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ABSTRACT

A COMPARATIVE STUDY OF TWO-DIMENSIONAL
MODELING METHODS FOR ELECTROMAGNETIC

SCATTERING DATA

Anirudh S. Srinivasan

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Levent Gürel

September 2007

The aim of this research is to model two-dimensional data encountered in elec-

tromagnetic scattering problems using model-based parameter estimation tech-

niques. Once a highly accurate model is constructed from a few samples, the

model can then be used to interpolate between or extrapolate from the original

samples at any desired point and any number of times, thus reducing the amount

of data needed to be stored in memory or required to be measured. An added

advantage is that the computations required to be carried out on the numerical

samples can instead be carried out on the analytical model, which may reduce

the computational complexity.

It is intuitive that a higher number of terms in the model, increases the accu-

racy, but additionally it has the unwanted effect of increasing the computational

complexity and memory requirement as well. An additional goal, therefore, is to

solve the optimization problem of obtaining a model by maximizing the accuracy

and minimizing the number of terms.

Several modeling techniques are compared in this study, especially those based

on matrix pencil methods. Some techniques for optimizing their performance have

also been suggested. The pros and cons of each method are also discussed. It is

shown that using the suggested techniques provides us with better models, but

some pointers are also provided towards investigating more viable alternatives.

Keywords: Matrix pencil method (MPM), matrix enhancement and matrix pencil

(MEMP) method, 2D modeling, electromagnetic scattering data.
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ÖZET

ELEKTROMANYETİK SAÇILIM VERİLERİNİN
İKİ-BOYUTLU MODELLEME YÖNTEMLERİ İÇİN

KARŞILAŞTIRMALI BİR ÇALIŞMA

Anirudh S. Srinivasan

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Levent Gürel

Eylül 2007

Bu araştırmanın amacı, elektromanyetik saçılım problemlerinde karşılaşılan iki

boyutlu verilerin model tabanlı parametre tahmin teknig̃i kullanarak modellen-

mesidir. Birkaç örnekten oldukça dog̃ru bir model oluşturulduktan sonra, bu

model kullanılarak orijinal örnekler istenilen herhangi bir noktada ve istenilen

sayıda interpolasyon veya extrapolasyon yapılabilir, bu da hafızada depolanması

ve ölçülmesi gereken verilerin sayısının azaltılmasını sag̃lar. Bu yöntemin dig̃er

bir avantajı ise, hesaplamaların numerik örnekler yerine analitik model üzerinde

yapılabilmesidir; bu sayede hesaplamaların karmaşıklıg̃ı azaltılmış olur.

Modeldeki terim sayısının yüksek olması, daha hassas çözüm imkanı sag̃lasa

da, hesaplamanın karmaşıklıg̃ını ve hafıza gereksinimini de arttırır. Bu sebepten

dolayı, bu araştırmanın dig̃er bir amacı ise optimizasyon problemini çözerek, has-

sasiyeti maksimize edip, aynı zamanda terim sayısını minimumda tutmaktır.

Bu çalışmada, özellikle matris kalem metodu olmak üzere bir çok modelleme

teknig̃i karşılaştırılmıştır. Bu tekniklerin performansının arttırılabilmesi için bazı

teknikler önerilmiş, avantajları ve dezavantajları tartışılmıştır. Ayrıca, önerilen

tekniklerin kullanılmasının daha iyi modeller sag̃ladıg̃ı gösterilmiş, fakat uygu-

lanılabilirlig̃i daha yüksek alternatifler geliştirmeye yönelik bazı noktalara da

deg̃inilmiştir.

Anahtar sözcükler : Matris kalem yöntemi, matris geliştirme ve matris kalem

yöntemi, iki-boyutlu modelleme, elektromanyetik saçılım verisi.
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Chapter 1

Introduction

In computational electromagnetics, finding faster and memory-efficient algo-

rithms has always been a requirement for being able to solve large real-life prob-

lems. Electromagnetic scattering problems are a class of frequently encountered

problems requiring the constant need for improved algorithms to achieve the

above-mentioned goals. This includes radar cross section (RCS) calculation of

airborne, stealth, and military targets, especially in the design and optimiza-

tion stages. Bigger and complex geometries are more complicated to solve, typi-

cally involving millions of unknowns and requiring huge computational resources.

Model-based parameter estimation (MBPE) is one technique which promises to

reduce the complexity of the algorithms involved in the solution of such problems.

1.1 Model-Based Parameter Estimation in

Computational Electromagnetics

MBPE is an age-old technique with applications not just limited to electromag-

netics, but in almost all disciplines of engineering and science. MBPE attempts

to approximate the numerical samples of the given data by an analytical model,

whose parameters may be estimated by various methods. A general idea about

1



CHAPTER 1. INTRODUCTION 2

MBPE can be obtained from [1]. The solution of scattering problems usually in-

volves performing multiple computations on the samples of two-dimensional data,

several times and requires to be stored in memory for this purpose. Replacing the

samples of this data by an approximate analytical expression has the advantage

of letting us interpolate between the samples or extrapolate from them at any

desired sampling point and any number of times as required. Thus a fewer val-

ues can be stored in memory and further samples can be obtained as and when

required. Besides, it is generally less complex to perform computations on an

analytical model rather than on the numerical samples. This is especially advan-

tageous for design and optimization purposes. This explains the motivation for

this thesis.

