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ABSTRACT

FEATURE POINT CLASSIFICATION AND

MATCHING

Avşar Polat Ay

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Levent Onural

August 2007

A feature point is a salient point which can be separated from its neighborhood.

Widely used definitions assume that feature points are corners. However, some

non-feature points also satisfy this assumption. Hence, non-feature points,

which are highly undesired, are usually detected as feature points. Texture

properties around detected points can be used to eliminate non-feature points

by determining the distinctiveness of the detected points within their neigh-

borhoods. There are many texture description methods, such as autoregressive

models, Gibbs/Markov random field models, time-frequency transforms, etc.

To increase the performance of feature point related applications, two new fea-

ture point descriptors are proposed, and used in non-feature point elimination

and feature point sorting-matching. To have a computationally feasible de-

scriptor algorithm, a single image resolution scale is selected for analyzing the

texture properties around the detected points. To create a scale-space, wavelet

decomposition is applied to the given images and neighborhood scale-spaces

are formed for every detected point. The analysis scale of a point is selected

according to the changes in the kurtosis values of histograms which are ex-

tracted from the neighborhood scale-space. By using descriptors, the detected
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non-feature points are eliminated, feature points are sorted and with inclu-

sion of conventional descriptors feature points are matched. According to the

scores obtained in the experiments, the proposed detection-matching scheme

performs more reliable than the Harris detector gray-level patch matching

scheme. However, SIFT detection-matching scheme performs better than the

proposed scheme.

Keywords: Feature Point Elimination, Feature Point Matching, Digital Video

Processing, Feature Point Detection, Feature Points.
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ÖZET

ÖZNİTELİKLİ NOKTA SINIFLANDIRMASI VE EŞLEMESİ

Avşar Polat Ay

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Levent Onural

August 2007

Bir öznitelikli nokta belirgin bir noktadır; etrafındaki diğer noktalardan

ayrılabilir. Sıkça kullanılan tanımlarda öznitelikli noktaların köşeler olduğunu

varsayılır. Ne yazık ki bazı öznitelikli olmayan noktalar da bu varsayıma

uyar. Dolayısıyla, istenmeyen öznitelikli olmayan noktalar da öznitelikli

noktalar gibi algılanabilir. Algılanan noktaların etrafındaki doku nitelikleri

öznitelikli olmayan noktaların ayıklamasında kullanılabilir. Bunun için nok-

taların etrafındaki doku özellikleri kullanılarak komşularından ayrılabilirlikleri

bulunur. Çok sayıda doku betimleme yöntemi vardır, örneğin, özbağlanım

modelleri, Gibbs/Markov rastgele alan modelleri, zaman-sıklık dönüşümleri,

vs. Öznitelikli noktalarla ilişkili uygulamaların başarımlarını arttırmak için iki

yeni nokta betimleyici önerilmektedir. Bu betimleyiciler öznitelikli olmayan

noktaların ayıklanmasında ve öznitelikli nokta sıralanması ile eşlenmesinde

kullanılır. Betimleyici algoritmasının bilgiişlem yükünü katlanılabilir bir

seviyede tutmak için algılanan noktaların etrafındaki doku özelliklerinin

çözümlemesinde tek bir resim çözünürlüğü seçilmiştir. Çözünürlük-uzayı

yaratmak için verilen resimlere dalgacık ayrışımı uygulanmıştır ve her

nokta için komşuluk çözünürlük-uzayı oluşturulmuştur. Bir noktanın
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çözümleme çözünürlüğü komşuluk çözünürlük-uzayından çıkartılan histogram-

ların kurtosis değerlerindeki değişimlere göre seçilmektedir. Betimleyici

kullanılarak algılanan öznitelikli olmayan noktalar ayıklanmakta, öznitelikli

noktalar sıralanmakta ve geleneksel betimleyiciler eklenerek öznitelikli nok-

talar eşlenmektedir. Deneylerden elde edilen sonuçlara göre, önerilen

algılama-eşleme yöntemi Harris algılama ve gri-tonlu bölge betimleme temelli

yöntemlerden daha güvenilirdir. Ancak deneylerde SIFT algılama-eşleme

yönteminin önerilen yöntemden daha başarılı sonuçlar verdiği gözlenmiştir.

Anahtar Kelimeler: Öznitelikli Nokta Ayıklaması, Öznitelikli Nokta Eşlemesi,

Sayısal Video İşleme, Öznitelikli Nokta Algılanması, Öznitelikli Noktalar.
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Chapter 1

Introduction

Feature point detection is one of the vital topics in image processing. Ad-

vancements in feature point detection techniques directly affect many open to

research areas such as 3D scene reconstruction, object recognition, image reg-

istration, etc. Though the literature on feature point detection can be dated

back to the late 70’s, there is still no universal feature point detector. Currently

the most widely used detector was designed in the late 80’s. It has evolved

since then but it is still far from an ideal universal feature point detector.

1.1 Feature Point Detection Concepts

A feature point is a salient point, which can be easily separated from the

surrounding pixels. The most intuitive feature (or salient) points are corners

in an image. There have been many different detectors to accurately localize

such points. They can be initially separated into two groups: the detectors

which operate on black and white edge contours, and, the ones which operate

on gray-level images. We can also include the detectors which operate on

color images but these detectors are essentially extensions of their gray-level
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counterparts. As a result, color image detectors are not counted as a separate

class.

After broadly categorizing the feature point detection algorithms, we are

going to introduce the detectors which are the milestones of the feature point

detection literature. During the introduction we are going to explain some

of the detectors in more detail. We begin with the gray-level feature point

detectors.

An early feature point detector in this class was designed by Moravec to

detect corners[14]. The detector basically measures the directional variance

around a pixel. To measure the directional variance, correlations in the neigh-

boring blocks around pixels are computed. By doing this directional derivatives

around pixels are implicitly measured. As a result, this detector is known as

the first derivative-based feature point detector or “interest point detector” as

Moravec named it.

The Moravec’s detector was followed by Kitchen and Rosenfeld’s detector

[15]. They noticed that corners lay along edge intersections. They proposed

that the corner detection accuracy might increase if the edges in the image

were detected and used for eliminating non-corner points. To implement the

detector, they combined a directional derivative based detector with an edge

detector. The corner detection performance was increased as a result of this

restriction.

The Moravec’s detector had a serious drawback; the detector was limited

by a small number of derivative directions. Moravec used 45 degrees shifted

windows in the estimation of the correlation. This shifting scheme limits the

derivative directionality. As a result, Moravec’s detector misses arbitrarily

aligned corners. In the late 80’s Harris and Stephens analytically solved the

problem of direction limitation and modified the Moravec’s detector. In their
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paper [16], Harris and Stephens showed that there was a strict relation be-

tween directional variance measure and local autocorrelation of an image patch.

Moreover, they also proved that by using the gradients of an image, local auto-

correlation function can be approximated for small shifts, instead of 45 degree

shifts. Besides, they also showed that the gradient of an image, that can be

used in approximation of the local autocorrelation function, could be estimated

from both vertical and horizontal first-degree partial derivatives. With all of

these observations and approximations, they estimated the directional vari-

ance measure and the local autocorrelation function for small shifts according

to:

E(x, y) = [x y]M [x y]t, (1.1)

M =


 A C

C B


 ; A = (

∂I

∂x
)2, B = (

∂I

∂y
)2, C =

∂I

∂x

∂I

∂y
. (1.2)

In the equations x and y represent image coordinates, M represents the Hes-

sian matrix, E represents cumulative directional variance and I represents the

image intensity. The details about the variables and derivations can be found

in [16].

Due to practical reasons, they used the matrix M to find corners, instead

of using E(x, y). The eigenvalues (a, b) of M are proportional to the principle

curvature of the local autocorrelation function. The principle curvature and,

indirectly, the eigenvalues of M , define whether a pixel is on a flat region, edge

or corner. Nevertheless, due to the difficulties in computation of eigenvalues,

the determinant and trace of M are used in the computation of the cornerness

function R, where

R = det(M)− k × Tr(M), det(M) = AB − C2, T r(M) = A + B. (1.3)

In this equation det(M) and Tr(M) are determinant and trace of matrix M ,

respectively; k is a constant which depends on various properties of image such

as its contrast. The value of R, which is the cornerness measure, is computed
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for each pixel of an image. Then the local maxima, which are greater than a

positive threshold, are chosen as corners.

Due to the analytical and computational limitations, as previously ex-

plained, they left the detector incomplete. Three years after Harris and

Stephens published the detector, Tomasi and Kanade finished the incomplete

work [17]. In the Harris corner detector eigenvalues were not computed due

to computational complexity and reliability. However, in the gradient-based

corner detection, the eigenvalues of the Hessian matrix give the most impor-

tant cues about the cornerness of a pixel. So, in the Tomasi-Kanade corner

detector, primarily, the Harris corner detector is applied to the image in order

to reduce the computational load. Then, for each candidate corner, the eigen-

values of the matrix M are computed. After that a histogram is generated

from the minimum of the eigenvalue pairs. Consequently, the histogram is

examined for a breaking point. The breaking point defines the threshold for

candidate pixels elimination. The detector selects the pixels with the minor

eigenvalue greater than the threshold and sorts them in decreasing order. The

sorting is very important because when the minimum eigenvalue is higher, the

pixel becomes more reliable. Hence, matching starts from the top of the sorted

corner list.

The detectors explained above use partial derivatives or derivative approx-

imations to calculate surface curvature of the gray-level images. It should be

noted that there are also other algorithms which use similar techniques to solve

the feature point detection problem, given in [18], [19], [20], [21], [22], [23], [24].

In the mid 90’s Lindeberg introduced a semi-automatic derivative-based

multi-resolution feature point detection algorithm [27]. Mainly the detector

creates a Gaussian pyramid from an image. Then it chooses points which are

maximum along the scale direction. With this detection scheme one can not

only detect a feature point but also select a validity scale in which matching
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should be done. This was one of the leading multi-resolution feature point

detection schemes and inspired many researchers.

In the early 2000, Scale Invariant Feature Transform (SIFT), another multi-

resolution feature point detector, was introduced by Lowe[25]. SIFT is a multi-

scale feature point detection scheme. In SIFT, all of the scales are searched to

find the interest points which are both spatial and scale local extrema.

The method starts with creating a form of scale-space. The SIFT’s scale-

space is produced from octaves. Octave intervals are either half or double of

the previous or next octave, respectively. Octaves are generated by convolving

the original image with a Gaussian Kernel (or basis). Each octave interval is

divided into “s” many scales by convolving with another Gaussian kernel, but

scales are not downsampled after the convolution. All of the images in an oc-

tave interval have the same resolution. Images are downsampled when moving

from one octave to a lower one. After the scale-space is created, the adjacent

scales in an octave are subtracted from each other to form the difference of

Gaussian image. After that the feature points are detected by comparing the

points with their spatial and scale neighbors. The points, which are local ex-

trema in both scale and space, are selected as feature points. To accurately

localize feature points a 3D quadratic function is fitted to the neighborhood

of the detected corners. The quadratic function also helps to achieve subpixel

resolution.

After the SIFT detector another multi-resolution feature point detector,

Harris-Laplacian corner detector, was introduced by Mikolajczyk et.al [26].

The Harris-Laplacian corner detector treats values of each pixel locations on

an image as a 1D signal in the scale dimension. Initially, Harris-Laplacian

feature point detector detects corners by using Harris corner detector. Then,

scale properties of each corner are determined by convolving each scale with a

specific function and investigating 1D response with respect to scale as shown
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in Figure 1.1. Then the scale that the maximum of 1D signal occurred is

selected as the characteristic scale, which is used for setting a common scale

between the different views of the same scene as Lindeberg showed in [27].

