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ABSTRACT

A CRITICAL REVIEW of the APPROACHES to OPTIMIZATION

PROBLEMS under UNCERTAINTY

Filiz Gürtuna

M.S. in Industrial Engineering

Supervisor: Assoc. Prof. Barbaros Ç. Tansel

September 20001

In this study, the issue of uncertainty in optimization problems is studied. First of all,

the meaning and sources of uncertainty are explained and then possible ways of its

representation are analyzed.

About the modelling process, different approaches as sensitivity analysis, parametric

programming, robust optimization, stochastic programming, fuzzy programming,

multiobjective programming and imprecise optimization are presented with

advantages and disadvantages from different perspectives. Some extensions of the

concepts of imprecise optimization are also presented.

Key words: uncertainty, sensitivity analysis, parametric programming, robust

optimization, stochastic programming, fuzzy programming, multiobjective

optimization, imprecise optimization
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ÖZET

BELİRSİZLİK DURUMUNDAKİ ENİYİLEME PROBLEMLERİNE

YAKLAŞIMLARIN ELEŞTİREL İNCELENMESİ

Filiz Gürtuna

Endüstri Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Barbaros Ç. Tansel

September 20001

Bu tezde, belirsizlik durumundaki eniyileme problemleri incelendi. Önce, belirsizliğin

anlamı ve kaynakları üzerinde duruldu ve sonra belirsizliğin değişik sunum yolları

analiz edildi.

Modelleme süreci ile ilgili olarak, duyarlılık analizi, parametrik programlama, sağlam

eniyileme, rassal programlama, bulanık programlama, çokkriterli programlama ve

belirsiz programlama, değişik açılardan avantajları ve dezavantajları ile birlikte

anlatıldı. Belirsiz programlamada sunulan bazı kavramlar ilerletildi.

Anahtar Kelimeler: belirsizlik, duyarlılık analizi, parametrik programlama, gürbüz

eniyileme, rassal programlama, bulanık programlama, çokkriterli eniyileme, belirsiz

eniyileme
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CHAPTER-1

INTRODUCTION

In most of the real world problems, one has imperfect information about the

endogenous and/or exogenous parameters of a system. This fact, however, does not

necessarily imply that uncertainty is an important aspect of all problems. If the level

of uncertainty is low or the uncertain parameters have a minor impact on the system,

then point estimates can be reasonable approximations and one does not have to

worry about uncertainty that much. Since such instances are rare, we assume

uncertainty is an important part of decision making in parallel with the saying in Ben-

Tal and Nemirovski: “… one can not ignore the possibility that a small uncertainty in

the data (intrinsic for most real-world problems) can make the usual optimal solution

of the problem completely meaningless from a practical viewpoint.” (see [9], page

416). This work, where 90 LPs from NETLIB were studied to see how much the
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constraints of the perturbed problem can be violated by the optimal solution to the

nominal problem is a very good reference to see the effects of uncertainty.

In the literature, a number of terms have been used to describe non-deterministic

situations like “imprecise”, “uncertain”, “inexact” and “risk”. For example, originally,

decision-making situations were divided into three groups as certainty, risk and

uncertainty by Luce and Raiffa [88]. For the certainty case, all the necessary

information is available whereas in the risk situation one has incomplete information

about the parameters but probabilities are known. For the uncertainty case, even the

identification of probabilities is not possible. Additionally, some researchers made the

distinction between imprecision and uncertainty as the former being related to a

content of an item of information (value) and the latter to conformity to a reality

(reliability) (for further discussion, see [37], page 2). Uncertainty can also be divided

into two as controllable and uncontrollable. In the former case, decision maker has the

ability to change or force some parameters to belong to, for example, some intervals

whereas in the latter case, such an enforcement is not possible, which is also discussed

in Demir [32] in a more detailed way. Understanding uncertainty in the sense of both

incomplete and missing information, we eliminate such distinctions and use the above

terms interchangeably to describe a situation with imperfect information though

“uncertainty” will be preferred most of the time. According to the types of uncertain

elements, Whalen [143] divides decision making situations as follows:

• Uncertainty about consequences

• Uncertainty about alternative courses of action

• Uncertainty about preferences

One can have any combination of these while modelling but in this study we exclude

the third type of uncertainty, whereas the first and the second ones will correspond to

uncertain objective function coefficients and uncertain feasible region, respectively.

There are mainly four situations leading to uncertainty:
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• Some parameters of the system are not realizable at the time decisions

must be made.

• Although parameters of the system are realizable, their values can not be

determined exactly.

• Although the parameters of the system are known exactly, the decision

made can not be implemented exactly.

• The abstraction of the real world into a model requires some

simplifications, assumptions etc.

The third one has not been considered in the literature so far as we know before Ben-

Tal and Nemirovski introduced such an understanding of uncertainty [7]. It is very

interesting to see a certain model with a difficult-to-implement-solution (in terms of

numerical precision) being modelled as an uncertain model.

In this thesis, we study the existing approaches to optimization problems under

uncertainty of the input data pointing out the advantages and disadvantages of them

and also establish relations among them. There are mainly seven types of approaches,

namely, sensitivity analysis, parametric programming, robust optimization, stochastic

programming, fuzzy programming, multi-objective optimization and imprecise

optimization. These differ from each other in the input data requirement, notions of

feasibility and optimality, computational requirements and so on. Among these

approaches, sensitivity analysis does not handle uncertainty in the modelling phase

but studies the effects of changes in the system parameters on the optimal solution, so

it is a reactive approach. Moreover, it can also be applied to the models constructed

by the other six approaches like stochastic programming [39]. Although parametric

programming is not a reactive approach, it does not specify any ultimate solution for

an uncertain program as the other approaches do. Because of these, we will first

study, in chapter 2, sensitivity analysis and parametric programming which are

studied together most of the time. In chapter 3, we define a general uncertain

optimization problem and study different ways of uncertainty representation. Then, in

chapter 4, we explain and analyze the general models of the existing approaches and

construct a common framework for the models of these approaches. In chapter 5, the

relations among the approaches will be given and the decision environments for
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which they are suitable are studied. Finally, we give concluding remarks and future

perspectives in chapter 6.
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CHAPTER-2

SENSITIVITY ANALYSIS and PARAMETRIC PROGRAMMING

One may have problems where for all possible values of the uncertain parameters, the

same solution is optimal and also one may have problems as in the case of

multiobjective programming, where the decision maker inputs weights, pairwise

comparisons, strength of preference that are judgmental and carry a significant

amount of uncertainty. Therefore, a mechanism is needed to tell if further

investigation of the problem is required and this is where sensitivity analysis comes

into play. The validation of a model is one of the reasons to perform sensitivity

analysis and the other is to assess the worthiness of having better estimates for the

parameters before making the final decision. There are also some indirect uses of

sensitivity analysis. One example is its use as a solution tool in the determination of

efficient frontiers in multi-objective programming as proposed by Gal [50] and
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another one is its use as a means of reducing the dimensionality of a certain class of

transportation problems as proposed by Intrator and Engelberg [68].

As stated previously, focusing on the effects of changes in the problem parameters on

the optimal solution, sensitivity analysis is a reactive approach and requires an

optimal solution as input. Simply, for an LP, if uncertainty is related with the

objective function coefficients, it gives a region of change over which the given

solution is optimal and if uncertainty lies in the right hand side, it tells the region over

which the given basis remains optimal.

Heller is said to be the first to use the term sensitivity analysis in 1954 [62].

Considering an LP, he studied the changes in the optimal objective value resulting

from changes in the parameters. What he did is called differential sensitivity analysis

today. Thereafter, there has been a large stream of research on this area, about which

we refer the reader to Gal [53]. Also the recently published book of Gal and

Greenberg [54] is an excellent reference. We also suggest the survey paper of Gal

[52] and the critical paper by Wallace [136].

Traditional sensitivity analysis gives an interval for each coefficient under which the

same basis remains optimal for an LP. Such a one-at-a-time approach is a limitation

for real life situations. At this point, it should be noted that, if all of the corresponding

variables are nonbasic, the above mentioned intervals can be used directly in case of

simultaneous and independent changes in the cost coefficients or right hand side. On

the other hand, if at least one of the basic variables’ coefficients is altered, the region

over which the same basis remains optimal becomes a convex polyhedron, the

determination of which is not an easy task. In addition to the study of regions of

optimality, the optimal value function and deviations from optimality are also studied

[137]. There are some non-differential approaches to handle such situations, which

will be investigated in the following part in terms of their applications to linear

programming, but before doing so, two essential definitions will be given below and

then parametric programming will be studied briefly. This is done since there are

some relations to be stated between parametric programming and those methods.
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Critical region: The critical region for a nominal data û of a parameter u, CRû,

is the set of values u can take without causing the optimal basis corresponding to û to

change.

Optimal coefficient set: The optimal coefficient set for a nominal data û of a

parameter u, CSû, is the set of values u can take without causing the optimal solution

of the problem with nominal data û to change.

Observe that, in case of degeneracy, CRû⊂CSû and otherwise, they are equal.

Parametric programming represents uncertainty in a component of the model as a

function of a parameter vector (single or multi dimensional) and aims to induce a

subset of the decision space such that each element of this set is optimal for some

problem instance. It dates back to1952 by Orchard-Hay’s Master-Thesis as stated in

[54] (page 1-2), where the right hand side of a linear program was perturbed

parametrically so that the uncertain problem he studied is the following:

min cTx

st Ax = b0 + λb1

where λ∈T⊆R with T known.

He determined the so called critical regions, say CRi, such that for any λ∈CRi, i

=1,…,I, the corresponding LP with the right hand side b0 + λb1 has an optimal

solution. In most publications, Mane is mentioned to be the first to deal with

parametric programming with respect to the right hand side of an LP. Also, in 1954,

Hoffmann and Jacobs [64] studied the LP with cost coefficients perturbed

parametrically. They also considered two-parametric case, determining the critical

regions, where the cost coefficients were perturbed as follows:

min (c0 + λ1c1 + λ2c2)Tx

st Ax≤ b

where (λ1, λ2)∈T⊆R2 with known T.
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Multiparametric case involving right hand side or cost coefficients of an LP appeared

in 1967 and then a group at the Humboldt University, in the second half of the sixties

defined a (nonlinear) parametric mathematical programming problem as

(Pu) min {f(x,u) : x∈M(u)}

where u∈U, M(u)⊆  X, X and U are metric spaces, and f: XxU→R∪ {-∞, ∞}(see

[54], page 1-5).