The first challenge is to come up with a model that is most appropriate for

representing the data in question. The next challenge is to choose the most

effective parameter estimation technique to calculate approximate values for the

parameters involved in the model such that the error due to the model is as low

as possible. Typically, the higher the number of terms in the model, the lower the

error will be. But a model with higher complexity may be of little use in most

applications. Hence a trade-off has to made between complexity and accuracy.

However, the advantages of successfully modeling two-dimensional data do

not stop here. Any situation that requires storing two-dimensional data samples

can make use of MBPE to compress the data. Similar applications can be found

not just in other areas of computational electromagnetics such as radar imaging

and array processing, but also in many related areas of computational science

and engineering.

1.2 Contribution

This thesis does not pretend to provide a panacea for the research problem men-

tioned in the previous section, but rather involves a detailed investigation of pos-

sible methods to achieve the posited goal and their advantages and disadvantages.
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Some techniques for optimizing their performance have also been proposed.

In Chapter 2, an account of the types of data that we have used for our ex-

periments is offered. Our investigation about using the matrix pencil method

(MPM) for modelling two-dimensional (2-D) data is described in Chapter 3. An-

other method called matrix enhancement and matrix pencil (MEMP) method is

introduced and its advantages and shortcomings are outlined.

Some techniques to overcome these shortcomings are proposed in Chapter 4

and experimental results are used to show the extent of success of these tech-

niques. It is shown that even though the suggested techniques provide models

with low error levels, it is more advantageous to reduce the complexity of the re-

sulting models. Two optimization techniques are suggested to achieve this goal.

Experimental results are used to illustrate the improvement obtained using these

techniques. Conclusions arrived at and possible directions of the research for the

future are offered in Chapter 5.



Chapter 2

Types of Data Used for Modeling

There are two distinct types of data on which our modeling efforts have been

concentrated, which we shall call real and synthetic data. Since we will be refer-

ring to such data in almost every section of this thesis, a brief explanation about

them is provided in this chapter.

2.1 Synthetic Data

Synthetic data is the data that we create artificially to test the performance of the

modeling method in question. To elaborate, once an analytical model is decided

upon to be more likely to represent a given data, and a modeling method has

been chosen to estimate the parameters of the analytical model, the estimation

accuracy of the modeling method needs to be tested. An obvious method to do

this is to artificially assign arbitrary, yet meaningful, values to the parameters

of the analytical model and to create a synthetic data so that the estimates

obtained from the modeling method can be checked against the original values

given. In general, an arbitrary amount of Gaussian noise is added to this data to

simulate real-life data better. Synthetic data also has the advantage of enabling

a much better comparison of estimation accuracy between different parameter

retrieval methods than real-life data, which may have many inherent problems

4



CHAPTER 2. TYPES OF DATA USED FOR MODELING 5

in addition to noise. Let us now consider the analytical model given below for a

two-dimensional noiseless data.

x(m,n) =
I∑

i=1

Rie
(α1im+j2πf1im)e(α2in+j2πf2in) (2.1)

Equation (2.1) basically expresses the data samples as a weighted sum of I 2-D

(damped) sinusoids at distinct 2-D frequencies. To illustrate creating synthetic

data for testing purposes, Figure 2.1 shows the data created by using the fol-

lowing values for the parameters in Equation (2.1): I = 3; α1 = [0, 0, 0]; α2 =

[0, 0, 0]; f1 = [0.24, 0.24, 0.26]; f2 = [0.26, 0.24, 0.24];
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Figure 2.1: Synthetic data example.
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2.2 Real Data

Although the synthetic data described in the previous section is useful for com-

paring the performance of different parameter estimation methods and choosing

the most accurate one, the actual usefulness of the investigated methods can only

be demonstrated through their applicability for real-life data. The real-life data

that we are interested in modeling is the electromagnetic scattering data from

different shapes and sizes of scatterers—usually the far field components of the

electric-field, Eθ and Eφ which is a two dimensional data with directional depen-

dence on the θ and φ directions. A typical scattering problem is illustrated in

Figure 2.2. It is to be noted here though, that when we refer to ‘real data,’ it

means real-life data and not that the data is composed of real numbers. In fact

real-life data is usually complex valued.

