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ABSTRACT

MEMORY-EFFICIENT MULTILEVEL PHYSICAL

OPTICS ALGORITHM FOR THE SOLUTION OF

ELECTROMAGNETIC SCATTERING PROBLEMS

Kaplan Alp Manyas

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Levent Gürel

September 2007

For the computation of electromagnetic scattering from electrically large targets,

physical optics (PO) technique can provide approximate but very fast solutions.

Moreover, higher order approximations, such as physical theory of diffraction

(PTD) including the diffraction from the edges or sharp corners can also be

added to the PO solution in order to enhance the accuracy of the PO. On the

other hand, in real-life radar applications, where the computation of the scatter-

ing pattern over a range of frequencies and/or angles with sufficient number of

samples is desired, further acceleration may be needed. Multilevel physical op-

tics (MLPO) algorithm can be used for such applications, in which a remarkable

speed-up can be achieved by evaluating the PO integral in a multilevel fashion.

As the correction terms like PTD are evaluated independently just on the edges

or sharp corners, whereas the PO integration is carried out on the entire tar-

get surface, PO integration is the dominant factor in the computational time

of such higher order approximations. Therefore accelerating the PO integration

will also reduce the computational time of such higher order approximations.

In this thesis, we propose two different improvements on the MLPO algorithm.
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First improvement is the modification of the algorithm that enables the solution

of the scattering problems involving nonuniform triangulations, thus decreasing

the CPU time. Second improvement is the memory-efficient version, in which the

O (N3) memory requirement is decreased to O (N2 log N). Efficiency of the two

proposed improvements are demonstrated in numerical examples including a real-

life scattering problem, with which the scattering pattern of a three-dimensional

stealth target is evaluated as a function of elevation angle, azimuth angle, and

frequency.

Keywords: Physical optics; scattering problems; multilevel physical optics algo-

rithm.
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ÖZET

SAÇILIM PROBLEMLERİNİN ÇÖZÜMÜ İÇİN BELLEĞİN

VERİMLİ KULLANILDIĞI ÇOK SEVİYELİ FİZİKSEL OPTİK

ALGORİTMASI

Kaplan Alp Manyas

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Levent Gürel

Eylül 2007

Fiziksel optik tekniği (FO), elektriksel olarak büyük hedeflerden elektro-

manyetik saçılımın hesaplanmasında oldukça hızlı çözümler sunabilmektedir.

Dahası, gometrinin kenarlarından ve sivri köşelerinden kaynaklanan kırınım et-

kisini de kapsayan kırınımın fiziksel teorisi (KFT) gibi daha yüksek dereceli

yaklaşıklamalarda kullanılarak FO tekniğinin hassasiyeti arttırılabilir. Öte yan-

dan, saçılımın belli bir frekans ve/veya açı aralığında, yeterli sıklıkta örneklenerek

hesaplanmasının istendiği durumlarda, daha fazla hızlanmaya gereksinim duyu-

labilmektedir. Bu çeşit uygulamalarda, FO integralinin çok seviyeli bir yaklaşım

ile hesaplandığı çok seviyeli fiziksel optik algoritması (ÇSFO) ile büyük ölçüde

hızlanma sağlanabilir. KFT gibi yüksek dereceli yaklaşıklamalarda, kırınım et-

kisi, sadece geometrinin kenarlarında ve sivri köşelerinde hesaplanarak FO sonu-

cuna eklenir. Öte yandan, FO integrali geometrinin tüm yüzeyi üzerinde he-

saplanır ve bu nedenle bu tür yaklaşıklamaların hesaplanma zamanında belir-

leyici unsurdur ve FO integralinin daha hızlı alınması bu tür yaklaşıklamalarda

da kayda değer bir hızlanma sağlayacaktır. Bu tez çalışmasında, bu algo-

ritma üzerinde iki farklı iyileştirme sunulmaktadır. İlk iyileştirme, algoritmanın
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düzensiz üçgenlemeleri içeren saçılım problemlerinin de çözülebileceği şekilde

değiştirilerek, CPU zamanının düşürülmesidir. İkinci iyileştirme ise algoritmanın

O (N3) bellek gereksiniminin O (N2 log N)’e düşürüldüğü, belleğin verimli kul-

lanıldığı uyarlamasıdır. Sunulan bu iki iyileştirmenin verimlilikleri ise, üç boyutlu

bir hayalet uçağın saçılım örgüsünün yükseliş açısına, yanca açısına ve frekansa

bağlı olarak hesaplandığı, gerçek hayatta karşılaşılan bir problemin de aralarında

bulunduğu sayısal örnekler ile sunulmuştur.

Anahtar Kelimeler: Fiziksel optik, saçılım problemleri, çok seviyeli fiziksel optik

algoritması
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Chapter 1

INTRODUCTION

Physical optics (PO) is a high-frequency technique that can offer quick but ap-

proximate solutions for the scattering problems involving smooth, convex, and

electrically large targets. On the other hand, speed-up for even PO can be needed

for problems, for which the solutions are desired in a range of frequencies and/or

angles.

1.1 Historical Background

Current-based high-frequency techniques, such as PO [1] and physical theory

of diffraction (PTD) [2], are widely used asymptotic techniques to approximate

the solution of the electromagnetic scattering from electrically large, convex, and

smooth targets. In those techniques, PO integration is the dominant factor in the

computational time since the additional correction terms are usually in the form

of line integrals along the edges or wedges. For scattering problems with complex

targets, MLPO algorithm turns out to be a suitable approach to decrease the

PO integration time [6].
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1.2 Motivation

To find the PO scattering pattern of a target, the integral

Es (r) = −jkη
e−jkr

2πr

∫

S

n̂ (r′)×Hi
0e

jk(r̂−r̂i)·r′ds′ (1.1)

should be evaluated on the lit regions of the target. In this equation, r′ is the

source point on S, n̂ (r′) is the normal of the surface at r′, Hi
0 is the incident

magnetic field vector, r̂ is the unit vector along the direction of observation, and

r̂i is the unit vector along the direction of incidence. As the target surface can

be arbitrarily complex, obtaining an explicit solution for this integral is usually

impossible. Therefore, dividing the surface area into triangles and evaluating the

PO integral analytically on each triangle is a common approach [8]. PO integral

evaluated in this manner takes the form of

Es (r) = −jkη
−ejkr

2πr

T∑

k=1

n̂k ×Hi
0

∫

∆k

ejk(r̂−r̂i)·r′ds′, (1.2)

where T is the total number of triangles. Let R be the radius of the smallest

sphere that can contain the target and N = kR, where k is the wavenumber.

Then, the total number of triangles will be proportional to N2.

In order to be able to interpolate such a scattering pattern from its samples with

a prescribed error, the sampling rate should be proportional to the electrical size

of the target. The required number of samples in θ, φ, and frequency are O (N)

each.

