
STEADY-STATE ANALYSIS OF
GOOGLE-LIKE STOCHASTIC MATRICES

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Gökçe Nil Noyan

September, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52924988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Tuğrul Dayar (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uğur Güdükbay

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ezhan Karaşan

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii

ABSTRACT

STEADY-STATE ANALYSIS OF
GOOGLE-LIKE STOCHASTIC MATRICES

Gökçe Nil Noyan

M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Tuğrul Dayar

September, 2007

Many search engines use a two-step process to retrieve from the web pages related

to a user’s query. In the first step, traditional text processing is performed to find

all pages matching the given query terms. Due to the massive size of the web,

this step can result in thousands of retrieved pages. In the second step, many

search engines sort the list of retrieved pages according to some ranking criterion

to make it manageable for the user. One popular way to create this ranking is

to exploit additional information inherent in the web due to its hyperlink struc-

ture. One successful and well publicized link-based ranking system is PageRank,

the ranking system used by the Google search engine. The dynamically chang-

ing matrices reflecting the hyperlink structure of the web and used by Google

in ranking pages are not only very large, but they are also sparse, reducible,

stochastic matrices with some zero rows. Ranking pages amounts to solving for

the steady-state vectors of linear combinations of these matrices with appropri-

ately chosen rank-1 matrices. The most suitable method of choice for this task

appears to be the power method. Certain improvements have been obtained using

techniques such as quadratic extrapolation and iterative aggregation. In this the-

sis, we propose iterative methods based on various block partitionings, including

those with triangular diagonal blocks obtained using cutsets, for the computa-

tion of the steady-state vector of such stochastic matrices. The proposed iterative

methods together with power and quadratically extrapolated power methods are

coded into a software tool. Experimental results on benchmark matrices show

that it is possible to recommend Gauss-Seidel for easier web problems and block

Gauss-Seidel with partitionings based on a block upper triangular form in the

remaining problems, although it takes about twice as much memory as quadrat-

ically extrapolated power method.

iii

iv

Keywords: Google, PageRank, stochastic matrices, power method, quadratic ex-

trapolation, block iterative methods, aggregation, partitionings, cutsets, triangu-

lar blocks.

ÖZET

GOOGLE-BENZERİ RASSAL MATRİSLERİN
UZUN VADELİ ÇÖZÜMLEMESİ

Gökçe Nil Noyan

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Tuğrul Dayar

Eylül, 2007

Birçok arama motoru, ağ üzerinden kullanıcının sorgusuyla ilgili sayfaları bula-

bilmek için iki aşamalı bir süreç kullanır. Birinci aşamada, verilen sorgulama

terimlerini içeren tüm sayfaları bulabilmek için alışılagelen metin işleme yapılır.

Ağın devasa büyüklüğü nedeniyle bu aşama binlerce sayfanın elde edilmesiyle

sonuçlanabilir. İkinci aşamada, birçok arama motoru, elde edilen sayfa listesinin

kullanıcı açısından idare edilebilir olması için onu bir sınıflandırma kriterine göre

sıralar. Bu sıralamayı oluşturmanın yollarından popüler olan biri, hiperbağlantı

yapısından kaynaklanan, ağdaki ek bilgilerden yararlanmaktır. Google arama mo-

toru tarafından kullanılan SayfaDeğeri, bağa dayalı sınıflandırma sistemlerinden

başarılı olmuş ve çok tanınan biridir. Ağın hiperbağlantı yapısını yansıtan sürekli

değişmekte olan ve Google tarafından sayfaları sıralamak için kullanılan matrisler

sadece çok büyük değil, fakat aynı zamanda bazı sıraları sıfır olan, seyrek, indi-

regenebilir rassal matrislerdir. Doküman sıralamalarını bulabilmek, bu tip ras-

sal matrislerin, özel rank-1 matrisleriyle konveks kombinasyonlarının uzun vadeli

vektörlerini elde etmekten geçer. Bu iş için seçilecek en uygun yöntem kuvvet

yöntemi olarak gözükmektedir. Bu konuda, ikinci dereceden ekstrapolasyon ve

dolaylı birleştirme gibi tekniklerle belirli ilerlemeler sağlanmıştır. Bu tezde, böyle

rassal matrislerin uzun vadeli vektörlerini hesap etmek için, kesenkümeler kul-

lanılarak elde edilmiş üçgen köşegen blokları olanlar da dahil olmak üzere, blok

bölünmelere dayalı dolaylı yöntemler önerilmektedir. Önerilen dolaylı yöntemler,

kuvvet ve ikinci dereceden ektrapolasyonlu kuvvet yöntemleri ile birlikte bir

yazılım paketine kodlanmıştır. Denektaş matrisler üzerinde deneysel sonuçlar

daha kolay olan ağ problemleri için Gauss-Seidel diğer problemler için ise, ik-

inci dereceden ekstrapolasyonlu güç yönteminin neredeyse iki katı bellek kullan-

masına rağmen, blok üst üçgen biçime dayalı bölünmeler ile blok Gauss-Seidel

önerilebileceğini göstermektedir.

v

vi

Anahtar sözcükler : Google, SayfaDeğeri, rassal matrisler, güç yöntemi, ikinci

dereceden ekstrapolasyon, blok dolaylı yöntemler, birleştirme, bölünmeler, ke-

senkümeler, üçgen bloklar.

Acknowledgement

I would like thank my supervisor Assoc. Prof. Dr. Tuğrul Dayar for his guidance,

support, and patience throughout this study. I would like to thank my thesis

committe members Assoc. Prof. Dr. Uğur Güdükbay and Assoc. Prof. Dr.

Ezhan Karaşan for their constructive remarks and suggestions. I would also

like to thank Bilkent University and the Computer Engineering Department for

exemption of tuition and fees of three years and the scholarship of one year

and also TÜBİTAK for their scholarship of one year. Finally, I would like to

thank my family and friends, especially, Tayfun Küçükyılmaz, Sengör Altıngövde,

Engin Demir, Ata Türk, and Ali Cevahir for their help, encouragement and moral

support throughout this study.

vii

Contents

1 Introduction 1

2 Background 4

2.1 Markov Chains . 5

2.1.1 Discrete-Time Markov Chains 6

2.1.2 Continuous-Time Markov Chains 7

2.2 Steady-State Vector . 8

2.3 Steady-State Analysis of Markov Chains 10

2.3.1 Power Method . 11

2.3.2 Iterative Methods Based on Splittings 12

2.3.2.1 (B)JOR Method 13

2.3.2.2 (B)SOR Method 13

2.3.3 IAD Method . 14

3 Steady-State Analysis of Google-like Stochastic Matrices 16

3.1 PageRank Algorithm . 17

viii

CONTENTS ix

3.2 Power Method . 19

3.3 Quadratic Extrapolation on Power Method 20

3.4 Updating the Steady-State Vector 22

4 Proposed Methods 26

4.1 Obtaining Triangular Blocks Using Cutsets 27

4.1.1 Partitioning an Irreducible Matrix 27

4.1.2 Partitioning a Reducible Matrix 30

4.2 Partitioning Google-like Stochastic Matrices 31

4.2.1 Partitioning 1 . 37

4.2.2 Partitioning 2 . 39

4.2.3 Partitioning 3 . 40

4.3 An Illustrative Example . 41

5 Experimental Results 46

5.1 Properties of Benchmark Matrices 46

5.2 Experimental Setup . 48

5.3 Performance Evaluation . 49

5.3.1 Experiments with Reducible Matrices 49

5.3.2 Experiments with Irreducible Matrices 80

5.3.3 Comparison of Solvers . 81

CONTENTS x

6 Conclusion 91

Bibliography 93

Appendix 98

A Software User Manual 98

List of Tables

5.1 Properties of benchmark matrices. 47

5.2 Nonzero structure of the Stanford problem for all partitionings. . . 51

5.3 Other information on nonzero structure of the Stanford problem

with partitionings 1 and 2. 51

5.4 Nonzero structure of the StanfordBerkeley problem for all parti-

tionings. 51

5.5 Other information on nonzero structure of the StanfordBerkeley

problem with partitionings 1 and 2. 51

5.6 Nonzero structure of the Eu2005 problem for all partitionings. . . 52

5.7 Other information on nonzero structure of the Eu2005 problem

with partitionings 1 and 2. 52

5.8 Nonzero structure of the In2004 problem for all partitionings. . . 52

5.9 Other information on nonzero structure of the In2004 problem with

partitionings 1 and 2. 52

5.10 Nonzero structure of the Webbase problem for all partitionings. . 53

5.11 Other information on nonzero structure of the Webbase problem

with partitionings 1 and 2. 53

xi

LIST OF TABLES xii

5.12 Solver statistics for the Stanford problem when α = 0.85. 55

5.13 Solver statistics for the Stanford problem when α=0.90. 56

5.14 Solver statistics for the Stanford problem when α=0.95. 57

5.15 Solver statistics for the Stanford problem when α=0.97. 58

5.16 Solver statistics for the Stanford problem when α=0.99. 59

5.17 Solver statistics for the StanfordBerkeley problem when α=0.85. . 60

5.18 Solver statistics for the StanfordBerkeley problem when α=0.90. . 61

5.19 Solver statistics for the StanfordBerkeley problem when α=0.95. . 62

5.20 Solver statistics for the StanfordBerkeley problem when α=0.97. . 63

5.21 Solver statistics for the StanfordBerkeley problem when α=0.99. . 64

5.22 Solver statistics for the Eu2005 problem when α=0.85. 65

5.23 Solver statistics for the Eu2005 problem when α=0.90. 66

5.24 Solver statistics for the Eu2005 problem when α=0.95. 67

5.25 Solver statistics for the Eu2005 problem when α=0.97. 68

5.26 Solver statistics for the Eu2005 problem when α=0.99. 69

5.27 Solver statistics for the In2004 problem when α=0.85. 70

5.28 Solver statistics for the In2004 problem when α=0.90. 71

5.29 Solver statistics for the In2004 problem when α=0.95. 72

5.30 Solver statistics for the In2004 problem when α=0.97. 73

5.31 Solver statistics for the In2004 problem when α=0.99. 74

LIST OF TABLES xiii

5.32 Solver statistics for the Webbase problem when α=0.85. 75

5.33 Solver statistics for the Webbase problem when α=0.90. 76

5.34 Solver statistics for the Webbase problem when α=0.95. 77

5.35 Solver statistics for the Webbase problem when α=0.97. 78

5.36 Solver statistics for the Webbase problem when α=0.99. 79

5.37 Nonzero structure of the 2D problem for all partitionings. 81

5.38 Other information on nonzero structure of the 2D problem with

partitionings 1 and 2. 81

5.39 Nonzero structure of the Easy problem for all partitionings. 81

5.40 Other information on nonzero structure of the Easy problem with

partitionings 1 and 2. 82

5.41 Nonzero structure of the Telecom problem for all partitionings. . . 82

5.42 Other information on nonzero structure of the Telecom problem

with partitionings 1 and 2. 82

5.43 Nonzero structure of the Ncd problem for all partitionings. 83

5.44 Other information on nonzero structure of the Ncd problem with

partitionings 1 and 2. 83

5.45 Nonzero structure of the Mutex problem for all partitionings. . . . 83

5.46 Other information on nonzero structure of the Mutex problem with

partitionings 1 and 2. 83

5.47 Nonzero structure of the Qnatm problem for all partitionings. . . 84

5.48 Other information on nonzero structure of the Qnatm problem with

partitionings 1 and 2. 84

LIST OF TABLES xiv

5.49 Solver statistics for the 2D problem. 85

5.50 Solver statistics for the Easy problem. 86

5.51 Solver statistics for the Telecom problem. 87

5.52 Solver statistics for the Ncd problem. 88

5.53 Solver statistics for the Mutex problem. 89

5.54 Solver statistics for the Qnatm problem. 90

Chapter 1

Introduction

The World Wide Web (WWW) is a dynamic global library which includes vast

amount of information. It is a collection of completely uncontrolled, heteroge-

neous documents. There are billions of web pages in this library with a doubling

life less than a year. Web information retrieval is a challenging task due to the

size of its environment and diversity of the web pages. Search queries may result

with thousands of web pages, most of which may be irrelevant to the query or

less important. Since users cannot extract relevant information within thousands

of pages, state-of-the-art search engines, such as Google, use ranking techniques

to list query results in the order of relevance to the query.

Google’s search engine uses a link-based, query-independent ranking system

called PageRank. PageRank is first introduced by Google’s founders Page and

Brin at Stanford University [7]. PageRank computation is one of the most effec-

tive and widely used approach for ranking pages. PageRank uses the hyperlink

structure existing within the web, which is referred to as the web graph.

PageRank uses the web graph to build a Markov Chain (MC) [37, p.4] and

iteratively computes its steady-state vector. For steady-state analysis, one needs

1

CHAPTER 1. INTRODUCTION 2

to solve the systems of linear equations

πP = π,
∑
j∈S

πj = 1, (1.1)

where P is the transition probability matrix of the irreducible MC describing

transition probabilities among states (that is, pages of the web in this case), S is

the set of states of P , and π is its steady-state distribution (row) vector. When

the transition probability matrix P is irreducible, then π in (1.1) exists, is unique,

and is positive [37, p.15].

The PageRank algorithm iteratively computes the steady-state vector using

the power method. Unfortunately there are a few problems with using the hyper-

link structure of the web. There are web pages called dangling nodes, which have

no hyperlinks. Dangling nodes exists in many forms: a data sheet, a postscript

graph, a page with a JPEG picture, a PDF document. All rows of the MC asso-

ciated with the web graph do not sum up to one due to the existence of dangling

nodes, and therefore, the MC at hand is reducible. The MC associated with the

web graph is not stochastic, due to existence of dangling nodes, and reducible.

However, the PageRank algorithm handles these difficulties elegantly.

PageRank should be computed repeatedly for the changing web. This com-

putation is challenging since it is expensive both in time and space. Different ac-

celeration techniques have been considered after the proposal of the basic model.

Some techniques aim to reduce the work incurred at each iteration of the power

method, while others aim to reduce the number of iterations required by the power

method. These goals are often at odds with one another. For example, reducing

the number of iterations usually comes at the expense of a slight increase in the

work per iteration. As long as this overhead is minimal, the proposed acceleration

is considered beneficial [21, p.348]. In this context, certain improvements have

been obtained using techniques such as quadratic extrapolation [19] and iterative

aggregation [37, pp.307–331].

In this thesis, we propose iterative methods based on various block parti-

tionings, including those with triangular diagonal blocks obtained using cutsets

CHAPTER 1. INTRODUCTION 3

[35, 30], for the computation of the steady-state vector of such stochastic matrices.

The motivation is to decrease the iteration counts and solution times with respect

to power and quadratically extrapolated power methods without increasing the

space requirements too much. To this end, the proposed iterative methods to-

gether with power and quadratically extrapolated power methods are coded into a

software tool and experiments are conducted on a variety of benchmark matrices.

In Chapter 2, we provide background information on MCs and numerical

methods for their steady-state analysis. Details of the PageRank algorithm and

important techniques proposed for accelerating PageRank computation are pre-

sented in Chapter 3. In Chapter 4, we define the proposed block partitionings

and discuss implementation issues.

Properties of the benchmark matrices, experimental results with the solvers

in the software tool [10] on the benchmark matrices, and evaluation of the results

are presented in Chapter 5. The conclusion is given in Chapter 6.

Chapter 2

Background

Mathematical models are used to represent the behavior of various systems and

are widely used in the natural sciences and engineering disciplines but also in

social sciences. In many cases, problems such as population growth, disease

transmission and decision making can be represented by mathematical models.

One type of widely used representation is the class of Markov processes. Markov

processes are used when the system has well-defined states (possibly an infinite

number), which it will occupy over time. The defining property of a Markovian

system is that the future evolution of the system depends only on the current

state and not on its past history; this is called the memoryless property. When

the state space of a Markov process is discrete, the process is referred to as a MC.

If the MC may change state at any point in time, then the process is said to be a

continuous-time Markov chain (CTMC). If the MC may change state at discrete

points in time, then the process is called a discrete-time Markov chain (DTMC).

In the next section we define MCs formally. Discrete- and continuous-time

MCs are discussed in more detail in the following two subsections. In the second

section we give a formal definition of the steady-state vector. Finally, we provide

an overview of numerical methods for the steady-state analysis of MCs in the last

section.

4

CHAPTER 2. BACKGROUND 5

2.1 Markov Chains

A MC is a type of a stochastic process, and therefore, we first give the definition

of a stochastic process.

Definition 1. [37, p.4] A stochastic process is a family of random variables

{X(t), t ∈ T } on a given probability space S and indexed by parameter t, where t

varies over some index set (parameter space) T .

T is a subset of (−∞,+∞) and usually thought of as the time parameter set.

As such, T is sometimes called the time range, and X(t) ∈ S denotes the value

of the observation at time t ∈ T .

Next, we give the definition of a Markov process and then that of a MC. In

the discussion that follows, ℵ denotes the set of natural numbers.

Definition 2. A Markov process is a stochastic process that has no memory.

That is, only the current state of the process can affect where it goes next. Thus,

if t0 < t1 < . . . < tk (k ∈ ℵ) represent instants in the time parameter set T ,

a stochastic process {X(t), t ∈ T } becomes a Markov process if it possesses the

memoryless property [37, p.4]:

Prob {X(t) ≤ x | X(t0) = x0, X(t1) = x1, . . . , X(tk) = xk}

= Prob {X(t) ≤ x | X(tk) = xk} .

Definition 3. [37, p.4] A MC is a Markov process whose state space is discrete.

The state space S of a MC is usually taken to be the set ℵ or a subset of it.

The state X(tk) contains all the relevant information concerning the history of

the process at time tk ∈ T . This does not imply that transitions are not allowed

to depend on the actual time instant at which they occur. When the transitions

out of state X(tk) depend on time tk, the MC is said to be nonhomogeneous. If

transitions are independent of time, the Markov process is said to be homogeneous

[37, p.4].

CHAPTER 2. BACKGROUND 6

2.1.1 Discrete-Time Markov Chains

If the state space S of a Markov process is discrete and the process may change

state at discrete points in time, we say that the process is a DTMC. In this case,

the discrete parameter space T may be represented by the set ℵ [37, p.4] and the

evolution of the DTMC by the sequence of random variables X0, X1, X2,

A DTMC satisfies the memoryless property for all n ∈ ℵ and all states xn ∈ S
[37, p.5] as in

Prob {Xk+1 = xk+1 | X0 = x0, X1 = x1, . . . , Xk = xk}

= Prob {Xk+1 = xk+1 | Xk = xk} .

The conditional probability of making a transition from state i to state j when

the time parameter increases from k to k + 1, is called the transition probability

of a MC and denoted shortly as [37, p.5]

pij (k) = Prob {Xk+1 = j | Xk = i} .

For a homogeneous DTMC these probabilities are independent of k and denoted

by

pij = Prob {Xk+1 = j | Xk = i} for k ∈ ℵ.

A transition probability matrix is used for representing the behavior of a homo-

geneous DTMC. The transition probability matrix is formed by placing pij in row

i and column j for all i and j, and is denoted by P . Since the total probability

of making transitions from a state to all states in S is one, the sum of elements

in any row of P must be one. That is, P is a stochastic matrix, in which pij ≥ 0

and
∑

j∈S pij = 1 for i ∈ S. When the MC is nonhomogeneous, the elements pij

are replaced with pij (k) and the matrix P with P (k).

CHAPTER 2. BACKGROUND 7

2.1.2 Continuous-Time Markov Chains

When a MC may change state at any point in time, we say that the process is a

CTMC. In DTMCs we only address time steps; with CTMCs we interpret time

instants as nonnegative numbers, that is, elements of the set T = [0,∞). In a

CTMC, for any sequence t0 < t1 < . . . < tk < tk+1 and for random variables

X(t0), X(t1), . . . the memoryless property holds [37, p.7] as in

Prob {X(tk+1) = xk+1 | X(t0) = x0, X(t1) = x1, . . . , X(tk) = xk}

= Prob {X(tk+1) = xk+1 | X(tn) = xn}.

Transition probabilities for a nonhomogeneous CTMC are defined as

pij (s, t) = Prob {X(t) = j | X(s) = i} for t > s.

If the CTMC is homogeneous, these probabilities depend on the difference be-

tween t and s, and are described as

pij (τ) = Prob {X(s+ τ) = j | X(s) = i} for τ = t− s.

A CTMC is represented by the transition rate matrix Q(t). Although this matrix

is formed in a similar way to P , its off-diagonal elements are the instantaneous

transition rates among different states when τ is sufficiently small. When the

CTMC is homogeneous, the transition rates qij are independent of time, and the

transition rate matrix is simply written as Q. Note that, the diagonal element

in each row is equal to the negated sum of the off-diagonal elements in that row,

i.e.,

qii = −
∑
j 6=i

qij for all i ∈ S.

The next section introduces an important measure we are interested in com-

puting in this work.

CHAPTER 2. BACKGROUND 8

2.2 Steady-State Vector

In analyzing MCs, one may be interested in studying the behavior of the modeled

system over a short period of time. Another study, however, would involve the

long-run behavior of the system, that is, when number of transitions tends to

infinity. In such a case, a systematic procedure which will predict the long-

run behavior of the system becomes necessary. Next we give some definitions

regarding the classification of states in a MC which are useful in studying the

long-run behavior of the system.

Definition 4. [31, pp.143–144] Two states that are accessible from each other by

following transitions in the MC are said to communicate. If all states communi-

cate, the MC is said to be irreducible.

Definition 5. [37, p.10] A state in a MC is periodic if the probability of returning

to the state is zero except at regular intervals. If a state is not periodic, it is

aperiodic. If all states are aperiodic, then the MC is said to be aperiodic.

We remark that the concept of periodicity applies only to DTMCs. If a state

has transitions to itself but has no transitions to other states, it is called an

absorbing state. That is, once the system is in an absorbing state, it will remain

in that state indefinitely. Of interest to us in this work are the probabilities of

being in states in the long-run.

Let the probability that a DTMC is in state i at time k be denoted by π
(k)
i ,

where π
(k)
i is element i of the probability (row) vector π(k). Then we have the

following definitions.

Definition 6. [37, p.15] Given an initial probability distribution π(0), if the limit

lim
k→∞

π(k)

exists, then this limit is unique and called the steady-state (long-run, limiting,

equilibrium) distribution vector; we write

π = lim
k→∞

π(k).

CHAPTER 2. BACKGROUND 9

A similar definition can be made for a MC with a continuous parameter space.

Definition 7. [37, p.15] Let P be the transition probability matrix of a DTMC

and let vector z (whose element zj denotes the probability of being in state j) be

a probability distribution; i.e.,

0 ≤ zj ≤ 1,
∑
j∈S

zj = 1.

Then z is said to be a stationary distribution vector of P if and only if zP = z.

Definition 8. [37, p.18] Let Q be the transition rate matrix of a CTMC and

let vector z (whose element zj denotes the probability of being in state j) be a

probability distribution; i.e.,

0 ≤ zj ≤ 1,
∑
j∈S

zj = 1.

Then z is said to be a stationary distribution vector of Q if and only if zQ = 0.

A stationary distribution is not necessarily the steady-state probability dis-

tribution of a MC, but for irreducible and aperiodic finite DTMCs it is [37, p.5].

Note that the steady-state distribution is independent of the initial distribution.

If the steady-state distribution exists for a homogeneous DTMC, it satisfies

πP = π,
∑
j∈S

πj = 1,

and for a homogeneous CTMC, it satisfies

πQ = 0,
∑
j∈S

πj = 1.

A CTMC Q can be uniformized to obtain a DTMC P as

P = I + ∆tQ, where ∆t ≤ 1

max
i∈S
|qii|

.

When it exists, the steady-state vector of the CTMC (obtained from πQ = 0) is

CHAPTER 2. BACKGROUND 10

identical to that of the uniformized DTMC (obtained from πP = π) [37, p.24].

In this work, we are interested in computing π for Google-like stochastic matrices

introduced in Chapter 3.

In the next section, we briefly review iterative methods for the steady-state

analysis of large, sparse MCs.

2.3 Steady-State Analysis of Markov Chains

Numerical methods that compute the steady-state vector of a MC in a prede-

termined number of operations are classified as direct methods [37, p.61]. On

the other hand, iterative methods begin from some initial approximation and

compute a new approximation at each iteration, with the expectation that the

approximation converges to the steady-state vector [37, p.61].

Gaussian elimination [37, p.63] and QR factorization [16] are two of the direct

methods used in MC problems. Iterative methods can be classified into three

categories. Stationary iterative methods include the power method, (block) Ja-

cobi overrelaxation ((B)JOR), and (block) successive overrelaxation ((B)SOR).

Krylov subspace (or projection) methods include Arnoldi, generalized minimum

residual (GMRES), full orthogonalization (FOM), biconjugate gradient (BCG),

biconjugate gradient stabilized (BiCGStab), quasi-minimal residual (QMR) and

conjugate gradient squared (CGS) methods [37, pp.117–230],[32]. Decomposi-

tional methods include iterative aggregation-disaggregation (IAD) [37, pp.307–

331] and Schwarz methods [26]. In this study, we do not consider approximation

methods (see, for instance, [27]) and bounding methods (see, for instance, [33]).

As the number of states in the MC increases, computing its steady-state vector

becomes challenging. In order to handle very large state spaces, sparse storage

schemes are used. For large problems, direct methods become inefficient, because

they introduce new nonzero elements during factorization. On the other hand,

iterative methods involve matrix-vector multiplications or equivalent operations,

which maintain the nonzero structure of the matrix. Although they may exhibit

CHAPTER 2. BACKGROUND 11

slow convergence rates, they enable the computation of the steady-state vector

up to some user defined accuracy. In the rest of this work, we concentrate on

stationary iterative methods and IAD method, since Krylov subspace methods

require more storage, and tend to be less robust, especially in the absence of

preconditioners [37, pp.222–225], [32, Ch.9–10].

The following sections introduce the power method, the (B)JOR and (B)SOR

iterative methods based on splittings, and the IAD method.

2.3.1 Power Method

The power method may be used to determine the left eigenvector corresponding to

the dominant eigenvalue of a matrix. If the computation of the steady-state vector

of a MC is formulated as an eigenvalue problem, i.e., πP = π, the power method

may be used to solve the problem. Let the probability transition matrix be P

and let the initial probability distribution vector of P be π(0). The probability

distribution vector after one transition, π(1), may be obtained from the product

π(0)P . Likewise, the probability distribution vector after two transitions may be

obtained from the product π(1)P . For k ∈ ℵ, the probability distribution vector

of the system after k transitions is obtained by multiplying the probability vector

obtained after (k − 1) transitions by P . Thus, we have

π(k) = π(k−1)P for k = 1, 2, . . .

which leads to

π(k) = π(k−1)P = π(k−2)P 2 = · · · = π(0)P k for k = 1, 2,

Recall that for a finite, aperiodic, and irreducible DTMC, π(k) converges to the

steady-state vector regardless of the choice of initial vector [37, pp.121–125]. Since

the dominant eigenvalue of P is 1, the convergence rate of the power method de-

pends on the magnitude of the subdominant eigenvalue of P . Hence, the rate

CHAPTER 2. BACKGROUND 12

increases if the magnitude of the subdominant eigenvalue becomes smaller. Typ-

ically, the convergence rate of the power method is slow.

