the

performance of a P2P network when counter-action schemes are applied.

6.1.3.1 Evaluation of Detection Mechanism

The detection mechanism is a crucial part of the framework. Therefore, we

conducted extensive simulation experiments to measure the performance of our

CHAPTER 6. EXPERIMENTAL RESULTS 69

framework in detecting free riders and free riding types. We used the following

performance metrics to evaluate our detection mechanism:

• Success ratio: Ratio of peers correctly detected as free riders to peers des-

ignated as free riders in the beginning of each simulation run.

• Sensitivity ratio: Ratio of free riders whose free-riding type is correctly

detected to the number of peers who have been detected correctly as free

riders.

• False alarm ratio: Ratio of peers incorrectly detected as free riders to the

number of peers detected as free riders.

A good detection mechanism should provide high values for success and sensitivity

ratios and low value for false alarm ratio. The success ratio is an important metric

for both single and mixed counter-action schemes; sensitivity ratio on the other

hand is an important metric for mixed counter-action schemes, since in those

schemes the type of free riding determines the counter-action to be applied. The

false alarm ratio is a metric that indicates how many peers are incorrectly detected

as free riders. If the false alarm ratio is high, it means that the framework applies

counter-actions to contributors; thus some contributors are negatively affected by

the incorporation of the framework into the P2P network.

An important restriction on the success of the detection mechanism is the behav-

ior and ratio of droppers. This is because free riders of the dropper type usually

can not use our detection mechanism, and hence can not apply any counter-action

to their neighbors. As they do not route other peers’ queries to their neighbors,

they may not satisfy the detection mechanism’s “routed query threshold (τQT)”

condition only by the count of their own queries. Therefore, in the overall de-

tection results, droppers may play a negative role and limit the detection mech-

anism’s success1. When the τQT threshold is decreased, however, droppers have

more chance of satisfying the threshold value by recording only their queries, and

they may then detect free riders. Thus, lowering the value of τQT increases the

success ratio in the presence of droppers, as shown in Table 6.3.

1For example, in our simulations we observed that the peers about which droppers can not
make any decision constitute around 20% of all the peers. This implies that our framework can
not reach a success ratio better than 80% with the current settings of the simulation parameters.

CHAPTER 6. EXPERIMENTAL RESULTS 70

Figure 6.1: Success Ratio of detection mechanism in detecting free riders and
identifying their free riding types.

Threshold Description Default Range

τQT Threshold value for the number of routed queries 50 25-100
toward a controlled peer to begin the detection

τnon contributor Threshold value for formula QHP

QTP
0.001 0.1-0.0001

to decide if peer P is a non contributor
τconsumer Threshold value for formula QHP

QHSP
0.1 0.05-0.5

to decide if peer P is a consumer
τdropper Threshold value for formula QRP +QHRP

QTP
0.1 0.05-0.5

to decide if peer P is a dropper

Table 6.2: Threshold values for detection mechanism.

Figure 6.1 shows the Success Ratio of the detection mechanism for default values

of simulation parameters. The overall success ratio is about 76%. This means

that our detection mechanism is able to detect 76% of peers designated as free

riders at the start of a simulation run. The false alarm ratio is about 9%. That is,

9% of the detected free riders were not really free riders. Their interactions with

their neighbors during the simulations led the detection mechanism to identify

them as free riders2.

In Section 3.2, we use some threshold values for identifying each free riding type.

Table 6.2 shows the default values of the thresholds. Default values are based on

the P2P network traffic observations reported in [3, 39, 70, 84]. As part of our

simulations we try to observe the effect of different threshold values.

2This level of false alarm ratio causes 9% of the peers detected as free riders to face counter-
actions; false alarms are a side effect of the detection mechanism. However, the performance
metrics show that the performance is improved for contributors despite the false alarms (see
Section 6.1.3.2).

CHAPTER 6. EXPERIMENTAL RESULTS 71

τQT Success Sensitivity False Alarm

25 95.39% 66.98% 13.82%
50 75.73% 66.84% 9.73%
100 75.38% 66.82% 9.70%

Table 6.3: Effect of τQT threshold values on the detection mechanism.

τnon contributor Success Sensitivity False Alarm

0.1 76.54% 66.12% 42.87%
0.01 76.54% 66.12% 29.45%
0.001 75.73% 66.84% 9.73%
0.0001 73.03% 69.27% 5.24%

Table 6.4: Effect of τnon contributor threshold values on the detection mechanism.

In Table 6.3, we observe that when the τQT threshold is set to lower values,

the detection mechanism begins to detect earlier and the success ratio increases.

However, the false alarm ratio also becomes worse with low values of τQT because

the system tries to decide about a peer with less information available. There is

therefore a trade-off between success and false alarm ratios and this trade-off is

affected by the τQT threshold. Sensitivity is not greatly affected by the value of

the τQT threshold.

Another threshold used in the detection mechanism is τnon contributor, which is

used to decide if a peer is a non-contributor. Table 6.4 shows the effect of this

threshold. Interestingly, for some large values such as 0.1 and 0.01 the success

ratio does not change much, but the false alarm ratio changes and becomes too

high. This result suggests that high values not be used for this threshold. The

success ratio does not change much for different high values of the threshold,

because even the precision of the ratio is different the number of detected peers

with 0.01 is almost the same as with the value 0.1. That is, most of the non-

contributor peers have a QHP

QTP
ratio less than 0.01. Therefore, the comparison

leads to a similar success ratio. In Table 6.4, we again observe that the success

ratio is (negatively) correlated with the false alarm ratio.

CHAPTER 6. EXPERIMENTAL RESULTS 72

Figure 6.2: Decrease in free riding peers’ downloads when different counter-
actions are applied.

6.1.3.2 Evaluation of Counter-Actions

In Section 3.3 we proposed two types of counter-action schemes: single and mixed.

We implemented three different single counter-action schemes: DROP, TTL-4,

and TTL-2. We also implemented a mixed counter-action. This section evaluates

the effectiveness of these schemes. The metrics we used in our evaluation are

described in Section 6.1.2.

• Downloads of free riders: As Figure 6.2 shows, the number of downloads by

free riders drops when mechanisms against free riding are applied. Counter-

actions against free riders decrease the reach of the Query messages sent by

peers detected as free riders; this reduces the chance of getting a hit to one

of these queries. In this way, the average number of downloads by free riders

is reduced. For example, the DROP counter-action causes a 89% reduction

in the number of downloads by free riders. The least successful counter-

action is the TTL-2 single counter-action, which achieves a 12% reduction.

But even the least successful counter-action scheme leads to fewer free rider

downloads than not using any counter-action at all.

The success of the DROP counter-action is expected, since when all the

queries submitted by free riders are dropped, those peers can not get

QueryHit messages back, and therefore they can not download files. They

can only download until they are detected. The other schemes are able

to reduce the search horizon of the queries submitted by free riders, but

the free riders still have the chance to get QueryHit messages and perform

CHAPTER 6. EXPERIMENTAL RESULTS 73

Figure 6.3: Increase in contributors’ downloads when different counter-actions
are applied.

downloads. The mixed counter-action scheme yields the second-best result.

We believe that this approach has important consequences compared to sin-

gle action schemes. Considering the potential false alarms that can be given

by the detection mechanism, applying a different counter-action depending

on the severity of free riding helps us to better deal with false alarms as

discussed below.

• Downloads of contributors: It is desirable to increase the number of down-

loads for contributors. Since peers’ upload capacity is limited, the download

requests of contributors can sometimes be rejected. The rate of rejection is

higher when there are many free riders in the system. Hence eliminating the

effects of free riders on the P2P network will help to increase the number

of downloads that contributors can make. This is indeed shown in Fig-

ure 6.3; applying our schemes achieves an increase in downloads performed

by contributors as much as 10%.

Figure 6.3 shows an important point; improvement in downloads is greater

with a mixed counter-action compared to that with any single counter-

action. While the mixed counter-action scheme produces about a 10% im-

provement, the two single counter-actions, TTL-2 and TTL-4, can produce

about a 7% improvement. The DROP counter-action scheme actually re-

duces the number of downloads by contributors. We think this is due to

false alarms in detection mechanisms. When we apply strict counter-actions

such as DROP, the number of misdetected peers that are negatively affected

CHAPTER 6. EXPERIMENTAL RESULTS 74

Figure 6.4: Decrease in P2P messages of free riding peers when different counter-
actions are applied.

Figure 6.5: Decrease in P2P messages of all peers when different counter-actions
are applied.

is significant. On the other hand, a mixed scheme handles false alarms bet-

ter by applying different counter-actions to different types of free riders, and

therefore can provide different levels of punishment, from light to severe, to

peers suspected as free riders.

• Amount of P2P protocol messages: The number of P2P protocol messages

transmitted in the network is an important factor affecting the scalability

of the P2P network. Counter-actions against free riders result in up to 78%

reduction in the number of transmitted P2P protocol messages (Query and

QueryHit) originating from and destined to free riders (Figure 6.4).

When we compare the reductions in transmitted P2P control messages for

different counter-actions, we see that the DROP single counter-action again

gives the best results (78%). The mixed counter-action scheme, on the other

hand, reduces the control traffic due to free riders by about 68%.

CHAPTER 6. EXPERIMENTAL RESULTS 75

If we evaluate the counter-actions with respect to their effect on reduc-

ing the total P2P control traffic in the network (i.e., the control traffic

due to the free riders plus the contributors), we see that the DROP single

counter-action scheme leads to a reduction of about 68%, whereas the mixed

counter-action scheme leads to a reduction of about 58% (Figure 6.5). The

least successful counter-action is TTL-2 which leads to a reduction of 31%.

All these results show that applying the proposed framework helps a P2P

network handle more peers with less control-messaging overhead and the

system becomes more scalable with respect to the peer population.

The reduction observed in the number of protocol messages is the result of

reducing or stopping the propagation of Query messages from free riders.

As we restrict the propagation of Query messages by free riders, we also

reduce QueryHit messages destined to free riders. The reduction of control

traffic in a P2P network also means a reduction of traffic overhead imposed

on the underlying infrastructure. This reduction translates to a better uti-

lization of link bandwidths, and to a decreased processing load on the nodes

constituting the underlying infrastructure.

• Uploads of contributors: A metric that can indicate the load on a peer is

the number of uploads performed by the peer in a given time period. With

our framework we want to achieve a reduction of the load on contributors.

We expect that if we reduce the downloads of free riders, we can also reduce

uploads, since a large portion of these uploads are done to free riders. In

simulation experiments, we observed a significant reduction in the number

of uploads done by contributors when a counter-action scheme is applied.

As Figure 6.6 shows, the scheme that gives the best result is again the

DROP single counter-action scheme, causing a reduction of about 68%.

The mixed counter-action scheme causes a reduction of about 35%.