Therefore, computational complexity of finding the scattering pattern over a

range of frequencies and angles with sufficient number of samples turns out to be

O (N5). In Chapter 3, it will be shown that this computational complexity can

2



be reduced to O (N3 log N) without sacrificing the accuracy, but with a memory

cost of O (N3 log N).

1.3 Our Contributions

In this thesis, two-dimensional (2-D) MLPO algorithm proposed by Boag [6] is

applied to 3-D problems. We also propose two improvements on the MLPO

algorithm. First improvement is the modification of the algorithm that enables

the solution of the scattering problems involving nonuniform triangulations, thus

decreasing the CPU time. Second improvement is the memory-efficient version,

in which the O (N3) memory requirement is decreased to O (N2 log N).

1.4 Outline

In Chapter 2, we first introduce the PO approximation. In Chapter 2, we also

mention the properties of the PO approximation that are basic tools for the

MLPO algorithm presented in Chapter 3. The MLPO algorithm for nonuniform

triangulations is proposed in Chapter 4, where the computational efficiency of

the proposed algorithm is also demonstrated. We propose the memory-efficient

MLPO algorithm in Chapter 5 and demonstrate its memory efficiency. We con-

clude and list future research areas in Chapter 6.
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Chapter 2

PO APPROXIMATION

Integral-equation methods, such as the method of moments [3], fast multipole

method [4], and multilevel fast multipole method [5], in which the current is

solved to satisfy the boundary condition, are usually impractical for electrically

large problems. This is because, in these methods, the required computational

resources increase rapidly with the electrical size of the problem. On the other

hand, in the PO approximation, the surface current Js is assumed to be

Js = 2n̂×Hinc (2.1)

in the lit regions, instead of being solved. This assumption offers less accurate

but faster solutions. Here n̂ is the surface normal and Hinc is the incident

magnetic field. In Fig. 2.1, the induced PO currents on an F-16 plane is given

as an illustration for horizontally and vertically polarized incidences. Under

this assumption, for a plane-wave incidence Hinc (r) = Hinc
0 e−jkr·̂ri , the far-field

radiation integral

Escat (r) = −jkη
e−jkr

4πr

∫
Js(r

′)ejkr̂·r′dr′ (2.2)

takes the form of

Escat (r) = −jkη
e−jkr

2πr

∫

r′∈Slit

n̂×Hinc
0 ejkr′·(r̂−r̂i)dr′. (2.3)

4
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Figure 2.1: PO surface current density: (a) For horizontally polarized electric
field incidence. (b) For vertically polarized electric field incidence.

In operator notation,

ΨS = −jkη
e−jkr

2πr

∫

r′∈Slit

n̂×Hinc
0 ejkr′·(r̂−r̂i)dr′, (2.4)

where Ψ is the PO operator evaluating the scattering pattern of S. Note that

the r′ dependence of n̂ is suppressed for simplicity. Since it is difficult to evaluate

the integral in Equation (2.3) analytically for an arbitrary complex 3-D target,

triangulation or triangular meshing is a common approach for modeling 3-D

targets with arbitrary complex geometries. Triangulations of various geometries

are shown in Figs. 2.2 and 2.3.

In a uniform triangulation, the triangle size (or mesh size) is usually chosen

approximately between λ/10 and λ/5 depending on the desired accuracy. In a

nonuniform triangulation, the triangle size can be adjusted locally according to

the surface curvature. More detailed description of nonuniform triangulation is

presented in Section 4.1.

After the triangulation of the geometry, Gordon’s well-known formula for the

analytic evaluation of PO integral over planar patches [8] can be used to evaluate

the PO radiation from each triangle. For a single triangle ∆ shown in Fig. 2.4,

this formula reduces to

Escat
∆ (r) = −jk

−ejkr

2πr

(
n̂∆ ×Hinc

0

)
T∆, (2.5)

5



(a) (b)

(c) (d)

Figure 2.2: Uniform meshes of arbitrary targets: (a) Sphere, (b) cube,
(c) a stealth target, and (d) a plane.
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(a) (b)

(c)

Figure 2.3: Nonuniform meshes of arbitrary targets: (a) Cube with smooth edges,
(b) a stealth target, and (c) another stealth target.
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where

T∆ = ejr⊥r

3∑
n=1

1∣∣r‖
∣∣2 ejr‖·rnc

[(
ln × r‖

) · n̂]
sinc

(
r‖ · ln

2

)
. (2.6)

1l

3l

2l

1cr

2cr

3cr

n̂̂n

||r

ˆ ˆ inc−r r⊥
r

:

: 

:   

:

n

nc

⊥

l

r

r

r

P

Vector showing the nth edge of the triangle.

Vector pointing to the center of the nth edge.

Parallel component of            to the triangle.

Normal component of           to the trıangle.

inc
−r r

inc
−r r

origin

Figure 2.4: Triangle for the analytic evaluation of the PO integral.

Since Equation (2.6) is a closed-form expression with no integrals, it offers accu-

rate and efficient evaluation of the PO integral over a single triangle. Afterwards,

the radiation pattern from each triangle can be added to find the overall scatter-

ing pattern as

Escat =
Nt∑

n=1

Escat
∆n

. (2.7)

2.1 Properties of the PO Approximation

The properties of the PO approximation listed below are the basis of the MLPO

algorithm presented in Chapter 3.

2.1.1 Superposition

If the target surface S is split into non-overlapping subsurfaces, then the su-

perposition of the radiation patterns of these subsurfaces will be equal to the

8



scattering pattern of S as

ΨS =

Q∑
q=1

ΨSq. (2.8)

In addition to allowing the triangulation of the target surface and evaluation of

the PO integral separately on each triangle, this property will be used to group

the triangles and their scattering patterns in the MLPO algorithm presented in

Chapter 3.

2.1.2 Shift of Origin

Let O [r0] denote an operator shifting the target surface by vector r0 as in Fig. 2.5.

Then, direct substitution of r′ = r′ − r0 in Equation (2.4) yields

O [r0] ΨS = ejk(r̂−r̂i)·r0ΨS. (2.9)

Similarly, E [r0], which is the inverse of O [r0], can be defined as O [−r0], where

O [r0] and E [r0] denote multiplication by e−jkr0·(r̂−r̂i) and ejkr0·(r̂−r̂i), respectively.