At the end, corners and their characteristic scales, in which the feature point

is valid, are determined. In this method, both Harris detector and Laplacian

function are used since they are the optimal operators for the specified cases

according to the experiments in the paper by Mikolajczyk et.al [26].

Figure 1.1: Selection of the characteristic scale

Morphological operators are also one of the important tools in signal pro-

cessing. Various morphological detectors were proposed for feature point de-

tection [28], [29], [30], [31], [32]. Main advantage of these detectors is the low

computation load which allows real-time operations.

Some transformation based methods were also proposed. Basically, trans-

formations represent the image data in a simpler and/or more useful way

which makes the detection process easier (and faster). Various different trans-

formations are used for feature point detection, such as Hilbert transform [40],

wavelet transform [41], [42], matched filtering [43], various filter banks [44],

and the phase congruency [38], [39], etc. Each of these detectors have different

properties.

Finally, there are also some custom detectors which are applied to gray-

level images. Some of these are based on non-linear operators [36], [37], some

assigns cost functions to each pixel and minimizes it [35], some uses proba-

bilistic models to detect corners [23] and some of them uses models to detect

corners [33], [34].
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Boundary based feature point detection is analogous to the gray-level de-

tection. For example, derivative based techniques, as in the gray-level case,

were proposed to detect the curvature of the contour (or edge) [1], [2], [3], [4],

[5]. Transform based boundary techniques were also proposed in [7], [13]. Also

custom boundary methods were proposed using various techniques, such as

neural-networks to estimate curvature [6], correlation or L2norm to find sim-

ilarity [1], [11], chain codes to simplify the representation [8], [9], covariance

metrics along the contour [10] and probabilistic approaches [12].

1.2 Problem Statement

As shown in the previous section, the aim of the most widely used feature

detection algorithms is to detect corners. This approach leads to many prob-

lems as shown in various comparisons [45],[46]. The origin of the problems is

that there is no robust definition of the corner concept. And some of the non-

corner points also satisfy the existing cornerness criteria. Moreover, real-life

cases make it even harder. For example, in Figure 1.2 we can see that due

to downsampling, misleading corner structures are formed and these causes

detectors to extract non-corner points as corners, even without aliasing effect

during downsampling. This figure also shows us that the number of corners

changes with respect to resolution. For example, when the detector is applied

to a finer resolution image and its coarser resolution image, most of the cor-

ners, detected in the finer resolution, are lost in the coarser resolution due to

the filtering which is used to avoid aliasing after downsampling.

Another problem with the many detectors is they use derivative based

methods which are inherently erroneous in noisy environments. Moreover,

when quantization is added to this situation, extracting corners accurately

becomes a difficult task. Furthermore, in images, there are many non-corner
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Figure 1.2: A corner sample with zoom-in

pixels which satisfies the multiple high directional derivative test, which is

standard in derivative based detectors.

In addition to these drawbacks, the corner detectors have a lot of param-

eters which vary from one image to another. Most of the detectors even do

not have an automatic parameter selection scheme. As each of the parame-

ters change independently according to image properties, such as contrast, the

manual detectors become hard to use. Because, to reduce possible errors the

user should adjust the parameters for every different case, which significantly

changes in real life situations.

The fundamental assumption of most of the feature point detectors, explic-

itly or implicitly, is “objects in images can be expressed as edges or contours”.

To have this representation, first of all edges (or contours) in images should be

detected. The edges were assumed to represent the object boundaries. And

irregularities on the boundaries are used as feature points, because they store

more information than others. This basic assumption can be seen clearly in

different detectors which operate on contours. However, it is not that obvious

in detectors which operate on gray-level images. This is because edge detectors

are combined with corner detectors. This can be seen in many algorithms such

as [15], [16], [18], [25], [26], [36], etc. There are also some custom detectors

which do not integrate an edge detector. But these detectors are also searching

for a corner instead of a feature point. So, that custom detectors suffer from

almost the same drawbacks as the other ones.
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However, as shown in [25], [26], these drawbacks can be lessen by applying

multi-resolution analysis in gradient estimation. Moreover, by describing fea-

ture points according to deviations around them and not by gray-level patches,

SIFT detection-matching scheme has improved its performace more than the

others. Hence, the algorithms are stablized and gained immunity to various

real-life cases which cause to detection of non-feature point.

Due to these reasons, we propose a post-processing scheme to reduce the

number of detected non-corner points. In this approach it is believed that

objects in images should be represented by regions instead of edges/contours

and each one of the feature points should be represented with respect to its

neighborhood. Therefore, we can measure the degree of distinctiveness of a

detected feature point among its neighbors. By using this measure non-feature

points can be eliminated.

Moreover, we can also use this neighborhood description in feature point

matching. A feature point is not an isolated pixel; due to physical constraints,

it closely depends on its neighborhood. Therefore, if we use neighborhood

conditioned pixel description, we can improve the matching quality.

The proposed post-processing and matching scheme should have some es-

sential properties. For example, the method should be easily implementable

and robust under mostly unpredictable, real-life cases. Therefore, the aim of

the thesis is to design and implement a post-processing and matching method

which is implementable and robust as explained previously, and increases the

performance of applications which rely on feature point detection.

In order to have the proposed post-processing and matching scheme, we

need to understand the properties of textures. Because, when we are referring

to describe a point with respect to its neighbors; we are implicitly representing
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the texture around a feature point. This is, in fact, one of the crucial steps in

our proposed post-processing and matching scheme.
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Chapter 2

Texture

Although textures can be easily perceived and distinguished by humans, there

is no single definition of texture. For example in analysis sense, we can think

of a texture as a region which is homogeneous in some extent. However, the

definition of the homogeneity depends on texture and observer. In the synthesis

sense, we can think of a texture as an output of a process. Nevertheless, the

texture generating process is, in most cases, highly complex and unknown. In

almost every situation, the bottleneck of texture studies is the lack of a single

definition.

2.1 Texture Definition

As previously mentioned there is no single texture definition and tens of dif-

ferent definitions can be found in the literature. However, there are two basic

definitions given by Sklansky et.al [56] and Tamura [55]. These definitions are

essential to understand the texture concept.

Texture, according to Sklansky, is a regional attribute whose local proper-

ties (statistics) are constant, slowly varying or almost periodic.
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On the other hand, texture, according to Tamura, can be expressed by a

number of primitives which have various spatial organizations.

We can think the second definition and its variants as a subset of the first

one. Because, if we know the repeating primitive, we can extract its statistical

attributes and use these to define a homogeneity measure. The homogeneity

measure helps to indicate whether a region is locally constant, slowly varying

or periodic as stated in the first definition.

As the first definition covers most of the others definitions, we are going

to use the first definition which is moderately broad, when compared with the

others which are given in [173]. Hence, to be more precise, “texture” term

is used to describe a region which is composed of closely blended or mixed

elements with properties defined by Sklansky et.al [56].

In order to use this definition in a specific case, we have to extract ho-

mogeneity measure (statistical attributes) of the texture by applying texture

analysis methods.

2.2 Texture Analysis

In this section, we are going to overview not only texture analysis, but also

synthesis and segmentation methods. Because, almost all of the analysis, syn-

thesis and segmentation algorithms rely on similar fundamental assumptions.

And as a result, almost all of the texture processing methods (analysis, syn-

thesis and segmentation) give insight about textures and performance of the

applied methods.

One of the earliest methods was proposed by Haralick et.al. [57] in 1973.

The proposed method was based on second order statistics or in other words

“occurrence frequencies” [67], [66] . Basically, they generate a square matrix
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for a specific separation distance and angle. This separation distance and

angle define the distance between the reference pixel and the pixels under

investigation. The row and column indices of the matrix represent the gray-

level of the current pixel and the pixels under examination, respectively. As

a result, the matrix represents the occurrence frequencies of gray-levels pairs

at the given separation distance. This matrix form is also known as “co-

occurrence matrix”. A simple co-occurrence matrix (Pd,angle) for a binary

image is given by

Pd,angle =


 pi,j pi+1,j

pi,j+1 pi+1,j+1


 ; i = 0, j = 0. (2.1)

Note that, pi,j denotes the occurrence frequency of a pixel which has value

i, separated from another pixel which has value j, with a specific distance

d and angle. Furthermore, to analyze the given texture, many matrices are

computed for different angles and separations [58].

The computational load of co-occurrence matrix can be reasonable for a

binary image, but it becomes relatively too large to be used alone, when the

number of quantization levels increases. As a result, various different features

were defined to represent co-occurrence matrices in simpler forms [60], [64],

[65]. Furthermore, the description performance was improved by applying

DCT to the co-occurrence matrices to make the components less correlated

[63]. What is more important, several fast co-occurrence matrix computation

methods were proposed [61], [62].

Nevertheless, as most of the other texture analysis methods, this technique

suffers from a huge computational load. As the aim was extracting second order

statistics, the computation load increases exponentially with the increasing

number of quantization-levels. For example, a co-occurrence matrix generated
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from a binary image has two dimensions and four elements. On the other

hand, a co-occurrence matrix generated from an 8-bit gray-level image has 256

dimensions and 65536 elements and that causes a fairly high computation cost

for a single pixel.

Another early approach was based on autoregressive image models. In this

approach, autoregressive models (AR) were used to extract the underlying

texture statistics [68]. Basically, AR models are used in predicting the future

values of time-series as:

Xt = c +

p∑
i=1

φiXt−i + εt. (2.2)

where Xt is the value to be predicted, Xt−i are the past values, p is the order of

the prediction, εt is the prediction error and φi are the prediction coefficients.

As can be seen in the equation, AR models also emphasize the short-range

interaction by weighting past values. The weighting is used to define statistical

properties of textures.

In image processing, time-series are formed from images in a raster-scan

scheme. In the raster-scan, images are transformed from N × N matrices to

N2 × 1 vectors. As a result, a series is formed from an image which has some

basic properties like causality.

There are many different autoregressive models. The main goal of AR

methods is finding the best model to represent a given texture. Various AR

models were proposed, such as, non-causal AR [69], [76], simultaneous AR [70],

[72], [71], multiresolution Gaussian AR [73], circular symmetric AR [74], 2D

quarter-plane AR [75], recursive AR [77], generalized circular AR [78], etc.

According to the applied model, prediction coefficients are computed. And

based on the coefficients, texture statistics are defined. Abbadeni [79] gives

some examples on AR model parameters and their perceptual meaning.
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AR models have proved their usefulness in extracting the underlying sta-

tistical behavior of time-series. There are many well-known signal processing

algorithms which use these models, such as GSM vocoders. Furthermore, with

some improvements, such as making them rotation and scale invariant, they

become a good texture descriptor.

Another model-based approach is based on Markov (or Gibbs) random

fields. Briefly, Markov (or Gibbs) random field (M/GRF) approaches interpret

images as random fields. In a Markov/Gibbs random field, the probability of

the value of a pixel depends only on the values of the neighboring pixels. This is

known as the Markovian property. And the conditional probability distribution

function, which is occurrence of a pixel conditioned to its neighborhood, is in

exponential form. Further information on M/GRFs can be found in [98] and

[97].

Although the M/GRF model and its multi-resolution counterparts, [96],

[87], [93], [89], are well-defined and straightforward, estimation of the model

parameters is tricky. Moreover, instead of the others, proposed approaches

vary in parameter estimation algorithms. For instance, some approaches use

dynamic programming [81], [91], [82], [83]; some use pseudo-maximum likeli-

hood [86]; instead of maximum likelihood, some use least squares [84] whereas

some others use simulated annealing [85], [80], [94] and [90].

