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ABSTRACT

SCENE CLASSIFICATION USING BAG-OF-REGIONS
REPRESENTATION

Demir Gökalp

M.S. in Computer Engineering

Supervisor: Asst.Prof.Dr. Selim Aksoy

July, 2007

Significant growth of multimedia data creates the need for more complicated ap-

proaches in image understanding, classification and retrieval. Semantic scene

classification is a popular research area which categorizes images into semantic

categories for applications like content based image retrieval. In the near future,

content based image retrieval will be much more important especially for the

next generation internet technologies so new approaches are very welcomed in

this subject. Research has showed that classifying images using components like

regions, pixels or objects is a challenging work because of the ambiguity of the

visual data. The main idea about image classification is to find similarities be-

tween these components to get information about the content of the image. This

thesis describes our work on classification of outdoor scenes. As the first step,

regions are extracted using one-class classification and patch-based clustering al-

gorithms. The components (pixels, regions and objects) in outdoor images have

particular spatial and geometric interactions so dividing images into meaning-

fully clustered regions has important benefits for a detailed content analysis. For

region clustering, features from different levels make specific contributions but to

avoid the ambiguity, we need to use low level information and more global infor-

mation together for the clustering step. Also, using spatial relationships between

clustered regions, we can make inference about the detailed content of outdoor

images from specific to general. Therefore, after rough segmentation, scene rep-

resentations are constructed with and without spatial information. At the final

step Bayesian classification approach is used with the two different scene rep-

resentations. The developed methods were tested on the MIT LabelMe dataset,

and the results showed that using regions and their spatial relationships improved

the classification accuracy.
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ÖZET

BÖLGE GRUPLARI KULLANARAK RESİM
SINIFLANDIRMA

Demir Gökalp

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Asst.Prof.Dr. Selim Aksoy

Temmuz, 2007

Görsel verinin son yıllarda her alanda kullanımının giderek artmasından dolayı,

içerik tanıma ve sınıflandırma konularında daha verimli ve kullanışlı yöntemlere

ihtiyaç duyulmaktadır. Resimleri içeriklerine uygun olarak gruplamayı hedefleyen

anlamsal resim sınıflandırma konusu, son yıllarda üzerinde daha fazla çalışılır

hale gelmiştir. Genel olarak sınıflandırma metodları; resim içindeki önemli obje

ve bölgelerin tanımlanması ve daha sonra bu bilgiler kullanılarak resim içeriği

hakkında genel bir yargıya varılmasına dayanır. Özellikle dış mekan resimleri

içerisinde tanımlanan bu tip bölgelerin birbirlerine olan uzamsal konumları resim

içeriği anlama ve sınıflandırmada çok önemli katkı yapmaktadır. Bu noktada

karşılaşılan en önemli sorun görsel veride gürültü ve görüş açısı gibi nedenler-

den dolayı meydana gelen tutarsızlıklardır. Bu tip sorunları önlemenin bir yolu

farklı düzeyde bilgilerden yararlanmak olabilir. Bu çalışmada bu amaçla biz hem

düşük seviyede hem de orta seviyede öznitelikler kullanarak, resim içinde bölge

bölütlemesi yapıyoruz. Daha sonra ayrılan bu bölgeleri uzamsal konumlarına

göre tek başlarına veya ikili olarak kullanarak resimleri modelliyoruz. Sahne

sınıflarında baskın olan tekli veya çiftli bölgeleri belirlemek için geliştirdiğimiz

bir seçme algoritmasını kullanmayı sonucu iyleştirmeye yönelik bir alternatif

olarak sunuyoruz ve algoritmamızın en son aşamasında sınıflandırma tekniği

olarak Bayesci sınıflandırma yöntemi kullanarak resimlerin sınıflarını belirliyoruz.

Geliştirilen yöntemler MIT LabelMe veri kümesinde denenmiş ve bölgeleri kulla-

narak elde edilen uzamsal bilginin sınıflandırma sonuçlarını oldukça iyileştirdiği

gözlemlenmiştir.

Anahtar sözcükler : Anlamsal resim sınıflandırma, bölütleme, resim anlama.
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Chapter 1

Introduction

1.1 Motivation

Image understanding and scene classification, which are about interpret-

ing the content of an image and categorizing similar ones into predefined scene

classes, is one of the important problems in computer vision. According to the

quality of the digital media, it is a quite problematic study especially at the fea-

ture extraction step. This process needs to extract information from different

levels of data like recognizing the particular regions, objects in an image or just

trying to interpret concept of the image using more global information (like gen-

eral color or texture distributions). In scene classification problem, to understand

the image content and classify into an abstract scene class, we believe that using

some particular indicators which are extracted from low and intermediate level is

more significant than using global information. These indicators can be regions,

objects or patches which are related to the general concept of the image. Each

specific component helps to understand the image content such as finding a table

or phone object increases the possibility of the scene being an office while a sky

and water region possibly means that the scene contains a beach or waterfront.

At this point the main problem is the difficulty of region and object detection

because of ambiguity in visual data [6]. There are several reasons for ambiguity

1



CHAPTER 1. INTRODUCTION 2

in visual data like illumination and camera position. Generally, different kinds of

regions can be very similar at some levels such as water and sky regions can have

similar color information in the RGB color space depending on the camera po-

sition or illumination. To avoid this kind of resemblance, additional information

especially neighboring components in the image and their spatial relationships

can be helpful. Water and sky regions can be similar on the color space but they

would be separated at the texture feature space and also it is very reasonable to

expect that sky must be on top of the water.

It is very well known that spatial dependencies are not random in natural

images so spatial information especially the vertical one is very helpful for the

analysis of natural scenes. In [19] Smith and Li demonstrated the contribution of

vertical relationships especially in natural scenes by dividing images into vertical

parts and extracting region strings vertically for classification. They explain the

importance of vertical relations by flipping an image vertically and horizontally.

When an image is flipped horizontally, spatial relations of the regions remain the

same. On the other hand, if the image is flipped vertically, horizontal relations

remain the same but vertical relations change. For example, in Figure 1.1 the

sand region still remains near water and both are under the sky region for the

horizontal flip (first row). However, for the vertical flip (second row), sky remains

under the sand and water regions so the relationships are no longer intuitive.

Besides that, spatial dependencies can be local and global, and both types are

useful at different information levels. Local dependencies are the pixel based

relations and they have interactions in the different parts of an image whereas

global dependencies consist of the relations between larger regions in the image

content. Modeling the content based relations in images is a problem because of

the statistical variations and uncertainties in visual data but the strong side of

the probabilistic methods is that they create a flexible framework by using global

probability distributions defined by local constraints.