This property is essential for removing the extra phase oscillations from complex

1
SΨ

( ) 0
ˆ îjk

e
− ⋅r r r

x

y

z

x

y

z

x

y

z
0
r

1
S

2
S

1

scatE S= Ψ

2

scatE S= Ψ

=

Figure 2.5: Shift of the surface S by a vector r0.

scattering patterns before the interpolation in the MLPO algorithm to be pre-

sented in Chapter 3.
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2.1.3 Frequency Sampling

When considered as a function of frequency, the PO scattering pattern in Equa-

tion (2.4) can be written as

ΨS = −jkη
e−jkr

2πr

∫

r′∈Slit

n̂×Hinc
0 ej 2πf

c
r′·(r̂−r̂i)dr′. (2.10)

This expression is in fact the superposition of exponential terms ej
r′·(r̂−r̂i)

c
2πf . If R

is the radius of the smallest sphere that can contain the target as in Fig. 2.6, then

r′·(r̂−r̂i)
c

can take a maximum value of 2R/c. This occurs when r̂− r̂i (backscatter-

ing case) and r′ is in the same direction with r̂ = −r̂i. According to the Nyquist

S
R N kR=

Figure 2.6: Illustration of the smallest sphere that can contain the target.

sampling theorem [10], f should be sampled with ∆f < c/4R, where ∆f is the

sampling period of f . As a consequence, in order to allow interpolation, the

required number of frequency samples is

Nf = Ωf
4R (fmax − fmin)

c
, (2.11)

where Ωs is a real number greater than 1 indicating the ratio of the sampling rate

to the theoretical one. As a result, the number of frequency samples is O (N),

where N = kR.

In Fig. 2.8, spectrum of the backscattering signal from a helicopter model shown

in Fig. 2.7 is presented in order to verify the validity of Equation (2.11). In the

same figure, the resolved band for different oversampling ratios are also shown.
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8.7 mR ≈

Figure 2.7: A helicopter model and the illustration of the smallest sphere that
can contain it.
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Figure 2.8: Spectrum of the Escat signal as a function of frequency for the
backscattering case. The resolved bands for different oversampling ratios are
also shown in the same figure.
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From Fig. 2.8, it is observed that Ωf ≈ 1 is sufficient to resolve the harmonics

having a normalized weight of 10−4. On the other hand, in Fig 2.9, it is shown

that in order to have a norm error

‖error‖normalized =

∥∥Sref − Sip
∥∥

‖Sip‖ (2.12)

below 10−3, the oversampling ratio in frequency should be greater than 3. Note

that Sref is the reference signal and Sip is the interpolated signal in Equa-

tion (2.12).
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Figure 2.9: Increase of accuracy as the sampling rate increases.

.

Fig 2.9 also shows that by employing different number of points in the interpo-

lation, the interpolation error can be decreased for a given oversampling ratio.
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It should be noted since the Lagrange interpolation is a local interpolation, in-

creasing the number of points does not increase the computational complexity for

uniformly sampled data. More detailed discussion of the Lagrange interpolation

can be found in Appendix.

2.1.4 Angular Sampling

As mentioned in Section 2.1.3, the PO scattering pattern has the largest oscilla-

tion rate for the backscattering case, where r̂i = −r̂. For the sake of simplicity,

the minimum angular sampling rate will be derived for the backscattering case,

which is also applicable to the bistatic case. For the backscattering case, the PO

scattering pattern in Equation (2.4) can be written as

Escat (r) = −jkη
e−jkr

2πr

∫

r′∈Slit

n̂×Hinc
0 e2jkr′[sin(θ) sin(θ′) cos(φ−φ′)+cos(θ) cos(θ′)]dr′.

(2.13)

In this expression, (θ, φ) and (θ′, φ′) are the elevation and azimuth angles of the

direction of scattering and the direction of source point, respectively. For the

backscattering case, as a function of φ, PO scattering pattern in Equation (2.4)

can be written as

Escat (r) = −jkη
e−jkr

2πr

∫

r′∈Slit

n̂×Hinc
0 ej4πfr′ cos(θ) cos(θ′)ej4πfr′ sin(θ) sin(θ′) cos(φ−φ′)dr′.

(2.14)

This expression can be thought of as the superposition of exponential terms of

type ejβ cos(φ−φ′), where β = 4πfr′ sin (θ) sin (θ′). Fourier series expansion of these

terms yields [9]

ejβ cos(φ−φ′) = J0 (β) + 2
∞∑

n=1

jnJn (β) cos [n (φ− φ′)]. (2.15)

Here Jn (·) represents the Bessel function of order n. Since Bessel functions decay

faster than exponentially for orders higher than the argument (i.e., n > β) [9], the

maximum oscillation rate of these harmonics in Equation (2.15) is bounded with

13



β. As the maximum value that β can take is 4πfR/c, the maximum oscillation

rate of the harmonics in Equation (2.15) is bounded with 4πfR/c. From Nyquist

sampling theorem, the sampling rate in φ must be twice this value. Therefore,

∆φ, which is the sampling interval in φ, should be at most c/8πfmaxR. As a

consequence, for an angular range of [0, 2π], the number of φ samples is

Nφ = Ωφ
8πfmaxR

c
. (2.16)

Therefore, the number of φ samples that will allow interpolation grows with

O (N). Similarly, the number of θ samples is

Nθ = Ωθ
4πfmaxR

c
(2.17)

since θ is to be sampled in the [0, π] range instead of [0, 2π]. Here Ωφ and Ωθ are

real numbers greater than 1 indicating the ratio of the actual sampling rates to

the theoretical ones.

As in the frequency sampling section, in order to verify the validity of Equa-

tion (2.11), spectrum of the backscattering from a helicopter model (Fig. 2.7) is

given in Fig. 2.8. In the same figure, the resolved band for different oversampling

ratios are also shown.

From Fig. 2.8, it is observed that increasing Ωφ beyond 3 does not decrease the

norm error significantly. This can be explained by the illumination effect. By

employing the visibility function

V (r′) =





1, r′ ∈ Slit

0, otherwise



 , (2.18)

PO operator given in Equation (2.4) can be written as

ΨS = −jkη
e−jkr

2πr

∫

r′∈S

V (r′) n̂×Hinc
0 ejkr′·(r̂−r̂i)dr′. (2.19)

It is clear that since n̂×Hinc
0 term in the Fourier transform integral is multiplied

with the visibility functionV (r′), the spectrum of the scattered signal is also

14
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Figure 2.10: Spectrum of the Escat signal as a function of φ for the backscattering
case. The resolved bands for different oversampling ratios are also shown in the
same figure.

broadened. This fact can be verified from Fig. 2.10, where the spectrum of the

scattered signal decays slower compared to Fig. 2.8. In addition, as the PO

operator given in Equation (2.19) is evaluated on a coarse grid at the bottom

level, illumination is also computed for this coarse grid. Therefore at each level,

illumination is also interpolated with scattering patterns of the subdomains.

.
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Chapter 3

MLPO ALGORITHM

When computing the PO scattering pattern with sufficient number of samples

as a function of θ, φ, and frequency, sampling rate in each dimension should be

proportional to the electrical size of the target. Let R be the smallest radius of

a sphere that can contain the target and N = kR, where k is the wavenumber.