2.3.2 Iterative Methods Based on Splittings

Stationary iterative methods based on splittings can be also used for solving the

system of linear equations given by

Ax = b,

where A ∈ Rn×n is the coefficient matrix, b ∈ Rn×1 is the right-hand side vector,

and x ∈ Rn×1 is the vector of unknowns. In our case, A = QT or A = P T − I,
b = 0, and x = πT .

Now, consider the partitioning of A and x given by

A =


A11 A12 · · · A1K

A21 A22 · · · A2K
...

...
. . .

...

AK1 AK2 · · · AKK


n×n

, x =


x1

x2
...

xK


n×1

for some K ∈ {1, 2, . . . , n}, and write A as the sum of three terms as in

A = D − L− U,

where D is the block diagonal of A, −L is its strictly block lower-triangular part,

and −U is its strictly block upper-triangular part. That is,

D =


A11 0 · · · 0

0 A22
. . .

...
...

. 0

0 · · · 0 AKK

,

CHAPTER 2. BACKGROUND 13

L = −


0 0 · · · 0

A21 0 · · · 0
...

.
...

AK1 · · · AKK−1 0

, U = −


0 A12 · · · A1K

0 0
. . .

...
...

...
. . . AK−1K

0 0 · · · 0

.

The methods of (B)JOR and (B)SOR for MCs are iterative methods of the form

Mx(k+1) = Nx(k) for k = 0, 1, . . . ,

where M−1 is nonsingular in the splitting A = M −N . In the next two subsec-

tions, we define M and N for (B)JOR and (B)SOR.

2.3.2.1 (B)JOR Method

For BJOR, M and N are given by [32, p.96]

MBJOR =
D

ω
, NBJOR =

1− ω
ω

D + L+ U ,

where ω ∈ (0, 2) is the relaxation parameter. BJOR reduces to block Jacobi (BJ)

for ω = 1 and becomes point JOR when K = n.

Writing this in detail, we obtain

Diix
(k+1)
i = (1− ω)Diix

(k)
i + ω

(
i−1∑
j=1

Lijx
(k)
j +

K∑
j=i+1

Uijx
(k)
j

)
for i = 1, 2, . . . , K.

2.3.2.2 (B)SOR Method

For BSOR, M and N are given by

MBSOR =
D

ω
− U , NBSOR =

1− ω
ω

D + L ,

CHAPTER 2. BACKGROUND 14

where ω ∈ (0, 2) is the relaxation parameter. BSOR reduces to block Gauss-Seidel

(BGS) for ω = 1 and becomes point SOR when K = n.

Writing this in detail, we obtain

Diix
(k+1)
i = (1−ω)Diix

(k)
i +ω

(
i−1∑
j=1

Lijx
(k)
j +

K∑
j=i+1

Uijx
(k+1)
j

)
for i = 1, 2, . . . , K.

The convergence rate of iterative methods based on splittings depends on the

magnitude of the subdominant eigenvalue of the iteration matrix T = M−1N .

In general, block iterative methods require more computation per iteration than

point iterative methods based on splittings, but this is offset by a faster rate

of convergence [37, p.138]. Among the methods discussed so far, power method

converges the slowest, BSOR typically outperforms BJOR.

2.3.3 IAD Method

The transpose of the (K ×K) matrix H whose ijth element is given by

hij = eTAijφj,

where

φj = xj/‖xj‖1

is referred to as the exactly aggregated matrix corresponding to A.

Now, let ξ = (ξ1, ξ2, . . . , ξK)T be the unique positive vector satisfying

Hξ = 0,
∑K

i=1 ξi = 1. Then the IAD method with a BGS disaggregation step

(IADBGS) [37, p.311] is equivalent to the iterative formula

x(k+1) = (D − U)−1LD(k)x(k),

where

h
(k)
ij = eTAijφ

(k)
j ,

CHAPTER 2. BACKGROUND 15

H(k)ξ(k) = 0, ξ(k) > 0,
K∑

i=1

ξ
(k)
i = 1,

diag(ξ
(k)
1 I/‖x(k)

1 ‖, ξ
(k)
2 I/‖x(k)

2 ‖, . . . , ξ
(k)
K I/‖x(k)

K ‖).

Writing this in detail, we obtain

Diix
(k+1)
i =

i−1∑
j=1

Lijz
(k+1)
j +

K∑
j=i+1

Uijx
(k+1)
j for i = 1, 2, . . . , K,

where

z(k+1) = (ξ
(k)
1 (φ

(k)
1)T , ξ

(k)
2 (φ

(k)
2)T , . . . , ξ

(k)
K (φ

(k)
K)T)T .

A similar formula may be written for BJ (IADBJ), hence, for BJOR

(IADBJOR) and BSOR (IADBSOR) disaggregation steps.

Definition 9. [37, p.285] Let the state space of a MC be partitioned into disjoint

subsets but with strong interactions among the states of a subset but with weak

interactions among the subsets themselves. Such MCs are referred to as nearly

completely decomposable (NCD).

For NCD MCs the convergence of IAD methods will be rapid [37, p.342]. Let

P = diag(P11, P22, · · · , PKK) + ε, then ‖ε‖∞, is referred as the degree of coupling.

The error in the approximate solution is reduced by a factor of order ε at each

iteration. In two-level solvers, direct methods may be used for the solution of the

aggregated matrix or individual blocks when there is sufficient space to factorize

them.

In the next chapter, we discuss specialized iterative methods for the steady-

state analysis of MCs obtained from Google-like stochastic matrices.

Chapter 3

Steady-State Analysis of

Google-like Stochastic Matrices

One of the recent areas in which MCs appear is the analysis of the hyperlink

structure of the web. The web has a massive size and search engines have to

consider all web pages in which a query term exists. In order to make the list of

pages returned to a query manageable for a user, search engines use some kind of

ranking in which link analysis is used. Hypertext Induced Topic Search (HITS)

and PageRank are two of the most popular link analysis algorithms.

The HITS algorithm was developed by John Kleinberg in 1998. HITS defines

authorities and hubs, where an authority is a web page with several inlinks and

a hub is a web page with several outlinks. HITS assigns an authority score

and a hub score to each web page. The idea behind this approach is that good

authorities are pointed by good hubs and good hubs point to good authorities

[23, p.136]. The outcome of the HITS algorithm is two ranked lists. The first

list contains the most authoritative pages related to a query and the second one

contains the most “hubby” pages [23, pp.142–143]. A user may be interested in

one ranked list rather than the other depending on the application. The HITS

algorithm is query-dependent; that is, documents containing references to the

query terms are determined at query time and at least one matrix eigenvector

16

CHAPTER 3. GOOGLE-LIKE STOCHASTIC MATRICES 17

problem is solved [23, p.143]. An extension of the HITS algorithm is used by the

search engine TEOMA [23, p.144].

One other successful link-based ranking algorithm is PageRank, the ranking

algorithm used by Google’s search engine [21, p.1]. The PageRank algorithm was

developed by Sergey Brin and Larry Page in 1998. The idea was that a page is

important if it is pointed by other important pages [22, p.2]. Each web page is

assigned a PageRank score that measures its importance. The PageRank score of

a particular web page is the sum of the PageRank scores of all pages that point

to that page [23, p.137]. Moreover, when an important page points to several

pages, its PageRank score is distributed proportionally [22, p.2]. Unlike HITS,

PageRank is query-independent.

In 2000, a third link analysis algorithm called Stochastic Approach for Link

Structure Analysis (SALSA) is developed by Lempel and Moran [25]. SALSA

combines some of the best features of PageRank and HITS. SALSA uses MCs

and like HITS, it assigns an authority score and a hub score to each web page

[23, p.154]. One major drawback of SALSA, like HITS, is its query-dependence

[23, p.157].

This work concentrates on the PageRank algorithm, which is presented in the

following section in detail.

3.1 PageRank Algorithm

The PageRank model of Google uses the hyperlink structure of the web to build

a DTMC, P . The PageRank model forces P to be stochastic, irreducible, and

aperiodic, to ensure that its steady-state vector exists.

Let us assume there are n pages on the web and consider the hyperlink struc-

ture of the web as a directed graph, where nodes represents web pages and directed

arcs represent hyperlinks. The PageRank model first represents this graph with

a square matrix P of order n, whose element pij is the probability of moving from

CHAPTER 3. GOOGLE-LIKE STOCHASTIC MATRICES 18

state i (page i) to state j (page j) in one time step.

Furthermore, the probability distribution vector v denotes visit probabilities

of the user for web pages at steady-state and satisfies vT e = 1. If it is equally

likely for a user to visit any of the n web pages, then v = e/n. Of course, the

column vector v can differ from the uniform distribution and be biased according

to preference for certain types of pages. For this reason, v is called the personal-

ization vector.

It has been already mentioned that there are pages on the web for which

there are no outgoing hyperlinks and such pages are called dangling. The first

modification is to artificially add appropriate links to all zero rows in P so that

their sums become one and there are no dangling nodes remaining. That is, all

zero rows in P are replaced with vT , and the resulting matrix is given by

P = P + avT ,

where a is the column vector whose element i is equal to one if page i has no

outlinks and zero otherwise for i = 1, 2, . . . , n [21, p.339]. Note that a can be

written as

a = e− Pe.

Although this modification makes P stochastic, and thus it has one as its domi-

nant eigenvalue, it still may be reducible.

Hence, another modification is made and the resulting matrix is given by

P = αP + (1− α)E,

where E = evT and α is a constant scaling factor such that 0 < α < 1.

The convex combination of the stochastic matrix P with the full perturbation

CHAPTER 3. GOOGLE-LIKE STOCHASTIC MATRICES 19

matrix E ensures that P is stochastic, irreducible, and aperiodic. This corre-

sponds to adding each page a new set of outgoing transitions, and we can write

P = αP + (αa+ (1− α)e)vT . (3.1)

Observe that P is a rank-2 modification of P .

The steady-state vector, π, of P is called the PageRank vector and computing

the PageRank vector can be viewed as solving the eigenvalue problem πP = π.

Power iterations on matrix P now converge to the unique PageRank vector from

which web pages can be ranked according to their relative importance. Note that,

small change in the value of α gives a dramatic change in the steady-state vector

[34, p.310].

The next section covers details of the method proposed for computing the

steady-state vector of P in the literature.

3.2 Power Method

The basic PageRank algorithm uses the power method to compute the steady-

state vector of P . For the starting vector π(0) such that π(0) ≥ 0 and π(0)e = 1,

we have

π(k+1) = π(k)P = απ(k)P + (1− α)π(k)evT = απ(k)P + (1− α)vT

= απ(k)P + (απ(k)a+ (1− α))vT for k = 0, 1,

Since, P > 0 and Pe = e, π(k+1) satisfies π(k+1) > 0 and π(k+1)e = 1. Hence, the

power method applied to P can be implemented with a vector-matrix multipli-

cation using αP and a few level-1 operations (such as dot product and saxpy); P

and P are never formed or stored. When P is sparse, each vector-matrix multipli-

cation can be computed in nz(P) flops, where nz(P) is the number of nonzeros in

P , and if P is sparse, O(nz(P)) ≈ O(n). Moreover, at each iteration, the power

method requires the storage of three vectors, the current iterate, αa and vT [21,

CHAPTER 3. GOOGLE-LIKE STOCHASTIC MATRICES 20

p.344].

It has already been mentioned that the rate of convergence of the power

method depends on the subdominant eigenvalue of the iteration matrix. For P ,

the subdominant eigenvalue is equal to α for a reducible matrix αP , and is strictly

less than α for an irreducible matrix αP . For P obtained from the web graph,

convergence of the power method takes place at the rate by which αk goes to 0.

Thus, as α becomes smaller, convergence becomes faster. However, the smaller α

is, to a lesser extent the hyperlink structure of the web is used to determine web

page rankings. Slightly different α values can produce very different PageRank

vectors, and as α goes to 1, sensitivity issues begin to arise. Brin and Page, the

founders of Google, use α = 0.85, and for tolerance levels measured by residual

norms ranging from 10−3 to 10−7, they report convergence within 50 to 100 power

iterations [21, p.345].

Although, the PageRank algorithm aims to solve an essentially old problem

(that is, computing the steady-state vector of a MC), the enormous size of the

problem makes it challenging. In the following section, we discuss an improvement

proposed in the context of the power method for accelerating the computation of

the PageRank vector.

3.3 Quadratic Extrapolation on Power Method

An approach aiming to reduce the number of iterations of the power method is

proposed by Kamvar et al. [19] and is known as quadratic extrapolation (QE).

It is reported that by periodically applying QE for values of α close to 1, the

convergence of PageRank can be accelerated by a factor of over 3 [19, p.265]. QE

computes the extrapolated solution π(k) using the last four approximate solution

vectors, π(k−3), π(k−2), π(k−1) and π(k). In QE, it is assumed that the matrix P

has only two eigenvectors and the extrapolated solution π(k) can be expressed as

a linear combination of the last three approximate solution vectors.

CHAPTER 3. GOOGLE-LIKE STOCHASTIC MATRICES 21

Let us define the three successive approximations as

π(k−2) = Pπ(k−3), π(k−1) = Pπ(k−2), π(k) = Pπ(k−1).

and introduce

y(k−2) = π(k−2) − π(k−3), y(k−1) = π(k−1) − π(k−3), y(k) = π(k) − π(k−3).

Under the given assumptions, the characteristic polynomial of P is of the form

p
P
(λ) = γ0 + γ1λ+ γ2λ

2 + γ3λ
3.

We know that one is an eigenvalue of P and eigenvalues of P are also the zeros

of the characteristic polynomial, so p
P
(1) = γ0 + γ1 + γ2 + γ3 = 0. By using some

algebra and the Cayley-Hamilton theorem [28, p.509], we have

(
y(k−2) y(k−1) y(k)

)
γ = 0,

where γ = (γ1 γ2 γ3)
T . We are interested in the value of γ other

than the trivial solution γ = 0. By letting γ3 = 1, we obtain

(
y(k−2) y(k−1)

) (γ1

γ2

)
= −y(k) and

(
γ1

γ2

)
= −Y +y(k),

where Y + is the pseudoinverse of the matrix Y =
(
y(k−2) y(k−1)

)
de-

fined in [19, p.266]. In order to find the values γ1 and γ2, the

truncated QR factorization Y = QR can be used by executing two

steps of the Gram-Schmidt algorithm since Y is an (n × 2) ma-

trix. Then −QTy(T) is computed, and finally the upper-triangular system

R

(
γ1

γ2

)
= −QTy(k)

is solved for (γ1 γ2)
T by using back substitution [19, p.266]. Since −QTy(k) can

be formed in O(n) operations and R is (2×2), γ1 and γ2 are effectively computed

CHAPTER 3. GOOGLE-LIKE STOCHASTIC MATRICES 22

in O(n) flops.

With QE, the approximations obtained by the power method are modified pe-

riodically. The approximate solution vector π(k) of the power method is modified

by QE as [19, p.266]

π(k) = β0π
(k−2) + β1π

(k−1) + β2π
(k),

where β0 = γ1 + γ2 + γ3, β1 = γ2 + γ3, and β2 = γ3.

Since QE decreases the error in π(k) along the direction of the second and

third eigenvectors, it enhances the convergence of future iterations of the power

method [19, p.267]. Brezinski et al. generalized QE and interpreted it on the

basis of Krylov subspace method [6].

In the next section, we discuss an approach for updating the steady-state

vector of Google-like matrices.

3.4 Updating the Steady-State Vector

Web is a highly dynamical environment and computing the steady-state vector

is not a one time job. As hyperlinks and web pages are added and deleted,

P , and therefore, the steady-state vector changes. Instead of computing the

new steady-state vector of P in (3.1) from scratch, one may use components

of the previously computed steady-state vector; this is called updating. When

only the hyperlink structure of the web graph changes, the problem is called

element-updating ; if states are added or deleted, the problem is called state-

updating. The state-updating problem is clearly more difficult, and it includes

the element-updating problem as a special case [24, pp.1–2]. In [24], a general

purpose algorithm is presented, which is based on aggregation-disaggregation

principals and simultaneously handles both kinds of updating problems.

Assume that the steady-state vector φ = (φ1 φ2 . . . φm) for an irreducible

MC is already known and suppose that this MC needs to be updated. Let the

CHAPTER 3. GOOGLE-LIKE STOCHASTIC MATRICES 23

updated transition probability matrix be S and the updated steady-state vector

be π = (π1 π2 . . . πn). Note that n is not necessarily equal to m because the

updating process allows for addition and deletion of states as well as the alteration

of transition probabilities.

The idea behind approximate aggregation is to use φ and S to build an aggre-

gated MC having a transition probability matrix A, that is smaller in size than S,

so that the steady-state vector of A can be used to generate an estimate of π [24,

p.4]. The state space S of S is first partitioned as S = G ∪ G, where G consists

of states that are likely to be most affected by the updates. Newly added states

are automatically included in G and deleted states are accounted for by changing

the affected transition probabilities to zero. The complement G contains all other

states. The effect of perturbations involving only a few states in large, sparse

MCs is primarily local, and most steady-state probabilities are not significantly

affected [24, p.4].

After partitioning and reordering, let us have

S =


G G

G S11 S12

G S21 S22

 (3.2)

and

π = (π1 π2 . . . πg | πg+1 . . . πn) = (π1 π2 . . . πg | π),

where S11 is (g× g). The steady-state probabilities from the original distribution

φ that correspond to the states in G are placed in a row vector φ and states

in G are lumped into one superstate to create a smaller aggregated MC whose

transition matrix is given by [24, p.5]

A =

 S11 S12e

sS21 1− sS21e

,

CHAPTER 3. GOOGLE-LIKE STOCHASTIC MATRICES 24

where s = φ/ (φe). Now

πi ≈

{
αi if state i belongs to G,
αg+1si if state i belongs to G

where α is the steady-state vector of A.

The iterative aggregation updating algorithm proposed in [24] starts by par-

titioning and reordering the states as described above. Steps of this algorithm

are as follows [24]:

Initialize

1. Partition the states of the updated chain as S = G ∪ G and reorder S as

described in (3.2)

2. φ←− components of φ that correspond to states in G

3. s ←− φ / φe

Iterate until convergence

1. A←−

(
S11 S12e

sS21 1− sS21e

)
2. α←− (α1, α2, . . . , αg, αg+1) (steady-state vector of A)

3. χ←− (α1, α2, . . . , αg|αg+1s)

4. ψ ←− χP

5. If ‖ψ − χ‖ < τ for a given tolerance τ , then quit;

else s←− ψ/ψe and go to step 1

The iterative aggregation updating algorithm converges to the steady-state vector

π for all partitions S = G ∪G. The rate at which the approximations converge to

π is exactly at which the powers Sk converge, where the only significant stochastic

CHAPTER 3. GOOGLE-LIKE STOCHASTIC MATRICES 25

complement of S is that of S22 and defined as S22 = P 22 +P 21(I−P 11)
−1P 12 [24,

p.10]. If the subdominant eigenvalue λ2(S22) of S is real and simple, then the

asymptotic rate of convergence is − log10 |λ2(S22)| [24, p.10]. More information

on the iterative aggregation updating algorithm and convergence analysis can be

found in [24, 17].

Chapter 4

Proposed Methods

It is known that Google matrices can be permuted to block upper-triangular form

in which the diagonal blocks are irreducible [29]. An algorithm for computing a

(2 × 2) block partition of an irreducible matrix with zero-free diagonal in which

one of the diagonals block is triangular is presented in [9]. In this work, these

results are used to show that the solution process can be improved by computing a

(2×2) block partition for each irreducible diagonal block in this permuted matrix,

where one of the diagonal blocks is triangular. Solution of linear systems which

have triangular coefficient matrices can be performed directly by using forward

or backward substitutions depending on the shape of triangularity. Thus, for a

block upper-triangular matrix with irreducible diagonal blocks, such a (2 × 2)

block partition can be computed for each diagonal block and substitution can be

used for solving the triangular diagonal blocks at each (outer) block iteration,

while solution of the remaining diagonal blocks can be approximated with some

kind of (inner) point iteration. This approach circumvents the fill-in problem

associated with factorizing the diagonal blocks.

26

CHAPTER 4. PROPOSED METHODS 27

In the following sections, we present three methods for obtaining such block

partitionings for Google-like stochastic matrices after we discuss how one can

obtain triangular diagonal blocks in a given matrix.

4.1 Obtaining Triangular Blocks Using Cutsets

4.1.1 Partitioning an Irreducible Matrix

The generator matrix of an irreducible CTMC can be symmetrically permuted

and partitioned into four blocks as in

Q =


C T

C C Y

T Z T



by partitioning its state space S into two subsets such that SC ∪ ST = S, and

SC ∩ ST = ∅, where C and T are square submatrices of order nC and nT ,

respectively, and T is triangular [9].

Partitioning π accordingly as (πC, πT), we have

(πC πT)

C Y

Z T

 = 0,

where (πC, πT)e = 1. Note that T is necessarily nonsingular, nT = |T |, nC = |C|,

CHAPTER 4. PROPOSED METHODS 28

and n = nT + nC. Next we discuss how such a partitioning can be obtained.

Let the directed graph (digraph) associated with the off-diagonal part of

Q be G(V , E) and let V = {1, 2, . . . , n} be the node (or vertex) set and

E = {(i, j) | qij 6= 0, i 6= j, and i, j ∈ V} be the edge (or arc) set. The follow-

ing definition is used for computing this partition.

Definition 10. [35, p.647] A vertex v cuts a path if it is an endpoint of one of

the edges in this path. A set of vertices in a graph is a cutset (or feedback vertex

set) if any cycle in the graph is cut by at least one vertex from this set.

The smallest set of vertices which cuts all cycles in a directed graph G(V , E)

is called minimum cutset [14] of G(V , E). The minimum cutset of a graph need

not be unique [35, p.646].

Lemma 1. [15, p.227] If C is a cutset of G(V , E) associated with the off-diagonal

part of Q and T = S − C, then

i. there exists an ordering of states in T such that T is triangular;

ii. T is nonsingular.

Note that the second part of the lemma follows from the fact thatQ has a zero-free

diagonal.

Now it is clear that one has to find a small cutset of Q, since smaller the

order of submatrix C is, the larger the order of submatrix T becomes. Since a

triangular block can be solved exactly by using substitution it is useful to obtain a

larger triangular block. The minimum cutset problem is an NP-complete problem

for general graphs [20]; therefore, non-optimal solutions need to be considered.

CHAPTER 4. PROPOSED METHODS 29

Fortunately, for certain classes of graphs, polynomial time algorithms exist, such

as Shamir’s algorithm [35] whose complexity is linear in the number of edges in

E . Shamir’s algorithm works on (quasi-) reducible graphs and aborts in the case

of nonreducibility. These concepts are explained in the following paragraphs.

Reducibility in graphs is defined for rooted graphs, where the root is a node

from which every other node in V is reachable by following a sequence of edges.

If for a rooted graph different depth first search (DFS) orders of G(V , E) starting

from the root result in a unique directed acyclic graph (dag), then the graph is

called reducible [9, p.4]. It is easy to confuse reducibility in graphs with reducibil-

ity in matrices. To avoid this confusion, note that an irreducible matrix has a

strongly connected graph G(V , E) [12, p.114]; that is, every node is reachable from

every other node in V . However, a reducible graph can be strongly connected and

a nonreducible graph need not be strongly connected [35, p.648].

Shamir’s algorithm computes the minimum cutset for a reducible graph by

using DFS. Unfortunately, it may abort in the case of nonreducibility. However,

it may also not abort and find the minimum cutset [35, p.654]. Such graphs are

called quasi-reducible [30, p.206]. For more detail about Shamir’s algorithm one

can refer [35, 9].

Another algorithm, Rosen’s algorithm called Cutfind, which is a modification

of Shamir’s algorithm, also runs in linear time and space and finds cutsets of

not (quasi-)reducible graphs. Cutsets computed for not (quasi-)reducible graphs

may not be minimum; however, Dayar [9] showed that Cutfind is a fast algorithm

for large graphs compared to other approximation algorithms and the size of the

cutset computed is generally satisfying.

CHAPTER 4. PROPOSED METHODS 30

Note that the root node is essential for using the Cutfind (also Shamir’s)

algorithm. In a strongly-connected graph, every node can be the root node.

However, the web graph is not strongly connected; that is, Q is reducible. The

aim is to obtain irreducible diagonal blocks of Q, which ensures the existence of a

root node in each diagonal block, and use the Cutfind algorithm on the diagonal

blocks to obtain triangular blocks. In the following section we cover Tarjan’s

algorithm which can be used to permute a matrix to block-triangular form in

which the diagonal blocks are irreducible.

4.1.2 Partitioning a Reducible Matrix

Tarjan’s algorithm finds all strongly connected components of a graph. Thus,

Tarjan’s algorithm can be used to find a symmetric permutation of a square

matrix resulting in block triangular form with irreducible diagonal blocks [13,

pp.137–138]. Without loss of generality, let Q be symmetrically permuted to

block-lower triangular form using Tarjan’s algorithm as in

Q =



Q11

Q21 Q22

...
...

. . .

QK1 QK2 · · · QKK


,

where the blocks Qii are square and irreducible [13, p.137]. Tarjan’s algorithm has

a complexity of O(n)+O(τ), where n is the order of Q and τ is the number of its

off-diagonal nonzeros. The steps of Tarjan’s algorithm and a detailed discussion

of a Fortran implementation for sparse matrices, mc13dd in Harwell subroutine

CHAPTER 4. PROPOSED METHODS 31

library [1], can be found in [13].

Tarjan’s algorithm returns the permutation indicating the irreducible diag-

onal blocks to which the Cutfind algorithm can be applied. Note that if Q is

irreducible, there is no need to use Tarjan’s algorithm, since there is only one

diagonal block, the matrix itself.

In the next section, we discuss the details of this approach with an eye on

the PageRank model and present an algorithm of the proposed method with

implementation details.

4.2 Partitioning Google-like Stochastic Matri-

ces

As shown in (3.1), the PageRank model of the web can be written as

P = αP + (α (a− e) + e) vT ,

where v is the personalization vector, e is the vector of ones, and a = e − Pe.

Letting QT = P
T
− I, we obtain

QT = αP T − I + αv (a− e)T + veT . (4.1)

Now, let A = αP T − I. In order to exploit the sparse structure of P in P ,

computations are carried out on A by using the vectors a, v, and e. The full

matrix QT in (4.1) is never explicitly formed or stored.

CHAPTER 4. PROPOSED METHODS 32

For the PageRank model, we apply Tarjan’s algorithm to A and symmetrically

permute A using the returned permutation. Without loss of generality, let us

assume A has the following nonzero structure:

A =



n1 n2 · · · nK

n1 A11

n2 A21 A22

...
...

...
. . .

nK AK1 · · · · · · AKK


. (4.2)

Since all the diagonal blocks are irreducible and have zero-free diagonals, we can

use the Cutfind algorithm on each of them without having any problem associated

with determining a root node. Each of the nodes in an irreducible block can

become the root.

After applying the Cutfind algorithm to each of the irreducible diagonal

blocks, we obtain states in the cutsets defining the submatices Cii for i =

1, 2, . . . , K as in

nC11 nT11 nC22 nT22 · · · · · · nCKK
nTKK

nC11

nT11

nC22

nT22

...

...

nCKK

nTKK



C11 Y11

Z11 T11

C21 Y21 C22 Y22

Z21 T21 Z22 T22

...
...