For more detailed information about parametric programming, the survey of Gal [51],

Gal and Nedoma [55], who gave a simplex-based algorithm for determining the

critical regions, Yu and Zeleny [149], Steuer [123] and Gal [53] may be very useful.

Parametric programs do not give an ultimate solution for an uncertain problem but

specify the set of decisions which will be optimal at least for one realization. This is a

very powerful information to use in the other uncertainty-related models where an

ultimate solution is sought.

There are mainly four types of methods used in sensitivity analysis and parametric

programming related with linear programming problems. These are as follows:

One-Dimensional Cuts: This method proposed by Saaty and Gass, in 1954,

makes a one-dimensional cut through the region to be summarized and characterizes

the end points of this cut [112]. Therefore, this method considers changes along a

fixed direction, called a change vector using a single parameter to characterize points

in that direction. Consequently, the nominal data û is perturbed as

u = û + γG

where G is a 1xn nonzero matrix. This method is suitable for simultaneous changes

but not so for independent changes. Note that this representation corresponds to a

single-parametric programming case.  The special case of this, the most commonly

used one, is where G = ej, that is the jth unit vector in which case, one has the usual

intervals of sensitivity analysis.
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Higher-Dimensional Cuts: This method is an extension of the above one to

handle simultaneous and independent changes and again proposed by Gass and Saaty,

in 1955, redefining the perturbations as

u = û + γG

where G is an sxn matrix [56]. This method is difficult to implement when s ≥ 4 (for a

discussion, see [137], page 15).

The 100% Rule: This rule, a special case of the approximation region of Gal

[53], proposed by Bradley, Hax and Magnanti [14], uses the one-dimensional cuts and

requires a specification of directions of increase or decrease from each nominated

value. In general, there are 2n possible specifications (for cost coefficients) so this

method is hard to apply.

 Tolerance Approach: Wendell proposed this approach [138], [140] to handle

simultaneous and independent perturbations having the general form

u = û + γG

where G is an sxn matrix but he gave primary emphasis to the case G is an nxn matrix

with Gij = uj’ for i = j and Gij = 0 for i ≠  j. For uj’ = û, γj represents a multiplicative

perturbation. In this special case, the tolerance approach gives the maximum tolerance

percentage by which the coefficients can be simultaneously and independently

perturbed within a priori bounds without causing the optimal basis to change. In the

general setting, if τ denotes a finite, nonnegative number, called a tolerance then an

allowable tolerance is defined to be a number τ if the same basis is optimal as long as

u = û + γG

γ∈T

||γ||∞≤ τ

Then among the allowable tolerances, the maximum is selected. The main advantages

of this method are the ease with which the solution can be interpreted and that

information about allowable ranges of variation can be used to yield larger maximum
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tolerance percentages. On the other hand, there are some disadvantages with this

method such as, for moderate or large size problems, the maximum tolerance may

often be at or near zero. To solve this problem, Wendell proposed using bounds on the

variations, which are shown to increase the maximum tolerance [139]. In chapter 5 of

[54] written by Wendell, one can find further information about other attempts to

expand this region.

These methods can be used to summarize the critical regions or the optimal

coefficient sets (see [52] and [59]). Attempts to summarize the optimal value function

using one-dimensional and higher- dimensional cuts are computationally prohibitive.

There are also two other methods, convex bounds and worst and best case bounds, to

use in case of optimal coefficient sets (for detailed information, see [137], page 26).

The well studied perturbations are u = c, u = b, u = [b, c]. The case u = A is a difficult

one but in the special case when perturbations occur in only a single row or column of

B, the basis matrix, it is possible to give a mathematical expression for B-1 [53]. In

more general cases, approximations are studied about which we refer the reader to

[54], [58] and [49].

Sensitivity Analysis studies small perturbations whereas what parametric

programming does is the study of the effects of large perturbations. For example,

tolerance approach is a kind of generalization of the scalar parametric programming

and it is a special case of multiparametric programming with independent parameters.

One chapter of [54], Qualitative Sensitivity Analysis, by Gautier, Granot and Granot

is very interesting, since it is a pre-optimal analysis seeking to find out answers to

questions such as “

• How does the magnitude of a change in an optimal value of a given

variable depend on a change in a parameter associated with another

variable? Where are the changes the strongest? The weakest? Are some

variables unaffected? Less Affected than other?

• Is the optimal value of a given variable monotone in the parameter

changed?
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• Is the optimal value submodular (or supermodular) in the parameters

changed? “

The approach was applied to network flow problems and monotropic problems.

 

For sensitivity analysis and parametric programming for nonlinear programming

problems, the books by Bank et al. [2], Fiacco [47] and Gal and Greenberg [54] are

very useful. Also the works of Fiacco and Ishizuka [45], Jenkins [71], Tanino [127],

Fiacco and Ishizuka [46], Jongen and Weber [72], Kaul, Bhatia and Gupta [78] and

Kyparisis [84] can be seen. For discrete optimization problems, the book [54] and the

papers of Dawande and Hooker [28] and Yıldırım and Todd [145] and the references

therein are suggested. Also the recent work of Thuan and Luc [133] on the sensitivity

analysis in linear multiobjective programming can be seen.
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CHAPTER-3

GENERAL UNCERTAIN OPTIMIZATION PROBLEM

3-1 The Model

Let Pu be a deterministic optimization problem defined as

(Pu) min { fu(x) : x∈Xu}

where

• x is the decision vector

• fu: XD⊆Rn→Rp is known for each fixed u

• Xu:= {x : Fu(x)∈K⊆Rm} and  the mapping Fu : XD→Rm is known for

each fixed u

• the dimensions p, n, m and the sets XD, K are known.
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If u is not fixed but takes values from a known uncertainty set U⊂RM, then we have a

family of optimization problems, say P, so that each Pu is an instance of P. Therefore,

we define an uncertain optimization problem as a set of problem instances, among

which one will be realized so that we express it as:

P = { Pu : u∈U}

Since we have a family of optimization problems, the notions of optimality and

feasibility require different meanings from those in a deterministic case and this is

why there are such a number of quite different approaches to handle such problems.

Each such model transforms P into a single problem, say P’, by transforming the sets

{Xu : u∈U} and {fu : u∈U} into a new feasible set X’ and a new objective function

f’, respectively. P’ has been named differently in the literature. For example, in the

stochastic programming literature, it is called the deterministic equivalent and in

robust optimization, it is called the robust. In this study, we call P’ the induced

problem and in parallel with this, we call f’ and X’ will be called the induced

objective function and induced feasible set, respectively. As a last point, through the

study, we will denote the optimum value of Pu as zu
*.  

Observe that for p = 1, we have a single objective optimization problem and the other

case corresponds to the multiobjective case, where “min” requires a special meaning.

In this case, any technique of multiobjective programming can be used and we will

not focus on these techniques in this study. One more point is that if objective

function and feasibility set are affected by different uncertain parameters, the

decomposition of the uncertainty set U into O and F (O stands for objective and F for

feasibility) such that U = OxF, and correspondingly the vector u into uo and uf to get

the following model may increase computational efficiency and understanding of the

model.

P = {P(o,f) : o∈O, f∈F}

where P(o,f) min {fo(x) : x∈Xf}

Observe that, the specification of Pu as
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• U = OxF with O = [c] and F = [A, b]

• fo(x) = cTx

• Ff(x) = Ax – b

• K = R+
m

• X = R+
n

corresponds to the following LP:

P = Pu min {cTx : Ax≥ b, x≥ 0}

3-2 Uncertainty Set

In an uncertain problem, how the uncertainty is represented becomes a critical issue.

Available information is a restriction in the modelling phase. Furthermore, the

conformity of the form of uncertainty to the real situation affects the performance of

the model. In the literature, there is a number of ways to represent uncertain data as

will be explained below:

a- uncertain parameters are affine embeddings of a set of vectors 

U = {u = u0 + λ1u1+…+ λrur : (λ1, …,λr)∈T⊂Rr}, where T is a known set

b- uncertain parameters come from a convex set so that U is a bounded

convex set

c- each uncertain parameter lies in an interval 

U = {u : uj ≤  uj ≤  ūj, j = 1,…, M}, corresponding to a closed

multidimensional hyper-rectangle

d- uncertain parameters are represented by a number of scenarios 

U = {us : s∈S}, where S is a known set of scenarios and us is the input

data corresponding to scenario s

e- uncertain parameters are random variables 

If w is a random variable with the support Ω⊂Rk and P is a probability
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distribution function on Rk so that w is an element of the probability space

(Ω, F, P), then

U = {g(w) : w∈Ω) where g : Rk →RM

f- uncertain parameters come from fuzzy sets 

U = {u: uj∈Ũj, j = 1,…, M} where each Ũj is a fuzzy set with the

characteristic function cj, which can be either a membership function µj or

a possibility distribution πj

g- uncertain parameters come from ellipsoidal sets 

U = {Π(v) : ║Qv║ < 1}, where v→ Π(v) is an affine embedding of certain

RL into RM and Q is an KxL matrix

Each one of these types has its own advantages and disadvantages and also has some

relations with the others, the specification of which will be useful in understanding

them and in the numerical studies comparing different approaches assuming different

types of uncertain data representations. Therefore, below, we study some of the

representations from this perspective:

Intervals are easy to get, to agree on, especially in case of multiple decision makers

and easy to interpret as the lower bound is understood as the pessimistic estimation

and the upper bound as the optimistic one. In case of high level of uncertainty, when

nothing more is known, this representation is one of the alternatives to use, the other

one being the scenario representation. However, the difficulty to represent

correlations is an important weakness. Another difficulty is that it may not be always

possible to determine the bounds, especially when unpredictably rare events may

occur. For example, inflation rate may be estimated to lie between 30% and 150%,

which covers most realistic situations, but with a political crisis, as in Turkey, it may

be realized as 250 %. Lastly, equal treatment of very extreme realizations and mostly

expected realizations may not be suitable for all circumstances, which is also true for

scenario representation.