Then, the required number of samples in θ, φ, and frequency are O (N) each and

the total number of required samples is O (N3) . If the target surface is modeled

with a triangular mesh, there will be O (N2) triangles as the number of triangles

will be proportional to the surface area. Hence, the computational complexity

of evaluating the PO integral analytically [8] on the triangular mesh for each

θ, φ, and frequency turns out to be O (N5). The MLPO algorithm aimed to

decrease this complexity is based on the decomposition of the target surface S

into nonoverlapping subdomains. Since each subdomain will have a smaller size,

its scattering pattern can be sampled at a rate lower than the rate required for

the scattering pattern of S as a whole. After the evaluation of the subdomain

scattering patterns at lower sampling rates, these patterns can be aggregated to

find the scattering pattern of the whole geometry. As the pattern evaluated by

the aggregation of the smaller subdomain patterns will be larger, the subdomain

17



scattering patterns should be interpolated to a finer grid before aggregation. This

scheme is illustrated in Fig. 3.1.
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Figure 3.1: Calculating the scattering pattern of S as a sum of scattering patterns
of smaller subsurfaces S1 and S2.

Since the origin of each subdomain will be different from the global origin, subdo-

main patterns will oscillate at higher rates because of the phase shift (Fig. 2.5).

Therefore, prior to interpolation, subdomain patterns should be shifted to the

origin and restored after interpolation. In this scheme, PO operator Ψ that

computes the scattering pattern of any arbitrary surface S can be written as

ΨS =
∑Q

q=1
E [̄rq] I

NθNφNf

N̄θN̄φN̄f
O [̄rq] ΨS̄q. (3.1)

Here, r̄q is the center of the smallest sphere that can include the qth subdomain.

O [̄rq] is the operator that shifts the origin of the qth subdomain to the global

origin in order to remove the phase oscillations. The I
NθNφNf

N̄θN̄φN̄f
matrix is the inter-

polation matrix that increases the number of samples from N̄θ × N̄φ× N̄f points

to Nθ×Nφ×Nf points, and E [̄rq] is the operator that shifts the origin of the qth

subdomain back to its location after the interpolation. Efficient implementation

of interpolation I
NθNφNf

N̄θN̄φN̄f
is given in Appendix A.

In the MLPO algorithm, each subdomain Sq is recursively subdivided into smaller

subdomains and the scattering patterns of these subdomains are also calculated

using the PO operator Ψ in Equation (3.1). When the subdomain size is in the
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order of λ (wavelength), the subdivision process is stopped and the scattering

patterns of the lowest-level subdomains are evaluated with the direct evalua-

tion of the PO integral. Hence in the MLPO algorithm, the PO operator Ψ in

Equation (3.1) takes the form of

ΨS =
∑Q

q=1
E [̄rq] I

NθNφNf

N̄θN̄φN̄f
O [̄rq]

∑Q

q=1
E [̄rq] I

NθNφNf

N̄θN̄φN̄f
O [̄rq] · · ·ΨS̄q. (3.2)

3.1 Computation Time

As the electrical size of the bottom-level subdomains will be bounded, the re-

quired number of θ, φ, and frequency samples will be fixed for each subdomain at

this level. There will be O (N2) filled subdomains at this level and therefore cal-

culating the PO patterns of all subdomains analytically at this level will require

O (N2) operations. At each aggregation step, local interpolations transforming

the scattering patterns form a coarse grid of θ, φ, and frequency to a finer grid will

require O (N3) operations. As there will be O (log N) levels, total computational

cost of aggregations will be O (N3 log N). Therefore, the overall computational

complexity of the MLPO algorithm is O (N2) + O (N3 log N) = O (N3 log N).

This complexity is far less than the O (N5) complexity of the conventional PO

integration.

3.2 Memory Requirement

As mentioned before, the number of pattern samples in the bottom level is fixed

and does not grow with N . Since the number of subdomains in the bottom level

is O (N2), memory required to store the scattering patterns of the bottom-level

subdomains is also O (N2). When aggregating from lower levels to the upper

levels, the required memory to store the scattering patterns of the subdomains

will grow by a factor of 8 as the subdomain sizes are doubled. Since PO current is
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only on the surface of the target, we can assume that the number of filled clusters

is reduced by a factor of 4 at each higher level. Therefore, memory required

at each aggregation step will increase by a factor of 8/4 = 2. Hence, at the

uppermost level, memory requirement will be O
(
N22log N

)
, which is O (N3). As

will be shown in Chapter 5 , this memory requirement may prevent the solution of

larger problems using the MLPO algorithm. In Chapter 5, we present a memory-

efficient implementation that reduces the memory complexity from O (N3) to

O (N2 log N).
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Chapter 4

MLPO ALGORITHM FOR

NONUNIFORM

TRIANGULATIONS

4.1 Nonuniform Triangulation

In electromagnetic scattering problems, triangulation or triangular meshing is a

common approach for modelling targets with complex geometries. In a uniform

triangulation, the triangle size (or mesh size) is usually chosen approximately

between λ/10 and λ/5 depending on the desired accuracy. In this scheme, the

number of triangles is directly proportional to the surface area of the target and

the complexity of the number of triangles grows with O (N2).

On the other hand, if a nonuniform triangulation is employed, instead of ad-

justing the size of each triangle approximately equal to some fraction of λ, the

triangle size can be adjusted according to the surface curvature of the target,

i.e., the triangle size gets smaller where the curvature is high and larger where

the curvature is low. In such a triangulation, the size of each triangle can be
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iteratively modified until the scattering pattern of each subdomain, evaluated via

PO, converges [7]. Alternatively, the size of each triangle can be adjusted until

the distance of each triangle from the target surface is less than a predefined

deviation. Second alternative is chosen for simplicity in the example problems

that demonstrate the application of the MLPO algorithm on nonuniform trian-

gulations.

(a) (b)

(c)

Figure 4.1: An example geometry with both smooth and curved regions:
(a) Shaded view. (b) A uniform triangulation example. (c) A nonuniform trian-
gulation example.

4.2 Modified MLPO Algorithm

As mentioned in Chapter 3, in the MLPO algorithm, only the scattering pat-

terns of the smallest subdomains are computed via PO and those patterns are
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sampled at lower rates according to their dimensions. In a nonuniform trian-

gulation, there may be triangles that are too large to fit in the smallest subdo-

mains. Since the required sampling rate for the patterns of these triangles will

be higher, sampling and aggregation of these triangles in the lowest levels will

result in an interpolation error that grows at each aggregation step as illustrated

in Fig. 4.2(a). Therefore the MLPO algorithm is modified in such a way that

the radiation patterns of the larger triangles are sampled at a rate proportional

to their dimensions and aggregated at the appropriate levels as in Fig. 4.2(b).
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Figure 4.2: Aggregation of larger triangles. (a) Aggregating at the bottom level
with a lower sampling rate, which will cause an interpolation error. (b) Aggre-
gating at higher levels with the correct sampling rate, which will prevent the
interpolation error.
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Table 4.1: Computation of the generic helicopter model’s RCS pattern: Number
of triangles and CPU times for direct PO evaluation, MLPO algorithm, and
modified MLPO algorithm with nonuniform triangulation.

