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ABSTRACT

COOPERATIVE TRANSMISSION FOR THE

DOWNLINK OF MULTIUSER MIMO

CELLULAR NETWORKS

Yakup Kadri Yazarel

M.S. in Electrical and Electronics Engineering

Supervisor: Asst. Prof. Dr. Defne Aktaş

August, 2007

In this thesis, we propose a distributed transmission scheme for the down-

link of a multiuser system. The base-stations (BSs) cooperate with each other

with limited, local message-passing to find the optimum beamforming vectors,

where there are individual signal-to-interference-plus-noise-ratio (SINR) targets

for each user. Majority of the previous work on this problem assumed a total

power constraint on the BSs. However, since each transmit antenna is limited

by the amount of power it can transmit due to the limited linear region of the

power amplifiers, a more realistic constraint is to place a limit on the per-antenna

power.

In a recent work, Yu and Lan proposed an iterative algorithm for computing

the optimum beamforming vectors minimizing the power margin over all anten-

nas under individual SINR and per-antenna power constraints. However, from

a system designer point of view, it may be more desirable to minimize the total

transmit power rather than minimizing the power margin, especially when the

system is not symmetric. Reformulating the transmitter optimization problem

to minimize the total transmit power subject to individual SINR constraints on
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the users and per-antenna power constraints on the base stations, the algorithm

proposed by Yu and Lan is modified. Performance of the modified algorithm is

compared with the existing methods for various cellular array scenarios.

The modified algorithm requires inversion of a matrix, which cannot be imple-

mented fully distributively using limited information exchange between BSs. By

approximating the matrix as tridiagonal, a suboptimal distributed algorithm for

computing the beamforming vectors in a cooperative system is obtained. The

proposed distributed algorithm is shown to achieve near optimal performance

when the target SINRs and the size of the array are small.

Keywords: Downlink beamforming, distributed transmission, base-station coop-

eration, broadcast channel, per-antenna power constraints.
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ÖZET

ÇOKLU KULLANICILI ÇOKLU ANTENLİ HÜCRESEL

AĞLARDA BAZ İSTASYONU-YER BAĞI İÇİN İŞBİRLİKLİ

İLETİM

Yakup Kadri Yazarel

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. Defne Aktaş

Ağustos, 2007

Bu tezde çok kullanıcılı bir sistem için dağıtılmış bir baz istasyonu-yer bağı iletim

algoritması önerilmektedir. Bu algoritmada baz istasyonlarının kendi aralarında

sınırlı sayıda ve yerel mesaj alışverişi yaparak, her kullanıcı için varolan sinyal-

girişim oranı hedeflerini sağlayacak şekilde gönderecekleri dalgaları ayarlaması

amaçlanmaktadır. Bu konuda daha önce yapılan çalışmalar genel olarak baz-

istasyonu antenlerinde toplam güç sınırı varolduğunu kabul etmişlerdir. Ancak,

her antenin iletim gücü bağlı olduğu yükseltici devrelerin doğrusal bölgesi ile

kısıtlanmıştır. Dolayısıyla antenler üzerinde güç kısıtlaması yerine anten başına

bir güç kısıtlaması düşünülmesi daha gerçekçi bir varsayımdır.

Yakın zamandaki bir çalışmada, Yu ve Lan gönderdikleri dalgaları ayarla-

yarak anten başına bir güç sınırını aşmadan, her kullanıcı için varolan sinyal-

girişim oranı hedeflerini sağlamaya çalışan ve anten başına düşen güç payını

en aza indirgeyen bir algoritma önermişlerdir. Ancak, bir sistem tasarımcısı

gözüyle, anten başına düşen güç payından ziyade toplam iletim gücünü en aza

indirgemek, özellikle sistem asimetrik olduğunda daha fazla istenen bir durum-

dur. Bu yüzden, Yu ve Lan’ın önerdiği algoritma değiştirilerek, toplam gücü
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en aza indirgeyen ve baz istasyonu başına bir güç sınırını aşmadan, her kul-

lanıcı için varolan sinyal-girişim oranı hedeflerini sağlamaya çalışan bir algo-

ritma önerilmiştir. Önerilen algoritmanın performansı varolan metodlarla değişik

hücresel sistem senaryoları için karşılaştırılmıştır.

Değiştirilen algoritma bir matrisin tersinin alınmasını gerektirmektedir. An-

cak, bu baz istasyonları arasında sınırlı bilgi alışverişi kullanarak tamamen

dağıtılmış bir şekilde yapılamamaktadır. Bu matris yaklaşık olarak 3 köşegenel

olarak alınıp işbirlikli bir sistemde dalgalar ayarlanarak en iyiye yakın bir algo-

ritma elde edilmiştir. Önerilen işbirlikli algoritmanın, sinyal-girişim oranı hede-

fleri ve hücre sayısı az olduğunda en iyiye yakın olduğu gösterilmiştir.

Anahtar Kelimeler: Baz istasyonu-yer bağı, hüzme oluşturma, dağıtılmış iletim

teknikleri, baz istasyonu işbirliği, yayın kanalı, anten başına güç sınırlamaları.
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Chapter 1

INTRODUCTION

In this thesis, we consider downlink beamforming for a multiuser multiple input

multiple output (MIMO) cellular network with base-station (BS) cooperation.

We propose a centralized and a distributed algorithm that computes the optimal

beamforming vectors under individual SINR and per-antenna power constraints.

In this chapter, we will give an overview of existing literature on multiuser MIMO

cellular networks and transmission schemes for the downlink. We summarize the

contributions of the thesis and introduce the notation used in the sequel.

1.1 Overview

Today’s communication systems have a need of very high data rates. On the other

hand, some systems have a limit in terms of power and bandwidth. To satisfy

these needs, multiple antennas both at the transmitter and receiver can be used.

These systems are referred as MIMO systems. Recent advances show that MIMO

systems promise high spectral efficiency and data rates over wireless links without

increasing transmit power and requiring extra bandwidth. Providing resistivity
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to fading and increased coverage, MIMO systems require complex algorithms and

design methods [3],[4]. A general MIMO system is shown in Fig. 1.1.

Figure 1.1: General MIMO system

Single user MIMO systems require less complexity than multiuser MIMO

systems. In multiuser MIMO, because of the interference caused by other users’

signals, performance of the users can be limited. Suppression of this interference

often requires complex algorithms. To mitigate interference, a technique called

beamforming which adjusts the beam-patterns of antenna arrays to minimize the

effect of interference on the terminals, is used [5].

Recently many researchers have especially studied spectrally efficient multi-

antenna BS processing (transmit beamforming) since downlink is typically the

bottleneck in cellular systems. In the downlink, since receivers are mobile users

with limited number of antennas, processing power and energy constraints; the

task of mitigating the interference is typically shifted to the transmitter (BS)

side. It is more effective to minimize the effect of interference at the transmitter

side [5].
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In a multiuser MIMO cellular system, the downlink is modeled as MIMO

Gaussian broadcast channel (BC) whereas the uplink is modeled as Gaussian

multiple-access channel (MAC). Recent work showed that Gaussian BC and

Gaussian MAC are duals of each other. That means, the signal-to-interference

plus noise (SINR) region of a downlink channel is equal to the SINR region of a

dual uplink channel under a sum-power constraint [6], [7]. Exploiting this duality,

Costa’s ”Dirty-Paper Coding” (DPC) strategy [8] together with downlink beam-

forming is found to be optimal in achieving the sum capacity for MIMO downlink

channel [6], [9]. However, DPC is an information theoretic coding scheme, which

is not practical to be implemented in a real system.

The reason why duality is used in the downlink transmission problem is the

following: downlink beamforming is more complicated and analytically difficult

problem to solve since beamformers need to be optimized jointly. That is, one

user’s beamformer may increase the interference of another user and degrade the

quality of service for that user. Because of the crosstalk of the users which may

affect each other’s SINR values, downlink beamforming becomes a complex and

difficult-to-solve problem [10]. Therefore, dual uplink model which is easy-to-

compute, is used while computing the downlink beamformers.

The problem of computing the optimal beamforming vectors and adjusting

transmit powers for antennas have been analyzed for various schemes in [1], [5],

[10], [11]. Widely used performance metric is the rates (SINR values) of the

users. Commonly used system resource is the transmit powers of the antennas.

From a network designer point of view, performance (rates) must be hold above a

certain threshold while minimum of system resources (transmit powers) are used.

Another approach is to maximize the achievable SINR region under maximum

power constraints [10].
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Previous works mainly consider a single cell scenario with multiple-antenna

BS with a total power constraint and single antenna mobile users. The trans-

mission schemes are previously derived for achieving sum capacity given a sum

power constraint or for achieving minimum transmit power given SINR con-

straints (corresponding to different quality of service (QoS) requirements) on the

users. Based on these results, our primary goal is to develop distributed trans-

mission schemes for a cellular network with cooperative single antenna BSs and

multiple decentralized single antenna users. We focus on Wyner’s cellular net-

work model and study the performance of the proposed method for this simplified

network model to gain further insight.

We aim to jointly optimize the transmit user power allocation and beam-

forming vectors minimizing the total transmit power subject to individual SINR

constraints on the mobile terminals and transmit power constraints on the BS.

Transmitted power constraints may either be on the total power or per-antenna

power. While total power constraint is analytically easier to solve [10], per-

antenna power constraint is more practical and realistic since all antennas have

their own front-end amplifiers which are limited by their linear regions [2]. For

macrodiversity systems where the BSs cooperate in transmission of the infor-

mation to the users, per-antenna power constraints are a reasonable assumption

since antennas in the BS cooperation case are geographically distributed.