• Download Cost: The load on a contributor can also be defined in a different

way as a normalized load, i.e., as the ratio of uploads to downloads. The

results of our experiments show that our framework also causes a reduction

in the download cost of contributors. As it can be derived from Figure 6.7,

the framework achieves a 65% reduction in the contributors’ download cost

CHAPTER 6. EXPERIMENTAL RESULTS 76

Figure 6.6: Decrease in contributors’ uploads when counter-actions are applied.

Figure 6.7: Decrease in contributors’ download cost when counter-actions are
applied.

when the DROP single counter-action is applied. The framework achieves

a 41% reduction when a mixed counter-action scheme is applied.

• Unsuccessful Downloads: We also looked at the improvement achieved in

the number of unsuccessful downloads when the proposed counter-action

schemes are used. As Figure 6.8 shows, the DROP single counter-action

achieves the best improvement; the number of unsuccessful downloads is

reduced by 97%. The mixed counter-action scheme, on the other hand,

reduces the number by about 70%. The decrease in the number of unsuc-

cessful downloads means that contributors can better access the network

resources when the proposed mechanisms are used. Free riders’ requests

and downloads may prevent non-free rider peers from accessing files and

other resources. When the traffic due to free riders is reduced, the contrib-

utors start reaching to the resources more easily and get better satisfied

with P2P network services.

CHAPTER 6. EXPERIMENTAL RESULTS 77

Figure 6.8: Decrease in contributors’ unsuccessful downloads when counter-
actions are applied.

Figure 6.9: Increasing utility values for increasing number of files shared by a
probe node.

• Fairness: To observe the fairness of DPM, we conducted several simulation

experiments. In these experiments, we randomly chose a probe peer and

assigned to it different number of files to share. As seen in Figure 6.9, we

assigned to the probe peer none (0), 25, 50, 100, and 200 files, and observed

the Download/Query ratio (number of downloads / number of submitted

queries) as an indication of peer’s utility from the system.

As the figure shows, although the probe peer submits nearly the same num-

ber of queries, it can download different number of files depending on how

much files it shares. Because, when it shares less files while requesting the

same amount of service, it will face counter-actions, and this will limit the

number of downloads it will be able to get. On the other hand, when it

shares more files, monitoring peers will not apply any counter-action, thus

it will be able to reach more peers and download more files. Therefore, if

CHAPTER 6. EXPERIMENTAL RESULTS 78

two peers have similar query patterns but provide different levels of service

to the system, they will get different levels of utility from the system as well.

Thus, DPM is fair. In other words, a peer contributing more than what

is needed to overcome the threshold is fairly compensated. Hence, DPM

does not only encourage peers to provide enough services to overcome the

threshold barrier, but also encourages them to contribute more to get better

service.

6.1.4 Effects of Different Parameter Values

We also executed sensitivity experiments to observe how DPM performs for dif-

ferent values of important parameters: the number of peers and the level of free

riding. We also observed the performance results for different values of TTL

modifying counter-action. We found that in spite of different parameter settings,

DPM provides consistent performance gains.

• The number of peers in the simulated network: Considering the size of

the Gnutella network, the number of peers simulated in our work can be

considered to be very small. However, since our detection and counter-

action mechanisms require only local interactions between neighbors, the

number of peers in the network should not affect the performance of the

proposed approach. This is indeed what we have observed in the results

of our experiments that are performed for various network sizes: 400, 900,

1600, and 2500 peers. Figure 6.10 displays the performance results in terms

of the number of downloads by free riders. As shown in the figure, the

decrease in the number of downloads of free riders is around %50 for all

four different network sizes. Therefore, we conclude that increasing the

number of peers in the network does not affect the performance of our

framework, and our framework is scalable.

• The Size of Free Rider Population: We also observed the effect of the size of

free rider population in terms of the three metrics mentioned above. As seen

in Table 6.5, regardless of the ratio of free riders, our framework achieves

a reduction in the number of downloads of free riders. For a smaller ratio

CHAPTER 6. EXPERIMENTAL RESULTS 79

Figure 6.10: Decrease in free riders’ downloads when different numbers of peers
are simulated.

FR # Downloads # Downloads Change(%)
Population (%) with DPM without DPM

60% 554 1306 -58%
70% 562 1142 -51%
80% 631 1219 -48%
90% 544 901 -40%

Table 6.5: Effect of free rider population on the number of free riders’ downloads.

of free riders in the overall population of peers, the reduction in downloads

of free riders is more pronounced (50%). For a higher ratio of free riders,

however, the reduction is still good and is about 40%.

For the second metric, the number of downloads of contributors, the results

show that as the size of free rider population increases, our framework

provides more downloads for contributors. As seen in Table 6.6, the increase

in the number of downloads by contributors reaches up to 36%.

Table 6.7 shows the impact of free rider population ratio on the messaging

FR # Downloads # Downloads Change(%)
Population (%) with DPM without DPM

60% 711 701 1%
70% 438 391 12%
80% 314 266 18%
90% 105 77 36%

Table 6.6: Effect of free rider population on the number of contributors’ down-
loads.

CHAPTER 6. EXPERIMENTAL RESULTS 80

FR # P2P messages # P2P messages Change(%)
Population (%) with DPM without DPM

60% 973189 1994822 -51%
70% 826705 1932032 -57%
80% 768145 1706333 -55%
90% 711429 1736857 -59%

Table 6.7: Effect of free rider population on the number of P2P messages of all
peers.

Figure 6.11: Downloads of Free Riders when different counter actions are em-
ployed.

overhead in the network. As the ratio of free riders increases, the gain that

we achieve with our framework also increases. When, for example, the ratio

of free riders is as high as 90%, the reduction in P2P control traffic seen in

the network as a result of the application of our framework is 59%.

• Modifying TTL with different values: We would like to provide some of the

results we obtained when different values were used to decrease TTL other

than the default value 1. In the figures 6.11 and 6.12, it can be observed

the performance effect of TTL-2, TTL-3, TTL-4, TTL-5, and TTL-6 along

with Mixed and Drop actions. As seen in Figure 6.11, TTL-2 has the least

effect while TTL-6 is most effective in reducing the download of free riders.

We also provide the results in terms of the reduction in the number of P2P

messages of free riders in Figure 6.12.

The level of the effect of modifying TTL counter action is increasing with

the decrement value applied. That is, if we use a large decrement value,

e.g. 5 or 6, the positive effect of the counter action increases. As expected,

CHAPTER 6. EXPERIMENTAL RESULTS 81

Figure 6.12: The Number of P2P messages of Free Riders when different counter
actions are employed.

we observed that TTL-2 had the least improvement on the performance

and, TTL-6 and TTL-5 yield similar results to that of the DROP counter

action. However, TTL-4 produced a mid point between them. Therefore,

to give some insight of the effect of modifying TTL action on the system

performance, we select TTL-2 and TTL-4 as representative values.

6.1.5 Possible Attacks

In this section, we describe a list of possible counter attacks against DPM. We

also discuss how our framework would react and how we can defend against those

kinds of attacks.

6.1.5.1 Fake QueryHit Messages

A free rider can cheat its neighbors (monitoring peers) by replying to some queries

with QueryHit messages fraudulently as if it has the requested file. When the

requesting peer asks for the file, it may just refuse uploading it. In this way

it may pretend as it is serving well, since controlled peers may not be aware

of unsuccessful download and cheating. In the log tables of its neighbors, the

malicious peer may seem to be a non-free rider because of its QueryHit replies.

Given the descriptors in Gnutella protocol [18], it may not be possible for a

controlled peer to observe and perceive this kind of fake messages. Because,

download occurs between two peers outside the P2P network and there is no

CHAPTER 6. EXPERIMENTAL RESULTS 82

Descriptor Description Content

Notify Used to report a suspected peer that Query Descriptor Id;
refused to upload the file it provided Suspected peer IP; File Index
in QueryHit descriptor in respond to
a given Query descriptor.

Table 6.8: New Protocol Descriptor

feedback mechanism for downloads in unstructured P2P networks. To handle

this kind of fake QueryHit messages, we propose to use a new descriptor: Notify

(see Table 6.8). This descriptor is used to report about a malicious peer to its

neighbor. When a querying peer is refused by a responding malicious peer during

a download attempt, the querying peer may send a Notify descriptor through

the P2P network to reach the monitoring neighbor of the malicious peer. To

avoid an increase in the network traffic, the querying peer does not broadcast the

descriptor message. Instead, it forwards the descriptor only to the neighbor which

has delivered the QueryHit message, containing the IP address of the denying

peer. Any intermediate peer on the way to the denying peer forwards the Notify

message to only one of its neighbors based on the message ID (GUID) of the

Query message stored in its query routing table3. The monitoring peer on the

path to the denying peer is the neighbor of the denying peer. After processing the

Notify message, the last peer logs this message, and takes the necessary action

against the malicious peer.

There could be some side effects of the proposed Notify descriptor. A malicious

peer can initiate an application-layer Denial of Service (DoS) attack using the

Notify messages. However, almost every message type in P2P protocol (Query,

QueryHit, Push, Ping, and Pong) can be exploited in order to launch denial of

service attacks [21, 23, 24, 63]. Some proposals exist in the literature aiming

to counter the application-layer DoS attacks [23, 76, 86]. We think that we can

also use some schemes to deal with DoS attacks using the Notify message. One

scheme can be based on the comparison of the number of Notify messages routed

3Since, as a requirement of Gnutella P2P Protocol, the Query messages are stored in the
routing table of each peer for some time to route back the possible QueryHit messages, we do
not need to store extra state information that can be used to route the Notify message on
intermediate peers.

CHAPTER 6. EXPERIMENTAL RESULTS 83

by each controlled peer. If a monitoring peer detects a big difference among the

number of Notify messages routed by its controlled peers, it can begin to filter

(delete/drop) Notify messages coming from that controlled peers (similar to what

is proposed in [23]). Since the danger of DoS attack exists for all P2P protocol

messages, we think that the precautions taken for other P2P messages can be

applied for Notify message as well. Prevention of DoS attacks is out of the scope

of our current work, however, it can be interesting to investigate the applicability

and effectiveness of the two simple schemes described above as a future work.

6.1.5.2 Fake Files

Free riders could also share dummy files with popular names in order to cheat

querying peers. These files can be very small in size to reduce upload overhead.

In that way, free rider peers can conceal themselves. This situation however, can

also be prevented by using the Notify descriptor proposed above.

6.1.5.3 Hiding Query Ownership

In our free riding detection mechanism, the monitoring peers exploit the TTL

field value of the incoming Query messages to decide if the controlled peer is the

owner of the message or not. If the TTL value of the Query message is equal to

the max TTL value, then the Query message is assumed to be originated at the

neighbor.