Direct PO MLPO Modified MLPO algorithm
evaluation algorithm with nonuniform triangulation

Number of triangles 88,000 88,000 24,000
CPU time 5.7 min 0.26 min 0.075 min

4.3 Results

To illustrate the efficiency of the improved MLPO algorithm for nonuniform

triangulations, the geometry shown in Fig. 4.3 is illuminated from the (θi, φi) =

(135◦, 90◦) direction. The RCS results computed with PO and MLPO algorithm

are shown in Fig. 4.4

16 m

3.5 m

x y

z

Figure 4.3: Generic helicopter geometry

In Fig. 4.4, RCS results and the error between the RCS patterns calculated with

PO integration and MLPO algorithm is presented. It is seen that the error in

RCS is below 1%.

The scattering pattern is evaluated for 577 points in the frequency range of

[0.1, 1] GHz via direct PO evaluation, MLPO algorithm, and the modified MLPO

algorithm for nonuniform triangulations. The number of triangles and CPU times

are given in Table 4.1.
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Figure 4.4: Backscattering RCS pattern of the generic helicopter geometry, com-
puted via direct PO integration and MLPO algorithm: (a) RCS results. (b) Nor-
malized error between the complex scattered fields.
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Figure 4.5: Backscattering RCS pattern of the generic helicopter geometry, com-
puted via MLPO algorithm for uniform and nonuniform triangulations.

The nonuniform triangulation consists of approximately 24,000 triangles. The

CPU time of the MLPO with uniform triangulation of 6 cm is 0.26 min. On

the other hand, CPU time of MLPO with the nonuniform triangulation is 0.075

min. Although a speed-up of nearly 3.5 may seem insufficient, a greater speed-

up can be achieved by increasing the deviation of the nonuniform mesh from the

geometry and thereby decreasing the accuracy. Moreover, uniform triangulations

may require millions of triangles in real-life applications with target sizes up

to thousands of λ. Therefore, even generating such triangulations for complex

geometries may become impossible and a nonuniform triangulation may become

a good choice.
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Chapter 5

MEMORY-EFFICIENT MLPO

ALGORITHM

The proposed memory-efficient implementation of the MLPO algorithm is based

on the idea that, the patterns of the clusters need not be stored for the entire

range of θ, φ, or frequency values at the same time. By a careful implementa-

tion, the θ, φ, or frequency ranges can be divided into smaller ranges so that

interpolations and aggregations can be performed on those smaller ranges.

For instance, when aggregating the bottom level to the upper level, θ can be

sampled in the
[
0, π

2

]
range instead of [0, π]. This way, the memory required for

each cluster will grow by a factor of 4 instead of 8. In the next level, the number

of clusters will be reduced by a factor of 4, and the total required memory will

be constant. Then, θ can be sampled in the
[
0, π

4

]
range instead of

[
0, π

2

]
at the

next level, and this procedure can be applied till the uppermost level is reached.

This scheme is illustrated in Fig. 5.1.

If L is the number of levels, after the aggregations are performed, 1
/
2L−1 portion

of whole scattering pattern will be available at the Lth level. This portion can

be output to a file and the remaining portion can be obtained by aggregating the
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Figure 5.1: Aggregation steps in the proposed memory-efficient algorithm. Note
that θ ∈ [0 : ∆θ : 180] means that the patterns at that level is sampled from 0
to 180, with an increment of ∆θ

second half to Lth level. Then the 3rd portion of the pattern will be required.

This portion will not be available at the (L− 1)st level. Therefore, the pattern

available at the (L− 2)nd level should be aggregated to the (L− 1)st level. The

3rd portion of the whole scattering pattern at the Lth level can be obtained

by aggregation from the (L− 1)st level. In this scheme, after 2L−1 passes, the

whole scattering pattern will be obtained. As an example, aggregations of pattern

portions for a 6 -level problem is depicted in Fig. 5.2.

The following pseudo-code describes the partial aggregation of the clusters at

each pass:

{n is an array of size L − 1, indicating which half of the available pattern

portion should be aggregated at each pass.}
{In the first pass, first halves of the available pattern portions should be ag-

gregated.}
n(1 : L) ← 1

for t = 1 to 2L−1 do

for l = 1 to L− 1 do {all levels 1 to L− 1}
m ← L− l + 1

if mod (t, 2m−2) = 1 or m= 2 then
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Figure 5.2: Aggregations of pattern portions for a 6-level problem. Aggregations
are shown as blue arrows and output to files are shown as red arrows.

for all cli ∈ lth level do {all clusters in lth level}
{Aggregate the n(l)th half of the cluster.}
aggregate cluster(cli, n(l))

end for

if n(l) = 1 then

n(l) ← 2

else

n(l) ← 1

end if

end if

end for{Write the available portion of the whole targets scattering pattern.}
writeToF ile

end for

It should be noted that higher-order interpolation schemes may be desired in

order to prevent the interpolation error in aggregations [11]. In this case, addi-

tional sample points at the end points in the partial patterns should be included

in the interpolations as illustrated in Fig. 5.3.
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Figure 5.3: Interpolating cluster patterns near the end points.

For the end points corresponding to θ = 0 or θ = π, the samples corresponding

to neighboring nodes on the unit sphere can be used since (0− α, φ) = (α, φ + π)

and (π + α, φ) = (π − α, φ + π) on a unit sphere.

Dividing the ranges of other dimensions will reduce the required memory at

each aggregation step but will not significantly improve the memory efficiency.

This is because the patterns of the bottom-level clusters dominate the memory

requirement. On the other hand, aggregating the bottom-level clusters directly

to the upper level without storing their patterns will reduce the required memory.

5.1 Results

5.1.1 Bistatic RCS of the Flamme Geometry

To demonstrate the efficiency and accuracy of the MLPO algorithm, bistatic RCS

pattern of the scaled Flamme geometry shown in Figure 5.4 is computed for all
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Table 5.1: Computation of the Flamme’s bistatic RCS pattern: Growth of the
number of triangles, θ samples, φ samples, and frequency samples as N increases

N/2π (Target Size/λ Number of Nθ Nφ Nf

in Frequency Range) Triangles
[0, 1.5] 628 49 101 17
[0, 3] 1604 97 201 33
[0, 6] 5200 193 401 65
[0, 12] 19288 385 801 129
[0, 24] 75634 769 1601 257
[0, 48] 300020 1537 3201 513

directions on the unit sphere. RCS values are evaluated for the frequency ranges

given in Table 5.1, and CPU times are compared in Figure 5.8. For the sake of

simplicity, first column of Table 5.1 is given as N/2π, which is the electrical size

of the target in λ.

(a) (b)

0.23 m

0.6 m (6λ @ 3GHz)

(c)

0
.2

3
 m

(d)

Figure 5.4: Geometry of the stealth Flamme target: (a) Front view. (b) A
uniform mesh example. (c) Rear view. (d) Top view.