In each of the proposed methods there is a trade-off between computational

complexity and parameter estimation accuracy. For example, the parameters

can be estimated accurately by using simulated annealing (SA) but the compu-

tation load of SA can be overwhelming. On the other hand, the computational

load may be low if the least squares estimation methods are used. However,

the estimation accuracy will be poorer in this case.
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Another well-known model based texture analysis method was proposed by

Pentland et.al.[99]. In that paper, the textures are modelled as fractal func-

tions. Fractals are described by their complexity. The complexity parameter

is known as “fractal dimension”. As in the parameter estimation of M/GRF

model, estimating the fractal dimension is difficult. Many different ways to es-

timate the fractal dimension were proposed, [102], [103], [104]. Though some of

them are useful, it was shown that fractal dimensions alone cannot be used to

discriminate different textures [106]. To overcome the lack of discrimination,

some modifications were suggested, such as using lacunarity measures [105],

[100], extended self-similarity model [101], etc.

Transformation techniques are highly important in signal processing. Ba-

sically, transforming a signal from one space to another, where they can be

represented according to the needs, has positive effects on performance; such

as, increasing accuracy, decreasing computation load, etc. As in the other sig-

nal analysis cases, signal transformation techniques can be helpful in texture

analysis, too. Because, based on experiments, each texture has a specific sig-

nature and transforms can be used to represent textures in a more useful form

to easily extract these signatures. Therefore, the purpose of the transform

based methods is representing a texture in an appropriate way and finding its

characteristic signatures. We have to mention here that these signatures are

not unique for every texture. Because, in addition to these structural signa-

tures, textures also have a random characteristic. Nevertheless, extraction of

these signatures are generally enough for most cases.

In order to extract the texture signatures, Short Time Fourier Transform is

used in [107], [108], [109]. In [110], [111] the Circular-Mellin Transform, which

is Fourier Transform in polar coordinates, is used to extract scale-rotation in-

variant features from textures. Furthermore, also Gabor Transform is utilized

in various approaches. Some of the approaches create a filter bank which covers
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large portion of the space-spatial frequency domain [127], [128], [129], [132],

[133], [134], [137] and [138]. Some of them propose adaptive filter parameter

(center frequency, orientation, bandwidth) selection schemes for the given in-

put textures [139], [131], [135] and [136]. Moreover, Wigner Ville Distribition

based methods were also applied in texture analysis in different ways by [117],

[118] and [119].

Another integral transform texture analysis method is called “Local Linear

Transform” (LLT). In LLT, the texture is convolved by a custom filter bank.

Then, the energy of the channels (filter outputs) are used in feature selection.

Various methods were proposed [151], [152], [153], [154], [155], [156], [157],

[158], [159], [161] and [160]. One of the famous LLT was proposed by Laws

who uses wavelet like basis [159]. The performance of LLT can be improved

by using DCT to decorrelate the filter output [153].

There are also some custom texture analysis methods. These methods

use various techniques, such as moments [162], [163], [164], histograms [174],

metric spaces[175], run-lengths[176], Voronoi polygons[177], dynamic matched

filtering [179], local frequency[180], etc.
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Chapter 3

Non-Feature Point Elimination

And Feature Point Matching

Images and video frames can be used for different purposes and objectives. In

some applications, such as 3D scene reconstruction, object recognition, image

registration, etc., one may want to uncover point-to-point relations between

two images (or frames). There are various ways to find out this relation. One of

the popular ways of this is finding matches between the images (or frames). In

this type of methods points are represented by some attributes. And the point

on the other image with the most similar attributes are assigned as a match.

The operation of making point-to-point similarity assignments is known as

“Point Matching”.

To make better matches between images (or frames) instead of ordinary

points, the points with some distinctive features are selected. And the match-

ing is started from these points. The operation of selecting distinctive points

is known as “Feature Point Detection”. However, the selection of distinctive

points is complicated. Images contain variety of pixel combinations and these
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combinations sometimes fulfill the feature point criteria of detectors and de-

ceive the detection algorithms. As a result of this, the set of detected points

contains both feature points and non-feature points.

The false selection of a non-feature point as a feature point is highly un-

desirable. The inclusion of these points in a set of feature points decreases

the reliability of matching step. Because, as these points are not distinctive

enough, they may cause mismatches. Due to the inadequate matchings, most

of the applications which rely on point-to-point matches may give erroneous

and unpredictable results. Hence, to ensure the performance of the applica-

tions which rely on feature matching non-feature point should be eliminated.

However, the methods used in detection may not solve the elimination

problem, because, non-feature points may have higher detection scores than

regular feature points. As a result of this some desired feature points may be

discarded while trying to eliminate non-feature points by using the approaches

similar to the detection methods. Due to this, a different approach should be

utilized in elimination.

As explained in the first chapter, most of the popular feature point detec-

tion methods directly or indirectly uses color or intensity attributes of pixels to

describe them. However, just color or intensity values are not enough to rep-

resent the distinctiveness of a pixel. There should be additional or alternate,

descriptors to represent the pixel attributes.

Describing the texture around a point is one of the important elements for

representing regional attributes of a point. As explained in chapter 2 there are

various ways of describing a texture, basically each of these descriptors uses

the neighborhood structure around a pixel to form a regional point represen-

tation. As feature points should be distinctive among their neighbors, texture

based descriptions are highly useful in pixel classification. Furthermore, these
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descriptors can also be used in feature matching, too; because, due to physi-

cal constraints neighborhoods may preserve their structure. Hence, for every

candidate point couple both pixel-wise and regional attributes should match

each other. Due to this, better matching results can be obtained by including

texture descriptors in point representation.

Although texture description is one of the powerful tools in image process-

ing, it creates some undesired complications in implementation. First of all

creating a texture description around each of the pixels of an image is compu-

tationally impractical. Because, it requires a large memory space and a high

processing power. Even applying texture description only to a set of feature

points is computationally overwhelming, due to the scale dependency of tex-

tures. Nevertheless, there are ways to bypass these implementation problems.

3.1 Scale Selection

Images can be represented in different ways, one of them is representing images

in multi-resolution. In multi-resolution, an image with spatial resolution N×M

per unit area is filtered and downsampled by d to have a coarser image with

smaller resolution N/d×M/d per unit area. The acquired image representation

is called a scale. An image and its two scales are given in Figure 3.1 and

Figure 3.2, respectively.

The collection of extracted scales is called the “scale-space”. In the pro-

posed method the coarsest and the finest scales of a scale-space is restricted.

The range of scales are limited between the sampling rate of the imaging sensor

(finest resolution) and a single pixel (coarsest resolution).

Infinitely many scales, in a given range, can be extracted from an image.

Furthermore, each of the patches extracted from different scales at relatively
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Figure 3.1: A scale of a sample image with textures

Figure 3.2: Another scale of the same image shown in Figure 3.1

on the same position may have different pixel values. As pixel values inside the

patches change from one scale to another, neighborhood structure also changes.

Hence, the nature of the texture changes. In order to have a complete texture

description every scale of an image should be analyzed and represented.

This scale dependency of textures creates a serious bottleneck in implemen-

tation, even for the proposed elimination method which processes relatively a

small number of points. One of the solutions to this computation problem is

choosing a single scale for analysis according to texture signatures and ignoring

the rest of the scale-space.

As explained in the second chapter, every texture has a signature in the

scale-space. In the scale selection, the scale which contains the most discrimi-

native texture signatures is desired. Because, if the selected analysis scale does
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not supply discriminative information, then the extracted texture description

will be misleading. And, at the end, the entire approach will be useless.

For example, in the Gabor filter bank case, if one of the filters is tuned

to a range which is out of the scale in which the discriminative texture sig-

nature lies, then the resultant description may have noise like terms which

may give misleading information about the content. This observation also

holds for Gibbs/Markov random fields. Basically, GMRF describes a texture

by clique potentials which represent pixelwise interactions. These interactions

are derived from pixel formations. As pixel formations depend on scale, GMRF

structure and model parameters change, too. Hence, if nondiscriminative pixel

interactions are modeled, texture may be represented in a misleading way. And

the descriptor will be ineffective.

To have an adequate texture description, first of all, a color space should

be selected. There are various ways to use a multi-spectral image in multi-

resolution analysis. In the proposed method the luminance channel of

CIE L∗a∗b∗ color space is used [189]. The given image, generally in RGB

24-bit raw format, is transform to CIE L∗a∗b∗ color space based on ITU-R

BT.709 using D65 as the white point reference [191]. This color space is se-

lected instead of the many others (such as RGB, YUV, CMYK, CIExyz, etc.),

because, CIE L∗a∗b∗ is a linear color space. A color space is linear, if a unit

change in color in any place of the color space makes the same amount of

change in its numeric representation. The linearity property is important for

color spaces in image processing. Because it avoids bias coming from the com-

parison of different color values. The luminance channel of an image which

is shown in Figure 3.1 is given in Figure 3.3. After representing the image in

CIE L∗a∗b∗ color space, scales are extracted by using the luminance channel.

The scales of an image can be acquired in many ways. Among these we

chose the wavelet transform. The flexibility and FIR applicability of wavelet
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Figure 3.3: Luminance channel of CIE L∗a∗b∗ image which is shown in Fig-
ure 3.1

transform were the main reasons behind this decision. Among wavelet trans-

form schemes, biorthogonal spline wavelet family is used in the proposed

method [150]. The biorhogonal spline wavelet family has several nice prop-

erties, such as biorhogonality, compact local support (FIR implementability),

symmetry, etc. These properties are useful in image processing. A sample

wavelet decomposition is shown in Figure 3.4 for the luminance channel which

is given in Figure 3.3.

Figure 3.4: Wavelet decomposition of the Luminance channel of CIE L∗a∗b∗

image which is shown in Figure 3.1
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After decomposing the image by using biorthogonal spline wavelets, LL

subbands of each of the scales are gathered to form a multi-resolution repre-

sentation. To select the analysis scale from the collection of scales, a set of

patches is extracted in every scale around each of the candidate feature points.

We call this subset of scale-space “neighborhood scale-space”. Though a pixel

is the coarsest scale of a scale-space for a finite image, in the proposed method

scales coarser than a resolution threshold are ignored due to the applicability

of the adopted texture description method. We call this coarsest resolution

bound as “termination resolution”.

The termination resolution strictly depends on the adopted texture de-

scription algorithm. If the texture descriptor uses an N ×M patch, then the

termination resolution should be equal or greater than N × M . Because, in

the scales coarser than this resolution the adopted texture description algo-

rithm cannot be applied effectively. However, for some small texture analysis

windows with small N and M values, the termination resolution can be much

higher than N × M ; because, as the resolution decreases, by filtering and

downsampling, image pixels merge and feature points disappear, and this de-

creases the reliability of the elimination method by discarding most of the

points without analyzing their neighborhood structure. Therefore, the termi-

nation resolution, which does not change from an image to another or from

patch to patch, should be at least equal to the maximum neighborhood patch

size of the texture descriptor. Nevertheless, during the implementation if the

descriptor analysis window size is set to a smaller value, then the termination

resolution can be much larger than this. A sample neighborhood scale-space

is shown in Figure 3.5 for a 31× 31 neighborhood patch size.

In texture description we would like to represent the neighborhood struc-

ture with the highest possible detail. Though the finest scale supplies the

highest detail, in most of the cases neighborhood in the finest scale may not
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Figure 3.5: (a), (b), (c), (d), 31 × 31 patches taken from the image shown in
Figure 3.3 from finer scales to coarser scales, respectively, (e) the projection of
patches onto the original image.

be the most convenient one to be used in description due to texture features.