Figure 2.2: A typical scattering problem.
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The usual approach in solving a scattering problem for an arbitrarily shaped

geometry involves using integral equation techniques to solve for the unknown in-

duced current on the object, in combination with the method of moments (MOM)

to solve the resulting linear system. The electric-field integral equation (EFIE)

for a perfectly conducting arbitrary surface can be written as

t̂ · ηT{J(r′)} = −t̂ · Einc(r) (2.2)

where the operator T is given by

T{X(r′)} = ik

{∫

s

dr′g(r, r′)X(r′) +
1

k2

∫

s

dr′∇g(r, r′)∇′ ·X(r′)
}

(2.3)

and

g(r, r′) =
eik|r−r′|

4π|r− r′| (2.4)

is the Green’s function for the scalar Helmholtz equation. Similarly the magnetic-

field integral equation (MFIE) can be written as

−Ωo

4π
I{J(r′)}+ n̂×K{J(r′)} = −n̂×Hinc(r) (2.5)

where the operator K is given by

K{X(r′)} =

∫

s

dr′∇g(r, r′)×X(r′) (2.6)

The combined-field integral equation (CFIE) is written as a linear combination

of EFIE and MFIE,

CFIE = α(r)EFIE + [1− α(r)]MFIE (2.7)

and is known to perform better than either EFIE or MFIE for certain problems

[3]. J(r) in the above equations is the surface current density which is solved for

using either EFIE, MFIE or CFIE and once known, the scattered electric and

magnetic fields can be calculated from it.

Numerical solution of the above integral equations necessitates their dis-

cretization, which is facilitated by the method of moments (MOM). MOM involves

expanding the unknown current density using a set of known basis functions with
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unknown coefficients. The solution of the resulting linear system provides the

coefficient vector. The integral equations mentioned above can also be written as

L{f(x)} = g(x) (2.8)

where L is the linear operator of the equation, f(x) represents the unknown current

distribution function, and g(x), the excitation given [3]. Method of moments

involves expanding the unknown current distribution function in a series of known

basis functions as follows.

f(x) ≈
N∑

n=1

an bn(x) (2.9)

where an is the coefficient for the nth basis function, bn(x). Since it is difficult in

most problems to obtain accurate values of an, the residual error defined by

R(x) = L

{
N∑

n=1

an bn(x)

}
− g(x) (2.10)

is minimized to the extent possible. To facilitate this, another set of functions

tm(x) are used to weight both sides of (2.10) and tested for m = 1, 2, . . . , N as

∫
dx tm(x) ·

N∑
n=1

an L{bn(x)} =

∫
dx tm(x) · g(x) (2.11)

Interchanging the order of summation and integration, a linear system is obtained

as
N∑

n=1

an Zmn = vm (2.12)

where

Zmn =

∫
dx tm · L{bn(x)} (2.13)

and

vm =

∫
dx tm(x) · g(x) (2.14)

Thus choosing appropriate and linearly independent basis functions results in

N linearly independent equations for estimating N unknown coefficients. One of

the most commonly used basis functions for electromagnetic problems is the Rao-

Wilton-Glisson (RWG) function [7], which requires that the surface of the object
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is discretized into small tessellating triangles, since the functions are defined on

adjacent triangles. Figure 2.3 shows the surface of a sphere approximated by

triangular meshing. Iterative algorithms are usually employed at this stage for

solving this linear system efficiently and accurately. Techniques such as the fast

Figure 2.3: Sphere surface approximated by tessellating triangles.

multipole method (FMM) and its multi-level version MLFMA [2] are usually

employed to accelerate the solution time and reduce memory requirements of the

iterative solver. MLFMA proceeds to work by clustering the basis functions and

clustering the clusters in a multi-level fashion and calculating the interactions

between the basis and testing functions by performing operations at each level,

such as aggregation, translation and disaggregation. A detailed explanation of

MLFMA is beyond the scope of this thesis, but a good reference can be found in

[3]. Clustering in MLFMA is accomplished by enclosing the geometry in a virtual

cube and then recursively sub-dividing the cube into many levels of sub-cubes as

shown in Figure 2.3. In other words, the cube enclosing the object is divided into

8 sub-cubes, each of which is sub-divided into 8 sub-cubes and so on until the
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smallest sub-cube is of the size 0.25λ. The scattered field from portions of the

object enclosed by sub-cubes of different sizes can be considered to constitute a

set of scattering data from different sizes of scatterers.

The procedures used for obtaining the results shown in this thesis involved

modeling the scattered field components of the sub-cubes of a 16λ conducting

sphere at a working frequency of 8 GHz. The sphere geometry was chosen because

the scattered field can be calculated analytically. The far-field components Eθ

and Eφ are functions of spherical directional co-ordinates θ and φ, as well as

frequency, but for our experimental purposes, only the directional variation at a

specific frequency has been used as the two-dimensional input data.

A sample real data is shown in Figure 2.4 corresponding to the Eφ component

of a 0.25λ sub-cube of the above-mentioned 16λ sphere.
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Figure 2.4: Real data example: 0.25λ Eφ.