From the bistatic RCS results shown in Figs. 5.6 and 5.5, it is observed that, on

the x-y, x-z, and y-z planes and in the [0, 3] GHz frequency range, the MLPO

algorithm and direct PO evaluation results are in excellent agreement. Fig. 5.7

presents the RCS error, 10 log |RCSMLPO −RCSPO|, which is lower than 1%.
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Figure 5.5: Bistatic RCS pattern of the Flamme geometry computed with direct
PO evaluation: (a) x-y, (b) x-z, and (c) z-y planes.
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Figure 5.6: Bistatic RCS pattern of the Flamme geometry computed with MLPO
algorithm: (a) x-y, (b) x-z, and (c) z-y planes.
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Figure 5.7: Absolute error of the MLPO algorithm: (a) x-y, (b) x-z, and (c) z-y
planes.

Since the direct PO evaluation and MLPO algorithm results are very close to

each other and therefore it is difficult to see the error by comparison, the absolute

RCS difference,
∣∣RCSPO −RCSMLPO

∣∣ is also provided in Fig. 5.7.

From Table 5.1, it is observed that, as N increases, the number of triangles

grows with O (N2) for large N . Numbers of θ, φ, and frequency samples (Nθ,

Nφ, and Nf , respectively) increase with O (N). Therefore, the total complexity

of the direct PO evaluation turns out to be O (N5). This can be verified from the

computation times presented in Fig. 5.8. Since both axes are in log scale, slopes

of the curves indicate the complexity. For instance, log (N5) = 5 log (N) and

when plotted versus log (N), the curve is a straight line with slope 5. Similarly,

log (N3 log (N)) = 3 log (N) + log (log N) ≈ 3 log (N) and when plotted versus

log (N), the curve is approximately a straight line with slope 3.
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Figure 5.8: Efficiency of the MLPO algorithm: (a) CPU time. (b) Memory
requirement. Dashed curves represent estimated values.

For the 48λ problem presented in Table 5.1 and Fig. 5.8, computing the scatter-

ing pattern with the memory-efficient MLPO algorithm takes approximately 53

hours. Computation time of the same problem with the direct PO integration is

estimated to be 180,000 hours. Thus, a speed-up of nearly 3000 can be achieved

with the MLPO algorithm. On the other hand, conventional MLPO algorithm

would require 388 GB of memory, whereas the memory-efficient MLPO algorithm

requires only 8 GB of memory, which is 77 times more efficient.

5.1.2 Backscattering RCS of the Flamme Geometry

MLPO algorithm can also be used to evaluate the backscattering RCS pattern

in addition to the bistatic RCS pattern. To demonstrate the efficiency and accu-

racy of the MLPO algorithm, backscattering RCS pattern of the scaled Flamme

geometry shown in Figure 5.4 is computed for all directions on the unit sphere

for the frequency ranges given in Table 5.1. Note that as the backscattering and

the bistatic RCS patterns of a target will have approximately similar spectral
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content according to the target size, the number of θ, φ, and frequency samples

are the same for both bistatic and backscattering cases.

From the backscattering RCS results shown in Fig. 5.9 and Fig. 5.10, as in the

bistatic case, on the x-y, x-z, and y-z planes and in the [0, 3] GHz frequency

range, the MLPO algorithm and direct PO evaluation results are in excellent

agreement. As in the bistatic case, the absolute error in the RCS is also presented

in Fig. 5.11.
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Figure 5.9: Backscattering RCS pattern of the Flamme geometry computed with
direct PO evaluation: (a) x-y, (b) x-z, and (c) z-y planes.

From Fig. 5.12 and Fig. 5.8, it is observed that the memory requirement of the

memory-efficient MLPO algorithm is exactly the same for the backscattering and

bistatic cases. As the spectral contents of the scattered fields of the subdomains

are very similar for the bistatic and backscattering cases, the sampling rates in

θ, φ, and frequency are all the same for these two cases. As a result, since the
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Figure 5.10: Backscattering RCS pattern of the Flamme geometry computed
with MLPO algorithm: (a) x-y, (b) x-z, and (c) z-y planes.
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Figure 5.11: Absolute error of the MLPO algorithm: (a) x-y, (b) x-z, and (c) z-y
planes.
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domain decomposition is also the same for the bistatic and backscattering cases,

memory required to store subdomain radiation patterns is also the same. In

addition, it is also seen that the computation times of the bistatic and backscat-

tering cases are also very close. This is because the only difference between

the backscattering and bistatic cases is the computation of the illumination on

a coarse grid of directions at the bottom level for the backscattering case. As

the interpolations in the aggregations are the dominant factor determining the

computational time, the bistatic and backscattering cases take the same amount

of time as the number of aggregations is same in each case. As a result, the

speed-up of 3000 in computational time and a gain of 77 in the required memory

is also achievable for the backscattering case.
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Figure 5.12: Efficiency of the MLPO algorithm: (a) CPU time. (b) Memory
requirement. Dashed curves represent estimated values.

As the operations done in the backscattering and the bistatic cases are very sim-

ilar, the CPU times and memory requirements are also very similar in these two

cases. On the other hand, for the backscattering case, the error is slightly higher

compared to the bistatic case. This is because the illumination is computed only

on the coarse grid of bottom level of the MLPO algorithm, when the scattering
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patterns are computed. As the scattering patterns are aggregated, the illumina-

tion effect is also interpolated at each aggregation step. Whereas in the direct

evaluation of the PO, all the illuminations are directly computed in the finer grid

of illumination directions. Note that for the bistatic case, illumination is in one

direction and it is not a function of θ or φ.
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Chapter 6

CONCLUSIONS

In this thesis, we extend the 2-D MLPO algorithm proposed by Boag [6] to

3-D problems. We also propose two improvements on the MLPO algorithm.

First improvement is the modification of the algorithm that enables the solution

of the scattering problems involving nonuniform triangulations, thus decreasing

the CPU time. The algorithm is modified so that the radiation patterns of the

larger triangles in the nonuniform mesh are sampled according to their sizes and

aggregated at the appropriate levels. Therefore, in addition to the speed-up of the

MLPO algorithm, a speed-up of nearly Nt/N
′
t can be achieved, while preventing

the interpolation error. Here, Nt is the number of triangles in the uniform mesh

and N
′
t is the number of triangles in the nonuniform mesh. It is shown that for a

generic helicopter model, a speed-up of 3.5 can be achieved. Although this speed-

up may seem low, a greater speed-up can be achieved by increasing the deviation

of the nonuniform mesh from the geometry and thereby decreasing the accuracy.

