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ABSTRACT

DETECTION AND TRACKING OF REPEATED
SEQUENCES IN VIDEOS

TOLGA CAN

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Pınar Duygulu Şahin

August, 2007

In this thesis, we propose a new method to search different instances of a

video sequence inside a long video. The proposed method is robust to view point

and illumination changes which may occur since the sequences are captured in

different times with different cameras, and to the differences in the order and

the number of frames in the sequences which may occur due to editing. The

algorithm does not require any query to be given for searching, and finds all

repeating video sequences inside a long video in a fully automatic way. First, the

frames in a video are ranked according to their similarity on the distribution of

salient points and colour values. Then, a tree based approach is used to seek for

the repetitions of a video sequence if there is any. These repeating sequences are

pruned for more accurate results in the last step.

Results are provided on two full length feature movies, Run Lola Run and

Groundhog Day, on commercials of TRECVID 2004 news video corpus and on

dataset created for CIVR Copy Detection Showcase 2007. In these experiments,

we obtain %93 precision values for CIVR2007 Copy Detection Showcase dataset

and exceed %80 precision values for other sets.

Keywords: copy detection, media tracking, story tracking.
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ÖZET

TEKRAR EDEN SIRALILARIN BELİRLENMESİ VE
TAKİBİ

TOLGA CAN

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. Pınar Duygulu Şahin

Ağustos, 2007

Bu tez çalışmasında, bir video parçasının daha büyük videolarda aranması

için yeni bir yöntem sunuyoruz. Sunulan yöntem sıralıların farklı zamanlarda

yada farklı kameralarla çekilmesinden dolayı ortaya cıkabilecek olan görüş açısı

ve aydınlanma değişimlerine ve bunlara ek olarak sıralılardaki film karelerinin

sıra ve sayı değişimlerine karşı gürbüzdür. Bizim algoritmamız için sorgu gerek-

memekte ve verilen medyadaki bütün tekrarlı tamamiyle otomatik olarak bulmak-

tadır. İlk olarak medyadaki film kareleri içn renk bilgilerine ve anahtar noktaların

dağılımına dayanarak benzer film kareleri bulunmaktadır. Bunu ardından, me-

dyadaki tekrarlar bir ağaç yapısı kullanılarak aranmaktadır. Son olarak da bu

tekrar eden sıralılar daha doğru sonuçlar elde edilmesi için sadeleştirilmektedir.

Bu çalışmanın deneyleri iki adet filmde ”Run Lola Run” ve ”Groundhog Day”,

TRECVID 2004 verisindeki reklamlarda ve CIVR’in Kopye Takibi için verdiği

veritabanında yapılmıstır. Bu deneylerde kopya tanımada %90’nın üzerinde, diğer

datasetlerinde ise %80 üzerinde doğruluk değerleri elde edilmiştir.

Anahtar sözcükler : hikaye takibi, kopya yakalama, medya takibi.
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Chapter 1

Introduction

1.1 Motivation

While there is a growing amount of digital videos available in many sources,

the current research on video retrieval does not go beyond image retrieval and

discards the temporal information which makes videos distinct from images.

In searching for videos, most of the current systems either use textual informa-

tion provided in the form of manual annotations or speech transcript text; visual

information extracted from video frames or key-frames; or simple combination of

both [48]. In all cases, the results are provided in the form of a single shot or

a collection of shots. However, video shots are not independent from each other

and the valuable information is available with a sequence of shots rather than

with individual shots.

We argue that, for a video retrieval system to be distinct from an image

retrieval system, it is important to search for video sequences rather than to

search for individual shots. We approach to the problem similar to the Query

Based Example (QBE) approach in image retrieval, and aim to find similar video

sequences based on their visual representation.

1



CHAPTER 1. INTRODUCTION 2

Detection of similar sequences is important since it helps better indexing and

summarisation, and also reduction of huge amount of data by eliminating the

repetitions.However, there are important issues to be considered: (i) the signal

distortions due to digitisation or encoding, and different frame rates, (ii) varia-

tions in the order and the number of frames due to the editing of the sequences,

(iii) dissimilarity of video frames due to view point and lighting changes. Based

on these issues, we divide the application domains which require detection of

identical or similar video sequences into three groups.

Copy detection: Growing volumes of broadcast videos shared among dif-

ferent media resulted in a new requirement: detection and tracing of copies or

duplicates. Detecting copies of videos is very important for copyright issues but

difficult when the amount of data is large, resulting in a new challenge for Content

Based Copy Detection [3]. In CIVR2007, an organisation is held to explore and

compare different ways for dealing with the copy detection challenge since grow-

ing amount of digital media brings search of copies to a new critical issue. The

assumption in copy detection is that the videos are distorted due to digitisation,

encoding or transformations [22, 12].

Media tracking: Tracking a piece of media which is used in different times or

sources is important. For example, companies want to monitor TV commercials to

ensure that the commercials are broad-casted properly and to track competitor’s

commercials for planning their marketing strategies [11, 7]. Another example

is the tracking of news stories in a single channel. It is common for the news

channels to re-use the material as the related story develops by slightly editing

the videos by removing or adding material [34, 5]. In both cases, the repeated

video sequences may have slight variations due to editing.

Story tracking: It is common for the important events to be captured with

different cameras. In this case, although the event or more generally the story is

the same, the dotage’s may be different since the camera positions and parameters

may differ. Also, the footage may be edited differently to represent different

perspectives. Similarly, in some movies, such as “Run Lola Run” and “Groundhog

day” some portion of the story repeats several times with different footage. In
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these cases, both the lighting conditions and view point of the camera may change

resulting in large variations in the video sequences corresponding to the same

instance.

Common part of media tracking, story tracking and copy detection is that

all require finding similar parts in videos which can be considered as repeated

sequences. Most of the existing approaches firstly detect similar frames (near-

duplicates) in media data then find repeating sequences. Approaches, that use

near-duplicates, make use of a hard threshold to find similar frames. However,

finding a hard threshold that is applicable to all databases is almost impossible.

Also, those approaches discard temporal information of sequences.

Another problem in existing approaches is that most of them need a query.

However, query can not be supplied in most of the cases. For example, how can

we find the news in TV broadcast data which appears the most frequent? If we

need a query, we should find all news in broadcast and use each of them as a

query in one of the existing method. However, this approach is inefficient. But

if there exists any query free approach, we can find the most important news,

which is the one that is repeated more than others, by examining news repetition

counts.

Figure 1.1: An example sequence taken with different camera angles.

Another problem, which the existing approaches have difficulty in solving is

the variations in the sequences due to camera differences. While a repeated video

sequence is captured with the same single source in copy detection and media

tracking problems, resulting in almost identical duplicates, in story tracking there

are multiple sources causing largely varied sequences. For example, although two

sequences in Figure 1.1 corresponds to the same story, the frames inside the

stories are very different (another example can be seen in Figure 1.2). Therefore,

finding the similar frames for story tracking is more challenging and difficult to
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solve by using global features which are heavily experimented in finding similar

video frames for copy detection and media tracking.

Figure 1.2: Repeating sequences with large differences. These two sequences are
seen different since they are taken with different viewpoints. Our algorithm can
detect this sequence since our features are viewpoint independent.

A novel approach is required to overcome all these problems mentioned above.

It should make use of temporal order knowledge of sequences instead of using just

single frame similarities. It should be able to work without a query for media

and story tracking. It should also be able to handle differences due to viewpoint

and/or illumination changes. In this study, we propose an approach that has all

these capabilities.

1.2 Overview of Proposed Method

In this study, we propose a method to search for repeated video sequences using

the temporal characteristics of videos. The proposed solution does not require a

query and finds all sequences which are repeated more than once. It is invariant

to viewpoint and illumination changes since the frames are represented by salient

features together with global features. It does not put hard limit for finding

the near duplicates but instead use a list of candidate similar frames which are

then pruned using the temporal information. All these characteristics result in a

method that is applicable to all story tracking, media tracking and copy detection.

The proposed approach creates a tree for each frame in the video. A set of

similar frames are placed in different branches and a separate candidate sequence

is created for each branch. The temporal information is coded in creating the
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Figure 1.3: System Overview

paths from root to the leaves for each branch. The individual trees for each frame

are then pruned to obtain the frames which are part of real sequences. As seen

in Figure 1.3, the overall system is composed four steps :

• Similarity Set Construction

Frame Representation

Similar Frame Detection

• Sequence Detection

Tree Creation

Sequence Pruning

Frame Representation : Since the performance of finding similar video se-

quences highly depends on finding similar frames, a good representation of frames

is a crucial step in our approach. In this study, together with the colour features

which codes the global characteristics of the frames, we also make use of salient

points which are proven to be helpful in matching images under illumination and

viewpoint changes [42, 37, 24]. Details of this part can be found in Chapter 4.

Similar Frame Detection : A good representation is important to find

similar frames and this affects performance of finding similar video sequences. In

addition to a good representation, an efficient and effective similarity definition

is needed. By our similarity definition, we try to find a list of candidate similar

frames. This is done by locating a jump position on similarity values. These
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similarity values are linear combination of similarities that are calculated based

on colour features and features extracted from salient points.

Tree Creation : In our tree-based approach, each branch from root to

leaves corresponds to a sequence and root of tree corresponds to starting position

of the sequence. Since a repeated sequence can start at any frame in the video, a

separate tree is created for each frame in video. This makes our approach query

free. While creating trees, similar frames are placed to suitable nodes based on

some constraints that are described in Section 3.2. Also these constraints make

use of temporal order of videos. Detail of Tree Creation is given in Chapter 3.

Sequence Pruning : In our tree structure, each path from root to leaves

is considered as a sequence. However, because of insufficient similar sets, there

can be false alarms in these sequences. These false alarms are eliminated by a

pruning step which checks consistencies of sequences for consecutive frames and

applies a one-to-one check to find false alarms. As a result of this pruning step,

real sequences are detected. Details of these false alarms and elimination steps

can be found in Chapter 3.

The experiments are carried out on the movie “Run Lola Run”, “Groundhog

Day”, CIVR copy detection showcase data and on commercials of TRECVID

2004 data.

1.3 Organisation of the Thesis

Chapter 2 gives related studies about the subject, where the approaches are

explained in a comparative manner with the proposed method.

Chapter 3 of the thesis introduces tree based approach for sequence detection

that is main part of proposed approach. Tree Creation and Sequence Pruning are

discussed in this chapter.

Chapter 4 gives details about frames representations based on features and
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also overviews similar set construction methodology. Distance measures for fea-

tures are listed and discussed in the same chapter.

The experimental results are presented in Chapter 5.

Chapter 6 reviews the result of this thesis and outlines future research direc-

tions on this subject.



Chapter 2

Literature Overview

Recently, several approaches are proposed for finding similar video sequences due

to the requirement in this direction parallel to the growing amount of digital

videos. Most of these studies deal with copy detection and media tracking and a

few of them deal with story tracking. In the following sections, we briefly discuss

these related studies.

2.1 Copy Detection

Most of the studies on copy detection focus on signal distortions. They do not

cope well with display formats. In addition to this, current studies make use of

similarities of single frames by discarding temporal information of videos. In this

section, details of current studies on copy detection are given.

Kim et. al [22] proposed an algorithm to detect copies of a video clip based

on sequence matching. They used both spatial and temporal similarities between

sequences. Spatial similarity is based on 2*2 grid intensity averages. Distance

among sequences are calculated by using intensity averages and temporal signa-

tures of sequences.

Similarity measure calculation can significantly affect copy detection results.

8
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Arun et. al. [12], compare several image distance measures, Histogram Intersec-

tion, Hausdroff Distance, Local Edge Descriptors and Invariant Moments in their

experiments. Their dataset contains exact copies and they propose that local

edge descriptors followed by the partial Hausdorff Distance gives the best result.

Julien et. al [20] use a voting function based on use of the signal description, the

contextual information and the combination of relevant labels. Instead of using

SIFT descriptors, they propose a new descriptors based on 4 different spatial

positions around interest points in 5 directions. 20-dimensional feature vector is

extracted for each keypoint that are extracted by Harris detector. Their approach

is more logical than using global features to detect sequences. Keypoints can give

more accurate results to describe an image compared to global features.

Ke et. al. [21] propose at method to find copyrighted images and detect

forged images. Their approach is based on locality-sensitive hashing [9, 15] and

distinctive local descriptors. Since global and local statistics suffer from trans-

formations, low recall and low precision, they used distinctive local descriptors.

They need to index all descriptors and Although they used PCA SIFT, 90 MB

memory space is needed to index 1 thousands if database contains more than

200 thousands then they need 18GB memory for indexing. This is not a feasible

memory for a system.