In [12], zero-forcing (ZF) beamforming is implemented for downlink with per-

antenna power constraints. ZF is used for interference suppression but it does

not concern about optimizing the SINR [13]. It is suboptimal since it uses more

power to null out the interference. In [2], Yu and Lan proposed a numerical

algorithm for the downlink which computes the beamformers with minimum

power margin under per-antenna power constraints. But this approach fails to

give optimal results when the system is not symmetric as illustrated in Chapter

5. In order to minimize power margin, it tries to satisfy a power balance between

4



the antennas and uses high transmit power in certain cases. This notion tells us

that rather than minimizing the power margin, it is more reasonable to minimize

the total transmit power.

In this thesis our aim is to build a distributed, iterative algorithm that com-

putes beamforming vectors satisfying SINR and power constraints. We reformu-

late the optimization problem in [2] and investigate distributed implementation

of the proposed transmission scheme which can be implemented by limited local

information exchange between cooperative BSs. The BSs are assumed to be con-

nected to each other by a high capacity backbone and cooperate in transmission

of information to the users. As we will illustrate in Chapter 5, the reformulation

of the problem yields better results in terms of performance.

1.2 Contributions

An optimal algorithm that computes beamforming vectors satisfying SINR and

per-antenna power constraints is proposed. The proposed algorithm performs

better in terms of performance and convergence time over Yu-Lan algorithm [2],

which computes the minimum power margin satisfying the same constraints, and

the ZF beamforming algorithm in [12] as illustrated in Chapter 5.

The distributed implementation of the proposed algorithm is investigated. An

algorithm based on limited local information exchange between BSs is presented.

Due to an approximation done in one of the steps of the centralized algorithm

to limit the amount of information exchange between the BSs, the performance

of the distributed algorithm is suboptimal.
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1.3 Outline of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, the system model and

the MIMO channel capacity in the literature are given. In Chapter 3, we review

previous algorithms that computes optimal beamformers under SINR constraints.

The proposed algorithm and its distributed implementation are presented in

Chapter 4. The proposed method is compared with existing methods in Chapter

5 through numerical results and conclusions are given in Chapter 6.

1.4 Notation

In the sequel, we use small boldface letters to denote vectors and capital boldface

letters to denote matrices. For a given matrix A; A−1,AT , AH,Tr(A) and Ai,k

denote the inverse, the transpose, the conjugate transpose, the trace and the

(i, k)th element of A respectively. A(n) denotes the value of A at nth iteration of

an iterative algorithm. I denotes the identity matrix with appropriate dimensions

and diag(A) denotes the vector of diagonal elements of any square matrix A.

[A]+ operation takes the maximum with respect to the elements of all-zero matrix

with the same size of A. E [.] denotes the expectation operation. R and C denote

the set of real and complex numbers, respectively. ‖.‖2 denotes the l2 norm.
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Chapter 2

BACKGROUND

In this chapter, a brief introduction to the downlink of multiuser MIMO cellular

networks will be given. First, the system model under consideration will be

presented and then the capacity region of MIMO BC, modeling the downlink,

and uplink-downlink duality used in optimization problems involving MIMO BC

are summarized.

2.1 System Model

We consider a cellular network with BSs and single-antenna mobile users. The

base-stations are assumed to be connected to each other via a high-capacity

backbone and cooperate with each other. This scenario is identical to the case

where a single BS with geographically distributed antennas communicate with

single antenna mobile users as depicted in Fig. 2.1.
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Figure 2.1: Multiple antenna BS and single-antenna mobile users

We assume that the BSs and mobiles have perfect channel knowledge and

the channel is flat-fading. The scenario under investigation consists of N base-

stations and K remote decentralized users all with a single antenna. The down-

link channel is modeled as:

y = Hx + n (2.1)

where x = [x1 . . . xN ]T is an N x 1 vector representing the transmit signal, H is a

K x N channel matrix and n = [n1 . . . nN ]T is an N x 1 vector whose components

are additive white Gaussian noise with variance σ2. The rows of channel matrix

H are denoted as hH
i ∈ C1 x N , i = 1, . . . , K which represents the complex path

gains from BS antennas to user i’s antenna.

The form of the transmit signal is as follows :

x =
K∑

i=1

diwi (2.2)

where di is a scalar denoting the information to be transmitted to the ith user

which is of unit energy, i.e. E [|di|2] = 1 and wi is a N x 1 beamforming vector

for user i. With this formulation, the power allocated to ith user is given as pi =

wH
i wi. The power transmitted by kth antenna is given as p̃k =

(∑K
i=1 wiw

H
i

)
k,k

.
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To gain insight on gains from BS cooperation, in the distributed implemen-

tation and the numerical studies, we focus on a simplified cellular array model

described by Wyner [14]. In Wyner’s cellular model, each BS has one active

user due to an orthogonal intra cell access scheme and each user is exposed to

interference only from the two neighbouring cells. This interference is exploited

to improve performance using BS cooperation. Mathematically, the cellular sce-

nario can be formulated with the following channel matrix H (for N = K) with

interference factors 0 < α+
i < 1 and 0 < α−

i < 1:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α+
1 0 · · · 0 α−

1

α−
2 1 α+

2 0

0
. . .

...

...
. . . 0

0 α−
N−1 1 α+

N−1

α+
N · · · 0 α−

N 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above channel model represents the so called Wyner’s circular cellular array

model in which the cells are located on a circle with BSs at the center. The

model is depicted in Fig. 2.2.

If all the interference factors are same, i.e. α+
i = α−

i = α, ∀i, the above

cellular array is symmetric for all the base-stations and mobiles. If we set α−
1

and α+
N to 0, we obtain Wyner’s linear cellular array model as shown in Fig. 2.3.

2.2 MIMO BC Channel Capacity

The capacity region for the general degraded BC has been known but the capacity

region for the general non-degraded BC has not been derived yet. MIMO BC is

in general a non-degraded channel whose capacity region has remained an open

problem until recently.
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Figure 2.2: Wyner’s circular cellular array model
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Figure 2.3: Wyner’s linear cellular array model

The difficulty in computing the capacity region is as follows: in point-to-point

MIMO channels, one can use the advantage of cooperation of receiving antennas,

but in MIMO BC the receiving antennas do not cooperate. Point-to-point MIMO

channels can be parallelized by using beamforming at the transmitter and the

receiver and water-filling can be done over these parallel channels, but similar

technique is no longer practical for MIMO BC, due to the lack of cooperation at

the receivers.

First result for MIMO BC is given by Caire and Shamai in [9] for two single-

antenna users case. They propose an optimal scheme using Costa’s DPC strategy

[8]. Costa showed that if DPC is used, the capacity of a single user channel

where interference is known by the transmitter is equal to the capacity where

interference does not exist. In MIMO BC, the transmitter can calculate the

amount of interference created by the transmitted signals for other users. So, the

users can be ordered and encoded knowing the interference caused by previously

encoded signals. However, the method in [9] is difficult to extend to more than

2 users case. Asymptotic results for BC capacity are presented and zero-forcing
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(ZF)- DPC method is shown to be suboptimal. However, for high SNR regime (as

transmission power goes to infinity) for the channels with full row rank, ZF-DPC

method is shown to achieve the capacity.

Yu and Cioffi generalize this result and find the optimal capacity as the

saddle point of the mutual information maximized over signal covariance matrix

and minimized over noise covariance matrix in [15]. But, this result is only valid

when the noise covariance matrix is non-singular.

The general result for more than 2 users case case is found by a different

approach in [6] and [7]. The BC capacity region for more than two users is com-

putationally complex. Because of this, the duality of MAC and BC is exploited

and the sum capacity of the downlink is proven to be equal to the capacity of the

dual MAC as explained in Section 2.3. The sum capacity (Csum) under a total

power constraint PT on the users is found as:

Csum = sup
D

log det
(
I + HDHH

)
(2.3)

where D is a KxK diagonal matrix with uplink user powers on the diagonals with

Tr[D] ≤ PT . They prove the entire achievable region with DPC for downlink is

exactly identical to the MAC capacity region. In [16], the capacity region is char-

acterized for the MIMO BC under a wide range of input covariance constraints,

and for both of the total power and the per-antenna power constraints. The

capacity region is achieved by the transmission scheme which is a combination

of beamforming with DPC.

2.3 Uplink-Downlink Duality

BC optimization problems are not convex in general, whereas MAC problems are

often convex problems. The nonconvexity makes BC problems computationally

complex. However, there is a connection between MAC and BC problems known
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as MAC-BC (uplink-downlink) duality which helps BC problems to be solved

easily by its dual in the MAC. The MIMO BC and dual MIMO MAC is shown

in Fig. 2.4.

Figure 2.4: MIMO BC and dual MAC

Duality states that any achievable rate vector with user power constraints

P1, . . . , PK in the MAC is also achievable for BC with total power constraint

PT =
∑K

i=1 Pi [7]:

CBC(PT ,H) = CMAC(P1, . . . , PK ,HH) (2.4)

where CBC and CMAC denote BC and MAC capacity, respectively.

As shown in the following section, the SINR expressions for the BC problems

are coupled by beamformers, whereas in the dual MAC they are not coupled.

In the dual uplink, the beamformer vectors are found as the SINR maximizing

minimum-mean-square-error (MMSE) filters [6]. The uplink beamformers are

identical with downlink beamformers upto a scaling factor [2]. So, the optimiza-

tion problem is solved for the dual MAC problem with low complexity and this

solution is converted to the solution for BC problem easily.
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Chapter 3

BEAMFORMING

ALGORITHMS IN THE

LITERATURE

In this chapter, some of the downlink beamforming algorithms proposed in the

literature which are related to the algorithm proposed in this work will be sum-

marized. First, an algorithm for computing the optimal beamforming vectors

under sum power constraint on the antennas will be presented. Then two differ-

ent approaches for finding the optimal beamforming vectors under per-antenna

power constraints will be summarized.