If a free rider wants to prevent monitoring peers applying the counter-actions

against its queries, it may try to hide its ownership of the queries by setting the

TTL field to a value different than the standard maximum TTL value. Then the

originator of the Query will not be identified correctly by a monitoring peer. If

the free rider sets TTL to a value greater than the allowed maximum value, this

can easily be detected by the monitoring peer. If the free rider sets TTL to a

value less than the allowed maximum, then the free rider harms itself by reducing

the search horizon of the Query. In this case we think that there is no need to

take an extra action, since we expect that a free rider will not decrease its search

CHAPTER 6. EXPERIMENTAL RESULTS 84

Metric Standard Malicious Change
TTL TTL (%)

Downloads of FRs 1198 840 -29.90%
Downloads of non-FRs 920 937 1.85%
P2P Messages of FRs 1086650 842450 -22.47%
P2P Messages of all peers 1973761 1675965 -15.09%
Uploads of non-FRs 2094 1757 -16.09%
Unsuccessful Downloads of non-FRs 147 62 -56.34%

Table 6.9: Results of free rider (FR) malicious TTL attack (mixed counter-action
applied).

horizon voluntarily4.

We observed the effects of this kind of malicious action in our simulations, and

Table 6.9 provides the results5. During the experiments, we assumed that all

free riders act maliciously with regard to the initial TTL value setting in Query

messages. This is the worst case for our framework. We argue that although

free riders may prevent the monitoring peers from applying counter-actions by

using malicious TTL values, their level of benefits from the system and their

negative effects on the system will also decrease considerably if they set the TTL

value maliciously. When they cheat on TTL, they actually reduce the reach of

their own queries, and hence the quality of the results they get. As Table 6.9

shows, when a malicious TTL value is used, the amount of downloads of free

riders decreases. The number of P2P messages observed in the network due to

free riders also decreases. Hence, acting maliciously on the TTL value does not

help to the free riders. Therefore, we do not see an urgent need to develop a

solution against this kind of TTL attack.

4This is because using an initial TTL value even one less than the allowed maximum decreases
the search horizon dramatically. For example, if a free rider submits a Query message with an
initial TTL value of 6 in a network where the maximum allowed value is 7, then the free rider
loses about 67% of its reach (search horizon) compared to submitting the Query with a TTL
value of 7.

5We have used the mixed counter scheme while performing simulation experiments for eval-
uating the effects of attacks to the framework.

CHAPTER 6. EXPERIMENTAL RESULTS 85

Metric No Peers Only Contributors Change
apply DPM apply DPM (%)

Downloads of FRs 2430 2130 -12.30%
Downloads of non-FRs 840 853 1.5%
P2P Messages of FRs 3449416 2672604 -22.51%
P2P Messages of all peers 4679878 3791657 -19%
Uploads of non-FRs 3216 2939 -8.60%
Unsuccessful Downloads 477 413 -13.40%
of non-FRs

Table 6.10: Results of free riders (FR) insufficient cooperation attack (mixed
counter-action applied).

6.1.5.4 Insufficient Cooperation Against Free Riding

Some peers may be reluctant to use the proposed mechanisms against free riding

or malicious peers may collude with their neighbors to hide each other’s “free-

riding status”. Thus, free riders may attack the system by disabling the proposed

framework. As a result, we may observe low level of cooperation against free

riding due to the high population of free riders. We have simulated such an

environment by applying the worst-case scenario (all free riders collude) and

observed the results. We have compared the case when our framework is applied

by only contributors with the case when our framework is not applied at all. In

Table 6.10, we provide the results for both cases.

As Table 6.10 shows, even though only 30% of peers apply the mechanisms (they

are contributors), the number of downloads of free riders is decreased, the mes-

saging overhead is reduced, and the load on contributors is decreased compared

to the case when our framework is not applied. This implies that our mechanisms

are quite robust against the type of attack where some peers disable the proposed

mechanisms by either collusion or modifying their client software.

6.1.5.5 Constantly Changing Neighbors

A free riding peer may attack the framework by constantly changing its neighbors,

and thus it may keep utilizing the services without ever being identified as a free

rider.

CHAPTER 6. EXPERIMENTAL RESULTS 86

As discussed in Section 3.1, the P2P network traffic observations [84, 92, 39]

show that peers tend to stay connected quite long periods of time. One of the

reasons for that is the practical difficulty of disconnecting and re-connecting again.

Another reason is that a peer does not get query hit messages immediately after

it has submitted a query. A peer should not change its neighbors for the time

period between submission of a query and the arrival of the respective query hits

(name it search-QueryHit cycle duration). If the peer breaks the existing links

too fast, it will not get a reply. Therefore, the peer should stay connected for

at least a certain time interval which should be longer than the search-QueryHit

cycle duration.

Hence, if our scheme can detect a free rider and apply a counter-action against

it in a time interval that is less than the search-QueryHit cycle duration, then

the attack will not work and it will not make much sense for a free rider to try

this. Therefore it is important to know how long it takes to get query hits back

and how long it takes to detect the free riders. These concerns depend on several

factors. The success ratio (the ratio of free riders that are detected correctly) can

give us a clue about the speed of our detection mechanism. Figure 6.13 plots the

success ratio versus simulation time. At the beginning of a simulation run, the

success ratio will be zero since there is no free rider detected yet. Towards the

end of the simulation run, however, the success ratio will have a value that can

be close to 1 in ideal case.

In Figure 6.13, we observe that, with the default settings of simulation parame-

ters, at time 90, 40% of free riders are detected successfully. At time 150, 60%

of free riders are detected successfully6. From the figure we can see that free

riders start becoming detected after 50 time units. Therefore, if a free rider peer

would like to avoid detection, it should change its neighbors every 50 time units,

with the default parameter settings. If it changes its neighbors at a rate slower

than this, let’s say every 100 time units, the chance to be detected and to face

counter-actions becomes increased. The probability of detection becomes around

45% for 100 time units.

6If the P2P network traffic becomes higher (i.e., more queries are forwarded), the time
required to exceed the τQT threshold will be sooner and free riders will be detected faster.

CHAPTER 6. EXPERIMENTAL RESULTS 87

Figure 6.13: The Success of the detection mechanism in the first 200 simulation
time.

To investigate the effectiveness of the potential attack, we modified our simulation

code to simulate this attack, and conducted several sets of new experiments.

In these experiments, we first randomly selected a probe peer to act as a free

rider applying the attack. During a simulation run, the probe peer changes its

neighbors periodically using a fixed time period between changes. We measured

the utility the probe peer gets from the P2P network at the end of a simulation

run. The utility is expressed as the ratio of the number of downloads the probe

peer performs to the number of queries it submits. We obtained results for two

different time intervals between changes of neighbors: 50 and 100 time units.

The results are displayed in Figure 6.14. In the figure, we also included two other

utility values. One is the utility value that a contributor peer can get and the

other is the utility value that a free rider who is not trying the attack (i.e., not

changing connections) can get.

As can be seen in Figure 6.14, the probe peer succeeded to increase its utility by

changing its neighbors constantly. We can observe that the length of the time

period between changes has an effect on the service the probe peer receives, as

we have discussed above. If this period is longer, the probability of detection gets

increased and the probe peer will more likely face counter-actions; and this will

reduce the service it will get.

However, the first experiment we describe above can not reflect a real-life scenario

where lots of peers would like to apply the attack at the same time. Therefore

we also conducted experiments for the scenario where all free riders in the net-

work apply the attack expecting to increase the utility they get. The results

CHAPTER 6. EXPERIMENTAL RESULTS 88

Figure 6.14: The results for the Probe peer, when the attack is only applied by
the probe free riding peer.

Figure 6.15: The results for the Probe peer, when the attack is applied by all the
free riding peers.

are displayed in Figure 6.15. As seen in the figure, the probe node acting as a

free rider and applying the attack is negatively affected in this case when all free

riders in the network apply the attack. This is because, one of the side effects

of the suggested attack is that when all free rider peers change their neighbors,

their previous neighbors lose the connection via these peers and they would lose

the possible incoming QueryHit messages as well. Since the QueryHit messages

in unstructured P2P networks are routed back through the same route of the

received Query messages, when an intermediate peer tries to route a QueryHit

which is routed by a free rider peer, it could not route it anymore, due to the

changed neighbors. So, some of the QueryHit messages would be dropped with-

out reaching to the destined peers. As observed in the figure, this side effect is

not negligible. The probe peer loses its advantage considerably when all other

free riders also apply the same attack.

CHAPTER 6. EXPERIMENTAL RESULTS 89

Therefore, we can conclude that although the attack seems to increase the utility

of an individual free rider, in a more general and real situation, when all or most

of the free riders apply the attack, the utility that a free rider gets is not increased

to a level to justify the practical difficulties of applying the attack. The free rider

will not reach to a level of utility comparable to that of a contributor peer.

6.1.5.6 Increasing Number of Neighbors

A free rider can try to enlarge its search horizon by increasing the number of

neighbors it connects to. It is not easy to totally prevent them doing so without

changing the nature of unstructured P2P systems and without loosing major

advantages of these systems. However we believe that the attack is not so practical

for free riders to apply and it does not lead a significant increase in their utility.

Below, we would like to provide a simple analysis for the effectiveness of the

attack. Later, we share some results of the simulation experiments obtained

when the attack is applied.

Assume that in a P2P system, average number of connections per peer is 4 and

maximum TTL is 7. If a free rider employs the attack as suggested above, it

can connect to new nodes and but soon after it would be detected by these

peers as well and be subjected to some counter-action. Therefore, its messages’

TTL will be decreased always to some value or will totally be dropped. If TTL-

4 is implemented as a counter-action, the decremented TTL of the free rider’s

Queries would be 3 (7-4). Now, we would like to find the number of peers to

be connected to provide the same amount of connectivity when TTL is 7. As a

general assumption, we think that the probability of getting QueryHit messages to

Queries is positively correlated with the number of peers connected. Therefore,

the attack suggests connecting more peers even with reduced search horizon.

When TTL is 7, a peer can connect to 4372 peers at most (4 connection per peer

is assumed) When TTL is 3, the peer can reach 52 peers at most. Therefore, it

loose 4372-52=4320 peers. To compensate this, it will try to connect to other

peers with TTL 3 (because, as its new neighbors will discover it as a free rider

sooner). Therefore, each newly connected neighbor can provide at most 17 peers

(including itself). To have the same amount of connectivity, free riding peer

CHAPTER 6. EXPERIMENTAL RESULTS 90

Figure 6.16: The results for the Download/Query ratio, when the increased num-
ber of neighbors attack is applied by a probe peer.

should connect to (4320/17)= 254 new peers. That is, while average/contributor

peers have 4-peer connectivity to cover the same number of peers, free riding peer

will have to make about 64 times more connections (total 258 connections). We

think that it is not easy and practical to do. One of the practical drawbacks is

the fact that more neighbors mean more P2P messages to process, which could

create a big burden on the peer considering the high amount of P2P traffic in

real life application. Even though the peer may choose to drop these messages,

they will still reach to the application layer and will degrade the performance of

the peer’s system.