First of all, it should be mentioned that, the term scenario does not mean discrete

random variables as used sometimes. A scenario means a realization of the uncertain
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parameters with or without assigned probabilities. Scenario representation is also easy

to understand and interpret. If there is a small number of important factors

determining the rest as in the case of macroeconomic parameters, and if one has a

dynamic environment, then scenario representation is useful in representing

correlations. A weak point is the difficulty with the determination of a representative

scenario set and the number of scenarios. One should be aware of the risk that if there

is a small number of important factors leading to a small set of scenarios, the

realization of an unspecified scenario will affect all of the system. Another

disadvantage is the difficulty to model several endogenous linkages.

In both of these representations, computational difficulties arise as the number of

uncertain elements and the number of scenarios increase.

For random variables, interpretation and understanding of probability distributions are

easy as most of the time they are related to the frequency of occurrence. Different

treatment of each element brings flexibility for some decision environments like the

ones not involving risk averseness. They should be especially used if there is a

theoretical foundation as in the case of queuing models. When enough information is

not available, the determination of distributions and their parameters is very difficult.

Computational burden is high especially in multivariable case with correlations and

continuous random variables. This approach is applicable only if uncertainty comes

from randomness.

Membership functions are not difficult to interpret as they are related to preferences

within given tolerances but possibility distributions are very difficult to interpret and

understand. Determination of them and their parameters are also problematic. These

representations, usually, do not bring computational difficulties. Similar to the

random case, different treatment of each element brings flexibility for some decision

environments. Membership functions will be further discussed in fuzzy programming

part of chapter 4.

To handle the difficulty arising with the increased number of scenarios with the use of

scenario representation, intervals or “inequality-represented” polytopes, the

ellipsoidal set representation was proposed. In case of ellipsoidal sets, the advantages
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can be stated as: being a wide family including polytopes, ability to approximate

many cases of complicated convex sets and moderate size data requirement (for a

further discussion, see [9] and [7]).

As a last point about the uncertainty representation, the relations among them may be

discussed.

Intervals: From a scenario set, one can construct an interval for a parameter

with the lower bound being the minimum element and the upper bound the maximum

element. Also, the support of the probability distribution of or a α-confidence interval

for a random variable and the support of the membership function of or a α-level cut

for a fuzzy set can be taken to represent uncertainty with intervals.

Scenario: One may take the midpoints of a number of subintervals to represent

an interval as a scenario set. Discrete random variables and fuzzy sets can be taken

directly or indirectly (after some aggregation) as the scenario set. In case of

continuity, discretization can be used.

Randomness: An interval can be taken as a uniform distribution and in the

same way a scenario set as a discrete probability distribution with equal probabilities

if probabilities are not assigned to scenarios. Otherwise, the probabilities can be used

directly.

Fuzziness: An interval can be seen as a fuzzy set with equal grade of

membership function and in the same way a scenario set as a discrete fuzzy set with

equal grade of membership if probabilities are not assigned to scenarios. Otherwise,

we can not say much about what the grade of memberships will be. To transform a

random variable to a fuzzy number one can normalize the density function or use

hybrid convolution proposed by Kaufmann [77].

It should be mentioned that how to represent randomness using a fuzzy set or vice

versa is not clear since the relation between these is not explicit (see, for example,

[63].
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CHAPTER-4

APPROACHES to HANDLE UNCERTAINTY

In this chapter, we analyze the existing approaches to handle an uncertain

optimization problem. Since our interest is to explain the main idea and logic of each

approach but not a comprehensive survey, our models will be of general type not

focusing on linear, nonlinear or discrete models. Due to the wide applicability of

linear programming we will give a list of related works after the explanation of each

type of model. For the discrete and nonlinear cases, some important and useful

references will be given at the end of each approach.

4.1-Robust Optimization

Robustness approach aims to produce decisions that will have a reasonable

(satisfactory) objective function value under any (or sometimes some) input data
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realization to the decision model. Whether this claim is justified or not or to what

extent it is justified will be discussed at the end of this chapter. In this approach, the

most inner solutions are sought, which are believed to be more stable than the

boundary ones with respect to perturbations. On the other hand, selecting a non-

extreme point instead of an extreme one may not be easily understood or interpreted.

In fact, because of such an attempt, the ultimate solution may not be optimal for any

Pu.

The specific models are given below in accordance with the types of uncertain

parameters

1- Uncertainty about the consequences

Max-covering model was introduced by Gupta and Rosenhead, in 1968 [60]

and in 1972, developed by Rosenhead, Elton and Gupta [111] in the field of strategic

management. They defined robustness of a decision as the ability to achieve as many

“’good’ end states for expected external conditions which remain as open options” as

possible. Then, in 1987, Rosenblatt and Lee [110] applied this idea to facilities design

with uncertain demand (uncertain objective function), which is the first application of

robustness approach in operations research. He considered as the index of robustness

the number of times the solution lies within a prespecified percent of the optimal

solution for the realizations of the scenario set (for each demand, a three point

estimates have been assumed in the scenario set). Therefore P’ is the following

problem:

max {|Uα| / |U| : x∈XD}

where Uα = {u∈U : fu(x)≤ (1+α)zu
*}

Min-max models take the well-known min-max criterion of game-theory for

the induced objective function that we have the following induced problem:

f’(x) = max {fu(x) : u∈U}

P’ min {f’(x) : x∈XD}
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With this approach, the case of uncertain cost coefficients was first studied by Falk, in

1975 [43], where he assumed that the cost vector comes from a convex set. Then,

Sengupta [116] and Cai et al. [19] applied this approach to the case of random cost

coefficients including in their formulation risk and utility.

Regret model uses the concept of regret proposed by Savage and defined, here,

as the deviation from optimal objective value. In these models, the maximum regret is

minimized so that the induced objective function and problem take the following

forms:

f’(x) = max {fu(x) – zu
* : u∈U}

P’ min {f’(x) : x∈XD}

For a related work we refer the reader to Inuiguchi and Sakawa [69] and the

references therein. They studied the uncertain cost coefficients assuming interval

representation.

Relative regret model uses the concept of regret again but maximum percent

deviation from optimal objective value is minimized so that the objective function and

the problem become:

f’(x) = max {(fu(x) – zu*) / zu
* : u∈U}

P’ min {f’(x) : x∈XD}

This approach has been applied, in 1994, by Gutierrez and Kouvelis [61] in the

context of international sourcing. They assumed that uncertain cost coefficients are

represented by a scenario set. In 1999, Mauser and Laguna [90] studied the same

uncertain parameters assuming they are represented by intervals.

Min-max models are very conservative so that the solutions from this approach are

likely to be very expensive but there are cases (for example, see [9] and [6]), where it

is not so. Also, they are not always applicable as in the case of bridge building, where

it is not possible to build a bridge that never falls down under any realizable scenario.

This type is especially useful if some considerations of targets, budget limits or quotas
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exist that need to be met or it may also be appropriate for competitive environments.

The regret and the relative regret models are less conservative and they provide a

mechanism to capture the missed opportunities. On the other hand, the solutions of

regret and relative regret models require knowing the optimal value for each

realization so they may be harder to solve than the min-max models. If such a

difficulty exists then it can be overcome if instead of optimal values some targeted

values (may depend on u) are used in the formulas.

2- Uncertainty about alternative courses of action

Hard feasibility

In these models, infeasibility can not be tolerated so that only the decisions which are

feasible for all problem instances are considered. Therefore, the induced feasible

region becomes

X’ := {x: x∈Xu ∀ u∈U}

This notion of feasibility was first applied by Soyster in 1972 [120] and [121]. He

studied the case where each column of the uncertain technology matrix comes from a

convex set. Then, in 1999, Ben-Tal and Nemirovski studied the case where the

uncertain parameters of technology matrix and the right hand side come from

ellipsoidal sets though the cost coefficient uncertainty can also be handled [8].

Soft Feasibility   

i- models where infeasibility is not reflected into cost

In [9], Ben-Tal and Nemirovski use the following model to allow some infeasibility.

In fact, with a parameter ε representing the amount of uncertainty in the technology

matrix coefficients and with a parameter δ for the amount of violation, which is

determined constraintwise, he called the ultimate solution “(ε, δ)-reliable”.  Below,

we present the model without specifying these parameters explicitly. Let vu
i(x) be the

violation of the ith constraint as
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vu
i(x) = min {|k-Fu

i(x)| : k∈Ki}

then, the induced feasible region can be defined as

X’ = {x: vu
i(x) ≤  g(u)}

For more detailed discussion and the case for random uncertainty, the same paper can

be seen.

ii- models where infeasibility is reflected into cost

This type of model was proposed by Mulvey, Vanderbei and Zenios, in 1994 [94]

introducing a new concept,  “model robust”, where a decision is so if it remains

“almost” feasible for all realizations of an uncertain parameter. They call a decision

“solution robust” if it remains “close” to optimal for all realizations of the input data.

Their model requires a discrete scenario set with assigned probabilities. In fact, goal

programming formulations are involved to trade off the infeasibility and optimality.

Their objective function is of the following form:

f’ = go(fu(x)) + wgf(K, Fu(x))

The functions go and gf account for optimality and feasibility and the trade off

between them are represented with the weight w. For example, g can be defined as the

worst case, mean value or higher moments. For equality constraints, gf is suggested to

be of a quadratic form and for inequality constraints to be of a maximum violation

form. This model has the difficulty carried by the weight factor since selecting the

right factor is a difficult task. In fact, it rates the amount of infeasibility with cost,

which is usually difficult to assess. Afterwards, in 1995, Mulvey and Ruszcynski [93]

and in 2000, Yu and Li further studied this type of models [147].

For robust optimization of discrete optimization problems, the book by Kouvelis and

Yu [83] is an excellent reference, where one can find the main ideas of robust

optimization and solvability properties of some discrete optimization problems.
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Furthermore, one can benefit from the references therein. For a general approach for

finding regret solutions for a class of combinatorial optimization problems where

uncertainty comes from the objective function coefficients and represented by a

scenario set, one can see Averbakh [1]. Additionally, Yu [148] studied regret or

relative regret type discrete optimization problems providing pseudopolynomial

algorithms under certain conditions.