Most of the copy detection algorithms use string matching techniques as in

[10]. Guimares et. al. propose a method based on the fastest algorithm of exact

string matching, the Boyer-Moore-Hoorspool (BMH). They allow some small dif-

ferences between two correspondent frames by adding a threshold to BMH. Also

they modify shifts after a mismatch by allowing smaller distance to move the

query pattern to the next alignment verification. Their new algorithm is faster

than Longest Common Substring method but they are using some thresholds to

find similarities.



CHAPTER 2. LITERATURE OVERVIEW 10

2.2 Media Tracking

Media tracking is the problem of keeping track of particular video usage. For

example, detection and tracking commercials and/or tracking of news in different

channels. Media tracking can be challenging because of editing. This can change

number of frames and also orders in sequences. In this section, details of current

studies are given.

Arun et. al [11], propose a method for media tracking. They create an index

table by using keyframes colours and gradients. To search a media, they first

extract keyframes of segments in videos, encode these keyframes by using features

and find similars by using previously created index table. Duygulu et. al. [5]

track news events by finding the duplicate video sequences and identifying the

matching logos. They use both visual cues of keyframes and textual information

of shot transcriptions.

Gauch et. al. [8], uses repeated characteristics of commercials to detect and

track commercials in videos. As a first step, they extract extract shot boundaries,

fades, cuts and dissolves by using RGB colour histograms and some thresholds

to find temporal video segmentation. After this step, they use a hash table based

on colour moments for frames. They detect sequences by using this hash table

and voting scheme. They apply a filtering based on number of frames, relative

lengths of shots and mean colour moment of each shot. By using video sequence

classification, they can classify sequences as commercial or non-commercials.

Naturel et. al. [39] propose a method based on signatures generated from

DCT of frames and hashing. First of all, shots are extracted from videos. For

each shot a signature is calculated based on frames in that shot using DCT

coefficients of frames. A hash table is created based on these signatures and used

to find repeated sequences. For a query signature, all candidate shots are found

in the hash table and a similarity value is calculated between candidate shot and

query shot. Then sequence is detected based on this distance and a threshold

value.
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In [53], Zhao et. al. proposes a method to find near-duplicate keyframes

based on local interest points (LIP) and PCA-SIFT. Local interest points makes

proposed approach robust to affine transformations. Also by PCA-SIFT features

vectors are less dimensional and this makes ranking more efficient. They used

one-to-one symmetric (OOS) matching to find rankings. OOS matching rustle up

the matching to be more effective since a LIP match can be a real match if it is the

nearest neighbour in for both LIPs. They only find near duplicates and does not

extend this approach to find sequences. In [40], Ngo et. al. proposes a very similar

method again based on OOS matching, and LIP IS indexing structure. Also

they used transitivity property of near duplicate keyframes are used for effective

detection. This transitivity property is a simple method as if A is similar to B

and B is similar to C, then A is similar to C. Their method is based on thresholds

and applied to single keyframes. This approach can be problematic while dealing

with sequences in case of missing and edited frames.

LIP and PCA SIFT approach and other features such as wavelet texture,

colour moments are compared in [6] by Jiang et. al. They state that LIP based

features are effective for semantic detection and video retrieval and complemen-

tary to traditional colour/textures features. Also their experiments give better

results when combination of LIP, colour moment and wavelet features are used.

Sivic et. al. in [47], propose a method for object and scene retrieval, that

finds all occurrences of a user outlined object in a video. They use affine co-

variant regions and SIFT descriptors to identify objects. A visual vocabulary is

created using k-means. Term Frequency Inverse Term Frequency (tfidf) vector

is calculated for user outlined objects by using a visual vocabulary. At retrieval

stage, frames are ranked by using normalised scalar product of tfidf vectors.

Results of visual vocabulary based methods can change easily by using dif-

ferent approaches to create visual vocabulary. These changes are examined in

depth [42]. They compare Bag-of-Features approach for classification. Classifi-

cation result can change depending on sampling strategy for keypoint detectors,

visual vocabulary size and method used to define images based on visual vocabu-

laries. Although, they report that random sampling gives better results for their
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classification results, we use affine co-variant regions since they are more useful

and effective in our case.

Visual vocabulary technique is very effective but it does not use colour infor-

mation and spatial layout of features. Lazebnik et. al. [26] propose a method

to recognise scene categories based on global geometric correspondence. They

repeatedly subdivide the image and compute histograms of local features. This

method is not robust against geometric changes since it compares histograms of

by one-to-one correspondence and subdividing image avert features to be robust

against geometric changes.

Graph based approaches are widely used for image matching. Jiang et. al.

[18], propose a graph based method for image matching. They divide each image

into parts and a create a bipartite graph among two images. Similarity measure

between two parts of different image is calculated by histogram intersection. If

this similarity value is greater than a threshold value, an edge is created between

these two parts with a weight equal to similarity value. Graph based similarity

value is the sum of weights of edges in graph. Also they used Gaussian-like

function to take spatial information into account. Resulting similarity value is

mean of these two similarity values. Their approach is not robust to zoom-in

zoom-out or transformations since they used parts of images separately.

Another usage of graph based method is clip retrieval. Peng et. al. [45, 43]

propose a method maximal and optimal matching in graph theory [51, 33, 30]

for matching, ranking and retrieval of video clips. They used visual similarity,

granularity, interference factor and temporal order of shots to find video clips.

They try their approach on a dataset containing 190 minutes video clips and it

is not clear how their approach behaves if there are missing or additional frames

in video clips. Additional or missing frames can affect interference factor too

much. This can result in ignoring similar video clips. Also Peng et. al [44]

used same approach for audio clip retrieval. Instead of using visual similarity,

acoustical similarity (MFCC) is used. Same deficiencies occurs for this approach

too. Audio clips are so short and missing or additional parts in clips can be

problematic in retrieval.
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2.3 Story Tracking

Story talking is the problem of tracking same topic that is taken with different

camera positions and/or in different time. There is a few number of studies on

story tracking and all these studies are based on textual information. In this

section, details of these studies are given.

Yang et. al. [52], proposed a method to detect near duplicate of text docu-

ments. They used instance level constrained clustering based on constraints such

as, must-link, semi-link, family-link since Bag-of-words and fingerprint are not

sufficient for near duplicates. SHA1 is used to find exact copies, all document

is considered as a string and according to hash function similar documents are

found. Copy that has more number of references is considered as a reference

copy. In this approach, if a false reference exists in the database more than real

reference then real reference can not be found.

Ide et. al. [14] propose a topic tracking method based on textual information

extracted from news videos. According to sentences in text, similarities between

news are found based cosine measure between the keyword vectors. Based on

some threshold values, a hierchical tree is created. In this tree, relations and

timestamps of news are considered. Topics can be tracked based on this hierchical

tree.

2.3.1 Text Applications

In text applications, the similar problems (copy detection and plagiarism) exist.

There are more studies on these subjects compared to copy detection, media

tracking and story tracking studies on videos. In order to give a brief information

about these studies, we will give studies on text applications.

Chowdhury et al. [2] proposes an algorithm, I-Match, to find a solution to text

similarity. Instead of relying on strict parsing, I-Match makes use of collection

statistics to identify which terms should be used for comparison. An inverse
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document frequency (idf) weight is determined for each term. The idf for each

term is defined by a logarithmic function of N and n, where N is the number

of documents in the collection and n is the number of documents containing

the given term. The usefulness of terms for duplicate detection is found by

using idf collection statistics. I-Match hinges on the premise that removal of very

infrequent terms or very common terms results in good document representations

for identifying duplicates.

Hoad et. al. [13] propose a method to identify documents that originate

from same source by synthesing many variants of fingerprinting into a common

framework. In the proposed method, ranking is extended by developing a new

identity measure, and explore variants of the ngerprinting method. Their identity

measure is based on the occurrences of similar words in documents. These oc-

currence numbers should be similar in similar documents. Documents with this

property will have higher rankings while different number of word occurrences

are penalised.



Chapter 3

Sequence Detection

Repeated sequence detection is a challenging issue that can be applied to copy

detection, media tracking and story tracking. Most of the existing approaches on

these approaches discard temporal order of videos, use near-duplicate frames and

require a query.

In the following, details of sequence detection is given assuming that for each

frame, the similar sets are provided as described in Section 4.3.

Unless otherwise stated, distances are based on chronological order of frames

for following subsections. For example, if a frame is shown at time 10 and second

one is shown at 20 then distance will be 10 seconds.

3.1 Problem Definition

Our goal is to find repeated sequences. We have a media and a part of this is

repeated in the same media. We need to find that repeated part first then we

can locate its repetitions. If we consider media as a string, each sub-string with

different lenghts can be a repeated part candidate. So that, sub-string matching

technique should be applied to all sub-strings to find their repetitions if exist.

15
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Let’s discuss how we can find these in a simple way. The simplest way is

using a string matching technique. In string matching, we first compare the first

character of query string with the first character of target string (Figure 3.1(a)).

If they do not match, second character of target string is compared with first

character of query string (Figure 3.1(b)). This comparison is done up to a match

is found (Figure 3.1(c)). When this match is found, consecutive characters in

query string and target string are compared (Figure 3.1(d) 3.1(e) 3.1(f)). If all

these characters match, we can conclude that target string contains a match.

How can we adapt this solution to our problem? Assume that our media

is a sequence of frames as { f1, f2 . . . fn} and a subset of this media Si={fi

. . . fi+m} is its repetition. In a simple way, we can use a sub-string matching

technique to find this repetition. At the beginning, we try to find a similar frame

of fi in the media. If fk is similar to fi then we check similarities of consecutive

frames in the sequence and media. If frames {fi+1 . . . fi+m} are similar to the

frames {fk+1 . . . fk+m−1} respectively, then we can conclude that {fi . . . fi+m}

is a repeated sequence of {fk . . . fk+m}. This is the simplest algorithm to find

repeated sequence and summarised in Algortihm 1.

Algorithm 1 Rabin Karp string search algorithm [50].

procedure NaiveSearch(str[1 . . . n], sub[l . . . l + m])

1: for i from 1 to n do
2: for j from 1 to m do
3: if str[i + j − 1] is not equal to sub[j] then
4: jump to next iteration of outer loop
5: end if
6: end for
7: return i

8: end for
9: return not found

In Algorithm 1, str[1 . . . n] is the original string where sub-string is searched

on and sub[l . . . l + m] is sub-string to search. (m ≺ n)

Algorithm 1 can work for some cases but it is not efficient since first frame

of Si (sub[1]), is compared with almost all media. This significantly slows down

the procedure. Another drawback of Algorithm 1 is that it needs a query part,
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Substring matching algorithm demonstration.
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sub[l . . . l + m]. We want to propose a query free method so that sub-string part,

Si={fi . . . fi+m} mentioned above, will be all subsets of real media with different

lengths and different starting positions. Then if we want to apply string matching

method without a query, Algorithm 1 should be extended to Algorithm 2.

Algorithm 2 A query free method to find repeating sequences by using string
matching.

procedure SequenceF inder(media = f1 . . . fn)

1: for start from 1 to n do
2: for len from 1 to n-start do
3: NaiveSearch(media[1, n], media[start, start + len])
4: end for
5: end for

In Algorithm 2, media is the media that is searched for repeating sequences.

start and end are starting position and length of sub-string to be searched, re-

spectively.

Algorithm 2 has three main drawbacks. The first one is that each frame should

be considered as a starting position. Second one is that each length should be

considered. These two drawbacks make string matching too complex to apply

our problem. In our approach, we propose a solution to these problems by using

a tree-based approach which codes both the similarity and order information to

enhance simple string matching idea as seen in Figure 3.2. In our tree-based

approach, a tree is constructed for each frame in the media. Each level in these

trees is created by using similarity information and this limits number of starting

positions. Also, levels from root to leaf node are created by using temporal

orders and this enhance string matching algorithm by limiting number of possible

lengths. The last drawback of string matching is that in string matching there is

an exact definition for similarity. However, in our case, there is no exact similarity

definition. We also propose a solution for similarity definition of frames. New

string matching algorithm adapted to our problem is given in Figure 3.

In Algorithm 3, fcurrent is the current frame in media to be considered as

a start position of a sequence. sfcurrent is the frames in similar list of fcurrent.

sfcurrent+len is the end position of sequence. Although Algorithm 3 has the same
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similarity

Temporal

order f1

f51 . . . . . . f91 . . . . . . f201

f40 f50 f60 . . . f70 f90 f100 . . . f190 f200 f203

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

Figure 3.2: Tree structure created by our system.

complexity with Algorithm 2, second and fifth lines of Algorithm 3 reduces time

complexity significantly. Second line reduce number of start positions and fifth

line reduces possible substring lengths to search.