We have conducted several experiments to observe the effects of the suggested

attack. As seen in Figure 6.16, download/query ratio for a contributor peer with

4 neighbors is about 14%. On the other hand, a free rider peer with the same

amount of connection has download/query ratio of only 6% due to the Mixed

counter-action applied. It is an expected result and in line with the prior results

provided. Even we increase the number of connected neighbors five times, free

rider peer could not attain the same download/query ratio of a contributor peer.

When the free rider peer has 6 or 7 times more connections, it then exceeds the

download/query ratio of a contributor peer.

Another important observation from the experiments is that the increase in the

number of neighbors comes with a cost, i.e. the increasing number of P2P mes-

sages. The free rider peer with more connections should devote much more re-

sources to process P2P messages. For example, a free rider peer with 6 times more

connections has to deal with almost 8 times more P2P messages(see Figure 6.17).

CHAPTER 6. EXPERIMENTAL RESULTS 91

Figure 6.17: The results for the P2P Message/Simulation time ratio , when the
increased number of neighbors attack is applied by a probe peer.

We believe that in a much larger P2P network, this could easily be a bottleneck

for the peer. The message queue could easily be overloaded and overflowed.

As a result, we could state that there can be some ways to attack, but free

riders will experience various difficulties in applying them, due to our proposed

mechanisms.

6.2 Simulation Results for the P2P Connection

Management Protocol (PCMP)

Below we first present the assumptions and parameter values involved in the simu-

lation experiments. Then, we explain the performance metrics used in evaluating

the proposed framework. Later, we provide and discuss the results observed in

terms of the performance metrics. We also investigate the effect of different pa-

rameter values on the results. As a last discussion, we provide some possible

attacks to the proposed framework and their effects on the system.

6.2.1 Assumptions

Assumptions made for the simulation experiments are similar to those presented

in Section 6.1.1 and used in the evaluation of DPM. We would like to remind the

important parameter settings used before. Our model simulated a P2P network

CHAPTER 6. EXPERIMENTAL RESULTS 92

Property Contributors Free Riders

Population ratios 30% 70%
Ratio of shared files of each 99% 1%
peer type to total files
Peers replicate the files they True False
have downloaded
Mean time between queries 60 time units 60 time units
(exponentially distributed)
Maximum simultaneous uploads 10 10

Table 6.11: Properties of peer types.

of 900 peer nodes. The peers were inter-connected to form a mesh topology at the

beginning of a simulation run. For the base experiments with only the Gnutella

protocol (i.e. without PCMP), we assumed that all the peers stayed connected

in the same way until the end of simulation run.

We assumed that there were two types of peers in the simulated network: con-

tributors and free riders. The properties of each peer type are summarized in

Table 6.11.

There were 9000 distinct files, with four copies of each, distributed to the peer

nodes at the beginning of each simulation run. These 36000 files were distributed

among the peers and shared according to the file sharing ratios shown in Ta-

ble 6.11. For the base experiments, we assumed that each file was of the same

size and could be downloaded in 60 units of simulation time. In Section 6.2.4 we

relax this assumption.

During a simulation run, peers randomly selected files to search for download, and

they submitted search queries for them. The inter-arrival time between search

requests generated by a peer followed an exponential distribution with a mean of

60 time units.

Each peer’s upload capacity (the number of simultaneous uploads the peer could

perform) was limited to 10. If a peer reached its upload capacity, any new upload

request was rejected. The querying peer could then try to download the file from

another peer, selected from a list obtained from the Query Hit message. We

assumed that the querying peer would repeat the same request a maximum of

CHAPTER 6. EXPERIMENTAL RESULTS 93

three times. After that, the peer would give up and could initiate a new search for

another file. We assumed that TTL is set to be 3 hops. Simulation experiments

are run for 4000 units of simulated time, repeated 10 times, and plotted on a 95%

confidence interval.

In order to match the topology of the base model, we assumed that each peer

could provide up to four IN- and four OUT-connections. This is because the

base model compared with PCMP has a mesh topology with an average of four

connections per peer.

6.2.2 Performance Metrics

To evaluate our protocol, we defined and studied two families of metrics: 1)

topology-related metrics, 2) performance-related metrics. Using the first type of

metrics, we aimed to investigate the change in the P2P network topology in favor

of contributing peers. The details of the topology-related metrics are presented

below.

• Total number of connections among contributors: We count the number of

connections (IN and OUT) which connect the contributors directly to each

other. We expect that if the number of connections among contributors is

increased, the contributors will get better service from the network. Since

we assume the number of connections that a peer can have to be limited,

those connections have to be used carefully by contributors. In order to

get better service and more Query Hits, a contributor should have more

connections to other contributors and less connections to free riders. In

this way, a contributor can also reduce free riding through itself. This

metric also shows how successful the PCMP protocol is in discovering and

connecting contributors.

• Total number of OUT-connections from free riders to contributors: As

stated in Section 4.2, if a peer has an OUT-connection to another peer, the

peer can submit queries through this connection to that peer. Hence, the

number of OUT-connections a peer has increases its chance to get replies

and service from the network. Therefore, we count the total number of

CHAPTER 6. EXPERIMENTAL RESULTS 94

OUT-connections that free riders have towards contributors to measure

how effective our protocol is in reducing free riders’ access to resources.

• Number of isolated free riders: One of the aims of our protocol is to isolate

free riders from contributors in the P2P network. If a free rider has no

OUT-connection, then it cannot send any query and cannot receive any

service, and we consider such a peer to be isolated. An isolated peer cannot

download any files from the network. The greater the number of isolated

free riders, the better it is for the network.

The second type of metrics that we defined are related to the performance and

service the peers get from the network. They are used to measure the performance

and service improvement in the network when PCMP is employed.

• Number of downloaded files: This is an important metric indicating the

number of downloads that can be performed in a P2P network during a

fixed time interval. If peers can download more files from the P2P network,

then the level of satisfaction with the network will be higher.

• Number of uploads by contributors: This metric indicates the load imposed

on a peer. Contributors can become overloaded due to the excessive number

of search and download operations executed mainly by free riders.

• Download cost: We define the download cost for a peer as the ratio of the

number of uploads to the number of downloads performed by the peer. This

ratio indicates the load imposed on a peer compared to the service the peer

gets from the network. The smaller this ratio is, the better it is from the

perspective of the peer.

• Number of P2P network protocol messages: This metric is an indication

of the messaging overhead in the P2P network and the underlying infras-

tructure. Messaging overhead affects the scalability of a P2P system. The

messaging overhead may be high due to the flooding approach used in query-

ing, particularly in unstructured P2P networks. A high number of protocol

messages sent over the network also increases the level of congestion in the

network.

CHAPTER 6. EXPERIMENTAL RESULTS 95

Figure 6.18: Increase in the number of connections among contributing peers.

• Fairness: Fairness metric shows that the level of service that can be ob-

tained by a peer is proportional to the level of contribution that is provided

by that peer. In other words, a peer contributing more is fairly compensated

with more services.

6.2.3 Simulation Results and Analysis

In simulation experiments, we first tested the effectiveness of PCMP in connecting

the contributors to each other. Afterwards, we conducted experiments to observe

changes in the performance when PCMP is employed.

6.2.3.1 Impact of PCMP on Network Topology

Figure 6.18 shows the number of connections established among contributing

peers over the simulation time. The results are for a P2P network employing our

PCMP protocol using the time-based replacement policy (T-PCMP). As seen

in the figure, the protocol causes more contributing peers to become directly

connected to each other as time passes. By the end of the simulation, the number

of connections (IN and OUT) among contributors increased from 309 to 562.

Hence, connectivity among contributors increased by 82%.

Figure 6.19 shows the number of OUT-connections of free riders to contributing

peers plotted against the simulation time. As can be seen in the figure, the

protocol caused the number of OUT-connections of free riders to decrease by

CHAPTER 6. EXPERIMENTAL RESULTS 96

Figure 6.19: Decrease in the number of OUT-connections from free riders to
contributors.

Figure 6.20: The number of isolated free riders.

about 67% by the end of the simulation. This is because when contributors cannot

download from free riders over time, they start dropping their IN-connections

from free riders; hence free riders lose their OUT-connections to contributors.

Figure 6.20 shows the number of isolated free riders over time. As time has

passed, more free riders were isolated from the network (they lost all their OUT-

connections). At the end of the simulation time, a total of 24 free riders (out of

630) were isolated.

These results show that PCMP updates the topology effectively according to the

contributions of peers: it increases the connectivity among contributors, reduces

the connectivity of free riders towards the contributors, and can totally isolate

some free riders from the P2P network.

CHAPTER 6. EXPERIMENTAL RESULTS 97

Figure 6.21: Decrease in free riding peers’ downloads.

6.2.3.2 Impact of PCMP on P2P Network Performance

This section evaluates the effectiveness of our protocol in terms of the performance

metrics described in Section 6.2.2.

Downloads of free riders: As Figure 6.21 depicts, the number of downloads by

free riders dropped when PCMP was applied. PCMP decreases OUT-connections

of free riders towards contributors, and this reduces the chance of getting a hit

on the queries. In this way, the number of downloads by free riders is reduced.

Both C-PCMP and T-PCMP reduces the downloads. C-PCMP caused a 14%

reduction, whereas T-PCMP achieved a 16% reduction.

Downloads of contributors: It is desirable to increase the number of downloads for

contributors. Since each peer’s upload capacity is limited, the download requests

of contributors can sometimes be rejected. The rate of rejection is higher when

there are many free riders in the system, so eliminating the effects of free riders on

the P2P network will help to increase the number of downloads that contributors

can make. This is indeed shown in Figure 6.22; applying our PCMP methods

achieved an increase in downloads performed by contributors by 51%.

Figure 6.22 shows that the improvement in downloads is slightly higher with T-

PCMP than with C-PCMP. While T-PCMP yielded an improvement of about

51%, the improvement when C-PCMP was used was about 46%.

Uploads of contributors: A metric that can indicate the load on a peer is the

number of uploads performed by the peer in a given time period. As shown

above, PCPM increments the number of contributors’ downloads considerably

CHAPTER 6. EXPERIMENTAL RESULTS 98

Figure 6.22: Increase in contributors’ downloads.

Figure 6.23: Change in contributors’ uploads when PCMP is applied.

and reduces the downloads of free riders significantly. In simulation experiments,

we observed a slight increase (about 4%) in the number of uploads performed

by contributors when PCMP is applied (see Figure 6.23). However, this slight

increase is the result of PCMP’s success in reconnecting contributing peers to

each other. Contributors can download more from each other due to the fact

that their searches can reach more contributors by applying PCMP.

Download Cost: The load on a contributor can also be defined as the ratio of its

uploads to its downloads. The results of our experiments show that PCMP also

causes a reduction in the download cost of contributors. As shown in Figure 6.24,

both T-PCMP and C-PCMP achieve a reduction of about 30% in the download

cost for contributors.