...
...

. . .
...

...
...

...
. . .

CK1 YK1 CK2 YK2 CKK YKK

ZK1 TK1 ZK2 TK2 ZKK TKK



,

CHAPTER 4. PROPOSED METHODS 33

where nT =
K∑

i=1

nTii
and nC =

K∑
i=1

nCii
. We know that for states in Tii there

exists an ordering such that Tii is triangular [15, p.227]. To find this ordering,

one practical way is to use Tarjan’s algorithm. Tarjan’s algorithm, as imple-

mented in mc13dd and used for block triangularization purposes, returns nTii

irreducible diagonal blocks for the submatrix Tii, and hence, the permutation

for a lower-triangular ordering. If an upper-triangular ordering is desired, the

returned permutation should be reversed.

It is also possible to obtain an ordering for triangular diagonal blocks, again

using Tarjan’s algorithm and the Cutfind algorithm. To achieve such an ordering

the Cutfind algorithm is applied to Aii in (4.2) and A is symmetrically permuted

to (2×2) block form, in which the first diagonal block is triangular. Applying the

same idea recursively to the second diagonal block and symmetrically permuting

the matrix, we eventually obtain the following nonzero structure

nT11 nT22 · · · nTM−1M−1 nTMM

nT11

nT22

...

nTM−1M−1

nTMM



T11 X12 · · · X1M−1 X1M

X21 T22 · · · X2M−1 X2M

...
...

. . .
...

...

XM−11 XM−12 · · · TM−1M−1 XM−1M

XM1 XM2 · · · XMM−1 TMM


, (4.3)

where
M∑
i=1

nTii
= n. The QT matrix in (4.1) now can be solved for πT by some

kind of iterative method based on a block partitioning. Note that the triangular

diagonal blocks in A become full in QT ; however, we can still solve them with

substitution using the Sherman-Morrison (S-M) formula given next.

Definition 11. [28, p.124] If An×n is nonsingular and if c and d are (n× 1)

column vectors such that 1 + dTA−1c 6= 0, then the sum
(
A+ cdT

)
is nonsingular

and its inverse is given by

CHAPTER 4. PROPOSED METHODS 34

(
A+ cdT

)−1
= A−1 − A−1cdTA−1

1 + dTA−1c
.

Let us write

QT = A+ v
(
α(a− e)T + eT

)
,

then

QT = A+ cdT ,

where c = v and dT = α (a− e) + eT is a row vector of length n. Note that now

we can apply the S-M formula to the diagonal blocks Tii in (4.3) since they are

easily invertible. The S-M formula for these blocks may be written as

(Tii + cTii
dT

Tii
)−1 = T−1

ii −
T−1

ii cTii
dT

Tii
T−1

ii

1 + dT
Tii
T−1

ii cTii

for all i = 1, 2, . . . , K ,

where cTii
and dT

Tii
are the corresponding subvectors of c and dT . Then the solution

to a linear system of the form (Tii + cTii
dT

Tii
)xi = bi becomes

xi = T−1
ii bi −

T−1
ii cTii

dT
Tii
· T−1

ii bi

1 + dT
Tii
· T−1

ii cTii

.

Now, T−1
ii bi and T−1

ii cTii
can be easily solved by using substitutions. The remain-

ing computations can be performed by a dot product and a saxpy.

To sum up, now QT can be solved with an iterative method based on a block

partitioning. At each outer iteration, the triangular diagonal blocks can be solved

directly with the help of the S-M formula, while the solution of non-triangular

diagonal blocks can be approximated using some kind of point iteration. Now we

present our algorithms and discuss implementation details.

CHAPTER 4. PROPOSED METHODS 35

Algorithm 1 shows how one can compute the steady-state vector of a Google-

like stochastic matrix using iterative methods based on block partitionings with

some triangular diagonal blocks. We remark that an irreducible MC with α set

to 1 is a special case of Algorithm 1. Our implementation is designed to solve

QTπT = 0 by using P , P T or Q as input. For Google-like stochastic matrices,

the implementation takes the nonzero pattern of P as input using two integer

arrays. The first array stores its column indices and is of length nzP , where

nzP is the number of nonzero elements in P . The second array, whose length is

(n + 1), stores the beginning of row indices in the first array. When there are

nonzero values, they are stored in a third array of length nzP . For a Google-like

stochastic matrix the nonzero values in each row of P are uniformly distributed.

As preprocessing, we scale P with α and obtain A = αP T − I, then prepare the

vectors v and a.

Algorithm 1. Computes the steady-state vector of P .

Ensure: π is the steady-state vector of P

Require: P is a Google-like stochastic matrix, v is the personalization vector,
a is the vector representing dangling nodes (i.e., a = e− Pe), 0 < α < 1

1: Compute the permutation that block triangularizes P so that it has irre-
ducible diagonal blocks.

2: For each irreducible diagonal block, compute the cutset of the graph asso-
ciated with the off-diagonal part of the diagonal block.

3: For each irreducible diagonal block, compute the permutation that triangu-
larizes the submatrix associated with the nodes in cutset’s complement.

4: Order and group the resulting submatrices along the diagonal to determine
the overall permutation.

5: Compute steady-state vector π by using an iterative method based on a
block partitionings in which the triangular diagonal blocks are solved exactly using
substitutions with the help of S-M formula and the remaining diagonal blocks are

CHAPTER 4. PROPOSED METHODS 36

solved approximately by a point iterative method.

For step 1, we consider an implementation of Tarjan’s algorithm, mc13dd [13].

We converted this Fortran routine to C for ease of portability. This routine uses

the nonzero structure of the input matrix A and returns a permutation vector.

Before moving to the next step, states in the irreducible diagonal blocks are

ordered lexicographically. Then A is symmetrically permuted and transformed to

a block form in which irreducible diagonal blocks are stored separately as rowwise

sparse matrices and its off-diagonal part is also stored as a rowwise sparse matrix.

Thus, the nonzero patterns of diagonal blocks become readily available.

Step 2 of Algorithm 1 involves finding the cutsets of graphs associated with

the off-diagonal parts of irreducible diagonal blocks using their nonzero patterns.

For this step Rosen’s algorithm, Cutfind, is implemented [9]. The node with the

largest outdegree in each irreducible diagonal block is chosen as the root node, and

when there are ties, the node with the smallest lexicographical index is chosen.

In our implementation, diagonal elements appear as the first element in their

corresponding rows. This enables diagonal elements to be skipped and the graph

associated with the off-diagonal part of A to be considered. The implementation

of the Cutfind algorithm uses five integer work arrays of length n and a character

work array of length n, besides the previously discussed two integer arrays for

representing the nonzero structure of A. Two of the integer work arrays are used

for implementing a stack of edges, one is used for labeling nodes, one is used

for keeping track of the next unprocessed edge to consider for each node, and

one is used for recording preorders of nodes. The character work array is used

for marking processed nodes. The time complexity of the Cutfind algorithm is

O(nzA) and the operations that are carried out are integer comparisons.

CHAPTER 4. PROPOSED METHODS 37

Tarjan’s algorithm may return irreducible diagonal blocks of orders one and

two. It is clear that the application of the Cutfind algorithm to these diagonal

blocks is unnecessary. For blocks of order two, either of the states can be placed in

the cutset, and for blocks of order 1 it is meaningless to find a cutset. Before run-

ning the Cutfind algorithm such diagonal blocks are identified and the algorithm

is not applied to them. However, blocks of order one are checked whether they

have zero off-diagonal elements because the ones with zero off-diagonal elements

can be grouped to form a triangular block. The Cutfind algorithm is applied to

diagonal blocks that have more than two states.

In step 3, the permutation that triangularizes the submatrix associated with

the nodes in Tii, that is, for states that are in cutset’s complement, are obtained

again by using Tarjan’s algorithm. Different strategies can be considered when

forming the overall permutation in step 4 of Algorithm 1. Let us refer to these

strategies as partitionings 1 and 2 and explain their details in the next two sub-

sections.

4.2.1 Partitioning 1

In partitioning 1, the triangular blocks and the diagonal blocks of order one with

zero off-diagonal elements are grouped to form a larger triangular block. That is,

blocks of order one with zero off-diagonal elements are placed consecutively in the

first block and Tii are placed after them. Note that, one state of blocks of order

two (in our implementation the first state) are placed in the first block. Ordering

of the remaining diagonal blocks which consist of the states in the cutset, that

is Cii (note that, for blocks of order two one state, in our implementation the

last state, is placed in the cutset) are not changed. Diagonal blocks of order one

which do not have zero off-diagonal elements are grouped into the last block.

CHAPTER 4. PROPOSED METHODS 38

After symmetrically permuting A according to the permutation obtained in this

manner, we obtain the following nonzero structure:

nT00 nT11 · · · nTKK
nC11 · · · nCKK

nCK+1K+1

nT00

nT11

...

nTKK

nC11

...

nCKK

nCK+1K+1



T00

T10 T11 Z11

...
...

. . .
...

. . .

TK0 TK1 · · · TKK ZK1 · · · ZKK

Y10 Y11 C11

...
...

. . .
...

. . .

YK0 YK1 · · · YKK CK1 · · · CKK

YK+10 YK+11 · · · YK+1K CK+11 · · · CK+1K CK+1K+1



,

where the order of A is given by n = K+1nT00>1
+1nCK+1K+1>1

and its number of

diagonal blocks can be written as nb = nT00 + nCK+1K+1
+K. Ipsen et al. showed

that lumping dangling nodes into a single node increases the efficiency of power

method. The efficiency increases as the number of dangling nodes increases [18].

Moving from this point, diagonal blocks of order one with zero off-diagonal are

grouped in T00 and diagonal elements with some off-diagonal elements are grouped

in CK+1K+1. A remark must be made at this point about the triangularity of Tii.

If Tarjan’s algorithm is applied to obtain a block-lower triangular matrix, then

Tii should also permuted to lower-triangular form, and one state diagonal blocks

must be checked whether they have zero off-diagonal elements in rows. If upper-

triangular Tii are aimed, then one state diagonal blocks must be checked for zero

off-diagonal elements in columns. This remark is valid for partitioning 1 and

partitioning 2 which we discuss next. An option for partitioning 1 is restricting

the number of diagonal blocks so that we have a (2× 2) block partition in which

the first diagonal block is triangular.

CHAPTER 4. PROPOSED METHODS 39

4.2.2 Partitioning 2

Partitioning 2 is somewhat simpler than partitioning 1. The diagonal blocks of

order one are handled as in partitioning 1. The ordering of remaining diagonal

blocks is not changed except for those of order two and Cii. For blocks of order

two, the first state is moved to the first block, which is triangular, and the second

state is moved to the last block. While generating the overall permutation vector,

consecutive processing of diagonal blocks is essential to ensure the triangularity of

the first block. After symmetrically permuting A with the permutation obtained

in this manner, the nonzero structure of the matrix becomes

nT00 nC11 nT11 nC22 nT22 · · · nCKK
nTKK

nCK+1K+1

nT00

nC11

nT11

nC22

nT22

...

nCKK

nTKK

nCK+1K+1



T00

Y10 C11 Y11 C12 Y12 · · · C1K Y1K C1K+1

T10 Z11 T11 Z12 T12 · · · Z1K T1K Z1K+1

Y20 C21 Y21 C22 Y22 · · · C2K Y2K C2K+1

T20 Z21 T21 Z22 T22 · · · Z2K T2K Z2K+1

...
...

...
...

...
. . .

...
...

...

YK0 CK1 YK1 CK2 YK2 · · · CKK YKK CKK+1

TK0 ZK1 TK1 ZK2 TK2 · · · ZKK TKK ZKK+1

YK+10 CK+11 YK+11 CK+12 YK+12 · · · CK+1K YK+1K CK+1K+1



,

where nT =
K∑

i=1

nTii
and nC =

K+1∑
i=1

nCii
.

We remark that partitionings 1 and 2 do not guarantee that the overall permu-

tation yields diagonal blocks that are all triangular. The next subsection shows

how one can obtain such an overall permutation.

CHAPTER 4. PROPOSED METHODS 40

4.2.3 Partitioning 3

This partitioning replaces the first four steps of Algorithm 1 with a recursive

procedure. The matrix considered at the particular recursive call (which is the

matrix A in the initial call) is block triangularized as in step 1 of Algorithm

1 so that it has irreducible diagonal blocks. Then cutsets are computed on its

irreducible diagonal blocks as in step 2 of Algorithm 1 and a permutation is formed

in which the cutset’s complements’ are triangularized and grouped together into

a larger triangular block as in steps 3 and 4 of Algorithm 1. Hence, one obtains a

(2×2) block partitioning in which one of the diagonal blocks is triangular and the

other diagonal block can be perceived just like the input matrix to this recursive

call, thereby generating a recursive call. The recursion ends when this other block

is of order 0 or 1.

The implementation of partitioning 3 uses the same data structures and rou-

tines as in partitionings 1 and 2 except that it requires three additional work

arrays having lengths of nz, (n + 1), and n. The first two of these are used for

storing the nonzero pattern of the submatrix to be considered at that recursive

call and the last one to record the permutation in between recursive calls.

We symmetrically permute the matrix according to the partitionings 1, 2, or

3. The matrix QT is scaled to have a maximum value of 1.0 in each row to prevent

overflow or underflow in the computations and then transformed to block form.

In step 5, the steady-state vector is computed by using a block iterative method.

The triangular diagonal blocks are solved exactly at each outer iteration with the

help of the S-M formula. The remaining diagonal blocks are solved approximately

using a point iterative method.

CHAPTER 4. PROPOSED METHODS 41

Next we present an example through which we illustrate the computation of

partitionings 1, 2, and 3.

4.3 An Illustrative Example

Let us have a probability matrix representing the hyperlink structure of six web

pages. We only consider the nonzero structure of the matrix, rather than its

nonzero values. Let X represent a nonzero value and the probability matrix P in

our example be as follows:

P =



1 2 3 4 5 6

1 X X

2

3 X X X

4 X X

5 X X

6 X


.

Note that state 2 represents a dangling node. Recall that A = αP T −I. However,

scaling with α does not change the nonzero structure of P and A becomes,

CHAPTER 4. PROPOSED METHODS 42

A =



1 2 3 4 5 6

1 X X X

2 X

3 X X X

4 X X X

5 X X X

6 X X X


.

Since A is a reducible matrix, the next step is to use Tarjan’s algorithm. After

applying Tarjan’s algorithm to A to obtain an upper-triangular block structure,

we obtain the permutation vector (4 5 6 2 1 3). If we symmetrically permute A

accordingly, we get

4 5 6 2 1 3

4

5

6

2

1

3



X X X

X X X

X X X

X X X

X X

X X


.

The irreducible diagonal blocks are given by the subset of states {4, 5, 6}, {2},

and {1, 3}. Note that there is one irreducible diagonal block of order two and one

irreducible diagonal block of order 1.

Now, let us consider partitioning 1. Since state 2 has zero off-diagonal ele-

ments in its column, it will be at the beginning of the permutation. After applying

the Cutfind algorithm to the first irreducible diagonal block, we obtain its cutset

CHAPTER 4. PROPOSED METHODS 43

as C1 = {4} and therefore the cutset’s complement as T1 = {5, 6}. Upper trian-

gularization of the submatrix induced by T1 using Tarjan’s algorithm yields the

permutation vector (6 5). For the last irreducible diagonal block, state 1 is an

element of the cutset and state 3, being in the cutset’s complement, is placed in

the first triangular block. So the permutation vector becomes, (2 6 5 3 1 4) and

the order of the triangular block is four. The permuted matrix has the following

nonzero structure

2 6 5 3 1 4

2

6

5

3

1

4



X X X

X X X

X X X

X X

X X

X X X


.

Now, we have three diagonal blocks, the first one is upper-triangular and of order

four, and the others are both of order one.

Restricting the number of diagonal blocks so that we have a 2 × 2 block

partitioning in which the first diagonal block is triangular, we obtain

2 6 5 3 1 4

2

6

5

3

1

4



X X X

X X X

X X X

X X

X X

X X X


.

CHAPTER 4. PROPOSED METHODS 44

Now, let us consider partitioning 2. We again place state 2 in the first diagonal

block. For the irreducible diagonal block of order two, the first state is placed

in the first block and the second one is placed in the last block. Since the result

of the Cutfind algorithm on the diagonal block of order three is the same, state

4 is placed in the cutset and states 5 and 6 are permuted as (6 5) to obtain an

upper-triangular block. The permutation vector becomes (2 1 4 6 5 3) and we

have the four diagonal blocks given in

2 1 4 6 5 3

2

1

4

6

5

3



X X X

X X

X X X

X X X

X X X

X X


.

Note that the first and the third blocks are triangular.

For partitioning 3, we again apply Tarjan’s algorithm to A and obtain the

permutation vector (4 5 6 2 1 3). After symmetrically permuting A accordingly

and applying the Cutfind algorithm to the first irreducible diagonal block, we ob-

tain its cutset as C1 = {4}, and therefore the cutset’s complement as T1 = {5, 6}.

Upper-triangularization of the submatrix induced by T1 using Tarjan’s algorithm

yields the permutation vector (6 5 4 2 1 3). All remaining diagonal blocks are of

order 1 or 2. Therefore, {2, 1} are moved to cutset’s complement. Restricting the

number of diagonal blocks so that we have (2× 2) block partitioning, we obtain

CHAPTER 4. PROPOSED METHODS 45

6 5 2 1 4 3

6

5

2

1

4

3



X X X

X X X

X X X

X X

X X X

X X


.

Applying Rosen’s algorithm to the second diagonal block, we obtain the cutset as

empty set, therefore, cutset’s complement becomes T2 = {4, 3}. Note that both

diagonal blocks are triangular.

In the next section, we present the results of numerical experiments with

Google-like stochastic matrices and other irreducible MCs from the literature.

Chapter 5

Experimental Results

In the previous chapter, we presented three block partitionings to be used with

iterative methods in the computation of the steady-state vector of a Google-like

stochastic matrix. In this chapter, after discussing the properties of benchmark

matrices used in experiments and the experimental framework, we provide the

results of numerical experiments and compare the performance of solvers in the

software tool with an emphasis on number of iterations taken, accuracy achieved,

time for preprocessing and solution, and space used.

5.1 Properties of Benchmark Matrices

Five web matrices are employed in the experiments. Two of these come from the

University of Florida Sparse Matrix Collection [8] and referred to as Stanford and

StanfordBerkeley. Two are crawled by UbiCrawler [2] and uncompressed using

WebGraph [3] software; they are named Eu2005 and In2004. The fifth one is

46

CHAPTER 5. EXPERIMENTAL RESULTS 47

Matrix n nz # of # of non-existent
dangling nodes diagonal elements

Stanford 281,903 2,312,497 20,315 281,903
StanfordBerkeley 683,446 7,583,376 68,062 683,446
Eu2005 862,664 19,235,140 71,675 361,237
In2004 1,382,908 16,917,053 86 1,005,498
Webbase 2,662,002 44,843,770 574,863 2,662,002
2D 16,641 66,049 0 0
Easy 20,301 140,504 0 0
Telecom 20,491 101,041 0 0
Ncd 23,426 156,026 0 0
Mutex 39,203 563,491 0 0
Qnatm 104,625 593,115 0 0

Table 5.1: Properties of benchmark matrices.

named Webbase and is obtained from the Stanford Webbase Project [4]. All of

these matrices are reducible, have orders ranging between 281,903 and 2,662,02,

and possess dangling nodes.

Although the work in this thesis is geared towards reducible matrices, we

have also experimented with irreducible matrices. The matrices we considered

are previously used, for instance, in [11], and referred to as 2D, Easy, Telecom,

Ncd, Mutex, Qnatm. These matrices come from six different applications, such

as biological modeling (2D), computer performance evaluation (Ncd, Mutex), and

telecommunication networks (Easy, Telecom, Qnatm). The orders of these ma-

trices range between 16,000 and 105,000, and they do not possess any zero rows.

Detailed information regarding the reducible and irreducible matrices used in

experiments appears in Table 5.1. The first column provides the matrix name.

Columns n and nz give the order of the matrix and its number of nonzeros.

Columns four and five provide the number of dangling nodes and number of

nonexistent diagonal elements in the matrices. Results of numerical experiments

on these matrices follow in the next sections.

CHAPTER 5. EXPERIMENTAL RESULTS 48

5.2 Experimental Setup

Experiments are performed on a 3 GHz Pentium IV processor with 2 Gigabytes

main memory under the Linux operating system using the o3 level optimization in

compiling the code [10]. There are currently eight solvers in the code: POWER,

quadratically extrapolated (QPOWER), J, GS, BJ, BGS, IADBJ, and IADBGS.

Of these, the last four are able to utilize block partitionings.

Two other straightforward block partitioning techniques are considered. The

equal partitioning forms (approximately) equal order blocks and the second parti-

tioning, other, uses blocks of order respectively 1, 2, 3, . . . [11, p.1692]. The other

partitioning has about
√

2n blocks with the largest block of order roughly
√

2n.

“The equal partitioning has
√
n blocks of order

√
n if n is a perfect square. If

n 6= b
√
nc2, there is an extra block of order n−b

√
nc2.” [11, p.1693]. In the rest of

this thesis we name the former of these partitioning 4 and the latter partitioning

5.

The partitioning parameters of experiments performed using block partition-

ings can be expressed as a Cartesian product of four sets. Let set B = {y, n}

denote whether Tarjan’s algorithm is used or not, set C = {y, n} denote whether

Rosen’s algorithm is used or not, set R = {y, n} denote whether the number of

diagonal blocks is restricted to two or not, and set O = {u, l} denote whether

triangularized diagonal blocks are upper- or lower-triangular. Then experiments

with block partitionings take as partitioning parameters elements from proper

subsets of B × C ×R×O. Experiments performed on web matrices using parti-

tionings 1 and 2 can utilize elements of {y}×C×R×O, those using partitioning

3 can utilize {y}×{y}×{n}×O, and those using partitionings 4 and 5 can utilize

CHAPTER 5. EXPERIMENTAL RESULTS 49

{n}×{n}×{n}×{u}. On the other hand, experiments performed on irreducible

matrices using partitionings 1 and 2 can utilize elements of {n} × {y} × R × O

and those using partitioning 3 can utilize elements of {n} × {y} × {n} × O, and

those using partitionings 4 and 5 can utilize the corresponding ones for web ma-

trices. Note that for experiments performed on web matrices using IAD solvers

based on partitioning 1 elements of {y} × {n} × R×O are utilized and this set

of experiments are not performed on irreducible matrices.

Different problems resulting from web matrices are considered by letting α ∈

{0.85, 0.90, 0.95, 0.97, 0.99}. The value of α for irreducible matrices is 1.0. Hence,

there are altogether 31 test problems.

5.3 Performance Evaluation

Experimental results are presented in the following two subsections respectively

for the 25 reducible matrices and 6 irreducible matrices after data pertaining

to the resulting nonzero structures under the assumed block partitionings are

given at the beginning of each subsection. The results are discussed in the third

subsection.

5.3.1 Experiments with Reducible Matrices

Data pertaining to the resulting nonzero structures under the assumed block

partitionings are provided in Tables 5.3–5.10. The number and the location of

nonzeros in these sparse matrices have a significant effect on the number of iter-

ations performed and solution time. Note however that the nonzero structure of

CHAPTER 5. EXPERIMENTAL RESULTS 50

a web matrix does not change for different values of α. Two tables are presented

for each problem; thus, we have 10 tables.

The first of the two tables provides summary information about the nonzero

structure of the block partitionings for the five partitionings used. Again the

first column (Part) indicates the partitioning used and the second column (Para)

lists the parameters of the particular partitioning. Number of diagonal blocks,

maximum, minimum, and average order of a diagonal block in the particular

partitioning appear in columns three (nb), four (Maxn), five (Minn), and six

(Aven). Maximum, minimum, and average number of nonzeros of a diagonal block

in the particular partitioning appear in columns seven (Maxnz), eight (Minnz), and

nine (Avenz). Column ten (nzoff) provides the number of nonzeros in off-diagonal

blocks. Note that, for partitioning 3, partitioning 4, and partitioning 5 nonzero

structure is given only for orientation parameter u, since given information on

nonzero structure is the same for orientation parameter l.

The second of the two tables for each problem gives detailed information about

the nonzero structure of the block partitionings when partitionings 1 and 2 are

used. The first column (Part) indicates the partitioning used and the second

column (Para) lists the parameters of the particular partitioning. Columns three

(nT00) and four (nzT00) correspond to the order and the number of nonzeros of

the first diagonal block in the employed partitioning, respectively. Length of the

final cutset is given in column five (nT). Column six indicates the total number

of nonzeros in diagonal blocks, except the first diagonal block for partitioning 1,

and except the first and last diagonal blocks for partitioning 2.

The best timing results for each problem with each of the available solvers

(under the five block partitionings wheneever applicable), is presented in Tables

CHAPTER 5. EXPERIMENTAL RESULTS 51

Part Para nb Maxn Minn Aven Maxnz Minnz Avenz nzoff

1 y,y,y,l 2 122,866 122,866 140,951.5 848,844 452,823 650,833.5 1,292,733
1 y,y,y,u 2 102,723 102,723 140,951.5 699,421 517,281 608,351.0 1,377,698
1 y,y,n,l 3,520 50,370 1 34.9 494,987 1 331.9 1,425,977
1 y,y,n,u 3,520 50,370 1 29.2 517,281 1 338.9 1,401,385
1 y,n,n,l 3,520 150,532 2 80.1 1,726,846 4 673.2 224,891
1 y,n,n,u 3,520 150,532 2 74.3 1,726,846 4 667.6 244,614
2 y,y,n,l 4,776 100,162 1 53.1 494,987 1 241.4 1,441,346
2 y,y,n,u 4,776 100,162 1 53.1 494,987 1 237.3 1,461,074
2 y,n,n,l 3,520 150,532 1 80.1 1,726,846 1 672.6 226,848
2 y,n,n,u 3,520 150,532 1 74.3 1,726,846 1 667.0 246,646
3 y,y,n,u 42 185,332 1 6,712.0 555,177 1 16,844.8 1,886,918
4 n,n,n,u 531 1,003 530 530.9 1,036 530 538.2 2,308,602
5 n,n,n,u 751 750 1 375.4 775 1 380.4 2,308,739

Table 5.2: Nonzero structure of the Stanford problem for all partitionings.

Part Para nT00 nzT00 nT nzrem

1 y,y,y,l 159,037 452,823 122,866 848,844
1 y,y,y,u 179,180 517,281 102,723 699,421
1 y,y,n,l 159,037 452,823 122,866 715,600
1 y,y,n,u 179,180 517,281 102,723 675,734
1 y,n,n,l 172 172 2,369,337
1 y,n,n,u 20,315 20,315 2,329,471
2 y,y,n,l 1,303 1,356 122,866 1,151,698
2 y,y,n,u 21,446 21,569 102,723 1,111,757
2 y,n,n,l 172 172 2,367,380
2 y,n,n,u 20,315 20,315 2,327,439

Table 5.3: Other information on nonzero structure of the Stanford problem with
partitionings 1 and 2.