As a patch is used in describing the neighborhood sctructure of a point, the

neighborhood representation depends on the scale of the analysis. Further-

more, in some cases if the finest scale is used, a small portion of the texture

signature can be represented. To avoid mis-representation, the descriptions in

coarser scales are desired. However, in coarser scales image details are par-

tially lost due to filtering and sampling. To find a balance between texture

description and texture detail, we chose to use the coarser scale after a dra-

matic change in the patch content. The dramatic change between a coarser

scale to a finer scale is counted as a sign of signature loss. And, it is supposed

that the scale before the partial loss of texture signature can be used in reliable

texture description.
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Figure 3.6: The histograms of the corresponding patches which are shown in
Figure 3.5

To find the scale in which the desired texture signature lies, we chose to use

the kurtosis value of histogram of each patch in the neighborhood scale-space.

Kurtosis is defined as

Kurt(X) =
µ4

σ4
− 3, (3.1)

which is the forth central moment normalized with respect to normal distri-

bution. Sometimes it may be used without normalization as

µn = E((X − µ)n), (3.2)

in which n equals to 4.

Kurtosis measures the amount of deviation from the mean due to the peaks

in the histogram. This measure implicitly shows how complicated the given
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patch is. For example, if the kurtosis value is high, it means that the patch

contains some dominant pixels values, and that indicates that the neighbor-

hood is mostly composed of the same pixel value and, due to this, it is expected

to have a simple structure. If the kurtosis value is low, it means that there

are various different pixel values inside the patch and none of them is domi-

nating that indicates that the neighborhood is composed of a variety of colors

or intensities and the structure is expected to be complicated.

In the proposed method deviations in the kurtosis values across the scales

are examined for the scale selection. It is believed that if the kurtosis values

across the scale-space have a sharp positive change as we go from coarser

to finer, it means a dramatic change in the neighborhood structure from a

complicated structure to a simpler structure. And this abrupt positive change

is counted as a sign of obscure texture feature in the finer level. Because

it is supposed that due to the disappearance of a variety of colors in the

neighborhood, the neighborhood structure became less complicated and as a

result the texture signature is obscured.

Therefore, in scale selection dramatic positive transitions are detected to

find the scale which describes the texture in a more reliable way as it contains

more complicated neighborhood structure.

A sample scale versus kurtosis curve is calculated from the histograms given

in Figure 3.6 for the patches shown in Figure 3.5 which is given in Figure 3.7.

In this curve it can be noticed that there is a sharp positive transition while

moving from coarser scales to finer scales. This sharp positive transition is a

sign of an abrupt change in the patch content. Because, in the coarser scale

before the transition there is a complicated neighborhood formation; however,

in the adjacent finer scale there is a much simple neighborhood pattern. Hence,

the coarser scale before the transition, which is the second scale, is considered

as the analysis scale.
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Figure 3.7: Kurtosis values vs scale which are calculated from the histograms
of pixel intensities. X-axis shows the scales from 1 (coarsest) to 4 (finest) and
Y-axis shows the corresponding kurtosis values.

In the proposed method sharp positive transitions are determined by ap-

plying a transition threshold. As it is undesired to set a transition threshold

manually for each of the neighborhood scale-space of candidate feature points,

an automatic threshold selection method is utilized. The transition threshold

is calculated by

thtrans =
1

N − 1

N−1∑
i=1

|Kurti −Kurti+1|, (3.3)

for every candidate feature point. In this equation N is the number of extracted

scales, i is the scale index and Kurti is the kurtosis value of the patch acquired

from the ith scale.

In the scale selection, by using kurtosis curve, there can be three different

possible situations. In the first one there can be only one sharp positive tran-

sition. In this case the coarser scale before the transition is selected as the

analysis scale. In the second case there can be more than one sharp positive
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transitions. In this case the coarser scale before the first sharp positive tran-

sition is selected. In the final case no sharp positive transitions are detected.

In this case the finest scale is selected for analysis.

3.2 Texture Description

There are different ways of describing a texture as explained in the second

chapter. Each of the methods have its own advantages and disadvantages.

Among these the method described in [91] is selected for neighborhood struc-

ture description. Though this method has some implementation drawbacks, it

is the one which fits to our design concerns.

This method describes a texture by using a Gibbs/Markov random field

model. Although it can be implemented for an arbitrary number of gray lev-

els, in the proposed method it is implemented for binary images. Because, the

computational complexity of estimating binary GMRF parameters is relatively

low when compared with multi-level counterparts. Moreover, calculating the

probability of a pixel value conditioned to its neighborhoods is relatively easy

and straightforward for binary images, when compared to multi-level counter-

parts. As a result of this choice, primarily, a threshold is applied to the patch

extracted around the candidate feature point in the selected scale. However,

a single threshold value cannot be used in binarization.

To have a better GMRF description in this method the threshold value

should be changed from a point neighborhood to another. Because, neighbor-

hoods of each of the points may contain different gray-level values. Moreover,

each of the neighborhood patches belonging to the same point but taken at

different scales should be thresholded with different threshold values, because,
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each of the scales may contain different gray-level values. Due to these limita-

tions, to have an efficient thresholding scheme an automatic threshold selection

method is used.

There are many threshold selection methods in the literature. Most of the

researches in the field was conducted during the earlier times of image process-

ing. In this era thresholding was generally referring to image segmentation,

more specifically, separating a foreground object from a background. The most

widely used thresholding techniques and associated experimental results are

given in [188]. Among those, because of its nice properties, we selected to use

k-means thresholding procedure.

Basically, k-means finds pixel representation, with the minimum description

error, for a set of points. For example, if there are “P” number of points in

a set and they are going to be represented with “C” number of arbitrary

points (P ≥ C), k-means positions “C” points to minimize the total error

due to representing P points with C points. Hence, after k-means it can be

said that, mathematically similar pixels are grouped into the same cluster to

have the minimum representation error. This is not true for most of the other

thresholding methods. For example, in entropy based thresholding, grouping

is not done according to pixel similarity (minimum representation error) but

according to achieve maximal pixel entropy after thresholding.

Figure 3.8: An illustration of k-means thresholding.

In the implementation, k-means is used for clustering a given patch into two

groups which corresponds to black and white pixels after thresholding. The
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pixels inside the patch are counted as data points (“P”). At the beginning of

the k-means, cluster centers (“C”) are set to the maximum pixel value and the

minimum pixel value in the neighborhood patch. Then the iteration step is

started. At every cycle each of the points are assigned to a cluster whose center

is closest to the point on the query. At the end of each cycle, cluster centers are

updated in case of addition and/or subtraction of new points. The iteration

step is terminated, when there is no point exchange between clusters that

means the cluster centers are converged to their final locations, and the binary

representation of gray-level image is acquired with the minimum representation

error.

After thresholding, coefficient vectors are formed for each of the points

inside the patch from their first order neighborhood. A sample coefficient

vector is given by Equation 3.4 for the neighborhood shown in Figure 3.9.

Figure 3.9: First order neighborhood for the pixel “s”.

For an N × N patch N2 coefficient vectors are observed in a patch since

there are N2 distinct locations. A coefficient vector is formed by

xk = [1 (u + u′) (t + t′) (v + v′) (w + w′)]T , (3.4)

in which u, u′, t, t′, v, v′, w, w′ ∈ {0, 1}. “0” denotes a black pixel and “1”

denotes a white pixel. k denotes a set of neighborhood configurations which

yields to the same coefficient vector which is xk.

The coefficient vectors are extracted from every neighborhood inside a

patch. An illustration of a patch is given in Figure 3.10. In this figure, a

coefficient vector is calculated for every pixel in the gray region.

31



Figure 3.10: An illustration of the GMRF parameter estimation method.

After forming the coefficient vectors, similar coefficient vectors inside the

patch are found and each different vector is assigned a distinctive group number

k. Then both the number of coefficient vectors belonging to that group and

the number of coefficient vectors which are belonging to the same group but

from a neighborhood centered around a white pixel are counted. Subsequently

the following algebraic equations are formed

xk
T w = dk, (3.5)

d̂k = ln(
Nwhite,k

Ck −Nwhite,k

). (3.6)

In Equations 3.5 and 3.6, xk is the coefficient vector for the kth group, w

is the GMRF parameters for the patch, Ck is the number of vectors which are

the same as xk, and Nwhite,k is the number of vectors in the similarity group

k which are from a neighborhood centered around a white pixel. dk represent

the energy function and d̂k represents the estimate of the energy function for

large Ck. Finally, T superscript denotes the matrix transpose operation.

After forming this linear equation the different coefficient vectors which

are extracted from the patch are written in a matrix form which is given by
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Equation 3.7. Consequently, the formulation of the matrix equation the GMRF

parameters are estimated by solving

XT w = d, (3.7)

for w, regional texture parameters, by calculating the pseudo-inverse of matrix

X.

Though for an N × N patch N2 coefficient vectors are formed, there can

be a maximum 34 different coefficient vectors; because,

u + u′, t + t′, v + v′, w + w′ ∈ {0, 1, 2}, (3.8)

u, u′, t, t′, v, v′, w, w′ ∈ {0, 1}, (3.9)

Moreover, vectors which has N1,k = L1,k or N1,k = 0 are eliminated; be-

cause, these conditions make Equation 3.6 undefined or zero, respectively.

Hence, at the end of the vector grouping and elimination, according to ex-

periments, for a 31 × 31 patch there is a maximum of 25 different coefficient

vectors, in other words, groups. Hence, the parameter calculation becomes less

complicated.

After calculating the GMRF parameters, the occurrence probability of each

of the candidate feature points conditioned to their neighborhoods are calcu-

lated by using the conditional probability formula:

P (X = i | η(X)) =
eiT

1 + eT
, (3.10)
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T = xT w, (3.11)

in these equations i is the color of the pixel which is either white or black,

η(X) is the first order neighborhood of the pixel.

3.3 Feature Point Elimination

Due to various reasons images may contain some tricky points which are not

feature points but fulfills the feature point criteria of detectors. The inclusion

of these points in a set of feature points decreases the reliability of matching

step. As a result of this, these points should be eliminated from feature point

sets. However, the methods used in detection cannot solve the elimination

problem, because, non-feature points may have higher detection scores than

regular feature points. As a result of this some desired feature points may be

discarded while trying to eliminate non-feature points. Due to this a different

approach should be utilized in elimination.

Although non-feature points cannot be distinguished according to pixelwise

gray-level attributes, they can be easily separated from valid feature points by

checking their neighborhood attributes. The occurrence expectancy of a point

is one of the neighborhood attributes. In the proposed method, the occurrence

expectancies of candidate points, that can be calculated by Equation 3.10, are

used for measuring the distinctiveness of a point. For example, if a point has a

high occurrence expectancy, it cannot be a feature point. Furthermore, a point

with a low occurrence expectancy should be retained, because, it represents

an irregularity. Hence, the points with high occurrence expectancy should be

eliminated and the points with low occurrence expectancy should be retained.
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This elimination method can discard non-feature points generated by var-

ious sources, especially regular texture patterns. Feature points from regular

texture patterns are highly undesired in point matching. Though most of the

feature points from texture patterns fulfill the feature point detection criteria

of detectors, they are non-discriminative points. Because, a textural pattern

may be encountered multiple times in a patch; and as a result of textural

similarity around these points, they are prone to result in a mismatch.

On the other hand, points from textural irregularities, which are highly de-

sired, are retained. A textural irregularity mainly disturbs the texture struc-

ture. Hence, it has a low occurrence expectation. And high probability of

making a correct match. In the proposed algorithm though the points from

regular texture patterns are eliminated, the points from texture pattern irreg-

ularities are retained. Furthermore, the points are sorted according to their

accurence expectancy for to increase the reliability of matching by starting

from the procedure with the most distinctive point.

In the proposed method, the occurrence expectancy of each of the feature

points are calculated according to Equation 3.10. If the conditional probability

of a feature point is larger than a predefined threshold value, the feature point

is eliminated; if not, it is preserved.