Number of P2P protocol messages: The number of P2P protocol messages trans-

mitted in the network is an important factor affecting scalability and bandwidth

efficiency. PCMP results in a reduction of up to 36% in the number of transmit-

ted P2P protocol messages (Query and Query Hit messages) originating from and

CHAPTER 6. EXPERIMENTAL RESULTS 99

Figure 6.24: Decrease in contributors’ download cost.

Figure 6.25: Decrease in P2P messages from free riders.

destined to free riders (Figure 6.25). This result shows that applying the pro-

posed PCMP helps a P2P network to handle more peers with less P2P messaging

overhead and the system becomes more scalable with respect to the peer popula-

tion. The reduction observed in the number of protocol messages is the result of

reducing or stopping the propagation of Query messages from free riders. As the

number of OUT-connections of free riders gets reduced, the propagation of Query

and Query Hit messages for free riders will get reduced as well. The reduction of

control traffic in a P2P network also means a reduction in the overhead imposed

on the underlying infrastructure. This reduction translates to a better utilization

of available bandwidths and to a decreased processing load on each peer.

Fairness: We explored how PCMP reacts to the changes in the behavior of peers.

A peer can behave as a free rider at first, but later, after observing the decrease

in the service it gets, begin to share its resources. If PCMP does not react to

these kinds of changes, it will be unfair and moreover it cannot accomplish one

of its primary goals, promoting contribution.

CHAPTER 6. EXPERIMENTAL RESULTS 100

Figure 6.26: Downloads of the probe node according to when it begins to share
its files.

To observe the fairness of PCMP, we conducted the following experiment. We

randomly selected a probe node which initially behaved as a free rider. After a

certain amount of time, the node changed its sharing attitude and began to share

its files. We compared the level of service it got from the P2P network when it

was behaving as a free rider and when it was sharing its files. The number of

downloads that could be performed by the probe peer is depicted in Figure 6.26.

As can be seen in the figure, when the peer begins to change its sharing attitude

at a given time from free riding to contributing, PCMP reacts in a positive way

and allows the peer to download more files.

6.2.4 Effects of Different Parameter Values

We executed sensitivity experiments to observe how PCMP performs under vary-

ing values of important parameters: the number of peers and the level of free

riding. We also observed the performance results for different file sizes and differ-

ent levels of file replications. Under all different parameter settings, PCMP was

observed to provide performance gains.

• The number of peers in the simulated network: Considering the size of a

real Gnutella network, the number of peers simulated in our work can be

considered to be very small. However, since our proposed method requires

only local interactions between neighbors, we do not expect the impact

of the number of peers on the network’s performance to be considerable.

CHAPTER 6. EXPERIMENTAL RESULTS 101

Figure 6.27: The number of contributors’ downloads when different numbers of
peers are simulated.

Figure 6.28: The number of contributors’ downloads when different free rider
populations are simulated.

This is indeed what we have observed in the results of our experiments

that were performed for various network sizes: 400, 900, 1600, 2500, and

4900 peers. Figure 6.27 displays the performance in terms of the number of

contributor downloads. As shown in the figure, the number of downloads

by contributors is increased around 45% for all network sizes. Therefore,

we conclude that increasing the number of peers in the network does not

negatively affect the performance of our framework, and that our framework

is scalable.

• The Size of Free Rider Population: We also evaluated the effect of the

size of the free rider population. As seen in Figure 6.28, regardless of the

ratio of free riders, T-PCMP achieves more downloads, around 50%, for

contributors. Even at a low population ratio of free riders, the protocol

performs very well.

CHAPTER 6. EXPERIMENTAL RESULTS 102

File Type File Size Ratio

Very Small ∼ 0.3 10%
Small ∼5MB 50%
Medium ∼40MB 20%
Large ∼100MB 10%
Very Large >100MB 10%

Table 6.12: Properties of different file sizes.

Figure 6.29: The number of contributors’ downloads with the existence of differ-
ent file sizes.

• The File Size and File Replication: In Section 6.2.1, we assumed that each

file is of the same size and the number of copies for each file is identical. In

this section, we relax these assumptions by considering different file sizes as

summarized in Table 6.12, and different levels of file replication as shown in

Table 6.13. The values given in tables are based on the results of the P2P

network observations provided in [64, 65].

We proposed two connection replacement policies in Section 4.4, namely

T-PCMP and C-PCMP. To handle different file sizes, we now propose a

new replacement method. In this method, the size of the file downloaded

from the neighboring peer is used to select the connection for replacement.

The connection with the least total amount of downloaded file is selected

as a victim. We call the PCMP protocol that applies this policy Size-based

PCMP (S-PCMP).

Figure 6.29 shows the results of different file sizes on the contributor down-

loads. PCMP increases the contributor downloads as much as 55% com-

pared to Gnutella.

CHAPTER 6. EXPERIMENTAL RESULTS 103

NAME Group A (Ratio/Replication) Group B (Ratio/Replication)

RARE 10% of files: 1 copy. 90% of files: 4 copies.
POPULAR 10% of files: 40 copies. 90% of files: 4 copies.
UNIFORM All files : 4 copies All files : 4 copies

Table 6.13: Properties of different levels of file replication.

Figure 6.30: The number of contributors’ downloads with different levels of file
replication.

For evaluating the impact of different file replication levels, we used three

file replication schemes as summarized in Table 6.13 . We split the files

into two groups and replicated them with different factors. In the RARE

distribution, 10% of the files are rare (fewer replications) compared to 90%

of the files. Similarly, in the POPULAR distribution, 10% of the files are

more popular (more replications) than the rest of the files. In UNIFORM

(default) distribution all the files have the same number of copies.

The results of the simulation tests are depicted in Figure 6.30. The figure

summarizes the effects of different file distribution schemes on the contribu-

tors downloads. With all the file distributions considered, PCMP performs

about 55% better than Gnutella. Total number of downloads of contribu-

tors is affected by the distribution strategy of file copies. However, PCMP

manages to profit the contributors with all different types of file distribution

schemes evaluated.

CHAPTER 6. EXPERIMENTAL RESULTS 104

6.2.5 Possible Attacks

There are many different kinds of attacks to the existing P2P network protocols.

Since we extend the Gnutella Protocol, we will not discuss the attacks and their

effects related to the original Gnutella Protocol. Here we would like to discuss the

several possible attacks specific to the method we proposed against free riding.

6.2.5.1 A malicious peer does not comply with the proposed PCMP

rules

A malicious peer may refuse to add a contributor to its list of IN-connections

after downloading a file from the contributor. We claim that by doing this the

malicious peer cannot gain anything. It can only stop incoming Query and Ping

messages via its IN-connections. This, however, may decrease the search horizon

of the contributors.

If all free riders apply this attack, then contributors establish OUT-connections

only with other contributors, and this automatically helps them to become more

connected with each other. In the end, contributing peers will have an advantage

over free riders, since a peer has a restricted number of OUT-connections and a

contributor will not waste them for connections to free riders. Because, as dis-

cussed in Section 4.2, if a contributor uploads a file to a peer, the contributor will

update its OUT-connection with that peer. If there is no free OUT-connection,

then it will drop an existing OUT-connection and add the new peer. If the

dropped connection is with a contributor and the newly added connection is with

a free rider, the contributor will not benefit from the new connection since free

riders do not share files. However, the contributors are not aware if a peer is

a free rider or not. If free riders reject IN-connection requests by not sending

a Pong message, then the contributors will not update their OUT-connections.

The contributors will only update their OUT-connections when they upload files

to other contributors, since other contributors will accept the IN-connection re-

quests by replying with Pong messages. Therefore, we expect that this attack

will not affect the contributors much.

CHAPTER 6. EXPERIMENTAL RESULTS 105

Figure 6.31: The number of contributors’ downloads when free riders are nonco-
operative.

Figure 6.32: Increase in the number of connections among contributing peers
when free riders are noncooperative.

In order to observe the effects of this possible attack, we designed a new simulation

setting. In this simulation, we assumed that all free riders would reject creating an

IN-Connection from a source peer after downloading a file. As seen in Figure 6.31,

this attack does not adversely affect the download performance of the contributors

as compared to the results given in Figure 6.22. On the contrary, the contributors

can download slightly more files, because they become more closely connected to

each other, as seen in Figure 6.32.

6.2.5.2 A malicious peer replies with a faked Query Hit

To establish OUT-connections, a malicious peer can reply to a Query message as

if it has the file. However, when the querying peer demands the file, the malicious

peer can upload a fake file. But this will not help the malicious peer to establish

CHAPTER 6. EXPERIMENTAL RESULTS 106

an OUT-connection. Because, in PCMP, the connection between two peers is

established after a file is downloaded, and connection establishment is initiated

by the uploading peer through a Ping message. If the downloader peer is not

satisfied with the file, it will not send back a Pong message and the connection

will not be established. Therefore, the malicious peer cannot use this attack to

gain more OUT-connections.

6.2.5.3 A malicious peer behaves as a new-comer to gain more OUT-

connections

To increase the number of OUT-connections, a malicious peer can request OUT-

connections from peers as if it is a new peer in the network. If the peers accept all

newcomers’ connection requests without any limitations, the attacker can benefit

from this situation. Jakobsson and Juels proposed a method of combating such

problems: proof of work (POW) protocols [51]. The main idea of these proto-

cols is that a prover demonstrates to a verifier that it has expended a certain

level of computational effort in a specified interval of time. POWs were proposed

as a mechanism for a number of security goals including server access metering,

construction of digital time capsules, uncheatable benchmarks, and protection

against spamming and other denial of service attacks. In our work, we can im-

plement POW to minimize these attacks to very low levels. Thus creating new

connections can cost time, limiting the ability of the attackers to request them

without a limit. We can include a rule in the general P2P protocol for initial

connections stating that clients are required to solve a puzzle, such as factoring

a number, before a Ping request is answered with a Pong message. The puzzles

could require additional work as resources become more scarce. This increases the

resources required by attackers to attack the system proportional to the threat of

the attack. A short lifetime on connections can also help to manage the network

and prevent this kind of attack.

CHAPTER 6. EXPERIMENTAL RESULTS 107

6.3 A Discussion on the Comparison of DPM

and PCMP

In Sections 6.1.3 and 6.2.3 we presented the detailed performance results of DPM

and PCMP, respectively, over a typical pure P2P network. In this section, we

provide a discussion about these frameworks comparing their characteristics and

performance gains.

6.3.1 Comparing Characteristics of DPM and PCMP

Both frameworks are designed to attack the free riding problem in pure P2P

networks by limiting the free riders’ ability to exploit the network resources.

However, their approaches to locating and countering free riders are considerably

different. As a result, their effects on the performance of a generic P2P network

differ as well. Below we first remark the similarities and differences between

these two frameworks, and then we summarize the simulation results with re-

spect to some important performance metrics, and discuss their advantages and

disadvantages over each other.