Part Para nb Maxn Minn Aven Maxnz Minnz Avenz nzoff

1 y,y,y,l 2 322,658 322,658 341,723.0 3,683,242 1,013,364 2,348,303.0 3,570,216
1 y,y,y,u 2 259,331 259,331 341,723.0 2,754,582 1,195,425 1,975,003.5 4,316,815
1 y,y,n,l 6,750 106,595 1 47.8 1,665,952 1 601.3 4,208,017
1 y,y,n,u 6,750 106,595 1 38.4 1,665,952 1 553.0 4,534,222
1 y,n,n,l 6,750 333,752 2 100.6 4,843,536 4 1,087.4 926,824
1 y,n,n,u 6,750 333,752 2 91.2 4,843,536 4 1,021.5 1,371,763
2 y,y,n,l 10,116 227,157 1 57.2 1,665,952 1 398.1 4,239,810
2 y,y,n,u 10,116 227,157 1 57.2 1,665,952 1 354.1 4,685,016
2 y,n,n,l 6,750 333,752 1 100.6 4,843,536 1 1,087.2 928,567
2 y,n,n,u 6,750 333,752 1 91.2 4,843,536 1 1,021.2 1,373,832
3 y,y,n,u 163 1,170 826 826.4 1,719,076 2 12,946.2 6,156,597
4 n,n,n,u 827 1,168 1 584.6 50,507 826 4,931.4 4,188,520
5 n,n,n,u 1,169 458,614 2 4,192.9 59,110 1 3,464.8 4,216,462

Table 5.4: Nonzero structure of the StanfordBerkeley problem for all partitionings.

Part Para nT00 nzT00 nT nzrem

1 y,y,y,l 360,788 1,013,364 322,658 3,683,242
1 y,y,y,u 424,115 1,195,425 259,331 2,754,582
1 y,y,n,l 360,788 1,013,364 322,658 3,045,441
1 y,y,n,u 424,115 1,195,425 259,331 2,537,175
1 y,n,n,l 4,735 4,735 7,335,263
1 y,n,n,u 68,062 68,062 6,826,997
2 y,y,n,l 6,426 6,484 322,658 4,020,528
2 y,y,n,u 69,753 69,870 259,331 3,511,936
2 y,n,n,l 4,735 4,735 7,333,520
2 y,n,n,u 68,062 68,062 6,824,928

Table 5.5: Other information on nonzero structure of the StanfordBerkeley prob-
lem with partitionings 1 and 2.

CHAPTER 5. EXPERIMENTAL RESULTS 52

Part Para nb Maxn Minn Aven Maxnz Minnz Avenz nzoff

1 y,y,y,l 2 397,231 397,231 198,615.5 9,882,355 1,354,607 5,618,481.0 1,158,774
1 y,y,y,u 2 315,790 315,790 157,895.0 9,157,873 1,875,258 5,516,566.0 1,173,377
1 y,y,n,l 1,163 300,962 1 341.6 9,045,432 1 9,086.9 1,158,774
1 y,y,n,u 1,163 300,962 1 271.5 9,045,432 1 9,452.0 1,173,377
1 y,n,n,l 1,162 89,607 2 94.6 18,201,086 4 15,867.1 1,158,774
1 y,n,n,u 1,163 752,725 2 671.7 18,201,086 4 15,840.9 1,173,377
2 y,y,n,l 1,588 451,763 1 486.4 9,045,432 1 6,654.2 9,029,473
2 y,y,n,u 1,588 451,763 1 486.4 9,045,432 1 6,645.1 9,043,989
2 y,n,n,u 1,163 89,607 2 94.6 18,201,086 1 15,840.6 1,173,734
2 y,n,n,l 1,162 752,725 2 671.7 18,201,086 1 15,867.0 1,158,974
3 y,y,n,u 378 986,091 1 2,917.5 1,942,183 1 6,713.3 17,058,750
4 n,n,n,u 929 1,480 928 928.6 113,337 928 7,829.3 12,322,997
5 n,n,n,u 1,314 1,313 1 656.5 153,043 1 5,423.7 12,469,660

Table 5.6: Nonzero structure of the Eu2005 problem for all partitionings.

Part Para nT00 nzT00 nT nzrem

1 y,y,y,l 0 18,201,086 397,231 236,517
1 y,y,y,u 81,441 81,441 315,790 18,341,559
1 y,y,n,l 0 18,201,086 397,231 236,517
1 y,y,n,u 81,441 81,441 315,790 18,341,559
1 y,n,n,l 0 18,201,086 236,517
1 y,n,n,u 81,441 81,441 18,341,559
2 y,y,n,l 0 368 397,231 10,566,522
2 y,y,n,u 81,441 82,067 315,790 10,470,321
2 y,n,n,u 0 18,201,086 18,341,202
2 y,n,n,l 81,441 81,441 236,317

Table 5.7: Other information on nonzero structure of the Eu2005 problem with
partitionings 1 and 2.

Part Para nb Maxn Minn Aven Maxnz Minnz Avenz nzoff

1 y,y,y,l 2 453,130 453,130 691,454.0 8,280,317 2,573,755 5,427,036.0 7,068,479
1 y,y,y,u 2 747,816 747,816 691,454.0 9,070,706 1,745,311 5,408,008.5 7,106,534
1 y,y,n,l 16,644 209,076 1 27.2 3,180,612 1 640.7 7,259,360
1 y,y,n,u 16,644 350,939 1 44.9 3,180,612 1 619.1 7,618,442
1 y,n,n,l 16,644 593,687 2 65.4 8,234,607 4 991.9 1,413,736
1 y,n,n,u 16,644 593,687 2 83.1 8,234,607 4 1,002.4 1,239,060
2 y,y,n,l 26,978 384,611 1 40.2 3,180,612 1 374.9 7,809,139
2 y,y,n,u 26,978 384,611 1 51.1 3,180,612 1 381.4 7,633,801
2 y,n,n,l 16,644 593,687 1 65.4 8,234,607 1 991.9 1,413,651
2 y,n,n,u 16,644 593,687 1 83.1 8,234,607 1 1,002.9 1,230,381
3 y,y,n,u 474 986,091 1 2,917.5 2,965,885 1 7,583.6 14,327,904
4 n,n,n,u 1,176 2,283 1,175 1,175.9 244,197 1,175 9,404.2 6,863,176
5 n,n,n,u 1,663 1,662 1 831.6 397,360 1 6,614.8 6,922,088

Table 5.8: Nonzero structure of the In2004 problem for all partitionings.

Part Para nT00 nzT00 nT nzrem

1 y,y,y,l 929,778 2,573,755 453,130 8,280,317
1 y,y,y,u 635,092 1,745,311 747,816 9,070,706
1 y,y,n,l 929,778 2,573,755 453,130 8,089,436
1 y,y,n,u 635,092 1,745,311 747,816 8,558,798
1 y,n,n,l 294,780 294,780 16,214,035
1 y,n,n,u 94 94 16,683,397
2 y,y,n,l 297,934 305,915 453,130 9,807,497
2 y,y,n,u 3,248 3,297 747,816 10,285,453
2 y,n,n,l 294,780 294,780 16,214,120
2 y,n,n,u 94 94 16,692,076

Table 5.9: Other information on nonzero structure of the In2004 problem with
partitionings 1 and 2.

CHAPTER 5. EXPERIMENTAL RESULTS 53

Part Para nb Maxn Minn Aven Maxnz Minnz Avenz nzoff

1 y,y,y,l 2 1,026,409 1,026,409 513,204.5 13,999,537 5,085,941 9,542,739.0 28,420,294
1 y,y,y,u 2 807,006 807,006 403,503.0 17,107,790 6,049,826 11,578,808.0 24,348,156
1 y,y,n,l 8,584 590,095 1 119.6 8,888,544 1 2,030.1 30,079,285
1 y,y,n,u 8,584 370,692 1 94.0 8,888,544 1 2,103.9 29,445,974
1 y,n,n,l 8,584 1,390,621 2 268.7 31,714,016 4 4,541.2 8,523,737
1 y,n,n,u 8,584 1,390,621 2 243.1 31,714,016 4 4,528.3 8,634,908
2 y,y,n,l 10,188 1,054,569 1 167.8 8,888,544 1 1,654.8 30,647,129
2 y,y,n,u 10,188 1,054,569 1 167.8 8,888,544 1 1,644.1 30,755,389
2 y,n,n,l 8,584 1,390,621 2 268.7 31,714,016 1 4,541.1 8,524,636
2 y,n,n,u 8,584 1,390,621 2 243.1 31,714,016 1 4,528.1 8,636,363
3 y,y,n,u 404 2,225,698 1 6,589.1 8,197,002 1 21,961.9 38,633,180
4 n,n,n,u 1,632 1,841 1,631 1,631.1 401,126 1,631 11,113.7 29,368,144
5 n,n,n,u 2,307 2,306 1 1,153.9 347,195 1 7,675.2 29,799,021

Table 5.10: Nonzero structure of the Webbase problem for all partitionings.

Part Para nT00 nzT00 nT nzrem

1 y,y,y,l 355,460 358,949 1,026,409 13,999,537
1 y,y,y,u 574,863 578,352 807,006 17,107,790
1 y,y,n,l 355,460 358,949 1,026,409 12,340,546
1 y,y,n,u 574,863 578,352 807,006 12,009,972
1 y,n,n,l 355,460 358,949 38,626,575
1 y,n,n,u 574,863 578,352 38,296,001
2 y,y,n,l 355,460 358,949 1,026,409 16,496,313
2 y,y,n,u 574,863 578,352 807,006 16,165,183
2 y,n,n,l 355,460 358,949 38,625,676
2 y,n,n,u 574,863 578,352 38,294,546

Table 5.11: Other information on nonzero structure of the Webbase problem with
partitionings 1 and 2.

5.12–5.36. Bold numbers in the tables show the best timing result for each prob-

lem. The stopping criteria used in POWER, QPOWER, JOR, and SOR are

stop if k ≥ maxit or
∥∥x(k) − x(k−1)

∥∥
∞ ≤ stoptol

and in BJOR, BSOR, IADBJOR, and IADBSOR are

stop if k ≥ maxit or
∥∥x(k) − x(k−1)

∥∥
∞ ≤ stoptol

and

stop if k ≥ maxit or
∥∥x(k) − x(k−1)

∥∥
∞ ≤ stoptol or

(∥∥x(k) − x(k−1)
∥∥
∞ ≤ stoptol1 and

∥∥x(k) − x(k−1)
∥∥
∞ −

∥∥x(k−1) − x(k−2)
∥∥
∞ ≤ stoptol2,

where k is the iteration number, maxit is the maximum number of iterations to

CHAPTER 5. EXPERIMENTAL RESULTS 54

be performed, and stoptol is the stopping tolerance. “The use of stoptol1 and

stoptol2 forces the solver to terminate when the norm residual is decreasing too

slowly, while the differences between two successive iterates is small enough.” [11,

p.1697]. We set stoptol, stoptol1 and stoptol2 to 1e−10, 1e−6 and 1e−12 respec-

tively, whereas maxit is set to 1,000. BJOR, BSOR, IADBJOR, and IADBSOR

have two additional parameters indicating inner tolerance and maximum number

of inner iterations to be performed when using the corresponding point itera-

tive method for the solution of diagonal blocks. The values of these parameters

are respectively elements of the sets {10−3, 10−5, 10−10} and {3, 5}. In the IAD

solvers, if the order of the aggregated matrix is larger than 500, the corresponding

point iterative method is employed, otherwise the GTH method [37, pp.84–86] (a

more robust version of GE for MCs) is used for its solution. If the corresponding

point iterative method is used for the solution of the aggregated matrix, the two

parameters take the values 10−15 and 100,000. The relaxation parameter ω is set

to 1.0 for all solvers but QPOWER and POWER; thus, we have the solvers (B)J,

(B)GS, IADBJ, and IADBGS.

Each table consists of thirty rows and nine columns except those of the Web-

base problem in which space limitations are exceeded with the IAD solvers based

on partitioning 3. The first two columns (Solver and Part) indicate the solver

name and the block partitioning used. Column three (Iter) and four (Res) give

the number of iterations performed and the infinity norm of the residual vector

upon stopping. Preprocessing, Pe, solution, and total times in seconds appear in

columns five (Prep), six (Pe), seven (Solu), and eight (Total), respectively. The

preprocessing time includes time for allocating and setting the necessary data

structures, and whereever applicable, scaling the coefficient matrix, computing

the block partitioning and transforming the sparse point representation of the

CHAPTER 5. EXPERIMENTAL RESULTS 55

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 103 8e−11 2.3 20.2 22.5 38
QPOWER 86 9e−11 2.4 17.5 19.8 53
J 104 7e−11 2.6 23.0 25.5 50
GS 45 6e−11 2.5 9.6 12.1 50
BJ(n,n,n,u,1e−3,3) 4 103 8e−11 3.3 22.2 25.5 86
BJ(n,n,n,u,1e−3,3) 5 103 8e−11 3.2 21.4 24.6 86
BJ(y,n,n,l,1e−5,3) 1 34 2e−11 4.6 13.8 18.3 86
BJ(y,n,y,l,1e−10,3) 1 34 2e−11 4.5 13.8 18.3 86
BJ(y,y,n,l,1e−10,3) 1 153 8e−11 5.4 23.7 29.0 108
BJ(y,y,y,l,1e−5,3) 1 277 9e−11 5.4 45.1 50.5 108
BJ(y,n,n,u,1e−5,3) 2 67 8e−11 4.6 24.8 29.5 86
BJ(y,y,n,l,1e−10,3) 2 122 8e−11 5.4 18.0 23.4 110
BJ(y,y,n,l) 3 169 8e−11 5.7 13.8 19.5 122
BGS(n,n,n,u,1e−3,5) 4 45 6e−11 3.3 10.0 13.3 86
BGS(n,n,n,u,1e−3,3) 5 45 6e−11 3.3 9.9 13.2 86
BGS(y,n,n,l,1e−5,3) 1 17 2e−11 4.6 7.1 11.6 86
BGS(y,n,y,l,1e−5,3) 1 17 2e−11 4.6 7.0 11.6 86
BGS(y,y,n,l,1e−3,3) 1 43 1e−11 5.3 7.0 12.3 108
BGS(y,y,y,l,1e−5,3) 1 43 1e−11 5.4 7.3 12.7 108
BGS(y,n,n,l,1e−3,3) 2 35 5e−11 4.6 14.0 18.6 86
BGS(y,y,n,l,1e−10,3) 2 42 6e−11 5.4 6.7 12.0 110
BGS(y,y,n,l) 3 44 5e−11 5.7 4.1 9.8 122
IADBJ(n,n,n,u,1e−3,5) 4 86 8e−11 3.4 11.4 41.5 56.3 149
IADBJ(n,n,n,u,1e−3,3) 5 85 7e−11 3.4 10.7 40.5 54.6 149
IADBJ(y,n,n,u,1e−10,5) 1 22 8e−11 4.9 3.1 12.5 20.5 149
IADBJ(y,y,n,u) 3 93 8e−11 5.6 182.1 11.7 199.5 151
IADBGS(n,n,n,u,1e−3,5) 4 43 6e−11 3.3 11.4 19.1 33.8 149
IADBGS(n,n,n,u,1e−3,3) 5 43 6e−11 3.4 10.7 20.5 34.6 149
IADBGS(y,n,n,l,1e−10,5) 1 11 4e−11 4.7 2.5 6.7 14.0 149
IADBGS(y,y,n,u) 3 44 4e−11 5.5 184.5 6.1 196.1 151

Table 5.12: Solver statistics for the Stanford problem when α = 0.85.

CHAPTER 5. EXPERIMENTAL RESULTS 56

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 154 8e−11 2.4 29.0 31.4 38
QPOWER 112 1e−10 2.6 23.8 26.4 53
J 154 8e−11 2.5 32.8 35.2 50
GS 65 8e−11 2.7 14.0 16.6 50
BJ(n,n,n,u,1e−5,5) 4 154 8e−11 3.3 32.9 36.1 86
BJ(n,n,n,u,1e−3,3) 5 154 8e−11 3.2 32.8 36.0 86
BJ(y,n,n,l,1e−3,3) 1 49 5e−11 4.6 19.7 24.3 86
BJ(y,n,y,u,1e−5,3) 1 49 5e−11 4.8 19.5 24.4 86
BJ(y,y,n,l,1e−3,3) 1 210 9e−11 5.3 31.7 37.0 108
BJ(y,y,y,l,1e−3,3) 1 338 9e−11 5.4 55.0 60.4 108
BJ(y,n,n,u,1e−3,3) 2 103 9e−11 4.8 39.3 44.1 86
BJ(y,y,n,l,1e−5,3) 2 176 8e−11 5.3 25.8 31.1 110
BJ(y,y,n,l) 3 230 9e−11 5.6 17.8 23.4 122
BGS(n,n,n,u,1e−5,5) 4 65 8e−11 3.4 14.3 17.7 86
BGS(n,n,n,u,1e−3,3) 5 65 8e−11 3.2 14.2 17.4 86
BGS(y,n,n,l,1e−3,3) 1 25 2e−11 4.6 10.2 14.8 86
BGS(y,n,y,l,1e−3,3) 1 25 2e−11 4.5 10.1 14.6 86
BGS(y,y,n,l,1e−5,3) 1 64 1e−11 5.4 10.2 15.5 108
BGS(y,y,y,l,1e−10,3) 1 64 1e−11 5.5 10.8 16.2 108
BGS(y,n,n,l,1e−3,3) 2 53 8e−11 4.6 21.2 25.7 86
BGS(y,y,n,u,1e−10,3) 2 62 8e−11 5.5 9.5 15.0 110
BGS(y,y,n,l) 3 63 7e−11 5.7 5.7 11.4 122
IADBJ(n,n,n,u,1e−5,3) 4 132 8e−11 3.3 11.4 56.5 71.2 149
IADBJ(n,n,n,u,1e−5,5) 5 128 8e−11 3.3 10.7 60.3 74.4 149
IADBJ(y,n,n,u,1e−10,5) 1 33 8e−11 4.7 3.1 19.2 27.0 149
IADBJ(y,y,n,u) 3 142 9e−11 5.6 182.1 17.6 205.3 151
IADBGS(n,n,n,u,1e−5,5) 4 63 6e−11 3.3 11.4 27.8 42.5 149
IADBGS(n,n,n,u,1e−3,5) 5 63 6e−11 3.2 10.8 29.6 43.6 149
IADBGS(y,n,n,l,1e−10,5) 1 15 7e−11 4.7 2.5 9.2 16.4 149
IADBGS(y,y,n,u) 3 65 4e−11 5.6 182.2 8.6 196.4 151

Table 5.13: Solver statistics for the Stanford problem when α=0.90.

CHAPTER 5. EXPERIMENTAL RESULTS 57

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 288 9e−11 2.5 54.5 57.0 38
QPOWER 218 2e−10 2.4 43.2 45.6 53
J 288 9e−11 2.5 61.1 63.5 50
GS 124 9e−11 2.5 26.7 29.2 50
BJ(n,n,n,u,1e−3,5) 4 288 9e−11 3.3 61.4 64.7 86
BJ(n,n,n,u,1e−3,3) 5 288 9e−11 3.3 61.0 64.3 86
BJ(y,n,n,l,1e−5,5) 1 57 8e−11 4.6 35.6 40.2 86
BJ(y,n,y,l,1e−3,5) 1 57 8e−11 4.6 35.7 40.2 86
BJ(y,y,n,l,1e−3,3) 1 367 9e−11 5.3 55.4 60.7 108
BJ(y,y,y,l,1e−10,3) 1 512 1e−10 5.4 83.4 88.8 108
BJ(y,n,n,l,1e−3,3) 2 213 9e−11 4.7 80.9 85.6 86
BJ(y,y,n,l,1e−5,3) 2 319 9e−11 5.3 46.3 51.6 110
BJ(y,y,n,l) 3 406 9e−11 5.6 32.7 38.3 122
BGS(n,n,n,u,1e−3,3) 4 124 9e−11 3.2 27.1 30.4 86
BGS(n,n,n,u,1e−3,3) 5 124 9e−11 3.2 27.0 30.3 86
BGS(y,n,n,l,1e−3,5) 1 30 1e−11 4.6 18.9 23.5 86
BGS(y,n,y,l,1e−10,5) 1 30 1e−11 4.5 19.0 23.5 86
BGS(y,y,n,l,1e−5,3) 1 121 2e−11 5.5 18.9 24.4 108
BGS(y,y,y,u,1e−10,3) 1 123 2e−11 5.8 19.4 25.2 108
BGS(y,n,n,l,1e−5,3) 2 108 9e−11 4.5 42.0 46.5 86
BGS(y,y,n,l,1e−5,3) 2 117 9e−11 5.3 17.8 23.1 110
BGS(y,y,n,l) 3 117 9e−11 5.7 10.2 15.8 122
IADBJ(n,n,n,u,1e−3,3) 4 267 8e−11 3.4 11.4 117.6 132.4 149
IADBJ(n,n,n,u,1e−5,5) 5 257 9e−11 3.3 10.7 123.1 137.1 149
IADBJ(y,n,n,u,1e−10,5) 1 61 9e−11 4.7 3.1 36.5 44.3 149
IADBJ(y,y,n,u) 3 289 9e−11 5.5 182.5 35.6 223.6 151
IADBGS(n,n,n,u,1e−5,3) 4 117 9e−11 3.4 11.4 51.3 66.2 149
IADBGS(n,n,n,u,1e−3,3) 5 118 7e−11 3.4 10.7 56.2 70.3 149
IADBGS(y,n,n,u,1e−10,5) 1 29 7e−11 4.8 3.1 17.3 25.2 149
IADBGS(y,y,n,u) 3 124 4e−11 5.6 183.5 15.9 205.0 151

Table 5.14: Solver statistics for the Stanford problem when α=0.95.

CHAPTER 5. EXPERIMENTAL RESULTS 58

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 475 1e−12 2.5 90.7 93.2 38
QPOWER 394 2e−10 2.3 76.7 79.0 53
J 477 9e−11 2.6 280.6 283.2 50
GS 201 9e−11 2.6 42.5 45.1 50
BJ(n,n,n,u,1e−3,5) 4 475 1e−10 3.3 101.1 104.3 86
BJ(n,n,n,u,1e−3,3) 5 475 1e−10 3.3 101.1 104.3 86
BJ(y,n,n,l,1e−10,5) 1 94 9e−11 4.6 58.5 63.1 86
BJ(y,n,y,l,1e−10,5) 1 94 9e−11 4.6 59.2 63.7 86
BJ(y,y,n,l,1e−3,3) 1 555 9e−11 5.5 83.6 89.1 108
BJ(y,y,y,l,1e−5,3) 1 733 1e−10 5.4 118.8 124.2 108
BJ(y,n,n,u,1e−3,3) 2 360 9e−11 4.7 136.1 140.7 86
BJ(y,y,n,l,1e−10,3) 2 498 9e−11 5.5 71.9 77.4 110
BJ(y,y,n,u) 3 628 9e−11 5.7 50.3 56.0 122
BGS(n,n,n,u,1e−5,3) 4 201 9e−11 3.3 43.8 47.1 86
BGS(n,n,n,u,1e−3,3) 5 201 9e−11 3.3 43.9 47.2 86
BGS(y,n,n,l,1e−3,3) 1 76 3e−11 4.7 29.6 34.3 86
BGS(y,n,y,l,1e−3,3) 1 76 3e−11 4.5 29.6 34.1 86
BGS(y,y,n,u,1e−10,3) 1 198 4e−11 5.5 30.1 35.6 108
BGS(y,y,y,u,1e−10,3) 1 198 4e−11 5.7 31.7 37.4 108
BGS(y,n,n,u,1e−5,3) 2 181 9e−11 4.7 70.1 74.8 86
BGS(y,y,n,l,1e−10,3) 2 192 9e−11 5.3 29.0 34.3 110
BGS(y,y,n,l) 3 191 9e−11 5.6 16.4 21.9 122
IADBJ(n,n,n,u,1e−3,5) 4 441 9e−11 3.4 11.4 195.1 210.0 149
IADBJ(n,n,n,u,1e−5,5) 5 425 9e−11 3.4 10.7 204.8 218.9 149
IADBJ(y,n,n,u,1e−10,5) 1 104 1e−10 4.8 3.1 62.3 70.2 149
IADBJ(y,y,n,u) 3 479 1e−10 5.5 180.9 58.2 244.6 151
IADBGS(n,n,n,u,1e−5,5) 4 188 7e−11 3.3 11.4 82.5 97.2 149
IADBGS(n,n,n,u,1e−3,3) 5 189 7e−11 3.2 10.8 88.3 102.3 149
IADBGS(y,n,n,l,1e−10,5) 1 45 9e−11 4.6 2.5 28.0 35.0 149
IADBGS(y,y,n,u) 3 200 5e−11 6.1 180.6 25.6 212.3 151

Table 5.15: Solver statistics for the Stanford problem when α=0.97.

CHAPTER 5. EXPERIMENTAL RESULTS 59

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 1,000* 4e−09 2.4 193.1 195.4 38
QPOWER 1,000* 5e−10 2.6 200.4 203.0 53
J 1,000* 4e−09 4.3 220.3 224.5 50
GS 574 6e−11 2.6 121.2 123.8 50
BJ(n,n,n,u,1e−3,3) 4 1,000* 4e−09 3.3 212.7 216.0 86
BJ(n,n,n,u,1e−5,5) 5 1,000* 4e−09 3.3 212.2 215.4 86
BJ(y,n,n,u,1e−3,5) 1 236 3e−10 4.7 150.0 154.7 86
BJ(y,n,y,u,1e−3,5) 1 236 3e−10 4.7 149.9 154.6 86
BJ(y,y,n,u,1e−3,3) 1 1,000* 3e−08 5.5 145.6 151.1 108
BJ(y,y,y,u,1e−5,3) 1 1,000* 1e−07 5.7 150.4 156.1 108
BJ(y,n,n,u,1e−10,3) 2 1,000* 3e−10 4.8 377.4 382.2 86
BJ(y,y,n,l,1e−5,3) 2 1,000* 9e−09 5.3 144.2 149.5 110
BJ(y,y,n,u) 3 1,000* 3e−8 5.6 75.6 81.2 122
BGS(n,n,n,u,1e−3,5) 4 571 1e−10 3.3 123.1 126.4 86
BGS(n,n,n,u,1e−5,5) 5 574 6e−11 3.3 124.6 127.9 86
BGS(y,n,n,l,1e−3,3) 1 208 3e−11 4.5 80.6 85.1 86
BGS(y,n,y,l,1e−5,3) 1 208 3e−11 4.7 80.4 85.1 86
BGS(y,y,n,u,1e−3,3) 1 557 5e−11 5.5 83.7 89.2 108
BGS(y,y,y,u,1e−5,3) 1 555 6e−11 5.8 85.7 91.5 108
BGS(y,n,n,l,1e−5,3) 2 520 1e−10 4.6 201.6 206.1 86
BGS(y,y,n,l,1e−5,3) 2 585 1e−10 5.3 85.8 91.1 110
BGS(y,y,n,u) 3 552 7e−11 5.6 43.7 49.3 122
IADBJ(n,n,n,u,1e−3,3) 4 1,000* 9e−11 3.3 11.4 517.7 532.5 149
IADBJ(n,n,n,u,1e−3,5) 5 1,000* 7e−10 3.7 10.7 490.7 505.0 149
IADBJ(y,n,n,u,1e−10,5) 1 322 1e−10 4.7 3.2 172.4 180.3 149
IADBJ(y,y,n,u) 3 1,000* 9e−9 5.3 195.7 123.2 324.4 151
IADBGS(n,n,n,u,1e−5,3) 4 576 5e−11 3.4 11.4 251.3 266.1 149
IADBGS(n,n,n,u,1e−5,5) 5 556 5e−11 3.3 10.7 262.3 276.3 149
IADBGS(y,n,n,u,1e−10,5) 1 123 1e−10 4.7 3.1 76.9 84.7 149
IADBGS(y,y,n,u) 3 566 5e−11 5.5 185.8 70.7 262.0 151

Table 5.16: Solver statistics for the Stanford problem when α=0.99.