3.1 A Beamforming Technique Under Sum-

Power Constraint on the Antennas

Several algorithms have been proposed for computing the optimum power allo-

cation over users and optimum beamformers under sum-power constraints on the

antennas. There are various algorithms in the literature but we now summarize

14



the algorithm in [1], since it will be used as a benchmark for comparison with

the proposed method.

An iterative algorithm computing the beamforming vectors and user power

allocation, while simultaneously satisfying individual SINR constraints on the

users with minimum total transmit power is proposed in [1]. The optimization

is performed firstly in the dual uplink and then this result is used for finding

downlink beamformers and power allocations. The algorithm does not require

any computationally complex operations such as matrix inversion or eigenvalue

decomposition.

Uplink and Downlink Problem Formulations

The beamformers of K users are adjusted so that target SINRs γ1, . . . , γK are

achieved with minimum total power. In the downlink, the users are coded with

the index order π = π1, . . . , πK where user with index π1 is encoded first and

the user with index πK is encoded last. The interference caused by the users

indexed by π1, . . . , πi−1 to the user i is known before the transmission. One can

use DPC to cancel the interference caused by the previously encoded users. The

user indexed by π1 is effected by the interference from all users, the user indexed

by π2 is effected by the interference from users with index π3, . . . , πK , and so on.

The user indexed by πK sees no interference. The SINR expression for downlink

becomes:

SINRDL
πi

(wπ,p, π) =
pπi

∣∣wH
πi
hπi

∣∣2∑K
k=i+1 pπk

∣∣wH
πk

hπi

∣∣+ σ2
, ∀i. (3.1)

where p is the power vector whose entries are the allocated transmit powers for

K users, [p1, . . . , pK ]T . The total power constraint is PT . Then, the downlink

problem is stated as:

P DL(π) = min
w1,...,wK ,p>0

K∑
i=1

pi (3.2)

subject to SINRDL
i (wi,p, π) ≥ γi, 1 ≤ i ≤ K (3.3)
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‖wi‖2 = 1, 1 ≤ i ≤ K (3.4)

K∑
i=1

pi < PT . (3.5)

The dual uplink problem can be formulated similar to the downlink problem.

In the dual uplink, user powers are represented as λ1, . . . , λK . The dual of DPC,

in the uplink is successive interference cancellation (SIC). In dual uplink, SIC

with decoding order π which is the reverse of downlink encoding order is applied.

The user with index π1 is decoded first and the user with index πK is decoded last.

Note that π1 = πK and πK = π1. SIC cannot be used in downlink beamforming

at the receiver side since the receivers do not cooperate with each other due

to mobility and complexity constraints. By SIC, the interference caused by

the previously decoded users is subtracted and interference-plus-noise covariance

matrix, Zπi
, of user with index πi becomes

Zπi
(λ, π) = σ2I +

∑
k∈{πi+1,...,πK}

λkhkh
H
k , 1 ≤ i ≤ K. (3.6)

The interference-plus-noise covariance matrix indicates the interference and noise

correlation between the N antennas at the BS. Using this information, the beam-

formers can be formed in order to reduce the effect of interference and noise. The

uplink beamformers denoted as ŵi for the ith user are assumed to be unity-norm,

i.e. ‖ŵi‖2 = 1.

The SINR for user i in the dual uplink is defined as follows:

SINRUL
i (ŵi, λ, π) =

λi

∣∣ŵH
i hi

∣∣2
ŵH

i Zi(λ, π)ŵi

. (3.7)

The uplink optimization problem is described as:

P UL(π) = min
ŵ1,...,ŵK ,λ>0

K∑
i=1

λi (3.8)

subject to SINRUL
i (ŵi, λ, π) ≥ γi, 1 ≤ i ≤ K (3.9)

‖ŵi‖2 = 1, 1 ≤ i ≤ K. (3.10)
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K∑
i=1

λi < PT . (3.11)

Since uplink SINR expressions are not coupled by beamformers, the SINR

functions can be individually maximized for fixed λ and π by the MMSE solution:

ŵMMSE
i (λ, π) = βZ−1

i (λ, π)hi, 1 ≤ i ≤ K (3.12)

where β is a normalization constant to assure that ‖ŵi‖2 = 1. Using ŵMMSE
i in

the SINR expression, we obtain

SINRUL
i (λ, π) = λih

H
i Z−1

i (λ, π)hi. (3.13)

The easy part of the uplink beamforming is the simple expression for beam-

formers in (3.12). That is, the SINR expressions in uplink are not coupled wih

beamformers and they are individually maximized. This does not hold for SINR

expressions in downlink beamforming. However, it is shown that the optimal

downlink beamformers wi ’s are identical to dual uplink beamfomers ŵi’s [6],

[7].

To achieve a higher SINR value, a user must use more power, however this

causes the interference to get higher for other users. To satisfy their SINR value,

the other users will want to transmit with more power, which in turn causes the

total transmit power to increase. Therefore, it is easily seen that the optimum

P UL is achieved when the SINR constraints are active, that is, SINRUL
i ’s are met

with equality.

Uplink and Downlink Solution

First, we solve the uplink problem in (3.8). It can be shown that interference-

plus-noise covariance matrix has a recursive structure

Zπi−1
(λ, π) = Zπi

(λ, π) + λπi
hπi

hH
πi

, 1 ≤ i ≤ K (3.14)
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where ZπK
(λ, π) = σ2I. Exploiting this structure the following update formula

can be used to compute the matrix inverse in (3.12). For a nonsingular matrix

A and vectors c,d,

(A + cdH)−1 = A−1 − A−1 + cdHA−1

1 + cHA−1d
. (3.15)

Using the formula above, we obtain

Zπi−1
(λ, π)−1 = Zπi

(λ, π)−1 +
λπi

Zπi
(λ, π)−1hπi

hH
πi
Zπi

(λ, π)−1

1 + γπi

; (3.16)

ZπK
(λ, π)−1 =

1

σ2
I. (3.17)

This derivation leads to the following algorithm that obtaines ŵmin and λmin as

the optimum:

1. ZπK
(λ, π)← I/σ2

2. for i = K to i = 1

3. λmin
πi
← γπi

/hH
πi
Z−1

πi
hπi

4. ŵmin
πi
← Z−1

πi
hπi

/
∥∥Z−1

πi
hπi

∥∥
2

5. Z−1
πi−1 ← Z−1

πi
− λmin

πi
Z−1

πi
hπi

hH
πi
Z−1

πi
/(1 + γπi

)

6. end

The uplink algorithm is easy-to-compute because of the structure of MMSE

beamformer in (3.12). Additionally, it does not require any matrix inversion

since covariance matrices can be computed recursively with the use of (3.16) .

Before switching to downlink solution we must establish the duality between

uplink and downlink beamforming. As stated earlier, the uplink and downlink

beamformers are identical. Considering this, the mutual cross-talk between the
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users, denoted by a matrix Ψπ, is given as

[Ψπ]πi,k
=

⎧⎨
⎩
∣∣wH

k hπi

∣∣2 , k ∈ {π1, . . . , πi−1}
0, k ∈ {πi, . . . , πK}

, ∀i. (3.18)

Downlink interference observed at the ith user is the ith row of Ψπ, whereas the

uplink interference for ith user is the ith column of Ψπ. Denoting Dπ as the

diagonal normalization matrix and defining it as

[Dπ]i,k =

⎧⎪⎨
⎪⎩

γπk

|wH
πk

hπk |2 , k = i

0, k �= i

(3.19)

we can write uplink and downlink expressions in matrix form as

(I−DπΨπ)pπ = σ2Dπ1, (downlink) (3.20)(
I−DπΨ

T
π

)
λπ = σ2Dπ1, (uplink). (3.21)

For fixed π, the matrices (I−DπΨπ) and
(
I−DπΨ

T
π

)
are nonsingular. Since

Ψπ has a cascaded structure, it is easy to solve the characteristic equation

det(τI − DπΨπ) = 0 (here τ represents the eigenvalue) by Gaussian elimina-

tion. For this case, the determinant is the product of the diagonal elements of

DπΨπ and since τK = 0, the determinant becomes 0. Therefore, the maximal

eigenvalue of DπΨπ is 0 [1]. This guarantees that there exist positive solutions

to p and λ as

p = σ2 (I−DπΨπ)−1 Dπ1, (downlink) (3.22)

λ = σ2
(
I−DπΨ

T
π

)−1
Dπ1, (uplink). (3.23)

and p and λ achieve the SINR targets. The minimum required total power for

the uplink is

K∑
i=1

λk = σ21T
(
D−1

π −ΨT
π

)−1
1 (3.24)

= σ21T
(
D−1

π −Ψπ

)−1
1 =

K∑
i=1

pk. (3.25)
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As shown above, uplink and downlink both require same total power for

achieving same SINR targets. Additionally, the same beamformers are used in

uplink and downlink. This illustrates the duality between uplink and downlink.

From (3.24), the uplink coupling matrix is the transpose of the downlink coupling

matrix. This is due to the fact that downlink precoding order is the reverse of

uplink decoding order.

Using the duality result, the downlink problem can be easily solved. Having

computed the beamformers, the following algorithm finds the optimum downlink

power allocation.