The similarities of the frameworks are as follows:

• DPM and PCMP frameworks are simple to implement, have low overhead

to run, fully comply with the concepts and protocols of pure P2P networks,

and are decentralized to operate efficiently.

• Both of the frameworks detect the free riders by monitoring local interac-

tions and mutually provided services.

• Since the frameworks solely depend on interactions between two peers and

each peer can make decision about other peers according to local informa-

tion, the frameworks are scalable with respect to the number of peers in

P2P network.

• Neither of them requires any kind of security infrastructures which makes

them practical and low-overhead to be implemented in pure P2P networks.

CHAPTER 6. EXPERIMENTAL RESULTS 108

• The frameworks are successful to reduce the impact of free riding on P2P

networks with respect to various performance metrics.

• They are resistant against the possible attacks of malicious peers.

• As we designed these solutions as frameworks, one can implement them in

a real world scenario by modifying their various parameters accordingly.

The frameworks have the following important differences:

• DPM’s counter-actions mainly either limit the search horizon of free riders

or stop the free rider searches flooding into the P2P network. However,

PCMP breaks the connection with free riders and modify the P2P network

topology in such a way that free riders are pushed away from contributors

or, even more, free riders can be isolated.

• Implementation of DPM does not introduce any overhead for the P2P net-

work. On the other hand, PCMP requires updates in routing tables due

to changes in connections among peers. This does not necessarily mean a

significant overhead for the system. Because, frequent disconnections and

unreliable links in pure P2P networks naturally require this kind of updates.

• DPM does not require any change in P2P network protocol whereas PCMP

does. A DPM implementation involves only modifying the client software of

the underlying P2P protocol. However, a PCMP implementation requires

modification in both the client software and the P2P network protocols used

to implement and manage a new connection type, called One-Way-Request-

Connection (OWRC). Nevertheless, PCMP’s modifications required for the

network protocols are very simple and can be implemented at the applica-

tion level.

CHAPTER 6. EXPERIMENTAL RESULTS 109

6.3.2 Comparing Performance Results of DPM and

PCMP

A summary for the comparative simulation performance results is provided in

Table 6.14. In this table, the range of the given results is due to various imple-

mentation of the frameworks.

Metric DPM PCMP

Downloads of free riders -89% .. -12% -16% .. -14%
Downloads of contributors +10% .. +7% +51% .. +46%
P2P messages -78% .. -68% -36% .. -34%
Uploads of contributors -68% .. -35% +5% .. +4%
Download cost for contributors -65% .. -41% -30% .. -28%

Table 6.14: Summary of DPM and PCMP performance results over the simulated
pure P2P network.

When we examine the results, we first notice that both frameworks improve the

performance of the base P2P network, namely Gnutella. DPM is much more

successful in punishing free riders compared to PCMP. The downloads of free

riders can be reduced down to 89% when DPM is employed. PCMP has a limited

success on reducing free riders downloads. However, PCMP can boost downloads

of contributors considerably, up to 51%. For this metric, DPM can not achieve

high performance.

Since DPM intervenes free riders at the search phase, it successfully reduces

the number of P2P messages. PCMP can push free riders to the outskirts of the

network and can isolate them. However, most of the free riders are still connected

to the network and can still submit queries. Thus, PCMP can not reduce the

number of P2P messages as much as that observed with DPM.

As a consequence of its success in reducing the downloads of free riders, DPM

reduces the uploads of contributors considerably. On contrary, as PCMP boosts

downloads of contributors significantly, the uploads of contributors do not di-

minish at the same level as DPM. These results can be observed by comparing

download costs of these two frameworks as well.

In summary, we can argue that both frameworks are successful to fulfill the desired

CHAPTER 6. EXPERIMENTAL RESULTS 110

goal which is to reduce the adverse effects of free riding on P2P networks and

prevent free riding peers from exploiting the network resources unresponsively in

the course of time. Additionally, we observe performance gains for contributors

and performance degradation for free riders by reducing the level of free riding and

its effects. Thus, P2P networks employing the proposed free riding mechanisms

become more robust and scalable.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this dissertation, we propose two different solutions, Detect and Punish Method

(DPM) and P2P Connection Management Protocol (PCMP), to counteract free

riding in pure P2P networks. In essence, we aim to reduce the amount of free

riding and its negative impacts on P2P networks and peers. As the performance

results of simulation experiments indicate, the solutions succeed in improving the

performance of the P2P networks in terms of the following metrics:

• the quality of services that peers can get from the network,

• the availability of content and services,

• the robustness of the system,

• the load balance on peers, and

• the scalability of the network.

Furthermore, simulation experiments prove that both solutions can cope with

possible counter attacks of malicious free riders and most of these attacks can

not render the proposed frameworks obsolete.

111

CHAPTER 7. CONCLUSION AND FUTURE WORK 112

In our first solution, DPM, we provide a distributed and measurement based

framework against free riding. It is a framework consisting of tunable and change-

able algorithms. As part of the framework, we first specify possible types of free

riding that can be encountered in a P2P network. Then we propose some mech-

anisms that can be used to detect free riders of the defined types. We also

present sample counter actions that can be applied against the peers detected as

free riders. It is shown through evaluating DPM that employing the “dropping

single counter action” scheme against all kinds of detected free riders results in

better improvements for all the performance metrics used except the number of

downloads by contributors. We think that this result is due to false detection in

determining free riders. As one would like to increase the performance for con-

tributors, the usage of “mixed counter action” scheme is offered. This scheme is

shown to be the best counter action increasing the number of contributor down-

loads, as well.

Our second solution, PCMP, is a novel approach employing a connection man-

agement protocol that can act against free riding in pure P2P networks. The

main idea of this solution is to adapt dynamically P2P network topology in order

to promote contribution in the network. PCMP manages the connections among

peers based on the amount of contributions by peers. Towards the solution, we

first provide a new connection type, One-Way-Request Connection (OWRC), in

which the direction and the type of messages are well defined. Then, we provide

a connection management protocol which connects peers to each other based on

their interactions. As a result, the contributors discover each other and get con-

nected to each other, while free riders loose connections to contributors, or even

they can be excluded from the network. In other words, the modified topology

supports the contributors to download more files from the other contributors and

process less queries from free riders.

As a conclusion, we show in our dissertation that;

• The impact and the level of free riding in P2P networks can be reduced if

proper mechanisms are implemented.

• Two different solutions we proposed succeed in decreasing the downloads

of free riders while increasing the downloads of contributing peers.

CHAPTER 7. CONCLUSION AND FUTURE WORK 113

• Both solutions boost the scalability of P2P networks by significantly reduc-

ing the P2P network traffic brought out by free riders.

• Free riders can attack the solutions through various methods, however they

can not benefit from these attacks. The proposed solutions can still limit

the level of free riding in the presence of such attacks.

7.2 Future Work

As a future work, we plan to refine the proposed free riding types in DPM to

enable the detection mechanism work better. We also plan to simulate different

network topologies to demonstrate the properties of power-law and small-world

phenomena. Furthermore, we plan to integrate game theory into the simulated

peers so that peers can follow a strategy to maximize their utility from the system.

We finally would like to implement the proposed solutions into a Gnutella client

and test the solutions in an existing P2P network so that we can observe the

effects of DPM and PCMP in real world applications.

Appendix A

Analyzing Effects of PCMP

We here provide a motivational example about how we can improve the perfor-

mance in terms of some metrics in a P2P network using the P2P Connection

Management Protocol (PCMP) that we presented in Chapter 4.

The probability of getting a query hit depends on many factors including the

popularity of the requested file, the number of files shared by peers, and the

number of contributing peers in the search horizon. If we assume even popularity

and even number of shared files by each peer, then the number of contributing

peers in the search horizon will be the factor determining the hit probability of a

query. Therefore, increasing the number of contributors in the search horizon is

important for receiving better service from the P2P network.

In order to calculate the number of contributors that a contributing peer’s query

can reach, we first make the following assumptions. In a P2P network there are

contributors and free riders. A peer is considered as a free rider if it does not

share any files at all. On the other hand, a peer is a contributor if it shares any

number of files. A Gnutella-like protocol is used for the query dissemination with

the time-to-live (TTL) value set to m. Each peer in the network has n one-hop

neighbors on the average. The number of peers in the network is so large that the

path followed by a flooded query constitutes a tree, not a graph. In other words,

a query reaches distinct peers at each hop while getting flooded from one hop to

the next. A contributor has p number of contributor neighbors and n−p number

114

APPENDIX A. ANALYZING EFFECTS OF PCMP 115

Figure A.1: The relationship between contributors (Cont.) and free riders (FR)
at different levels.

of free rider neighbors. Similarly, a free rider peer has q number of contributor

neighbors and n − q number of free rider neighbors.

Let Xi denote the number of peers that are i hops away from the querying peer.

We also say Xi is the number of peers at level i. Xi can be computed easily.

Xi = n(n − 1)i−1, i ≥ 1 (A.1)

Some of these Xi peers are contributors and some are free riders. Let Ci be the

number of contributors and Fi be the number of free riders at level i. Thus, Xi

= Ci + Fi. As we deal with a contributor as the originator of the query, C0 = 1,

C1 = p, and F1 = n − p.

We compute Ci in a recursive manner. Figure A.1 shows the relationship between

contributors at level i − 2, i − 1, and i.

If we assume that Ci−2 is known then Fi−2 can be calculated as Fi−2 = Xi−2−Ci−2.

Upon receiving the query, Ci−2 number of contributing peers at level i − 2 will

forward it to their contributing neighbors (whose count is denoted with C1i−1)

APPENDIX A. ANALYZING EFFECTS OF PCMP 116

and to their free riding neighbors (whose count is denoted with F1i−1) at level

i − 1. Similarly, Fi−2 number of free riding peers at level i − 2 will forward the

query to their contributing neighbors (C2i−1) and to their free riding neighbors

(F2i−1) at level i − 1.

As indicated in Figure A.1, we can compute the number of contributors at level

i using the number of contributors and free riders at previous levels i − 1 and

i− 2. Each of the C1i−1 contributing peers at level i− 1 will forward their query

to p − 1 contributors 1. Then we obtain the following recursive relationship for

the number of contributors at level i:

Ci = C1i−1(p − 1) + F1i−1(q − 1) + C2i−1(p) + F2i−1(q),

Ci = C1i−1p − C1i−1 + F1i−1q − F1i−1 + C2i−1p + F2i−1q,

Ci = p(C1i−1 + C2i−1) + q(F1i−1 + F2i−1) − (C1i−1 + F1i−1).

We have the following equations:

C1i−1 + C2i−1 = Ci−1, and F1i−1 + F2i−1 = Xi−1 − Ci−1; and

C1i−1 + F1i−1 = Ci−2Yi−2.