3.4 Feature Point Matching

In the conventional matching algorithms, gray-level patches are taken around

each of the detected feature points. After that the patches are correlated with

each other and patch-couples which give the lowest absolute difference, which

is calculated as
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ei,j =
N∑

l=1

|P1i − P2ij|. (3.12)

In Equation 3.12 ei,j denotes the sum of absolute differences between two

patches. P1i is the patch from the ith point in the first image, P2j is the patch

from the jth point in the second image. N and l denotes the size of the patches

in the vector form and pixel index of the patch, respectively.

In some algorithms a disparity restriction is used before the assignment of

match couples. According to this, a point couple can be matched if and only

if the Euclidean distance of their relative image coordinates is smaller than a

predefined threshold. This restriction ensures that all of the matches are going

to be inside a predefined ε-neighborhood.

The match quality of conventional matching methods can be determined

for some extreme cases. For example, if ei,j is close to zero and the point is not

from a regular texture pattern, it can be said that the match is correct due

to the almost perfect overlapping between patches. Furthermore, if ei,j has

an exceptionally high value, which depends on the patch size and number of

gray-levels, it can be said that the match is wrong. However, it is not easy to

classify the matches with the errors in between these extreme cases. Because,

when there is a medium level of error, the goodness of match is uncertain. We

cannot say that it is a correct match or a wrong match. Moreover, most of

the matches in an image couple have medium level of errors and as a result of

uncertain goodness of match, the performance of matching step is unclear and

unpredictable.

To overcome this problem and increase the reliability of matching step, two

new point descriptors are proposed. The first point descriptor is a neighbor-

hood structure descriptor. Due to the previously explained physical constraint,

for a valid match both point and its neighborhood should match the candidate
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point and its neighborhood. Gray-level patch correlation partially follows this;

however, for uncertain matches neighborhood structure descriptors are needed

to increase the reliability of matching. As mentioned previously, texture de-

scriptors are highly useful in describing a neighborhood structure. Hence, the

texture parameters extracted in the previous step can be used as the neigh-

borhood structure descriptor of points.

The second proposed descriptor is a point status descriptor. It describes the

status of a point inside a neighborhood. This type of descriptor is desired be-

cause as mentioned in the texture description, points with different values can

be in the center of the exactly same neighborhood structure. To discriminate

these points, their status in the neighborhood structure should be resolved. To

find out the status of points in their neighborhood, conditional probabilities

of the points are calculated by using Equation 3.10 which describes the status

as the probability of occurrence with respect to the neighborhood structure.

In the proposed matching method the same conventional matching ap-

proach with ε-neighborhood restriction is followed. However, instead of start-

ing from an arbitrary point, the matching is started from the point with the

lowest conditional probability according to the sorting done in the elimination

step. For every point in the first image, their candidate matches within the

ε-neighborhood are found in the second image. After that each of the simi-

larity measures (gray-level patch similarity, texture parameter similarity and

conditional probability similarity) between the point in the first image and

the candidate matches in the second image are calculated separately. These

similarity values (or, in opposite, differences) are counted as a feature vector

for a candidate point-couple. Hence, for each candidate point-couple a 3 × 1

feature vector is formed as
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Match Features = [egray−level patch
i,j eGMRF parameters

i,j econditional probability
i,j ]T .

(3.13)

In Equation 3.13 egray−level patch
i,j denotes the sum absolute differences between

gray-level patches that is

egray−level patch
i,j =

N∑

l=1

(|P1i − P2j|), (3.14)

in which P1i, P2j, l and N denote the patch from the ith point in the first

image, the patch from the jth point in the second image, the pixel index of the

patch and the size of the patch in vector form.

In Equation 3.13 eGMRF parameters
i,j denotes the sum absolute differences between

GMRF parameters that is

eGMRF parameters
i,j =

5∑

l=1

(|w1i − w2j|), (3.15)

in which w1i, w2j and l denote the GMRF parameters of the ith point the first

image, GMRF parameters of the jth point the second image and the index of

GMRF parameters.

In Equation 3.13 econditional probability
i,j denotes the absolute difference between

conditional probabilities calculated by Equation 3.10 that is

econditional probability
i,j = |P (X1i = l | η(X1i))− P (X2j = k | η(X2j))|, (3.16)

in which η(X1i), η(X2j), P (X1i = l | η(X1i)), P (X2j = l | η(X2j), l and k

denote neighborhood of the ith point in the first image, neighborhood of the

jth point in the second image, occurence expectancy of the ith point in the first

image conditioned to its neighborhood, occurence expectancy of the jth point

in the second image conditioned to its neighborhood, the pixel value of the
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ith point in the first image and the pixel value of the jth point in the second

image.

To avoid bias in the final measure. The candidate match feature vectors

are collected and each of the elements are normalized to [0 1] interval with

respect to other elements in its dimension. For example, egray−level patch
i,j values

are taken from all of the candidate matches and they are normalized to [0 1]

interval. This is repeated for every dimension that is calculated as

eNormgray−level patch
i,j =

egray−level patch
i,j −min(egray−level patch

i,j )

max(egray−level patch
i,j )

, (3.17)

eNormGMRF parameters
i,j =

eGMRF parameters
i,j −min(eGMRF parameters

i,j )

max(eGMRF parameters
i,j )

, (3.18)

eNormconditional probability
i,j =

econditional probability
i,j −min(econditional probability

i,j )

max(econditional probability
i,j )

,

(3.19)

in these equations i ∈ [−P, P ] and j ∈ [−P, P ]. The minimum and maximum

values are calculated from the set spaned by i and j.

At the end of the normalization, the average of three similarity measures

are taken as

eNormAverage
i,j =

eNormgray−level patch
i,j + eNormGMRF parameters

i,j + eNormconditional probability
i,j

3
.

(3.20)

and the candidate point-couple with the lowest average difference (or, in op-

posite, highest average similarity) is assigned as a valid match.
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MatchP1i
= argi,j min(eNormAverage

i,j ). (3.21)

And the procedure is continued to the following point with the lowest condi-

tional probability after the current one.

3.5 Integrating Elimination and Matching

Methods to Detectors

As we explained earlier most of the detectors have various parameters to be

adjusted. This is referred as a drawback in the previous chapters, because,

these parameters directly affect the accuracy of the feature detection and de-

pend on image properties. As a result, they should be tailored carefully to

have an accurate feature detection. However, in the proposed post-processing

and matching scheme it is not a drawback; because, in the proposed method,

it is assumed that the detectors inherently make inaccurate detections due to

concentrating only on color or intensity similarity. So, it is not necessary to

tailor the parameters to find a good configuration; even, it is better to set them

loosely. Because, while carefully setting the parameters, some desired feature

points may be lost. Hence, the adjustment of parameters are not important

and not recommended.

In the implementation, first of all, the candidate points should be detected

with loosely set parameters. Then the extracted points should be fed into the

elimination algorithm. At the end of the elimination the sorted points should

be matched by using the proposed matching method starting from the point

with the lowest occurrence expectancy.
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As the proposed detection-elimination-matching scheme is designed to

avoid manual adjustments, most of the parameters are adjusted automati-

cally during the feature analysis. Only the parameters from the feature point

detection can be adjusted manually, but as explained previously loosely setting

these parameters are enough for this scheme. Hence, in the proposed detection-

elimination-matching scheme none of the parameter values are changed from

image to image.
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Chapter 4

Results

In this chapter four different test are done to evaluate the performance of

the proposed scheme. Initially the performances of the proposed detector and

the descriptor are evaluated by using a set of image couples. The proposed

detector performance is compared with the Harris and SIFT feature point

detectors (FPDs). The proposed descriptor performance is compared with the

conventional gray-level patch and SIFT descriptors. Then, the proposed scale

selection method performance is evaluated by using different scale selection

methods. Finally, the performance of the proposed detection-matching scheme

is compared with the Harris FPD and the gray-level patch matching scheme.

A set of image couples and a set of video sequences which are given in

the supplementary CD are used in test procedures. A set of sample images

from test image couples are given in Figure 4.1. Furthermore, a set of sample

images from test video sequences are given in Figure 4.2. Note that the test

image couples also include a frame couple from “garden” video sequence, whose

sample image is shown in the test video sequences.
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Figure 4.1: A set of sample images for each image couple which are used in
detector, descriptor and scale selection performance evaluations.
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Two different measures are used to evaluate the performance of the elimi-

nation and matching methods. The first measure which was proposed in [190]

evaluates the repeatability of the detected feature points in a frame couple.

In this measure, the repeatability denotes the matching of a detected point

in one image to detected point within the ε-neighborhood in the other image.

If a detected point in one image is not matched to a detected point within
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the ε-neighborhood in the other image, then it is supposed that the point is

not detected in the other image; hence, not repeated. If a detected point is

matched to a detected point within the ε-neighborhood in the other image, it

is supposed that the point is also detected in the other image and as a result

repeated.

This measure uses the minimum number of detected feature points in either

of the frames and the number of matches within the ε-neighborhood over the

entire frame. Then it assigns the ratio of two values as the repetition score:

rrep
i (ε) =

|M(ε)|
min(ni, ni+1)

. (4.1)

In Equation 4.1, rrep
i is the repetition score for the ith frame couple which

contains ith and (i+1)th frames. M(ε) denotes the number of matched feature

points within the ε-neighborhood over the frame. min(ni, ni+1) is the minimum

number of detected feature points in the ith frame and in the (i + 1)th frame.

If the repetition score equals to 1, it means that each of the detected feature

points are matched. If the score equals to 0, it means that none of the detected

points are matched. Furthermore, if the repetition score is greater than 1, we

can say that there are definite wrong matches, because number of matched

points are greater than the number of minimum detected points. Hence, there

are multiple match assignments to some points.

In this measure the scores close to but not higher than 1 are desired.

However, this measure only checks the repetition of points within the ε-

neighborhood in a given image couple, it does not give any insights about

the matching quality. For example, the score can be equal to 1 by making

totally correct matches, totally wrong matches or anything in between. The

exact match quality is uncertain. So, the score should not be interpreted as a

goodness of match measure.
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To determine the goodness of match another measure is used. The measure

which was proposed in [25] as

rmatch
i =

|PbestMatch − Pcurrent|
|PsecondMatch − Pcurrent| , (4.2)

evaluates the matching confidence by comparing the best match and the sec-

ond best match of a point. rmatch
i is the match score for the ith point. Pcurrent,

PbestMatch and PsecondMatch are the feature vectors, which is shown in Equa-

tion 3.13, of the current feature point, the assigned feature point to the cur-

rent feature point and the second feature point which can be assigned to the

current feature point after the assigned feature point, respectively.

It supposes that if the score is small, the best match is valid; because, there

is a clear distinction between the first two candidate points of top matches.

If the score is high, it indicates that the match could be wrong; because, the

first two candidate points of top matches are similar to each other. Hence, the

match can be incorrect also.

Four different approaches are followed in the performance evaluation. In

the first two steps the detection and description performance of the Harris

FPD, proposed FPD and SIFT are evaluated. After that the proposed scale

selection method is evaluated. And finally, the conventional and the proposed

detection-matching scheme performances are compared over a set of video

sequences.

4.1 Evaluation of the Detector Performances

In the evaluation of the detector performances, feature points from the test im-

age couples are detected by using the Harris, proposed and SIFT FPDs. After

that the detected points are matched by using the gray-level patch matching

method. At the end, the match and repetition scores are calculated.
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To have a better insight, initially nearly 1500 feature points are detected by

using the Harris and SIFT FPDs. After that the points detected by the Harris

FPD are fed into the proposed elimination method. Then the remaining points

are counted as the points detected by the proposed method. Finally, the same

number of points detected by the proposed method is detected by the Harris

FPD and the match and repetition scores of all four cases are calculated which

are given in Table 4.2.