For robust nonlinear programming one can see [7] and the recently published work of

Indraneel with the references therein [66].

4.2-Stochastic Programming

In this approach, mathematical programming problems are handled where some of the

parameters are random variables. It is said in the book of Prékopa [101, page viii] that

“… either we study the statistical properties of the random optimum value or other

random variables that come up with the problem or we formulate it into a decision

type problem by taking into account the joint probability distribution of the random

parameters.”. For a comprehensive treatment of the subject, the books by Kall and

Wallace [75], Birge and Louveaux [11] and Prékopa [101] are suggested.

In stochastic programming, two basic assumptions are made as uncertainty comes

from random elements in the model and one has distributional knowledge (objective

or subjective) about the random elements.

We divided the main robustness models in terms of their notions of feasibility and

then subdivisions were given according to their notions of optimality. This is not an

efficient way of determining the main types of models in stochastic programming

since firstly, models with hard feasibility may be represented in the same way as those

with soft feasibility as in the case of probabilistic constraints, and secondly, there is a

variety of ways to allow constraint violation and to handle uncertain objective

functions. Therefore, we determine two main streams of stochastic programming

models in parallel with Ermoliev and Wets [41] as shown below.
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Stochastic Programming Models

1-Adaptive Models 2-Recourse Models

1.1- Distribution Problem 2.1-Two-Stage

1.2- Anticipative Models 2.2- Multi-Stage

1.2.1- Probabilistic Models

1.2.2- Moments-based Models

1.2.3- Hybrid Models of 2.1&2.2

1-Adaptive models:

In this type of models, optimization is seen as being made in a learning environment

so that before making a decision, observations can be made. Let B⊆F be a collection

of sets that contain all the relevant information obtained from observations. Then, the

decision must be determined on the basis of B, being a function of u whose values are

B-dependent (or B-measurable). There are two important special cases of adaptive

models, namely, distribution problem and anticipative models. But before going into

details of them it should be mentioned that, in this work, we use the term adaptive just

for the case where B is a nonempty proper subset of F. We will not focus on this

explicitly since the only difference between anticipative models and adaptive models

is that the former uses prior distributions whereas the latter uses posterior

distributions. For example, if in an anticipative model, the induced objective function

or the induced feasible region are defined as a function g and g’ as shown below, then

the same functions but conditioned on B would be used in an adaptive model as

shown below.

Anticipative Adaptive

Objective: g{fu(x) : u∈U} g{fu(x) : u∈U| B}

Feasibility: g’{Su(x), K : u∈U} g’{Su(x), K : u∈U| B}

1.1. Distribution Problem: If B = F, one has the posterior distribution

of u and solving for each Pu, one can obtain the probability distribution or some

characteristics of random variables such as the probability distribution of the random
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optimum value or of the optimal solution in case of a random LP. One important

special problem is finding basis stability, the probability that the basis remains

unchanged. Also, finding the distribution induced on the recourse function, which will

be explained below, is useful to find its expectation and to address other risk criteria

that may not be given by the expectation functional. This type of problems can be

seen as a generalization of sensitivity analysis or parametric programming. For the

computation of characteristics of the random optimum value, simulation,

discretization and Cartesian Integration are used. Dupačová and Wets [40], King and

Rockafellar [80] and Shapiro [117] can be seen about the asymptotic distributions of

optimal solutions in stochastic programming, which is another topic studied in these

problems. Also, there are a number of papers studying laws of large numbers for

random linear programs like Prékopa [98] and Kabe [73]. Interested reader can find

more discussion of this subject in chapter 15 of [101].

1.2. Anticipative Models: If B= Ø, then one has nothing more than

priori distributions of the parameters. Such models are called anticipative models in

the literature. In each of these models, induced objective function and induced

feasible set can be defined in terms of either probabilities or moments of the

distribution function. We give some types of formulations below:

• 1.2.1. Probabilistic Models: Using probabilities, the induced

objective function can be one of the following:

- max P(fu(x)≤ ž)       (O.1.1)

- min ž where ž satisfies P(fu(x)≤ ž)≥α       (O.1.2)

Using probabilities, the induced feasibility can be defined as one of the following:

- P(x∈Su)≥α           (F.1.1)

- P(Fu
i(x)∈Ki)≥αi where Fu

i is the ith left hand side        (F.1.2)

   and Ki is the ith right hand side

Constraints of these types were first introduced by Charnes, Cooper and Symonds in

1958 with the formulation F.1.2 with random RHS, where they call their models
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chance constrained programming [26]. In 1963, Charnes and Cooper also suggested

the use of F.1.1 and O.1.2 for the case of random RHS and cost coefficients and called

this model the P-Model [25]. Then, in 1965, Miller and Wagner [92] studied the case

of random RHS with independent components using the formulation F.1.1. The same

case with dependent components was studied by Prékopa in 1970 [97]. O.1.2 was

introduced by Kataoka, in 1963, to handle random cost coefficients and to increase

safety [76]. All of these studies are related with linear programming problems. For

more recent results for probabilistic programming see Dentcheva [34] and the

references therein.

In probabilistic models, the levels z and α are arbitrarily chosen. Specifying z may be

especially difficult without knowing anything about the solution. With the use of α,

the effects of the tails of the distribution is ignored. This may affect the system

abruptly so that, in a sense, one does not have any idea of the cost of violation or cost

of being suboptimal.

• 1.2.2. Moments-based Models: Using moments, the induced

objective function can be one of the following:

- min αE[fu(x)] + β(var[fu(x)])1/2 (O.2.1)

- min αE[fu(x)] + βvar[fu(x)] (O.2.2)

- min (E[fu(x)], var[fu(x)]) (O.2.3)

Again, using moments, the induced feasibility can be defined as:

- E[g(Fu
i(x), Ki)| Fu(x)∉K] ≤  di, i = 1,…, m  (F.2.1)

   where g(Fu
i(x), Ki) = min {|k- Fu

i(x)|: k∈Ki}

The early works related with linear programming problems are given here. The

constraints involving conditional expectations, F.2.1, were studied first by Prékopa to

ensure safety limiting the expected amount of violation constraintwise [97], [99].

There are also some formulations including conditional expectation and probabilities

together for feasibility. These are called “induced chance constraints”. This type of
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constraints, used by Bloom [13] and Klein [81] seem to be useful especially for the

case the technology matrix has randomness since they allow the convexity of the

feasible region.

For formulas with expectations to be meaningful, the system has to repeat its

performance independently, in a large number of cases, so that the average of the

outcome is close enough to the expectation. Additionally, the magnitude of the

variation of the outcome should not be large. This is why variance or standard

deviation are included in the formulas.

• 1.2.3. Hybrid Models of 2.1&2.2: For an LP, Charnes and

Cooper [25] suggested combining probabilistic constraints with moments-based

objective functions. For the random RHS and cost coefficients, they suggested a

model with F.1.2 feasibility with O.2.2 objective with β = 0 or α = 0, which they call

E- and V-Models respectively.

2- Recourse Models:

This type of models reflect a trade-off between anticipation and adaptation so that it is

assumed that after observations are made, some corrective (recourse) actions can be

taken to fill the gap between anticipated and realized values. So, in these models,

infeasibilities are penalized. We can categorize recourse models as two-stage and

multistage recourse models. The two-stage version of this model has been studied

extensively and this is what we will study here mostly (for a further discussion, see

Frauender [46]).

2.1. Two-Stage Models: In recourse models, uncertainty affecting only

the feasible region is handled so that we assume a constant objective function, fu(x) =

f(x), ∀ u∈U. In these models, penalties coming from the violations of the constraints

are added to the system cost. If one takes a decision x and if after uncertainty is

resolved she/he has Fu(x)∉  K, it is assumed possible to take a corrective action y such

that
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Fu(x) + Hu(y)∈K

but this brings  cost which is assumed to be linear and dependent on u in the general

setting, say q(u)Tx. While choosing among the corrective actions, cost should be

minimized so that a corrective action should solve the following optimization problem

Pu(x) min q(u)Ty

st Fu(x) + Hu(y)∈K

In this setting, one should consider all possible realizations of u and the corresponding

possible corrective actions before making a decision. Let Qu*(x) be the optimal value

of Pu(x). Then the two-stage recourse model can be defined as:

min f(x) + E[Qu*(x)]

st x∈XD

There are also some formulations adding probabilistic or moment type constraints to

this model to increase safety but these also increase complexity of the model [41].

Furthermore, Evers [42] proposed to introduce an additional cost dependent on the

probability of the constraint satisfaction or violation.

Two important assumptions are usually made about the feasibility of the Pu(x), which

is obviously dependent on x. The first being complete recourse, where Pu(x) is

feasible for any value of x∈Rn and the second, relatively complete recourse where

Pu(x) is feasible for any value of x∈XD.

Generally, q(u) is taken as constant and Hu(y) as a linear mapping, e.g. Wuy. If also

Wu is deterministic such a model is called fixed recourse.

One popular special case of fixed recourse models, called simple recourse proposed

by the pioneers of stochastic programming, Dantzig [27] and Beale [3] corresponds to

the case W = [I, -I], which implies constraintwise penalties for violations. Simple

recourse models satisfy the complete recourse assumption. On the other hand,
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constraintwise penalties are not always legitimate as in the case of the existence of

correlations in the random vector.

In addition to the criticism made about the use of expectations, recourse models can

be criticized in that, the cost of violations of some constraints is not known always (in

which case use of probabilistic constraints seems reasonable) and even if the costs are

known, without any probabilistic constraints, the reliability of the system will be an

open question in these models.

Different types of penalty functions have also been used. For example, Ben-Tal and

Teboulle [10] penalized the violation of the feasible set using utility function and then

Ben-Tal and Ben-Israil [5] incorporated value-risk function instead of utility function

calling this model recourse certainty equivalent. In fact, the use of nonlinear utility

functions especially considering their expected values and the Markowitz type

mean/variance models as those given in the anticipative models are the ways to

handle risk in stochastic programming. The use of nonlinear utility functions make the

models more difficult to solve, in which case one can either include risk aversion but

use simple second-stage description or use linear utility function but detailed second

stage description or include risk aversion in a linear utility model under the form of a

linear constraint called downside risk.