The proposed approach does not require any query sequence to be given,

and finds all repeating sequences automatically. This is performed by building

a separate tree for each frame fi in the video to find the candidate repeating

sequences for a sequence starting from frame fi. By this way, we do not need

to try all subsets of media as a repeated sequence candidate. In our tree based

approach, each path from root to leaf is considered as a sequence candidate. If a

frame does not belong to a repeating sequence, then no candidate sequences will

be produced by the tree and the frame will be marked as a non-sequence frame.

Otherwise, the candidate sequences will further be examined in the pruning step

to check whether the sequence is also approved with the sequences produced by

the neighbouring frames.

In the following, assuming that the similarity of frames are given, we will

present our tree based approach to find candidate sequences and our pruning

strategy to find final sequences.
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Algorithm 3 Enhanced substring matching algorithm.

procedure SequenceF inder(media = f1 . . . fn)

1: for each frame fcurrent in media do
2: if fcurrent has similar frames then
3: for each similar frame sfcurrent in similars(fcurrent) do
4: for len from 1 to n-sfcurrent do
5: if sfcurrent+len satisfy temporal order then
6: NaiveSearch(media[1, n], media[sfcurrent, sfcurrent+len])
7: else
8: break
9: end if

10: end for
11: end for
12: end if
13: end for

3.2 Tree Creation

The main idea of our method is that the frames of a sequence are repeated with

similar periods. That is, if ith frame of a sequence repeats with period T then,

(i+1)th frame of the sequence should also repeats with the same period T . That

is, if a sequence is represented by a list of frames as Si = {f1, f2, ..., fn}, then

the repetition of that sequence after T frames should be represented by a list of

frames as Sj = {fT+1, fT+2, ..., fT+n}. (Here fi corresponds to the ith frame in the

video). This means that if there are T frames between the first frame of sequence

Si and first frame of sequence Sj, than a similar distance should appear for all

the other frames of the sequences. We consider each frame in media as a possible

starting position of a sequence. We place first frame of possible sequence to the

root of tree. Then all similar frames of this frame are placed to first level. By

this way, each similar frame creates a new branch. These branches are considered

as sequence candidates at the end of tree creation.

For example, the two sequences given in Figure 3.3 are ideal case repeating

sequences with T=100. There is no missing frames or order change. Assume we

have only these sequences and all frames except frames in these sequences are

black frames. In such a case, the similarity of frames will be as in Figure 3.4.
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Figure 3.3: An example sequence from TRECVID dataset. First row represents
real sequence Si and second row represents repeating sequence Sj. Numeric values
under frames are frames numbers in time domain.

Our tree based approach will create a separate tree for each frame in the list.

Let’s consider the creation of tree for frame f1. Our tree based approach gets

f1 and its list of similar frames first, which is f101. Then places f1 to root and

f101(f1) (f101(f1) corresponds to frame f101 coming from similar set of f1) to first

level, assuming that f1 is first frame of Si and f101 is the first frame of Sj. A tree

branch is created as seen in Figure 3.5(a).

f1 → f101

f2 → f102

f3 → f103

f4 → f104

f5 → f105

Figure 3.4: Ranking sample for a simple set given in Figure 3.3.

Then list of similar frames for the next frame, f2, is taken. Our tree based

approach assumes that f2 is second frame of Si and second frame of Sj must be

present in similar set of f2. In this case, f2 has one similar frame, f102, so that

f102(f2) is placed to tree as seen in Figure 3.5(b).

By the same assumption, third frame of Si, f3, must be similar to third frame

of Sj, f103. In our case, this assumption holds and f103 is in the similar set for f3.

So that, f103(f3) is placed as a child to f102(f2) and resulting tree can be seen in

Figure 3.5(c).

Tree is basically created by inserting rankings of fi+n to the level n of tree of

fi and a resulting tree is created from rankings given in Figure 3.5(d).
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f1

f101(f1)

(a)

f1

f101(f1)

f102(f2)

(b)

f1

f101(f1)

f102(f2)

f103(f3)

(c)

f1

f101(f1)

f102(f2)

f103(f3)

f104(f4)

f105(f5)

(d)

Figure 3.5: Tree construction examples based on similar frames given in Figure 3.4
(f101(f1) corresponds to frame f101 coming from similar set of f1).
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If we sum up, resulting algorithm can be given as in Algortihm 4.

Algorithm 4 Algorithm for creating trees.

procedure TreeCreation()

1: for each frame fi in media do
2: tree.setRoot(fi)
3: fcurrent ← fi

4: while stop criteria is not satisfied do
5: fcurrent ← getNextFrameOf(fcurrent)
6: for each similar frame sfcurrent in similars(fcurrent) do
7: addToSuitableParents(sfcurrent, root)
8: end for
9: end while

10: end for

In Algorithm 4, fcurrent is the current frame, similars(fcurrent) is the similar

frames for a frame fcurrent. tree corresponds to tree that is created for current

frame fi. sfcurrents are the frames in the similar set of fcurrent.

A separate tree is needed to be created for each frame fi to check consistencies

of sequences and also to make our approach query free since a repeated sequence

can start at any position. At the beginning, fi (frame for which tree is created)

is placed to root. Then similar frames for fi is taken. In our approach, addition

to root and other nodes are considered different. Only frames that are similar

to root frame (fi in this case) are added to first level (children of root). But in

inner nodes, a new child can be added to any place if constraints, described in

following sections, are satisfied. So that, similar frames of fi are inserted as first

level by tree.createF irstLevel().

Root of tree and first level are created. After these, tree is created by inserting

new frames coming from similar sets of consecutive frames of root frame, fi. In

the first step, similar set of next frame of fi is taken. Each frame in similar set is

considered as a new node candidate and current tree is traversed to find a parent

(or parents) for this new node candidate. By the same way, similar frames of fi+n

are tried to be placed to the nth level of the tree.

Up to now, we have considered that sequences are repeated with exact periods,

T, and next frame for current frame fi is considered as fi+1. However, in real
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cases, sequences are not repeated with exact periods because of broadcast, shot

boundary detection method or editing. That is why, vicinage should be considered

while taking next frame of current frame. Reasons of and solution to this problem

will be discussed in the next section.

3.2.1 Period Constraint

One of the problems in sequence detection is related with sequence lengths and or-

ders of frames in sequences. An example of this problem can be seen in Figure 3.6.

In this example, frames are different in original sequence and its repetition be-

cause of shot boundary detection method and/or editing. In order to overcome

this problem, we modify our simplest tree based approach given in Algorithm 4

as will be explained in the following.

Figure 3.6: An example of unequal Period Constraint from TRECVID dataset.
First row represents real sequence and second row represents repeating sequence.
Numbers below frames are frames numbers in time domain. Although first frame
in first row satisfies Period Constraint with 511 frames, last frame in the same
row satisfies with 510 frames.

Time period, T , mentioned before, is valid for perfect cases. However, due to

missing or additional frames, and since the order of frames may slightly change

from one sequence to another, the strict period T between frames of Si and Sj

is not satisfied in real situations. Instead, we modify the constraint by adding

a neighbourhood information. We assume that two similar frames could be the

corresponding frames in the repeating sequences if they are placed with distances

T±δ where δ is a small number (see Figure 3.6). We call this Period Constraint.

This constraint mainly states that frames of Sj must be repeated with a difference

of T ± δ with the corresponding frames in Si.



CHAPTER 3. SEQUENCE DETECTION 25

Figure 3.7: An example sequence which repetitions of sequences are different from
TRECVID dataset. First row represents real sequence and second and third row
represent repeating sequences. Numbers below frames are frames numbers in
time domain.

Let’s again work on an example. In Figure 3.7, there is one more sequence Sk

in addition to sequences Si and Sj in Figure 3.3. We can see severity of Period

Constraint in these sequences. Most probably rankings for these 15 frames will

be like in Figure 3.8.

f1 → f101, f201

f2 → f102, f202

f3 → f103, f203

f4 → f104, f205

f5 → f105, f204

Figure 3.8: Ranking sample for a simple set given in Figure 3.7.

For all three sequences, repetition period, T , is same up to fourth frame. So

that tree is created in same way by one difference, this time our tree has two

branches. We obtain a tree as seen in Figure 3.9(a).

However, when we check similar frames of f4, we see that repetition period,

T , is not valid for f205. But as stated before in this section, we extend T value

to T ± δ to tolerate this kind of inconsistencies. The most important criteria to

add a new node to tree is to find a node that satisfy Period Constraint. In

current tree, node f203(f3) satisfy constraint for f205 and f205(f4) is added to tree.

After that f204(f5) is added in same way and resulting tree becomes as seen in

Figure 3.9(b).
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f1

f101(f1) f201(f1)

f102(f2) f202(f2)

f103(f3) f203(f3)

(a)

f1

f101(f1) f201(f1)

f102(f2) f202(f2)

f103(f3) f203(f3)

f104(f4) f205(f4)

f105(f5) f204(f5)

(b)

Figure 3.9: Tree construction examples using Period Constraint.
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Period Constraint is checked in addToSuitableParents (line 7 of Algo-

rithm 4). This procedure searches all current tree and new child candidate is

added to parents that satisfy Period Constraint. Algorithm for this procedure

is given in Algorithm 5.

Algorithm 5 Algorithm to find suitable parents for a new child candidate.

procedure addToSuitableParents(sfcurrent, curRoot)

1: dist = getDistance(curRoot, sfcurrent)
2: if dist is in range [±δ] then
3: candidateparent

4: end if
5: if curRoot has children then
6: for each childi of curRoot do
7: findSuitableParOf(sfcurrent, childi)
8: end for
9: end if

In Algorithm 5, root is root of tree, curRoot is current root while traversing

tree. dist corresponds to time distance between curRoot’s frame and sfcurrent.

addToSuitableParents is a recursive algorithm that traverse all tree to find

suitable parents for sfcurrent. For each node in the current tree, distance is cal-

culated between new child and current root node. If this distance value satisfies

Period Constraint, current root is considered as a candidate parent. A new

child node can be added to several places in the tree if they all satisfy Period

Constraint.

3.2.2 Self-Similarity Constraint

Period Constraint allows our tree-based approach to be flexible while placing

new nodes to tree by a period T. However, in some cases, frames in same sequence

can be similar to each other, as seen in Figure 3.10. This kind of self similarities

can result in dividing sequences into several parts. For this reason, we define

another constraint called Self-Similarity Constraint.

Self-Similarity Constraint is simply related with chronological distances
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between the frame for which the tree is created, fi and similar frame fj. If this

distance is smaller than a value γ, then this will be used as a clue to show that

similar frame fj is also in the same sequence. This is a crucial step to prevent

creating false sequences since there can be some sequences which frames in a

sequence are similar to each other. For example, some commercials can have

similar frames in the sequence as seen in Figure 3.10. If this constraint is not

satisfied, a real sequence can be divided into several repeated sequences according

to its length.

Figure 3.10: An example for Position Constraint from TRECVID dataset.
Frames in sequence are very similar to each other so that frames belonging to this
sequence will have higher ranking for each other and sequence will be divided to
several parts if Position Constraint is not regarded.

In Figure 3.10, it is obvious that 4th frame is similar to 6th frame and 5th frame

is similar to 7th frame in the sequence. So that, they exist in their similar sets

interchangeably. If we consider those frames as similar frames, we end up divided

sequences. Our tree-based approach overcomes this problem by Self-Similarity

Constraint.

TreeCreation routine (Algorithm 4)is modified to consider Self-Similarity

Constraint as in Algorithm 6. At this routine, distance between new child

candidate and root frame is calculated. If this distance does not satisfy Self-

Similarity Constraint, tree is not traversed to find suitable parents for new

child candidate.

In Algorithm 6, dist is the distance between current root and sfcurrent. Other

parameters are same with Algorithm 4.

Algorithm 6 differs from Algortihm 4 in lines [7,8]. This part checks Self

Similarity Constraint. At the beginning of traversal, distance between sfcurrent

and root of tree is calculated. If this distance is in the range of ±γ, then new

child candidate is considered in the same sequence with root frame. As a result

of this, tree is not traversed to place sfcurrent to the current tree.
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Algorithm 6 Algorithm for creating trees.

procedure TreeCreation()

1: for each frame fi in media do
2: tree.setRoot(fi)
3: fcurrent ← fi

4: while stop criteria is not satisfied do
5: fcurrent ← getNextFrameOf(fcurrent)
6: for each similar frame sfcurrent in similars(fcurrent) do
7: dist = getDistance(root, sfcurrent)
8: if dist is not in the range [−γ, γ] then
9: addToSuitableParents(sfcurrent, root)

10: end if
11: end for
12: end while
13: end for

3.2.3 Closest Parent Constraint

Up to now, we eliminate some similar frames by Self-Similarity Constraint and

find suitable nodes for new child by traversing current tree under Period Con-

straint. However, there can be several nodes that satisfy Period Constraint. If

new child is added to all these nodes, tree starts to grow exponentially after a cer-

tain point and it is almost impossible to handle such a tree. So that, some parent

candidates should be eliminated although they satisfy Period Constraint.