CHAPTER 5. EXPERIMENTAL RESULTS 60

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 93 8e−11 5.7 13.1 18.8 115
QPOWER 76 1e−10 6.0 12.3 18.2 152
J 93 8e−11 6.6 14.7 21.3 152
GS 55 6e−11 6.7 8.8 15.6 152
BJ(n,n,n,u,1e−5,3) 4 81 8e−11 6.6 13.7 20.3 254
BJ(n,n,n,u,1e−5,5) 5 82 8e−11 6.7 13.8 20.5 254
BJ (y,n,n,l,1e−5,5) 1 20 2e−11 7.6 13.7 21.3 254
BJ (y,n,y,l,1e−10,3) 1 31 7e−11 7.5 14.0 21.4 254
BJ (y,y,n,l,1e−10,3) 1 119 8e−11 6.8 37.7 44.5 315
BJ (y,y,y,l,1e−10,3) 1 174 9e−11 7.0 57.5 64.5 315
BJ (y,n,n,u,1e−5,3) 2 82 8e−11 7.5 33.6 41.1 254
BJ (y,y,n,l,1e−10,3) 2 98 8e−11 8.2 25.1 33.2 320
BJ(y,y,n,u) 3 123 8e−11 12.3 27.3 39.6 357
BGS(n,n,n,u,1e−5,5) 4 55 7e−11 6.6 9.4 16.0 254
BGS(n,n,n,u,1e−10,3) 5 52 6e−11 6.6 10.9 17.5 254
BGS (y,n,n,l,1e−10,5) 1 13 5e−12 7.6 8.8 16.4 254
BGS (y,n,y,l,1e−3,5) 1 13 5e−12 7.5 9.0 16.4 254
BGS (y,y,n,u,1e−10,3) 1 42 1e−11 7.2 12.3 19.5 315
BGS (y,y,y,u,1e−10,3) 1 42 3e−11 7.0 13.1 20.1 315
BGS (y,n,n,u,1e−3,3) 2 40 6e−11 7.9 16.3 24.2 254
BGS (y,y,n,l,1e−10,3) 2 40 7e−11 8.1 10.7 18.8 320
BGS(y,y,n,u) 3 42 7e−11 12.2 10.0 22.2 357
IADBJ(n,n,n,u,1e−5,5) 4 75 9e−11 6.7 3.9 19.7 30.3 425
IADBJ(n,n,n,u,1e−3,3) 5 92 8e−11 6.8 3.4 23.9 34.0 425
IADBJ(y,n,n,u,1e−10,5) 1 19 8e−11 8.0 26.1 12.1 46.2 425
IADBJ(y,y,n,u) 3 92 9e−11 12.1 1,487.1 100.3 1,599.5 438
IADBGS(n,n,n,u,1e−10,3) 4 33 5e−11 6.7 3.9 10.0 20.6 425
IADBGS(n,n,n,u,1e−10,3) 5 35 3e−11 7.1 3.4 10.6 21.1 425
IADBGS(y,n,n,l,1e−10,5) 1 12 4e−11 8.0 19.7 7.3 35.0 425
IADBGS(y,y,n,u) 3 42 7e−11 11.8 1,463.3 46.0 1,521.1 438

Table 5.17: Solver statistics for the StanfordBerkeley problem when α=0.85.

CHAPTER 5. EXPERIMENTAL RESULTS 61

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 143 8e−11 6.1 20.1 26.2 115
QPOWER 115 9e−11 5.9 18.5 24.4 152
J 144 8e−11 6.2 22.4 28.7 152
GS 78 7e−11 6.2 12.2 18.4 152
BJ(n,n,n,u,1e−5,3) 4 124 8e−11 6.8 20.4 27.2 254
BJ(n,n,n,u,1e−5,5) 5 124 8e−11 6.8 23.7 30.5 254
BJ(y,n,n,u,1e−5,5) 1 29 5e−11 7.6 20.1 27.7 254
BJ(y,n,y,l,1e−3,5) 1 29 5e−11 7.5 19.8 27.3 254
BJ(y,y,n,l,1e−3,3) 1 167 9e−11 8.3 51.0 59.3 315
BJ(y,y,y,l,1e−5,3) 1 224 9e−11 8.2 72.3 80.5 315
BJ(y,n,n,u,1e−5,3) 2 126 9e−11 7.5 51.4 58.9 254
BJ(y,y,n,u,1e−5,3) 2 148 8e−11 8.6 37.2 45.8 320
BJ(y,y,n,u) 2 174 8e−11 11.7 38.4 50.0 357
BGS(n,n,n,u,1e−3,5) 4 78 7e−11 6.6 13.2 19.8 254
BGS(n,n,n,u,1e−3,3) 5 78 7e−11 6.9 13.2 20.1 254
BGS(y,n,n,u,1e−5,5) 1 19 6e−12 7.7 12.6 20.3 254
BGS(y,n,y,u,1e−10,3) 1 29 1e−11 7.5 12.6 20.1 254
BGS(y,y,n,u,1e−10,3) 1 62 2e−11 7.1 18.0 25.1 315
BGS(y,y,y,u,1e−10,3) 1 62 5e−11 7.0 19.0 26.0 315
BGS(y,n,n,u,1e−5,3) 2 60 7e−11 7.8 24.4 32.2 254
BGS(y,y,n,l,1e−5,3) 2 59 8e−11 8.1 15.6 23.7 320
BGS(y,y,n,u) 3 64 8e−11 12.6 14.9 27.5 357
IADBJ(n,n,n,u,1e−5,5) 4 114 1e−10 6.7 3.9 30.4 41.0 425
IADBJ(n,n,n,u,1e−5,3) 5 119 9e−11 7.0 3.4 31.7 42.1 425
IADBJ(y,n,n,u,1e−10,5) 1 30 8e−11 8.5 26.0 18.5 53.0 425
IADBJ(y,y,n,u) 3 142 9e−11 11.8 1,485.6 155.3 1,652.6 438
IADBGS(n,n,n,u,1e−10,3) 4 48 8e−11 6.7 3.9 14.6 25.2 425
IADBGS(n,n,n,u,1e−10,3) 5 48 6e−11 7.0 3.4 14.7 25.1 425
IADBGS(y,n,n,l,1e−10,5) 1 17 7e−11 7.5 19.7 10.1 37.3 425
IADBGS(y,y,n,u) 3 63 7e−11 12.8 1,453.1 69.7 1,535.6 438

Table 5.18: Solver statistics for the StanfordBerkeley problem when α=0.90.

CHAPTER 5. EXPERIMENTAL RESULTS 62

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 292 9e−11 6.0 40.9 47.0 115
QPOWER 216 1e−10 6.2 34.8 41.0 152
J 294 9e−11 6.2 45.5 51.8 152
GS 143 9e−11 6.2 22.0 28.2 152
BJ(n,n,n,u,1e−5,3) 4 246 1e−10 6.6 40.2 46.8 254
BJ(n,n,n,u,1e−5,3) 5 244 9e−11 6.9 40.6 48.0 254
BJ(y,n,n,l,1e−3,5) 1 58 8e−11 7.5 39.6 47.0 254
BJ(y,n,y,l,1e−5,5) 1 58 8e−11 7.5 39.2 46.7 254
BJ(y,y,n,u,1e−5,3) 1 333 9e−11 8.8 91.8 100.6 315
BJ(y,y,y,u,1e−5,3) 1 400 9e−11 8.2 117.1 125.3 315
BJ(y,n,n,u,1e−5,3) 2 257 9e−11 7.5 104.0 111.4 254
BJ(y,y,n,u,1e−3,3) 2 298 9e−11 8.3 74.9 83.2 320
BJ(y,y,n,u) 3 320 9e−11 11.9 70.0 81.8 357
BGS(n,n,n,u,1e−3,3) 4 143 9e−11 6.8 23.6 30.4 254
BGS(n,n,n,u,1e−10,3) 5 125 9e−11 7.5 26.0 33.6 254
BGS(y,n,n,u,1.0e−10,3) 1 49 3e−11 7.5 20.9 28.5 254
BGS(y,n,y,u,1e−5,3) 1 49 3e−11 7.6 20.9 28.5 254
BGS(y,y,n,u,1e−10,3) 1 120 7e−11 7.3 34.4 41.7 315
BGS(y,y,y,u,1e−10,3) 1 122 9e−11 8.3 36.8 45.2 315
BGS(y,n,n,u,1e−5,3) 2 120 9e−11 7.5 48.6 56.1 254
BGS(y,y,n,u,1e−5,3) 2 117 9e−11 8.5 29.7 38.2 320
BGS(y,y,n,u) 3 128 8e−11 11.8 29.4 41.1 357
IADBJ(n,n,n,u,1e−5,5) 4 235 9e−11 6.9 3.9 64.7 75.5 425
IADBJ(n,n,n,u,1e−5,3) 5 246 9e−11 6.6 3.4 67.9 77.9 425
IADBJ(y,n,n,u,1e−10,5) 1 60 9e−11 7.8 26.1 36.4 70.3 425
IADBJ(y,y,n,u) 3 292 9e−11 11.8 1,503.8 324.2 1,839.8 438
IADBGS(n,n,n,u,1e−10,3) 4 96 8e−11 7.3 4.0 28.7 39.9 425
IADBGS(n,n,n,u,1e−10,3) 5 90 8e−11 9.1 3.4 27.9 40.4 425
IADBGS(y,n,n,l,1e−10,5) 1 31 8e−11 7.9 21.7 18.9 48.5 425
IADBGS(y,y,n,u) 3 125 8e−11 11.8 1,482.2 138.5 1,632.5 438

Table 5.19: Solver statistics for the StanfordBerkeley problem when α=0.95.

CHAPTER 5. EXPERIMENTAL RESULTS 63

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 490 1e−10 5.8 68.5 74.3 115
QPOWER 360 2e−10 5.8 58.0 63.8 152
J 493 9e−11 6.7 76.8 83.4 152
GS 239 9e−11 6.5 36.6 43.1 152
BJ(n,n,n,u,1e−5,5) 4 406 1e−10 7.3 66.5 73.8 254
BJ(n,n,n,u,1e−5,5) 5 404 1e−10 7.1 67.0 74.1 254
BJ(y,n,n,u,1e−5,5) 1 97 8e−11 7.8 65.9 73.6 254
BJ(y,n,y,l,1e−3,5) 1 97 8e−11 7.7 65.9 73.6 254
BJ(y,y,n,u,1e−3,3) 1 526 1e−10 8.3 145.3 153.5 315
BJ(y,y,y,u,1e−3,3) 1 586 9e−11 8.3 171.7 180.1 315
BJ(y,n,n,u,1e−3,3) 2 432 9e−11 7.4 176.1 183.6 254
BJ(y,y,n,u,1e−3,3) 2 496 1e−10 8.3 125.0 133.2 320
BJ(y,y,n,l) 3 525 1e−10 12.0 115.1 127.1 357
BGS(n,n,n,u,1e−10,3) 4 169 9e−11 7.3 36.0 43.2 254
BGS(n,n,n,u,1e−10,3) 5 173 9e−11 6.9 36.7 43.6 254
BGS(y,n,n,u,1e−10,3) 1 79 4e−11 7.9 33.5 41.4 254
BGS(y,n,y,u,1e−10,3) 1 79 4e−11 7.8 33.3 41.0 254
BGS(y,y,n,u,1e−10,3) 1 199 9e−11 7.0 58.3 65.3 315
BGS(y,y,y,u,1e−10,3) 1 203 9e−11 7.0 61.8 68.8 315
BGS(y,n,n,u,1e−10,3) 2 199 9e−11 7.5 79.7 87.2 254
BGS(y,y,n,u,1e−10,3) 2 193 9e−11 8.2 48.6 56.8 320
BGS(y,y,n,u) 3 211 9e−11 11.9 48.0 59.9 357
IADBJ(n,n,n,u,1e−5,5) 4 395 9e−11 7.2 3.9 112.4 123.5 425
IADBJ(n,n,n,u,1e−5,5) 5 391 1e−10 6.8 3.4 115.2 125.3 425
IADBJ(y,n,n,u,1e−10-5) 1 102 1e−10 7.8 26.0 60.8 94.5 425
IADBJ(y,y,n,u) 3 491 9e−11 11.8 1,477.9 533.8 2,023.5 438
IADBGS(n,n,n,u,1e−10,3) 4 158 9e−11 6.8 3.9 48.3 59.0 425
IADBGS(n,n,n,u,1e−10,3) 5 146 9e−11 6.6 3.4 46.0 56.1 425
IADBGS(y,n,n,l,1e−10,5) 1 49 9e−11 7.7 21.9 29.6 59.2 425
IADBGS(y,y,n,u) 3 205 9e−11 12.0 1,428.5 225.0 1,665.6 438

Table 5.20: Solver statistics for the StanfordBerkeley problem when α=0.97.

CHAPTER 5. EXPERIMENTAL RESULTS 64

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 1,000* 1e−08 5.7 131.8 137.5 115
QPOWER 1,000* 2e−10 6.0 160.9 166.9 152
J 1,000* 1e−08 6.2 161.2 167.3 152
GS 719 1e−11 6.8 112.1 118.9 152
BJ(n,n,n,u,1e−5,5) 4 1,000* 7e−10 6.6 162.7 169.4 254
BJ(n,n,n,u,1e−5,5) 5 1,000* 5e−10 7.2 166.1 173.3 254
BJ(y,n,n,u,1e−3,5) 1 284 9e−11 7.5 192.8 200.3 254
BJ(y,n,y,l,1e−5,5) 1 285 9e−11 7.8 192.9 200.7 254
BJ(y,y,n,u,1e−3,3) 1 1,000* 2e−08 8.5 276.5 285.0 315
BJ(y,y,y,u,1e−3,3) 1 1,000* 2e−08 8.7 291.9 300.5 315
BJ(y,n,n,u,1e−10,3) 2 1,000* 2e−09 7.4 402.5 409.9 254
BJ(y,y,n,u,1e−10,3) 2 1,000* 1e−08 8.1 250.4 258.5 320
BJ(y,y,n,u) 3 1,000* 2e−08 12.0 205.4 217.3 357
BGS(n,n,n,u,1e−10,3) 4 454 1e−10 6.5 94.6 101.1 254
BGS(n,n,n,u,1e−10,3) 5 411 1e−10 7.5 85.7 94.2 254
BGS(y,n,n,u,1e−5,3) 1 219 1e−10 7.7 94.0 101.7 254
BGS(y,n,y,u,1e−3,3) 1 219 1e−10 7.9 93.0 100.9 254
BGS(y,y,n,u,1e−10,3) 1 584 1e−10 7.2 164.9 172.1 315
BGS(y,y,y,u,1e−10,3) 1 591 1e−10 7.1 177.3 184.4 315
BGS(y,n,n,u,1e−10,3) 2 583 1e−10 7.9 233.1 240.9 254
BGS(y,y,n,u,1e−5,3) 2 552 9e−11 8.1 139.8 147.9 320
BGS(y,y,n,l) 3 559 1e−10 12.2 127.9 140.0 357
IADBJ(n,n,n,u,1e−5,5) 4 1,000* 7e−10 6.7 3.9 339.0 349.6 425
IADBJ(n,n,n,u,1e−10,3) 5 1,000* 4e−10 6.6 3.4 385.3 395.3 425
IADBJ(y,n,n,u,1e−10,5) 1 314 1e−10 7.7 26.2 180.1 214.0 425
IADBJ(y,y,n,u) 3 1,000* 1e−08 11.7 1,506.5 1,096.9 2,615.1 438
IADBGS(n,n,n,u,1e−10,3) 4 438 1e−10 7.0 4.0 151.2 162.2 425
IADBGS(n,n,n,u,1e−10,3) 5 402 9e−11 7.0 3.4 145.8 156.2 425
IADBGS(y,n,n,l,1e−10,5) 1 145 9e−11 7.7 21.7 80.7 110.1 425
IADBGS(y,y,n,u) 3 586 1e−10 12.5 1,528.5 645.9 2,186.9 438

Table 5.21: Solver statistics for the StanfordBerkeley problem when α=0.99.

CHAPTER 5. EXPERIMENTAL RESULTS 65

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 90 8e−11 14.9 24.0 38.9 256
QPOWER 73 1e−10 14.4 21.2 35.6 302
J 81 8e−11 15.2 23.8 39.0 340
GS 48 5e−11 16.1 14.3 30.3 340
BJ(n,n,n,u,1e−10,3) 4 70 7e−11 16.4 25.4 41.8 542
BJ(n,n,n,u,1e−3,3) 5 82 8e−11 16.9 25.6 42.5 542
BJ(y,n,n,u,1e−10,3) 1 30 4e−11 17.6 25.4 43.0 542
BJ(y,n,y,l,1e−3,3) 1 30 4e−11 17.5 25.2 42.7 542
BJ(y,y,n,u,1e−3,3) 1 95 8e−11 19.4 51.1 70.4 656
BJ(y,y,y,u,1e−3,3) 1 97 8e−11 18.5 52.3 70.8 656
BJ(y,n,n,l,1e−3,3) 2 79 8e−11 17.4 27.2 44.6 542
BJ(y,y,n,l,1e−3,5) 2 85 8e−11 19.0 27.8 46.7 663
BJ(y,y,n,l) 3 89 8e−11 33.2 42.2 75.4 746
BGS(n,n,n,u,1e−5,3) 4 44 5e−11 16.0 14.1 30.1 542
BGS(n,n,n,u,1e−5,3) 5 44 6e−11 16.3 14.2 30.5 542
BGS(y,n,n,l,1e−5,5) 1 11 6e−12 17.5 14.8 32.2 542
BGS(y,n,y,l,1e−3,5) 1 11 6e−12 17.7 14.8 32.6 542
BGS(y,y,n,u,1e−3,3) 1 44 5e−11 19.2 24.1 43.2 656
BGS(y,y,y,u,1e−10,3) 1 43 7e−11 19.5 23.3 42.8 656
BGS(y,n,n,l,1e−3,3) 2 48 3e−11 17.4 17.1 34.6 542
BGS(y,y,n,l,1e−3,3) 2 44 6e−11 19.3 15.5 34.7 663
BGS(y,y,n,l) 3 41 7e−11 32.5 20.5 53.0 746
IADBJ(n,n,n,u,1e−10,3) 4 50 7e−11 15.9 390.1 28.9 434.9 903
IADBJ(n,n,n,u,1e−10,5) 5 52 7e−11 17.1 377.0 30.9 425.0 903
IADBJ(y,n,n,u,1e−3,5) 1 83 7e−11 19.2 1,606.8 36.0 1,662.6 903
IADBJ(y,y,n,u) 3 85 8e−11 31.3 6,675.9 1,266.8 7,974.0 921
IADBGS(n,n,n,u,1e−3,3) 4 40 6e−11 16.0 387.7 20.7 424.4 903
IADBGS(n,n,n,u,1e−10,3) 5 30 6e−11 17.0 368.7 18.0 403.6 903
IADBGS(y,n,n,u,1e−10,5) 1 10 4e−11 17.6 1,592.1 13.1 1,622.7 903
IADBGS(y,y,n,u) 3 47 9e−12 31.2 6,112.7 700.2 6,844.2 921

Table 5.22: Solver statistics for the Eu2005 problem when α=0.85.

CHAPTER 5. EXPERIMENTAL RESULTS 66

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 137 8e−11 14.1 36.4 50.5 256
QPOWER 115 9e−11 14.0 33.5 47.5 302
J 124 8e−11 15.3 35.6 50.9 340
GS 71 4e−11 15.8 20.7 36.6 340
BJ(n,n,n,u,1e−10,3) 4 105 8e−11 15.9 37.6 53.5 542
BJ(n,n,n,u,1e−3-3) 5 125 9e−11 18.2 38.5 56.7 542
BJ(y,n,n,u,1e−10,3) 1 46 3e−11 18.2 38.1 56.3 542
BJ(y,n,y,l,1e−3,3) 1 46 4e−11 17.1 38.5 55.6 542
BJ(y,y,n,l,1.0e−10,3) 1 140 9e−11 19.3 75.5 94.9 656
BJ(y,y,y,u,1.0e−10,3) 1 146 9e−11 19.3 76.2 95.4 656
BJ(y,n,n,l,1e−3,3) 2 123 8e−11 18.0 42.8 60.8 542
BJ(y,y,n,l,1e−3,3) 2 127 8e−11 19.2 41.3 60.5 663
BJ(y,y,n,u) 3 137 9e−11 32.5 64.3 96.7 746
BGS(n,n,n,u,1e−10,3) 4 52 7e−11 17.3 19.9 37.2 542
BGS(n,n,n,u,1e−5,5) 5 65 5e−11 18.0 20.8 38.8 542
BGS(y,n,n,u,1e−5,3) 1 27 5e−12 17.3 22.5 39.8 542
BGS(y,n,y,l,1e−3,5) 1 17 2e−12 17.5 22.5 40.0 542
BGS(y,y,n,u,1.0e−5,3) 1 66 7e−11 19.2 35.5 54.8 656
BGS(y,y,y,u,1.0e−5,3) 1 66 7e−11 19.3 35.1 54.4 656
BGS(y,n,n,l,1e−3,3) 2 72 2e−11 17.7 25.9 43.5 542
BGS(y,y,n,l,1e−5,3) 2 65 8e−11 19.1 23.4 42.5 663
BGS(y,y,n,l) 3 63 7e−11 33.3 31.0 64.3 746
IADBJ(n,n,n,u,1e−10,5) 4 74 6e−11 16.0 398.7 44.1 458.8 903
IADBJ(n,n,n,u,1e−10,3) 5 75 8e−11 16.8 376.3 45.0 438.1 903
IADBJ(y,n,n,u,1e−10,5) 1 27 7e−11 17.7 1,737.9 38.4 1,793.9 903
IADBJ(y,y,n,u) 3 127 9e−11 31.1 6,660.6 1,868.9 8,560.6 921
IADBGS(n,n,n,u,1e−10,3) 4 43 5e−11 16.5 390.8 24.7 431.9 903
IADBGS(n,n,n,u,1e−10,5) 5 43 7e−11 16.7 387.9 25.9 430.6 903
IADBGS(y,n,n,l,1e−10,5) 1 14 6e−11 18.6 214.4 18.2 251.3 903
IADBGS(y,y,n,u) 3 70 9e−12 31.6 6,069.9 1,040.9 7,142.4 921

Table 5.23: Solver statistics for the Eu2005 problem when α=0.90.

CHAPTER 5. EXPERIMENTAL RESULTS 67

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 269 9e−11 15.0 70.1 85.1 256
QPOWER 238 1e−10 14.1 68.4 82.5 302
J 249 9e−11 15.9 71.8 87.7 340
GS 140 2e−11 15.2 40.3 55.4 340
BJ(n,n,n,u,1e−10,3) 4 209 9e−11 15.9 72.3 88.1 542
BJ(n,n,n,u,1e−10,3) 5 212 9e−11 15.9 76.3 92.2 542
BJ(y,n,n,u,1e−10,3) 1 91 5e−11 17.8 73.8 91.6 542
BJ(y,n,y,u,1e−10,5) 1 57 3e−11 17.8 74.3 92.1 542
BJ(y,y,n,u,1e−5,3) 1 290 9e−11 20.3 149.8 170.1 656
BJ(y,y,y,u,1e−10,3) 1 296 9e−11 19.5 153.5 173.1 656
BJ(y,n,n,l,1e−3,5) 2 244 1e−10 18.8 83.5 102.3 542
BJ(y,y,n,l,1e−3,3) 2 252 9e−11 19.3 80.3 99.6 663
BJ(y,y,n,l) 3 280 9e−11 32.3 130.8 163.1 746
BGS(n,n,n,u,1e−10,3) 4 96 9e−11 16.0 35.1 51.1 542
BGS(n,n,n,u,1e−10,3) 5 98 8e−11 16.0 35.9 51.9 542
BGS(y,n,n,u,1e−5,5) 1 33 4e−12 17.3 43.3 60.6 542
BGS(y,n,y,u,1e−10,3) 1 52 7e−12 17.9 42.2 60.1 542
BGS(y,y,n,u,1e−5,3) 1 130 8e−11 19.2 68.3 87.4 656
BGS(y,y,y,u,1.0e−3,3) 1 130 8e−11 19.4 68.7 88.1 656
BGS(y,n,n,u,1e−5,3) 2 134 7e−11 18.4 48.6 67.0 542
BGS(y,y,n,l,1e−3,3) 2 132 7e−11 19.3 44.1 63.4 663
BGS(y,y,n,l) 3 127 9e−11 32.4 61.5 93.9 746
IADBJ(n,n,n,u,1e−10,5) 4 135 7e−11 16.2 395.2 78.3 489.6 903
IADBJ(n,n,n,u,1e−10,3) 5 133 8e−11 15.8 381.3 79.9 477.1 903
IADBJ(y,n,n,u,1e−10,5) 1 53 9e−11 18.8 1,754.0 73.2 1,846.1 903
IADBJ(y,y,n,u) 3 259 9e−11 32.1 6,618.5 3,822.0 10,472.6 921
IADBGS(n,n,n,u,1e−10,5) 4 78 7e−11 16.2 396.0 45.4 457.6 903
IADBGS(n,n,n,u,1e−10,3) 5 79 9e−11 17.3 378.9 47.7 443.9 903
IADBGS(y,n,n,l,1e−10,5) 1 23 8e−11 17.3 226.6 33.6 277.4 903
IADBGS(y,y,n,u) 3 137 1e−11 32.2 6,112.3 2,158.6 8,303.1 921

Table 5.24: Solver statistics for the Eu2005 problem when α=0.95.