Chapter 3

Modeling Using Matrix Pencil

Methods

Many signals encountered in electromagnetics occur as solutions to differential or

integral equations, describing the physics of the problem or those related analyti-

cally to such signals. Since many of these solutions involve complex exponentials,

they are a natural choice of basis functions for formulating an analytical model

of the desired signal. Yıldırım in [8] dealt with describing one-dimensional sig-

nals using the following model, which is basically a sum of weighted complex

exponentials.

y[k] =
M∑
i=1

Ri eαik+j2πfik

=
M∑
i=1

Ri zk
i (3.1)

In the above equation, k is the sampling index, M is the number of expo-

nentials, Ri is the coefficient associated with the complex exponential zi. Once

the exponential set z is known, the equation becomes a simple linear system and

the residuals can then be solved for, using the method of least squares among

other possible methods. Among the methods available for estimating the complex

exponentials zi, the matrix pencil method (MPM) is said to be computationally

11
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efficient and highly tolerant to noise [4]. Sarkar in [5] describes using MPM for

estimating the parameters of a sum of weighted complex exponentials. For any

two n-by-n matrices, A and B, the set of all matrices of the form A − λB with

λ ∈ C, is said to be a pencil [6]. MPM attempts to construct a matrix pencil

using the one dimensional data samples such that the generalized eigenvalues of

the pencil becomes equivalent to the complex exponentials of (3.1). Thus given

a set of one dimensional data samples, we can use MPM to obtain the complex

exponential set yi and then solve for the residuals Ri using the method of least

squares, thus obtaining an analytical model for the given samples.

Figure 3.1: Working of MPM.

Yıldırım, in his thesis [8] shows that MPM is a very effective and efficient tool

for obtaining highly accurate models of one dimensional signals. It is therefore,

understandably tempting, to try using MPM for modeling two dimensional data.

This chapter describes our investigation in this direction.

3.1 Two-Dimensional Modeling Using MPM

It is perhaps intuitive that if a one-dimensional signal requires one set of complex

exponentials (poles) to construct a highly accurate model, a two-dimensional

signal would require two such related sets. Thus Equation (3.1) can be modified
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to incorporate another set of exponentials to describe the second dimension, as

follows.

X[m,n] =
I∑

i=1

K∑

k=1

Rik e(α1im+j2πf1im) e(α2kn+j2πf2kn)

=
I∑

i=1

K∑

k=1

Rik ym
i zn

k (3.2)

As before, m and n are the sampling indices in each direction. I is the

number of complex exponentials yi associated with the first dimension and K

is the number of exponentials zi for the second dimension. Rik are the weights

(coefficients) associated with each ‘pair’ of poles. Assuming that this equation

would be able to accurately represent a given two-dimensional signal, the next

step is to obtain the estimates of the parameters y and z.

A two-dimensional data matrix of size M × N is basically a set of M row

vectors or a set of N column vectors, with each vector being an individual signal.

As mentioned in the previous section, MPM can be employed to find the charac-

teristic complex exponentials of such a one-dimensional signal. This means, for a

given two-dimensional signal, we would be able to find M ×N complex exponen-

tial sets if one were to perform MPM on each row and each column. This would

be a huge set of exponentials that would increase the complexity of the model.

What is needed is just one set of exponentials corresponding to each dimension

of the data.

One simple solution is to arbitrarily pick one set of exponentials obtained

from one of the rows and another from one of the columns, thus being able to

incorporate the characteristics of both dimensions of the data into the model and

also retaining a lower level of complexity. Once y and z have been obtained, the

residuals can be calculated using the method of least squares. It is to be noted

here that if complexity could be tolerated, a brute force optimization could be

done to select the best set of poles, y and z, that give the least error in modeling.

Figure 3.2 shows a schematic of the method just described.
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Figure 3.2: Schematic of two-dimensional MPM.

3.1.1 Results and Discussion

The following are the results of modeling the Eφ component of a 0.25 λ cube,

part of a 16 λ sphere data. The data is sampled with 41 points in φ and 21 points

in θ. MPM was used on the 40th row, corresponding to φ=351◦, to obtain 10

complex exponentials and on the 20th column, corresponding to θ=171◦ to obtain

20 poles. Figure 3.3 shows the real and imaginary parts of the original data,the

obtained model and the absolute error. Figure 3.4 shows a similar plot for the

magnitude and phase of the data, model and absolute error. It is obvious from

these plots that the model obtained closely resembles the original signal. The

error is about two orders of magnitude lower than the signal.
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Although these plots show just the absolute error, the best way to judge the

performance of a modeling method is using the relative error. For the above

results, the relative error at the point of maximum absolute error was approxi-

mately 1.3%. Figures 3.5 and 3.6 show similar plots for a 0.5λ cube data. As

can be seen from the first set of results, we are able to obtain models with er-

rors as low as nearly 1% using this modeling method. Another advantage of this

modeling method is its simplicity and low computational cost.

However, the accuracy of the models obtained is still not sufficient for most

applications. Even though we were able to obtain nearly 1% error for the first

set of data, we were able to reach only 10% for the second set. Experiments were

conducted on different sets of data, but in all cases, we were not able to obtain

errors below the threshold of 1%. Using such models (even the 1% ones) might

distort the accuracy of the parent algorithm. At the same time though, if loss in

accuracy can be tolerated over the need for reducing memory requirements, this

method might be suitable. Another disadvantage of this method is that we have

limited control over the reduction of the error.