While placing new child to tree, we mainly consider not to break sequences and

also we consider tree size, so that new child should be added to the most closest

parent(s). For example; we have a tree given in Figure 3.11(a) and new child

candidate is f104. If current tree (Figure 3.11(a)) is traversed under previously

defined constraints, f107(f2) f101(f1) and f99(f1) are considered as new parents.

However, distance between f99(f1) and f104(f3) is greater than others. So that,

f104(f3) should be added to f101(f1) and f107(f2) to satisfy sequence integrity. As

a result of this, new tree becomes as seen in Figure 3.11(b).

As a next step suppose that we need to add f103(f4). Nodes f101(f1), f107(f2)

and both of f104(f3)s satisfy Period Constraint in current tree. In our approach,

a node can be added to many places but if a new node is added to many places by
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f1

f101(f1) f201(f1) f99(f1)

f107(f2) f204(f2)

(a)

f1

f101(f1) f201(f1) f99(f1)

f107(f2) f104(f3) f204(f2)

f104(f3)

(b)

f1

f101(f1) f201(f1) f99(f1)

f107(f2) f104(f3) f204(f2)

f104(f3) f103(f4)

f103(f4)

(c)

Figure 3.11: Tree construction examples for Closest-Parent Constraint.
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just Period Constraint then tree start to grow exponentially and it is impossible

to handle. In above tree, f103(f4) must be only added to nodes f104(f3) to satisfy

sequence integrity under another constraint Closest Parent Constraint.

We need to consider to reduce gaps in sequences while adding new nodes to

tree and also sequences should not be divided into pieces and integrity should

be concerned. Closest Parent Constraint mainly deals with finding closest

parent to a new child in terms of time distance. There is no threshold for this

constraint, instead of that, we search for the closest parent.

If the above three constraints are satisfied for any node in the tree, we consider

this node as a parent node. By this approach, we allow to add new nodes to

multiple positions. Also this multiple addition helps our method to overcome

missing or edited frames in sequences.

The addToSuitableParents routine is modified to check the Closest Parent

Constraint as given in Algorithm 7.

Algorithm 7 Algorithm to find suitable parents for a new child candidate with
all constraints.
procedure addToSuitableParents(sfcurrent, curRoot)

1: dist = getDistance(curRoot, sfcurrent)
2: if dist is in range [±δ] then
3: if dist == minDist then
4: additional candidate parent

5: else if dist < minDist then
6: minDist← dist

7: new candidate parent

8: end if
9: end if

10: if curRoot has children then
11: for each childi of curRoot do
12: findSuitableParOf(sfcurrent, childi)
13: end for
14: end if

Note that, in addition to variables used in In Algorithm 5, curRoot is current

root while traversing tree. root is root of current tree. dist is the distance between

current root and new child candidate.
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minDist stores smallest distance between new child candidate and all nodes

in tree.

Closest Parent Candidate is checked in lines [10,16] of Algorithm 7. At the

beginning, distance between current root and new child candidate is compared

with minDist. If they are equal then we conclude that current root is a parent

candidate in addition to previously found ones. If dist is smaller than minDist

then previously found parent candidates are discarded and current root is consid-

ered the only parent candidate since current root is closer than previously found

ones. This helps to satisfy integrity of sequences in addition to reducing number

of sequence candidates produced by trees.

3.2.4 Stopping Criteria

If we sum up all the steps described above, the tree is constructed for frame fi as

follows. First, the frame fi is placed as the root node (level 0). The nodes in the

first level corresponds to the frames which are similar to frame fi. Then, for each

node in the first level, the corresponding children nodes are constructed in the

second level, for the frames which are similar to the (i+2)th frame and appearing

within a distance δ from their parents. In general, the (n + 1)th level of the tree

is constructed such that the nodes in that level corresponds to the frames which

are similar to the (i+n)th frame in the sequence and placed with distance δ from

the frames in their parent nodes. Each path from root to leaf node is considered

as a sequence candidate.

In some level n, we may not be able to insert nodes to some paths since the

constraints are not satisfied. However, that does not disallow adding new nodes

in the next levels. This approach is important for dealing with missing frames.

Here the choice of δ is important since large values corresponds to allowing large

gaps which usually does not happen in sequences, and small numbers cannot deal

with small number of missing frames.

This tree based approach described above has two problems. First of all, if
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f1 → f101, f266, f201, f250, f301, f55, f104

f2 → f102, f202, f302, f56, f104, f252, f58

f3 → f204, f303, f254, f264, f252

f4 → f262, f90, f278, f304, f206, f104

f5 → f15, f105, f205, f76, f305, f58

f6 → f15, f207, f306, f120, f600

f7 → f307, f25, f107, f400, f209, f352

f1

f101(f1) f266(f1) f201(f1) f250(f1) f301(f1) f55(f1) f104(f1)

f102(f2) f104(f2) f202(f2) f252(f2) f302(f2) f56(f2) f58(f2)

f264(f3) f204(f3) f254(f3) f303(f3)

f104(f4) f262(f4) f206(f4) f304(f4)

f105(f5) f105(f5) f205(f5) f205(f5) f305(f5) f58(f5) f105(f5)

f207(f6) f306(f6)

f107(f7) f107(f7) f209(f7) f307(f7) f107(f7)

Figure 3.12: An example of tree creation. Above lines give ranking for consecutive
7 frames. In the tree representation, subscripts represents from which each image
is coming from.

the video has N frames then each frame will have N-1 similar images, listing all

the similar frames causes a huge tree which is impossible to handle. Even the

Period Constraint not sufficient to reduce the number of nodes, since for each

node it will limit the number of children nodes with only 2δ. In Section 4.3 we

discuss methods to limit the number of similar images differently for each frame.

The second problem is that, in the current form, there is no condition to stop

the tree for growing and therefore for each path in the order of N − i frames

should be investigated to be added for the ith frame in the video. However, note

that as mentioned above, for some levels it is possible not to add any node to

some paths since the similar frames do not satisfy the distance constraint. We
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use this fact and stop investigating the paths if for consecutive σ levels it is not

possible to add any new node to those paths. In the experiments we choose σ as

testing different values for detests.

The above steps are applied to each frame in the video, and for each frame

the paths with lengths more than η are selected as candidate sequences. These

candidate sequences are further pruned to see whether they are consistent with

the candidate sequences found for the neighbouring frames.

The approach is simulated on an example given in Figure 3.12. Here, assuming

that we have a sequence including the frames from f1 to f7, we would like to

find the candidate repeating sequences. The figure shows the tree construction

for frame f1. We assume that, it has a list of similar frames which are f101,

f266, f201, f301, f250, f55 and f104 in the ranked order. In the first level, these

similar frames to f1 are placed. Then, in the second level, we insert the similar

frames of f2 which is the second frame of original sequence. Similar frames of

f2 are f102, f202, f302 f56, f104, f252 and f58. Obeying the Period Constraint,

these frames can only be added as the children to the nodes in the first level

if they are in a δ neighbourhood. Here, if we choose δ as 7, all similar frames

of f2 passed Period Constraint test and one suitable parent is found for each

similar frame. This means that all constraints (Self-Similarity Constraint,

Period Constraint and Closest Parent Constraint) are satisfied. 2 child

nodes are added to f101(f1) and f55(f1). These 2 child adding process produces

2 branches for f101(f1) and f55(f1). In the next level, we consider rankings for

f3. All ranking frames passes Self-Similarity Constraint and f264(f3), f204(f3),

f303(f3), and f254(f3) are bind to tree since Period Constraint is satisfied and

Closest Parent Constraint is passed by only one node for each frame. In this

level, f252(f3) is not added since it is already added by previous frame in the

sequence. Addition of similar frames of f4 is same as f3. In this step, f104(f4)

is added by one missing level. This helps our system to tolerate missing frames

in sequences. f105(f5) and f205(f5) are added to multiple positions since both

positions satisfy Closest Parent Constraint with same distance. Same as f4,

f105(f5) is added as a second level to f104(f1). When ranking for f6 is traced,

f600 and f120 can not satisfy Period Constraint for current tree. Also f15 can
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not satisfy Self-Similarity Constraint. So that only f207(f6) and f306(f6) are

added to tree by satisfying all tree constraints. f207(f6) is added to an inner node,

this means that most probably f205(f5) is a false ranking for f5 or sequence order

is changed in repetition. For the last frame f7 of sequence, f25 can not be added

because of Self-Similarity Constraint and f400 and f352 can not be added to

tree since they can not pass Period Constraint. As a result of this tree creation

simulation, following sequence candidates are found :

f101, f102, f104, f105, f107

f101, f104, f105, ff107

f266, f264, f262

f201, f202, f204, f205

f201, f202, f204, f206, f205

f201, f202, f204, f206, f207, f209

f301, f302, f303, f304, f305, f306, f307

f250, f252, f254

f55, f56, f58

f104, f105, f107

Since we do not consider sequences shorter than η (η=2) as a sequence [f55, f58]

is not a sequence candidate in our system. Real sequences are detected after

pruning step if any exist. If a real sequence is found by pruning step, sequence

from f1 to f7 is considered as an original sequence since we start with f1 to create

our tree and last frame that adds new node to our tree is f7.

3.3 Pruning Sequences

We consider each path from root to leaf as a candidate sequence. However, in the

set of candidate sequences, there are also many false alarms which are needed to

be eliminated.

There are two types of false alarms. First type is the ones which are actually

sub-sequences of a longer sequence. This type of false alarms occur since for a

sequence with length L, there are L-2 sub-sequences with starting and ending
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f1 → f101, f102, f103, f104, f105

f1 → f251, f252, f253, f254, f255

f2 → f102, f103, f104, f105

f3 → f103, f104, f105

Figure 3.13: Tree results for consecutive 3 frames.

frames [i, (i + L)], [(i + 1), (i + L)], . . . , [(i + L− 2), (i + L)] if we let all sequences

with length greater than 3 to be candidate sequences.

Second type of false alarms are the ones that are not actually sequences but de-

cided as sequences. Since our definition of repeating sequences requires similarity

of consecutive frames, because of the insufficiency of the feature representations,

two sequences may be very similar when the visual features are considered but

actually may not even be sequences by themselves.

These two type of false alarms require different solutions. For the first type, we

track sequence candidates for consecutive frames and try to find sequence’s actual

starting and ending positions. If candidate sequence is not repeated inside the

other sequences found for the neighbouring frames, then that candidate sequence

is labelled as a false alarm. Among the candidate sequences which repeat in the

other sub-sequences the longest one with the farthest starting and ending points

are taken as the final sequence, and the others are eliminated.

In Figure 3.13, there are tree results for consecutive 3 frames. Two se-

quence candidates are created for f1 and one sequence candidates for f2 and

f3. From this example, we can see that sub-sequences of first sequence can-

didate, {f101, . . . , f105}, is repeated for f2 and f3. So that, it is concluded that

{f101, . . . , f105} is not a first type of false alarm given above. But second sequence

candidate, {f251, . . . , f255}, is not repeated for other frames. That is why, it is

considered as a first type false alarm and removed from sequence candidate list.

To eliminate the second type of false alarms, which are more commonly en-

countered, we apply a one-to-one match constraint. We require that two se-

quences Si and Sj to be repeated sequences, both Sj should be found in the

candidate list of Si, and also Si should be found in the candidate list of Sj. Note
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{f1, f5}, {f101, f105}
{f101, f105}, {f1, f5}
{f201, f205}, {f1, f5}

Figure 3.14: Example sequence candidates coming from tree creation where first
type of false alarms are eliminated. First double represent start and end position
of original sequences. Second double represent start and end position of repeating
sequences.

that, since the similar sets are different for each frame, in the case of false alarms

it is unlikely to have the candidate sequences in both direction to be constructed.

As expected, one-to-one constraint largely reduces the number of false alarms.

There are 3 sequences doubles (original sequence and its repetition) in Fig-

ure 3.14. When we check first row, there are two sequences Si (original sequence)

that starts at f1 and ends at f5 and its repetition Sj that starts at f101 and ends at

f105. In this case, according to our one-to-one match approach, we expect to find

another sequence double which original sequence is Sj and its repetition is Si as

second row of Figure 3.14. We conclude that first two rows are correct sequences.