Moreover, the detected and matched points by using the Harris, proposed

and SIFT FPDs are given in Appendix A.1 for two different patches from

“Bike” test image couple.
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Table 4.2: The number of detected and matched points and the match and
repetition scores of the Harris FPD for the test image couples.
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4.2 Evaluation of the Descriptor Perfor-

mances

To evaluate the descriptor performances, initially 1500 feature points are de-

tected by using the Harris FPD and they are fed into the proposed elimination

algorithm. Consequently, the remaining points are matched by using the con-

ventional gray-level patch, proposed and SIFT descriptors. Finally, the match

and repetition scores which are given in Table 4.3 are calculated.

Furthermore, to have an unbiased evaluation the SIFT detector and de-

scriptor are used alone and their match and repetition scores which are given

in Table 4.4 are calculated.
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Table 4.4: The number of detected and matched points and the match and
repetition scores of the SIFT descriptors for the test image couples
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4.3 Evaluation of the Scale Selection Perfor-

mances

In the evaluation of the proposed scale selection method initially 1500 feature

points are detected by using the Harris FPD. Then, they are processed by using

four different scale selection schemes. In the first scheme no scale selection is

applied in elimination and matching. In the second scheme the proposed scale

selection is applied in elimination and matching. In the third scheme the scale

which is one scale finer than the selected scale of a feature point is used in

elimination and matching. In the fourth scheme the scale which is one scale

coarser than the selected scale of a feature point is used in elimination and

matching.

Moreover, to have a better insight the detected points are analyzed for a

patch from the “bike” image couple. The number of following points which are

detected inside the patch in both of the images, the number of non-following

points inside the patches are counted. Finally the correct and wrong matches

are counted and their ratio is calculated for each scheme. A set of image

patches which are showing the detected and matched points for all of the four

schemes are given in Appendix A.2 for “Bike” image couple.

Figure 4.3: A patch from “bike” test image couple.
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4.4 Comparison of the Harris FPD and the

Proposed FPD

In the comparison of the Harris feature point detector with threshold set to

maximum 1500 feature points per frame and the proposed method, three dif-

ferent matching schemes are used. In the first scheme, which is used as a base-

line, the feature points detected by the Harris FPD are directly fed into the

conventional gray-level matching algorithm and the evaluation scores are cal-

culated. In the second scheme the proposed feature point elimination method

is applied before the conventional gray-level patch matching algorithm and

then the evaluation scores are calculated. In the third scheme, again the pro-

posed elimination method is utilized but after that instead of the conventional

matching method the proposed matching method is applied and the evaluation

scores are calculated.

The schemes are evaluated over fourteen monoscopic and four stereoscopic

video sequences. The video sequences are selected according to the motion

types (static background, camera tilt/pan/zoom/slide, multiple object mo-

tion, etc.), capturing device types (raster scan or progressive scan), level of

occlusions etc. The properties of each video sequence is given in Table 4.7.
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In the monoscopic video sequences the detected points on a frame is

matched with the detected points on the following frame. In the stereoscopic

video sequences the detected points in a frame of a monoscopic subsequence is

matched with the detected points on the same frame in the other monoscopic

subsequence. And the scores are calculated accordingly.

A set of sample matches is given for each of the schemes by using the

first two frames of “garden sif.yuv” sequence which is taken from University of

California, Berkeley Multimedia Research Center. In this sequence the camera

is sliding from left to right. As a result of this there is a motion from right

to left whose rate changes according to the distance of physical objects to the

camera.

In Figures 4.4, 4.7 and 4.10 the detected points according to the first, second

and third schemes are shown, respectively. In these figures the green and red

“+” signs are used for marking the location of the feature points detected in

the first frame and the second frame, respectively.

In Figures 4.5, 4.8 and 4.11 the detected points according to the first, second

and third schemes are shown, respectively. In these figures the green and red

“+” signs are used for marking the location of the feature points detected in

the first frame and the second frame, respectively. And the yellow arrows are

used for showing the motion vectors calculated from point matches.

In Figures 4.6, 4.9 and 4.12 some of the detected points according to the

first, second and third schemes are shown in detail, respectively. In these

figures the green and red “+” signs are used for marking the location of the

feature points detected in the first frame and the second frame respectively.

And the yellow arrows are used for showing the motion vectors calculated from

point matches.
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The results of each of the video sequences for every scheme are illustrated

in a set of two figures. The first figure comprises the plots of number of

detected feature points versus frame number and number of matched feature

points versus frame number. The second figure shows the plot of repetition

and match scores versus frame number. Furthermore, there is also a set of two

figures for each sequence to show the difference between each of the schemes

in a single plot. In the first plot the difference between repetition score of the

schemes with elimination and without elimination are plotted. In the second

plot the difference between the match score of the first, second and third

schemes are plotted. In both of the figures the dashed line at y = 0 shows the

base value which is the first scheme and other schemes are plotted with their

differences to the baseline. The the repetition score differences are calculated

as

4rep
second\third scheme(frame) = r

repsecond\third

frame − r
repfirst

frame , (4.3)

rrepx

frame =
1

N

N∑
i=1

rrepx

i . (4.4)

In Equation 4.4 N is the number of matched point couples in a frame and x

subscript denotes the used scheme.

The match score differences are calculated as

4match
second scheme(frame) = rmatchsecond

frame − r
matchfirst

frame , (4.5)

4match
third scheme(frame) = rmatchthird

frame − r
matchfirst

frame , (4.6)
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rmatchx
frame =

1

N

N∑
i=1

rmatchx
i . (4.7)

In Equation 4.7 N is the number of matched point couples in a frame and x

subscript denotes the used scheme.

In the evaluation, the average of the repetition scores over the feature points

on the entire frame is taken as the repetition score of the frame and the average

of the match scores over the feature points on the entire frame is taken as the

match score of the frame.

For “garden.avi” video sequence the analysis results are given in Figures

between 4.13 and 4.20. The analysis results of the remaining video sequence

are given in Appendix B.
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Figure 4.5: The assigned matches for the feature points from the first frame
to second frame which are shown in Figure 4.4 by using the first scheme. The
green and red “+” signs are used for marking the locations of the feature points
detected in the first frame and the second frame, respectively. And the yellow
arrows are showing the motion vectors.
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Figure 4.6: A closer look at a set of matched points from the first frame to
second frame which are shown in Figure 4.5 by using the first schemes.

63



F
ig

u
re

4.
7:

T
h
e

d
et

ec
te

d
fe

at
u
re

p
oi

n
ts

fr
om

th
e

fi
rs

t
an

d
se

co
n
d

fr
am

es
of

“g
ar

d
en

.a
v
i”

b
y

u
si

n
g

th
e

se
co

n
d

sc
h
em

e.

64



Figure 4.8: The assigned matches for the feature points from the first frame
to second frame shown in Figure 4.7 by using the second scheme.
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Figure 4.9: A closer look at a set of matched points from the first frame to
second frame which are shown in Figure 4.5 by using the second scheme.
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Figure 4.11: The assigned matches for the feature points from the first frame
to second frame which are shown in Figure 4.10 by using the third scheme.

68



Figure 4.12: A closer look at a set of matched points from the first frame to
second frame which are shown in Figure 4.5 by using the third scheme.
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Figure 4.13: The detection and matching results of “garden.avi” for the first
scheme.

Figure 4.14: The repetability and matching scores of “garden.avi” for the first
scheme.
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Figure 4.15: The detection and matching results of “garden.avi” for the second
scheme.

Figure 4.16: The repetability and matching scores of “garden.avi” for the
second scheme.
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Figure 4.17: The detection and matching results of “garden.avi” for the third
scheme.

Figure 4.18: The repetability and matching scores of “garden.avi” for the third
scheme.
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Figure 4.19: The difference between repetability score of 1st scheme and 2nd

or 3rd schemes for “garden.avi”.

Figure 4.20: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “garden.avi”.
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Furthermore, to better visualize the average scores of the schemes over each

of the video sequences, the mean scores of the second and the third scheme are

given in Table 4.8 with respect to the first scheme for each of the sequences. In

Table 4.8 the first column shows the mean matching scores of the first scheme

for each of the video sequences. In the second and third columns the ratio of

matching scores which are calculated as

Ratio of Matching Score =
Mean Matching Scoresecond or third scheme

Mean Matching Scorefirst scheme

,

(4.8)

Mean Matching Score =
1

N

N∑
i=1

rmatchmean
frame , (4.9)

rmatchmean
frame =

1

M

M∑
i=1

rmatch
i . (4.10)

are given. In Equation 4.9 and 4.10, rmatchmean
frame and rmatch

i denotes the mean

match score for a specific frame and for a specific matched point couple,

respectively. N and M are the total number of frames and the total number

of matched point couples, respectively.

In the forth column of the table the repetition scores of sequences according

to the first scheme are given. And at the final column, the ratio of repetition

scores are given as a ratio of mean matching score of the second or third scheme

by the first scheme. The ratio is calculated as

Ratio of Repetition Score =
Mean Repetition Scoresecond or third scheme

Mean Repetition Scorefirst scheme

.

(4.11)
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Mean Repetition Score =
1

N

N∑
i=1

rrepmean

frame . (4.12)

rrepmean

frame =
1

M

M∑
i=1

rrep
i . (4.13)

In Equation 4.12 and 4.13, rrepmean

frame and rrep
i denotes the mean repetition score

for a specific frame and for a specific matched point couple, respectively. N

and M are the total number of frames and the total number of matched point

couples, respectively.
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4.5 Analysis of Detector Performances

In Table 4.1 and 4.2 the scores for three of the detectors are given. According

to the score a clear distinction among there of the detectors seems not possible.

Their match scores are similar to each other. And, their repetition scores are

different due to the differences in number of detected and matched points.

To evaluate the performance we should have a closer look at the images. In

Figures between A.1 and A.6 the detected points inside a patch from “bike”

image couple is given for three of the detectors.

In Figures A.1 and A.2 the detected and matches points for the Harris FPD

are given. Though all of the points are matched, more than half of them are

wrong matches. If Figure A.1 is inspected, it can be seen that only 8 points

could be matched correctly. Because, only 8 points were detected in both of

the images. And the remaining 9 matches are going to be incorrect.

In Figures A.3 and A.4 the detected and matches points for the proposed

FPD are given. In these images 5 points are detected in both of the images.

Hence, there can be maximum 5 correct matches and there can be minimum

5 wrong matches due to the non-repeating points.

In Figures A.5 and A.6 the detected and matches points for the SIFT FPD

are given. In these images we can see 3 points are detected in both of the

images. Hence, there can be maximum 3 correct matches and there can be

minimum 12 wrong matches due to the non-repeating points.

According to the tables and figures a distinction between three of the detec-

tors is not apparent. The proposed detector without the proposed descriptor

is almost same as the others. However, according to the repetition scores

the Harris FPD makes less number of wrong matches when gray-level patch

descriptor is used.
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4.6 Analysis of Descriptor Performances

In Table 4.3 the scores for three of the descriptors are given. According to the

results the proposed descriptor makes better matches for the points detected

by the proposed detector.

If we check the repetition scores of the gray-level patch and proposed de-

scriptors, the gray-level patch descriptor has a repetition score greater than 1

which means that there are definite wrong matches. On the other hand, the

repetition score of the proposed descriptor is less than 1.

Moreover, the match score of the proposed descriptor is smaller than the

gray-level patch descriptor. The smaller match score is a sign of better point

description which results in better matching results.

However, more interestingly, SIFT descriptor rejects almost one-fifth of

the detected points detected and makes maximum 17 number of matches.