3.2 Two-Dimensional Modeling Using MEMP

The method described in the previous section attempts to obtain one set of com-

plex exponentials describing the characteristics of the data in one dimension and

another set corresponding to the other direction, but an approximation is made

when we choose the exponentials obtained from only one row/column to model

the rest of the data as well. As can be clearly seen from the results, this approx-

imation affects the accuracy of the models obtained at the end.

Yingbo Hua, in [9] describes a new method called the matrix enhancement

and matrix pencil (MEMP) method to obtain two ‘related’ sets of complex ex-

ponentials that could model the two-dimensional data as a whole. This method

could possibly be called the two-dimensional extension to MPM.

In the case of MPM, the challenge was to construct a ‘matrix pencil’ such that
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Figure 3.7: Schematic of MEMP.

its generalized eigenvalues turn out to be the complex exponentials of Equation

(3.1). For MEMP, the challenge is to construct two such matrix pencils, so

that the generalized eigenvalues of each pencil would correspond to the complex

exponential sets y and z respectively as in Equation (3.3).

X[m,n] =
I∑

i=1

Ri eα1im+j2πf1im eα2in+j2πf2in

=
I∑

i=1

Ri ym
i zn

i (3.3)

It is to be noted here that the model that MEMP uses has equal number of

exponentials for both dimensions, unlike the method described in the previous

section. The ‘matrix enhancement and matrix pencil’ method is called so be-

cause it attempts to enhance the rank condition of the given data matrix by a

partitioning-and-stacking process before constructing the matrix pencils. This is

done to increase the efficiency and accuracy of estimation of the two sets of com-

plex exponentials. These poles can be obtained from the principal eigenvectors

of the enhanced matrix by the construction of two related matrix pencils. The

following schematic in Figure 3.7 describes this method visually.
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3.2.1 The ‘Pairing’ Problem

The keyword here though, is to obtain two ‘related’ sets of complex exponentials.

What this means is that, there is a one to one correlation between yi and zi

according to the model and that it is not just enough to obtain the two sets of

poles, but it is also equally important to know the correlation between them.

The MEMP method obtains the complex exponentials corresponding to each

dimension separately and then attempts to use a ‘pairing’ technique to relate

the two together. However, this pairing technique does not always provide us

with the correct and reliable pairs, especially in the case of noisy data or real

time data. This, as we shall see, poses the biggest challenge in using the MEMP

method directly to find the parameters of our model. To illustrate this, let us

consider the synthetic data shown in Figure 2.1, constructed using the model in

Equation (2.1) with the same parameters. White gaussian noise of SNR = 20 dB

is added to this data and MEMP is used to estimate the poles.

Figure 3.8: Inconsistent and wrong pairing by MEMP.
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Figure 3.8 shows 200 independent estimates for the three 2-D frequencies for

K = 10; L = 10. As can be seen, MEMP manages to estimate the poles to a

reasonable level of accuracy, but ends up with a wrong pair (0.26,0.26) several

times.

This inconsistent pairing manifests in very high error levels (as much as 100%)

when MEMP is applied for modeling real data. Some methods and techniques

that we have investigated towards overcoming this problem are discussed in Chap-

ter 4.

3.3 Two-Dimensional Modeling Using Methods

Similar to MEMP

The pairing problem encountered by MEMP is well documented in the literature.

We investigated a few other 2-D harmonic retrieval methods that purportedly

overcome this pairing problem, but we realized that all those methods apply only

for synthetic data.

The modified MEMP [12]–[13] method by Chen, et al., attempts to construct

the second matrix pencil using the generalized eigenvectors from the first matrix

pencil, such that the generalized eigenvalues obtained, turn out to be in the

correct paired order with respect to the first set of poles. This method works

perfectly well for artificial data, but fails miserably for real data.

The 2-D ESPRIT method [14]–[15], the algebraically coupled matrix pencils

(ACMP) algorithm [16], the diagonal matrix pencil (DMP) method [17] are a

few other methods similar to MEMP that either attempt to overcome the pairing

problem or use similar techniques to estimate the complex exponentials. However,

just like the modified MEMP method, these methods fail for real data, even if

their performance for artificial data is good. Without showing any results at this

point, we shall just state here that the MEMP method provides a better quality

of estimates than these other methods.



Chapter 4

Optimizing the MEMP Method

In the previous chapter, we saw that the MEMP method and other similar meth-

ods for two-dimensional harmonic retrieval suffer from the ‘pairing’ problem.

Even though some alternative pairing methods in the literature work perfectly for

artificial data, they fail for real data, especially the scattering data that we would

like to model. In this chapter, we discuss methods that we have investigated for

overcoming this pairing problem and thus enabling us to use this method for our

modeling purposes.