When last row, {f201, f205}, {f1, f5}, is checked, we see that its repetition, {f1, f5},

does not have a repetition as {f201, f205}. So that, {f201, f205}, {f1, f5} is decided

as a second type false alarm.

False alarms need different solutions. We propose a two pass algorithm to

eliminate first type of false alarms. In the first pass, we get all sequence candi-

dates coming from treeCreation process and find consistent sequences, that are

repetitive for consecutive frames. First pass is done by Algortihm 8.

In Algorithm 8, AllT rees corresponds to trees created by createTree routine.

treei is element of AllT rees and sequenceCandidatej is a path from leaf to node in

one tree. sequenceCandidatej+k represents sub-sequence of sequenceCandidatej

starting at k.

SequenceF inder routine gets all trees created by createTree routine. Then

for each tree, each sequenceCandidate is checked whether it exists in trees of

consecutive frames. A consistent sequence must occur in all these trees with some
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Algorithm 8 Algorithm for finding sequence candidates from created trees.

procedure SequenceF inder()

1: AllT rees = all trees are created by createTree routine
2: for each treei AllT ree do
3: for each sequenceCandidatej in treei do
4: for k in range [1, length(sequenceCandidatej)] do
5: if sequenceCandidatej + k does not exist in treei+k then
6: break;
7: end if
8: end for
9: if k < length(sequenceCandidatej) then

10: not a sequence candidate

11: else
12: a sequence candidate

13: end if
14: end for
15: end for

frame order change. Our assumption on this point is that, we have sequence Si

starting at frame fi and repeated at fj as Sj. Sj must occur in tree created for fi

and sub-sequence of Sj must exist in tree created for fi+1. By this assumption, we

eliminate sequence candidates as follows. For example, if treei contains a sequence

candidate sequenceCandidatej , then treei+k must contain a sequence candidate

sequenceCandidatej +k that is a sub-sequence of sequenceCandidatej . However,

because of missing or additional frames, it is possible that treei+k does not contain

any sub-sequence of sequenceCandidatej. In this case, trees up to treei+k+β are

searched for same sub-sequence of sequenceCandidatej , sequenceCandidatej +k.

β value is limited by sequence length since in long sequences can have more

missing frames than shorter sequences.

A real sequence can exist with different orders in sequence candidates since

in our tree approach, a node can be added to multiple positions. This results

in multiple repetitions of same sequence at the end of SequenceF inder routine

with different orders. In fact, this routine eliminates first type of false alarm.

Actual start and end location of sequences are found by analysing these repeated

sequences.



CHAPTER 3. SEQUENCE DETECTION 39

Up to this end, we eliminate first kind of false alarms. However we have 2

types of false alarms. Also sequences resulting from Algorithm 8 can be divided

versions of real sequences. For these reasons PruneSequences has mainly two

functionalities :

• Merging divided sequences

• Eliminating second type of false alarms

Merging divided sequences : Real long sequences can be divided into

smaller parts because of missing frames or insufficient ranking results. These

are not considered as false alarms by our system but we combine these divided

sequences into one long sequence. First of all, we get all sequences coming from

SequenceF inder routine. For each sequence sequencei we compare start and end

position of other sequences to find any sequence that has an intersection with

sequencei in time domain. If we find a sequencej that has an intersection with

sequencei than we update start and end time of sequencei and remove sequencej

from sequence list. As a result of this, we obtain merged sequences.

Eliminating second type of false alarms : As stated in Section 3.3, we

have two types false alarms.After merging divided sequences, we can eliminate

second type of false alarms. Second type is eliminated by one-to-one match in

PruneSequences routine. For each sequence, we have an original start stat and

end position orEnd and a repetition start repStart and end repEnd position. If

a sequence exists starting at orStartx and repeated at repStarty then another

sequence must be found starting at orStarty and repeated at repStartx. By this

assumption we search all sequences for each sequence and try to find a match. If a

match sequence sequencej is found for sequencei then we conclude that sequencei

is a real sequence. If no match exists sequencei is considered as a false alarm.

Above two functionalities are performed by PruneSequences algorithm given

in Algorithm 9.

In Algorithm 9, AllSequences corresponds to sequences coming from

SequenceF inder routine. sequencei and sequencej are sequences in AllSequence.
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Algorithm 9 Algorithm for pruning sequences.

procedure PruneSequences

1: AllSequences = all sequences coming from SequenceF inder routine
2: for each sequencei in AllSequences do
3: for each sequencej in AllSequences do
4: if intersectionof(sequencei, sequencej) ≥ 0 then
5: update sequencei

6: remove sequencej

7: end if
8: end for
9: end for

10: for each sequencei in AllSequences do
11: for each sequencej in AllSequences do
12: if sequencejrepStart

is in the range [sequenceiorStart
± β] AND

sequencejrepEnd
is in the range [sequenceiorEnd

± β] then
13: a real sequence

14: end if
15: end for
16: if No Match for sequencei then
17: not a real sequence

18: end if
19: end for
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Subscripts orStart, orEnd, repStart and repEnd are start and end position of

original sequence and repetitions, respectively.

PruneSequences algorithm gets output of SequenceF inder routine and

firstly, it merge divided sequence lines between 2 and 9. This is basically done by

comparing sequences intersections in time domain. Then these merged sequences

are further analysed for eliminating second type of false alarms (one-to-one check)

lines between 10 and 19. As a result of this algorithm, we obtain repeated se-

quences for given media.



Chapter 4

Frame Representations

Up to now, we assumed that the similar frames for a frame fi is given. However,

definition of frame-wise similarity is another problem in finding similar sequences.

In this chapter, we describe creation of these similar sets in three steps:

• Keyframe Selection

• Keyframe Representation

• Similar Frame Detection

The most challenging problem in sequence detection is changes in camera

positions or illumination. Especially in media tracking and story tracking, this

kind of problems occurs more often. This can be the result of either camera

position change or shot boundary detection as seen in Figure 4.1. This problem

can affect similarity results and therefore our tree based approach since precision

of our tree based approach depends on similarity results. This chapter introduces

generation of representations for frames in videos.

At the beginning, shot boundaries are extracted from videos, based on RGB

histograms and Canny Histograms. Then keypoint descriptors are extracted from

the most representative frame of each shot, keyframes. Those keypoint descriptors

42
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Figure 4.1: Repeating sequences with large differences. These two sequences are
so different since they are taken with different viewpoints. Our algorithm can
detect this sequence since our features are viewpoint independent.

are vector quantised by k-means and visual terms are created. Each keyframe is

defined as a combination of these visual terms. Representation of keyframes is

completed by HSV statistics extraction. These steps are defined in the following

sections in detail.

4.1 Keyframe Selection

Up to now, we have described our algorithm on frames of media. However, a

media is composed of shots and frames in each shot are similar to each other. That

is why, using representative frames of shots instead of all frames of shots improves

time complexity of our tree based approach without loosing any knowledge about

media.

Our method needs to detect shot boundaries to represent videos as efficient as

possible by using less number of keyframes. There are several approaches for shot

boundary detection. Koumaras et. al. [23] propose a method based on discrete

cosine transform. Liu et al. [29] propose a shot boundary detection method

based on temporal statistics using eigenspace updating method. In this method,

the histogram of the current frame is compared with eigenspace model learnt

from previous frames. Shot boundary is detected when model does not fit to the

current frame well. Jeong et. al. proposes a method based on frame differences

and histogram differences in [17]. In their approach, each frame is divided into

MxM grids and intensity difference of consecutive frames are calculated as the first



CHAPTER 4. FRAME REPRESENTATIONS 44

step. If this difference value is between two values based on two thresholds then

their histograms difference is calculated and shot boundary detection is detected

based on another threshold.

Although shot boundary detection can affect results of sequence detection

significantly, we decided to use a simple method based on RGB histogram differ-

ences and Canny Edge Histogram differences since our system does not depend

on keyframe extraction technique and can tolerate differences that are results of

keyframe extraction.

Our shot boundary detection algorithm starts with extracting RGB and

Canny histograms of first frame in the media. We extract histograms for consecu-

tive frames and find Euclidean Distance between consecutive frames histograms.

We obtain L2 distances based on histograms at the end of this function for con-

secutive frames.

The most important problem in keyframe extraction is locating correct shot

boundaries. Histogram differences in a shot must be small, in general case, by

the assumption that frames in a shot are almost identical. Then by the same

assumption, these differences must have a local maxima value on shot boundaries.

However, this assumption does not hold in all cases. In addition to that, finding

local maximas can give false alarms because in histogram differences, there can be

lots of local maximas in addition to shot boundaries. We need to eliminate some

local maxima points to obtain correct and sufficient shot boundaries. This can

be done by smoothing histogram differences. By smoothing, we can guarantee

that some small differences are eliminated and big differences corresponding to

shot boundaries becomes more obvious.

As mentioned above, histogram differences must be local maxima values.

These local maxima values can be extracted by finding jumps. After finding local

maxima points, we find shot boundaries by getting intersection of local maxima

points at RGB histogram differences and Canny Edge Histogram differences. By

this intersection, we extract points where both colour and edge of frames differs

in media. As a result, we obtain shot boundaries of the given video.
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Each shot contains different number of frames. There are lots of approaches

to choose a representative keyframe from frames of shots such as, mean frame,

last frame, first frame or median frame. We choose first frame of each shot as a

keyframe. Each shot is represented by one keyframe by shot boundary detection.

4.1.1 Keyframe Extraction

Each video contains almost 25-30 frames per second in general so that a one

hour long film contains more than 100,000 frames. This number can be feasible

for most of the applications but most of these keyframes are the same or very

similar. We can remove such frames without loosing any knowledge about general

structure of videos. Instead of using repetition of same frames several times, we

can discard these repetitions and use the one as a representative frame, keyframe,

among similar ones.

We need to find shot boundaries for keyframe extraction. There are several

approaches for shot boundary detection given in [17], [16], [29]. We use a similar

approach as used in [17] since none of the methods can give exact results for shot

boundary detection.

First step in keyframe extraction is finding shot boundaries. First frame or

last frame or median of all frames in a shot can be used as a keyframe for that

shot. We use first keyframe of each shot as a keyframe.

We try to use a method independent of thresholds. Our shot boundary de-

tection algorithm works based on colour and edge histogram differences. This is

a two-pass algorithm.

In the first pass, we calculate colour and edge histogram differences for con-

secutive frames. We know that at shot boundaries these difference values must

have higher values than surrounding differences, some kind of peaks. We use

both colour and edge histograms because using only one of them can give lots of

false alarms for shot boundaries. Common peak positions in difference values are

taken as shot boundaries but there are too many peak locations in raw difference



CHAPTER 4. FRAME REPRESENTATIONS 46

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6
x 10−3

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6
x 10−3

Figure 4.2: Canny Edge Histogram differences (above) for consecutive images
and its filtered version(below).
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Figure 4.3: Colour Histograms differences (above) for consecutive images and its
filtered version(below).
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values. We need to remove some small peaks without using a threshold value.

We decided to apply a smoothing filter to difference values. This helps us to

remove some small differences. Results of this filtering can be seen at Figure 4.2

and Figure 4.3. We can find peak positions, where difference values start to

decrease just after an increase, after these smoothing step. Common peak position

in edge and colour histograms are considered as shot boundaries as a result of

first pass.

In the second-pass, we extract keyframes according to shot boundaries. We

consider first frame of each shot as a keyframe.

4.2 Keyframe Representation

Recently, it has been shown that the viewpoint changes and transformations can

be successfully handled by use of salient points, key points. In this study, we

follow up the same approach and represent frames with salient points which are

robust to affine transformations, illumination changes and viewpoint changes.

4.2.1 Detection of Visual Points

Most well-known approaches to represent an image is using either local feature

or global features or both. However, some points in images are more robust to

scale and illumination changes. Hence, using descriptors of these points is more

meaningful to identify an image. These kind of local descriptors are mostly used

in object recognition, image matching and scene classification [47, 42, 37, 26].

Detection of local interest points recently attracts researchers attention [38,

36, 31, 27, 19]. Among these descriptors, we mainly focuses on Lowe’s Difference-

of-Gaussian (DoG) detector and Mikolajczyk’s Harris Affine detector.

Lowe followed four major stages in order to detect keypoints and generate
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descriptors [31]. These steps are :

• scale-space extrema detection,

• keypoint localisation

• orientation assignment

• keypoint descriptors extraction

In the first step, local maxima and minima points are extracted in different scales

by using Difference-of-Gaussian (DoG). These points are considered as keypoints

candidates. In second step, keypoints are selected based on measures of their sta-

bility and localised with a detailed model determining location and scale. Then,

an orientation is assigned to each keypoint based on gradient directions. Finally,

local image gradients are computed at specified scale and region around each

keypoint. This is used as keypoint descriptor referred as Scale Invariant Feature

Transform (SIFT).