In this thesis we present a framework which combines local and global infor-

mation at the clustering phase and uses probabilistic approaches for classification

phase. As the first step, we developed a new approach for image segmentation.

The segmentation approach includes two parts which are one-class classification
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Figure 1.1: Images on the left column are original images, on the right column
are flipped versions. Fist row is flipped horizontally and second row is flipped
vertically.

and patch-based clustering. One-class classification detects “homogeneous” color

and texture regions that mostly exist in natural images like water, grass, sky etc.

Second phase of the segmentation process is the patch-based clustering which aims

to find structured and more complicated regions like man-made structures where

one-class classifiers are insufficient. Our segmentation process gives a roughly

segmented image. At the next step, HSV histograms of the regions are extracted

and regions are clustered to construct a codebook. We are expecting that similar

regions belong to similar clusters. Each region cluster represents a codeword in

the codebook. Next step is the representation of the scenes. We created two

different scenarios. One is the representation of scenes with bag-of-regions while

the other is the representation of scenes with bag-of-region pairs. For the second

model, a spatial model is constructed to exploit the contribution of the spatial

information. Above-below relations of the regions are modeled. We want to use

region types which are dominant or characteristic for particular scene categories,
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Figure 1.2: Diagram of our classification framework.

so a selection algorithm was developed. Selection algorithm determines the re-

gion types which mostly exist in particular scene categories while not often exist

in other categories. At the classification process, Bayesian classifiers are used to

model both individual and pairwise relations of regions. Figure 1.2 summarizes

our classification framework.

1.2 Scene Classification

Scene classification is a very popular field in computer vision because of the

need in management of huge amounts of visual data. Data retrieval is only one
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example application of scene classification. Traditional methods for retrieval is to

index images with labels according to their content. Difficulty here is to annotate

each image by a person. This is very inefficient for large databases and also relia-

bility of the system depends on the understanding of the annotater. If the visual

data can be categorized by algorithms according to the content, efficiency and

reliability of the applications (like data retrieval) can be increased. So far, some

systems were implemented for this purpose but still there are no satisfactory re-

sults on this subject. There are approaches with and without using segmentation

process. One of the main problems in computer vision is image segmentation so

it is also an important problem of the image classification. Some segmentation

methods were implemented like N-cut at [17] which is a well known segmentation

method but like all methods it only works on specific datasets. Figure 1.3 shows

an N-cut result. The problem of the N-cut algorithm is to determine the best N

value which is the number of segments in an image. Determining a fixed N-value

is not very reliable so N-cut gives satisfactory result only for specific images with

specific N-values.

Figure 1.3: Examples for N-cut segmentation result.

Generally research is focused on the segmentation process for a detailed scene

classification. The idea is that recognizing the regions in images helps to under-

stand the whole concept of the image. When recognizing the regions in images,

modeling their distributions or relations gives the general idea about the scene.

The disadvantage is the difficulty in the segmentation process as mentioned. In

recent years, another new approach is to find scale invariant local features. These
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features can be extracted from patches around the detected keypoints. Impor-

tance of the patches is that they give intermediate-level information about the

content and their distributions can be modeled in scene categories without per-

forming any segmentation process. This kind of approaches have satisfactory

results in limited scene categories like indoor-outdoor classification. Success of

the method depends on the success of the feature detector or descriptors. The

disadvantage of the method is that in natural images, distribution of the scale

invariant descriptors can be very random. The descriptors are more reasonable

on organized structures like man-made structures so randomness of the descrip-

tors in regions like grass or sky can be problematic to represent scene categories.

Furthermore, there are very old-fashion approaches which extract the color or

texture distributions of the whole images and use as features. However, these ap-

proaches are very insufficient to have detailed idea about the image content and

they fail in the complex datasets. These show that using only low, intermediate

or high level features generally give satisfactory results only on limited datasets

so the idea of using combination of the different feature types together makes

more sense.

Another important subject in scene classification problem is the spatial re-

lationships in images. Especially in outdoor images, this kind of information is

very helpful. In outdoor images randomness of the spatial relations is not very

possible. In an indoor image, you can expect to see any kinds of object with

different spatial relation combinations. For example, a computer monitor can be

under a table or on top of a table or there can be a coffee cup on a book or

near the book. Extracting these kind of spatial constraints is very challenging

for indoor images. However, the situation is very different for outdoor images.

Intuitively, it is not possible to see a sea or grass region on top of a sky region.

These kinds of constraints are very useful to construct reliable spatial models. We

can assume that spatial relations in outdoor images are rational and not random.

Also, their direction is very helpful for understanding the content. For example,

finding a direction with sky-water-sand means a beach scene very strongly. Using

this kind of information obviously increases the performance and reliability of

the classification system. New research has been focusing on the use of spatial
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relations more often. Commonly, used approach is to model the above-below

relations because vertical relation information is more distinguishing for outdoor

images.

1.3 Organization of the Thesis

The organization of the thesis is as follows. Chapter 2 summarizes the related

background work about the scene classification problem. Segmentation of images

into regions is described in Section 3. Chapter 4 is about the general classification

process. Representation of scenes using “bag of individual regions” and “bag of

region pairs” are presented in Section 4.1 while the algorithm for selection of

discriminative regions is proposed in Section 4.2. Bayesian models for scene

classification are described in Section 4.3. Experiments on the LabelMe data set

are presented in Chapter 5 and are followed by conclusions in Chapter 6.



Chapter 2

Related Work

Human brain is the best recognition and classification system. While the most

part of the brain and its working is still a big mystery, researches have showed that

human brain can easily recognize the content of a complex scene. The general

method is first to recognize objects in the images and then making connection with

them to have the final content idea. Brain tries to make induction from local to

general. This working strategy of the human brain created a very good model for

some of the modern scene classification studies. There is an important amount

of research about scene classification in the last decade. Earlier studies used

global information of the whole images like histograms. These histograms were

used as feature at the classification phase. Then, research was focused on object

recognition in images and detected objects were used for scene classification. On

the other hand, more recent approaches tried to model the general image concept

using local descriptors instead of recognizing the objects or global features of the

whole image. Distributions of these descriptors are used to represent the scene

categories.

We can divide the related research into two main categories which are methods

using global features and methods using local information. These two approaches

have own advantages and disadvantages so we tried to combine strong sides of

these approaches in our research.

8
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2.1 Global Approaches

The most traditional scene classification approach is to use low-level global

features like color and texture distributions of the pixels. These features are

extracted from whole images and each image is represented by these global fea-

tures. Using such features, images are classified into very limited classes like

indoor/outdoor.

There are many researches using low-level features to make high level inference

about scene context. Gorkani and Picard [1] studied the classification of images

into city and landscape classes. Multiscale steerable pyramid is used and they try

to find dominant orientations in 4 x 4 subblocks in images. The classification is

simple; to classify as city, an image needs enough number of subblocks with the

dominant vertical orientation. If image cannot be labeled as city, it is landscape.