1. compute the beamformers wmin
1 , . . . ,wmin

K by using the uplink algorithm

2. for i = 1 to i = K

3. pmin
πi
←
(
γπi

/
∣∣wH

πi
hπi

∣∣2)(∑
k∈{π1,...,πi−1} pmin

k

∣∣wH
k hπi

∣∣2 + σ2
)

4. end.

3.2 Beamforming Techniques Under Per-Antenna

Power Constraints

Downlink beamforming techniques have been generally developed under total

power constraints. Minimizing transmit power under SINR and total power

constraints is analytically easy to solve, but in practice it is far from reality.

Since, every antenna has its own amplifier and limited by linear region of the

amplifier, per-antenna power constraint based optimization is more practical [2].

Furthermore for a system with BS cooperation, per-antenna power constraint are

more natural than total power constraint.
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Beamforming under per-antenna power constraints has been previously an-

alyzed in terms of ZF beamforming [12] and beamforming with transmit power

margin minimization. ZF beamforming algorithm in [12] attempts to maximize

the minimum common rate achieved by all users under per-antenna power con-

straints. The beamforming algorithm in [2] computes the optimal beamforming

vectors minimizing the power margin under individual SINR constraints at the

users and per-antenna power constraints. In the sequel, we summarize both of

the algorithms.

3.2.1 Equal-Rate Zero-Forcing Transmission

In [12], the ZF scheme is implemented in an elegant manner. The idea behind this

approach is that the decrease in capacity is caused from inter-cell interference.

Even if the signal power is high, the capacity can be very small because of

interference from other users. One approach to mitigate interference is to select

the beamforming vectors such that the transmission for each user does not cause

interference for any other user. For this method to be applicable, the channel

matrix including all users’ channel vectors must be full-rank. Although ZF is

easy to implement, it is a suboptimal method in terms of achieving the capacity

when the signal-to-noise ratio (SNR) is small [12].

In ZF method, the beamformer vector of a user is chosen to be orthogonal

to other user’s channel vectors. In other words, the beamformer vectors of users

do not lie in the subspace spanned by other users’ channels. The beamformer

vectors are assumed to be unit-norm. As a result, beamforming vectors should

satisfy

hH
i wj = 0, ∀i �= j, and (3.26)

‖wi‖2 = pi, ∀i, (3.27)
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where pi is the power allocated to user i. The orthogonality requirement for the

beamformers can be satisfied with a series of operations. The channel vector can

be decomposed into the sum of two orthogonal vectors

hi = ai + a
′
i (3.28)

where a
′
i denotes the component of hi which lies in the subspace spanned by

other users’ channels. The user i’s beamforming vectors are confined in the row

space of the vector aH
i .

In order to find ai, the following procedure is applied. G ∈ C(K−1)xN matrix

whose rows are equal to the rows of H except the row hH
i , is formed. Then

the orthonormal basis for the range of G is calculated. The orthonormal basis

vectors form the rows of matrix G
′
. After subtracting the projection of hH

i with

each of the rows of G
′
from hH

i , we have the vector aH
i . Mathematically, it is

described as follows:

aH
i = hH

i − (hH
i (G

′
1)

T )G
′
1 − . . .− (hH

i (G
′
K−1)

T )G
′
K−1 (3.29)

where G
′
i is the ith row of G

′
.

For finding the basis vector for the row space of aH
i , singular value decompo-

sition (SVD) theorem is used. Since aH
i is a row vector, SVD of aH

i is simply

aH
i =

√
ηi

pi
wH

i (3.30)

where ηi = aH
i ai.

The ith user’s received signal is given as

yi = hH
i

(
K∑

j=1

djwj

)
+ ni (3.31)

=
(
ai + a

′
i

)H

(diwi) + ni (3.32)
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since a
′
i satisfies

(
a

′
i

)T
wj = 0, j �= i, we can write

yi = aH
i (diwi) + ni. (3.33)

Using (3.30), the equation becomes

yi =

√
ηi

pi
wH

i diwi + ni (3.34)

=
√

ηipidi + ni. (3.35)

Doing this transformation we obtain a Gaussian channel whose rate equals

log2(1 + ηipi). The power used by transmit antenna t is found by summing up

all the contributions to all users from that antenna as:
∑K

i=1

(
wiw

H
i

)
t,t

.

The problem is stated as an optimization problem where the objective is to

maximize the minimum rate of users satisfying per-antenna power constraints.

The problem is defined as:

max r0 (3.36)

subject to log2(1 + ηipi) ≥ r0, i = 1, . . . , K, r0 > 0 (3.37)
K∑

i=1

(
wiw

H
i

)
t,t

≤ Pt, t = 1, . . . , N (3.38)

where Pt is the maximum available power for antenna t.

Logarithm function is a concave function and the region between logarithm

function and the hypercube defined by r0 is a convex region as shown in Fig.

3.1. Thus, the problem is a convex optimization problem since the constraint

set is convex. Therefore, one can use standard convex optimization packages

to solve this problem. However, it should be noted that Matlab’s optimization

toolbox does not support logarithmic functions in the constraint set. Therefore,

the optimization problem of interest can not be solved using Matlab. However, a

powerful optimization package Yalmip [17] which does not have such limitations

on constraint sets can be used to find the optimal power allocation.
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Figure 3.1: The convexity of the area between logarithm function and a constant

One disadvantage in using ZF beamforming vectors in the downlink is that ZF

beamforming is near optimal only when SNR is high [12]. Since ZF aims to null

out the interference, it is not optimal in terms of maximizing SINR of users. As a

result, in certain cases as will be demonstrated in Chapter 5, it uses significantly

higher power than other beamforming algorithms minimizing the transmit power

under SINR constraints. As shown in [9], the capacity region with per-antenna

power constraints is achieved by using DPC with MMSE BF with proper power

allocation to users. Therefore, ZF beamforming is suboptimal.

3.2.2 Power Margin Minimization in the Downlink

In the work by Yu and Lan [2], an efficient iterative algorithm that computes the

optimum beamforming vectors minimizing the power margin under per-antenna

power and individual SINR constraints is proposed. The received signal is

yi = hH
i

( K∑
j=1

djwj

)
+ ni, i = 1, . . . , K. (3.39)
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The SINR for each user is expressed as:

SINRi =
|hH

i wi|2∑
j �=i |hH

i wj|2 + σ2
i = 1, ..., K. (3.40)

The downlink problem is stated as follows:

min
α,w1,...,wK

α

N∑
i=1

Pi (3.41)

subject to

[
K∑

j=1

wjw
H
j

]
i,i

≤ αPi, i = 1, ..., N (3.42)

|hH
i wi|2∑

j �=i |hH
i wj |2 + σ2

≥ γi, i = 1, ..., K (3.43)

In this optimization problem the optimal wi’s are not unique since w̃i =

wie
jθi also satisfy the constraints with same objective function value. As a

result, we use the convention that wi’s are chosen such that wH
i hi is real valued.

The optimization problem in (3.41)-(3.43) is not convex, but ’Strong Duality’

(explained in Appendix B) holds for this problem [2], [18]. Therefore by solving

the convex Lagrangian dual problem (explained in Appendix B), the optimal

beamforming vectors can be easily found.

The Lagrangian function for the downlink problem is found as:

L(α,wi,Q, λi) = α

N∑
i=1

Pi +

N∑
i=1

qi

([ K∑
j=1

wjw
H
j

]
i,i
− αPi

)

−
K∑

i=1

λi

( 1

γi
|hH

i wi|2 −
∑
j �=i

|hiwj|2 − σ2
)

(3.44)

where λis and Q = diag(q1, . . . , qN) are the dual variables corresponding to

SINR and per-antenna power constraints, respectively and Φ = diag(P1, . . . , PN).

(3.44) can be written in a more compact form:

L(α,wi,Q, λi) =

K∑
i=1

λiσ
2 − α {Tr(QΦ)− Tr(Φ)}

+
K∑

i=1

wH
i

(
Q +

∑
j �=i

λjhjh
H
j −

λi

γi
hih

H
i

)
wi (3.45)
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We can state the dual objective function for the Lagrangian problem as

g(Q, λi) = min
wi,α

L(α,wi,Q, λi). (3.46)

Since there is not any constraint on the beamformer wi and α is a positive

number, g(Q, λi) = −∞ if Tr(QΦ) ≥ Tr(Φ) or Q +
∑

j �=i λihjh
H
j − λj

γi
hih

H
i is

not positive semidefinite. For the Lagrangian dual g(Q, λi) to give a meaningful

lower bound to the optimal value of the original problem, it must be finite, so

Q and λi should be chosen accordingly. The Lagrangian dual problem can be

stated as follows:

max
Q

max
λi

K∑
i=1

λiσ
2 (3.47)

Q +

K∑
j=i

λjhjh
H
j �

(
1 +

1

γi

)
λihih

H
i (3.48)

Tr(QΦ) ≤ Tr(Φ), Q diagonal, Q � 0. (3.49)

It is shown in [2] that the Lagrangian dual problem in (3.47) is equivalent to

the following dual problem with same SINR constraints.

max
Q

min
λi,ŵi

K∑
i=1

λiσ
2 (3.50)

subject to
λiσ

2|ŵH
i hi|2∑

j �=i λjσ2|ŵH
i hj |2 + ŵH

i σ2Qŵi

≥ γi, i = 1, ..., K (3.51)

Tr (QΦ) ≤ Tr (Φ) , Q diagonal, Q � 0. (3.52)

where ŵi is the dual uplink beamformer, λiσ
2 is the dual uplink power and σ2Q

is the noise covariance matrix. The minimization of total uplink power under

minimum SINR constraints is achieved by MMSE beamforming vectors:

ŵi =

(
K∑

j=1

λjhjh
H
j + Q

)−1

hi. (3.53)

Since minimum total power is obtained when SINR targets are met with equality,

(
1 +

1

γi

)
λih

H
i

( K∑
j=1

λjhjh
H
j + Q

)−1

hi = 1. (3.54)
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Therefore, the optimal λi should be the unique fixed-point of the following equa-

tion

λ∗
i =

1(
1 + 1

γi

)
hH

i

(∑K
j=1 λ∗

jhjhH
j + Q

)−1

hi

, ∀i. (3.55)

Then, the dual uplink problem is reduced to

max
Q

K∑
i=1

λiσ
2 (3.56)

subject to λ∗
i =

1(
1 + 1

γi

)
hH

i

(∑K
j=1 λ∗

jhjhH
j + Q

)−1

hi

, ∀i. (3.57)

Tr (QΦ) ≤ Tr (Φ) , Q diagonal, Q � 0. (3.58)

It is shown in [2] that this is a concave optimization problem which can

be solved by subgradient projection algorithm where diag
{∑K

i=1 wiw
H
i

}
is the

subgradient of Q. Since the problem is concave, the subgradient projection

method converges to the globally optimum Q.