2.2. Multi-stage Models: In this type of models, there are a number of

decisions and observations following each other. In addition to some computational

difficulties encountered in two-stage models, in multistage models it is necessary to

solve large system of linear or nonlinear equations to obtain a description of the

evolution of the system. A recent work on this topic is due to Høyland and Wallace

[65]. Multi-stage recourse models do not have separability properties so conventional

recourse equations of dynamic programming can not be used here but these problems

have a special structure called staircase, which allows some solution techniques like

basic decomposition technique to be applicable. Other techniques are L-Shaped

technique and scenario aggregation (for further information about these techniques

see [41] and specifically about scenario aggregation, see Rockafellar and Wets [106],

Robinson [105] and Dembo [31]).
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In stochastic programming, the exact evaluations of the functions or of their

subgradients, especially in multidimensional continuous random variable case can be

an extremely demanding computational task. The existence of correlations even

worsens the situation. In fact, much of the work of the theory is concerned with

determining the properties of these integrals and devising suitable approximation

schemes. There are some special cases where the computational aspect is not so bad

as the following cases:

• For formulations with expectations, E[u] can be used if linearity exists.

• Probabilistic constraints with only random rhs can be reduced to a linear

system of equations

• If all parameters of a random constraint are jointly normally distributed a

linear system of equations can be obtained but knowledge of the

covariance matrix is required

• Simple recourse problems especially with discrete random variables has a

block angular structure and there exist special optimization techniques to

solve these but the number of density points of the distribution should be

small.

To handle the above mentioned computational difficulties some approximation

schemes were proposed. Also, design of approximation schemes is not easy requiring

convergence theory, error bounds, improvement schemes and so on.

One can use approximation techniques replacing the probability distribution with a

simpler one especially with a discrete one so that one will have sums instead of

integrals in the formulation. Also, stochastic quasigradient methods can be used

where sampled realizations are used to get general statistical properties. This

corresponds to replacing the function with the simpler ones.  Additionally most of the

time, independence assumption is made.

Some of the solution methods for probabilistic models are The SUMT (The

Sequential Unconstrained Minimization Technique) [41], Supporting Hyperplane
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Method studied by Prekopa and Szántai [102], GRG (General Reduced Gradient

Method) proposed by Mayer [91] and the primal-dual algorithm of Komáromi [82].

Some of the solution methods for simple recourse problems are Primal Method

proposed by Wets [142] and Dual Method of Prékopa [100].

About the solution procedures of two-stage recourse models one can see Basis

Decomposition Technique by Strazicky [124], L-Shaped Method of Van Slyke and

Wets [119] and [67]. For the methods, Discretization, Sublinear Upper Bounding

Technique, Regularized Decomposition Method, Stochastic Decomposition and

Conditional Stochastic Decomposition, Stochastic Quasigradient, one can see [41].

About multiobjective stochastic programming, the interactive approaches of Teghem

[136] and Urli [134] are very popular for the linear case and for a general

mathematical programming problem, one can see Stancu-Minasian [122] and

Ringuest [104] for a method for generating nondominated solutions.

4.3-Fuzzy Programming

In 1965, Lotfi A. Zadeh introduced the concept of  “Fuzzy Sets” and then, fuzzy

approach was used extensively as a modelling tool especially as a way of modelling

vague data. Vagueness is defined, by Fedrizzi, as a lack of clear-cut boundaries of the

set of objects to which the meaning is applied [44]. So that by fuzziness it is meant a

type of imprecision which is associated with classes in which there is no sharp

transition from membership to nonmembership. In the representation of this concept,

membership functions are used, which were defined by Zadeh [150] as:

“Let X be a space of points (objects), with a generic element of X denoted by

x. Thus, X = {x}. A fuzzy set (class) A in X is characterized by a membership

(characteristic) function µA(x) which associates with each point in X a real number in

the interval [0, 1], with µA(x) representing the “grade of membership” of x in A.”

The first proposal for fuzzy decision making comes from Bellman and Zadeh [4], in

1973, where fuzzy decision was defined as a fuzzy set resulting from the intersection
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of the fuzzy constraint and the fuzzy goal. If the fuzzy constraint and the fuzzy

decision are characterized by the membership functions µC(x) and µG(x), respectively,

then the fuzzy decision was said to be characterized by µD(x) = min (µC(x), µG(x)).

Then the optimal solution is defined as the one maximizing µD(x). In this approach,

the minimum grade between the grade of feasibility and goal satisfaction is

maximized, from which it is apparent that, it is a conservative approach not allowing

any trade off between the constraint satisfaction and goal satisfaction. Thereafter, a

rich literature has been developed both in the theory of fuzzy sets and its application

in operations research. We refer the reader to the books of Yager et.al [144],

Kacprzyk and Orlovski [74], Dubois and Prade [37], Lai and Hwang [87] and

Slowinski [118] for further information about fuzzy programming. In the first book,

one can find the original papers of Zadeh whereas especially in the books of Lai and

Slowinski, one can find comprehensive surveys of this area and lists of books,

journals, application areas and papers. The study of different approaches of fuzzy

linear programs and a survey of this area can be found in Delgado et.al. [30] and

Rommelfanger [108], respectively.

A fuzzy programming model is not a uniquely defined type of model but depending

on the assumptions or features of the real situation many variations are possible.

Fuzzy programming was also proposed as a tool for solving vectormaximum

problems by Zimmermann [152] and Ying-Jun [146], which enables a decision maker

describe the efficient vectors to be preferred. In fuzzy models, violations of the

constraints are tolerable and the goals do not have to be in a min or max form.

Because of such flexibilities, as in the case of stochastic programming, the main

streams of models will not be determined according to the notion of feasibility or

optimality but according to the input data type, being either a membership function or

a possibility distribution. In this study, we call the former case flexible programming

and the latter possibilistic programming to distinguish them. Although, in the

literature, the former is called fuzzy programming we will use this term to refer to

both of them.  Furthermore, flexible programming can be subdivided into two as

symmetric and non-symmetric as shown below in the next page.

The distinction between flexible and possibilistic programming can be stated as

follows: the grade of a membership function indicates a subjective degree of
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satisfaction within given tolerances so membership functions are constructed by

eliciting the preference information from the decision maker whereas possibilistic

programming handles imprecise numbers so that possibility distributions are

constructed by considering the degree of the possibility of the occurrence of events. In

this respect, the possibility distributions, where the involved fuzzy sets are assumed to

be normal and convex, are often assumed to be triangular or trapezoidal functions

whereas for membership functions this is not a requirement. In this study, we use the

term “characteristic function” to refer to both membership functions and possibility

distributions.  One more distinction is the existence of fuzzy relations or goals. In

flexible programming, one has fuzzy environments or preferences so that fuzzy

maximization/minimization or fuzzy equality/inequality are allowed to be defined

whereas in possibilistic programming, it is the existence of fuzzy numbers that cause

imprecision like the case of random variables, so such concepts are not allowed to be

used in possibilistic programming. Because of such distinctions, a solution of a

flexible programming model has a degree of preference and a solution of a

possibilistic programming model has a degree of possibility of occurrence. The

solutions of the related models should be interpreted from this perspective.

Fuzzy Programming Models

1-Flexible Programming Models 2-Possibilistic Programming Models

1.1- Symetric Models

2.1- Nonsymetric Models

There is a significant number of characteristic function types, which are listed in the

next page in terms of applicability to flexible programming and possibilistic

programming (see [118], page 183 for more detailed information).

An important point is how to get characteristic functions. Dishkant is one of the first

to try to estimate the membership functions [35]. In the literature there exist some

studies concerning this aspect, which can be divided into two as axiomatic approach

and semantic approach (Giles, [57]) but the question is still not well answered [87,

page 30]. In practice, even if the “true” shapes of membership functions are

approximated well, to model realistically the part of a membership function belonging

to small membership values is very difficult. A practical way of getting suitable
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membership functions is the procedure proposed by Rommelfanger [107]. For more

information about the membership functions see Dombi [36]. There are also studies

where the grade of a membership function or the support of a fuzzy set may be a

fuzzy set, called generalized/extended fuzzy set (Buckley [15]). Buckley also suggests

extending the distribution problem of stochastic programming to possibilistic

programming case and defines the possibility distribution of the objective function

[17].

Types of Characteristic Functions

Flexible Possibilistic

• Linear • Triangular

• Concave • Trapezoid

* by exponential functions

* by piecewise linear functions

• s-shape

* by piecewise linear functions

* by hyperbolic functions

* by hyperbolic inverse functions

* by logistic functions

* by cubical functions

Since in a fuzzy programming one has fuzzy sets, the solutions are via intersections or

unions of fuzzy sets and the resulting sets will also be fuzzy, whose characteristic

functions are determined by defining some operators for union and intersection. As in

the case of characteristic functions, there are also different types of operators for

union and intersection and this also contributes to the high variety of fuzzy models.

For example for the union and intersection, the originally proposed operators are max

and min respectively. They have a pessimistic view and no attention has been paid to

repetitive character of the information available giving solutions not acceptable (for a

good example for this situation, see Hisdal [63]). Then six alternatives were suggested

to use instead of max and six alternatives to use in place of min. The following list

contains just the names of these operators without any formulation. We refer the

reader to [87, page 54] for further information.



35

compensatory max operators compensatory min operators

Algebraic Sum Algebraic Product

Bounded Sum Bounded Product

Hamacher’s Max Operator Hamacher’s Min Operator

Yager’s Max Operator Yager’s Min Operator

Dubois and Prade’s Max Operator Dubois and Prade’s Min Operator

Werners’s “Fuzzy Or” Operator Werners’s “Fuzzy Or” Operator

Therefore, while modelling, three points given below should be studied well since

they have a significant impact on the model:

- type of characteristic function: membership function or possibility

distribution

- the type of the membership function or possibility distribution

- the type of operators

Below, we present some type of models used in fuzzy programming in accordance

with the type of the uncertain parameters. For different types of models or for more

information about them, we refer the reader to [87].

Flexible programming

We assumed here, as Lai and Hwang [86], that the fuzzy equality or inequality

relations can be incorporated into the fuzzy constraint especially to the fuzzy right

hand side so that we do not include them in the models.