Yiu [2] created a similar approach to Gorkani and Picard. Vertical dominant ori-

entation features are used with the color information. At the classification step

they used the nearest neighbor and support vector machine classifiers. Their final

scene classes are outdoor and indoor. Lipson [3] describes a general scene query

approach; it can not be accepted as scene classifier. According to regions and

their relations in images, graphical representations of the scenes are extracted.

These graphical relationships contain relative color, spatial location, and highpass

frequency content. The difficulty is that graphical templates must be extracted

by hand for each scene class. These templates are also quite specific, which makes

them suitable for limited special cases such as sky over mountain over lake but

difficult for the case of capturing a broad concept like an outdoor scene. In an

other research, Yu [4] learns a statistical template from examples. Vector quan-

tized color histograms are calculated for subblocks of the image. Then training

a one dimensional hidden Markov model along vertical or horizontal segments of

specific scene layouts is done. The problem is that one dimensional model cannot

describe spatial relationships effectively.

In a more recent research Vogel and Schiele [5] described a framework that uses

color, texture and a spatial grid layout. They aimed to perform landscape scene

retrieval system which is based on a two level retrieval. This two level system
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enables the use of a semantic level of block classification to do retrieval that

depends on the occurrence of concepts in an image. Discriminative random fields

were used by Kumar and Hebert [6] to detect and localize man made structures

in a scene and then representing images with these structures for classification

and retrieval.

2.2 Patch Based Approaches

More recent and popular researches focused on local information on images.

This local information is generally extracted by scale invariant feature detectors

and images are represented by local invariant features. Scale invariant features

are independent from the scale and orientation of the image so they are very

useful as descriptors.

Fei-Fei and Perona at [7] extracted the patches in images to construct a code-

book. Distribution of the each patch type is learned from the codeword distribu-

tion. The method depends on the probabilistic co-occurrence of the patches and

it does not need any segmentation process.

Fergus et al.[15] created a joint model which includes scale invariant model

and a spatial distribution model whereas Dorko and Schmid [16] used a feature

selection algorithm to determine dominant local descriptors in specific object

categories.

Lazebnik et al.[8] used the patch histograms and spatial information together.

She created a grid from image and then calculated the histogram of patches in

each grid. This caused the limited use of spatial information.

Monay et al. [11] used probabilistic aspect models on the bag-of-words repre-

sentation with the assumption that there must be correlation between the aspects

and semantic classes. Their models worked on classification of man-made and nat-

ural scenes. Boutell et al. [9] developed a similar approach to our approach, they

used regions and their pairwise relationships as spatial information. Gemert et
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al. [14] developed an alternative codebook model which used patch histograms

for scene categories. The difference from the codebook method is that they used

the similarities to all vocabulary elements.

It is very obvious that patches are very helpful about the content analysis but

the disadvantage is to have only local information. To improve the contribution

of the local patches, using spatial content where both local and global information

are used together creates more reliable results.



Chapter 3

Finding Local Regions

We believe that low level local information has important contributions to the

overall classification method so creating a well performed segmentation algorithm

is the first step of our study. First of all, we aimed to get roughly segmented im-

ages in which important and dominant regions are segmented, because this kinds

of regions gives detail about the general image content. Trying to recognize all

regions is not necessary and costly so we are just trying to extract large and char-

acteristic areas in the images. We do not need to segment all regions detailed

with clear borders because to find the important part of a region is enough to

extract features at next steps. On the other hand, all kinds of segmentation is

a very though and complex process in computer vision. There are many kinds

of methods like color based methods, geometric methods, texture based meth-

ods, etc., but all methods generally give satisfactory results only on the specific

and restricted datasets. For reliable segmentation results, simple images with

clear backgrounds and compact structures should be used whereas more compli-

cated images fail at the segmentation step because of the physical conditions and

intrinsic nature of the data.

In this thesis, we are using our segmentation approach which is the combina-

tion of two different methods. These two methods have weak and strong sides

so we aim to combine strong parts in a reasonable framework. We decided that

12
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defining some common region types for natural scenes will be very helpful for seg-

mentation. Regions like water, sky and green areas exist in most of the outdoor

images so predefining these kinds of common regions make the segmentation pro-

cess easy. Predefining all region types is impossible and inefficient, especially for

the regions belonging to structured areas but to find some very common regions

at the first step can be very helpful. For predefined semantic classes, we used

color and texture based classification while patch based local approach is applied

for more complicated regions (like man-made structures). For the natural regions

like sky and water, using low-level information like color and texture is very

reasonable but it does not work on complicated regions like cars and buildings.

Complicated components need more local and complicated information. This is

why we are using a two level approach for segmentation. The steps of this two

level segmentation algorithm is as follows. First, we defined most possibly exist-

ing semantic classes for outdoor images like sky, water, sand etc. These classes

have different color and texture distributions. Classes like sky and water can

have similar color information but they will be separated on the texture space.

Combination of the color and texture information is used with one-class classifica-

tion algorithm and these classes were determined firstly. Secondly, outlier regions

where predefined semantic classes were not found are given as input to the patch

based clustering. Aim of the patch based approach is to use information which is

not random on the images like man-made structures. The notion of the segmen-

tation at this stage is to have roughly segmented images with reasonable regions.

As a summary, our proposed algorithm is; first, one-class classifiers segment the

regions that consist of pixels with relatively uniform color and texture properties

(Section 3.1), then, finding keypoints on the outlier regions, extracting patches

and clustering of patches to detect more complicated regions in the remaining

image (Section 3.2). We are not labeling regions in these steps, we are just ex-

tracting regions and to prevent noise and computational load, we are eliminating

regions according to their sizes.
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3.1 One Class Segmentation

One class classification is an approach to the classification problem developed

by David M. J. Tax during his Ph.D. thesis studies [13]. One class classification,

also called as data description is a special classification problem. In traditional

multi-class classification, classifiers are trained using training data samples from

each class in order to estimate a model that will provide the decision boundaries.

We hope that these decision boundaries will separate observations of different

classes in the feature space into regions that do not overlap much. From this as-

pect, traditional multi-class classification can be said to define differences among

observations of different classes.

On the other hand, in one class classification, we try to define properties of

only one class. The aim is to discriminate observations of the target class from

all other observations called the outlier class [13]. So, a testing sample is either

detected as belonging to the target class or it is rejected.

In real word classification problems, sampling a sufficient number of training

data from each of the classes is not always possible. In some cases sampling one of

the classes might be very difficult, and even in some cases it might be impossible.