According to the results we can say that the Harris detector detects unreliable

points according to the SIFT descriptor and most of the points are rejected.

Moreover, among the remaining points only a few of them are assigned as valid

matches.

To check the detection-matching scheme of the SIFT detection and match-

ing method, only the SIFT detection-description scheme is applied to the test

image couples. The results are given in Table 4.4. According to the tables

SIFT detector-descriptor achieves the best scores among the tested methods.

We should also mention that the detectors should be used with their specific

descriptor.
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4.7 Analysis of Scale Selection Performances

According to the scores in Table 4.5, it is hard to make a performance distinc-

tion between each of the selection scheme. Because, as a result of a change in

description, the number of detected and matched points change from one scale

selection scheme to another. However, if we examine Table 4.6 which shows

the point detection and matching performance of the scale selection scheme

for the image patch which is shown in Figure 4.3, we can say that by using the

proposed scale selection method the matching performance increases by 25%

for the given test image set on average.

4.8 Analysis of Detection-Matching Perfor-

mances

In Figure 4.4 feature points detected with the first scheme are given. In this

scheme, the threshold is set to give 1500 feature points. The green and red

“+” signs are used for marking the locations of the feature points detected in

the first frame and the second frame, respectively, by using the first scheme.

As it can be seen in the frames, there are many non-distinctive feature points

which are in the textured regions of the frames. For example, the points in

the sky, which has a simple texture, are hard to discriminate from each other

as the ones on the flower field, which has a complicated texture.

The detected points and motion vectors are shown in Figure 4.5 with green,

red “+” signs and yellow arrows. It can be seen that though the most of

the points are matched, the match vectors are highly contradicting with each

other. Hence, intuitively we can say that most of the matches made by the

first scheme are highly unreliable.
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If we have a closer look at the matches, we can verify the previous obser-

vation. As it is seen in Figure 4.6, most of the motion vectors are pointing to

different directions. There is no regularity in vectors, although such regularity

is expected, due to the content of “garden.avi” sequence.

In Figure 4.7, we can see the remaining 250 points after elimination of the

points. As it is seen, most of the non-distinctive points are eliminated. For

example, the points on the sky and most of the points on the flower field are

eliminated. However, the points in the sky-branch transition region and some

of the points, which have low occurrence expectancy, in the flower field are

retained.

As it can be seen in Figure 4.8 though the elimination seems successful,

due to the conventional matching scheme there are still unreliable matches

between the frame couples. This observation can also be verified by having a

closer look at the matches which are shown in Figure 4.9.

In Figure 4.10 we can see the same remaining 250 points which are previ-

ously shown in Figure 4.7. In Figures 4.11 and 4.12, we can see there are less

number of mismatches due to the introduction of regional descriptors and we

can say that the matching performance and reliability is increased.

Moreover, the intuitive results can be verified by examining Figures be-

tween 4.13 and 4.20. In Figures 4.13, 4.15 and 4.17, we can see the detected

points, matched points and the evaluation scores over the entire “garden.avi”

sequence by using the first, second and third schemes. In these plots we can

see that the number of matches of the first scheme almost three times higher

that the other schemes, due to the applied elimination method which discards

two-thirds of the detected points. Furthermore, due to the number of detected

and matched points in the first scheme is higher than the second and the third
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schemes, the repetition score for the first scheme is also higher that the other

two as shown in Figures 4.14, 4.16 and 4.18.

Though the repetition score of the first scheme is higher than the others, the

quality of matches are poor when compared with the other two. If we examine

the plots shown in Figures 4.14, 4.16 and 4.18 the quality of the matches in the

first scheme is almost half of the third scheme. This situation was also shown

in the individual frame couple analysis which are shown in Figures 4.5, 4.8 and

4.11. According to the figures and tables best match quality is achieved by the

third scheme.

Moreover, we can also verify these observation by using comparative score

plots, which are shown in Figures 4.19 and 4.20 for match score and repetition

scores. In these figures we can see that due to the elimination the repetition

score of the first scheme is higher than the other two. However, the match

score of the third scheme is always better than the first and second schemes

that use conventional matching algorithms.

The same results are also obtained in Figures between B.1 and B.136 for a

variety of sequences.

Furthermore, if we examine the average results which are given in Table 4.8

for each sequence, we can verify the previous findings. In the table, the best

average matching is always made by the third scheme. The matching quality

changes between 30% and 70% of the first scheme for the given video sequence

set according to match results in Table 4.8. This observation also shows that

when conventional methods are used the match quality is unreliable in most

of the cases, though it has high repetition score.
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Chapter 5

Conclusions

In this thesis a new post-processing method is studied to improve the reliabil-

ity and robustness of the conventional feature point detection and matching

schemes, independent of the a priori used feature point detection method.

The proposed method is based on the idea that the feature points should

be distinctive among their neighbors and the distinctiveness of a point can

be measured by using regional attributes of a point. However, due to the

computational complexity of extracting regional attributes, it is computation-

ally overwhelming to extract regional attributes of every single pixel in an

image. Instead of that the feature points, detected by conventional detectors,

are counted as candidate feature points and they are eliminated according to

their regional attributes. Due to this, the computational load is decreased to

an acceptable level.

To find out the distinctiveness of a point, first of all a scale is selected from a

neighborhood scale-space for the point. After that a patch is extracted around

the point in the selected scale and binarized. The regional attributes of the

point are calculated by using a binary GMRF model. According to the model

parameters occurrence expectancy (distinctiveness) of the point is calculated.
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The points with high occurrence expectancies are eliminated and the remaining

points are sorted according to their distinctiveness. In the final step, the points

are matched starting from the point with the lowest occurrence expectancy to

the one with the highest occurrence expectancy by using averaged normalized

parameters of pixel-wise and regional point descriptors.

According to the detector and descriptor performance evaluation results,

the SIFT detector-descriptor combination performs better than the Harris de-

tector gray-level descriptor scheme and proposed detector-descriptor scheme.

Moreover, we should also add that each of the descriptors can perform better

with a specific descriptor. For example, if the Harris FPD is used in detection,

the gray-level patches should be used in description. Moreover, if the proposed

detector or SIFT is used in detection than the proposed or SIFT descriptor

should be used, respectively.

Moreover, if the scale selection results are analyzed in Tables 4.5 and 4.6,

the proposed scale selection scheme performs better than the one with no scale

selection or with disturbed scale selection.

According to the comparison results which are shown in Table 4.8 and Fig-

ures between 4.4 and B.136, it can be seen that the proposed method increases

both the matching reliability and robustness for the given video sequence set.

According to the Table 4.8, the average match score of the third scheme is be-

tween 30% and 70% of the first scheme for the given video seqeunces. Hence,

according to the ratings the match quality of the third scheme is expected to

be better than the first scheme. The same conclusion can also be derived by

checking the sequence results, which are shown in Figures between B.1 and

B.136. In these figures the match scores of the third scheme is better than the

first and second schemes in most of the cases. It can also be verified intuitively

with the given set of sample matches, which are shown in Figures 4.6, 4.9 and
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4.12. In these figures the third scheme gives the more reliable matches than

the others.

The match score of the third scheme is better than the first and the sec-

ond schemes. Because, the neighborhood structure features are included with

the new descriptors, so, the detected points are described more distinctively.

However, the associated repetition scores are not good in variety of cases. Be-

cause, one third of the detected points are eliminated on the third scheme. As

a result of the elimination, the repetition scores are decreased.

If we examine the repetition scores, we can say that the first scheme is

better than the others. However, the repetition score does not measure the

goodness of match. As it measure the number of matched points not the

quality, totally wrong matches can also increase this measure. To check the

goodness of match we have the examine the match scores. According to the

experiments, the match scores of the first scheme is slightly less than the third

scheme. This observation indicates that tough the first scheme makes more

matches, it makes more wrong matches than the third scheme, according to

the experiments.
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Appendix A

Image Couples Test Results

A.1 Detection Results

Figure A.1: The detected feature points by using the Harris FPD. The original
“bike” image couple is taken from Oxford University Visual Geometry Group.
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Figure A.2: The matched feature points among points detected shown in Fig-
ure A.1 by using gray-level patch description. The original “bike” image couple
is taken from Oxford University Visual Geometry Group.

Figure A.3: The detected feature points by using the proposed FPD.
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Figure A.4: The matched feature points among points detected shown in Fig-
ure A.3 by using gray-level patch description.

Figure A.5: The detected feature points by using the SIFT FPD.
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Figure A.6: The matched feature points among points detected shown in Fig-
ure A.5 by using gray-level patch description.

109



A.2 Scale Selection Results

Figure A.7: The detected feature points by using the proposed FPD with no
scale selection.
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Figure A.8: The matched feature points among the detected points shown in
Figure A.7 by using the proposed matching method.
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Figure A.9: The detected feature points by using the proposed FPD with the
proposed scale selection.
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Figure A.10: The matched feature points among the detected points shown in
Figure A.9 by using the proposed matching method.
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Figure A.11: The detected feature points by using the proposed FPD with the
adjacent finer scale to the proposed scale is selected.
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Figure A.12: The matched feature points among the detected points shown in
Figure A.11 by using the proposed matching method.
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Figure A.13: The detected feature points by using the proposed FPD with the
adjacent coarser scale to the proposed scale is selected.

116



Figure A.14: The matched feature points among the detected points shown in
Figure A.13 by using the proposed matching method.
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Appendix B

Video Sequence Results
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Figure B.1: The detection and matching results of “src6 ref 625.avi” for the
first scheme.

Figure B.2: The repetability and matching scores of “src6 ref 625.avi” for the
first scheme.
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Figure B.3: The detection and matching results of “src6 ref 625.avi” for the
second scheme.

Figure B.4: The repetability and matching scores of “src6 ref 625.avi” for the
second scheme.
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Figure B.5: The detection and matching results of “src6 ref 625.avi” for the
third scheme.

Figure B.6: The repetability and matching scores of “src6 ref 625.avi” for the
third scheme.
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Figure B.7: The difference between repetability score of 1st scheme and
2ndor3rd schemes for “src6 ref 625.avi”.

Figure B.8: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “src6 ref 625.avi”.
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Figure B.9: The detection and matching results of “src10 ref 625.avi” for the
first scheme.

Figure B.10: The repetability and matching scores of “src10 ref 625.avi” for
the first scheme.
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Figure B.11: The detection and matching results of “src10 ref 625.avi” for the
second scheme.

Figure B.12: The repetability and matching scores of “src10 ref 625.avi” for
the second scheme.
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Figure B.13: The detection and matching results of “src10 ref 625.avi” for the
third scheme.

Figure B.14: The repetability and matching scores of “src10 ref 625.avi” for
the third scheme.
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Figure B.15: The difference between repetability score of 1st scheme and 2nd

or 3rd schemes for “src10 ref 625.avi”.

Figure B.16: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “src10 ref 625.avi”.

126



Figure B.17: The detection and matching results of “src13 ref 525.avi” for the
first scheme.

Figure B.18: The repetability and matching scores of “src13 ref 525.avi” for
the first scheme.
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Figure B.19: The detection and matching results of “src13 ref 525.avi” for the
second scheme.

Figure B.20: The repetability and matching scores of “src13 ref 525.avi” for
the second scheme.
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Figure B.21: The detection and matching results of “src13 ref 525.avi” for the
third scheme.

Figure B.22: The repetability and matching scores of “src13 ref 525.avi” for
the third scheme.
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Figure B.23: The difference between repetability score of 1st scheme and 2nd

or 3rd schemes for “src13 ref 525”.

Figure B.24: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “src13 ref 525”.
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Figure B.25: The detection and matching results of “src19 ref 525.avi” for the
first scheme.