Once λi and Q is found, the optimal beamforming vectors of downlink prob-

lems are found by taking the derivative of the Lagrangian in (3.45) with respect

to wi and equating it to 0:

∂L/∂wi =

(
Q +

∑
j �=i

λjhjh
H
j −

λi

γi
hih

H
i

)
wi = 0. (3.59)

If we add
(
1 + 1

γi

)
λihih

H
i wi to both sides and solve for wi:

wi =

(
K∑

j=1

λjhjh
H
j + Q

)−1(
1 +

1

γi

)
λihih

H
i wi. (3.60)

where hH
i wi expression is assumed to be real valued and positive. We can easily

see that wi is a scalar multiple of ŵi. Denoting the scalar as
√

δi:

√
δi = σ2

(
1 +

1

γi

)
λih

H
i wi. (3.61)
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As seen in the expression, the scalar is a function of wi. At this point,we exploit

the condition that SINRs are met with equality:

1

γi

∣∣wH
i hi

∣∣2 =
∑
i�=j

∣∣wH
j hi

∣∣2 + σ2. (3.62)

If wi =
√

δiŵi is substituted in the above expression, we obtain K equations

with K unknowns as:

G [δ1 . . . δK ]T = 1σ2 (3.63)

where matrix G is defined as

Gi,j =

⎧⎨
⎩

1
γi
|ŵH

i hi|2 if i = j

−|ŵH
j hi|2 else

(3.64)

Based on these results and definitions, the iterative algorithm is stated as

follows:

1. Set n = 1 and initialize Q(1),

2. Solve the following equation by fixed-point iteration for fixed Q(n) :

(λ∗
i )

(n) = 1“
1+ 1

γi

”
hH

i

„PK
j=1(λ∗

j)
(n)

hjhH
j +Q(n)

«−1

hi

,

3. Calculate optimal uplink beamformers using λ∗
i and downlink beamformers

ŵ
(n)
i =

(∑K
i=1

(
λ∗

j

)(n)
hjh

H
j + Q(n)

)−1

hi

w
(n)
i =

√
δiŵ

(n)
i where δ = G−11σ2

4. Update Q(n+1) by subgradient projection method summarized in Appendix

C with step size tn (possible choices of tn are explained in Appendix C):

Q(n+1) = P

{
Q(n) + tndiag

{∑K
i=1 w

(n)
i

(
w

(n)
i

)H
}}

where P denotes the projection of the subgradient of the function onto the

constraint set composed of the constraints: Tr(QΦ) ≤ Tr(Φ) and Q � 0.

As stated in [2], one can modify the algorithm to include the case where DPC

is used together with beamforming.
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One of the possible problems with the problem formulation in [2] is that,

the objective is to minimize the power margin as opposed to the total transmit

power. When the system is asymmetric, the resulting beamforming vectors may

use significantly larger transmit power compared to the optimal beamforming

vectors minimizing the total transmit power under same SINR constraints.

This formulation can also return infeasible per-antenna power levels, that is

power values exceeding the maximum power level. The only assumption about α

is its positiveness. For the problem to be feasible, the transmission powers must

exactly be lower or equal to the per-antenna power constraints. But, in fact the

optimization may yield α > 1, which means the problem is infeasible in terms of

power constraints.

The power margin minimization problem also requires some complex opti-

mization functionalities such as subgradient projection method. For this reason,

the time for convergence is very high in some cases. The power margin minimiza-

tion problem is also very difficult to be implemented in a distributed manner. For

these reasons, there is a need for another algorithm that is easy-to-implement,

not time consuming and can be easily implemented distributively. As a result,

we reformulate the optimization problem in [2] where the objective is to minimize

the total transmit power.

29



Chapter 4

PROPOSED BEAMFORMING

ALGORITHMS

As discussed in Chapter 3, the beamforming optimization problem in [2] focus

on minimizing the worst case power margin for each antenna which is defined as

the ratio of the power transmitted on each antenna to the corresponding power

constraint. When the system is asymmetric, i.e. users have different power

and/or SINR constraints or the channel for users are different, optimizing the

power margin may result in excessive use of power to satisfy the SINR constraints.

While formulating the problem as a power margin minimization problem provides

an alternative viewpoint for formulating the well-known duality between uplink

and downlink within the Lagrangian dual problem framework, from a system

designer’s point of view, it is more critical to provide efficient use of resources

(transmit power in this case) rather than minimizing the power margin.

As a result, we reformulate the optimization problem considered in [2] to

optimize the total transmit power. Using Lagrangian dual framework, we provide

an iterative algorithm for computing the optimum beamforming vectors. For

implementing the algorithm in a practical system with BS cooperation, we need
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to limit the amount of information exchange between BS required to compute

beamforming vectors. As a result, we investigate the distributed implementation

of the proposed algorithm using only limited local information exchange between

BSs. In this chapter, we present the proposed centralized beamforming vector

computation algorithm and its distributed implementation.

4.1 Centralized Algorithm

We follow the dual problem formulation in [2]. We define the objective as the to-

tal power used and keep the same constraints. This change causes the Lagrangian

dual function and the algorithmic solution to change. In the reformulated opti-

mization, downlink problem is stated as follows:

min
w1,...,wK

K∑
i=1

‖wi‖2 (4.1)

subject to

[
K∑

j=1

wjw
H
j

]
i,i

≤ Pi, i = 1, ..., N (4.2)

|hH
i wi|2∑

j �=i |hH
i wj |2 + σ2

≥ γi, i = 1, ..., K (4.3)

The Lagrangian for the downlink problem is found as:

L(wi,Q, λi) =
K∑

i=1

|wi|2 +
N∑

i=1

qi

([ K∑
j=1

wjw
H
j

]
i,i
− Pi

)

−
K∑

i=1

λi

( 1

γi
|hH

i wi|2 −
∑
j �=i

|hiwj|2 − σ2
)

(4.4)

and (4.4) can be written in a more compact form:

L(wi,Q, λi) =

K∑
i=1

λiσ
2 − Tr(QΦ)

+
K∑

i=1

wH
i

(
Q + I +

∑
j �=i

λjhjh
H
j −

λi

γi

hih
H
i

)
wi. (4.5)
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The dual objective function for the Lagrangian problem becomes

g(Q, λi) = min
wi

L(wi,Q, λi). (4.6)

The dual problem is stated as

max
Q,λi

g(Q, λi) (4.7)

Q � 0 (4.8)

λi > 0, ∀i. (4.9)

For the dual problem to give a meaningful lower bound on the optimal value of

the original problem, g(Q, λi) must be bounded away from −∞. As a result, Q

and λi should be such that Q+I+
∑

j �=i λjhjh
H
j − λi

γi
hih

H
i is positive semi-definite.

One can show that strong duality holds of the optimization problem in (4.1)

using the same approach in [2]. As a result, the nonconvex optimization problem

in (4.1) can be solved by its convex dual problem in (4.7).

The optimal beamforming vectors of downlink problems are found by taking

the derivative of the Lagrangian with respect to wi and equating it to 0:

∂L/∂wi =

(
Q + I +

∑
j �=i

λjhjh
H
j −

λi

γi
hih

H
i

)
wi = 0. (4.10)

If we add
(
1 + 1

γi

)
λihih

H
i wi to both sides and solve for wi:

wi =

(
K∑

j=1

λjhjh
H
j + Q

)−1(
1 +

1

γi

)
λihih

H
i wi. (4.11)

where hH
i wi expression is assumed to be real valued and positive (since optimal

wi’s are not unique as explained earlier). We can easily see that wi is a scalar

multiple of ŵi. Denoting the scalar as
√

δi:

wi =

(
K∑

j=1

λjhjh
H
j + Q

)−1

hi︸ ︷︷ ︸
ŵi

(
1 +

1

γi

)
λih

H
i wi︸ ︷︷ ︸√

δi

. (4.12)
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Solving this equation for λi here by multiplying both sides with hH
i and

cancelling hH
i wi on both sides, we obtain the following fixed-point equation [19]:

λ∗
i =

1(
1 + 1

γi

)
hH

i

(∑K
j=1 λ∗

jhjh
H
j + Q + I

)−1

hi

, ∀i. (4.13)

To minimize transmit power, SINR constraints must be met with equality.

1

γi

∣∣wH
i hi

∣∣2 =
∑
i�=j

∣∣wH
j hi

∣∣2 + σ2. (4.14)

If we substitute (4.12) into the above, we can solve for
√

δi’s as in [2].