4.1 Cross-Pairing

One obvious way to overcome the pairing problem is to ‘cross’ the two sets of

complex exponentials, so that we obtain a set of all possible combinations of the

exponential sets, as described in Figure 3.1. In other words, we cross I sets of y’s

and z’s obtained from MEMP to acquire I2 pairs, which will include the ‘best’

exponential pairs, i.e., the ones that characterize the data as closely as possible.

However, we now have to calculate I2 residuals using the method of least squares.

It is worth noting here that cross-pairing is basically similar to modifying our

model as in Equation (3.3) into Equation (3.2), with K being equal to I this

23
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CROSSING

{[(y1,z1), (y1,z2), (y1,z3), …, (y1,zi), … (y1,zI)],

[(y2,z1), (y2,z2), (y2,z3), …, (y2,zi), … (y2,zI)]

………………

……………...

[(yi,z1), (yi,z2), (yi,z3), …, (yi,zi), … (yi,zI)]

……………..

……………..

[(yI,z1), (yI,z2), (yI,z3), …, (yI,zi), … (yI,zI)]}

y1

y2

y3

.

.

.

yi

.

.

.

yI

z1

z2

z3

.

.

.

zi

.

.

.

zI

‘I
2
’ Pairs

Complex Exponentials from MEMP

Figure 4.1: Cross-pairing complex exponentials obtained from MEMP to over-
come the pairing problem.

time. Instead of a single summation, we now have a double summation making

sure that each and every y is paired with each and every z.

Figure 4.2 shows the results of modeling by cross pairing the MEMP exponen-

tials on a 0.25λ Eφ data sampled with 41 points in φ and 21 points in θ direction.

As can be clearly seen, the error decreases gradually as we increase the number

of terms, I. Figure 4.3 shows a similar result for the Eθ component. The size of

the scatterer, that is, the size of the sub-cubes from which the scattered data is

obtained is gradually increased from Figures 4.4 to 4.9.

The advantage of such a technique is clearly obvious in the results shown

below. Until this point we had utmost 1% relative error for even simple data,

but as can be seen in the following plots, we can now reach error levels as low as

10−6 (relative) in some cases. The second advantage is that we now have control

over the error levels. In other words, if 0.1% error is sufficient for a particular

application, we can limit the number of complex exponentials used in the model

thereby reducing its complexity.
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As obvious as the advantages of this technique were, the disadvantage is also

apparent. We now have a much greater number of terms in the model than in

previous cases. Crossing 10 complex exponentials from each dimension leads us to

100 terms in the final model. Therefore the complexity grows with I2 instead of

I. This liability in some ways overshadows the other advantages since it may not

be worthwhile to apply this model in some applications. The following sections

describe a couple of optimization techniques that we have investigated to reduce

number of terms in these low error models.

Another problem that we have encountered is that, as the complexity of the

data becomes higher, that is, as we try to model the scattering data from bigger

sub-cubes, it gets more and more difficult to model. As can be seen from the

plots above, to reach a particular relative error level for a 1.5λ data, we need

many more terms in the model when compared to a 0.25λ data. For increasing

the applicability of these modeling techniques, solving this problem would open

many doors. But this is beyond the scope of this thesis and is left as future work.

Before we can have a look at the optimization techniques, let us have a brief

look at the effect of sampling.

4.2 Effect of Sampling

An important point to consider at this juncture is the sampling rate at which

the data that we would like to model is sampled. We have to ensure that the

sampling rate is sufficient enough for MEMP to be able to resolve all available

frequency components. If the sampling is insufficient to resolve even one or two

frequency components, then the error would be very high even with cross-pairing

and that cannot be brought down.

For the real data used in the experiments mentioned in this thesis, since there

is no prior information on all the exact frequency components available in the

data, as would be the case for most real data, we have come up with a method

to determine if the sampling is enough for MEMP or not. Figure 4.10 shows the
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highest frequency corresponding to one of the dimensions, resolved by MEMP for

the same data sampled at different rates. Basically what we have done here is to

plot the damped signal corresponding to the highest frequency term in the model

without considering the residuals. The data is the Eφ component of a 2λ cube

data and the sampling with 161 φ points and 81 θ points is considered as the

reference data. As is easily understandable from the figure, for the higher sam-

pling rates, MEMP resolves the highest frequency present in the reference data

as well, but for lower sampling rates it is not able to resolve those components. If

we use such lower sampling rates and expect MEMP and cross-pairing to provide

us with good models, then we are bound to be disappointed. Figure 4.11 shows

a similar figure for the frequencies corresponding to the second dimension of the

data and the same conclusions can be drawn for this case too.

0 50 100 150 200 250 300 350 400
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∆
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∆
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∆
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=8; 21x11

∆
s
=16; 11x6

Figure 4.10: Highest frequency resolvable by MEMP for the first dimension at
different sampling rates, for a 2λ Eφ data.
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Figure 4.11: Highest frequency resolvable by MEMP for the second dimension at
different sampling rates, for a 2λ Eφ data.