1- Uncertainty about the consequences

In this situation, each cost coefficient uj, j = 1,…,n comes from a fuzzy with

associated membership function µj : Ũ→[0,1], j = 1,…, n. These fuzzy coefficients are

aggregated with some of the operators from the previous list. If we let go represent

such an aggregation, then the membership function of a cost vector becomes

µo(u) :=  go{µj(uj) : j = 1,…,n}
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Then a parametric programming model is developed as

min {fu(x): µo(u)≥α, x∈XD} where α∈[0,1]

Each solution associated with the parameter α has a degree of preference α. One of

the options to select an ultimate solution is seeking the one with the maximum degree

of preference.

2- Uncertainty about alternative courses of action

Firstly, it is assumed that, the fuzzy parameters of the feasible region is somehow

aggregated using some operators as in the previous situation so that the membership

function of a solution for feasibility is

µf(x) := g(Fu(x), cj(uj) : j = 1, …, M)

Then the induced problem becomes

max {f(x) : µf(x) ≥  α, x∈XD} where α∈[0,1]

Each solution associated with the parameter α has a degree of preference α for

feasibility. There are also some works where the objective function is fuzzified

although it has no uncertain parameters, for which we refer the reader to [87].

Possibilistic programming

1- Uncertainty about the consequences

Here we give two examples of the models used in this approach. The first one is

similar to a stochastic programming model where all of the random variables are

replaced with their expected values. The model is as follows:

min {fū(x) : x∈XD} where ū := (ū1,…ūn) and ūi := wiui
p + (1- wi)ui

o i = 1,…,n
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Here ui
p and ui

o represent the pessimistic (min) and optimistic (max) values of the

uncertain parameters and the solution corresponding to the most possible problem

instance are sought. The determination of weights is very questionable.

In the second model, a multiobjective approach is used to get the following model:

min {(f ū
1(x), f ū

2(x), f ū
3(x)) : x∈XD}

where f ū
1(x) is the problem instance corresponding to the pessimistic instance, fū2(x)

corresponds to the optimistic instance and f ū
3(x) corresponds to the most possible

instance.  This model carries the difficulty a multiobjective programming problem has

as to the determination of the final solution. There are also alternative models to this

where the left and right spreads of the possibility distribution of the objective function

are maximized and minimized, respectively and these models have the same idea as a

stochastic programming model where the expected value and the variance are

considered as two objectives.

2- Uncertainty about alternative courses of action

Most of the models require the use of a fuzzy ranking procedure to define the feasible

region and with that definition reduces an inequality relation, for example, to a

number of inequalities, which we do not discuss here explicitly. If some ranking

procedure is assumed to be performed g(πi(ui) i = 1,…, M) and the possibility

distribution of the feasible region π(x) is determined than the following model can be

given as an example.

min {f(x) : π (x) ≥α}

For both programming types, if uncertainty affects objective function and feasible

region simultaneously, then any combination of the existing formulations can be used.

There are also some interactive approaches not mentioned here, which can also be

used to handle this situation.

Fuzzy programming models are reduced to classical LP, goal programming,

parametric programming or nonlinear programming problems. Especially, models
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with linear membership functions and max-min operators can be solved efficiently by

standard LP methods.

There are some important criticisms about fuzzy programming and some about the

theory behind the fuzzy set theory, which should be mentioned here. Firstly, the

meaning of grades of membership functions is questionable especially for possibility

distributions. This is so since the basic assumption made is that randomness is not

equal to fuzziness. On the other hand, determining possibility distributions require

evaluating the possibility of the occurrence of an event, which has some relation with

the frequency of the occurrence of that event. The exact relation between those is an

open question although there are a number of attempts studying this area. One of the

main differences between those is related with the consistency. That is, in general, the

union of a fuzzy set and its complement not equal to the attribute universe. This

inconsistency is seen as a serious weakness since in probability theory one can say the

degree to satisfy some condition knowing the degree not to satisfy but can not do this

in case of fuzzy sets. Another major criticism is the lack of standard definitions for

fundamental concepts like negation, probability of fuzzy events, union or intersection

of fuzzy sets… In Kerre [79], several proofs of important properties are shown to be

incorrect. Therefore, while modelling with fuzzy sets, one should very carefully study

the theory behind it.

In the next page, we give some literature related with flexible and possibilistic linear

programming respectively.

For the fuzzy nonlinear problems, Sakawa and Yano [114] and [115] proposed an

interactive method for multiobjective nonlinear programming with fuzzy parameters

using augmented minimax problems. Also, Dumitru and Luban [38] and the survey of

Sakawa [113] and the references therein are useful.

For discrete optimization problems, we refer the reader to Chanas and Kuchta [24],

where they present selected problems and algorithms of fuzzy discrete optimization.
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Some Works Related with Flexible Programming

Parameter                                            Approach                                 Year

[b] Tanaka et.al. [87, p 6] (1974)

Verdegay [87, p 6] (1982)

Werners [141] (1987)

[c] Verdegay [135] (1984)

[b, z] Zimmermann [151] (1976)

Chanas [21] (1983)

Chanas, Kolodziejczyk [22] (1986)

Lai, Hwang [86] (1992)

[A] and/or [b] and/or [c] Carlsson Korhonen [20] (1986)

[A,z] or [z,A,b] Lai, Hwang [85] (1992)

Some Works Related with Possibilistic Programming

Parameter type                                    Approach                                 Year

[c] Luhandjula [89] (1987)

[A, b] Tanaka et al. [125] (1984)

Ramik, Rimanek [103] (1985)

Dubois [87, p 6] (1987)

[b] or [c] Rommelfanger et.al. [109] (1989)

Delgado et al. [30] (1990)

[A] or [b,c] Fuller [87, p 6] (1986)

Buckley [16] (1988)

Negi [95] (1989)

[b], [c], [A], [A, c] or [b,c] Lai Hwang [85] (1992)

[A,b] and fuzzy < Delgado et al. [29] (1989)

[A] and/or [b] and/or [c] Buckley [18] (1990)
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4.4-Multiobjective Optimization:

Though there are uncertainties inherent for the multiobjective optimization problems

related with the preference-structure, here our concern is not to study them since the

general uncertain model given in this study does not recognize such type of

uncertainties. Instead we will consider multiobjective optimization as a tool for

solving the uncertain optimization problems as defined previously. The idea was

proposed by Ishibuchi and Tanaka in 1990 [70], where they define two objective

functions on {fu : u∈U} to take into account the worst case and the average case. The

work of Rommelfanger is also related to this type of modelling [109]. In 1996,

Chanas and Kuchta generalized the original proposal [23]. A more general model with

more than two objective functions can be given as follows:

Let fj’ j = 1,…, r be defined on {fu : u∈U}  and assuming Xu is not constant. With the

notion of hard feasibility, the problem to be solved becomes

min {f1’(x), …, fr’(x)}

st x∈∩Xu

This model can be applied to the case original problem has single objective function

but in the other case, may not work well. It can be useful to handle different risk

levels with the aim to perform well in all of them.

4.5- Imprecise Optimization

In this approach, new solution concepts based on the relationship between the

decision space and the uncertainty set have been introduced. The initial work on this

that introduces the concepts of weak, permanent and strong solutions dates back to

1988 with an unpublished research report by Tansel and Scheuenstuhl [131]. The gest

of the approach relies on associating a subset of the uncertainty set with each point in

the decision space. The associated subset with a given point of the decision space is

referred to as the optimality-region of that point and includes the set of all data

realizations for which the given point is an optimal solution. This key concept leads to

various kinds of solutions that give different meanings to what we understand from
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the word “robust”. These solution concepts have been developed by Tansel [128],

Tansel and Demir [130], Demir, Tansel and Scheuenstuhl [33] and Tansel [129]. For

applications of these solution concepts in the context of a facility location problem we

refer the reader to [131], [130], [33] and particularly [32].

The approach induces a subset of the decision set Xw⊂XD such that each element of

this set is optimal for at least one realization of the uncertain parameter and each

element of this set is called a weak solution. So the following defines the set of weak

solutions:

 Xw:= {x : x∈argmin {fu(x) : x∈XD} for some u∈U}

Then for each element of Xw, they induce a subset of U, say U(x) such that x is an

optimal solution for every element of U(x), which is called optimality-region of  x, so

we define U(x) as:

U(x):= {u∈U: x∈argmin {fu(x) : x∈XD}}

Observe that if U(x) = U for some x∈Xw, then such decisions would be optimal under

any realization of u, which is what is really sought in an uncertain problem providing

total protection against the unknown.  Such x is called a permanent solution, which is

the first type of solution defined in this approach. A permanent solution (or set of

permanent solutions) does not exist most of the time and in order to handle this

situation the second type of solution concept, approximate permanent solution, is

proposed as the solution of the following auxiliary problem.

min g(x)

x∈Xw

where g: X→ R is a function indicating the performance of x to cover the uncertainty

set.
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Two types of performance functions have been suggested as l∞ norm of the distance to

the uncertainty set and volume of coverage of the uncertainty set, which are defined in

the following ways respectively.

g(x) = max { min {d(u, v): v∈U(x)}: u∈U}

g(x) = - vol(U(x))/ vol(U)

where d(u, v) is a distance function and vol(.) is assumed to be defined, both of which

use the optimality-region concept in their formulations.

The interpretation of the functions defined so is very meaningful as stated also in

Demir (2001). For instance, in a decision making situation with repetitive character

like a dynamic system where the realizations from the uncertainty set occur in a

number of times through time, then the volume maximizing solutions guarantee

optimality for the largest possible portion of time. For the other case, where the

decision making situation is of a unique type (nonrepetitive) with the realization of

the uncertain parameter occurring once, the volume maximizing solution guarantees

the maximum likelihood of being optimal. Additionally, a minimum distance solution

has the ability to have a smooth optimality-region, which, we believe, decreases the

risk of being suboptimal with a small perturbation of the parameter.

The use of approximate permanent solution provides very important information

about the way to decrease the uncertainty in case of controllable uncertainty since if

one has the ability to reduce the uncertainty set somehow or at some cost, then with

the information of approximate permanent solution a permanent solution can be found

for the reduced uncertainty situation. Its power increases as one has higher coverage

or lower distance performance. For example, 1 minus the volume coverage rate can be

used as an indicator of the risk of being suboptimal.