One-class classification is a method that can effectively be used in such cases

since it only needs data from the target class to be trained. Using this data, a

one class classifier divides the feature space into two regions one of which covers

the region that best defines the target class. Since only samples from a single

class is assumed to be available, in order to train a one-class classifier a high

number of training samples from the target class is needed. Although it is not

necessary, the performance of some one class classifiers can further be improved

by supplying them with some samples from the outlier class [13].

All one class classifiers take a parameter that is called the rejection threshold.

This rejection threshold is used when describing the region for the target class in

the feature space. For example, setting a rejection threshold of 0.1 means that

only %10 of the training samples are allowed to reside out of the decision region

of the target class. Since the rejection threshold is an upper bound on the error
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rate of the classification of training observations, the error rate for the testing

observations is independent from it. In our method, we tried some different

threshold values and selected 0.05 as the best threshold value.

One class classification aims to minimize the classification error for both tar-

get and outlier classes. In an one-class classification problem, the total error is

the sum of samples belonging to the target class labeled as outlier and samples

belonging to the outlier class labeled as target. In the absence of training samples

from the outlier class, one method of minimizing the total error is to minimize

the decision region for the target class. We have seven different classifiers for our

predefined region classes which are sky, water, road, sand, rock and vegetation.

Application of these classifiers is as follows. Each classifier is applied to each

pixel in test images. If all classifiers give the outlier label, the pixel is outlier

otherwise it belongs to the target class whose probability is the highest. Figures

3.1 and 3.2 show some one class classifier results in our dataset. To create the

one-class classifiers, we used Gaussian mixture models. Its parameters can be

calculated by the Expectation-Maximization (EM) algorithm. The probability

density function of a mixture model with k components for the feature vector x

is defined as

p(x) =
k∑

j=1

αjp(x|j) (3.1)

where αj is the mixture weight and p(x|j) is the Gaussian density model for the

j’th component.

p(x|j) =
1

(2π)
d
2 |∑j |

1
2

e−
1
2
(x−µj)

T
P−1

j (x−µj) (3.2)

where µj is the mean vector and
∑

j is the covariance matrix for the j’th com-

ponent and d is the dimension of the feature space. As the feature vector, RGB,

HSV and Gabor texture values of the pixels are used.
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Figure 3.1: Examples for one-class classifier-based segmentation. White pixels
are outlier class, blue pixels are sky, purple pixels are water, gray pixels are rock
and beige pixels are sand.
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Figure 3.2: Examples for one-class classifier-based segmentation. White pixels
are outlier class, blue pixels are sky, purple pixels are water, gray pixels are rock
and beige pixels are sand.
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3.2 Patch Based Segmentation

Patch based image segmentation or object detection and recognition algo-

rithms are newly popular and very effective approaches. The main idea is to

extract important patches and using these patches as features at the classifica-

tion step. There are many kinds of different patch extraction and classification

methods in the literature. General approach is to find important key points in

the image and then crop patches around these points. In this research, we are

finding key points or interest points in the images using two different keypoint

detectors; one is David Lowe’s SIFT (Scale Invariant Feature Transformation)

algorithm [10] and the other is the Kadir-Brady detector [18]. Our main algo-

rithm is implemented using the SIFT approach but we also used the Kadir-Brady

detector as an alternative approach. When we compared the results of these two

detectors on the same images, we decided that SIFT gives more reliable keypoint

results so our final experiments are made using the SIFT approach.

Method of extracting distinctive features is presented by David Lowe in [10].

These features are generally used for matching and tracking but in recent years,

they have been also used for object recognition. These are invariant to image

scaling and rotation, and partially invariant to change in illumination and 3D

camera viewpoint. They are well localized in both the spatial and frequency do-

mains, reducing the probability of disruption by occlusion, clutter, or noise [10].

In addition, the features are distinctive, which allows a single feature to be cor-

rectly matched, providing the basis for object and scene recognition. Extraction

of the features has some steps;

1. Scale space extrema detection: Searches on all scales and locations using

the difference of Gaussian function to identify potential interest points which are

invariant to scale and orientation.

2. Keypoint localization: Model is fit to all candidate locations for finding

location and scale.

3. Orientation assignment: One or more orientations are assigned to each
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keypoint location based on local gradient directions.

4. Keypoint descriptor: Local gradients are measured at the selected scale in

the region around each keypoint.

This is the approach of scale invariant feature transform (SIFT) which trans-

forms image data into scale invariant coordinates [10]. Our aim for using patch

Figure 3.3: Results of keypoint detector.

based approach is to narrow the boundaries of outlier class. The keypoints that

are outside the regions labeled as outlier are ignored because we already seg-

mented those regions with one-class classifiers. Actually, we are not doing a

recognition process; we are just saying that the probability of being a man made

regular structure (buildings, cars, bridges etc.) is very high on those regions.

Figure 3.3 shows all keypoints found on the example images.

The main problem at this step is the polysemy like having similar keypoint
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descriptors from different structures. To solve this problem we used color infor-

mation in patches. When keypoint detector finds the keypoints in the outlier

part of the image where one class classifiers labeled as outlier, 16x16 patches are

extracted around these keypoints. The reason to apply keypoint detector on the

outlier part is to get rid of unnecessary keypoints coming from possible natural

regions. The priority is on the one class classifiers and keypoints are detected

on the outlier parts. After extracted patches, they are divided into four 4x4

quadrants. RGB and HSV averages of the pixels in each quadrant are calculated

and a 24 feature descriptor is created for each patch; texture information is not

preferred because of the insufficient size of quadrants.

The basic idea and assumption is that the keypoints with similar features

must belong to the same structure so we clustered keypoints using k-means with

k = 25. Value of the k is selected after different runs. An important step in

the clustering process is to preserve rotation invariance because keypoints from

different parts of the same structure can have similar features but in different

quadrants. An example is shown in Figure 3.5.

This invariance is achieved by considering four possible rotations of the quad-

rants in the computation of the Euclidean distance between the descriptors of two

keypoints, and taking the rotation corresponding to the smallest distance as the

degree of similarity between these keypoints. After the keypoints are clustered,

final step is the dilation of the keypoints to form regions. We used morphologi-

cal dilation and each keypoint region grows iteratively on the outlier area. This

process merges the little regions with same labels and growing process is done

only on the outlier parts. Figure 3.4 shows patch based segmentation results and

Figure 3.6 shows the all levels of our segmentation approach.