4.3 Methods for Reducing the Number of

Terms

As mentioned in Section 4.1, cross-pairing helps us obtain models with very low

error levels, but increases the complexity of the model due to the huge number of

terms involved. Common sense dictates that, after cross-pairing, there would be

many unnecessary frequencies in the model which would have little or no effect

at all. The complexity of the model can be vastly reduced by removing these

complex exponentials with very limited compromise on the error levels. Besides,

we can obtain a better control over the trade-off between complexity and accuracy

of the models.

Two techniques that we have investigated to achieve this above-mentioned

goal are described in the following sections.
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4.3.1 Successive Removal of the Smallest Residual

Frequency Pair

While obtaining the residuals for the cross-paired complex exponentials, the

method of least squares gives us a very good indication as to which frequencies

are more important to the model and which frequencies are not, by intelligently

allotting higher weights to those frequencies which have a more important con-

tribution towards the model and lower weights to unnecessary terms.

Figure 4.12: Schematic diagram: successive removal of the smallest residual fre-
quency pair (SRSRFP).
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This makes it easier to filter out those frequencies which have limited con-

tribution to the model. Therefore an intuitive method to reduce the number of

terms in the model obtained after cross-pairing would be to simply remove those

complex exponentials associated with the smallest residuals. We have developed

a simple iterative algorithm to implement this idea as described below.

To illustrate the problem in hand, let us assume that we have a model with I2

pairs by cross-pairing I number of complex exponentials obtained from MEMP.

The goal now is to reduce the number of poles from I2 to a lower value such

that the accuracy is not affected too much. The first step is to sort the I2

residuals in the descending order and start removing the poles associated with

the residuals at the bottom of the list, one by one. Each time we remove a

pole the values of the other residuals should be re-calculated so as to distribute

the weights between the available frequencies. The error due to the new model

should also be evaluated at each step. This procedure is carried out iteratively

until a satisfactory compromise has been obtained between the number of terms

and the error level. We now have a better control over the model’s accuracy and

complexity, meaning that we can use as smaller a number of exponentials as is

necessary for a desired accuracy.

4.3.2 Results and Discussion

As can be seen from the plots below, this method helps us obtain low-error models

with a much lower number of terms, compared to cross-pairing. Another way to

look at the results is that for the same level of accuracy as obtained with cross-

pairing, we can now use lesser number of complex exponentials. For example, in

Figure 4.13, the error obtained with 625 terms using cross-pairing can now be

obtained with less than half of that number, after removing the terms with the

smallest residuals. Similar improvements can be seen in the other plots as well,

each corresponding to a slightly bigger size of the scatterer. Although this seems

like a very reasonable improvement, further improvement is usually desirable

for most applications. Thus we have resorted to a more scientific optimization

technique as described in the next section.
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4.3.3 Genetic Algorithms

As can be gathered from the previous sections, we have an optimization problem

at hand. Cross-pairing results in a huge pool of complex exponential pairs from

which we can pick a limited number to provide us with a model with a desired

accuracy. In other words, we have to minimize the number of terms required in

the model, while maximizing the accuracy that can be obtained with a particular

number of terms. We have resorted to genetic algorithms to resolve this issue.

A genetic algorithm is a global optimization technique inspired by the field of

evolutionary biology to find exact or approximate solutions to search and opti-

mization problems in computational sciences [18]. It is a sophisticated optimiza-

tion technique which optimizes a function to a specified criterion and is widely

used in many science and engineering problems. It is implemented as a computer

simulation where candidate solutions to a given optimization problem are ab-

stractly treated as citizens in a generation who evolve towards better solutions in

each successive generation. The worthiness of each citizen is evaluated by a cost

function which tries to find the citizen with the optimal cost. The characteristics

of the citizens are modified in each successive generation by algorithms inspired

by evolutionary biology concepts such as mutation, inheritance, crossover etc.

The algorithm is expected to have found an optimal solution when it converges,

i.e., there is little or no improvement in cost for several successive generations. It

may also be prematurely terminated when a desired cost is achieved or when the

maximum number of generations has been reached. More information on genetic

algorithms can be obtained from [18].

For our application, the objective is to select the best iy number of complex

exponential pairs from ix = I2 pairs resulting from cross-pairing. The total

number of ways in which, iy objects can be chosen from ix objects is given by

the combination function, ixCiy, which gives the total number of combinations of

pairs possible. This is a very huge number as illustrated below. If we obtain 25

pairs from MEMP, obtain 625 pairs by cross-pairing them and need to select 50

pairs from this 625, we could possibly obtain 625C50 which is nearly 1074 possible

sets, each with 50 pairs. Each such set of 50 pairs constitutes a candidate solution
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Figure 4.21: Using genetic algorithms to reduce the number of terms in the model.

to our problem and hence is a citizen of the general population which includes

all such possible sets. The cost function ascertains which of these sets are worth

more, by evaluating the error due to the model obtained by using the said set of

pairs. The best citizen at the end of the simulation is the one which provides the

least error possible with 50 pairs.