CHAPTER 5. EXPERIMENTAL RESULTS 68

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 434 1e−10 14.1 114.1 128.6 256
QPOWER 394 2e−10 14.3 113.0 127.3 302
J 416 1e−10 15.1 120.1 135.2 340
GS 228 2e−11 15.2 66.6 81.8 340
BJ(n,n,n,u,1e−10,3) 4 345 9e−11 17.2 118.7 136.0 542
BJ(n,n,n,u,1e−10,3) 5 350 9e−11 17.4 121.5 138.9 542
BJ(y,n,n,u,1e−3,5) 1 94 3e−11 17.9 121.0 138.9 542
BJ(y,n,y,u,1e−5,3) 1 150 6e−11 17.6 121.3 138.9 542
BJ(y,y,n,u,1e−3,3) 1 485 1e−10 20.0 249.6 269.6 656
BJ(y,y,y,u,1e−3,3) 1 494 1e−10 20.9 255.4 276.3 656
BJ(y,n,n,l,1e−3,5) 2 345 7e−10 17.3 116.0 133.4 542
BJ(y,y,n,u,1e−3,3) 2 412 1e−10 19.4 130.4 149.8 663
BJ(y,y,n,u) 3 470 1e−10 33.3 218.0 251.3 746
BGS(n,n,n,u,1e−10,3) 4 168 9e−11 17.5 59.3 76.8 542
BGS(n,n,n,u,1e−10,3) 5 171 9e−11 18.1 61.0 79.1 542
BGS(y,n,n,l,1e−5,5) 1 53 4e−12 17.5 69.3 86.7 542
BGS(y,n,y,u,1e−10,3) 1 84 9e−12 17.9 68.5 86.4 542
BGS(y,y,n,u,1e−10,3) 1 213 9e−11 19.2 111.5 130.7 656
BGS(y,y,y,u,1e−5,3) 1 213 9e−11 20.5 112.0 132.5 656
BGS(y,n,n,l,1e−3,3) 2 230 3e−11 18.3 79.8 98.0 542
BGS(y,y,n,l,1e−3,3) 2 214 8e−11 19.1 69.7 88.8 663
BGS(y,y,n,l) 3 210 9e−11 33.6 100.9 134.5 746
IADBJ(n,n,n,u,1e−10,3) 4 206 7e−11 16.0 394.8 117.3 528.2 903
IADBJ(n,n,n,u,1e−10,5) 5 196 9e−11 17.0 373.2 119.4 509.6 903
IADBJ(y,n,n,u,1e−10,5) 1 91 1e−10 17.9 1,930.0 127.9 2,075.8 903
IADBJ(y,y,n,u) 3 435 1e−10 33.2 6,640.2 6,519.9 13,193.3 921
IADBGS(n,n,n,u,1e−10,3) 4 121 7e−11 16.9 392.8 68.5 478.2 903
IADBGS(n,n,n,u,1e−10,3) 5 126 9e−11 15.8 376.6 76.0 468.4 903
IADBGS(y,n,n,l,1e−10,5) 1 37 8e−11 17.3 226.2 52.1 295.7 903
IADBGS(y,y,n,u) 3 219 1e−10 33.1 7,880.1 3,240.4 11,153.5 921

Table 5.25: Solver statistics for the Eu2005 problem when α=0.97.

CHAPTER 5. EXPERIMENTAL RESULTS 69

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 1,000* 1e−09 15.0 262.6 277.5 256
QPOWER 1,000* 3e−10 14.6 286.5 301.1 302
J 1,000* 1e−09 17.5 286.3 303.8 340
GS 634 5e−11 15.0 184.1 199.0 340
BJ(n,n,n,u,1e−10,3) 4 1,000* 1e−10 16.2 348.5 364.8 542
BJ(n,n,n,u,1e−10,3) 5 1,000* 1e−10 16.3 346.7 363.0 542
BJ(y,n,n,u,1e−3,3) 1 266 5e−11 22.1 288.1 310.2 542
BJ(y,n,y,l,1e−3,3) 1 266 5e−11 21.3 286.9 308.2 542
BJ(y,y,n,u,1e−10,3) 1 1,000* 2e−11 18.5 534.2 552.7 656
BJ(y,y,y,u,1e−3,3) 1 1,000* 1e−08 19.2 529.8 549.0 656
BJ(y,n,n,l,1e−3,3) 2 1,000* 1e−09 18.3 342.5 360.7 542
BJ(y,y,n,l,1e−3,5) 2 1,000* 6e−10 19.2 318.9 338.1 663
BJ(y,y,n,l) 3 1,000* 6e−09 34.0 469.9 503.9 746
BGS(n,n,n,u,1e−10,3) 4 502 1e−10 15.6 171.0 186.6 542
BGS(n,n,n,u,1e−10,3) 5 511 1e−10 17.2 177.9 195.1 542
BGS(y,n,n,l,1e−10,3) 1 437 8e−11 21.7 399.2 420.9 542
BGS(y,n,y,l,1e−10,3) 1 437 8e−11 20.2 405.9 426.0 542
BGS(y,y,n,l,1e−10,3) 1 608 6e−11 21.9 368.8 390.7 656
BGS(y,y,y,l,1e−10,3) 1 607 1e−10 23.1 383.1 406.2 656
BGS(y,n,n,l,1e−3,3) 2 637 5e−11 18.1 219.9 238.0 542
BGS(y,y,n,u,1e−3,3) 2 590 8e−11 19.2 191.6 210.8 663
BGS(y,y,n,l) 3 594 1e−10 32.6 287.0 319.6 746
IADBJ(n,n,n,u,1e−10,5) 4 489 5e−11 15.9 390.6 297.7 704.2 903
IADBJ(n,n,n,u,1e−10,3) 5 477 7e−11 16.6 383.8 331.9 732.2 903
IADBJ(y,n,n,u,1e−10,5) 1 292 1e−10 17.6 1,770.8 357.8 2,146.3 903
IADBJ(y,y,n,u) 3 1,000* 1e−10 33.4 6,584.8 19,308.7 25,927.0 921
IADBGS(n,n,n,u,1e−10,3) 4 284 6e−11 16.8 389.1 166.7 572.5 903
IADBGS(n,n,n,u,1e−10,3) 5 329 1e−10 16.7 383.8 209.4 610.0 903
IADBGS(y,n,n,l,1e−10,5) 1 109 9e−11 17.2 212.7 158.1 388.0 903
IADBGS(y,y,n,u) 3 601 3e−11 33.0 6,069.1 9,268.7 15,370.7 921

Table 5.26: Solver statistics for the Eu2005 problem when α=0.99.

CHAPTER 5. EXPERIMENTAL RESULTS 70

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 100 4e−10 13.9 27.3 41.2 252
QPOWER 82 6e−11 13.6 25.7 39.3 325
J 100 4e−11 13.8 32.1 45.9 332
GS 57 6e−11 14.1 18.7 32.7 332
BJ(n,n,n,u,1e−5,3) 4 89 4e−10 15.1 30.8 45.9 551
BJ(n,n,n,u,1e−5,5) 5 89 4e−10 14.8 31.5 46.3 551
BJ(y,n,n,l,1e−10,3) 1 34 4e−11 16.7 30.9 47.5 551
BJ(y,n,y,l,1e−3,3) 1 34 4e−11 16.7 31.2 47.9 551
BJ(y,y,n,u,1e−5-3) 1 113 8e−11 18.1 75.0 93.1 680
BJ(y,y,y,u,1e−3,3) 1 139 8e−11 18.5 99.5 118.0 680
BJ(y,n,n,l,1e−10,3) 2 63 9e−11 16.5 56.3 72.8 551
BJ(y,y,n,l,1e−3,3) 2 82 9e−11 18.2 47.4 65.6 690
BJ(y,y,n,l) 3 111 7e−11 55.2 46.2 101.4 771
BGS(n,n,n,u,1e−10,3) 4 40 1e−11 15.4 18.1 33.5 551
BGS(n,n,n,u,1e−10,3) 5 40 1e−11 15.2 18.6 33.8 551
BGS(y,n,n,l,1e−3,3) 1 21 2e−11 16.3 18.6 34.8 551
BGS(y,n,y,l,1e−5,3) 1 21 2e−11 16.4 18.5 34.9 551
BGS(y,y,n,l,1e−5,3) 1 43 5e−12 18.4 25.7 44.1 680
BGS(y,y,y,l,1e−10,3) 1 43 5e−12 18.3 26.2 44.6 680
BGS(y,n,n,l,1e−5,3) 2 39 8e−11 16.5 34.9 51.4 551
BGS(y,y,n,u,1e−5,3) 2 51 7e−11 18.0 30.4 48.4 690
BGS(y,y,n,l) 3 44 6e−11 53.9 19.2 73.2 771
IADBJ(n,n,n,u,1e−5,5) 4 75 7e−11 15.2 10.4 39.1 64.6 913
IADBJ(n,n,n,u,1e−10,3) 5 60 9e−11 15.1 9.3 38.7 63.1 913
IADBJ(y,n,n,u,1e−10,5) 1 21 3e−10 18.0 110.4 28.3 156.7 913
IADBJ(y,y,n,u) 3 94 8e−11 53.6 6,692.1 17,419.2 24,164.9 944
IADBGS(n,n,n,u,1e−10,3) 4 38 7e−12 14.7 10.6 23.2 48.5 913
IADBGS(n,n,n,u,1e−10,3) 5 38 3e−11 15.6 9.2 24.0 48.8 913
IADBGS(y,n,n,u,1e−10,5) 1 13 5e−11 16.7 111.5 17.1 145.3 913
IADBGS(y,y,n,u) 3 45 1e−11 54.0 6,959.9 12,644.6 19,658.6 944

Table 5.27: Solver statistics for the In2004 problem when α=0.85.

CHAPTER 5. EXPERIMENTAL RESULTS 71

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 151 5e−10 13.5 40.4 53.9 252
QPOWER 112 1e−10 13.0 34.2 47.2 325
J 154 3e−10 13.8 49.0 62.8 332
GS 84 7e−11 13.9 27.3 41.2 332
BJ(n,n,n,u,1e−5,5) 4 137 1e−10 15.5 46.6 62.2 551
BJ(n,n,n,u,1e−5,3) 5 137 2e−10 15.3 47.2 62.5 551
BJ(y,n,n,u,1e−5,3) 1 51 7e−11 16.6 44.8 61.4 551
BJ(y,n,y,l,1e−5,3) 1 50 7e−11 16.1 44.9 61.0 551
BJ(y,y,n,u,1e−5,3) 1 165 8e−11 18.5 106.9 125.3 680
BJ(y,y,y,u,1e−5,3) 1 189 9e−11 19.1 132.7 151.7 680
BJ(y,n,n,l,1e−10,3) 2 94 1e−10 17.1 84.0 101.1 551
BJ(y,y,n,l,1e−10,3) 2 121 1e−10 17.9 69.7 87.6 690
BJ(y,y,n,l) 3 162 8e−11 54.8 65.7 120.5 771
BGS(n,n,n,u,1e−10,3) 4 58 2e−11 15.0 25.9 40.9 551
BGS(n,n,n,u,1e−10,3) 5 58 2e−11 15.5 26.3 41.8 551
BGS(y,n,n,l,1e−5,5) 1 20 5e−12 16.4 26.5 42.9 551
BGS(y,n,y,u,1e−5,3) 1 29 2e−11 17.6 25.1 42.6 551
BGS(y,y,n,l,1e−3,3) 1 64 6e−12 18.0 37.2 55.2 680
BGS(y,y,y,l,1e−5,3) 1 64 5e−12 17.7 38.8 56.6 680
BGS(y,n,n,l,1e−10,3) 2 57 9e−11 16.3 50.5 66.9 551
BGS(y,y,n,u,1e−10,3) 2 74 9e−11 19.4 43.4 62.8 690
BGS(y,y,n,l) 3 66 7e−11 54.9 28.3 83.2 771
IADBJ(n,n,n,u,1e−10,3) 4 100 1e−10 15.0 10.4 60.8 86.2 913
IADBJ(n,n,n,u,1e−10,3) 5 89 9e−11 14.9 9.3 57.9 82.1 913
IADBJ(y,n,n,u,1e−10,5) 1 32 4e−10 16.8 112.4 42.8 172.0 913
IADBJ(y,y,n,u) 3 144 9e−11 53.8 6,617.8 23,018.0 29,689.6 944
IADBGS(n,n,n,u,1e−10,3) 4 55 7e−12 16.4 10.3 33.3 60.1 913
IADBGS(n,n,n,u,1e−10,3) 5 55 2e−11 15.2 9.2 34.5 58.9 913
IADBGS(y,n,n,u,1e−10,5) 1 18 5e−11 18.0 112.0 23.7 153.7 913
IADBGS(y,y,n,u) 3 65 2e−11 54.3 6,666.6 14,693.8 21,414.7 944

Table 5.28: Solver statistics for the In2004 problem when α=0.90.

CHAPTER 5. EXPERIMENTAL RESULTS 72

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 313 3e−10 14.3 84.1 98.4 252
QPOWER 203 2e−10 14.1 61.9 75.9 325
J 319 2e−10 14.0 101.2 115.1 332
GS 159 6e−11 14.1 51.4 65.5 332
BJ(n,n,n,u,1e−5,5) 4 269 9e−11 15.8 91.2 107.0 551
BJ(n,n,n,u,1e−5,5) 5 272 9e−11 16.1 93.7 109.8 551
BJ(y,n,n,l,1e−10,5) 1 60 1e−10 16.5 81.6 98.1 551
BJ(y,n,y,l,1e−3,5) 1 60 1e−10 16.3 81.6 97.9 551
BJ(y,y,n,l,1e−5,3) 1 335 9e−11 17.9 196.0 213.9 680
BJ(y,y,y,l,1e−5,3) 1 367 9e−11 18.5 227.0 245.5 680
BJ(y,n,n,l,1e−10,3) 2 180 1e−10 16.6 160.0 176.6 551
BJ(y,y,n,l,1e−10,3) 2 240 1e−10 17.8 138.0 155.7 690
BJ(y,y,n,l) 3 321 9e−11 54.3 130.0 184.3 771
BGS(n,n,n,u,1e−10,3) 4 110 2e−11 15.5 47.8 63.2 551
BGS(n,n,n,u,1e−10,3) 5 110 2e−11 16.0 48.2 64.2 551
BGS(y,n,n,u,1e−3,5) 1 35 1e−11 16.5 46.2 62.7 551
BGS(y,n,y,u,1e−10,5) 1 35 1e−11 16.8 46.4 63.1 551
BGS(y,y,n,l,1e−3,3) 1 124 8e−12 19.1 71.1 90.2 680
BGS(y,y,y,l,1e−10,3) 1 123 9e−12 18.1 72.2 90.3 680
BGS(y,n,n,l,1e−5,3) 2 109 1e−10 16.1 96.0 112.0 551
BGS(y,y,n,u,1e−3,3) 2 146 9e−11 18.1 85.0 103.1 690
BGS(y,y,n,l) 3 128 9e−11 55.0 54.2 109.2 771
IADBJ(n,n,n,u,1e−10,3) 4 204 1e−10 15.9 10.4 122.3 148.6 913
IADBJ(n,n,n,u,1e−10,3) 5 169 1e−10 15.1 9.3 109.6 134.0 913
IADBJ(y,n,n,u,1e−10,5) 1 66 2e−10 18.0 107.8 82.1 207.9 913
IADBJ(y,y,n,u) 3 293 9e−11 54.4 6,723.3 41,186.9 47,964.6 944
IADBGS(n,n,n,u,1e−10,3) 4 104 1e−11 16.3 10.5 62.6 89.4 913
IADBGS(n,n,n,u,1e−10,3) 5 104 5e−11 15.0 9.2 64.7 89.0 913
IADBGS(y,n,n,u,1e−10,5) 1 35 5e−11 16.7 111.5 43.9 172.1 913
IADBGS(y,y,n,u) 3 126 3e−11 55.1 6,638.2 21,576.9 28,270.2 944

Table 5.29: Solver statistics for the In2004 problem when α=0.95.

CHAPTER 5. EXPERIMENTAL RESULTS 73

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 526 1e−10 12.9 140.8 153.7 252
QPOWER 313 2e−10 13.9 95.2 109.1 325
J 530 2e−10 14.6 169.3 183.9 332
GS 253 9e−11 14.8 83.4 98.2 332
BJ(n,n,n,u,1e−5-3) 4 440 1e−10 15.1 146.5 161.6 551
BJ(n,n,n,u,1e−5,5) 5 442 1e−10 15.9 149.9 165.8 551
BJ(y,n,n,l,1e−10,5) 1 102 1e−10 16.5 137.6 154.1 551
BJ(y,n,y,l,1e−10,5) 1 102 1e−10 17.4 136.7 154.1 551
BJ(y,y,n,l,1e−3,3) 1 542 1e−10 17.8 315.4 333.2 680
BJ(y,y,y,l,1e−10,3) 1 559 9e−11 17.9 341.5 359.4 680
BJ(y,n,n,l,1e−5,3) 2 286 1e−10 16.7 256.5 273.2 551
BJ(y,y,n,l,1e−3,3) 2 389 1e−10 18.7 225.2 243.9 690
BJ(y,y,n,u) 3 533 9e−11 54.3 214.2 268.5 771
BGS(n,n,n,u,1e−10,3) 4 173 3e−11 14.9 74.1 89.0 551
BGS(n,n,n,u,1e−10,3) 5 173 3e−11 15.7 74.3 90.0 551
BGS(y,n,n,u,1e−5,5) 1 56 2e−11 16.7 74.3 90.9 551
BGS(y,n,y,u,1e−10,5) 1 56 2e−11 17.3 73.6 91.0 551
BGS(y,y,n,l,1e−3,3) 1 198 1e−11 17.9 115.1 133.0 680
BGS(y,y,y,l,1e−3,3) 1 198 1e−11 17.8 116.2 134.0 680
BGS(y,n,n,l,1e−3,3) 2 173 1e−10 17.6 151.4 169.0 551
BGS(y,y,n,u,1e−5,3) 2 235 1e−10 17.9 137.5 155.4 690
BGS(y,y,n,l) 3 207 9e−11 54.7 86.5 141.2 771
IADBJ(n,n,n,u,1e−10,3) 4 340 1e−10 15.1 10.4 206.4 231.8 913
IADBJ(n,n,n,u,1e−10,3) 5 265 1e−10 15.1 9.2 176.1 200.4 913
IADBJ(y,n,n,u,1e−10,5) 1 110 2e−10 17.4 108.3 134.2 259.9 913
IADBJ(y,y,n,u) 3 490 1e−10 54.1 6,775.7 62,911.1 69,740.9 944
IADBGS(n,n,n,u,1e−10,3) 4 163 1e−11 15.1 10.4 97.6 123.0 913
IADBGS(n,n,n,u,1e−10,5) 5 153 7e−11 15.0 9.2 104.6 128.8 913
IADBGS(y,n,n,u,1e−10,5) 1 53 9e−11 17.6 109.6 67.2 194.5 913
IADBGS(y,y,n,u) 3 204 4e−11 55.1 6,681.6 29,755.2 36,491.9 944

Table 5.30: Solver statistics for the In2004 problem when α=0.97.

CHAPTER 5. EXPERIMENTAL RESULTS 74

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 1,000* 8e−09 13.6 268.3 281.9 252
QPOWER 856 5e−10 13.7 261.6 275.3 325
J 1,000* 1e−09 15.5 324.2 339.7 332
GS 757 1e−11 14.7 241.9 256.6 332
BJ(n,n,n,u,1e−5,3) 4 1,000* 8e−10 15.1 338.2 353.3 551
BJ(n,n,n,u,1e−5,3) 5 1,000* 9e−10 15.8 338.4 354.2 551
BJ(y,n,n,l,1e−3,3) 1 373 4e−09 16.5 325.3 341.8 551
BJ(y,n,y,l,1e−3,3) 1 373 4e−09 16.6 325.0 341.6 551
BJ(y,y,n,l,1e−3,3) 1 1,000* 3e−08 19.3 579.9 599.2 680
BJ(y,y,y,l,1e−10,3) 1 1,000* 3e−08 17.8 613.4 631.2 680
BJ(y,n,n,l,1e−10,3) 2 753 1e−10 16.7 655.0 671.7 551
BJ(y,y,n,l,1e−3,3) 2 1,000* 1e−10 18.0 566.1 584.0 690
BJ(y,y,n,l) 3 1,000* 3e−08 54.7 407.6 462.3 771
BGS(n,n,n,u,1e−10,3) 4 449 1e−10 15.4 187.9 203.3 551
BGS(n,n,n,u,1e−10,3) 5 448 1e−10 15.7 190.3 206.0 551
BGS(y,n,n,u,1e−10,5) 1 153 2e−11 17.8 199.7 217.5 551
BGS(y,n,y,u,1e−3,5) 1 153 2e−11 16.6 201.0 217.6 551
BGS(y,y,n,l,1e−10,3) 1 527 1e−11 18.8 301.9 320.7 680
BGS(y,y,y,l,1e−3,3) 1 529 1e−11 18.9 309.5 328.4 680
BGS(y,n,n,l,1e−3,3) 2 457 1e−10 16.4 393.0 409.4 551
BGS(y,y,n,u,1e−5,3) 2 624 1e−10 19.1 359.0 378.1 690
BGS(y,y,n,l) 3 556 9e−11 55.4 234.9 290.3 771
IADBJ(n,n,n,u,1e−10,3) 4 968 1e−10 14.9 10.5 632.1 657.5 913
IADBJ(n,n,n,u,1e−10,5) 5 598 1e−10 16.4 9.2 494.7 520.3 913
IADBJ(y,n,n,u,1e−10,5) 1 285 2e−10 16.7 112.5 367.3 496.4 913
IADBJ(y,y,n,u) 3 54.0 6,696.4 very long time 944
IADBGS(n,n,n,u,1e−10,5) 4 373 2e−11 15.6 10.3 253.8 279.7 913
IADBGS(n,n,n,u,1e−10,5) 5 153 7e−11 15.1 9.2 103.2 127.5 913
IADBGS(y,n,n,u,1e−10,5) 1 150 1e−10 18.6 110.7 185.3 314.5 913
IADBGS(y,y,n,u) 3 53.6 6,695.9 very long time 944

Table 5.31: Solver statistics for the In2004 problem when α=0.99.

CHAPTER 5. EXPERIMENTAL RESULTS 75

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 96 7e−11 34.9 60.1 95.0 625
QPOWER 79 1e−10 36.1 55.9 92.0 767
J 96 8e−11 38.8 69.5 108.3 826
GS 44 7e−11 37.1 32.7 69.8 826
BJ(n,n,n,u,1e−5,3) 4 88 8e−11 41.0 68.4 109.4 1,341
BJ(n,n,n,u,1e−5,3) 5 92 8e−11 39.3 71.6 110.9 1,341
BJ(y,n,n,u,1e−10,5) 1 21 1e−11 42.6 63.3 105.9 1,341
BJ(y,n,y,l,1e−3,3) 1 32 6e−11 42.7 62.0 104.6 1,341
BJ(y,y,n,l,1e−5,3) 1 100 7e−11 45.4 118.4 163.8 1,637
BJ(y,y,y,l,1e−5,3) 1 105 8e−11 45.4 129.5 175.0 1,637
BJ(y,n,n,u,1e−5,3) 2 89 7e−11 36.0 64.3 100.3 1,341
BJ(y,y,n,l,1e−5,3) 2 96 8e−11 39.0 65.0 104.0 1,657
BJ(y,y,n,l) 3 105 7e−11 69.9 115.6 185.5 1,858
BGS(n,n,n,u,1e−3,3) 4 45 6e−11 40.6 35.9 76.5 1,341
BGS(n,n,n,u,1e−3,5) 5 45 6e−11 41.2 36.5 77.7 1,341
BGS(y,n,n,l,1e−10,5) 1 12 7e−12 41.9 36.2 78.1 1,341
BGS(y,n,y,l,1e−3,3) 1 19 1e−11 42.8 37.1 79.9 1,341
BGS(y,y,n,u,1e−10,3) 1 44 9e−11 45.4 53.2 98.6 1,637
BGS(y,y,y,l,1e−3,3) 1 44 7e−11 47.8 55.9 103.7 1,637
BGS(y,n,n,l,1e−5,3) 2 45 7e−11 37.9 35.4 73.3 1,341
BGS(y,y,n,l,1e−5,3) 2 45 6e−11 40.4 32.8 73.2 1,657
BGS(y,y,n,l) 3 42 6e−11 69.4 49.0 118.4 1,858
IADBJ(n,n,n,u,1e−10,3) 4 66 8e−11 38.7 195.8 85.9 320.4 2,218
IADBJ(n,n,n,u,1e−3,3) 5 95 8e−11 40.8 179.1 110.6 330.4 2,218
IADBJ(y,n,n,u,1e−3,3) 1 98 8e−11 44.3 7,094.1 129.3 7,267.7 2,218
IADBGS(n,n,n,u,1e−3,3) 4 43 7e−11 40.0 196.0 48.5 284.6 2,218
IADBGS(n,n,n,u,1e−5,3) 5 40 8e−11 40.3 182.0 47.7 270.1 2,218
IADBGS(y,n,n,l,1e−5,3) 1 41 7e−11 43.5 3,650.3 54.3 3,748.0 2,218

Table 5.32: Solver statistics for the Webbase problem when α=0.85.

CHAPTER 5. EXPERIMENTAL RESULTS 76

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 147 8e−11 35.9 91.9 127.8 625
QPOWER 115 9e−11 36.6 80.5 117.1 767
J 148 9e−11 37.1 106.5 143.6 826
GS 65 8e−11 38.9 48.1 87.0 826
BJ(n,n,n,u,1e−5,5) 4 132 1e−10 38.7 101.8 140.5 1,341
BJ(n,n,n,u,1e−5,3) 5 142 9e−11 42.5 109.8 152.3 1,341
BJ(y,n,n,l,1e−5,5) 1 30 4e−11 42.2 89.8 131.9 1,341
BJ(y,n,y,l,1e−3,5) 1 30 4e−11 42.3 89.9 132.2 1,341
BJ(y,y,n,u,1e−10,3) 1 153 5e−11 47.4 173.4 220.8 1,637
BJ(y,y,y,u,1e−3,3) 1 157 9e−11 45.3 193.9 239.2 1,637
BJ(y,n,n,l,1e−5,5) 2 134 9e−11 37.8 100.4 138.2 1,341
BJ(y,y,n,l,1e−5,5) 2 147 9e−11 41.2 104.0 145.2 1,657
BJ(y,y,n,l) 3 160 8e−11 66.8 174.8 241.6 1,858
BGS(n,n,n,u,1e−3,3) 4 66 7e−11 38.6 52.0 90.6 1,341
BGS(n,n,n,u,1e−3,5) 5 65 8e−11 39.1 52.1 91.2 1,341
BGS(y,n,n,l,1e−10,3) 1 27 2e−11 41.9 52.0 93.9 1,341
BGS(y,n,y,l,1e−3,5) 1 17 9e−12 42.5 51.4 93.9 1,341
BGS(y,y,n,u,1e−10,3) 1 66 3e−11 45.6 79.2 124.8 1,637
BGS(y,y,y,l,1e−3,3) 1 66 8e−11 44.7 85.0 129.7 1,637
BGS(y,n,n,l,1e−5,5) 2 67 7e−11 37.1 53.0 90.0 1,341
BGS(y,y,n,l,1e−5,5) 2 67 8e−11 39.3 48.3 87.6 1,657
BGS(y,y,n,l) 3 62 7e−11 68.2 71.4 139.6 1,858
IADBJ(n,n,n,u,1e−5,5) 4 116 9e−11 41.8 195.5 131.5 368.8 2,218
IADBJ(n,n,n,u,1e−10,3) 5 103 8e−11 46.8 179.5 136.1 362.5 2,218
IADBJ(y,n,n,u,1e−10,5) 1 31 8e−11 45.0 7,127.6 95.4 7,268.0 2,218
IADBGS(n,n,n,u,1e−3,5) 4 64 8e−11 41.4 195.8 73.2 310.5 2,218
IADBGS(n,n,n,u,1e−5,5) 5 60 8e−11 42.0 173.7 71.3 287.0 2,218
IADBGS(y,n,n,l,1e−3,5) 1 64 7e−11 44.5 3,495.9 82.6 3,623.0 2,218

Table 5.33: Solver statistics for the Webbase problem when α=0.90.