Another alternative approach for keypoint detection is the Kadir and Brady

detector which uses Affine Invariant Scale Saliency method [18]. The main idea

of the Kadir and Brady approach is that salient image regions exhibit unpre-

dictability in their local attributes and over spatial scale. There are three main

parts of the method: First is the calculation of Shannon entropy of local image

attributes over a range of scales. Second is the selection of the scales at which the



CHAPTER 3. FINDING LOCAL REGIONS 21

Figure 3.4: Examples for patch based clustering results in outlier part. First
column shows the overlayed regions on the original images. Second column shows
the patch based clustering results in false color.
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Figure 3.5: Examples for different patches from the same structure.

entropy over scale function exhibits a peak and the third step is calculation of

the magnitude change of the PDF as a function of scale at each peak. The final

saliency is the product of entropy and magnitude change at each peak. Generally,

entropy is measured for the gray level image intensity but other attributes, e.g.

color or orientation, may be used instead.

The entropy of local attributes measures the predictability of a region with re-

spect to an assumed model of simplicity. In the case of entropy of pixel intensities,

the model of simplicity corresponds to a piecewise constant region [18].

In the second step, scales are selected where the entropy is peaked. Through

searching for such extreme, the feature-space saliency is locally optimized. More-

over, since entropy is maximized when the PDF is flat, i.e. all present attribute

values are in equal proportion, such peaks typically occur at scales where the

statistics of two (or more) different pixel populations contribute equally to the

PDF estimate [18].

For example, in a noise image the pixel values are highly unpredictable at

any one scale but over scale the statistics are stationary. However, a noise patch

against a plain background would be salient due to the change in statistics. We

can interpret the role of the inter-scale unpredictability measure as a weighting

of the entropy value such that some pixel permutations are preferred over others.

It is defined as the magnitude change of the PDF as a function of scale. This

detection approach is used at the patch based segmentation step to find keypoints
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Figure 3.6: Final segmentation results. First column shows the original images,
second column shows the results of our segmentation process in false color.
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as an alternative to the SIFT. Visual interpretation of the results showed that

SIFT gives more reliable keypoints so we integrate the SIFT as primarily keypoint

detector. Figure 3.7 shows some results of SIFT and Kadir&Brady detectors.

Figure 3.7: Results of two keypoint detectors. First column shows Kadir-Brady
keypoint results with scale circles. Second column shows the Kadir-Brady key-
point coordinates while the third column shows SIFT detector keypoint coordi-
nates.

The main problem for the segmentation process is the over segmentation. At

the patch based approach, huge number of regions are existing. We just want

to use big and compact regions from patch based approach so we are using a

growing algorithm to our patch regions to get regions as compact as possible.

Thresholding is the other preprocessing step to get rid of small regions. Still

contribution of the patch based regions is fuzzy in the framework so far. To

understand the contribution, at the experiment stage, we run our framework
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with and without patch based segmentation. Results showed that unless it seems

over segmented, patch based regions have contribution on the scene classes like

street and inside city. These kinds of regions create the contribution in scene

categories where predefined classes in one-class classification are not dominant.

Detailed results are given in Chapter 5.



Chapter 4

Bayesian Scene Classification

4.1 Scene Representation

After the segmentation step, scenes can be represented by regions and their

features. In this research we used color information and spatial relationships of

the regions for scene representation.

4.1.1 Region Features

Features of the regions are the multivariate HSV histograms. A histogram is

constructed by 8 bins for the H channel, 3 bins for the S channel and 3 bins for

the V channel. Total feature dimension of a region is 72.

4.1.2 Region Vocabulary Construction

To construct the region vocabulary, regions are clustered by the k-means

algorithm. This process assigns a discrete region type (codeword) to a region.

The whole codeword set creates our vocabulary or codebook. Note that at the

segmentation step which used one-class and patch based methods, there was

26
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no recognition, i.e. that process just created the connected components in the

images.

When features are extracted from each region, the clustering algorithm is

applied to the regions. We preferred to use k-means algorithm with k = 50. At

this point k represents the number of codewords in our codebook. For the k-

means algorithm, determining the k value is the main problem and the common

solution is to determine the k-value empirically. For this research, we preferred

to use value of k as 50 after different runs with different k values. We tried 30,

50, 75 values and decided to use 50. There is no an important difference on the

overall results while k is equal to 30, 50 and 75. More detailed results are shown

in Chapter 5. Figure 4.1 shows some regions which are in the same cluster after

k-means.

Figure 4.1: Region clustering results. Rows represent the clusters.

4.1.3 Spatial Modeling of Regions

For content analysis, spatial relationships of the components in the image

have very significant benefits. In this research we worked on outdoor images

and spatial information in outdoor images is more significant. Because of the
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spatial interactions between regions like sky, water, sand and road, modeling

spatial relations contributes to the understanding of image content very much.

We are considering only vertical spatial relations because especially in outdoor

images, vertical locations of the regions are more distinctive. For example, we

expect to find a water region under the sky region or more obviously we can find

a sand region under the sky region. Horizontal relations are more vague so we

Figure 4.2: Example of the spatial model. The list on the right shows the region
pairs extracted from the image.

assumed that using vertical information makes more contribution to the content

of the image. Difficulty of the spatial models is the relativity of the position.

Everyone can perceive some positions differently. To prevent the relativity, we

are dealing with clear relations and also, some constraints are defined to restrict

definitions. We constructed a simple spatial model which finds the region pairs

that have vertical spatial relationships. First of all, projection of two regions on

the x-axis is calculated. If there is no overlap, algorithm finds “no relation”. If

there is an overlap on the x-axis, it is possible to have an above-below relation so

projection on the y-axis is calculated. If there is no overlap on the y-axis, these

two regions have a vertical spatial relation. The one whose centroid is above

is over the other region. If there is overlap on the y-axis, the overlap area is

calculated. If overlap area is larger than %50 of the smaller region’s area, there
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is no above-below relation otherwise, the one whose centroid is above, is over the

other region. Figure 4.2 shows an example of our spatial model.

4.1.4 Scene Features

Segmentation of the regions, clustering of the regions and extracting vertical

spatial relations of the regions provide the necessary information to extract scene

features. Each scene can be represented according to its feature content. In

this research, scene features are the regions and region pairs so we created two

different scenarios to represent the scenes. First is using regions individually and

constructing “bag of individual regions” while second is using region pairs and

building “bag of region pairs” to use the spatial information in images. Scene

classification process uses these two assumptions separately. We consider two

settings for this bag of regions representation:

1. each region is regarded separately and and a “bag of individual regions”

representation is generated.

2. regions that satisfy the above-below relationship are grouped together and

a “bag of pair regions” representation is constructed.

4.2 Region Selection

Determining the feature space is a significant problem in computer vision.

In this research we represented scenes with regions and region pairs. In our

representation, an image can have at most k different types of regions or k2

different types of region pairs. Our aim is to find the characteristic region or

region pair types in the scene categories because using all region-pair types cannot

be contributing to all scene categories. Some region and pair types represent a

particular scene category better than the others. We want to use these kinds of

region and pairs in the representation to have more reliable results. Decreasing

the size of our codebook will contribute to the results because if the selected
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region and pair types will be the more characteristic ones for all scene classes.