The parameters controlling the accuracy and performance of such a simulation

include the following. Pool size (ps) specifies a subset of the general population to

initialize the algorithm. Mutation rate (mr) specifies the rate at which mutation

occurs from one generation to the other. Maximum number of generations (igen)

until which the simulation is to be run is another required parameter. Certain

other parameters have been set to constant default values for all our simulations.

4.3.4 Results with Genetic Algorithms

Figures 4.22 to 4.29 illustrate the improvement provided by using genetic algo-

rithms for our modeling purposes. The number of terms in the model has now

been reduced significantly compared to the models obtained after cross-pairing.
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The reduction is much more significant than those provided by the method de-

scribed in Section 4.3.1. For example, let us consider the case of a 0.25λ cube

data’s Eφ component as shown in Figure 4.22. The minimum error obtained

by cross-pairing 25 MEMP pairs, i.e., 625 terms can now be obtained with only

200 terms. Thus we have a less complex model providing a low error level. If a

compromise on the accuracy can be tolerated, we can use a still lesser number of

terms in the model. Basically, this means that we have very good control over

the trade-off between complexity and accuracy. Results obtained from different

sizes of scatterers are shown in Figures 4.23 to 4.29 with the size of the scatterer

being increased gradually. It can be clearly seen that genetic algorithms provide

significant improvement from cross-pairing for all the cases.

However, this method is not without its disadvantages either. The price we

have to pay to obtain such low error models with less complex models is the

increase in computational complexity. The cost function which incorporates a

least squares routine to evaluate the modeling error is called for each member of

the specified pool and for each generation of citizens. Thus the complexity of using

genetic algorithms increases with the product of the pool size and the number

of generations. This is counter-effective because higher number of generations is

required to reach convergence or at least lower levels of errors. Higher number of

citizens in the pool also signifies a better chance of convergence. Nevertheless, if

an application requires a low error model to be used over and over again and can

tolerate a one-time complexity in the modeling phase, this method can prove to

be very useful.
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Chapter 5

Conclusion and Future Work

In this thesis, we have presented a couple of methods to model two-dimensional

electromagnetic scattering data and proposed some techniques to improve the effi-

ciency of these methods. In Chapter 2, we have introduced the types of data that

we have used for our experimental purposes. Synthetic data has been used for

benchmarking the effectiveness of the two-dimensional harmonic retrieval meth-

ods available in the literature. We have used real data to evaluate and compare

the performance of the various methods presented in the rest of the chapters.

The way we obtain both these types of data has been explained.

The matrix pencil method has been introduced in Chapter 3 and its applica-

tion to one-dimensional modeling has been explained. We have proposed a new

method to apply MPM for two-dimensional modeling purposes. The pros and

cons of such a technique have been discussed. The matrix enhancement and ma-

trix pencil method has been introduced as an alternative to solve the problems

experienced with using MPM for two-dimensional modeling. The ‘pairing’ prob-

lem of the MEMP method has been explained as a bottleneck stopping us from

being able to use it effectively. A note on a few other similar two-dimensional

harmonic retrieval methods has been provided. In Chapter 4, we have proposed

new methods and techniques to overcome the bottleneck mentioned in the pre-

vious paragraph. We have proposed cross-pairing to overcome MEMP’s pairing

problem. We have also shown that we are able to obtain low-error models using
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cross-pairing using experimental results. The pros and cons of this technique have

been discussed and the need for reducing the complexity of the model has been

mentioned. A short note on the effect of sampling has been provided. Two tech-

niques have been proposed to reduce the number of terms in the model obtained

with cross-pairing.

Successive removal of the smallest residual frequency pair has been proposed

as a method to retain the low error models provided by cross-pairing, but with

a much smaller number of terms in the final model, thus reducing its complexity

while retaining the accuracy. Experimental results have been provided and the

effectiveness and shortcomings of this method have been discussed. Genetic algo-

rithms have been introduced as an effective optimization technique to minimize

the complexity of the models while maximizing the accuracy to the extent possi-

ble. The details of such an implementation have been provided and the price to

be paid for its advantages has been discussed. The improvement obtained using

genetic algorithms from the results of cross-pairing has been illustrated clearly

using experimental results.

Although we have proposed effective modeling techniques, some additional

work is required for improving the efficacy of these methods before applying

for real-life problems. More viable alternatives may be possible and need to be

researched. One possible future direction of research could be to change the basis

functions used in the model. All the methods investigated in this thesis involved

using complex exponentials as the basis functions. Although the validity of this

choice has been described in Chapter 3, using different basis functions such as

spherical harmonics might prove to be a more appropriate choice, especially for

scattering data.

To sum up, in this thesis we have provided an insight into modeling two-

dimensional electromagnetic scattering data especially using methods based on

the matrix pencil method. The advantages of various methods, bottlenecks en-

countered, ways to overcome such problems, techniques to optimize their perfor-

mance and their applicability have been discussed in detail. This thesis should

provide a substantial basis for future directions of research to obtain more viable
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modeling techniques or, improve the methods discussed so as to apply them to

real life problems.
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