Here, Yi is the number of neighbors that will receive a query originated or for-

warded by a peer i. If the peer is the query originator, i.e., i = 0, the number of

neighbors to whom the query will be forwarded is n. Otherwise, if the peer is a

query forwarder, the number of neighbors to whom the query will be forwarded

is n − 1. In short, if i is 0 then Yi is n, otherwise Yi is n − 1.

Now, the equation that gives the number of contributors at level i becomes:

Ci = pCi−1 + q(Xi−1 − Ci−1) − Yi−2Ci−2, i ≥ 2 (A.2)

As mentioned before, if the originator of the query is a contributor, C0 = 1 and

C1 = p.

As a result, the total number of contributors that will receive the query issued

by a contributor is:

1We have p− 1 not p because, those forwarding peers have a contributor parent that is also
a neighbor of them.

APPENDIX A. ANALYZING EFFECTS OF PCMP 117

C =
m∑

i=1

Ci = p +
m∑

i=2

(pCi−1 + q(Xi−1 − Ci−1) − Yi−2Ci−2), m ≥ 2 (A.3)

We can use this recursive formula to compute the number of contributors for

various settings of the parameters m, n, p, and q. For example, in a P2P network,

each peer, a contributor or a free rider, has 2 contributing neighbors and 3 free

riding neighbors. That is, n = 5, p = 2, q = 2, and m = 5. Using Equation A.3,

the number of contributors that a contributing peer’s query can reach is computed

as 692. If we can control and modify the connections in this network (what we

aim with our approach) so that each contributor has 4 out of its 5 neighbors

as contributors (p = 4), then the number of contributors that will receive the

query message issued by a contributor would be 1132. If we can totally isolate

free riders, no free rider will have a connection to a contributor and vice versa.

This means, p becomes 5, and q becomes 0. In this case, the number of the

contributors that will receive the query would be 1706.

These examples show that we can improve the number of contributors in a search

horizon of a contributing peer so that the peer can get better search quality. This

is the main motivation for our approach.

After searching the network and receiving the query hits, a peer requests download

from one of the source peers. However, source peers are subject to high number

of download requests and since the upload capacity is limited, they can refuse

some of the download requests. Therefore, receiving a query hit does guarantee

a successful download.

Assume that on the average a contributor can upload U number of files simul-

taneously at maximum, and the number of simultaneous download requests that

arrive to this contributor is D. Sometimes, contributors can have much more

download requests (D) than their upload capacity (U). In that case, when D is

larger than U , a contributor will refuse a download request with a probability

P (refuse) = 1 − U/D. As the ratio of free riders in a P2P network becomes

greater than that of contributors, most of these requests will belong to the free

riders. As stated above, we aim to reduce the arrival of download requests from

free riders. Therefore, we expect a reduction in P (refuse) for the requests coming

APPENDIX A. ANALYZING EFFECTS OF PCMP 118

from contributors. Hence, we expect an increase in the downloads that contrib-

utors can achieve.

Bibliography

[1] K. Aberer and M. Hauswirth, “Peer-to-Peer Information Systems: Concepts

and Models, State-of-the-Art, and Future Systems”, 18th International Con-

ference on Data Engineering (ICDE), 2002.

[2] K. Aberer and M. Hauswirth, “An Overview of Peer-to-Peer Information

Systems”, Workshop on Distributed Data and Structures, 2002.

[3] E. Adar and B. A. Huberman, “Free Riding on Gnutella”,

“http://www.firstmonday.dk/issues/issue5 10/adar”, 2000.

[4] N. Andrade, F. Brasileiro, W. Cirne and M. Mowbray, “Discouraging Free-

riding in a Peer-to-Peer Grid”, IEEE International Symposium on High-

Performance Distributed Computing, 2004.

[5] N. Andrade, M. Mowbray, W. Cirne and F. Brasileiro, “When Can an Au-

tonomous Reputation Scheme Discourage Free-riding in a Peer-to-Peer Sys-

tem”, Workshop on Global and Peer-to-Peer Computing, 2004.

[6] S. Androutsellis-theotokis and D. Spinellis, “A Survey of Peer-to- Peer Con-

tent Distribution Technologies”, ACM Computing Surveys (CSUR) Vol. 36,

Issue 4, pp. 335-371,December 2004.

[7] A. Asvanund, K. Clay, R. Krishnan and M. Smith, “An Emprical Analysis

of Network Externalities in Peer-To-Peer Music Sharing Networks”, Interna-

tional Conference on Information Systems, 2002.

[8] A. Atip, K. Clay, R. Krishnan, and M. Smith, “An Empirical Analysis of

Network Externalities in Peer-To-Peer Music Sharing Networks”, Informa-

tion Systems Research, 15(2) 155-174, 2004.

119

BIBLIOGRAPHY 120

[9] Avaki Data Grid Web Site, “www.avaki.com”, 2008.

[10] D. Banerjee, S. Saha, S. Sen and P. Dasgupta, “Reciprocal Resource Shar-

ing In P2P Environments”, The 4th International Joint Conference on Au-

tonomous Agents and Multi Agent Systems (AAMAS-05), July, 2005.

[11] BitTorrent Web Site, “www.bittorrent.com/”, 2008.

[12] E. Buchmann and K. Bohm, “FairNet - How to Counter Free Riding in

Peer-to-Peer Data Structures”, The International Conference on Cooperative

Information Systems, 2004.

[13] L. Buttyn and J.-P. Hubaux, “Security and Cooperation in Wireless Net-

works”, Cambridge University Press, 2007.

[14] H. Cai, and J. Wang, “Foreseer: A Novel, “Locality-aware Peer-to-Peer Sys-

tem Architecture for Keyword Searches”, The 5th ACM/IFIP/USENIX in-

ternational conference on Middleware, pp. 38-58, 2004.

[15] C. Blake and R. Rodrigues, “High Availability, Scalable Storage, Dynamic

Peer Networks: Pick Two” , Ninth Workshop on Hot Topics in Operating

Systems (HotOS-IX), (Lihue,Hawaii), pp. 1-6, May 2003.

[16] Y. Chawathe, S. Ratnasamy, L. Breslau, and S. Shenker, “Making Gnutella-

like P2P Systems Scalable”, In Proceedings of ACM SIGCOMM, 2003.

[17] J. Chu, K. Labonte, and B. Levine, “Availability and Locality Measurements

of Peer-to-Peer File Systems” Proc. ITCom: Scalability and Traffic Control

in IP Networks II Conf., SPIE, vol. 4, 2002.

[18] Clip2, “The Gnutella Protocol Specification v0.4 (Document Revision 1.2)”,

“http://www9.limewire.com/developer/gnutella protocol0.4.pdf”, 2001.

[19] B. Cohen, “Incentives Build Robustness in BitTorrent”, Workshop on Eco-

nomics of Peer-to-Peer Systems, vol. 6, 2003.

[20] C. Cramer, K. Kutzner, and T. Fuhrmann,“Bootstrapping Locality-Aware

P2P Networks”, The IEEE International Conference on Networks (ICON),

2004.

BIBLIOGRAPHY 121

[21] F. Dabek, E. Brunskill, M. F. Kaashoek and D. Karger, “Building Peer-

To-Peer Systems With Chord, A Distributed Lookup Service”, Hot Topics

in Operating Systems Workshop, May 2001.

[22] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati and F.

Violante, “A Reputation-Based Approach for Choosing Reliable Resources

in Peer-to-Peer Networks”, 9th ACM Conference on Computer and Commu-

nications Security, November 2002.

[23] N. Daswani and H. Garcia-Molina , “Query-Flood DoS Attacks in Gnutella”,

ACM Conference on Computer and Communications Security, Washington,

DC, November 2002.

[24] N. Daswani, H. Garcia-Molina and B. Yang, “Open Problems in Data-

sharing Peer-to-peer Systems”, ICDT, 2003.

[25] P. Dewan and P. Dasgupta, “Securing P2P Networks Using Peer Reputa-

tions: Is there a silver bullet?”, IEEE Consumer Communications and Net-

working Conference (CCNC 2005) , 2005.

[26] eDonkey Web Site, “http://www.edonkey2000.com”, 2008.

[27] eMule Web Site, “http://www.emule-project.net”, 2008.

[28] Entropia Web Site, “http://www.entropia.com”, 2008.

[29] M. Feldman and J. Chuang, “Overcoming Free-riding Behavior in Peer-to-

peer Systems”, ACM SIGecom Exchanges, Vol 5, Issue 4, July 2005.

[30] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, “Free- Riding and

Whitewashing in Peer-to-Peer Systems”, ACM SIGCOMM’04 Workshop on

Practice and Theory of Incentives in Networked Systems (PINS), 2004.

[31] G. H. L. Fletcher, H. A. Sheth, K. Brner, “Unstructured Peer-to-Peer Net-

works: Topological Properties and Search Performance”, AP2PC 2004.

[32] Freecast Web Site, “http://www.freecast.org/”, 2008.

[33] FreeNet Web Site, “http://www.freenet.com/”, 2008.

[34] Free Haven Web Site, “http://www.freehaven.net/”, 2008.

BIBLIOGRAPHY 122

[35] F.D. Garcia, and J.H. Hoepman, “Off-line Karma: A Decentralized Currency

for Static Peer-to-peer and Grid Networks”, 5th Int. Networking Conf.(INC),

2005.

[36] GnuNET Web Site, “http://gnunet.org”, 2008

[37] P. Golle, K. Leyton-Brown and I. Mironov, “Incentives for Sharing in Peer-

to-Peer Networks”, Electronic Commerce, 2001.

[38] Groove Web Site, “http://office.microsoft.com/en-us/groove/”, 2008.

[39] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy and J.

Zahorjan, “Measurement, Modeling, and Analysis of a Peer-to-Peer File-

Sharing Workload”, ACM Symposium on Operating Systems Principles,

2003.

[40] L. Guo, S. Chen, Z. Xiao,E. Tan,X.Ding, and X. Zhang, “Measurements,

Analysis, and Modeling of BitTorrent-like Systems”, Proceedings of the 2005

Internet Measurement Conference (IMC’05), 2005.

[41] M. Gupta, P. Judge and M. Amma, “A Reputation System for Peer-to-

Peer Networks”, Proc. of the 13th International Workshop on Network and

Operating System Support for Digital Audio and Video (NOSSDAV), 2003.

[42] A. Habib, and J. Chuang, “Service Differentiated Peer Selection: An Incen-

tive Mechanism for Peer-to-Peer Media Streaming”, IEEE Transactions On

Multimedia, vol.8, no. 3, 2006.

[43] D. Hales and B. Edmonds, “Applying a socially-inspired technique (tags) to

improve cooperation in P2P Networks”, IEEE Transactions in Systems, Man

and Cybernetics - Part A: Systems and Humans,Volume 35(3), pp. 385-395,

2005.