One extension of this model may be the introduction of a new concept, α-optimality-

region, defined as:

Uα(x) = {u: fu(x) ≤  (1+α)zu
*}
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Then using Uα(x) instead of U(x) in the above formulations increases the possibility

of finding decisions with greater coverage and with a near optimal objective value

performance.

The last type of solution concept, called unionwise permanent solution, is introduced

by defining a minimal subset of Xw such that their region of optimality cover the

uncertainty set together.

Xuw := argmin {|Z|: Z = {x∈Xw: ∪U(x) = U}}

In this situation, how to find an ultimate solution depends on the situation on hand.

For instance, such a set may have very small number of solutions, all of which can be

implemented if possible. While doing so, one should consider the solution set

providing the minimum total cost if there exists a number of unionwise permanent

solutions but this case may not be frequently encountered. Another thing may be the

use of regret concept as suggested by Demir as “… minimize the maximum regret of

having made a suboptimal choice.”, from which we understand that the ultimate

solution will be chosen from the unionwise permanent solutions. Because of this, the

minimum regret of this model will be greater than the minimum regret of a usual

regret model.

The optimality-region concept is one of the most important concepts introduced in

this approach not because it is used in the definition of a new type of solution but it

can be extended, as in the case of α-optimality-region, to construct a common

framework in a way that all of the models mentioned handling uncertainty in the

objective function coefficients can be represented using it. Afterwards, we will

consider the case of uncertain feasibility and introduce new concepts of feasibility,

which have the potential to be used to form such a common framework.

1- uncertainty about the consequences

In this situation, corresponding to uncertainty in the objective function coefficients,

one has a deterministic decision space XD, the uncertainty set U and a set of objective

function values, {fu(x): x∈XD, u∈U}. In order to represent the existing models in a
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uniform way, we introduce the extended-optimaliy-region of a decision, Uβ(x),

defined as follows:

Uβ(x) = {u: g(fu(x))≤β(x)}

where β(x)∈R for each x∈XD. This extension allows one to use some other criteria

for the objective function performance like expected values, utility functions etc.

Below, we transform each previously studied model into a new one with the

extended-optimality-region concept.

Min-max: Let Uβ(x) = {u: fu(x)≤β(x)}, then a min-max problem

becomes

min {β(x) : Uβ(x) = U, x∈XD}

Max covering: Let g(fu(x)) = (fu(x) – zu) / zu and β(x) = α, ∀ x∈XD so

that Uβ(x) = {u: fu(x)≤ (1+α)zu}, then the problem becomes

max {|Uα(x)| / |U| : x∈XD}

Regret: Let g(fu(x)) = fu(x) – zu so that Uβ(x) = {u: fu(x) ≤  zu + β(x)},

then the problem becomes, then the problem becomes

min {β(x) : Uβ(x) = U, x∈XD}

Relative Regret: Let g(fu(x)) = (fu(x)–zu)/ zu, then a relative regret

problem becomes the following problem with Uβ(x)={u: fu(x) ≤  (1 + β(x))zu}

min {β(x) : Uβ(x) = U, x∈XD}

Probabilistic formulation

The O.1.1 formulation of the objective function as max P(fu(x)≤ z) corresponds to the

following problem:
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max {P(Uβ(x)) : x ∈XD}where Uβ(x) = {u: fu(x) ≤  β(x)}with β(x) = z,

∀ x∈XD

 The O.1.2 formulation of the objective function as min z st P(fu(x) ≤  z) ≥  α

corresponds to the following problem

min {β(x) : P(Uβ(x)) ≥  α, x ∈XD} where Uβ(x) = {u: fu(x) ≤  β(x)}

with β(x) = z, ∀ x∈XD

Moments based formulation

For the formulations O.2.1 and O.2.2, the following can be used

min {β(x) : Uβ(x) = U, x∈XD}where Uβ(x) = {u: g(fu(x)) ≤  β(x) and

g(fu(x)) = αE[fu(x)] + β(var[fu(x)])1/2 for O.2.1 model

g(fu(x)) = αE[fu(x)] + βvar[fu(x)] for O.2.2 model

For O.2.3 formulation we introduce two sets of extended-optimality-regions and get

the following transformation

min {[ β(x), µ(x)] : Uβ(x) = U, Uµ(x) = U, x∈XD} where

Uβ(x) = {u: E[fu(x)] ≤  β(x)}

Uµ(x) = {u: var[fu(x)] ≤  µ(x)}

Fuzzy Programming Formulation

For the flexible programming formulation min {fu(x): µo(u)≥α, x∈XD} where

α∈[0,1], we can define Uβ
α(x) := {u: fu(x) ≤β(x), µ(u)≥α} to get the following

equivalent

min {β(x): Uβ
α(x) = U}

where α ∈[0,1] and U can be considered as the cartesian product of the supports of

the fuzzy sets from which components of the parameter vector come.
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- uncertainty about the alternative courses of action

In this situation corresponding to uncertainty in the feasible set, one has a

deterministic decision space XD, the uncertainty set U and a set of feasible sets

{Xu:u∈U}.

Here, the optimality-region concept becomes irrelevant but a similar concept,

feasibility-region which has been initially introduced by Tansel [128] can be used as

defined below.

Fs(x) = {u: x∈Xu, u∈U}

In parallel with Demir’s solution definitions with optimality-region, we propose the

following feasibility definitions. The first type of solutions, weak feasible solutions

are those, which are feasible for at least one problem instance. So that a solution is so

iff Fe(x) ≠ Ø. In the second type, those solutions are included being feasible for all

input data realizations. We call such a solution permanent feasible solution implying a

solution is so iff Fe(x) = U. Observe that, the hard feasibility concept and the

probabilistic constraints with reliability level 1 correspond to this definition. Lastly,

unionwise permanent feasible solutions are introduced by defining a minimal subset

of XD such that their feasibility region cover the uncertainty set together.

Xuw := argmin {|Z| : Z = {x∈XD : ∪ Fs(x) = U}}

If one has only one set satisfying this condition and if infeasibility can not be

tolerated, then the implementation of the solutions, if possible, belonging to this set

together gives total feasibility. On the other had, if there exist a number of such sets

and still infeasibility can not be tolerated, the set of solutions with the minimum total

cost should be implemented if possible. Lastly, if feasibility is not a hard requirement,

one can select a solution from such a set with some other criterion, for example with

consideration of maximum violation.

Permanent feasible solutions may not exit most of the time and even if they exist, they

may form a very small set or one may tolerate some amount of infeasibility for

benefiting from other attributes of a solution such as objective function performance.
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In such situations, some function of feasibility violation can be introduced (like the

distance measure or volume criterion of approximate permanent solutions) and limited

from above as will be proposed by extended feasibility region concept below.

Fsβ(x) = {u: g(Fu(x), K)≤β(x)} where β(x)∈R for each x∈XD.

Therefore we introduce a new type of solution as those giving a performance of

violation within the limits. We call such a solution approximate permanent feasible

solution implying a solution is so iff

h(Fsβ(x), U) ≤  d

Here observe that the induced feasibility regions of probabilistic models can easily be

represented with this concept as:

For P(x∈Su)≥α, h(Fsβ(x), U) = -P(Fs(x))

For P(Fu
i(x)∈Ki)≥αi i=1,…,m, hi(Fisβ(x), U) = -P(Fsi(x)) with Fsi(x) is defined as:

Fsi(x) = {u: Fu
i(x)∈Ki}i=1,…,m, where Fu

i is the ith left hand side and Ki is the ith

right hand side so that

Another possibility in parallel with this formulation is to consider the volume of the

feasibility region so that one can define feasibility as

Vol (Fs(x)) / Vol(U) ≥α

where α is a prespecified value and if one can tolerate more violation for some not-so-

important constraints, the same criterion can be applied componentwise as

Vol(Fsi(x)) / Vol(U) ≥αi

In the same way, one can define the performance function g(Fs(x), K)

componentwise, say gi(Fs(x), K)  as the maximum violation of each constraint or the
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expected violation, where expectation is taken over the violated cases as follows,

respectively:

gi(Fsi(x), Ki) = max {min {|ki - Fu
i(x)| : ki∈KI}: u∈U}

gi(Fsi(x), Ki) = E[min {|ki - Fu
i(x)| : ki∈KI}|u∉  Fsi(x)]

For the possibilistic programming formulation min {f(x) : π (x) ≥α, x∈XD}, we can

define the induced feasibility region as in the case of above probabilistic formulation

but using possibility distribution instead of probability distribution. In fact, this

approach was introduced by Luhandjula in 1987 [89], where he defined the concept of

β-possibly optimal and extend it to the α-possibly feasible and β-possibly efficient

concepts and we believe that similar concepts can be used in flexible programming

with the name of β-preferability and etc.

- a combination of these

If one has feasibility uncertainty and objective uncertainty in the same problem, then

any combination of the concepts suggested above can be used to find an ultimate

solution. Possible combinations and some existing models belonging to some of these

are the followings:

Permanent feasible solution & permanent solution

Permanent feasible solutions & approximate permanent solution

Hard feasibility – max-covering, min-max, regret, relative regret

Permanent feasible solutions & unionwise permanent solution

Approximate permanent feasible solution & permanent solution

Approximate permanent feasible solution & approximate permanent solution

Probabilistic or moments-based objective with probabilistic and/or

moments-based feasibility and also robust models with soft feasibility

Approximate permanent feasible solution & unionwise permanent solution

Unionwise permanent feasible solution & permanent solution

Unionwise permanent feasible solution & approximate permanent solution

Unionwise permanent feasible solution & unionwise permanent solution
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For the multiobjective case, new concepts of efficiency (or proper and super proper

efficiency) can also be introduced in parallel with the above proposed concepts of

solution and feasibility. Therefore, a solution to a multiobjective problem will be

called weak efficient if it is efficient for at least one realization of the uncertain

parameter and permanent efficient if it is efficient for all realizations from U. A set of

solutions will be called unionwise permanent efficient if they are together efficient for

all realizable problem instances. Again, introducing some performance function, one

can define an approximate permanent efficient solution having a good performance

function like those being efficient with a probability level α or with a volume level α.