Therefore, the Lagrangian dual problem is stated as

max
Q

min
λi,ŵi

K∑
i=1

λiσ
2 − Tr(QΦ) (4.15)

subject to λi =
1(

1 + 1
γi

)
hH

i

(∑K
j=1 λjhjhH

j + Q + I
)−1

hi

, ∀i. (4.16)

Q diagonal,Q � 0. (4.17)

This dual problem has two parts. An inner minimization part and an

outer maximization part. The inner minimization was shown to be solved via

fixed-point iterations. It is shown in [2] that minλi,ŵi

∑K
i=1 λiσ

2 is a concave

function of Q. Since Tr(QΦ) is a convex function, −Tr(QΦ) is a concave

function of Q. Since the addition of two concave functions is concave, then

minλi,ŵi

∑K
i=1 λiσ

2 − Tr(QΦ) is also a concave function of Q. Following the

same procedure in [2], we can show that diag

{∑K
i=1 w

(n)
i

(
w

(n)
i

)H
}
− Φ is a

subgradient of the inner minimization part. Therefore, the outer maximization

can be solved with subgradient projection method. The subgradient projection

here reduces to just comparison of the diagonals of the subgradient matrix with

0 because of the only constraint Q � 0. This method is guaranteed to converge

to the optimum value, since the inner part is a concave function of Q [20].

The proposed algorithm that solves the downlink beamforming problem is

summarized as follows:
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1. First check the SINR values for feasibility using the procedure given in

Appendix A. If the problem is not feasible, terminate the algorithm.

2. Set n=1 and initialize Q(1).

3. Solve fixed-point equation with fixed Q(n):

(λ∗
i )

(n) = 1“
1+ 1

γi

”
hH

i

„PK
j=1(λ∗

j)
(n)

hjhH
j +Q(n)+I

«−1

hi

.

4. Compute uplink beamformer vectors using fixed-point values:

ŵ
(n)
i =

(∑K
j=i

(
λ∗

j

)(n)
hjh

H
j + Q(n) + I

)−1

hi.

5. Compute downlink beamformer vectors using G matrix defined in (3.64):

w
(n)
i =

√
δiŵ

(n)
i .

6. Update Q(n) with step size tn (possible choices of tn are explained in Ap-

pendix C):

q
(n+1)
i = max

(
0,q

(n)
i + tn

[(∑K
i=1 w

(n)
i

(
w

(n)
i

)H
)

i,i

− Pi

])
.

7. n← n + 1.

8. Go to Step 2 and repeat the procedure until convergence.

Beamforming with DPC:

One can also incorporate the case where DPC along with beamforming is used.

The encoding order π is assumed to be fixed. Based on this assumption, the

SINR constraint becomes:

|hH
πi
wπi
|2∑

j∈{πi+1,...,πK} |hH
πi
wπj
|2 + σ2

≥ γπi
, i = 1, . . . , K (4.18)

The fixed-point iteration and computation of wi is modified according to the

SINR constraints given in (4.18).
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4.2 Suboptimal Distributed Algorithm

In the previous section, we propose a centralized algorithm that solves the power

minimization problem subject to per-antenna power constraints and SINR con-

straints. In this section, the distributed version of the proposed algorithm is

presented. However, for the distributed algorithm, we assume that the cellular

scenario under investigation is Wyner’s linear array with N = K. The proposed

algorithm requires high amount of message-passing in the case of BS cooperation,

therefore the optimal distributed scheme with limited amount of information ex-

change between BSs is not possible and we propose a suboptimal distributed

algorithm.

If we observe the expression for the uplink beamformer ŵi, we see that the

expression has a special structure. To compute ŵi distributively, it can be mod-

eled as in the framework in [21]. In [21], a distributed solution for computing the

MMSE beamformer vector by formulating it as a dual linear minimum-mean-

squared-error (LMMSE) estimation problem is proposed.

We first formulate the computation of ŵi in the framework in [21]. Having

defined λi and Q in the previous section and defining Λ = diag(λ1, . . . , λK),

H̃ = HΛ1/2, Γ = diag(q1 + 1, . . . , qK + 1) and ñ ∼ N
(
0, [q1 + 1, . . . , qK + 1]T

)
,

we can write observation equation for the dual LMMSE estimation problem as

y = H̃x + ñ. (4.19)

Let x̂ be the estimate of x given the observation y. A LMMSE estimator for

x̂ is the following [21], [22]:

x̂ = H̃T
(
H̃H̃T + Γ

)−1

y. (4.20)

The above expression is equivalent to

x̂ =
(
H̃TH̃ + Γ

)−1

H̃Ty. (4.21)
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We can manipulate ŵi expression so that it looks like the above expression

and can be solved via its dual LMMSE problem as in [21]:

ŵi =

(
K∑

j=i

λjhjh
H
j + Q + I

)−1

hi =
(
HTΛH + Q + I

)−1
hi, ∀i (4.22)

=
(
H̃T H̃ + Γ

)−1

hiΛ
1/2Λ−1/2, ∀i.(4.23)

Let Ŵ = [ŵ1, . . . , ŵK ], the above equation can be stated in a compact form:

Ŵ =
(
H̃TH̃ + Γ

)−1

HΛ1/2Λ−1/2 (4.24)

=
(
H̃TH̃ + Γ

)−1

H̃Λ−1/2 (4.25)

The above equation states that we can form a new observation equation with

Ŵ as data matrix to be estimated and Λ−1/2 as observation and apply the above

estimator for finding Ŵ:

Λ−1/2 = H̃Ŵ + Ñ (4.26)

where the columns of Ñ are the noise vectors in the observation equations of

dual LMMSE problem.

The LMMSE estimates which correspond to beamforming matrix Ŵ can be

computed via forward-backward algorithm based on Kalman smoothing in [23].

The forward and backward Kalman filters are initially estimated by BS 1 and BS

N as seen in Fig. 4.1. The output of BS 1 is passed to BS 2 and the output of

BS N is passed to BS N − 1. The BSs which received the information compose

their new messages with the data they take from the neighbour (correction term)

and the data they estimate (prediction term). When all the BSs have received

messages from their right and left neighbours, the messages at the BSs are com-

bined and the data is estimated. After K iterations (message-passing from the

first BS to the last BS finishes), the uplink beamforming vectors are estimated.

In the kth iteration, the ith BS estimates (ŵk)i.
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Figure 4.1: Message-passing between neighbour BSs

The fixed-point equation can be written as follows:

λ∗
i =

1(
1 + 1

γi

)
hH

i ŵi

(4.27)

The above equation implies that every node can compute its fixed-point by

same method after computing ŵi’s. We start with a all-zero λ vector. BS N

(N = K) computes λK and sends this vector to BS N−1, having this information

BS N − 1 computes λK−1 and it sends this vector to BS N − 2. The process is

continued back and forward until convergence. After convergence the λ vector

is passed to the all BS from their neighbours.

In the centralized algorithm the downlink beamformers are scaled versions

of uplink beamformers with
√

δ. Since δ = G−11σ2, the G matrix must be

computed distributively in order to find downlink beamformers. If we observe

the structure of G matrix, we see that the entries except from the diagonals and

the band diagonals are significantly smaller than the diagonals. Additionally,

BS i can compute Gi,i+1 and Gi,i−1 with the local information gathered while

computing the uplink beamformers. Therefore, we can approximate the G matrix

as tridiagonal. To find the beamforming vectors, the distributed formula for

computing the inverse of tridiagonal matrices called Thomas algorithm in [24] is

used. First BS N (N = K) computes δK and it passes this value to BS N − 1

and BS N − 1 computes δK−1 and it passes it to BS N − 2, and the process

goes on similarly. After message-passing finishes from BS N to BS 1, δi’s are

computed. Since the inverse of G matrix cannot be exactly computed, an error

is introduced at this stage and this error propagates through the iterations.
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Having computed the scalar δi’s all BSs can compute the downlink beam-

formers, more precisely BS i can compute (w1)i, . . . , (wK)i.

The last step (subgradient projection) is also done distributively. the pro-

jected term in the expression is nothing but the difference between the power

used by the BS and the power constraint of that BS. All the BSs are informed

priorly what the projection step size is. Once they are converged, they inform

each other and the iteration stops with convergence.
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Chapter 5

NUMERICAL RESULTS

In this chapter, we provide some numerical examples that compare the proposed

methods (centralized and distributed algorithms) with the existing methods in

terms of performance, reliability and efficiency for various cellular array scenarios.

In the numerical computations, for the sake of simplicity and to gain insight, we

consider simple array models, such as Wyner’s general circular array, Wyner’s

symmetric circular array and Wyner’s linear array with the same interference

factor.

5.1 Centralized Algorithm

To verify that the proposed algorithm is working properly, we compare it with

the method proposed by [10] that finds the minimum total power subject to SINR

constraints under different channel scenarios. By providing the proposed algo-

rithm with sufficiently large per-antenna power constraints to satisfy the SINR

requirements, we computed the beamforming vectors minimizing total power.

In Fig. 5.1, the total transmit power as a function of SINR constraint on all
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users are plotted for Wyner’s symmetric circular array with 10 cells for different

interference parameters.