Mikolajczyk et al. extended Harris-Laplace detector to deal with significant

affine transformations [36]. Harris multi-scale detector are used for detection of

keypoints, where an initial location and scale for the keypoint is assigned simul-

taneously. To obtain the shape adaptation matrix for each interest point, the

second moment descriptor is computed with automatically selected integration

and derivation scale, where integration scale is the extrema over scale of nor-

malised derivatives and derivation scale is the maximum of normalised isotropy.

Consequently, the points of an image that are invariant to affine transformations

are acquired.

We have used two types of regions, Shape Adapted regions and Maximally

Stable regions [47]. Shape adapted regions are extracted by elliptical curve adap-

tation and corresponds to corner like structures [1, 28, 35, 46]. Maximally Stable

regions are areas where the area is approximately stationary as the intensity

threshold is varied [32].
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We observe that both DoG and Harris Affine detector detects important parts

to describe an image. Figure 4.4, shows Lowe Sift Points and Harris Affine points

for same image.

In our study, we mainly used Harris Affine detector since it is proposed that

Harris Affine gives better result than DoG detector and also LoG is an approxi-

mation to DoG.

4.2.2 Description of Visual Points

In [37], it is claimed that SIFT based descriptors perform best compared to other

descriptors. SIFT based descriptors are extracted by first computing orientation

and magnitude around each interest point. then a 8 bin histogram is created

for 4X4 sub-region around interest point resulting a 128 dimensional vector for

descriptor. Figure 4.5 shows this creation process.

We also add 5 more dimension ,coming from affine transformation, to 128

dimensional descriptor vector and obtain a 133 vector. First two dimensions are

location of interest point and other three dimensions are parameters of affine

transformation. By this way, we make use of location and shape information of

detected regions.

Following section describes creation of visual terms that is the next step after

interest point detection and extraction detectors of these points.

4.2.3 Visterm Generation

Local interest points and descriptors are extracted and visual terms are needed

to be generated. Visual terms are used to define images so that, visual terms are

very essential for image representation.

Each keyframe has different numbers of keypoint descriptor ranging from 0 to

4000. Some methods are proposed to find matches between keypoint descriptor
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(a)

(b)

Figure 4.4: Keypoints of same image detected by DoG (a) and Harris Affine
detector (b).
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Figure 4.5: On the left, magnitude and orientation are given around a local
interest point. On the right, summarised version of gradient over 4x4 sub-region
is given which correspond to summation of magnitudes in same direction on that
region [31].

of different keyframes such as Bag of Features BoF [41, 42, 31] and one-to-

one keypoint descriptor match. We use BoF method to define keyframes since

numbers of keypoint descriptors are so many and it is not applicable to find one-

to-one keypoint descriptor in large databases. We also tested one-to-one keypoint

descriptor match on DoG SIFT descriptors and results are given in Chapter 5.

BoF approach treats images as documents with each image is described by

visual terms histograms. Visual Terms, V isterms, are similar to words in a

document. Each image is considered as a combination of V isterms just like a

document is a combination of words. We need to find V isterms as representative

as possible. General approach to determine correct V isterms is quantizing all

keypoint descriptor by k-means and considering each cluster centroids.

4.2.4 Representations Based on Visterms

We can consider our media database as a library after finding V isterms. Most

popular and well-known technique to represent a book is using Term Frequency

Inverse Document Frequency, tfidf , method. We use similar method to repre-

sent images in media database since our media database is similar to library by
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Figure 4.6: Visterm Histogram

V isterms.

Each bin in tfidf presentation is the product of two terms, term−frequency

and inverse − document − frequency. For example, a document is represented

by a k dimensional tfidf vector (t1, t2, . . . , tk), where term− frequency of image

i is :

tfi =
nid

nd
(4.1)

and inverse− document− frequency is

idfi = log
N

ni

(4.2)

and ith term, ti is the product of tfi and idfi

tfidf =
nid

nd

log
N

ni

(4.3)

where, nid is number of occurrences of term i in document d, nd is total num-

ber of terms in document d, N is the total number of documents in database and
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ni is the number of documents in database containing term i.

Colour information of images can not be discarded since keypoint descriptors

are extracted from gray-scale images. We add colour information to represen-

tation of images by making use of HSV statistics. Following section describes

representation of images by HSV statistics.

4.2.5 Representation Based On HSV Statistics

Although SIFT descriptors extracted from Maximally Stable and Shape Adapted

regions are important for allowing view point and illumination changes, we no-

ticed that they are not sufficient to correctly capture the similarities, and we also

incorporate the colour information.

We use 5x7 grid HSV statistics to represent colour. Each frame is divided into

5x7 grids and mean and standard deviation of each band is calculated for each

grid. We obtain 210-dimensional vector for each frame for colour data.

4.3 Similar Frame Detection

For the sequence detection algorithm to be successful, it is very important to

capture the similarities between frames correctly. In our ranking approach, firstly

each frame is described by features given in this chapter. Then dissimilarity values

are calculated based on each feature separately and combined by weighted sum.

By sorting resulting dissimilarity values, similar frames are found.

Most of the mentioned systems make use of a hard threshold to find duplicates

of the frames and then sequences are found assuming that they contain the same

set of frames. However, there are two problems with such approaches: first, it is

difficult to define a single general threshold applicable to different characteristics

of large number of frames; second, some frames can be missed due to wrongly
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selected thresholds causing gaps in the sequences. We propose a threshold free

approach to find similar frames by using jump positions in dissimilarity values.

Our contribution to find ranking is that, in our ranking strategy, there is no

hard threshold to find similar frames. Thresholds are used to find near-duplicates

frames in most of the existing approaches. We overcome this problem by finding

jump positions in dissimilarity values.

This chapter overviews features to find ranking, distance calculations for dif-

ferent features used, method to combine distances and jump position extraction.

4.3.1 Features

To reduce number of false sequences, trees must be created as precise as possible.

Effective similarity sets are needed for precise tree creations. Hence, frames should

be represented correctly.

We use SIFT descriptors extracted from affine co-variant regions to be robust

to view point and illumination changes, but also incorporate the colour informa-

tion in the form of HSV statistics extracted from fixed sized grids since colour is

also a valuable information in most of the cases.

We detect two types of viewpoint co-variant regions for each frame as used

in [47]. First one, called as Shape Adapted Region, is constructed by elliptical

shape adaptation around an interest point. Second one, called as Maximally

Stable Region, is constructed by selecting areas from an intensity watershed image

segmentation.

Although SIFT descriptors extracted from Maximally Stable and Shape

Adapted regions are important for allowing view point and illumination changes,

we noticed that they are not sufficient to correctly capture the similarities, and

we also incorporate the colour information.

We use 5x7 grid HSV statistics to represent colour. Each frame is divided into



CHAPTER 4. FRAME REPRESENTATIONS 56

5x7 grids and mean and standard deviation of each band is calculated for each

grid. We obtain 210-dimensional vector for each frame for colour data.

4.3.2 Distance Calculation

In Information Retrieval and approaches that uses BoF method, Cosine Distance

is used to find similarities documents or frames. Also in computer vision, L2

Distance is mostly used to calculate distances based on HSV statistics.

In this study, features can be classified into two types based on distance

calculation. First type is features for which distance calculation is based on

cosine distance, and other type is features that distance calculation is based on

L2 distance.

Cosine Distance is the arc-cosine angle of angle between two vectors and finds

the similarity of vectors based on directions. The similarity of frames based on

SIFT descriptors of the salient regions are found by Cosine Distance of tfidf

vectors. For example, we have two tfidf vectors ti and tj, Cosine Distance

between ti and tj (which we refer D1) is calculated as follows :

D1 = 1−

∑n
i=1 ti × tj

(
∑n

j=1 ti
2)

1/2
(
∑n

j=1 tj
2)

1/2
(4.4)

L2 distance is the line length between two points in space. The similarity of

two frames based on HSV statistics is calculated by L2 Distance. L2 Distance

between two vectors P and Q (which we refer D2) is calculated as follows :

D2 =

√

√

√

√

n
∑

i=1

(pi − qi)2 (4.5)
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4.3.3 Combining Distances

Neither SIFT descriptor based similarity values nor HSV statistics based similar-

ity values are perfect. Also none of them has higher priority. For these reasons,

we decided to combine these similarity values by equal weights and obtain a single

distance value as

D(fi, fj) = D1(fi, fj) + D2(fi, fj) (4.6)

for each frame pair (fi, fj). Note that the distances are normalised before

combination.

4.3.4 Extracting Jump Positions

Our main contribution to ranking is that we do not use a hard threshold value

on dissimilarity values to limit dissimilar frames. Main aim to find rankings

is to accept only near-duplicate frames by eliminating others. Most existing

approaches in near-duplicate detection make use of a hard threshold value. This

kind of thresholds are not meaningful since near-duplicate frames have smaller

similarity values than other frames. By this assumption, if dissimilarities of a

frame is sorted, a jump value is encountered at the position of last near-duplicate

frame. We make use of this jump value and discard other frames.

To find jump position, for each frame fi, first we rank all the images according

to distance D, and then seek for a jump in the distances to separate the similar

instances from the others. We eliminate the different frames by using peaks on

similarity values. We apply a filter to sharpen peaks and find the maximum peak

to ignore different frames. When the peak is at a number less than 10, we take

10 as the peak position. This approach allows us to reduce the number of similar

frames without loosing the correct ones as seen in Figure 4.7.

In Figure 4.8, distances between query frame and frames in the similar set is

given. Our filtering approach discards distances of first two most similar frames
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because of convolution. So that, maximum jump position is found after the 7th

image in similar set.

Figure 4.7: Ranking results for a query image. First image is query image and
others are most similar images. Titles of images show their dissimilarity values.
In our approach we find peak position after 7th image and take first 10 image as
similar to query image.



CHAPTER 4. FRAME REPRESENTATIONS 59

Figure 4.8: Bar graph of distances obtained from Figure 4.7.



Chapter 5

Experiments

Experiments are carried out on CIVR2007 Copy Detection Showcase dataset, two

full length movies, ”Run Lola Run” and ”Groundhog Day” and commercials of

TRECVID news corpus. In all datasets, repetitions are not exactly same but

similar. There are some illumination changes, scene changes and also transfor-

mations. We use keyframes instead of frames, which also resulted in different

sequences. Keyframes are provided by NIST for TRECVID corpus for commer-

cial dataset. For the movies and CIVR2007 Copy Detection Showcase dataset,

we extract the keyframes using our approach.

In the following, first characteristics of the experimental datasets are given.

Then results on each dataset is reported followed by detailed evaluations based

on different aspects.

5.1 Datasets

We try to solve copy detection,media tracking and story tracking problems. We

have three different datasets since for each problem different dataset is needed.

In the following sections, detailed information about datasets will be given.

60
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5.1.1 CIVR Copy Detection Dataset

As mentioned before, in ACM International Conference on Image and Video Re-

trieval 2007 (CIVR2007), a session is held to compare and explore existing Copy

Detection methods. For this session, a dataset is published. It contains 101 videos

(about 35GB, 80 hours) that are collected from different sources These videos’

durations are ranging from 5 minutes to 2 hours. This dataset is processed and

more than 220,000 keyframes are obtained and more than 80,000,000 keypoints

are extracted.

For Copy Detection session, another 15 query videos are supplied. Again these

query videos are collected from different sources and durations are ranging from

5 minutes to 20 minutes. These queries contain several transformations as seen in

Figure 5.1. Because of these transformations and size of dataset (35GB), CIVR

is the most challenging dataset. Some of these query videos are copies of videos

in database.

We need to change some parts of our system for this dataset. Since for copy

detection a query is needed, we adapt our system to get a query. Then we

need to reduce running time of our algorithm. We create an index structure by

grouping frames in each movie in the database by using cosine measures to mean

tf − idf vector of each movie. By using this indexing structure, sequences are

detected according to query clip. If detected repeated sequences give a %75 or

more coverage in the target movie, we conclude that target movie is a copy of

query clip.

We use this dataset to test our method for copy detection and also compare

our results with other methods.

5.1.2 Commercials

Another dataset used in the experiments is the broadcast news videos provided

by NIST for TRECVID video retrieval evaluation competition [49]. It consists of
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.1: Transformations used in CIVR2007 Copy Detection dataset. These
transformations are blur ((a)), change in phases of colour (analogical noise) ((b)),
camcording ((c)), camcording with angle ((d)), flip ((e)), zoom and subtitle
((f)), camcording and subtitle ((g)) and camcording with an angle((h)), [4].
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50 videos. Shot boundaries and keyframes are provided by NIST. Some example

sequences can be seen in Figure 5.2. As seen in these examples, although shot

boundaries are so precise in this dataset, number of frames and frame orders are

different because of editing.