There are two important criteria for this process; one is that region types that

are frequently found in particular class of scenes but rarely exist in other classes.

Second is that region types that consistently occur together in the same class of

scenes.

We formulate the feature selection process as a multisubset search problem as

in [12] with the major difference being the definition of the optimization criteria

for finding the best set of subsets of regions (because the motivations, require-

ments and inputs for keyword selection are different from our region selection

setting). Let T be the set of region types in the codebook (|T | = k) and

X d = {Sj|j = 1, . . . , c} (4.1)

be a set of subsets, also called a multi-subset, of these types where

Sj = {tjn|n = 1, . . . , cj; t
j
n ∈ T } (4.2)

is the subset for the j’th class, c is the number of classes, and cj is the size of the

j’th subset. The size of the multi-subset X d is |X d| =
∑c

j=1 |Sj| = d.

Given a criterion J(·) that describes the quality of a multi-subset, the goal is to

find such subset X d for which the criterion is maximum. A suboptimal solution

to this problem can be found using the sequential forward selection algorithm

that starts with an empty set X 0 and iteratively finds a new set X i+1 by adding

a new feature to the set X i such that

J(X i+1) = max
j=1,...,c
t∈T \Sj

J({S1, . . . ,Sj−1,Sj ∪ {t},Sj+1, . . . ,Sc}) (4.3)

until the multi-subset X d with the required size is obtained.

Our definition of J(·) combines two components (as in [12]):

J(X d) =
∑

j=1,...,c
n=1,...,cj

Aj(tjn)

( ∑
i=1,...,c

i6=j
m=1,...,ci

Ej,i(tjn, t
i
m)

)
(4.4)

where Aj(t) describes the intra-subset importance of region type t within Sj and

Ej,i(t, t̄) describes the inter-subset relation between region types t ∈ Sj and t̄ ∈ Si.
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Given I as the whole set of training images, Ij as the set of training images

for the j’th class, and Hl(t) as the frequency of the t’th region type in the l’th

image, we define these components as follows (different from [12]):

Aj(t) =

(∑

l∈Ij

Hl(t)

)(
1 +

∑

l∈Ij

∑

t̄∈Sj\{t}
min{Hl(t),Hl(t̄)}

)

(
1 +

∑

i=1,...,c
i 6=j

∑

l∈Ii

Hl(t)

) (4.5)

promotes region types that are frequently found in examples for a particular

class (first term in the numerator) and consistently occur together with other

region types selected for the same class in the same examples (second term in the

numerator) while demoting types that are also similarly frequent in examples for

other classes (term in the denominator), whereas

Ej,i(t, t̄) =

(∑

l∈Ij

max{Hl(t)−Hl(t̄), 0}
)
×

(∑

l∈Ii

max{Hl(t̄)−Hl(t), 0}
)

(4.6)

promotes pairs of region types of which each one is frequent in examples of

one class but is rarely found in examples of the other class. This setting does

not depend on a specific classifier unlike most of the traditional feature selection

algorithms because it performs selection only based on the frequencies of region

types in example images for different classes.

Using this algorithm, we reduced our codebook size from 50 to 20. In this

case, 20 is obtained from empirical runs of the algorithm. We used different values

like 10, 20 and 30 for the subset size. Detailed results are discussed in Chapter 5.

4.3 Scene Classification

As the classification step, we used Bayesian decision theory with posterior

probabilities. A scene containing regions {x1, . . . , xm} will be assigned to the

class with the largest posterior probability:

w∗
j = arg max

j=1,...,c
p(wj|x1, . . . , xm) (4.7)
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In this equation, wj represents the j’th class, c is the number of classes, and m

is the number of regions in the scene. Posterior probabilities are calculated as

follows

p(wj|x1, . . . , xm) =
p(x1, . . . , xm|wj)p(wj)

p(x1, . . . , xm)
. (4.8)

All classes can be assumed to have equal priors so we only consider

p(x1, . . . , xm|wj). This is equal to class conditional probabilities. We have two

classification model; individual and pairwise.

4.3.1 Individual Classification Model

At the final Bayesian classification step, firstly we assumed that scenes are

represented with the bag of individual regions. Each region is independent from

others in the same class. Therefore, the class conditional probability reduces to

p(x1, . . . , xm|wj) = Πm
i p(xi|wj). (4.9)

Using the multinomial model, probabilities are calculated by maximum likelihood

estimation:

p(xi = u|wj) = Pju, j = 1, . . . , c u ∈ {1, . . . , k} (4.10)

From maximum likelihood estimation, Pju =
nju

nj
where nju is the number of

regions with label u in the images for class j and nj is the total number of regions

in class j. This gives a total of k parameters for each class.

The possible problem here is the sparsity. Some scene categories may not

contain regions from some clusters so Pju values will be zero for those cases.

When the Pju values are zero, p(x1, . . . , xm|wj) values will also be zero and this

is an unwanted situation. To avoid this problem, while calculating the Pju, we

add 1 to the nju and k (number of clusters) to the nj. Instead of having zero

probability, it assigns a probability value very close to zero. To investigate the

sparsity problem and visualize the distribution of the region types in different

scene categories, we plotted the nju values for different scene classes in Figure 4.3

and 4.4. Similarly, Figure shows the probability values estimated using Equation

(4.10).



CHAPTER 4. BAYESIAN SCENE CLASSIFICATION 33

Figure 4.3: Region type histograms of the scene categories. x-axis shows the 50
region types
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Figure 4.4: Region type histograms of the scene categories where brighter colors
represent larger values.

Figure 4.5: Region type probability of the scene categories where brighter colors
represent larger values.
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4.3.2 Pairwise Classification Model

We assumed that regions have pairwise spatial dependencies which are de-

fined according to the above - below relation. In our second scenario, scenes are

represented with bag of region pairs. Regions have pairwise dependencies but

the pairs are independent from others in the same class. Therefore, the class

conditional probability reduces to

p(x1, . . . , xm|wj) = Π(r,s)∈Rp(xr, xs|wj) (4.11)

where R is the set of region pairs that satisfy the spatial relationship where xr is

above xs. Probabilities calculated by maximum likelihood estimation consist of

k2 parameters for the pairwise model.

Calculation of the pair probabilities is very similar to the individual one.

Instead of regions, region pairs are taken in each scene category and proportion

to the total region pairs in that category gives us the pair probabilities for each

scene category. Same sparsity problem is possible for calculating region-pair

probabilities and same solution is valid for this case, too.