There is an analogy between permanent efficient and the solutions Bitran seeks in

[12].

From all of these it becomes clear that, each of the different types of models is a play

between some of the following pairs of sets: U(x)&U, Fe(x)&U and {fu(x)}&{zu}.

From this view, there exist some similarities between the existing models. For

example considering the interplay between U(x)&U, probabilistic formulation based

stochastic programming, max-covering model and optimality region based approach

are similar, which try to solve the problem instances collectively. On the other hand,

focusing on the play between { fu(x)}&{zu} but not the others, moments formulation

based stochastic programming and robust optimization models (except the max

covering) are similar to each other trying to solve a single problem. After this

explanation, a natural question comes related to the meaning of these plays. First of

all, the play between Fe(x) and U, indicates the power of a solution being feasible

under all circumstances. The play between U(x) and U indicates the power of being

optimal under all circumstances, related to which we define as done in the sensitivity

analysis literature, the stability concept as:

The stability of a solution is the ability to be an optimal solution for all parameter

realizations. This is a very powerful attribute of a solution.

Lastly, the play between  {fu(x)}&{zu} indicates the degree of having good objective

value for all parameter realizations. This is also a useful attribute of a solution,

especially the kinds as min-max, regret and relative regret used in robustness models.
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In the literature, for a long time, robustness has been related with the good objective

function performance under any realization. On the other hand, originally, the concept

was related with one more attribute of a solution, that is stability. For example,

Rosenblatt, one of the first applicants of the robustness approach in optimization

proposed by Rosenhead and Gupta defined the robustness of a solution as: ‘the

number of times a solution is within a prespecified percentage of the optimal solution

for all realizations of the uncertain situation”. We think that, such kind of a robustness

concept gives the power that the word actually is worth.

Imprecise optimization solutions have this property very well. There is one more

thing to be explained. As previously stated, if we consider the more-likely-to-

encounter type of solutions, approximate permanent solutions, it becomes obvious

that the effects of the uncovered region on the system that is the magnitude of being

suboptimal, is an open issue. In this respect, the incorporation of a performance

function to measure the distance to the worst optimum value of the uncovered

problem instances may help to handle this weakness. One suggestion can be the

minimization of the maximum regret so we introduce a new objective function as:

g'(x) = max {fu(x) – zu
* : u∈U}

Then we have a vector optimization problem as

min [g(x), g’(x)]

st      x∈Xw

Observe that, in case this vector optimization problem is solved by aggregating the

two objectives with weights w1 and (1-w1) to see the trade-off between coverage

(stability) and robustness, w1 = 1 corresponds to the approximate permanent solution

and w1 = 0 corresponds to the usual regret problem with the difference of giving

always a solution which will be optimal for some instances.

Because of the difficulties that may arise with multiple objectives, one may proceed

as looking at the maximum regret of the approximate permanent solution and then

according to her/his satisfaction, gives the final decision.
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To summarize, to define a solution as the best, three criteria should be considered as

its stability, its cost of being suboptimal and its feasibility. While measuring stability,

one can consider the problem instances for which the decision is optimal or near

optimal. To measure the cost of being suboptimal, one can focus on the worst case

performance or worst case deviation from optimality over all problem instances and to

measure feasibility, the problem instances for which the decision is feasible should be

considered. According to the type of uncertainty, probability distributions or

characteristic functions can be used in the measurements and depending on the type of

decision situation, one can give more emphasis to some of these three criteria.
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CHAPTER-5

RELATIONS and COMPARISONS

5.1- Relations

Imprecise optimization and max-covering are based on the same idea of covering the

uncertainty set as much as possible with the difference the latter uses discrete sets and

the concept of near optimality and uses the cardinality as the performance function

whereas imprecise optimization does not restrict the uncertainty set and considers

volume of the coverage or l∞ norm of the distance to the uncertainty set as the

performance function. In the same manner, the probabilistic formulations behave with

the difference of weighting each uncertain parameter by its probability. These three

methods have the same attitude toward solving an uncertain problem collectively.
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Imprecise optimization seeks to minimize the distance between region of optimality

and U whereas the robust optimization models minimize the distance between the

objective value and the optimal value.

Robust optimization problems are similar to those moments based stochastic

programming problems, since they reduce a lot of information from the uncertainty

set to a single one, just to the regret or just to the expectation. At this point, there is

one more similarity between those, since expectation is also a kind of regret, total

regret.

The soft robust model is identical to a two-stage stochastic programming problem

with recourse but considering the whole set U, not a subset of it as sometimes done in

the stochastic programming case. This property introduces additional power to deal

with uncertainty. If there is no feasible corrective action, two-stage recourse models

declare infeasibility but soft robust models always give a solution.

The two objective formulation, O.2.3. of moments-based stochastic programming

formulation has the same idea with that introduced by multiobjective optimization

approach.

Lastly, it can be said that what parametric programming does is to determine the set of

weak solutions introduced by imprecise optimization.

5.2-Strengths&Weaknesses

Here the mentioned approaches will be evaluated and we only state those if one

approach or a specific model of it is very powerful or weak for that criterion.

5.2.1 Modeling Artifacts

• Input data:

Stochastic programming has severe modelling problems with continuous distributions

especially when correlations exist for the random variables. Fuzzy programming is

very questionable in terms of the meaning of possibility distributions.



54

• Modeling Assumptions:

In the stochastic programming models, the complete recourse assumption, as usually

made, may not always be satisfied. This can be handled but the complexity of the

model increases.

• Validation of the Model&Value of Information:

One of the most powerful tolls of validating a model is to perform sensitivity analysis.

We believe that, as is mentioned in [54], to perform such an analysis, at least in the

usual way is not likely for fuzzy programming although there are some such studies in

fuzzy programming literature. In stochastic programming, the value of information is

a well studied subject [11] whereas it is not so for fuzzy programming although there

are some attempts like [126] and [96]. This is a kind of weakness, since such a

concept may be very helpful in narrowing down the uncertainty.

• Suggestions to Control Uncertainty:

Imprecise optimization is very and perhaps the most powerful to suggest how to

decrease uncertainty in case one can control uncertainty. Like this case, tolerance

approach, as stated previously, has such kind of an advantage.

5.2.2 Solution Procedures

• Computability:

With the huge amount of literature on the solution algorithms, stochastic

programming problems are very hard to solve. The use of approximations is

suggested but one can not understand what type of a problem she/he is solving. Fuzzy

programming has a power in this respect, since it can handle most situations in an

efficient way, at least for some characteristic function types.

5.2.3 Applicability to Decision Environments

• Nature of decision:

Especially for future external events of nonrepetitive variety, where the assignment of

probabilities is not possible, like strategic decisions robust optimization problems will
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perform well, considering the worst case. On the other hand they are too conservative

for environments of repetitive nature, like tactical problems, particularly those

concerned with operating systems, in which case, stochastic programming or

imprecise optimization may perform well. If the decision environment has actually

vagueness in it, when only verbal construction of values, constraints etc. are possible

or when human being related models are being handled, then there is not any other

modelling way of handling this situation but fuzzy programming.

• Handling risk:

Stochastic programming does not handle risk-aversion in a direct fashion, especially

those including expectation types formulations not suitable for risk averse case since

they imply risk neutral behaviour. On the other hand, robust optimization models are

powerful in handling risk aversion. Also, we believe that the incorporations of any

type of risk measures will be easily handled in the definition of extended-optimality-

region in imprecise optimization.

• Time of Evaluation of Decision:

This is a serious weakness for stochastic programming problems with moments-type

based approaches since the time of evaluation is immediate, then waiting for the

values to converge the expectation will be useless.

• Structure of the Original System:

Especially, for the systems requiring hard feasibility, one can not apply any violation-

allowed approach. In the other case around, there may not be serious problems but the

problem of cost. In this respect the appropriate approach should be chosen for the

environment.

• The level of uncertainty:

In case of significant data uncertainty stochastic programming and fuzzy optimization

are not suitable. In fact, they are only suitable for the cases of randomness and

vagueness, which restrict their applicibality.
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CHAPTER-6

CONCLUSION AND FUTURE PERSPECTIVE

In this study, we look at the different ways of modelling under uncertainty of input

data. We first analyzed the ways of representing such data and emphasized its effect

on the model performance. In fact, there is a strong need to study uncertainty with

different types of representation since in real world, most of the time, one can not

have situations where all uncertain parameters are random variables or come from

intervals. There are only a few studies with this subject focusing only on randomness

and fuzziness. We believe that, imprecise optimization can handle such combinations

easily since it does not focus on any type of uncertainty representation.

Then, in chapter 3, we studied sensitivity analysis and parametric programming,

where a promising area is qualitative sensitivity analysis as briefly mentioned in that

part. Such a pre-optimal study may be very helpful in other approaches to uncertain

optimization. For example, detecting the uncertain elements having the least effect on
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the solution, one may have the chance to reduce the uncertainty set, or detecting the

elements having the weakest relation with a specific uncertain element may be helpful

in decreasing the number of correlated elements especially for the models where the

representation of correlations bring significant computational burden. Because of such

uses, we believe that qualitative sensitivity analysis should be further studied,

extended to other kinds of problems and incorporated into the models mentioned in

this study.

In chapter 5, the analysis of different models was given and two general types of

approaches have been recognized, those handling the set of problem instances

collectively and the other inducing that set to a single problem. The type of models

belonging to the same approach have also been compared with each other with respect

to the applicability of decision situations, computability, etc. Then, the concept of

stability and robustness were introduced, which we believe are very important. We

believe that a promising type of modelling approach should focus on stability,

robustness and, sometimes, worst case performance. All of the suggested concepts

especially those related with feasibility-region and formulations made as an extension

of imprecise optimization should be studied from computational tractability

perspective and further applied to real life problems.

In the previous chapter, we stated the strongest and the weakest points of different

approaches or models concluding that none of them is totally promising for all types

of criteria. Such a study can be extended focusing on just one problem type, solving

each type of models presented here and then analysing each solution from these

perspectives.

As a last point, we believe that the study of the uncertainty set may be very useful or

with the sensitivity of a model to the uncertainty set may make the decision maker

feel more comfortable (or less according to the results).
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