(a)

(b)

Figure 5.2: Repeating sequences extracted from commercial dataset. (a) has
frame order change and (b) has different number of frames in sequences.

We choose keyframes of commercials from keyframes of 50 videos (1647

frames). This set is used for story tracking problem.

5.1.3 Movies

One of the problem that we try to solve is story tracking. We tested our method

on two feature films ”Run Lola Run” and ”Groundhog Day”. These two films

are also used in [47] since they contain several repetitions.
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5.1.3.1 Run Lola Run

”Run Lola Run” is directed by Tom Tykwer in 1998. It is a 1.5 hour long mpeg4

encoded film. It contains 30 frames per second and totally 162,000 frames. Each

frame size is 720x352 pixels. In this movie, an event is repeated three times during

movie. Event starts with a phone talk of Lola (leading character in movie) and

ends with shot of Lola. This part is repeated with different camera positions and

also some scene changes that change the result of event.

Viewpoint and illumination changes make this dataset challenging. Also since

keyframes are extracted by our method, keyframes in sequences and repetitions

are not precise as in commercial dataset. This makes similar set construction

more difficult. Examples of repeating sequences can be seen in Figure 5.3.

(a)

(b)

Figure 5.3: Repeating sequences extracted from ”Run Lola Run” movie. (a)
is taken with different camera positions and (b) has differences because of shot
boundary detection.

We used ”Run Lola Run” in three different ways. In the first one, we extract

keyframes by our shot boundary detection algorithm. This gives us 5922 frames.

This set is used to run overall algorithm. In the second one, keyframes are

extracted with equal distances and 13601 frames are obtained. This set is used
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to find the effect of keyframe extraction part on tree-based approach. Last set is

created by reducing first set. It contains 1077 frames and is used for testing.

5.1.3.2 Groundhog Day

”Groundhog Day” is directed by Harold Ramis in 1993. It is similar to ”Run Lola

Run” and again 1.5 hour long mpeg4 formatted film. It contains 30 frames per

second and totally 162,000 frames. Each frame size is 720x352 pixels. ”Ground-

hog Day” gives one day of a news reporter in three different ways. Each repetition

starts with the same scene but repetitions of the day differ by camera positions

and illumination changes.

Same as ”Run Lola Run” dataset, this dataset has viewpoint and illumination

changes. Also in this set, illumination changes are more obvious. In addition

to these, our keyframe extraction method can give different number of frames

for original sequence and repetitions. Some example sequences can be seen in

Figure 5.4.

We extract keyframes of ”Groundhog Day” by using our shot boundary de-

tection and 7570 frames are obtained. This set is used to test overall tree-based

algorithm.

5.2 Results on Datasets

In the following sections, results on CIVR Copy Detection Dataset, commercial

dataset and movies are given.

5.2.1 CIVR Copy Detection Dataset

Results obtained in CIVR2007 Copy Detection Showcase are given in Table 5.1.

We perform the same with the best in competition, ViCopT that is created by
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(a)

(b)

Figure 5.4: Repeating sequences extracted from ”Run Lola Run” movie. (a) has
differences because of zooming and (b) has different number of frames. These
scene changes are because of shot boundary detection.

INRIA, France. ViCopt uses Harris point of interest and a 20-dimensional signa-

ture is created for each point. After that, copies are detected by using trajectories

of keypoints (More details can be found in [25]).

Among 15 queries, we have only missed one of them. It is created by cam

cording and subtitles as seen in Figure 5.5. In this case, because of subtitles,

queries have additional keypoints compared with similar frame in target video.

This changes visterm histograms and distances between similars so that similar

sets. That is why, our method can not detect this copy.

CIVR2007 Copy Detection Dataset contains different type of transformations.

Number of missed queries according to these transformations are given in Fig-

ure 5.6. As seen this figure, camcording transformation with subtitle is the most

difficult transformation to detect.
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Table 5.1: Results on CIVR Copy Detection Dataset
Team Precision

OUR APPROACH 0.93
ViCopT 0.93

Advestigo 0.86
IBM-1 0.86
IBM-3 0.80
IBM-2 0.73

City University of Hong Kong 0.66
Chineese Acedemy of Sciences 0.53

Chineese Acedemy of Sciences-2 0.46

Figure 5.5: Two frames from missed query in CIVR2007 Copy Detection Show-
case. Query frame is on the left and target frame is on the right. [4]
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Figure 5.6: . Histograms of missed transformations in CIVR2007 participant
results.[4]
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5.2.2 Commercials

Finding sequences in commercial dataset is much easier than others since commer-

cials have colourful structure and keyframes are extracted more precisely. Some

example sequences extracted from commercial dataset are shown in Figure 5.7

and Figure 5.8.

Figure 5.7: An example sequence from TRECVID dataset. Second and third
frames are different in real sequence and repetition.

Figure 5.8: An example sequence from TRECVID dataset. Number of keyframes
is not same for two sequences.

As seen in the Figure 5.7 and Figure 5.8, the proposed method is able to

capture the differences in the number and order of frames in the sequences. These

sequences are found by using combination of HSV statistics and SIFT descriptors

extracted from Maximally Stable and Shape Adapted regions.

We have tested 3 features on commercial dataset and results are given in

Table 5.2.

Table 5.2: Sequence Detection Results for commercial dataset.
Method Precision. Recall.

SIFT Descriptor 0.92 0.71
HSV Statistics 0.98 0.76
Combination 0.91 0.74
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In Table 5.2, it is seen that HSV statistics gives better performance. However

this is not valid for other datasets used in our experiments. Main reason is that

commercials have distinctive colours and it can be sufficient for finding similar

sets. In addition to that, this can be a result of encoding of TRECVID data. It is

mpeg1 encoded and extracting SIFT descriptors from mpeg1 encoding can give

insufficient results.

5.2.3 Movies

Both movies ”Run Lola Run” and ”Groundhog Day” have almost same charac-

teristics. So that, precision results on these movies are so close to each other. Se-

quences are repeated with camera position and/or illumination changes. Results

of ”Run Lola Run” and ”Groundhog Day” are given in the following sections.

5.2.3.1 Run Lola Run

”Run Lola Run” contains more challenging sequences than commercial dataset.

Some example sequences are given in Figure 5.9, Figure 5.10, Figure 5.11, Fig-

ure 5.12, Figure 5.13 and Figure 5.14.

Figure 5.9, Figure 5.10 are the easiest sequences in ”Run Lola Run” movie.

Although keyframes in sequences are different because of keyframe extraction

method, number of keyframes in sequences are almost same.

Figure 5.9: An example sequence. Number of frames in sequences are same but
frames are not exactly same.

Sequences in Figure 5.11, Figure 5.12 and Figure 5.13 have different number

of keyframes in sequences and also because of viewpoint change keyframes in

sequences are significantly different.
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Figure 5.10: An example of slightly different sequences.

Figure 5.11: An example sequence found by SIFT and HSV combination. Number
of frames and frames in sequences are different.

Figure 5.12: An example sequence taken with different camera angles.

Figure 5.13: An example sequence that contains different keyframes because of
camera position and keyframe extraction method.
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In Figure 5.14, longest sequence detected in ”Run Lola Run” is given In

this example, keyframes are different because of zooming and also number of

keyframes of similar parts are different.

Figure 5.14: Longest sequence found by our method.

As shown in all figures, the proposed method is able to capture both the differ-

ences in the frames due to viewpoint and illumination changes and the differences

in the number and order of frames in the sequences.

Sequences in commercial dataset can be found by using only HSV statistics

since they have distinctive colourful structure. If we apply this to ”Run Lola

Run” movie, we obtain false alarms as seen in Figure 5.15. This sequence is

extracted by using only HSV statistics to represent frames. In this false alarm,

original sequence and repetition is both too dark and HSV statistics can give

these keyframes similar.

Another false sequence is given in Figure 5.16. These sequences are extracted

by using only SIFT descriptors. As seen, this kind of false alarms can be discarded

by using colour information since one sequence is gray and other is colourful. So
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Figure 5.15: A false alarm sequence from TRECVID dataset extracted by using
HSV statistics only.

that, we make use of combination of HSV statistics and SIFT descriptors to

represent frames.

Figure 5.16: A false alarm sequence from TRECVID dataset extracted by using
HSV statistics only.

We have conducted three types of experiments on ”Run Lola Run”. For

the first experiment, keyframes of ”Run Lola Run” are extracted by using our

keyframe extraction method and 5922 keyframes are obtained. In this set, it is

almost impossible to create ground truth since boundaries of sequences are not

exact. So that we give only precision values as seen in Table 5.3.

Table 5.3: Sequence Detection precision values on Run Lola Run movie.
Method Correct False Precision

Det. Det.
SIFT Descriptor 89 19 0.82
HSV Statistics 55 18 0.75
Combination 105 13 0.89

As expected, combination of HSV statistics and SIFT descriptors performs

better than single usage of these features. This is mostly because of characteristics

of ”Run Lola Run”. There are illumination and viewpoints changes and these

changes can not be tolerated by using SIFT descriptors.

For the second experiment, we subsample previously extracted 5922 keyframes

and obtain a set containing 1077 keyframes. We create a truth set for this set. We

detect sequences by using three different features to represented frames. These
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are SIFT descriptors extracted from MS and SA regions, HSV statistics and

combination of these features. Since boundaries of sequences are not exact, a

detected sequence is considered as a correct sequence if it is detected by ±5

neighbourhood of ground truth set. If a sequence is divided into parts they are

considered as a false sequence for recall calculation but considered as a correct

sequence for precision calculation. Results on this dataset is given in Table 5.4.

Table 5.4: Sequence detection precision, recall values, number of divided se-
quences and number of detected sequences for similar sets obtained by using
different features. MS stands for descriptors extracted from Maximally Stable
regions and SA stands for descriptors extracted from Shape Adapted regions.
Lowe Sift stands for descriptors extracted from regions detected by DoG.

Method Sequence Divided Precision Recall
Count Count

Lowe SIFT 52 24 0.8269 0.3725
HSV Stat. 46 18 0.7173 0.2941

Lowe SIFT and HSV Stat. 44 13 0.7727 0.4117
MS and SA 47 11 0.8298 0.5490
Combination 48 0 0.9583 0.9019

According to Table 5.4, combination of SIFT descriptors on MS and SA re-

gions and HSV statistics give better performance. This is an expected result since

”Run Lola Run” has viewpoint and/or illumination changes. Also descriptors ex-

tracted from MS and SA regions performs better than descriptors extracted from

Lowe keypoints (DoG) since MS and SA regions are more robust to affine trans-

formations and this makes MS and SA regions more robust to viewpoint changes

compared to DoG. Also, because of illumination and viewpoint changes HSV

statistics gives the worst performance on this set.

Figure 5.17 shows the distribution of sequence lenghts. We can see that our

tree-based approach can miss some short sequences. The reason is that, our

similar set construction method can miss some similar frames and when this is

encountered in short sequences, repetition of sequence can be shorter than real

sequence and sequence lenghts becomes inconsistent. This much differences in

number of keyframes can be tolerated and repetition can be missed.

It is obvious that sequences can be found easily and more complete with a
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Figure 5.17: Sequence lengths for original sequences, detected sequences and
missed sequences. Top row shows number of sequences, middle row shows
number of correctly detected sequences and bottom row gives number of false
sequences according to their lenghts. x axis show sequence lengths and y axis
show number of sequences on that length.
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robust shot boundary method. However, our tree-based approach can tolerate

differences caused by shot boundary detection method. That is why, we use

a simple method described above. But we also have tested another keyframe

extraction method. In this experiment, instead of finding shot boundaries, we

use three frames in each second as a keyframe. By this way, we obtain 13,601

keyframes from ”Run Lola Run” movie. We detect sequences on this set and

obtain %100 precision value. In this set, sequences are repeated with more similar

frames than the other ”Run Lola Run” sets. This show that keyframe extraction

method has significant influence on sequence detection.

5.2.3.2 Groundhog Day

Similar to ”Run Lola Run”, there is no exact sequence boundaries in ”Ground-

hog Day”and keyframes in sequences are different because of viewpoint and/or

illumination change and also keyframe extraction.

Some example sequences for ”Groundhog Day” can be seen in Figure 5.18,

Figure 5.19 and Figure 5.20.

Figure 5.18: An example sequence from Groundhog Day. Number of frames in
sequences are same but frames are not exactly same.