Chapter 5

Experiments

In this research we used a subset of the MIT LabelMe data set that contains

8 scene categories: coast, forest, highway, inside city, mountain, open country,

street and tall buildings [24]. Total number of images is 2696 with size 256 x

256 pixels and in “jpg” format. Numbers of images according to scene categories

are shown in Table 5.1. This dataset was divided into training and testing sets

Table 5.1: Number of images in each scene categories.
Train Test

coast 150 211
forest 150 179
highway 150 111
inside city 150 159
mountain 150 225
open country 150 261
street 150 143
tall building 150 207
Total 1200 1496

randomly. Our train data contains 1200 images which are randomly selected

150 images from each category. The remaining 1496 images were used as test

data. At the training process our segmentation framework was applied to each

image and all data were segmented into regions. At the scene representation step,

two types of representation model which are “bag-of-regions” and “bag-of-region

36
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pairs” were applied. Before running the experiment cases, we needed to decide

some important parameters.

For region clustering, value of k is needed to be determined for the k-means

clustering algorithm so we tried different k values to find the most suitable one.

To determine the number of region types, we tried k=30, 50 and 75. Using k

very big or small probably would reduced overall success rate so we tried more

reasonable and common values. Results for the bag of regions model is shown in

Table 5.2. There are no significant differences in the results so we can say that

Table 5.2: Success rates depending on the number of region types.
k=30 k=50 k=75

Coast %72 %75 %76
Forest %70 %69 %65
Highway %48 %51 %53
I.C. %60 %57 %45
Mountain %60 %61 %56
O.C. %37 %41 %32
Street %40 %42 %37
T.B. %53 %51 %48
Average %55.00 %55.88 %51.55

the interval between 30 and 75 is quite reasonable. We decided to use 50 as the

k value in the rest of the experiments.

Another critical parameter is the size of subset for the selection algorithm. It

was decided by empirical trials with different values. The value must be lower

than the cluster number so we used 10, 20 and 30 for subset size. Results for the

bag of regions representation are shown in the Table 5.3. According to the results,

contribution of the selection algorithm is limited so change for subset value in a

close range did not created a significant difference in the overall results. For this

reason, a value between 10 and 30 can be used for subset size. We preferred to

use 20 for subset size in the rest of the experiments.

After the initial experiments to set the parameters, number of clusters will be

50 for the rest of the experiment runs whereas number of cluster will be reduced

to 20 for the cases where the selection algorithm is used.
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Table 5.3: Success rates depending on subset-size used for selection algorithm.
Subset Size=10 Subset Size=20 Subset Size=30

Coast %77 %78 %76
Forest %65 %68 %71
Highway %63 %60 %60
I.C. %51 %49 %47
Mountain %65 %62 %63
O.C. %31 %34 %30
Street %57 %55 %54
T.B. %51 %54 %50
Average %57.55 %57.50 %56.38

At the experiment process, we created four different cases which are:

• bag of individual regions representation without selection.

• bag of region pairs representation without selection.

• bag of individual regions representation with selection.

• bag of region pairs representation with selection.

5.1 Individual Classification Model

“Bag of individual regions” is our first experiment case. We tested this rep-

resentation with and without region selection algorithm which is mentioned in

section 4.2. Results of the individual representation without region selection are

in Table 5.4.

Overall success rate is %55.88 and the best success percentage belongs to the

“coast” scene category whereas worst percentage is belongs to the “open coun-

try” category. The important point is that the misclassification occurs between

the similar scene categories. For example most of the misclassification is shared

by the scene categories “coast”, “mountain” and “forest” while misclassification

in “open country” is very low for classes like “street”, “tall building” and “in-

side city”. It is very obvious that most of the misclassifications occur between
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Table 5.4: Confusion matrix for the bag of individual regions representation with-
out region selection algorithm.(Rows are true labels, columns are assigned labels.)

Coast Forest Highway I.C. Mountain O.C. Street T.B. %
Coast 158 12 4 2 11 23 1 0 75
Forest 16 123 5 2 7 25 0 1 69
Highway 7 8 57 2 7 24 5 1 51
I.C. 2 3 10 91 3 1 38 11 57
Mountain 10 28 8 10 137 22 6 4 61
O.C. 25 34 35 12 36 107 4 8 41
Street 1 0 13 50 5 4 60 10 42
T.B. 3 4 12 41 3 2 36 106 51

the scene categories which have similar contents. Considering the difficulties in

segmentation process, using regions without selection and spatial information,

overall result is acceptable.

Same experiment is repeated with the our selection algorithm where we re-

duced the codebook size from 50 to 20. Selection algorithm just determined the

20 most representative region clusters for the whole scene categories and the rest

of the processes were done with the new codebook. The new results for individual

regions are in Table 5.5. Average success rate of the scene classes is 57.50. Selec-

tion increased the overall rate and still important amount of the misclassifications

occur between similar scene categories.

Table 5.5: Confusion matrix for the bag of individual regions representation with
selection algorithm where k reduced from 50 to 20.(Rows are true labels, columns
are assigned labels.)

Coast Forest Highway I.C. Mountain O.C. Street T.B. %
Coast 169 11 2 1 5 22 1 0 78
Forest 8 118 8 4 21 12 5 3 68
Highway 2 1 82 3 2 2 19 0 60
I.C. 0 1 20 89 5 9 25 10 49
Mountain 10 7 3 2 173 25 1 4 62
O.C. 36 38 22 5 28 125 2 5 34
Street 1 2 8 36 2 2 77 15 55
T.B. 4 5 16 33 4 1 30 114 54
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5.2 Pairwise Classification Model

Our second image representation is the “bag-of-region pairs”. In this case

region pairs were extracted by our spatial model which selects the region pairs

based on the above-below relationship. Results of the region pairs representa-

tion are in Table 5.6. Average success rate of the classes is %62.75 which is a

much better result than individual region presentation. As expected, we can say

that using spatial information created very important contribution to the overall

results.

Table 5.6: Confusion matrix for the bag of region pairs representation without
selection algorithm.(Rows are true labels, columns are assigned labels.)