CHAPTER 5. EXPERIMENTAL RESULTS 77

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 300 9e−11 36.5 187.2 223.8 625
QPOWER 239 9e−11 34.5 167.1 201.5 767
J 303 9e−11 37.7 216.1 253.8 826
GS 126 8e−11 39.9 92.9 132.8 826
BJ(n,n,n,u,1e−5,5) 4 268 1e−10 38.6 206.5 245.1 1,341
BJ(n,n,n,u,1e−5-5) 5 288 1e−10 41.8 220.7 262.5 1,341
BJ(y,n,n,u,1e−3,5) 1 58 9e−11 45.7 145.2 190.9 1,341
BJ(y,n,y,l,1e−3,5) 1 58 9e−11 43.8 142.7 186.4 1,341
BJ(y,y,n,u,1e−3,3) 1 309 6e−11 49.3 302.0 351.2 1,637
BJ(y,y,y,l,1e−3,3) 1 314 9e−11 48.9 319.1 368.0 1,637
BJ(y,n,n,u,1e−10,3) 2 275 9e−11 45.1 302.9 348.0 1,341
BJ(y,y,n,l,1e−10,3) 2 302 9e−11 48.1 231.3 279.3 1,657
BJ(y,y,n,l) 3 326 9e−11 68.5 355.4 423.9 1,858
BGS(n,n,n,u,1e−3,3) 4 127 8e−11 38.6 98.7 137.3 1,543
BGS(n,n,n,u,1e−3,3) 5 127 8e−11 41.8 99.2 141.0 1,543
BGS(y,n,n,l,1e−3,3) 1 48 2e−11 46.4 80.0 126.4 1,341
BGS(y,n,y,l,1e−3,5) 1 30 1e−11 49.5 81.3 130.8 1,341
BGS(y,y,n,u,1e−3,3) 1 127 3e−11 50.9 128.4 179.3 1,637
BGS(y,y,y,l,1e−3,3) 1 129 9e−11 48.3 138.6 186.8 1,637
BGS(y,n,n,u,1e−10,3) 2 128 9e−11 47.0 161.2 208.2 1,341
BGS(y,y,n,u,1e−10,3) 2 126 9e−11 47.4 104.8 152.2 1,657
BGS(y,y,n,l) 3 121 7e−11 68.8 137.6 206.4 1,858
IADBJ(n,n,n,u,1e−10,3) 4 205 9e−11 38.0 203.6 262.6 504.2 2,218
IADBJ(n,n,n,u,1e−10,3) 5 208 9e−11 39.1 173.7 269.7 482.5 2,218
IADBJ(y,n,n,u,1e−10,3) 1 103 9e−11 42.5 7,215.3 226.0 7,483.8 2,218
IADBGS(n,n,n,u,1e−10,5) 4 105 9e−11 38.8 195.8 143.5 378.1 2,218
IADBGS(n,n,n,u,1e−10,3) 5 106 9e−11 39.2 173.7 139.4 352.3 2,218
IADBGS(y,n,n,l,1e−5,5) 1 113 9e−11 42.2 3,273.3 141.3 3,456.8 2,218

Table 5.34: Solver statistics for the Webbase problem when α=0.95.

CHAPTER 5. EXPERIMENTAL RESULTS 78

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 503 1e−10 36.1 312.2 348.3 625
QPOWER 397 9e−11 37.4 276.3 313.7 767
J 508 1e−10 39.1 368.1 407.2 826
GS 205 9e−11 36.8 147.2 183.9 826
BJ(n,n,n,u,1e−5,5) 4 444 1e−10 38.4 340.6 379.0 1,341
BJ(n,n,n,u,1e−5,5) 5 484 1e−10 40.9 519.0 374.5 1,341
BJ(y,n,n,l,1e−3,5) 1 98 8e−11 48.4 456.5 504.9 1,341
BJ(y,n,y,u,1e−3,5) 1 98 8e−11 51.0 455.7 506.7 1,341
BJ(y,y,n,u,1e−3,3) 1 518 8e−11 54.8 903.7 958.6 1,637
BJ(y,y,y,l,1e−3,3) 1 526 1e−10 50.3 976.5 1,026.9 1,637
BJ(y,n,n,l,1e−5,3) 2 463 1e−10 49.2 608.1 657.3 1,341
BJ(y,y,n,l,1e−3,3) 2 505 1e−10 49.8 607.7 657.5 1,657
BJ(y,y,n,l) 3 547 1e−10 67.6 596.2 663.8 1,858
BGS(n,n,n,u,1e−3,3) 4 207 9e−11 39.3 160.6 199.9 1,341
BGS(n,n,n,u,1e−3,3) 5 206 9e−11 43.5 159.4 202.9 1,341
BGS(y,n,n,l,1e−3,3) 1 75 3e−11 47.1 223.3 270.4 1,341
BGS(y,n,y,l,1e−3,3) 1 75 3e−11 48.5 128.4 176.9 1,341
BGS(y,y,n,u,1e−3,3) 1 205 6e−11 49.5 372.3 421.9 1,637
BGS(y,y,y,l,1e−3,3) 1 210 9e−11 49.5 394.9 444.4 1,637
BGS(y,n,n,u,1e−3,3) 2 209 9e−11 47.9 279.9 327.9 1,341
BGS(y,y,n,u,1e−3,3) 2 198 9e−11 52.4 255.0 307.4 1,657
BGS(y,y,n,l) 3 196 9e−11 68.4 221.7 290.1 1,858
IADBJ(n,n,n,u,1e−10,3) 4 352 9e−11 38.7 195.7 442.9 677.2 2,218
IADBJ(n,n,n,u,1e−10,3) 5 345 1e−10 40.9 173.3 449.7 663.9 2,218
IADBJ(y,n,n,u,1e−5,5) 1 404 1e−10 44.7 7,307.1 516.7 7,868.6 2,218
IADBGS(n,n,n,u,1e−10,3) 4 171 9e−11 38.6 204.7 219.7 463.0 2,218
IADBGS(n,n,n,u,1e−10,3) 5 171 9e−11 41.1 181.1 226.5 448.7 2,218
IADBGS(y,n,n,l,1e−3,3) 1 205 9e−11 42.4 3,616.7 246.9 3,906.0 2,218

Table 5.35: Solver statistics for the Webbase problem when α=0.97.

CHAPTER 5. EXPERIMENTAL RESULTS 79

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 1,000* 2e−08 34.7 623.7 658.4 625
QPOWER 1,000* 2e−10 34.2 700.2 734.4 767
J 1,000* 2e−08 39.0 712.8 751.8 826
GS 583 1e−10 39.4 414.5 453.9 826
BJ(n,n,n,u,1e−5,5) 4 1,000* 2e−09 41.3 765.3 806.6 1,341
BJ(n,n,n,u,1e−3,5) 5 1,000* 2e−08 39.2 775.1 814.3 1,341
BJ(y,n,n,l,1e−3,5) 1 279 1e−10 47.3 673.5 720.8 1,341
BJ(y,n,y,l,1e−3,5) 1 279 1e−10 43.9 670.2 714.2 1,341
BJ(y,y,n,u,1e−3,3) 1 1,000* 3e−08 46.5 1,133.3 1,179.8 1,637
BJ(y,y,y,l,1e−3,3) 1 1,000* 3e−08 47.9 1,235.1 1,283.0 1,637
BJ(y,n,n,l,1e−3,5) 2 1,000* 1e−08 43.3 849.4 892.7 1,341
BJ(y,y,n,u,1e−5,3) 2 1,000* 1e−10 49.4 823.2 872.6 1,657
BJ(y,y,n,u) 3 1,000* 2e−08 69.8 1,099.6 1,169.4 1,858
BGS(n,n,n,u,1e−3,3) 4 587 1e−10 38.4 450.6 489.0 1,341
BGS(n,n,n,u,1e−5,5) 5 592 1e−10 42.3 477.0 519.2 1,341
BGS(y,n,n,l,1e−3,5) 1 131 2e−11 43.9 317.9 361.8 1,341
BGS(y,n,y,l,1e−3,5) 1 131 2e−11 43.6 322.5 366.1 1,341
BGS(y,y,n,u,1e−3,3) 1 558 3e−11 48.2 553.9 602.1 1,637
BGS(y,y,y,l,1e−3,3) 1 591 1e−10 48.1 622.5 670.6 1,637
BGS(y,n,n,l,1e−5,5) 2 598 1e−10 40.3 426.9 467.2 1,341
BGS(y,y,n,l,1e−5,5) 2 596 1e−10 43.4 390.7 434.11 1,657
BGS(y,y,n,l) 3 563 1e−10 67.8 631.8 699.6 1,858
IADBJ(n,n,n,u,1e−5,3) 4 1,000* 1e−09 41.5 198.3 1,260.5 1,500.2 2,218
IADBJ(n,n,n,u,1e−5,5) 5 1,000* 7e−10 41.1 173.7 1,345.4 1,560.2 2,218
IADBJ(y,n,n,u,1e−10,5) 1 311 1e−10 43.1 7,337.7 913.4 8,294.2 2,218
IADBGS(n,n,n,u,1e−10,3) 4 479 1e−10 38.8 204.1 632.0 875.0 2,218
IADBGS(n,n,n,u,1e−10,3) 5 475 1e−10 41.1 174.0 655.6 870.7 2,218
IADBGS(y,n,n,l,1e−10,3) 1 183 9e−11 45.5 3,424.4 362.7 3,832.6 2,218

Table 5.36: Solver statistics for the Webbase problem when α=0.99.

CHAPTER 5. EXPERIMENTAL RESULTS 80

coefficient matrix to a sparse block representation. The Pe time provides the

time to compute and store in sparse representation the block column sums of the

coefficient matrix at the outset for IADBJ and IADBGS. This piece of data is

later used over and over again in computing the aggregated matrix at each iter-

ation of these solvers. Column Solu gives the time spent by the particular solver

during iteration. Column Total provides the total time spent by the solver, and

is therefore the sum of the values in the previous three columns. The memory

requirement of each solver in megabytes is provided in column nine (MB). Note

that, this column includes space for nonzeros in the matrix and its transpose.

Memory requirement for IAD solvers based on partitionings 1, 4, and 5 is cal-

culated assuming that, there are 1,000,000 nonzero elements in the aggregated

matrix and for partitioning 3, it is calculated for 250,000 nonzero elements in the

aggregated matrix. Memory requirement of the block column sums of the coef-

ficient matrix in sparse representation is calculated for the number of nonzero

elements in the matrix. Finally, the value of α used for the particular problem is

given in the caption of the table.

5.3.2 Experiments with Irreducible Matrices

Results for the 6 irreducible test matrices are presented in Tables 5.49–5.54 as

in the previous section after data pertaining to the resulting nonzero structures

under the assumed block partitionings are provided in Tables 5.38–5.47. For par-

titionings 3, 4, and 5 nonzero structure is given only for orientation parameter u,

since given information on nonzero structure is the same for orientation parame-

ter l. Note that, in the experiments performed for the Ncd problem maxit is set

to 5,000. IAD solvers based on partitioning 1 are not applied to irreducible test

CHAPTER 5. EXPERIMENTAL RESULTS 81

matrices since they yield an aggregated matrix of order 2.

Part Para nb Maxn Minn Aven Maxnz Minnz Avenz nzoff

1 n,y,y,l 2 7,583 7,583 8,320.5 19,452 13,799 16,625.5 32,798
1 n,y,y,u 2 7,583 7,583 8,320.5 19,452 13,799 16,625.5 32,798
1 n,y,n,l 2 7,583 7,583 8,320.5 19,452 13,799 16,625.5 32,798
1 n,y,n,u 2 7,583 7,583 8,320.5 19,452 13,799 16,625.5 32,798
2 n,y,n,l 2 7,583 7,583 8,320.5 19,452 13,799 16,625.5 32,798
2 n,y,n,u 2 7,583 7,583 8,320.5 19,452 13,799 16,625.5 32,798
3 y,y,n,u 3 9,058 90 5,547.0 19,452 90 11,019.0 32,992
4 n,n,n,u 129 129 129 129.0 461 257 29,815.0 27,588
5 n,n,n,u 182 181 1 91.4 645 1 19,473.0 30,608

Table 5.37: Nonzero structure of the 2D problem for all partitionings.

Part Para nT00 nzT00 nT nzrem

1 n,y,y,l 9,058 19,452 7,583 13,799
1 n,y,y,u 9,058 19,452 7,583 13,799
1 n,y,n,l 9,058 19,452 7,583 13,799
1 n,y,n,u 9,058 19,452 7,583 13,799
2 n,y,n,l 7,583 13,799 7,583 19,452
2 n,y,n,u 7,583 13,799 7,583 19,452

Table 5.38: Other information on nonzero structure of the 2D problem with
partitionings 1 and 2.

Part Para nb Maxn Minn Aven Maxnz Minnz Avenz nzoff

1 n,y,y,l, 2 15,149 15,149 10,150.5 75,144 5,155 40,149.5 60,205
1 n,y,y,u 2 15,149 15,149 10,150.5 75,144 5,155 40,149.5 60,205
1 n,y,n,l 2 15,149 15,149 10,150.5 75,144 5,155 40,149.5 60,205
1 n,y,n,u 2 15,149 15,149 10,150.5 75,144 5,155 40,149.5 60,205
2 n,y,n,l 2 15,149 15,149 10,150.5 75,144 5,155 40,149.5 60,205
2 n,y,n,u 2 15,149 15,149 10,150.5 75,144 5,155 40,149.5 60,205
3 y,y,n,u 5 5,152 99 4,060.2 5,551 99 4,061.0 120,199
4 n,n,n,u 143 142 137 142.0 872 409 513.2 67,119
5 n,n,n,u 201 201 1 101.0 601 1 301.0 80,003

Table 5.39: Nonzero structure of the Easy problem for all partitionings.

5.3.3 Comparison of Solvers

When we look at the experimental results for web matrices, we see that in seven

matrices GS is producing minimum solution time, since it does not have much

overhead associated with preprocessing. GS produces minimum solution time for

CHAPTER 5. EXPERIMENTAL RESULTS 82

Part Para nT00 nzT00 nT nzrem

1 n,y,y,l 5,152 5,155 15,149 75,144
1 n,y,y,u 515 2 5,155 15,149 75,144
1 n,y,n,l 5,152 5,155 15,149 75,144
1 n,y,n,u 5,152 5,155 15,149 75,144
2 n,y,n,l 15,149 75,144 15,149 5,155
2 n,y,n,u 15,149 75,144 15,149 5,155

Table 5.40: Other information on nonzero structure of the Easy problem with
partitionings 1 and 2.

Part Para nb Maxn Minn Aven Maxnz Minnz Avenz nzoff

1 n,y,y,l 2 10,245 10,245 10,245.5 10,305 10,246 10,275.5 80,490
1 n,y,y,u 2 10,245 10,245 10,245.5 10,305 10,246 10,275.5 80,490
1 n,y,n,l 2 10,245 10,245 10,245.5 10,305 10,246 10,275.5 80,490
1 n,y,n,u 2 10,245 10,245 10,245.5 10,305 10,246 10,275.5 80,490
2 n,y,n,l 2 10,245 10,245 10,245.5 10,305 10,246 10,275.5 80,490
2 n,y,n,l 2 10,245 10,245 10,245.5 10,305 10,246 10,275.5 80,490
3 y,y,n,u 3 10,246 15 6,830.3 19,452 90 11,019.0 32,992
4 n,n,n,u 144 143 42 142.3 654 179 585.9 16,665
5 n,n,n,u 202 201 1 101.4 922 1 394.0 21,448

Table 5.41: Nonzero structure of the Telecom problem for all partitionings.

α values less than or equal to 0.95. It decreases number of iterations to con-

vergence about 30 to 50 percent, decreases solution time about 15 to 70 percent

without increasing space requirement in comparison to QPOWER. In six matri-

ces BGS with partitioning 4 produces minimum solution time. This partitioning

yields diagonal blocks with almost equal order and a relatively small number of

nonzeros in the off-diagonal blocks. BGS with partitionings 4 and 5 have sim-

ilar behaviour in number of iterations to convergence, solution time and space

Part Para nT00 nzT00 nT nzrem

1 n,y,y,l 10,246 10,246 10,245 10,305
1 n,y,y,u 10,246 10,246 10,245 10,305
1 n,y,n,l 10,246 10,246 10,245 10,305
1 n,y,n,u 10,246 10,246 10,245 10,305
2 n,y,n,l 10,245 10,305 10,245 10,246
2 n,y,n,u 10,245 10,305 10,245 10,246

Table 5.42: Other information on nonzero structure of the Telecom problem with
partitionings 1 and 2.

CHAPTER 5. EXPERIMENTAL RESULTS 83

Part Para nb Maxn Minn Aven Maxnz Minnz Avenz nzoff

1 n,y,y,l 2 11,585 11,585 11,713.0 13,983 11,841 12,912.0 130,202
1 n,y,y,u 2 11,585 11,585 11,713.0 13,983 11,841 12,912.0 130,202
1 n,y,n,l 2 11,585 11,585 11,713.0 13,983 11,841 12,912.0 130,202
1 n,y,n,u 2 11,585 11,585 11,713.0 13,983 11,841 12,912.0 130,202
2 n,y,n,l 2 11,585 11,585 11,713.0 13,983 11,841 12,912.0 130,202
2 n,y,n,u 2 11,585 11,585 11,713.0 13,983 11,841 12,912.0 130,202
3 y,y,n,u 5 11,841 11 4,685.2 11,841 11 4,685.2 132,600
4 n,n,n,u 154 153 17 152.1 811 17 181.6 128,056
5 n,n,n,u 216 215 1 108.5 732 1 115.6 131,050

Table 5.43: Nonzero structure of the Ncd problem for all partitionings.

Part Para nT00 nzT00 nT nzrem

1 n,y,n,l 11,841 11,841 11,585 13,983
1 n,y,y,u 11,841 11,841 11,585 13,983
1 n,y,n,l 11,841 11,841 11,585 13,983
1 n,y,n,u 11,841 11,841 11,585 13,983
2 n,y,n,l 11,585 13,983 11,585 11,841
2 n,y,n,u 11,585 13,983 11,585 11,841

Table 5.44: Other information on nonzero structure of the Ncd problem with
partitionings 1 and 2.

Part Para nb Maxn Minn Aven Maxnz Minnz Avenz nzoff

1 n,y,y,l, 2 16,384 16,384 19,601.5 22,819 16,384 19,601.5 524,288
1 n,y,y,u 2 16,384 16,384 19,601.5 22,819 16,384 19,601.5 524,288
1 n,y,n,l 2 16,384 16,384 19,601.5 22,819 16,384 19,601.5 524,288
1 n,y,n,u 2 16,384 16,384 19,601.5 22,819 16,384 19,601.5 524,288
2 n,y,n,l 2 16,384 16,384 19,601.5 22,819 16,384 19,601.5 524,288
2 n,y,n,u 2 16,384 16,384 19,601.5 22,819 16,384 19,601.5 524,288
3 y,y,n,u 2 22,819 16,384 19,601.5 22,819 16,384 19,601.5 524,288
4 n,n,n,u 198 394 197 198.0 1,069 197 202.4 523,416
5 n,n,n,u 280 279 1 140.0 279 1 140.0 524,288

Table 5.45: Nonzero structure of the Mutex problem for all partitionings.

Part Para nT00 nzT00 nT nzrem

1 n,y,y,l 22,819 22,819 16,384 16,384
1 n,y,y,u 22,819 22,819 16,384 16,384
1 n,y,n,l 22,819 22,819 16,384 16,384
1 n,y,n,u 22,819 22,819 16,384 16,384
2 n,y,n,l 16,384 16,384 16,384 22,819
2 n,y,n,u 16,384 16,384 16,384 22,819

Table 5.46: Other information on nonzero structure of the Mutex problem with
partitionings 1 and 2.

CHAPTER 5. EXPERIMENTAL RESULTS 84

Part Para nb Maxn Minn Aven Maxnz Minnz Avenz nzoff

1 n,y,y,l 2 50,970 50,970 52,312.5 159,288 147,693 153,490.5 286,134
1 n,y,y,u 2 50,970 50,970 52,312.5 159,288 147,693 153,490.5 286,134
1 n,y,n,l 2 50,970 50,970 52,312.5 159,288 147,693 153,490.5 286,134
1 n,y,n,u 2 50,970 50,970 52,312.5 159,288 147,693 153,490.5 286,134
2 n,y,n,l 2 50,970 50,970 52,312.5 159,288 147,693 153,490.5 286,134
2 n,y,n,u 2 50,970 50,970 52,312.5 159,288 147,693 153,490.5 286,134
3 y,y,n,u 4 53,655 89 26,156.3 159,288 92 71,242.0 308,147
4 n,n,n,u 324 323 296 322.9 1,394 323 333.7 484,994
5 n,n,n,u 457 456 1 228.9 1,416 1 332.4 486,900

Table 5.47: Nonzero structure of the Qnatm problem for all partitionings.

Part Para nT00 nzT00 nT nzrem

1 n,y,y,l 53,655 159,288 50,970 147,693
1 n,y,y,u 53,655 159,288 50,970 147,693
1 n,y,n,l 53,655 159,288 50,970 147,693
1 n,y,n,u 53,655 159,288 50,970 147,693
2 n,y,n,l 50,970 147,693 50,970 159,288
2 n,y,n,u 50,970 147,693 50,970 159,288

Table 5.48: Other information on nonzero structure of the Qnatm problem with
partitionings 1 and 2.

requirement. BGS with partitioning 4 decreases number of iterations to con-

vergence about 40 to 60 percent, decreases solution time about 15 to 40 percent

with respect to QPOWER. When only Tarjan’s algorithm is employed, BGS with

partitioning 1 produces minimum solution time in five matrices. This partition-

ing also yields smaller number of nonzeros in the off-diagonal blocks compared

to other partitionings. It decreases number of iterations to convergence about

80 to 95 percent, decreases solution time about 15 to 40 percent with respect

to QPOWER. BGS with partitioning 4 increases space requirement over that of

QPOWER by about 60 percent. As α increases all of these solvers become more

advantageous in terms of number of iterations to convergence and solution time

compared to QPOWER.

A surprising phenomenon is that in the Stanford problem time per iteration

for BGS with partitioning 3 is shorter than GS, although the same number of

CHAPTER 5. EXPERIMENTAL RESULTS 85

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 1,000* 2e−05 0.2 2.1 2.3 2
QPOWER 1,000* 4e−06 0.2 1.9 2.1 3
J 1,000* 4e−06 0.2 2.9 3.1 2
GS 1,000* 9e−12 0.2 3.5 3.7 2
BJ(n,n,n,u,1e−10,5) 4 1,000* 4e−11 0.2 5.2 5.4 3
BJ(n,n,n,u,1e−10,5) 5 1,000* 2e−11 0.2 5.4 5.6 3
BJ(n,y,n,u,1e−5,5) 1 1,000* 8e−07 0.2 7.7 7.9 4
BJ(n,y,y,u,1e−5,5) 1 1,000* 8e−07 0.2 7.7 7.9 4
BJ(n,y,n,u,1e−5,3) 2 1,000* 1e−07 0.2 3.5 3.7 4
BJ(n,y,y,u,1e−5,5) 2 1,000* 1e−07 0.2 3.5 3.7 4
BJ(y,y,n,u) 3 1,000* 3e−07 0.2 3.6 4.0 4
BGS(n,n,n,u,1e−10,5) 4 455 5e−12 0.2 2.2 2.4 3
BGS(n,n,n,u,1e−10,5) 5 380 5e−12 0.2 2.0 2.3 3
BGS(n,y,n,u,1e−5,3) 1 1,000* 8e−11 0.2 6.5 6.7 4
BGS(n,y,y,u,1e−3,3) 1 1,000* 8e−11 0.2 6.5 6.7 4
BGS(n,y,n,u,1e−3,3) 2 1,000* 3e−11 0.2 3.8 4.0 4
BGS(n,y,y,u,1e−5,5) 2 1,000* 3e−11 0.2 3.7 3.9 4
BGS(y,y,n,l) 3 1,000* 6e−11 0.2 3.8 4.1 4
IADBJ(n,n,n,u,1e−3,3) 4 0.2 failed (reducible coupling matrix) 12
IADBJ(n,n,n,u,1e−10,3) 5 0.2 failed (reducible coupling matrix) 12
IADBJ(y,y,n,l) 3 1,000* 3e−07 0.2 0.0 4.8 5.0 7
IADBGS(n,n,n,u,1e−3,3) 4 0.2 failed (reducible coupling matrix) 12
IADBGS(n,n,n,u,1e−10,5) 5 86 5e−12 0.2 0.0 0.3 0.5 12
IADBGS(y,y,n,u) 3 1,000* 9e−11 0.2 0.0 5.2 5.4 7

Table 5.49: Solver statistics for the 2D problem.

floating point operations are performed. Although BGS with partitioning 3 is the

winner consistently in the Stanford problem, IAD with partitioning 3 provides

mostly large solution times. The main reason behind this is the relatively large

computation time of the aggregated matrix, which increases dramatically with

the current implementation based on routines from the MARCA package [36] as

the number of diagonal blocks increases. Also solution time of the aggregated

matrix with GTH increases dramatically as the order of the aggregated matrix

increases. In none of the problems, POWER and QPOWER are winners. IAD

method with partitioning 1 when only Tarjan’s algorithm is employed produces

minimum number of iterations and solver time (i.e., Solu) for all web matrices

CHAPTER 5. EXPERIMENTAL RESULTS 86

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 829 9e−11 0.4 5.6 6.0 4
QPOWER 533 6e−11 0.4 3.3 3.7 5
J 1,000* 5e−05 0.4 8.1 8.4 4
GS 31 7e−13 0.4 0.1 0.5 4
BJ(n,n,n,u,1e−10,5) 4 1,000* 7e−07 0.4 11.2 11.6 5
BJ(n,n,n,u,1e−10,5) 5 1,000* 1e−06 0.5 11.2 11.7 5
BJ(n,y,n,u,1e−5,3) 1 296 5e−12 0.4 2.0 2.4 6
BJ(n,y,y,u,1e−5,3) 1 296 5e−12 0.4 2.0 2.4 6
BJ(n,y,n,u,1e−10,3) 2 279 5e−12 0.4 0.9 1.3 6
BJ(n,y,y,u,1e−10,3) 2 279 5e−12 0.4 0.9 1.3 6
BJ(y,y,n,l) 3 1,000* 5e−05 0.5 8.3 8.8 7
BGS(n,n,n,u,1e−10,3) 4 12 3e−13 0.4 0.1 0.5 5
BGS(n,n,n,u,1e−10,3) 5 12 4e−13 0.5 0.1 0.6 5
BGS(n,y,n,l,1e−5,3) 1 124 1e−12 0.4 1.1 1.5 6
BGS(n,y,y,u,1e−10,3) 1 124 1e−12 0.4 1.1 1.5 6
BGS(n,y,n,u,1e−10,5) 2 125 2e−12 0.4 0.4 0.8 6
BGS(n,y,y,u,1e−3,3) 2 125 2e−12 0.4 0.4 0.8 6
BGS(y,y,n,l) 3 162 2e−12 0.5 0.6 1.1 7
IADBJ(n,n,n,u,1e−10,5) 4 0.4 failed (reducible coupling matrix) 16
IADBJ(n,n,n,u,1e−3,5) 5 0.4 failed (reducible coupling matrix) 16
IADBJ(y,y,n,u) 3 314 4e−12 0.5 2.5 1.7 4.7 11
IADBGS(n,n,n,u,1e−3,5) 4 0.4 failed (reducible coupling matrix) 16
IADBGS(n,n,n,u,1e−5,5) 5 0.4 failed (reducible coupling matrix) 16
IADBGS(y,y,n,u) 3 162 1e−12 0.5 2.5 0.8 3.9 11

Table 5.50: Solver statistics for the Easy problem.

when inner tolerance of 10−10 and number of inner iterations of 5 are used. BGS

with partitioning 3 produces smaller number of iterations than GS in all matrices.