Besides, as the target size may grow beyond thousands of wavelengths in real-

life radar applications, uniform triangulations may require hundreds of millions

of triangles. MLPO algorithm with nonuniform triangulation may become a

good choice for such cases since even generating such triangulations for complex

geometries may become impossible.
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We also propose, develop, and demonstrate a novel memory-efficient version of

the MLPO algorithm, in which the O (N3) memory requirement of the MLPO

algorithm is decreased to O (N2 log N). It is shown that, for a 48λ scattering

problem, computation time of the scattering pattern as a function of θ, φ, and fre-

quency with MLPO algorithm is only 53 hours, whereas the computation time of

the same scattering pattern with direct PO evaluation is estimated to be 180,000

hours. Thus, a speed-up of 3000 can be achieved via the MLPO algorithm. In

addition to this remarkable speed-up, it is shown that the maximum error in the

RCS is less than 1%. On the other hand, this speed-up comes with a memory

cost of 388 GB of memory. With the memory-efficient algorithm, this mem-

ory requirement can be reduced to 8 GB. Another advantage of the proposed

memory-efficient algorithm is that the operations performed in the conventional

and the memory-efficient algorithms are exactly the same. Therefore, the mem-

ory requirement is decreased while the accuracy and the computational efficiency

are kept unchanged.
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APPENDIX A

Lagrange Interpolation

A.1 One-Dimensional (1-D) Lagrange Interpo-

lation

Lagrange interpolation polynomial, L (θ), is a polynomial of order (n− 1) that

passes through a set of n data samples (θ1, y1) , (θ2, y2) , ..., (θn, yn) [12]. The

polynomial is constructed by a weighted sum of Lagrange basis polynomials

Pj (θ) as

L (θ) =

Nθ∑
j=1

Pj (θ), (A.1)

where

Pj (θ) = yj

n∏

k=1
k 6=j

θ − θk

θj − θk

. (A.2)

Substituting Equation (A.2) and

wj (θ) =
n∏

k=1
k 6=j

θ − θk

θj − θk

(A.3)

in Equation (A.1) yields

L (θ) =
N∑

j=1

wj (θ) yj. (A.4)

43



Thus, Lagrange interpolation can be viewed as the weighted sum of the data

points, in which the weight of each sample is determined according to its distance

from the interpolated value. If the distance between the samples is equal and the

interpolated values are on a uniform grid with equal distances, then the weights

wj in Equation (A.4) can be calculated once and can be used for the entire

interpolation. This property is useful in decreasing the CPU time of the MLPO

algorithm presented in Chapter 3, since the interpolations are the dominant

factor in the computation time. As a result, computational complexity of the

lagrange interpolation for a data set of Nθ samples turns out to be O (Nθ).

A.2 Three-Dimensional (3-D) Lagrange Inter-

polation

For a 2-D function y (θ, φ), Lagrange interpolation can be written as

L (θ, φ) =
n∑

j=1

wj (θ)
n∑

i=1

vi (φ) y (θj, φi), (A.5)

where the weights wj and vi are defined as

wj (θ) =
n∏

k=1
k 6=j

θ − θk

θj − θk

, vi (φ) =
n∏

l=1
l 6=i

φ− φl

φi − φl

. (A.6)

Equation (A.5) can be interpreted as “interpolation in one dimension, then in-

terpolation in the other dimension” as illustrated in Fig. A.1.

By using this property, redundant calculation of the interpolated values can be

omitted. For instance in Fig. A.1, V2 can be calculated via 1-D interpolation

using V0 and V1, with a weighted sum of two terms. On the other hand, 2-D

interpolation would require the addition of four terms. As a result, the number

of operations can be reduced by a factor 2 if the interpolated values are stored.

In the MLPO algorithm, the interpolated values are already stored. Therefore,
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Figure A.1: Implementation of 2-D Lagrange interpolation with 1-D Lagrange
interpolations. Since V0 and V1 are calculated previously, calculating V2 requires
summation of only two terms, whereas 2-D interpolation would require summa-
tion of four terms.

interpolation scheme illustrated in Fig. A.1 should be employed in the implemen-

tation.

3-D Lagrange interpolation is the straight-forward extension of Equation (A.5).

For instance, for a 3-D function y (θ, φ, f), Lagrange interpolation can be written

as

L (θ, φ, f) =
n∑

j=1

wj (θ)
n∑

i=1

vi (φ)
n∑

h=1

zh (f) y (θj, φi, fh), (A.7)

where the weights wj and vi are defined as

wj (θ) =
n∏

k=1
k 6=j

θ − θk

θj − θk

, vi (φ) =
n∏

l=1
l 6=i

φ− φl

φi − φl

, zh (φ) =
n∏

m=1
m6=h

f − fm

fh − fm

. (A.8)

The following pseudo-code describes an efficient way of implementing a 3-D La-

grange interpolation for a 3-D function y (θ, φ, f) that is a function of θ, φ, and,

frequency. Note that 1-D Lagrange interpolation is the building block of the

algorithm:
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for j = 1, j ≤ Nθ, j = j + 2 do

for i = 1, i ≤ Nφ, i = i + 2 do

1-D interpolation along frequency( y (θj, φi, :) )

end for

for h = 1, h ≤ Nf , h = h + 1 do

1-D interpolation along phi( y (θi, :, fh) )

end for

end for

Now the 3-D space consists of filled φ-f planes. However, these planes have one

empty space between them along the θ dimension. The following loop fills those

empty planes.

for i = 1, i ≤ Nφ, i = i + 1 do

for h = 1, h ≤ Nf , h = h + 1 do

1-D interpolation along theta( y (:, φi, fh) )

end for

end for

Here in the statement j = 1, j ≤ Nθ, j = j + 2, the term j = 1 initializes the

running index j to 1. j ≤ Nθ is the control condition that terminates the for

loop when satisfied and j = j+2 term stands for incrementing the running index

j by 2 at each step of the loop.

A.3 Lagrange Interpolation Near the End

Points

In Chapter 2, it is shown that the accuracy of the interpolation can be enhanced

by increasing the order of the interpolating polynomial, thus increasing the num-

ber of samples used in the interpolation. For the end points corresponding to
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θ = 0 or θ = π, the samples corresponding to neighboring nodes on the unit

sphere can be used since, (0− α, φ) = (α, φ + π) and (π + α, φ) = (π − α, φ + π)

on a unit sphere.

Unfortunately for a function of frequency, this approach is not possible. On

the other, the hand first and second derivative information at the neighboring

sample can be used, as illustrated in Fig. A.2. Since the PO integral is evaluated

analytically on the triangles [8], evaluation of its first two derivatives at the end

points has nearly no additional computational cost.
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Figure A.2: Using the derivative information at the points that are close to the
interpolated sample near the end points.

An interpolation using the derivative information can be implemented in a variety

of ways. A modified polynomial interpolation can be used for simplicity. In this

approach, some of the rows of the Vandermonde matrix that correspond to the

unavailable nodes are replaced in order to satisfy the first two derivatives at the

end points.