Figure B.26: The repetability and matching scores of “src19 ref 525.avi” for
the first scheme.
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Figure B.27: The detection and matching results of “src19 ref 525.avi” for the
second scheme.

Figure B.28: The repetability and matching scores of “src19 ref 525.avi” for
the second scheme.
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Figure B.29: The detection and matching results of “src19 ref 525.avi” for the
third scheme.

Figure B.30: The repetability and matching scores of “src19 ref 525.avi” for
the third scheme.
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Figure B.31: The difference between repetability score of 1st scheme and 2nd

or 3rd schemes for “src19 ref 525”.

Figure B.32: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “src19 ref 525”.
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Figure B.33: The detection and matching results of “src20 ref 525.avi” for the
first scheme.

Figure B.34: The repetability and matching scores of “src20 ref 525.avi” for
the first scheme.
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Figure B.35: The detection and matching results of “src20 ref 525.avi” for the
second scheme.

Figure B.36: The repetability and matching scores of “src20 ref 525.avi” for
the second scheme.
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Figure B.37: The detection and matching results of “src20 ref 525.avi” for the
third scheme.

Figure B.38: The repetability and matching scores of “src20 ref 525.avi” for
the third scheme.
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Figure B.39: The difference between repetability score of 1st scheme and 2nd

or 3rd schemes for “src20 ref 525”.

Figure B.40: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “src20 ref 525”.
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Figure B.41: The detection and matching results of “src22 ref 525.avi” for the
first scheme.

Figure B.42: The repetability and matching scores of “src22 ref 525.avi” for
the first scheme.
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Figure B.43: The detection and matching results of “src22 ref 525.avi” for the
second scheme.

Figure B.44: The repetability and matching scores of “src22 ref 525.avi” for
the second scheme.
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Figure B.45: The detection and matching results of “src22 ref 525.avi” for the
third scheme.

Figure B.46: The repetability and matching scores of “src22 ref 525.avi” for
the third scheme.
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Figure B.47: The difference between repetability score of 1st scheme and 2nd

or 3rd schemes for “src22 ref 525”.

Figure B.48: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “src22 ref 525”.
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Figure B.49: The detection and matching results of “whale-
shark planetEarth eps11.avi” for the first scheme.

Figure B.50: The repetability and matching scores of “whale-
shark planetEarth eps11.avi” for the first scheme.
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Figure B.51: The detection and matching results of “whale-
shark planetEarth eps11.avi” for the second scheme.

Figure B.52: The repetability and matching scores of “whale-
shark planetEarth eps11.avi” for the second scheme.
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Figure B.53: The detection and matching results of “whale-
shark planetEarth eps11.avi” for the third scheme.

Figure B.54: The repetability and matching scores of “whale-
shark planetEarth eps11.avi” for the third scheme.
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Figure B.55: The difference between repetability score of 1st scheme and 2nd

or 3rd schemes for “whaleshark planetEarth eps11.avi”.

Figure B.56: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “whaleshark planetEarth eps11.avi”.
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Figure B.57: The detection and matching results of
‘goats planetEarth eps5.avi” for the first scheme.

Figure B.58: The repetability and matching scores of
“goats planetEarth eps5.avi” for the first scheme.
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Figure B.59: The detection and matching results of
“goats planetEarth eps5.avi” for the second scheme.

Figure B.60: The repetability and matching scores of
“goats planetEarth eps5.avi” for the second scheme.
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Figure B.61: The detection and matching results of
“goats planetEarth eps5.avi” for the third scheme.

Figure B.62: The repetability and matching scores of
“goats planetEarth eps5.avi” for the third scheme.
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Figure B.63: The difference between repetability score of 1st scheme and 2nd

or 3rd schemes for “goats planetEarth eps5.avi”.

Figure B.64: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “goats planetEarth eps5.avi”.
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Figure B.65: The detection and matching results of “dol-
phins planetEarth eps9.avi” for the first scheme.

Figure B.66: The repetability and matching scores of “dol-
phins planetEarth eps9.avi” for the first scheme.
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Figure B.67: The detection and matching results of “dol-
phins planetEarth eps9.avi” for the second scheme.

Figure B.68: The repetability and matching scores of “dol-
phins planetEarth eps9.avi” for the second scheme.
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Figure B.69: The detection and matching results of “dol-
phins planetEarth eps9.avi” for the third scheme.

Figure B.70: The repetability and matching scores of “dol-
phins planetEarth eps9.avi” for the third scheme.
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Figure B.71: The difference between repetability score of 1st scheme and 2nd

or 3rd schemes for “dolphins planetEarth eps9.avi”.

Figure B.72: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “dolphins planetEarth eps9.avi”.
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Figure B.73: The detection and matching results of “leop-
ard planetEarth eps2.avi” for the first scheme.

Figure B.74: The repetability and matching scores of “leop-
ard planetEarth eps2.avi” for the first scheme.
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Figure B.75: The detection and matching results of “leop-
ard planetEarth eps2.avi” for the second scheme.

Figure B.76: The repetability and matching scores of “leop-
ard planetEarth eps2.avi” for the second scheme.
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Figure B.77: The detection and matching results of “leop-
ard planetEarth eps2.avi” for the third scheme.

Figure B.78: The repetability and matching scores of “leop-
ard planetEarth eps2.avi” for the third scheme.
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Figure B.79: The difference between repetability score of 1st scheme and 2nd

or 3rd schemes for “leopard planetEarth eps2.avi”.

Figure B.80: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “leopard planetEarth eps2.avi”.
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Figure B.81: The detection and matching results of “container.avi” for the
first scheme.

Figure B.82: The repetability and matching scores of “container.avi” for the
first scheme.
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Figure B.83: The detection and matching results of “container.avi” for the
second scheme.

Figure B.84: The repetability and matching scores of “container.avi” for the
second scheme.
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Figure B.85: The detection and matching results of “container.avi” for the
third scheme.

Figure B.86: The repetability and matching scores of “container.avi” for the
third scheme.
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Figure B.87: The difference between repetability score of 1st scheme and 2nd

or 3rd schemes for “container.avi”.

Figure B.88: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “container.avi”.
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Figure B.89: The detection and matching results of “coastguard.avi” for the
first scheme.

Figure B.90: The repetability and matching scores of “coastguard.avi” for the
first scheme.
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Figure B.91: The detection and matching results of “coastguard.avi” for the
second scheme.

Figure B.92: The repetability and matching scores of “coastguard.avi” for the
second scheme.
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Figure B.93: The detection and matching results of “coastguard.avi” for the
third scheme.

Figure B.94: The repetability and matching scores of “coastguard.avi” for the
third scheme.
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Figure B.95: The difference between repetability score of 1st scheme and 2nd

or 3rd schemes for “coastguard.avi”.

Figure B.96: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “coastguard.avi”.
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Figure B.97: The detection and matching results of “foreman.avi” for the first
scheme.

Figure B.98: The repetability and matching scores of “foreman.avi” for the
first scheme.
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Figure B.99: The detection and matching results of “foreman.avi” for the
second scheme.

Figure B.100: The repetability and matching scores of “foreman.avi” for the
second scheme.
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Figure B.101: The detection and matching results of “foreman.avi” for the
third scheme.

Figure B.102: The repetability and matching scores of “foreman.avi” for the
third scheme.
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Figure B.103: The difference between repetability score of 1st scheme and 2nd

or 3rd schemes for “foreman.avi”.

Figure B.104: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “foreman.avi”.
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Figure B.105: The detection and matching results of “janine1 1.avi and ja-
nine1 2.avi” for the first scheme.

Figure B.106: The repetability and matching scores of “janine1 1.avi and ja-
nine1 2.avi” for the first scheme.
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Figure B.107: The detection and matching results of “janine1 1.avi and ja-
nine1 2.avi” for the second scheme.

Figure B.108: The repetability and matching scores of “janine1 1.avi and ja-
nine1 2.avi” for the second scheme.
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Figure B.109: The detection and matching results of “janine1 1.avi and ja-
nine1 2.avi” for the third scheme.

Figure B.110: The repetability and matching scores of “janine1 1.avi and ja-
nine1 2.avi” for the third scheme.
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Figure B.111: The difference between repetability score of 1st scheme and 2nd

or 3rd schemes for “janine1 1.avi and janine1 2.avi”.

Figure B.112: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “janine1 1.avi and janine1 2.avi”.
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Figure B.113: The detection and matching results of “jungle 1.avi and jun-
gle 2.avi” for the first scheme.

Figure B.114: The repetability and matching scores of “jungle 1.avi and jun-
gle 2.avi” for the first scheme.
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Figure B.115: The detection and matching results of “jungle 1.avi and jun-
gle 2.avi” for the second scheme.

Figure B.116: The repetability and matching scores of “jungle 1.avi and jun-
gle 2.avi” for the second scheme.
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Figure B.117: The detection and matching results of “jungle 1.avi and jun-
gle 2.avi” for the third scheme.

Figure B.118: The repetability and matching scores of “jungle 1.avi and jun-
gle 2.avi” for the third scheme.
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Figure B.119: The difference between repetability score of 1st scheme and 2nd

or 3rd schemes for “jungle 1.avi and jungle 2.avi”.

Figure B.120: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “jungle 1.avi and jungle 2.avi”.
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Figure B.121: The detection and matching results of “cam0 capture5 Deniz.avi
and cam1 capture5 Deniz.avi” for the first scheme.

Figure B.122: The repetability and matching scores of
“cam0 capture5 Deniz.avi and cam1 capture5 Deniz.avi” for the first
scheme.
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Figure B.123: The detection and matching results of “cam0 capture5 Deniz.avi
and cam1 capture5 Deniz.avi” for the second scheme.

Figure B.124: The repetability and matching scores of
“cam0 capture5 Deniz.avi and cam1 capture5 Deniz.avi” for the second
scheme.
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Figure B.125: The detection and matching results of “cam0 capture5 Deniz.avi
and cam1 capture5 Deniz.avi” for the third scheme.

Figure B.126: The repetability and matching scores of
“cam0 capture5 Deniz.avi and cam1 capture5 Deniz.avi” for the third
scheme.
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Figure B.127: The difference between repetability score of 1st scheme and 2nd

or 3rd schemes for “cam0 capture5 Deniz.avi and cam1 capture5 Deniz.avi”.

Figure B.128: The difference between match scores of 1st scheme and 2nd and
3rd schemes for “cam0 capture5 Deniz.avi and cam1 capture5 Deniz.avi”.
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Figure B.129: The detection and matching results of
“cam0 capture7 novice jugglers.avi and cam1 capture7 novice jugglers.avi”
for the first scheme.

Figure B.130: The repetability and matching scores of
“cam0 capture7 novice jugglers.avi and cam1 capture7 novice jugglers.avi”
for the first scheme.

183



Figure B.131: The detection and matching results of
“cam0 capture7 novice jugglers.avi and cam1 capture7 novice jugglers.avi”
for the second scheme.

Figure B.132: The repetability and matching scores of
“cam0 capture7 novice jugglers.avi and cam1 capture7 novice jugglers.avi”
for the second scheme.
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Figure B.133: The detection and matching results of
“cam0 capture7 novice jugglers.avi and cam1 capture7 novice jugglers.avi”
for the third scheme.

Figure B.134: The repetability and matching scores of
“cam0 capture7 novice jugglers.avi and cam1 capture7 novice jugglers.avi”
for the third scheme.
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Figure B.135: The difference between repetability score of 1st scheme
and 2nd or 3rd schemes for “cam0 capture7 novice jugglers.avi and
cam1 capture7 novice jugglers.avi”.

Figure B.136: The difference between match scores of 1st scheme
and 2nd and 3rd schemes for “cam0 capture7 novice jugglers.avi and
cam1 capture7 novice jugglers.avi”.
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