As shown in Fig. 5.1, the results obtained by the proposed method perfectly

match the results obtained by the method in [1]. It is also observed that the

transmit power for α = 0.5 is larger than that of α = 0.75 (which corresponds

to higher interference from neighbour BS). This is due to the fact that as BSs

cooperate, they can take the advantage of large channel gains from other users.
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Figure 5.1: Comparison of the proposed method with the method in [1] (denoted
as Boche et.al.) in terms of total transmit power for Wyner’s symmetric circular
array with N = 10 and various α values

The proposed method is then compared with the method in [2]. As stated in

Chapter 4, the proposed method is expected to use lower total transmit power

compared to the method in [2] when the channel is not symmetric. The average

antenna power for the beamforming vector computed by using the two algorithms

is first compared for Wyner’s circular and linear arrays with N = 10 cells and

interference parameter α = 0.3. The per-antenna power constraints are chosen

large enough to satisfy the SINR constraints. Since circular array has a sym-

metrical structure, the total transmit power (which is proportional to average
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power) for both methods are the same. However, for the linear arrays due to

the asymmetry for the cells at the edge, there is a slight difference in the total

transmit power when SINR constraints for the users are large as seen in Fig. 5.2.
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Figure 5.2: Proposed algorithm vs. Yu-Lan algorithm in [2] for symmetric cir-
cular array and linear array for N= 10 and α = 0.3

In Fig. 5.3 the average power is compared with an asymmetrical Wyner’s

circular array with N = 10 cells where the interference factors α+
i and α−

i are

chosen randomly. It is observed that when the SINR constraints are large, the

difference between the total transmit power is significant. For example for target

spectral efficiency of 3 bits/sec/Hz for each user (corresponding to SINR=7), Yu-

Lan algorithm uses approximately 1 dB more transmit power than the proposed

algorithm.

The difference between Yu-Lan’s and proposed algorithms in terms of op-

timization criteria is illustrated in Fig. 5.4. In this figure the maximum and

minimum of the antenna powers as well as the average antenna power for the
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two methods are compared for a general circular array with N = 10 cells and ran-

dom interference parameters. The total transmit power is lower in the proposed

method especially for high SINR (corresponding to rate) targets since proposed

method aims to minimize total transmit power. However, if the variation in

the level of power transmitted by each antenna (corresponding to difference be-

tween maximum and minimum antenna powers) is considered, it is observed that

the variation is less in Yu-Lan’s method. This is expected as Yu-Lan’s method

aims to minimize the power margin, trying to establish a power balance over the

antennas.

Proposed Algorithm
N 3 5 7 10 15 20 30 50

Circular Array α = 0.3 3 3 3 3 3 3 3 3
Linear Array α = 0.3 3 3 3 3 3 3 3 3
Random Circular Array 3 3 3 3 3 3 3 3

Yu and Lan Algorithm
N 3 5 7 10 15 20 30 50

Circular Array α = 0.3 3 3 3 3 3 3 3 3
Linear Array α = 0.3 29 132 261 392 509 985 614 599
Random Circular Array 31 142 101 108 399 474 576 732

Table 5.1: Number of iterations for convergence for various array scenarios for
SINR target 5 for all users

The proposed algorithm is compared with the algorithm in [2] in terms of

convergence rate and computational complexity. In Table 5.1, the number of

iterations performed for convergence is compared for the proposed and Yu-Lan’s

algorithms for different array scenarios with SINR=5 for all users. It is observed

that the number of iterations required for the symmetric array structure (circular

array with α = 0.3) are the same for both methods. However, for asymmetric

array scenarios (linear array with α = 0.3, general circular array with randomly

chosen interference parameters) and as the size of the array gets large, number

of iterations required by Yu-Lan’s method gets significantly larger. In fact, the

number of iterations required for the proposed algorithm seems to be independent
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Figure 5.3: Proposed algorithm vs. Yu-Lan algorithm in [2] for asymmetric
Wyner’s circular array with N = 10
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Figure 5.4: Comparison of proposed and Yu-Lan algorithm in terms of maximum,
average and minimum BS antenna powers for an asymmetric Wyner’s circular
array with N = 10 and random interference parameters
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of the array structure and size. In that sense, we can say that proposed algorithm

is more robust and very efficient.

In Fig. 5.5, the computational speed of the two algorithms is compared for

the symmetric circular array and asymmetric linear array with N = 10 cells and

α = 0.3. Both algorithms are implemented in Matlab 7.0 version running on

an Intel 1.70 GHz Pentium M processor. From the figure, it is observed that

elapsed time for Yu-Lan’s algorithm is significantly larger than the proposed

method especially for aymmetic array with large number of cells. This is due to

the fact that the number of iterations for Yu-Lan algorithm increases as the size

of the array increases. In addition, subgradient projection is required for Yu-Lan

algorithm which is computationally complex as it involves solving an optimization

problem, whereas for the proposed algorithm, subgradient projection simplifies

into comparison with an all zero vector.
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Figure 5.5: Time for convergence of proposed algorithm vs. Yu-Lan algorithm
for symmetric circular and linear array with N = 10 and α = 0.3

The proposed algorithm is compared with the ZF algorithm [12] that maxi-

mizes the minimum rate subject to per-antenna power constraints in Fig. 5.6 for
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Wyner’s symmetric circular array scenario with N = 5 cells and different inter-

ference factors. For this comparison, firstly we find the minimum rate that ZF

algorithm achieves under certain per-antenna constraints. Then,we find the total

transmit power to achieve these rates with the proposed algorithm. The sum of

per-antenna power constraints for ZF algorithm and the total power returned by

the proposed algorithm are finally compared. The aim of the ZF method is to

null the interference and as a result it orthogonalize the channel. In this respect,

to achieve the given SINR constraints when the interference is low (interference

factor α is small), the total power used in ZF algorithm is almost the same with

that of the proposed algorithm. When interference is higher, the difference be-

tween used total powers for the two algorithms gets bigger. An important point

to mention is that the ZF algorithm cannot be used when the channel is rank

deficient since the channel cannot be perfectly orthogonalized.
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Figure 5.6: Comparison of proposed algorithm and ZF algorithm for a symmetric
Wyner’s circular array with N = 5 and various α values

As mentioned before, the optimal scheme achieving the capacity region of

MIMO BC is DPC with beamforming. In Fig. 5.7, the performance of the
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transmission scheme with beamforming only is compared with a transmission

scheme with beamforming and DPC for Wyner’s symmetric circular array with

N = 9 cells and α = 0.25. As observed in the figure, the beamforming only

scheme uses higher average power than that of DPC employing scheme. The

transmission powers of N = 9 BS antennas vary since DPC scheme knows the

interference of priorly encoded users and encodes the following users accordingly

and the lastly encoded user sees no interference, therefore minimal power is used

for that user. The variation among the transmission powers for DPC employing

scheme increases as SINR increases which is an expected result.
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Figure 5.7: Comparison of beamforming only scheme and beamforming with
DPC scheme for a symmetric Wyner’s circular array with N = 9 and α = 0.25
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5.2 Distributed Algorithm

The scenario we consider is a Wyner’s linear array with N = 3 and fixed α = 0.5

and the target SINR for users is 2. The channel is:

H =

⎡
⎢⎢⎢⎣

1 0.5 0

0.5 1 0.5

0 0.5 1

⎤
⎥⎥⎥⎦ .

The solution of fixed-point equations are found as: λ∗ = [3.7957; 5.4666; 3.7957]T .

Then the observation channel matrix is computed as:

H̃ =

⎡
⎢⎢⎢⎣

1.9483 0.9741 0

1.1690 2.3381 1.1690

0 0.9741 1.9483

⎤
⎥⎥⎥⎦ .

K = 3 so there will be 3 message-passing cycles/ iterations through the

network. After one cycle of message-passing through the whole network we find

one of the following three matrices. After 3 cycles, we find all of them. The second

rows of the following matrices are the transposes of the uplink beamforming

vectors ŵ1, ŵ2 and ŵ3, respectively. They are the Kalman filter estimates defined

in [23] for the uplink beamformers at the BSs. The ith column is the Kalman

estimate of BS i.

⎡
⎢⎢⎢⎢⎣

0 0.1972 −0.0432

0.1972 −0.0432 −0.0113

−0.0432 −0.0113 0

⎤
⎥⎥⎥⎥⎦ .

The second iteration returns the following matrix:⎡
⎢⎢⎢⎢⎣

0 −0.0224 0.1443

−0.0224 0.1443 −0.0224

0.1443 −0.0224 0

⎤
⎥⎥⎥⎥⎦ .
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The third/ last iteration returns the following matrix:⎡
⎢⎢⎢⎢⎣

0 −0.0113 −0.0432

−0.0113 −0.0432 0.1972

−0.0432 0.1972 0

⎤
⎥⎥⎥⎥⎦ .

Since the scenario is a linear array scenario, the (1,1)th and (3,3)th elements

of the matrix is 0 meaning that BS 1 and BS 3 do not send any information

to BS 3 and BS 1, respectively. At the end of every message-passing stage, the

BSs store the data in their corresponding column and in the 2nd row i.e, BS i

stores the data in the (2, i)th entry of the matrix. Finally BS i forms the uplink

beamforming vector ŵi. The uplink beamforming matrix is as follows:

[ŵ1, ŵ2, ŵ3] =

⎡
⎢⎢⎢⎣

0.1972 −0.0224 −0.0113

−0.0432 0.1443 −0.0432

−0.0113 −0.0224 0.1972

⎤
⎥⎥⎥⎦ .

The optimal
[√

δ1,
√

δ2,
√

δ3

]
= [10.2513; 14.3027; 10.2513]. But the dis-

tributed algorithm finds them as
[√

δ1,
√

δ2,
√

δ3

]
= [9.8408;14.1093;9.8408]. The

optimal downlink beamformers are found as

w =

⎡
⎢⎢⎢⎣

2.0217 −0.3198 −0.1159

−0.4424 2.0640 −0.4424

−0.1159 −0.3198 2.0217

⎤
⎥⎥⎥⎦ .

but the downlink beamformers found by the distributed algorithm are

w =

⎡
⎢⎢⎢⎣

1.9407 −0.3154 −0.1112

−0.4247 2.0361 −0.4247

−0.1112 −0.3154 1.9407

⎤
⎥⎥⎥⎦ .