Coast Forest Highway I.C. Mountain O.C. Street T.B. %
Coast 173 7 3 3 5 18 2 0 80
Forest 8 141 4 2 12 6 1 1 66
Highway 0 0 78 6 4 2 13 8 74
I.C. 2 3 15 81 1 4 25 28 48
Mountain 3 12 8 3 175 22 0 2 77
O.C. 37 33 10 5 35 136 2 3 48
Street 4 4 15 36 2 0 57 25 54
T.B. 2 3 4 25 5 1 49 118 55

The fourth experiment is to use region-pairs and selection algorithm as men-

tioned in section 5.1. Results of the region pairs representation with selection

algorithm are shown in Table 5.7. Selection algorithm improved most of the

scene categories as expected. There is a small difference in the overall result

which is %63.63. Using the region pair representation and selection algorithm

created the best results as we expected. Considering the average results, we can

say that contribution of the spatial information is much more than the selection

algorithm. However, we can not ignore the improvement caused by selection al-

gorithm to the results. Success rates of all cases are shown in Table 5.8. As the

best case, “bag-of-region pairs with selection” representation results are shown in

Figure 5.1 with good results and Figure 5.2 with bad results (each row is a scene

category).
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Table 5.7: Confusion matrix for the bag of region pairs representation with region-
pair selection while k is reduced from 50 to 20.(Rows are true labels, columns are
assigned labels.)

Coast Forest Highway I.C. Mountain O.C. Street T.B. %
Coast 165 16 5 4 4 15 1 1 82
Forest 10 122 3 1 12 27 2 2 79
Highway 1 2 67 5 3 4 15 14 70
I.C. 6 4 7 78 5 3 31 25 51
Mountain 12 35 10 7 140 8 5 8 78
O.C. 42 30 34 8 40 89 12 6 52
Street 5 9 10 22 1 2 79 15 40
T.B. 4 3 6 35 12 7 28 112 57

Table 5.8: Summary of success rates for all cases.
Individual Pairwise Individual with Selection Pairwise with Selection

Coast %75 %80 %78 %82
Forest %69 %66 %68 %79
Highway %51 %74 %60 %70
I.C. %57 %48 %49 %51
Mountain %61 %77 %62 %78
O.C. %41 %48 %34 %52
Street %42 %54 %55 %40
T.B. %51 %55 %54 %57
Average %55.88 %62.75 %57.50 %63.63
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Separately from all experiments, we made a test run to show the contribu-

tion of the patch-based segmentation which is mentioned in Section 3.2. For

this run, we used only one-class segmentation at the segmentation step of our

framework. The aim of the test is to observe the difference in results with and

without patch-based segmentation. Success rates of this experiment is shown in

Table 5.9. Results showed that scene categories which have limited predefined

Table 5.9: Success rates for all cases without patch-based segmentation.
Individual Pairwise Individual with Selection Pairwise with Selection

Coast %77 %75 %81 %83
Forest %71 %56 %73 %75
Highway %57 %71 %68 %67
I.C. %26 %8 %21 %22
Mountain %63 %74 %68 %77
O.C. %44 %47 %41 %53
Street %7 %5 %10 %3
T.B. %15 %11 %9 %12
Average %45.00 %43.37 %46.39 %49.00

class regions like street, inside city and tall building have very poor classification

results. When compared to the results in Table 5.8, it is very obvious that patch-

based segmentation approach has contribution to the scene categories which have

complicated man-made structures.

5.3 Comparisons

There are two comparison cases. First one is the comparison with the global

histogram method and the other is the comparison with the bag-of-words method.

First of all, we compared our results for the 4 cases with the most traditional

classification method which uses global histograms of the images. We extracted

the HSV histograms (with 8 × 3 × 3 bins) of the images and classified with 5

different statistical classifiers. The classifiers are “Linear Gaussian classifier”,

“Quadratic Gaussian classifier”, “k-nearest neighbor classifier ”, “Parzen window

classifier” and “Support vector machines”. Results of these classifiers with global

histogram results are shown in Table 5.10. It is very obvious that all of the cases
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have much better results than the global histogram method and reasons can

be summarized as using region segmentation(local information), spatial relation

information and region selection.

Table 5.10: Classification rates for global histograms method.
Linear Gaussian classifier 36.21%
Quadratic Gaussian classifier 31.15%
k-nearest neighbor classifier 35.07%
Parzen window classifier 44.65%
Support vector machines 43.81%

Second and the more important comparison is with the bag-of-words method

[7] which uses methods such as probabalistic latent semantic analysis (pLSA)[21]

and latent dirichlet allocation (LDA) [22] . The matlab code of the method was

taken from [20]. We randomly selected 200 images for each scene category from

our dataset. Algorithm randomly used half of each category as train data and the

other half as test data. Totaly, we gave 1600 images of our 2696 image dataset

and the reason is that we want each category to have equal number of images.

Confusion matrix of the bag-of-words method is shown in Table 5.11. Average

Table 5.11: Confusion matrix for the bag-of-words method.
Coast Forest Highway I.C. Mountain O.C. Street T.B. %

Coast 67 1 7 0 10 12 3 0 67
Forest 1 88 0 0 6 4 0 1 88
Highway 6 11 54 4 9 2 3 1 54
I.C. 0 1 2 76 2 0 9 11 76
Mountain 0 10 7 0 75 3 0 5 75
O.C. 10 14 9 0 16 51 0 0 51
Street 0 0 0 16 0 0 80 4 80
T.B. 0 5 4 23 10 2 20 36 36

success rate of the method is %67.13. It is better than all of our cases but it

is very close to our 2nd and 4th cases. Our best case (the 4th case) is slightly

worse than the bag-of-words method but as summary we can say that results are

close. If we compare the distribution of the misclassification, consistency can be

seen between the similar scene categories like in our cases. We can say that our

approach is weaker in scene categories like street and inside city because of the
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patch-based features but in other categories like coast, forest, mountain we have

equal or better results. To summarize, both methods have close results and both

methods have very consistent result for individual scene categories.

Figure 5.1: Correct classification results. Each row shows a scene category.
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Figure 5.2: Images wrongly classified with the best case. Each row shows images
wrongly assigned to a particular category.



Chapter 6

Conclusion and Future Work

As a summary, in this research we aim to construct a reliable outdoor scene

classification framework. As the first step, we created a two level segmentation

process to find regions in images. One-class classifiers that are learned from dif-

ferent semantic classes are applied to images. These classifiers divide an image

into predefined semantic classes and an outlier class. Next step is the segmenta-

tion in outlier regions with patch-based processing. Patches are extracted around

the interest points found within outlier regions. After that, regions in roughly

segmented images are clustered with k-means algorithm. Clustered region types

created our codebook and images are represented as “bag-of-regions” and “bag-of-

region pairs”. We developed a spatial model which extracts above-below relations

for ‘bag-of-region pairs” representation. Region selection algorithm is applied to

the codebooks to find the characteristic region types. As final step, Bayesian

classification approach is used for final classification.

For the future work, better interest point detectors can be used to extract

more reliable patches. We saw that our patch-based clustering method is a little

weak in some categories. Also to improve the use of spatial relation information,

different and more complicated spatial models can be established. We believe

that better spatial relations improve the final results in a good way. Another

important point is the selection algorithm; different algorithms can improve the

results and different codebook techniques can also be beneficial.
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