[44] M. Ham and G. Agha, “ARA: A Robust Audit to Prevent Free-Riding in

P2P Networks”, The Fifth IEEE International Conference on Peer-to- Peer

Computing (P2P2005), 2005.

BIBLIOGRAPHY 123

[45] J. Han and Y. Liu, “Dubious Feedback: Fair or Not?”, Proceedings of the In-

ternational Workshop on Peer-to-Peer Information Management(P2PIM’06),

2006.

[46] S. Handurukande, A. Kermarrec, F. Le Fessant, L. Massouli, and S. Patarin

, “Peer Sharing Behaviour in the Edonkey Network and Implications for the

Design of Serverless File Sharing Systems”, the First EuroSys Conference

(Eurosys’2006), Leuven (Belgium), April 2006.

[47] G. Hardin, “The Tragedy of the Commons”, Science, 1968.

[48] D. Hughes, G. Coulson, and J. Walkerdine, “Free Riding on Gnutella Revis-

ited: the Bell Tolls?”, IEEE Distributed Systems Online, vol. 6, no. 6, June,

2005.

[49] M. Iguchi, M. Terada and K. Fujimura, “Managing Resource and Servent

Reputation in P2P Networks”, The 37th Annual Hawaii International Con-

ference on System Sciences (HICSS’04), 2004.

[50] Jabber Web Site, “http://www.jabber.org/”, 2008.

[51] M. Jakobsson and A. Juels, “Proofs of Work and Breadpudding Protocols”,

Proc. Communications and Multimedia Security, September 1999.

[52] M. Jakobsson, A. Juels, “Proofs of Work and Breadpudding Protocols”, The

Communications and Multimedia Security, 1999.

[53] L. Jian and J. MacKie-Mason, “Why Share in Peer-to-Peer Networks?” ,

First Workshop on the Economics of Networked Systems (NetEcon06), 2006.

[54] M. Jovanovic, “Modeling Large-scale Peer-to-Peer Networks and a Case

Study of Gnutella”, Master’s thesis, University of Cincinnati, 2001.

[55] M. Jovanovic, F.S. Annexstein and K.A. Berman, “Scalability Issues in Large

Peer-to-Peer Networks - A Case Study of Gnutella”, Technical Report, Uni-

versity of Cincinnati, 2001.

[56] JXTA Web Site, “http://www.sun.com/software/jxta/”, 2008.

BIBLIOGRAPHY 124

[57] L. Kahney, “Cheaters Bow to Peer Pressure”,

“http://www9.wired.com/news/tecnology/0,1282,41838,00.html”, 2001.

[58] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “Eigenrep: Reputa-

tion Management in P2P Networks”, 12th International WWW Conference,

2003.

[59] S. D. Kamvar, M. T. Schlosser and H. Garcia-Molina, “Addressing the Non-

Cooperation Problem in Competitive P2P Networks”, Workshop on Eco-

nomics of P2P Systems, 2003.

[60] S.D. Kamvar, M.T. Schlosser, and H. Garcia-Molina, “Incentives for Com-

batting Freeriding on P2P Networks”, In Euro-Par, 2003.

[61] M. Karakaya, I. Korpeoglu, O. Ulusoy, “A Distributed and Measurement-

Based Framework Against Free Riding in Peer-to-Peer Networks”, Pro-

ceedings of the IEEE International Conference on Peer-to-Peer Computing

(P2P’04), August 2004.

[62] R. Krishnan, Mi. D. Smith, Z. Tang and R. Telang, “The Impact of Free-

Riding on Peer-to-Peer Networks”, Proceedings of the 37th Annual Hawaii

International Conference on System Sciences (HICSS’04) - Track 7, January,

2004.

[63] A. Kuzmanovic, D. Dumitriu, E. Knightly, I. Stoica and W. Zwaenepoel,

“Denial-of-Service Resilience in Peer-to-Peer File Sharing Systems”, the

ACM SIGMETRICS’05, 2005.

[64] N. Leibowitz, M. Ripeanu, and A. Wierzbicki, “Deconstructing the Kazaa

Network”, The Third IEEE Workshop on Internet Applications, WIAPP

2003.

[65] N. Leibowitz, A. Bergman, R. Ben-Shaul, and A. Shavit, “Are File Swapping

Networks Cacheable? Characterizing P2P Traffic”, Proc. of the 7th Int.

WWW Caching Workshop, 2002.

[66] C. Li, B. Yu and K. Sycara, “An Incentive Mechanism for Message Relaying

in Peer-to-Peer Discovery”, Proceedings of the Second Workshop on the

Economics of Peer-to-Peer Systems, 2004.

BIBLIOGRAPHY 125

[67] Y. Liu, Z. Zhuang, L. Xiao and L. Ni, “AOTO: Adaptive Overlay Topology

Optimization in Unstructured P2P Systems”, The IEEE Global Telecommu-

nications Conference (Globecom), 2003.

[68] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication in

unstructured peer-to-peer networks” , ICS02, USA, June 2002.

[69] R.T.B. Ma, S.C.M. Lee, J.C.S. Lui, and D.K.Y. Yau,“An Incentive Mecha-

nism for P2P Networks”, International Conference On Distributed Comput-

ing Systems, Vol 24, pages 516-523, 2004.

[70] E. P. Markatos, “Tracing A Large-Scale Peer To Peer System: An Hour in

the Life Of Gnutella”, IEEE International Symposium on Cluster Computing

and the Grid, 65-74, May 2002.

[71] J. McCoy, “Mojo Nation Responds”,

“http://www.openp2p.com/pub/a/p2p/2001/01/11/mojo.html”, 2001.

[72] D.S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,

S. Rollins, and Z. Xu, “Peer-to-Peer Computing”, TR, HP Laboratories Palo

Alto, HPL-2002-57, March 8 , 2002.

[73] J.J.D. Mol, D.H.J. Epema, and H.J. Sips, “The Orchard Algorithm: P2P

Multicasting without Free-riding”, The 6th IEEE International Conference

on Peer-to-Peer Computing, IEEE Society Press, 2006.

[74] MS .NET Web Site, “http://msdn2.microsoft.com/en-us/netframework/”,

2008.

[75] Napster Web Site, “www.napster.com/”, 2008.

[76] S. Osokine, “Flow Control Algorithm for Distributed

’Broadcast-Route’ Networks With Reliable Transport Links”,

“http://www.grouter.net/gnutella/flowcntl.htm”, 2001.

[77] OceanStore Web Site, “http://oceanstore.cs.berkeley.edu/”, 2008.

[78] PAST Web Site, “http://research.microsoft.com/ antr/PAST/”, 2008.

[79] Peercast Web Site, “http://www.peercast.org/”, 2008.

BIBLIOGRAPHY 126

[80] PPLive Web Site, “http://www.pplive.com/”, 2008.

[81] Publius Web Site, “http://www.cs.nyu.edu/waldman/publius/”, 2008.

[82] L. Ramaswamy and L. Liu, “Free Riding: A New Challenge to Peer-to-Peer

File Sharing Systems”, Annual Hawaii International Conference on System

Sciences, 2003.

[83] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable

Content-Addressable Network”, The ACM SIGCOMM Conference, 2001.

[84] M. Ripeanu, I. Foster and A. Iamnitchi, “Mapping the Gnutella Network:

Properties of Large-Scale Peer-to-Peer Systems and Implications for System

Design”, IEEE Internet Computing, Journal special issue on peer-to-peer

networking, 6(1), 2002.

[85] J. Ritter, “Why Gnutella Can not Scale. No, Really”,

“http://www.darkridge.com/ jpr5/doc/gnutella.html”, 2001.

[86] C. Rohrs, “Sachrifc: Simple Flow Control For Gnutella”,

“http://www.limewire.com/developer/sachrifc.html”, 2002.

[87] J. Shneidman and D. Parkes, “Rationality and Self Interest in Peer to Peer

Networks”, Proceedings of the IPTPS Workshop, February 2003.

[88] D. Schoder ,K. Fischbach and C. Schmitt , “Core Concepts in Peer-to-Peer

(P2P) Networking”, in: Subramanian, R.; Goodman, B. (eds.): P2P Com-

puting: The Evolution of a Disruptive Technology, Idea Group Inc, Hershey,

2005.

[89] H. Schwetman, “CSIM: A C-based, Process Oriented Simulation Language”,

Winter Simulation Conference, 1991.

[90] SETI@home Web Site, “http://setiathome.berkeley.edu/”, 2008.

[91] A. Singh and M. Haahr, “Topology Adaptation in P2P Networks Using

Schelling’s Model”, The Workshop on Emergent Behaviour and Distributed

Computing, PPSN-VIII, 2004.

BIBLIOGRAPHY 127

[92] S. Saroiu, P. K. Gummadi and S. D. Gribble, “A Measurement Study of Peer-

to-Peer File Sharing Systems”, Proceedings of the Multimedia Computing

and Networking, January, 2002.

[93] S. Saroiu, P. Gummadi, and S. Gribble, “Measuring and Analyzing the Char-

acteristics of Napster and Gnutella Hosts”, Multimedia Systems, vol. 9, no.

2, Springer-Verlag, pp. 170-184 , 2003.

[94] K. Sripanidkulchai, “The Popularity of Gnutella Queries and Its Implications

on Scalability”, www.openp2p.com website, February 2001.

[95] Q. Sun and H. Garcia-Molina,“SLIC: A Selfish Link- based Incentive Mech-

anism for Unstructured Peer-to-Peer Networks”, Proceedings of the 24th In-

ternational Conference on Distributed Computing Systems (ICDCS 2004),

2004.

[96] L. Tang, “Identifying Resource Authenticity in P2P Networks”, The 2nd

International Conference of Applied Cryptography and Network Security

(ACNS), 2004.

[97] The Peer-to-Peer Trusted Library Web Site,

“http://sourceforge.net/projects/ptptl”, 2008.

[98] V. Vishnumurthy and S. Chandrakumar and E. G. Sirer, “KARMA: A Se-

cure Economic Framework for P2P Resource Sharing”, Proceedings of the

Workshop on the Economics of Peer-to-Peer Systems, June, 2003.

[99] UUSee Web Site, “http://www.uusee.com/”, 2008.

[100] B. Yang and H. Garcia-Molina, “PPay: Micropayments for Peer-to- Peer

Systems”, Proc. 10th CCS, V. Atluri and P. Liu (Eds.), ACM Press, pp.

300-310, New York, 2003.

[101] M. Yang, Z. Zhang, X. Li, and Y. Dai, “An Empirical Study of Free- Riding

Behavior in the Maze P2P File-Sharing System”, IPTPS, 2005.

[102] B. Yu and M. P. Singh, “Incentive Mechanisms for Agent-Based Peer-to-

Peer Systems”, Proceedings of the Second International Workshop on Agents

and Peer-to-Peer Computing (AP2PC 2003), July 2003.