Using Rosen’s algorithm shortens time per iteration due to the direct solu-

tion of triangular block(s) at the expense of increased number of iterations. As

the order of the problem increases, preprocessing time for partitioning 3 also

increases due to the relatively large number of recursive calls performed. Note

that permutation obtained from a partitioning does not change when different

personalization vectors are used for a matrix, since the nonzero structure of the

matrix does not change. That is, computation of the permutation vector for a

CHAPTER 5. EXPERIMENTAL RESULTS 87

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 1,000* 9e−07 0.3 2.4 2.7 3
QPOWER 1,000* 9e−07 0.3 1.8 2.1 4
J 1,000* 2e−05 0.3 2.1 2.4 3
GS 1,000* 1e−06 0.3 2.0 2.3 3
BJ(n,n,n,u,1e−3,3) 4 1,000* 2e−06 0.3 2.9 3.2 4
BJ(n,n,n,u,1e−10,3) 5 1,000* 2e−07 0.3 4.9 5.2 4
BJ(n,y,n,l,1e−3,3) 1 1,000* 2e−05 0.3 3.6 3.9 5
BJ(n,y,y,u,1e−5,3) 1 1,000* 2e−05 0.3 3.7 4.0 5
BJ(n,y,n,u,1e−10,5) 2 1,000* 2e−05 0.3 2.5 2.8 5
BJ(n,y,y,l,1e−3,3) 2 1,000* 2e−05 0.3 2.5 2.8 5
BJ(y,y,n,u) 3 1,000* 2e−05 0.3 2.6 2.9 6
BGS(n,n,n,u,1e−3,5) 4 1,000* 9e−07 0.3 2.8 3.1 4
BGS(n,n,n,u,1e−5,5) 5 1,000* 1e−06 0.3 2.9 3.2 4
BGS(n,y,n,l,1e−3,3) 1 1,000* 1e−06 0.3 3.7 4.0 5
BGS(n,y,y,u,1e−3,3) 1 1,000* 1e−06 0.3 3.7 4.0 5
BGS(n,y,n,l,1e−10,5) 2 1,000* 2e−06 0.3 2.5 2.8 5
BGS(n,y,y,l,1e−3,3) 2 1,000* 2e−06 0.3 2.5 2.8 5
BGS(y,y,n,u) 3 1,000* 1e−06 0.3 2.5 2.8 6
IADBJ(n,n,n,u,1e−3,3) 4 1,000* 5e−04 0.3 0.0 3.5 3.8 14
IADBJ(n,n,n,u,1e−3,3) 5 31 6e−13 0.3 0.0 0.1 0.2 14
IADBJ(y,y,n,l) 3 1,000* 1e−05 0.3 0.0 3.1 3.5 9
IADBGS(n,n,n,u,1e−10,5) 4 69 3e−13 0.3 0.0 0.2 0.3 14
IADBGS(n,n,n,u,1e−3,3) 5 26 3e−13 0.3 0.0 0.1 0.2 14
IADBGS(y,y,n,l) 3 1,000* 2e−06 0.3 0.0 3.2 3.5 9

Table 5.51: Solver statistics for the Telecom problem.

partitioning only once is enough. When using Rosen’s algorithm, partitioning 2

almost always performs better than partitioning 1. Restricting the number of

diagonal blocks to 2 does not seem to have a significant effect on solution time.

As α increases, number of iterations to convergence increases, which is inline with

expectations.

IADBJ with partitioning 3 decreases the number of iterations compared to BJ

with partitioning 3. Zhu et al. also reported 5-7 times faster convergence than

power method using the IAD method with BJ smoothing [38]. However, the

number of iterations performed by BGS with partitioning 3 and that of IADBGS

CHAPTER 5. EXPERIMENTAL RESULTS 88

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 5,000* 2e−07 0.5 14.8 15.3 5
QPOWER 5,000* 3e−06 0.5 12.1 12.6 6
J 5,000* 7e−05 0.5 13.6 14.1 5
GS 5,000* 9e−07 0.5 13.6 14.1 5
BJ(n,n,n,u,1e−5,5) 4 5,000* 2e−05 0.5 20.1 20.6 6
BJ(n,n,n,u,1e−3,3) 5 5,000* 4e−05 0.5 18.8 19.3 6
BJ(n,y,n,u,1e−5,3) 1 5,000* 8e−05 0.5 24.8 25.3 7
BJ(n,y,y,u,1e−5,3) 1 5,000* 8e−05 0.5 24.5 25.1 7
BJ(n,y,n,l,1e−3,3) 2 5,000* 7e−05 0.5 17.1 17.6 7
BJ(n,y,y,l,1e−10,5) 2 5,000* 7e−05 0.5 16.9 17.4 7
BJ(y,y,n,l) 3 5,000* 7e−05 0.5 16.2 16.7 8
BGS(n,n,n,u,1e−5,5) 4 5,000* 2e−07 0.5 18.4 18.9 6
BGS(n,n,n,u,1e−3,3) 5 5,000* 8e−07 0.5 18.2 18.7 6
BGS(n,y,n,u,1e−3,3) 1 5,000* 9e−07 0.5 19.2 19.7 7
BGS(n,y,y,u,1e−10-3) 1 5,000* 9e−07 0.5 22.6 23.1 7
BGS(n,y,n,u,1e−5,3) 2 5,000* 9e−07 0.5 16.6 17.1 7
BGS(n,y,y,l,1e−3,5) 2 5,000* 9e−07 0.5 16.4 16.9 7
BGS(y,y,n,l) 3 5,000* 9e−07 0.5 16.1 16.6 8
IADBJ(n,n,n,u,1e−10,5) 4 1,556 2e−12 0.5 0.0 9.8 10.3 17
IADBJ(n,n,n,u,1e−3,5) 5 5,000* 1e−04 0.5 0.0 41.5 42.0 17
IADBJ(y,y,n,l) 3 5,000* 1e−05 0.5 0.2 20.0 20.7 12
IADBGS(n,n,n,u,1e−10,5) 4 1,332 8e−13 0.5 0.0 8.5 9.0 17
IADBGS(n,n,n,u,1e−3,5) 5 5,000* 3e−09 0.5 0.0 41.1 41.6 17
IADBGS(y,y,n,l) 3 5,000* 9e−07 0.5 0.2 21.1 21.8 12

Table 5.52: Solver statistics for the Ncd problem.

with partitioning 3 are almost always identical. This is another surprising phe-

nomenon we have not been able to explain. Note that IADBJ may be parallelized

to achieve shorter solution time.

Generally, 3 inner iterations and an inner tolerance of 10−10 give better so-

lution times for iterative methods based on block partitionings. As the number

of nonzeros in the matrix increases and the number of dangling nodes decreases,

increasing the inner tolerance yields better results. However, performing as many

as 10 inner iterations does not have a positive effect on solution time.

The POWER solver has the minimum space requirement, whereas the IAD

CHAPTER 5. EXPERIMENTAL RESULTS 89

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 745 1e−10 1.5 5.1 6.6 15
QPOWER 155 8e−11 1.7 1.2 2.9 17
J 1,000* 5e−03 1.6 7.5 9.1 15
GS 27 9e−13 1.6 0.2 1.8 15
BJ(n,n,n,u,1e−10,5) 4 422 3e−12 1.7 4.0 5.7 17
BJ(n,n,n,u,1e−3,3) 5 1,000* 5e−03 1.7 9.2 10.9 17
BJ(n,y,n,l,1e−10,3) 1 96 2e−12 1.7 1.1 2.9 20
BJ(n,y,y,u,1e−5,3) 1 96 2e−12 1.7 1.1 2.8 20
BJ(n,y,n,l,1e−5,3) 2 96 3e−12 1.7 0.8 2.5 20
BJ(n,y,y,l,1e−5,3) 2 96 3e−12 1.7 0.8 2.5 20
BJ(y,y,n,l) 3 1,000* 5e−03 1.8 8.4 10.2 23
BGS(n,n,n,u,1e−10,3) 4 20 1e−12 1.6 0.2 1.8 17
BGS(n,n,n,u,1e−3-3) 5 27 9e−13 2.0 0.4 2.4 17
BGS(n,y,n,u,1e−5,3) 1 23 8e−13 1.7 0.3 2.0 20
BGS(n,y,y,u,1e−5,3) 1 23 8e−13 1.7 0.3 2.0 20
BGS(n,y,n,u,1e−3,5) 2 24 8e−13 1.7 0.2 1.9 20
BGS(n,y,y,l,1e−5,5) 2 24 8e−13 1.7 0.2 1.9 20
BGS(y,y,n,l) 3 24 8e−13 1.8 0.2 2.1 23
IADBJ(n,n,n,u,1e−10,5) 4 307 3e−12 1.6 0.9 38.5 41.0 34
IADBJ(n,n,n,u,1e−3,3) 5 23 8e−13 1.1 0.7 3.4 5.2 34
IADBJ(y,y,n,u) 3 46 2e−12 1.8 14.8 0.5 17.1 30
IADBGS(n,n,n,u,1e−10,3) 4 12 2e−12 1.6 0.9 1.5 4.0 34
IADBGS(n,n,n,u,1e−3,3) 5 14 7e−13 1.4 0.8 2.1 4.3 34
IADBGS(y,y,n,u) 3 23 8e−13 1.8 14.8 0.3 16.9 30

Table 5.53: Solver statistics for the Mutex problem.

solvers have the highest space requirement when Rosen’s algorithm is employed.

BGS with partitioning 4 and partitioning 1 when only Tarjan’s algorithms is em-

ployed increases space requirement over that of QPOWER by about 60 percent.

Space requirement of GS and QPOWER are about the same.

Observations for the irreducible set of matrices revealed that IAD with par-

titioning 5 is the timewise winner in the 2D and Telecom problems. IAD with

partitioning 4 is the winner in the Ncd problem. In the Easy and Mutex problems

there is a tie between GS and BGS with partitioning 4. In the Qnatm problem,

the winner is GS. Since the order of the aggregated matrix is smaller in this set

CHAPTER 5. EXPERIMENTAL RESULTS 90

Time
Solver Part Iter Res Prep Pe Solu Total MB
POWER 849 9e−11 1.4 9.5 10.9 18
QPOWER 702 9e−11 1.5 9.8 11.3 24
J 1,000* 1e−06 1.4 12.8 14.2 19
GS 256 3e−11 1.4 3.2 4.7 19
BJ(n,n,n,u,1e−10,5) 4 607 2e−11 1.4 12.9 14.3 24
BJ(n,n,n,u,1e−3,5) 5 1,000* 1e−06 1.5 18.0 19.5 24
BJ(n,y,n,u,1e−5,3) 1 493 3e−11 1.6 15.9 17.6 30
BJ(n,y,y,u,1e−3,3) 1 493 3e−11 1.6 15.8 17.4 30
BJ(n,y,n,u,1e−3,5) 2 458 3e−11 1.6 8.2 9.8 30
BJ(n,y,y,u,1e−10,5) 2 458 3e−11 1.6 8.1 9.7 30
BJ(y,y,n,l) 3 478 3e−11 1.9 10.5 12.4 33
BGS(n,n,n,u,1e−3,3) 4 249 3e−11 1.4 4.5 6.0 24
BGS(n,n,n,u,1e−3,3) 5 256 3e−11 2.0 5.9 7.8 24
BGS(n,y,n,l,1e−10,3) 1 218 3e−11 1.6 6.3 8.0 30
BGS(n,y,y,u,1e−10,3) 1 218 3e−11 1.6 6.4 8.0 30
BGS(n,y,n,u,1e−5,3) 2 256 3e−11 1.6 4.6 6.2 30
BGS(n,y,y,u,1e−5,3) 2 256 3e−11 1.7 4.5 6.2 30
BGS(y,y,n,l) 3 247 2e−11 1.9 5.5 7.4 33
IADBJ(n,n,n,u,1e−10,5) 4 336 5e−11 1.4 0.4 12.9 14.7 44
IADBJ(n,n,n,u,1e−3,5) 5 276 6e−11 1.5 0.4 13.9 15.9 44
IADBJ(y,y,n,u) 3 476 3e−11 2.0 12.9 13.3 28.2 41
IADBGS(n,n,n,u,1e−10,3) 4 103 2e−11 1.4 0.4 3.8 5.6 44
IADBGS(n,n,n,u,1e−3,5) 5 107 2e−11 1.5 0.4 5.4 7.4 44
IADBGS(y,y,n,l) 3 246 3e−11 1.9 12.8 6.9 21.6 41

Table 5.54: Solver statistics for the Qnatm problem.

of problems, this result is inline with the expectations.

Chapter 6

Conclusion

In this thesis, we propose iterative methods based on various block partitionings,

including those with triangular diagonal blocks obtained using cutsets, for the

computation of the steady-state vector of Google-like stochastic matrices.

The proposed iterative methods together with power and quadratically extrap-

olated power methods are coded into a software tool. The effect of the proposed

block partitioning algorithms are analyzed through a set of numerical experiments

in which the solution times and space requirements are reported. Experimental

results on benchmark matrices show that in some cases number of iterations

to convergence and solution times decrease with respect to power and quadrat-

ically extrapolated power methods. Generally, the space requirement for point

methods is 1.3 times, for block methods is 2.5 times, and for iterative aggregation-

disaggregation methods is 3.5 times the space requirement of the power method.

Note that the space required for quadratically extrapolated power method is 1.3

times the space required by the power method.

91

CHAPTER 6. CONCLUSION 92

Among the iterative methods based on block partitionings, generally the best

results in the more difficult problems are obtained with the block Gauss-Seidel

solver based on Tarjan’s ordering algorithm or equally sized blocks. For easier

problems, Gauss-Seidel is recommended.

Although the proposed methods achieve fast PageRank computation, there is

still room for improvement. Preprocessing time for the partitioning methodology

proposed for obtaining triangular diagonal blocks may increase as the order of the

matrix increases due to the number of recursive calls. As future work different

implementations of this partitioning methodology should be investigated. For it-

erative aggregation-disaggregation, the routines that implement the computation

of the block column sums of the coefficient matrix can be implemented. As an ex-

tension, different strategies for handling dangling nodes can be investigated. For

example, dangling nodes may be lumped into a single node and the PageRank of

non-dangling nodes may be computed separately.

Bibliography

[1] Harwell Subroutine Library, 2007. Available from

http://www.cse.clrc.ac.uk/nag/hsl/.

[2] Larbin home page, 2007. Available from http://larbin.sourceforge.net/index-

eng.html/.

[3] Webgraph, 2007. Available from http://webgraph.dsi.unimi.it/.

[4] The Stanford Webbase Project, 2007. Available from

http://dbpubs.stanford.edu:8091/~testbed/doc2/WebBase.

[5] Netlib Repository, 2007. Available from http://www.netlib.org.

[6] C. Brezinski and M. Redivo-Zaglia, The PageRank vector: Proper-

ties, computation, approximation, and acceleration, SIAM Journal on Matrix

Analysis and Applications, 28 (2006), pp. 551–575.

[7] S. Brin and L. Page, The anatomy of a large-scale hypertextual web search

engine, Computer Networks and ISDN Systems, 33 (1998), pp. 107–117.

[8] T. Davis. University of Florida Sparse Matrix Collection, 2007. NA

Digest, 92, no. 42, October 16, 1994, NA Digest, 96, no. 28, July

93

BIBLIOGRAPHY 94

23, 1996, and NA Digest, 97, no. 23, June 7, 1997. Available from

http://www.cise.ufl.edu/research/sparse/matrices.

[9] T. Dayar. Technical Report BU-CE-0701, Department of Computer Engi-

neering, Bilkent University, Ankara, Turkey, January 2007. Available from

http://www.cs.bilkent.edu.tr/tech-reports/2007/BU-CE-0701.pdf.

[10] T. Dayar and G. N. Noyan. Software for steady-state anal-

ysis of Google-like stochastic matrices, 2007. Available from

http://www.cs.bilkent.edu.tr/~tugrul/software.html.

[11] T. Dayar and W. J. Stewart, Comparison of partitioning techniques for

two-level iterative solvers on large, sparse Markov chains, SIAM Journal on

Scientific Computing, 21 (2000), pp. 1691–1705.

[12] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse

Linear Systems, Oxford University Press, New York, NY, 1986.

[13] I. S. Duff and J. K. Reid, An implementation of Tarjan’s algorithm for

the block triangularization of a matrix, ACM Transactions on Mathematical

Software, 4 (1978), pp. 137–147.

[14] P. Festa, P. M. Pardalos, and M. G. C. Resende, Feedback set prob-

lems, in Handbook of Combinatorial Optimization, D. Z. Du and P. M. Par-

lados, eds., vol. 4, Boston, MA, 1999, Kluwer Academic Publishers, pp. 209–

258.

[15] J.-M. Fourneau and F. Quessete, Graphs and stochastic automata net-

works, in Computations with Markov Chains: Proceedings of the 2nd Inter-

national Workshop on the Numerical Solution of Markov Chains, W. Stewart,

ed., Raleigh, NC, 1995, pp. 217–236.

BIBLIOGRAPHY 95

[16] G. H. Golub and C. D. Meyer, Using the QR factorization and group

inversion to compute, differentiate, and estimate the sensitivity of stationary

probabilities for Markov chains, SIAM Journal on Algebraic and Discrete

Methods, 7 (1986), pp. 273–281.

[17] I. C. F. Ipsen and S. Kirkland, Convergence analysis of a PageRank up-

dating algorithm by Langville and Meyer, SIAM Journal on Matrix Analysis

and Applications, 27 (2006), pp. 952–967.

[18] I. C. F. Ipsen and T. M. Selee, PageRank computation, with special

attention to dangling nodes, to appear in SIAM Journal on Matrix Analysis

and Applications, (2007).

[19] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H.

Golub, Extrapolation methods for accelerating PageRank computations, in

Proceedings of the 12th international conference on World Wide Web, Bu-

dapest, Hungary, 2003, pp. 261–270.

[20] R. M. Karp, Reducibility among combinatorial problems, in Complexity of

Computer Computations, R. E. Miller and J. W. Thatcher, eds., New York,

NY, 1972, Plenum Press, pp. 85–103.

[21] A. N. Langville and C. D. Meyer, Deeper inside PageRank, Internet

Mathematics, 1 (2004), pp. 335–380.

[22] A. N. Langville and C. D. Meyer, The use of the linear algebra by web

search engines, IMAGE Newsletter, 33 (2004), pp. 2–6.

[23] A. N. Langville and C. D. Meyer, A survey of eigenvalue methods for

web information retrival, SIAM Review, 47 (2005), pp. 135–161.

BIBLIOGRAPHY 96

[24] A. N. Langville and C. D. Meyer, Updating Markov chains with an eye

on Google’s PageRank, SIAM Journal on Matrix Analysis and Applications,

27 (2006), pp. 968–987.

[25] R. Lempel and S. Moran, The stochastic approach for link-structure anal-

ysis (SALSA) and the TKC effect, Computer Networks, 33 (2000), pp. 387–

401.

[26] I. Marek and D. B. Szyld, Algebraic Schwarz methods for the numerical

solution of Markov chains, Linear Algebra and its Applications, 386 (2004),

pp. 67–81.

[27] A. MERİÇ, Kronecker representation and decompositional analysis of

closed queueing networks with phasetype service distributions and arbitrary

buffer sizes, Master’s thesis, Bilkent University, (2007).

[28] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM Press,

Philadelphia, PA, 2000.

[29] I. Pultarova, Tarjan’s algorithm in computing PageRank, in In 13th An-

nual Conference Proceedings of Technical Computing Prague, C. Moler,

A. Procházka, and B. Walden, eds., Praha, 2005, VŠCHT.

[30] B. K. Rosen, Robust linear algorithms for cutsets, Journal of Algorithms,

3 (1982), pp. 205–217.

[31] S. M. Ross, Introduction to Probability Models, Academic Press, Boston,

1989.

[32] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston, 2nd

edition, 2003.

BIBLIOGRAPHY 97

[33] P. Semal, Analysis of Large Markov Models, Bounding Techniques and

Applications, PhD thesis, University of Louvain, Belgium, 1992.

[34] S. Serra-Capizzano, Jordan canonical form of the Google matrix: A po-

tential contribution to the PageRank computation, SIAM Journal on Matrix

Analysis and Applications, 27 (2005), pp. 305–312.

[35] A. Shamir, A linear time algorithm for finding minimum cutsets in reducible

graphs, SIAM Journal on Computing, 8 (1979), pp. 645–655.

[36] W. J. Stewart, MARCA: Markov chain analyzer, in Numerical Solution

of Markov Chains, W. Stewart, ed., New York, NY, 1991, pp. 687–690.

[37] W. J. Stewart, Introduction to the Numerical Solution of Markov Chains,

Princeton University Press, Princeton, NJ, 1994.

[38] Y. Zhu, S. Ye, and X. Li, Distributed PageRank computation based on it-

erative aggregation-disaggregation methods, in Proceedings of the 14th ACM

Conference on Information and Knowledge Management, ACM Press, New

York, NY, 2005, pp. 578–585.

Appendix A

Software User Manual

1. The C code in the file web main.c is able to work with sparse matrices in:

• Harwell-Boeing (HB) format

• Sparse row (RB) format

• Sparse column (CB) format

• MARCA format

• PUA format

The matrix is defined through a file located under directory. The file defining

sparse matrices in HB, RB, and MARCA format is MATX r, in CB format is

MATX c, and in PUA format is MATX pua. Problem parameters alpha, maximum

number of iterations, tolerance, maximum number of inner iterations, and inner

tolerance are defined in file input. Sample files for a problem are given next.

98

APPENDIX A. SOFTWARE USER MANUAL 99

MATX r:

6 10

0.5

0.5

0.3333333333333333

0.3333333333333333

0.3333333333333333

0.5

0.5

0.5

0.5

1.0

2 3 1 2 5 5 6 4 6 4

1 3 3 6 8 10 11

input:

0.85

5000

1.0e-10

1.0

10

1.0e-10

In order to direct the output written to the screen also to the file output, the

constant FILE OUTPUT in the file web const.h must be set to 1. When the

constant is set to 0, the file output will not be produced.

In order to output the norm of the difference between the successive iter-

ates for the block iterative solver every ERR COUNT iterations, the constants

ERR COUNT and ERR PRINT in the file web const.h must be set respectively

to the value of ERR COUNT and 1. In order to output the norm of the difference

between the successive iterates for the inner iterations of the block iterative solver

ERR PRINT INNER also must set to 1.

APPENDIX A. SOFTWARE USER MANUAL 100

Quadratic extrapolation is performed at multiples of QUAD COUNT in the

file web const.h, when quadratic extrapolation with power method is used as a

solver.

In order to output the contents of some variables during execution for debug-

ging purposes, the constants TESTING and TEST xx, where xx is the routine

name, in the file web const.h must be set to 1. When the constants are set to

0, no such output will be produced.

In order to output the solution vector, the constant SOLUTION in

web const.h must set to 1. The file solution XX is produced, where XX stands

for the solver name. For example, when power method is used as a solver

solution power is produced. When the constant is set to 0, no such output

will be produced.

Note that array indices in C start from 0 and so do the row and column indices

of the matrices in the code.

Execute the Makefile by typing make so that the executable is placed in the

file web.

The files:

mc13dd.c

from the Harwell Subroutine Library (HSL) and

daxpy.c ddot.c

from BLAS have been left out. The C versions of these files are obtained from

the Fortran versions by using the Fortran to C translator f2c available at Netlib

APPENDIX A. SOFTWARE USER MANUAL 101

[5].

2. Make sure that web has executable privileges.

The executable can be run by the command:

web Matrix Type Solver Type Tarjan Parameter Cutset Parameter

Restriction Parameter Orientation Parameter Partition Parameter

where

Matrix Type:

r : input matrix is to be read from file MATX r

c : input matrix is to be read from file MATX c

p : input matrix is to be read from file MATX pua

Solver Type:

1 : Power method is used

2 : Power method with quadratic extrapolation is used

3 : JOR method is used

4 : SOR method is used

5 : BJOR method is used

6 : BSOR method is used

7 : IAD method with BJOR disaggregation step is used

APPENDIX A. SOFTWARE USER MANUAL 102

8 : IAD method with BSOR disaggregation step is used

Tarjan Parameter:

n : mc13dd is not used

y : mc13dd is used

When Tarjan Parameter is empty, it is taken to be: y

Cutset Parameter:

n : cutset is not used

y : cutset is used

When Cutset Parameter is empty, it is taken to be: y

Restriction Parameter:

n : no restriction is made to (2× 2) block form

y : restriction is made to (2× 2) block form

When Restriction Parameter is empty, it is taken to be: n

Orientation Parameter:

l : lower-triangular diagonal blocks are produced

u : upper-triangular diagonal blocks are produced

When Orientation Parameter is empty, it is taken to be: u

Partition Parameter:

APPENDIX A. SOFTWARE USER MANUAL 103

1 : partitioning 1 is used

2 : partitioning 2 is used

3 : partitioning 3 is used

4 : partitioning 4 is used

5 : partitioning 5 is used

If the code is compiled to run under the Linux operating system on a 3 GHz

Pentium IV processor with 2 Gigabytes main memory with MATX r and input file

then:

web r 1

produces the output:

Maximum # of iterations : 1000

Precision requested : 1.000e-10

Memory requirement : 0 MB

Read matrix (n,nz) : 6,10

of zero rows : 1

Non-existent diag elements : 6

Matrix is a DTMC

Set data structures time : 0.00 secs

POWER w/ alpha = 0.85 time : 0.00 secs

of iterations : 39

Residual : 3.409e-11

web r 6 y y n u 3

produces the output:

APPENDIX A. SOFTWARE USER MANUAL 104

Maximum # of iterations : 1000

Precision requested : 1.000e-10

Relaxation parameter : 1.000e+00

Maximum # of inner iterations : 3

Inner precision requested : 1.000e-05

mc13dd is used

Upper-triangular transversal’s complement

Memory requirement : 0 MB

Read matrix (n,nz) : 6,10

of zero rows : 1

Non-existent diag elements : 6

Matrix is a DTMC

New nz : 16

Set data structures time : 0.00 secs

partition time : 0.00 secs

nb : 2

of final diagonal blocks : 2

of nzs in first diagonal block : 6

Max. number of nz’s in a diagonal block : 6

Index of block with max. nz : 1

Min. number of nz’s in a diagonal block : 2

Index of block with min. nz : 2

Average number of nz’s in a diagonal block : 4.00

of nzs in remaining diagonal blocks : 2

of nzs in off-diagonal part : 8

svecsymperm, scale, pt2blk time : 0.00 secs

moderr = 0 ====> Normal stopping criteria

block_iteration time : 0.00 secs

vecsymperm, unscale, res computation time : 0.00 secs

of iterations : 17

Residual : 7.388e-12

Note that total solution times for methods obtained by adding all output times.