Sequences in Figure 5.18 have same number of frames. However, keyframes

are different. This difference can be a result of zooming or keyframe extraction.

Sequences in Figure 5.20 and Figure 5.19 have different number of frames in
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Figure 5.19: Example repeating sequence from ”Groundhog Day” that has dif-
ferences because of zooming.

Figure 5.20: Repeating sequence extracted from ”Run Lola Run” movie. that
has different number of frames and illumination change. These scene changes are
because of shot boundary detection.

sequences and also illumination changes. Proposed method can detect these se-

quences since our tree based approach can tolerate keyframe numbers in sequences

and SIFT features can tolerate illumination and viewpoint changes.

We can not create a ground truth for this set since it contains 7570 keyframes

and does not have exact sequence boundaries. That is why, we can only give pre-

cision values on detected sequences. We detect sequences by using three different

features to represent frames. These are SIFT descriptors extracted from MS and

SA regions, HSV statistics and combination of these features. Results are given

in Table 5.5.

Table 5.5: Sequence Detection Results for Groundhog Day.
Method Correct False Precision

Det. Det.
SIFT Descriptor 109 18 0.83
HSV Statistics 126 39 0.69
Combination 109 22 0.79

We expect to get higher performance from combination of two features when

we consider results obtained from ”Run Lola Run”. However, we get higher
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performance from SIFT descriptors. ”Groundhog Day” has more illumination

changes compared to ”Run Lola Run” so that HSV statistics can not contribute

to results as expected in this case. Also because of these changes, SIFT performs

better than HSV statistics.

5.3 Comparison with Original

We have also compared our similar set detection strategy with the original SIFT

matching technique. As a first step, we try to find jump positions on SIFT

matching results and this approach gives us high precision values. However,

several sequences are missed. Then we choose to get top 10, 20, 30, 40 frames

that have higher matching values. In these tries, again several sequences are

missed and after a point precision value starts to decrease significantly. Also we

see that time complexity of SIFT matching is too high. Results can be seen in

Figure 5.6.

Table 5.6: Sequence detection precision and recall values on similar sets produced
by SIFT matching on ”Run Lola Run” dataset that contains 1077 frames.

Method Sequence Divided Precision Recall
Count Count

Jump position 14 10 0.8500 0.0392
Top 10 matches 30 17 0.8000 0.1372
Top 20 matches 41 17 0.7073 0.2352
Top 30 matches 46 16 0.7045 0.2941
Top 40 matches 75 17 0.4666 0.3333

In Table 5.6, top 40 matches give higher recall value. However, its precision is

very low compared to other methods and also most of the sequences are divided.

In addition to this, SIFT matching proposed by David Lowe. is too complex.

Similar set construction for 1077 frames takes almost 3 weeks. When we compare

SIFT matching results with other results on same dataset (Table 5.4), SIFT

matching is not the best choice to create similar sets.
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5.4 Weighted Combination Results

We use weighted combination to combine similar sets created by using HSV statis-

tics and SIFT descriptors extracted from MS and SA regions. We also tested

effects of weights on this combinations. Results can be seen in Table 5.7.

Table 5.7: Sequence detection precision and recall values on ”Run Lola Run”
small set for combination with different weights. Detected corresponds to de-
tected sequence count and Divided corresponds to number of divided sequences.

Weights for Cosine Measure
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Detected 48 58 49 48 48 43 49 51 39
Divided 12 18 6 5 0 5 7 16 7
Precision 0.72 0.72 0.79 0.89 0.95 0.83 0.85 0.84 0.82
Recall 0.45 0.47 0.64 0.74 0.90 0.60 0.68 0.52 0.49

According to Table 5.7, we can conclude that equal weights performs better

than other combinations. Also if weight of cosine measure is greater than 0.5

precision values do not change so much but recall values decrease. This shows

that SIFT descriptors are more descriptor compared to HSV statistics.

5.5 Parameter Testing

In our approach, there are three constraints, Period Constraint, Self-

Similarity Constraint and Closest-Parent Constraint, and one Stopping

Criteria. We have parameters for only three of them, Self-Similarity Con-

straint, Period Constraint and Stopping Criteria. We have tested all these

parameters on small set created from ”Run Lola Run”. First, we tested Self-

Similarity Constraint versus Stooping Criteria. Precision and recall values

are given in Table 5.8 and Table 5.9, respectively. Then we tested 5 values for

Period Constraint as given in Table 5.10.

When we check the precision values given in Table 5.8, it is seen that Self-

Similarity Constraint and Stopping Criteria do not affect precision or recall
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Table 5.8: Precision values for parameter testing on Run Lola Run movie.
Self-Similarity Constraint (γ)

10 20 30 40 50 60 70

Stopping Criteria (σ)

2 0.86 0.90 0.91 0.91 0.9167 0.91 0.91
3 0.84 0.92 0.91 0.91 0.91 0.91 0.91
4 0.83 0.94 0.95 0.95 0.95 0.95 0.95
5 0.83 0.94 0.95 0.95 0.95 0.95 0.95
6 0.83 0.94 0.95 0.95 0.95 0.95 0.95

Table 5.9: Recall values for parameter testing on Run Lola Run movie.
Self-Similarity Constraint (γ)

10 20 30 40 50 60 70

Stopping Criteria (σ)

2 0.64 0.76 0.72 0.72 0.72 0.72 0.72
3 0.74 0.86 0.82 0.84 0.84 0.84 0.84
4 0.72 0.90 0.88 0.90 0.90 0.90 0.90
5 0.72 0.90 0.88 0.90 0.90 0.90 0.90
6 0.72 0.90 0.88 0.90 0.90 0.90 0.90

Table 5.10: Precision, recall values and divided sequence counts for testing Pe-
riod Constraint δ parameter.

Precision Recall Divided
Count

Period Constraint (δ)

1 0.8254 0.3333 34
2 0.8750 0.3921 35
3 0.9482 0.6666 21
4 0.9583 0.9019 0
5 0.6500 0.4313 4
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values after a certain value. However, they affect running time of algorithm

significantly. According to Table 5.8, we can conclude that Stopping Criteria

can be defined as any value greater than 4. Also we have used Stopping Criteria

as 4 and Self-Similarity Constraint as 50 for Period Constraint test.

In Period Constraint test, which is given in Table 5.10, we see that the

best result is obtained when δ is set to 4. This value is related with characteristic

of dataset. If there are big gaps or frame order changes in sequences, Period

Constraint (δ) can be set to higher values. For this set, we can say that there

is no gap or frame order change in sequences greater than 4.

5.5.1 Complexity Analysis

We did not analyse prepossessing part of our algorithm since it is done only once.

However, we give some numeric values on feature extraction in Table 5.11. From

these values, we can conclude that although SIFT descriptors are more descriptive

than HSV statistics, its time complexity is higher that extracting HSV statistics.

Prepossessing part includes shot boundary and keyframe extraction, local interest

points and descriptor extraction, visual term preparation and tfidf calculation.

After reprocessing step, our tree-based approach creates a tree for each image

in our dataset. Sequences are found according to created trees. If a frame is a

member of a sequence length m and maximum number of similar frames for one

frame is d then running time for creation of one tree is O(m ∗ d ∗ log(d ∗m)). If

frame is not a member of a sequence, tree creation takes O(d ∗ log(d)). In our

approach, we create a tree for each frame so that running time of tree creation is

O(N ∗m ∗ d ∗ log(m ∗ d)), where N is the number of images in our database, d

is the maximum number of similar images for one image and m is the length of

longest sequence. Our method’s space complexity is O(m ∗ d) since we need to

store only one tree of a keyframe at a time.

However, note that while N is in the order of 6000, d is in the order of 50 and

m is in the order of 15. For Run Lola Run which contains 5922 keyframes, the

algorithm run on a P4 1 GH machine in 1148 seconds.
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Table 5.11: Running times of feature extractions for 1000 frames.(Lowe regions
corresponds to regions extracted by using DoG.)

Feature Time (seconds)
Detection of 320
SA regions
Detection of 50
MS regions
Detection of 750
Lowe regions
Extraction of 1000
Descriptors

Extraction of 50
HSV statistics



Chapter 6

Conclusion and Future Work

6.1 Summary and Discussion

In this study, we propose a method to search for the similar instances of a sequence

inside a long video. Unlike most of the current studies on video copy detection

and media tracking, the proposed method is robust to view point and illumination

changes which may occur since the sequences are captured in different times with

different cameras, and to the differences in the order and the number of frames in

the sequences which may appear due to editing. The algorithm does not require

any query to be given for searching, and finds all repeating video sequences inside

a long video or a video collection in a fully automatic way.

Our algorithm considers both the temporal order of videos and also the simi-

larities of keyframes. We only use visual information extracted from keyframes.

Features used in our approach are chosen to be robust to viewpoint and illumi-

nation changes. Our method is independent of features extracted from keyframes

and similar set construction technique. These parts can be changed with any

method.

Experiments are carried out on two feature movies, commercials of TRECVID

2004 and CIVR2007 Copy Detection Showcase dataset. For copy detection, we

83
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can achieve %93 precision rate, for media tracking, we obtain %98 precision rate

and for story tracking, we can achieve a precision rate higher than %80.

According to results given Chapter 5, we can conclude that features to repre-

sent frames should be chosen according to characteristics of datasets. If we know

that datasets include mostly commercials then HSV statistics or other colour

features can be used. This also reduce running time of algorithm. However, if

datasets contain viewpoint or illumination changes then SIFT descriptors should

be chosen to represent frames since SIFT descriptors are robust to viewpoint and

illumination changes. However, using SIFT descriptors always give adequate re-

sults. Combination of HSV statistics and SIFT descriptors can give better results

on datasets that have viewpoint changes and less illumination changes as ”Run

Lola Run”.

Proposed tree-based approach is mainly affected by features used to find simi-

lar sets. That is why, we compare five features as given in Section 5.1.3.1. In this

experiment, combination of SIFT descriptors extracted from Maximally Stable

regions and Shape Adapted regions and HSV statistics performs better than other

features for ”Run Lola Run” movie. However, if time complexity is considered

HSV statistics can be used to represent frames since it also gives close results to

combination and its time complexity is lower than others.

In our experiments, we see that SIFT descriptors extracted by Laplacian-

of-Gaussian (Maximally Stable and Shape Adapted Regions) performs better

than descriptors extracted from Difference-of-Gaussian (Lowe SIFT detector).

This is mostly the result of affine transformations. Since LoG is robust to affine

transformations it performs better in case of viewpoint changes.

In parameter testing, we see that parameters used in our tree-based approach

does not affect precision and recall values after a certain value. They only affect

running time.

Keyframe selection is very important to detect sequences. However, their

running time is also important. According to our experiments, we can say that our

sequence detection algorithm can tolerate differences caused by our shot boundary
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detection algorithm. Also our algorithm is not too complex. That is why, our

shot boundary detection algorithm can be used instead of a complicated one.

Results on CIVR2007 Copy Detection Showcase shows that our method is

comparable with existing copy detection methods. Our method performs the

same with the best of participants. We can achieve %93 precision rate for this

dataset. .

The experimental studies show that, the algorithm is successful in media track-

ing, specifically commercial tracking, in story tracking which is a more difficult

task and also in copy detection.

6.2 Future Work

Proposed system is independent of features used for similar detection. We have

used representations based on V isterms and HSV statistics. However, extracting

especially SIFT descriptors is time consuming. In future studies, frame represen-

tation technique can be changed or enhanced with methods that run more quick

than V isterms and also represent frames better than our method.

Existing method can be improved by better indexing on movies of dataset

for Copy Detection. By this way, instead of searching for copies of query clip

in all dataset, only a small set can be searched. Indexing based on V isterm

distribution of movies in dataset can be used in future studies.

Our shot boundary detection method is a heuristic approach. It is obvious

that if same keyframes can be extracted from all shots of videos, similar sets can

be detected easily and pruned. In future studies, our shot boundary detection

method can be changed with more complex algorithms to extract exact shot

boundaries.

Using keyframes reduces number of frames in videos. However, some infor-

mation is lost by keyframes. Our approach can be extended to use all frames

of videos. In this case, representation of frames should be changed or improved
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by indexing since SIFT representation for all frames in video produces huge data

that is almost impossible to handle without indexing.

In this study, we discard audio knowledge of videos. This can be an important

clue to detect repeating sequences. In future studies, features extracted from

audio data such as mel frequency cepstral coefficient (MFCC) can be added to

represent frames by considering time complexity of algorithm. to

Our method can be applied to news tracking. In future studies, news can be

detected by using topic start and end time of news topics and defining a new

similarity values for news frames. In news, durations of same news can change

significantly in different channels so that constraints in our system should be

revised.
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