The middle user satisfies its SINR requirement, but the other users have a

SINR = 1.8690. The duality gap is computed as -0.7955.
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The distributed algorithm is a suboptimal algorithm due to the approximation

made in G matrix defined in previous section and duality gap occurs between

the original and Lagrangian dual problems. In Fig. 5.8 we compare the duality

gap for the proposed suboptimal distributed algorithm for Wyner’s linear array

with N = 3 cells and different interference factors. We observe that, as SINR

and the interference factor α values increase, the duality gap gets larger. The

duality gap can be used as an indicator of how far the result for the distributed

algorithm is from the optimum.
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Figure 5.8: The absolute value of the duality gap for distributed algorithm for
Wyner’s linear array with N = 3 and α = 0.25 and α = 0.5
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Chapter 6

CONCLUSIONS

In this thesis, iterative algorithms that compute downlink beamforming vectors

minimizing total transmit power under individual SINR and per-antenna power

constraints for systems with BS cooperation were investigated. Per-antenna

power constraints are logical for systems with BS cooperation, as the anten-

nas of the global transmitter are geographically seperated and each antenna is

limited by the linearity region of its power amplifier.

In [2], an elegant iterative algorithm computing beamforming vectors mini-

mizing power-margin under individual SINR and per-antenna power constraints

based on Lagrangian dual framework is presented. While this formulation pro-

vides an alternative view of well known duality between uplink and downlink

from the perspective of Lagrangian dual framework, from a system designer’s

point of view, it may be more critical to optimize total transmit power than

minimizing power margin.

As a result, we reformulated the optimization problem in [2] as minimization

of total transmit power and following the Lagrangian dual framework, we pro-

posed an iterative algorithm that computes the optimal beamforming vectors.

The performance of the proposed algorithm was compared with other algorithms
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under per-antenna power constraints. It is observed that, compared with other

algorithms in the literature, less transmission power is used in the proposed al-

gorithm to achieve the same set of SINR targets especially when the system is

asymmetric. It is also observed that the proposed algorithm is computationally

more efficient.

However, for the algorithm to be implemented in practical systems with BS

cooperation, it needs to be implementable in a distributed fashion. When system

has certain structure like Wyner’s linear array, it is shown to be implemented in

a suboptimal way with limited information exchange between BSs.

As a future work, truly distributed implementation of the proposed algorithm

with better performance will be investigated.
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APPENDIX A

Test of SINR Feasibility

In [19] conditions to test feasibility of SINR constraints are derived. For a given

SINR value γ0 and a channel matrix H ∈ RKxN , a precoder/beamformer matrix

T ∈ RNxK exists if:

min
i

∣∣∣[HT]i,i

∣∣∣2∑
i�=j

∣∣∣[HT]i,j

∣∣∣2 + σ2

≥ γ0. (A.1)

Since σ2 is positive, for simplicity of SINR feasibility analysis one can easliy

show that ∣∣∣[HT]i,i

∣∣∣2∑
i�=j

∣∣∣[HT]i,j

∣∣∣2 + σ2

<

∣∣∣[HT]i,i

∣∣∣2∑
i�=j

∣∣∣[HT]i,j

∣∣∣2 , ∀i. (A.2)

A feasible T satisfying SINR constraints exists if

min
i

∣∣∣[HT]i,i

∣∣∣2∑
i�=j

∣∣∣[HT]i,j

∣∣∣2 ≥ γ0. (A.3)

which is shown to be equivalent to

γ0 ≤ 1
K

rank(H)
− 1

. (A.4)

Note that, rank(H) ≤ min(K, N), so when N < K, rank(H) ≤ N < K then

there is a SINR limit. When rank(H) = K, then γ0 < ∞ meaning that any

SINR is feasible.
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APPENDIX B

Lagrangian Dual Formulation

Consider an optimization problem in standard form with variable x ∈ Rn:

minimize f0 (x) (B.1)

subject to fi (x) ≤ 0, i = 1, . . . , m (B.2)

hi (x) = 0, i = 1, . . . , k (B.3)

Denote the optimal value of the above problem as x∗. The Lagrangian of the

above problem is defined [18] as :

L (x, λ,q) = f0 (x) +

m∑
i=1

λifi (x) +

k∑
i=1

qihi (x) (B.4)

where λi’s and qi’s are called the Lagrangian multipliers for the constraints fi (x)

and hi (x), respectively. They are also called dual variables and satisfy the con-

ditions λi ≥ 0 and q ∈ Rk.

The Lagrangian dual function is defined as the minimum of Lagrangian func-

tion over x values:

g (λ,q) = inf
x

L (x, λ,x) = inf
x

(
f0 (x) +

m∑
i=1

λifi (x) +
k∑

i=1

qihi (x)

)
(B.5)
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The dual Lagrangian is −∞ if the Lagrangian is unbounded below.

Consider an arbitrary feasible point, x̃ for the basic optimization problem.

We have
∑m

i=1 λi︸︷︷︸
≥0

fi (x̃)︸ ︷︷ ︸
≤0

+
∑k

i=1 qi hi (x̃)︸ ︷︷ ︸
=0

, therefore

L (x̃, λ,x) = f0 (x̃) +

m∑
i=1

λifi (x̃) +

k∑
i=1

qihi (x̃)︸ ︷︷ ︸
≤0

≤ f0 (x̃). Then,

g (λ,q) = infx L(x, λ,q) ≤ L(x̃, λ,q) ≤ f0(x̃), ∀x̃.

Therefore, g(λ,q) ≤ x∗ if λ ≥ 0.

When g(λ,q) = −∞, the dual problem does not give a meaningful lower

bound on the optimal value. Therefore, the following dual problem is stated

choosing λ and q such that Lagrangian dual function is finite.

maximize g(λ) (B.6)

subject to λi ≥ 0 (B.7)

Let’s illustrate this with an example. For the following optimization problem :

minimize cTx (B.8)

subject to aT
i x ≤ bi, i = 1, . . . , m (B.9)

dT
i x = 0, i = 1, . . . , k (B.10)

the Lagrangian is L (x, λ,q) = cTx +
∑m

i=1 λi

(
aT

i x− bi

)
+
∑k

i=1 qid
T
i x. There-

fore, Lagrangian dual function is stated as

g (λ,q) = minxL(x, λ,q)

= minx

(
−∑m

i=1 λibi +
(
c +

∑m
i=1 λiai +

∑k
i=1 qidi

)T

x

)

=

⎧⎨
⎩−

∑m
i=1 λibi , if

(
c +

∑m
i=1 λiai +

∑k
i=1 qidi

)
= 0

−∞ , otherwise.

(B.11)

Then, the Lagrangian dual problem is defined as follows:

maximize −
m∑

i=1

λibi (B.12)
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subject to c +

m∑
i=1

λiai +

k∑
i=1

qidi = 0, (B.13)

λ � 0. (B.14)

Duality is classified into two categories: weak duality and strong duality. The

optimal value, d∗, of the Lagrangian dual problem is the best lower bound on

the optimal value, p∗, of the original (primal) optimization problem (B.1). That

is stated as by following inequality

d∗ ≤ p∗. (B.15)

This equality is valid even if the primal problem is not convex. This situation is

called weak duality [18].

The difference p∗ − d∗ is called optimal duality gap and is a measure for the

difference between optimal value of original problem and the optimal value for

the Lagrangian dual function. Weak duality is sometimes used to find a lower

bound for difficult-to-solve optimization problems.

If the above inequality is satisfied with equality, i.e.,

d∗ = p∗, (B.16)

then the duality gap is 0 and it is stated that ’strong duality’ holds (the best

lower bound is obtained). Strong duality holds for optimization problems in

some certain conditions. Slater’s conditions are used for test of strong duality

[18]. When the primal problem is convex, and Slater’s conditions holds for this

problem, then strong duality holds:

g(λ∗,q∗) = d∗ = p∗. (B.17)
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APPENDIX C

Subgradient Projection

First, we define what projection and subgradient are. For C, a closed convex

subset of Rn and x ∈ Rn, projection of x onto the set C is defined as:

PC(x) = arg min
z∈C
‖z− x‖2 (C.1)

where z is the unique vector that minimizes ‖z− x‖2.

Let f : Rn → R be a convex function, then d ∈ Rn is a subgradient of f at

x ∈ Rn if

f(z) ≥ f(x) + (z− x)Td, ∀z ∈ R
n (C.2)

holds.

Subgradient projection method solves the following convex optimization prob-

lem

minimize f(x) (C.3)

subject to x ∈ C (C.4)

where C is a convex set. The subgradient projection method is given by

x(k+1) = PC(x(k) − tkd
(k)) (C.5)
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where d(k) is a subgradient of f at x(k) and tk is the step size.

The subgradient projection method is guaranteed to converge since when a

point is projected onto the set C, we get closer to any optimal point in C [25].

Various types of step size rules can be used in the subgradient projection

method.

• Constant step size: tk = c is a constant (hence independent of k).

• Constant step length: tk = c/
∥∥d(k)

∥∥
2

meaning that
∥∥x(k+1) − x(k)

∥∥
2

=

c.

• Square summable but not summable: Step size satisfies
∑∞

i=1 t2k <∞
and

∑∞
i=1 tk =∞, e.g. tk = 1

k
.

• Nonsummable diminishing: Step size satisfies limk→∞ tk = 0 and∑∞
k=1 tk =∞. tk = p/

√
k,where p > 0 is an example for this type.
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