To interpolate the data points given by (fi, yi) , i = 1, 2, ..., n + 1 , where all

fi are different, an interpolating polynomial of degree n, expressed as P (f) =

Cnfn + Cn−1f
n−1 + ... + C2f

2 + C1f + C0, can be used. As P (f) should satisfy
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P (fi) = yi for all data points, the linear system




fn
1 fn−1

1 . . . f1 1

fn
2 fn−1

2 . . . f2 1

...
...

...
...

fn
n fn−1

n . . . fn 1

fn
n+1 fn−1

n+1 . . . fn+1 1







Cn

Cn−1

...

C1

C0




=




y1

y2

...

yn

yn+1




(A.9)

should be solved for the coefficients Ci in order to construct the polynomial

P (f) [12]. Suppose that f1 is the end point and the data is unavailable to the

left of f1. Imposing the derivative constraint at f1 can be achieved by replacing

the last two equations by the equations

d

df
P (f)

∣∣∣∣
f=f1

= ẏ1 (A.10)

and

d2

df 2
P (f)

∣∣∣∣
f=f1

= ÿ1, (A.11)

where ẏ1 and ÿ1 are the first and second derivatives of the data at f1. Then, the

linear system of equations in Equation (A.9) becomes




fn
1 fn−1

1 . . . f1 1

fn
2 fn−1

2 . . . f2 1

...
...

...
...

fn
n−1 fn−1

n−1 . . . fn−1 1

nfn−1
1 (n− 1) fn−2

1 . . . 1 0

n(n− 1)fn−2
1 (n− 1)(n− 2)fn−3

1 . . . 0 0







Cn

Cn−1

...

C2

C1

C0




=




y1

y2

...

yn−1

ẏ1

ÿ1




(A.12)

Once Equation (A.12) is solved for the coefficients Ci, interpolated values at any

point can be found by evaluating P (f) at that point.

When applying this approach in the MLPO algorithm, first of all before the

interpolation, the pattern of each subdomain is shifted to the origin at each

aggregation step. As this shift is a multiplication by a factor of e−jkr0·(r̂−r̂i),
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derivative of the each subdomain pattern should be modified according to

∂

∂f

(
UeAf

)
=

(
eAf ∂

∂f
+ AeAf

)
U, (A.13)

where U is the subdomain pattern with respect to the global origin and A =

−jkr0 · (r̂− r̂i). Secondly, the matrix equation in Equation (A.12) should be

solved in order to find the coefficients of the interpolating polynomial. Since

the pattern of each subdomain is assumed to be sampled uniformly, coefficients

Ci can be evaluated only once per aggregation step and can be used for all

interpolations in that step. Lastly, data grid should be scaled in order to prevent

the matrix entries in Equation (A.12) from growing too large. For instance, if

the frequency range of interest is in the order of GHz, the Vandermonde matrix

given in Equation (A.12) will be too difficult to invert since its entries will contain

powers of 109 in addition to 1’s 0’s. The pattern derivatives should also be

modified according to the chain rule after the scaling of the grid.
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APPENDIX B

Accuracy of the PO

Approximation

It is known that PO approximation is usually suitable for the computation of

scattered fields from smooth, convex, and electrically-large targets. On the other

hand, the error of the PO approximation cannot be determined precisely for

a given problem. Therefore, most common way of verifying the PO results is

the comparison with the analytical solutions of canonical geometries, such as

sphere [13]. In Fig. B.1, the PO and analytical solutions for the backscattering

RCS of a sphere with radius a are given. Note that, as the electrical dimensions

of the sphere increase, PO approximation becomes more accurate. . In real-life

scattering problems with complex geometries, the analytical solution is usually

unavailable. Therefore, comparison with the measurements [4] or comparison

with the solutions of the integral-equation methods [3] for low frequencies are

common ways of verifying the PO results [14]. Since the integral-equation meth-

ods usually require more computational resources as the electrical size of the

target increases, the solutions are usually compared for low and moderately high

frequencies. Since the PO is expected to give better results as the frequency in-

creases, such comparisons help predicting the error bound for higher frequencies.
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Figure B.1: PO and analytical solutions for the backscattering RCS of a sphere
with radius a.

In an other example, PO results for the bistatic scattered field from the rectangu-

lar cube shown in Fig. B.2 are compared with multilevel fast multipole algorithm

(MLFMA) [5] results in Figs. B.3 and B.4. It is observed the PO and MLFMA

results are in good agrement in the specular reflection directions ψ = 90◦ and

ψ = 90◦. In the forward-scattering direction ψ = 180◦, the results are also in

good agrement. On the other hand, for the backscattering case ψ = 0◦, the

results are further apart. This can be explained by the fact that total scattering

is dominated by the scattering from the illuminated edge of the prism and the

PO currents are known to be less accurate on the edges.

.

.

.

In order to verify the accuracy of the PO approximation for a more complex

geometry, PO and MLFMA results for the bistatic scattering from the helicopter
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Figure B.2: Rectangular prism.
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Figure B.3: Bistatic scattering from the rectangular prism on the z-y plane.
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Figure B.4: Bistatic scattering from the rectangular prism on the x-z plane.

model shown in Fig. B.5 are compared in Fig. B.6. It is seen that PO is more ac-

curate for the backscattering ψ = 270◦ and forward-scattering ψ = 90◦ directions

and less accurate in the other directions.
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Figure B.5: Helicopter model.
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Figure B.6: Bistatic scattering from the helicopter model on the x-z plane.
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Glossary

dbms : “Decibel meter square.

E (·) : Electric field intensity.

Einc (·) : Incident electric field intensity.

Escat (·) : Scattered electric field intensity.

E [r0] : Operator that shifts the target by −r0.

F {·} : Fourier transform.

H (·) : Magnetic field intensity.

Hinc (·) : Incident magnetic field intensity.

Hscat (·) : Scattered magnetic field intensity.

I
NθNφNf

N̄θN̄φN̄f
: Interpolation matrix that increases the number of samples from

N̄θ × N̄φ × N̄f points to Nθ ×Nφ ×Nf points.

Jn (·) : Bessel function of order n.

Js (·) : Electric surface current density.

k : Wavenumber.

L (·) : Lagrange interpolation polynomial.

λ : Wavelength.
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N : kR.

η : Intrinsic impedance.

Nf : Number of frequency samples.

Nφ : Number of φ samples.

Nt : Number of triangles in the uniform mesh.

N
′
t : Number of triangles in the nonuniform mesh.

Nθ : Number of θ samples.

O [r0] : Operator that shifts the target by r0.

Ωf : Oversampling ratio in frequency.

Ωφ : Oversampling ratio in φ.

Ωθ : Oversampling ratio in θ.

P (·) : Lagrange basis polynomial.

Ψ : PO operator.

r̂ : Observation unit vector.

r′ : Source point.

r0 : Shift vector.

RCS : Radar cross section defined as 4π
∣∣∣Escat

Einc

∣∣∣
2

.

r̂i : Incidence unit vector.

rq : Center of the smallest sphere that can contain the qth subsurface.

S : Surface of the object.

Slit : Lit regions of S.
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